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principles

ABSTRACT
In this thesis artificial intelligence ideas are applied to the domain of fine arts and especially
modern art. First, we take a closer look at avant garde art movements of the late 19th and first
half of the 20th century. After that, we make an analysis of the knowledge on which this art
movement is partly based by considering the fields of aesthetics, gestalt psychology and
graphic design. Having formalised general ideas about what a well-formed painting should
consist of, we then look at ways of incorporate these ideas in a model for generating a
composition. We design a formal framework to which we map the domain concepts. Based on
the framework, we make a top-down knowledge decomposition. To demonstrate how our ideas
can be applied in a practical situation, we have implemented a prototype system. Theoretically,
this system is split up into the front-end part, in which the actual output is generated, and the
back-end part, in which artificial intelligence techniques are applied to the actual concepts of
composing an artwork. The front-end is partly based on the multimedia generation system
called Cuypers, which was developed at the Centrum voor Wiskunde en Informatica (CWI) in
Amsterdam. Cuypers was made to generate dynamic presentations and therefore generates
XML, which subsequently is transformed into a desired format (XHTML, TIME, SMIL) using
XSLT transformation stylesheets. Our system generates output in the Scalable Vector Graphics
(SVG) format, which is an XML based standard for vector graphics and animation. The back-
end part is based on the formal ideas about art described above. It is implemented in Eclipse
Prolog. Finally, we discuss the artistic significance of our results. We conclude this thesis by
discussing the advantages and disadvantages of the conceptual decisions, as well as
suggesting directions for future research, including ideas for the evaluation of the generated
compositions.
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Chapter 1

Introduction

The domain of this project is that ofgenerative artin a computer science context: ‘art
that is generated by a computer(program)’. In our situation, the domain of generative
art could roughly be split up into three sub-domains. First, a division can be made
between art and science. These fields are fairly opposite to each other, a fact which will
turn out to raise several fundamental questions. Furthermore, a useful distinction can
be made in the domain of computer science between the fields of artificial intelligence
and web technology, both of which will play a significant role in the implementation
of our ideas.

We are mainly interested in abstract painting, so we will take a close look at the fine
arts and especially the avantgarde art movements of the late 19th and first half of the
20th century. These movements are strongly linked with some theoretical disciplines
within philosophy, psychology and the design community, which makes them suitable
for this kind of research.

The research of this project is done for a masters degree in artificial intelligence (AI).
Therefore, after we have made an in-depth analysis of the knowledge domain, we will
derive formal ideas on which the back-end of the system is based. These ideas include
generative concepts that provide a basis to build an artwork-model from scratch. Also,
we will discuss ways to evaluate the generated artwork from a more holistic point of
view.

Whereas AI fulfills the need to create a conceptually sound research design and art
theory provides a solid basis for this, existing web technology can provide a framework
for the generative process. We have chosen Scalable Vector Graphics (SVG), the XML
standard for vector graphics, as the format to visualise the concepts that are presented
in this thesis.

There exist other projects in which AI techniques are combined with art. Cohen
for example, who wrote some interesting philosophically oriented papers on the pos-
sibility of machines being creative (for example [16]) implemented a system called
AARON, which is able to create paintings in a certain style. The essential difference
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with this project is the fact that Cohen is more concerned with the consequences of AI
technology for artistic content (he states that the compositions that AARON produces
are not art), while we take a more utilitarian approach by researching the possibilities
of applying AI within a specific art domain.

Our research question is the following: ‘How can artificial intelligence techniques
be combined with vector graphics to create geometric abstract art?’

Our approach is to formalise knowledge derived from art movements and related
scientific disciplines such as gestalt psychology and aesthetics. Based on this knowl-
edge we will build a system that implements some of these ideas and generates output
in Scalable Vector Graphics (SVG).

Certain art movements, such as dadaism and post-modernism, that take a more ni-
hilistic or eclectic approach, are beyond the scope of this thesis, because their prin-
ciples are focused on content rather than on form. Therefore they are difficult to for-
malise. Also, to reduce the complexity of the problem space, we will restrict our-
selves to two-dimensional compositions while ignoring interesting technical possibili-
ties such as animation and audio. Depth composition will consist of placing shapes in
layers on top of each other in the two-dimensional plane of the composition area. This
is inherent to our choice for vector graphics.

The structure of this thesis is the following:

Chapter 2 explains the theoretical background of our three primary domains: modern
art, artificial intelligence and web technology.

Chapter 3 translates theory to formal knowledge. We design a conceptual framework
to which the concepts discussed in chapter 2 are mapped.

Chapter 4 discusses the implementation of our demo and the extent to which we can
generate art.

Chapter 5 Concludes the thesis by analyzing the main conceptual decisions that have
been made and discusses possibilities for future research.
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Chapter 2

Theoretical Background

In this chapter, relevant background information with respect to generative art is given.
In the first section, we take a look at the creative issues involved. After that, we look
at some possible artificial intelligence approaches. In the third section, we discuss
available web technology for the representation and generation of two-dimensional
graphics.

1. A P
The domain of the fine arts is virtually without bounds and therefore choices have
to be made to limit our field of interest. Because this is a computer science thesis,
we are looking for an art movement of which we are able to formalise the principles
to some extent. Besides that, it should be possible to generate output that resembles
compositions in that movement’s style at a certain level. As will become clear soon,
abstract geometric art fits these requirements. Therefore, in this section, the domain
of modern arts is explored. First, we take a look at the history of modern art and
how early twentieth century geometric painting movements have evolved. After that,
we look at existing combinations of art and computer technology. We discuss some
general issues concerning the gap between technology and creativity while saving a
more in-depth analysis for the discussion. In the last part of this section, a first step
is taken to derive concrete formalisms out of which we can build an art-generation
framework.

1.1 A Short History of Modern Art and Expressionism
Any contemporary painting could be classified as being modern. Historically speaking
though, a modern painting is a painting that is based on ideas that were developed
during the period of the modern art movement, which developed between 1860 and
the second world war (to avoid confusion, modern art is often calledmodernism).
Based on [25], we place abstract geometric art to the background of modern art in this
section.

Art in the classic sense is mainly concerned with depicting reality, or nature, in an
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accurate way. Well known ‘classic’ techniques are the use of proportional measures,
perspective, foreshortening and chiaroscuro (the contrast between light and dark). Of
course, artists always have maintained the freedom of expression to a certain degree.
Whereas some paintings are hardly distinguishable from a picture, others depict a more
abstract expression of the inner state of the artist. The first nineteenth century art move-
ment in which expression played a significantly more important role is calledimpres-
sionism. The impressionists took more liberties with respect to realism, mainly in the
use of colour. Important impressionist painters such as Monet, Morisot, Renoir and
Manet experimented with new compositions, often derived fromUkiyo-e, Japanese
Edo-period wood prints. Although impressionistic painters changed general princi-
ples of form, thematically they were rather limited; many of them ignored the social
developments of society. Instead, they stuck to bourgeois themes such as garden par-
ties and idyllic landscapes.Neo-impressionistssuch as Pisarro, Degas and Van Gogh
successfully incorporated more social themes into their paintings.

Paul Ćezanne (1839-1906), a contemporary of the late-impressionists, took the idea
of expression much further. He paid a lot of attention to the integrity of the painting it-
self, carefully arranging the composition at the level of brushstrokes. Thus, he not only
gave a subjective view through the use of colour, but radically changed the aesthetic
values and notions of art in general (a typical example of one of Cézanne’s works is
depicted in figure 2.1(a)). Yet his work was still based on the depiction of realistic
objects.

Around the turn of the century, Ćezannes work became widely appreciated and
his ideas started to influence others. Throughout the first half of the twentieth cen-
tury, many new movements appeared that emphasised expression through painting.
Therefore, they are placed together under the termexpressionism. Many expressionist
painters started to experiment withnon-representationalor non-figurativeabstractions.
This eventually led to the abstract geometric art forms that are the basis for this thesis.
Here follows a short summary of the most important expressionistic movements.

Paris, at that moment the cultural centre of the Western world, produced one of the
first groups of expressionistic painters, including Matisse, Rousseau, Derain and De
Vlaminck. They were highly influenced by African and other exotic art and at their
first large exposition together they were named‘Les Fauves’, the savages. At the same
time German painters also showed a large tendency towards expressionism.

The ideas fundamental to the movement know ascubismwere originally developed
by Picasso and Braque. Although they have always avoided an exact definition of
cubism, they based their ideas on the simultaneously displaying of multiples sides of
three-dimensional objects and tended to represent human forms and objects in terms
of patterns and rhythms of geometric shapes. This ‘primitive’ or ‘naive’ way of ex-
pression was influenced by Cézanne as well as exotic cultures. Thus, a strong relation-
ship can be seen between cubism and ‘Les Fauves’. Figure 2.1(b) depicts the cubistic
‘Woman in Armchair’ by Picasso.

Futurism was founded in Italy in 1909 and was originally more concerned with
poetry than with painting. The futurists wrote manifestos in which they embraced the
industrialised world, which was dominated by technology and urbanisation. This is in
strong contrast to previous movements such as impressionism, which emphasised the
beauty and purity of nature. Futurism has produced only a few significant works, most
of which were made by Boccionni. On the other hand, futurism’s switch in mentality
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has influenced practically every other Western art movement at the time.
With the threat of the first world war in the back of their minds, they portrayed

scenes of social unrest, just like the neo-impressionists. One of the main differences
was their emphasis on the emotional intensity and spontaneity of the situation. One
of the first official expressionistic groups from Germany is called‘Die Brücke’, with
Kirchner as its best-known member.

Vassily Kandinsky, a Russian painter who moved to Germany, was the founder of
another expressionistic group,‘Der Blaue Reiter’. Kandinsky was very interested in
science and gave up a professorship for art. Rudolf Steiner, one of the founders of
gestalt psychology, attended his lectures in the‘Bauhaus’, also known for the art
movement of the same name. Kandinsky gradually worked towards new levels of
expression, until he totally denounced representational forms and made compositions
entirely based on geometric abstractions. A good example of one of these entirely
geometric abstract paintings is depicted in figure 2.1(d).

In Russia, for example, paintings by important contemporary artists from Europe
were imported by wealthy merchants. This way, Russian painters discovered cubism
and futurism. By 1913, the first Russian expressionist art movements were started,
eventually resulting in Kasimir Malevich’ssuprematismand Popova and Tatlin’scon-
structivism. Figure 2.1(e) depicts a composition by Malevich, while figure 2.1(c)
shows a canvas painted by Popova. The Russian painters placed the forms of ex-
pressionism in a much more social context, believing that the abstract ideas conveyed
through their paintings had a quality of purity which corresponded to contemporary
political ideas.

When the first world war broke out, many important painters were sent into the
trenches, never to return. Some of them, including Kandinsky, managed to escape
to Britain. After the war, abstract art was further developed by the‘Bauhaus’move-
ment in Germany and the‘De Stijl’ movement in the Netherlands, also known asneo-
plasticism. Prominent artists of both movements, among others Gropius, Kandinsky,
Mondrian, Rietveld and Van Doesburg, exchanged ideas with each other during lec-
tures in the ‘Bauhaus’-building. Many of them were influenced by earlier expression-
ist movements as well as by architects such as Lloyd-Wright and Berlage. Innovations
were made in painting as well as architecture and industrial design. Geometric art
reached its peak with the lattice compositions by Mondrian and the ‘Schröder’-house
by Rietveld. Figures 2.1(g) and 2.1(f) depict two typical neo-plasticist compositions.

The ideologies that underlay many late expressionist painting movements often
turned out to be their weakness. The Russian expressionist art movements for ex-
ample were banned because of their strong visions. Instead, painters had to return to
traditional realism to depict common situations of the working class for propaganda
purposes. Futurism is said to have a close relationship with fascism. Even the art
of the neo-plasticists, which was allegedly based on spiritual ideas resulting from a
calvinistic background, was limited by its strong ethical foundations.

After world war two, some artists still painted in the modernist tradition (for exam-
ple the American abstract expressionists such as Jackson Pollock), but the bulk of new
artists decided to take new directions. The content-basedpost-modernistapproach to
art is fundamentally opposite to that of modernism, which concentrates on structure
and form. Still, modernism has had a great influence as one of the most important
artistic changes in modern history. We continue the discussion about art in general in
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chapter 5.

1.2 Computers& Art
The first computer artists appeared around 1950 [27]. Due to the formal nature of
computers, strong emphasis lay on the mathematical approach of visuals. Most of
the pioneers of computer art were active in the field of science. Franke, a German
mathematician, did experiments with oscilloscopes of which he made photographic
images. At the same time, in the USA Laposky independently produced work that
was strikingly similar to that of Franke. Laposky was primarily an artist, although
he started from mathematics. Thus, Franke and Laposky can be said to have similar
interests but different priorities. Whitney Senior, on the other hand, had an artistic
background and was most explicitly influenced by modernism. His aim was to create
new, abstract films that were meant to represent music in a visual manner. He learned
to work with computers to achieve this goal.

The use of geometry to create visuals resulted in the fact that early computer art
was primarily concerned with form, just like much modern art. The sad thing is that
once the technology to properly generate visuals with computers was available, the
last significant modernist developments had been made twenty years earlier. The post-
modern art that was fully in development at the time was primarily concerned with
ideas about content and the implications of art itself. Ideas such as these are much
more difficult to formalise.

This does not imply that no interesting work has been done in the field of com-
puter arts. Many new developments have been driven by technology. For a couple
of decades, generating graphics was too expensive and too inaccessible for regular
artists. In the mid-eighties, personal computers and game consoles provided a wider
public with graphics software. In [27], the year 1986 is denoted as a landmark be-
cause of three facts; first, the BBC broadcast a television series about artists who used
a primitive graphics system that connected to a television set. Second, Andy Warhol,
the wellknownpop art artist, made some works with a Commodore Amiga. Also in
that year, the first version of Adobe’s Photoshop, one of the most popular graphics
tools to this date, was written.

Eventually, computer graphics have become available to everyone who has access to
a computer. Popularisation and wide availability of common graphics applications has
led to the fact that fancy graphics are now easily created with pre-programmed filters
called plug-ins. On the other hand, many professional tools have been developed.
Artists are able to explore the new boundaries of art in digital media.

As for ‘serious’ computer art, there a couple of different approaches. The first is
calledalgorithmic art and is based on computer algorithms that specify how an art-
work should be built up. In this case, procedural computer algorithms are an interme-
diate through which the goal of the artist/programmer of expressing himself is reached.
Generative artis to algorithmic art what AI is to computer science; ideas of creativity
and more abstract, generational knowledge are implemented to give the system a level
of autonomy. One way to achieve this is to make use of rule based reasoning, which
is provided by fifth generation inferencing languages such as Prolog [8]. One could
also using machine learning techniques to generate graphics. These include neural
networks and evolutionary algorithms. Machine learning is not based on sets of rules
but on a dynamic process. This way, patterns can emerge. More information about
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(a) ‘Bend in Road’,
Cézanne

(b) ‘Woman
in Armchair’,
Picasso

(c) ‘Painterly Architec-
tonics’, Popova

(d) ‘Composition 8’, Kandinsky (e) ‘Petersburg’,
Malevich

(f) ‘Countercomposition
XV’, Van Doesburg

(g) ‘Composition with red,
yellow and blue’, 1939-
1942, Mondrian

Figure 2.1: Examples of abstract paintings
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reasoning and machine learning in the context of graphics is given in section 2.

1.3 “But is it really art?”
One of the main philosophical questions concerning generative art is: “To what extent
can something that is produced by a machine genuinely be called art?” Artificial cre-
ativity, in this light, could be seen as a form of intelligence. Therefore this question is
similar to the classical question: “To what extent can a program be genuinely called
intelligent?”. This interesting issue is encountered in every field of artificial intelli-
gence. Before referring to the discussion of our results in chapter 4, we shortly discuss
of the distinctions between the so-calledstrongand theweak AI claimin the context
of art [16, 20] here.

The weak claim states that human cognitive processes can be simulated by a suffi-
ciently complex computer program. By contrast, the strong claim holds that not only
the input and output of the computer are the same as a humans, but also the cognitive
internal state of the machine is the same. Translating these notions to artificial creativ-
ity, the weak answer to the question at the start of the previous paragraph would be:
“If the graphic output is similar to the art produced by a human artist, then it can be
called art”. Contrarily, the strong answer would be: “Besides generating qualitatively
equal graphics, the machine must possess an internal state that represents the creative
process.”

Another point of view would be to regard the programmer of a piece of working
generative-art software as the real artist. This is comparable to so-calledmeta-artists
[27], who describe the way their work should be made, while leaving the exact instan-
tiation of the details to others. We discuss higher level artistic considerations in more
depth in chapter 4.

1.4 Domain Theory
In the previous sections we have discussed some historic and philosophical back-
grounds of our domain. In this section, we handle the more theoretical, semi-formal
side. We take a top-down approach; first we discuss the philosophy behind art and
beauty,aesthetics, then we take a more practical, scientific approach by considering
gestalt psychologyand finally we look at how theory relates to common practice by
taking a look atcompositionandgraphic design.

Aesthetics The philosophical movement that considers the creation and evaluation
of art is called aesthetics. A formal definition1: ’Aesthetics or æsthetics - The branch
of philosophy that deals with the nature and value of art objects and experiences. It
is concerned with identifying the clues within works that can be used to understand,
judge, and defend judgments about those works. Originally, any activity connected
with art, beauty and taste, becoming more broadly the study of art’s function, nature,
ontology, purpose, and so on.’

The ‘art experience’ is interesting from an artistic point of view, but can not be
formalised without making bold assumptions. Because this project is not purely about
“Art for art’s sake”, we will focus especially on the functional and formal side of art.
Meaning will generally be less important. The following is a refinement towards a
more exact definition of aesthetics:

1Taken from http://www.artlex.com.
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‘Art is the imposing of a pattern on experience, and our aesthetic enjoy-
ment is recognition of the pattern [39].’

Here, an objective relationship is made explicit between art and experience of it.
This approach is taken a step further in [6], where the notion of anaesthetics of par-
ticulars, or exact aestheticsis discussed, especially in relation to modern art. Here it
is stated:

‘The distortions and reconstructions of the dynamic process of vision in
aesthetics are not in fact subjective. They arephenomenologically objec-
tive, [...]’.

According to Albertazzi, there are two fundamental scientific approaches to under-
standing aesthetics: the first is that of philosophical theory (which we have discussed
to some extent in this section). The second isGestalt theory, a subdiscipline of per-
ceptual psychology, on which we will focus below.

Gestalt Theory As is pointed out in [9], at the end of the nineteenth century, a ten-
dency within the art movement towardsaestheticismtook place: the underlying struc-
tures and forms of different art forms were seen as the essential basic, most abstract
representation. A lot of the ideas of early aestheticists can also be traced back to
Ukiyo-e art. These were based on aesthetic principles that emphasised balance, mini-
malism and implicit beauty that required mental participation of the viewer to become
explicit. When the twentieth century kicked off, several books had been written about
Japanese composition, which had become very popular (for further reference see [9]).
The ideas about composition started to become common knowledge. Aestheticism
started to reflect on other artistic disciplines such as, for example, architecture (exam-
ples include Lloyd-Wright, ‘Bauhaus’ and ‘De Stijl’). Aestheticism even started to
have a less apparent influence on perceptual psychology.

Gestalt theory was developed by a group of German psychologists during the 1920s
and 1930s2. They claimed that the separate analysis of each of the senses was not suf-
ficient to explain high-level sensory experience. Instead they took a holistic approach,
believing that the combined experience of different stimuli in the same picture was
more powerful than the sum of the experiences of the separate stimuli. Thus, the con-
cept of a ‘good figure’ was developed, which in short says that the human eye always
tends to perceive one particular, optimal, form. This was called theLaw of Pragnanz.
The Law of Pragnanz is fundamental to Gestalt theory.

There are many principles underlying the Law of Pragnanz. Many of them are more
relevant to psychology than to visual art and design. In 1923, the founding member
of gestalt theory, Max Wertheimer, wrote an essay entitled “Theory of Form” [38] in
which the basic ideas of gestalt theory related to visual language and perception would
be laid out. Once picked up by educators in arts and design a couple of decades later,
these ideas would prove a formal validation for the theory behind composition and
graphic design.

The Gestalt laws that are related to visual perception are such common knowledge
that it is easy to find many sources of information. In [12], for example, they are

2For futher reference see the International Society for Gestalt Theory and its Applications
(http://www.enabling.org/ia/gestalt/index.html).
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analysed in the context of visual screen design. Because this document is fairly recent
and extensive, we will handle the relevant gestalt principles based on it.

Symmetryor balanceis achieved by placing the visual elements in even distribution
on either side of an axis in the visual field. Note that most of the gestalt principles are
still general principles which can be interpreted in different ways. An image could be
balanced over the vertical direction, but not in the horizontal direction, for example.
Or an element which is relatively large can function as a ‘counterweight’ for a group
of smaller elements on the other side of the axis.

Good continuationstates that a visual field element or a group of elements can be
shaped in such a way that the observer perceives directionality. This causes, almost
forces, the eye to follow a path along it.

Closureor completionstates that missing parts of a shape will automatically be
added on perception. The picture is completed or ’closed’ inside the mind.

An interesting distinction is made between thefigure and theground of a visual
image. The figure is the part of the image that is seen as the ‘object’ in the front,
whereas the ground, or background, is the rest of the surface of the canvas that is
behind the figure. Because depiction is done in the flat plane, a borderline holds the
figure and the ground in equilibrium. When beholding the canvas, the shape within this
border and that outside it are complementary. Psychologically, the interesting aspect of
the figure-ground principle is that figure and ground can be switched, turning the figure
into ‘mere’ background and the background into a particular object. In figure 2.2(d)
for instance, a picture of a vase is shown. But when the shape of the vase is abstracted,
the complementary ground shapes appear to form two opposite faces.

According to gestalt theory, in every visual field exactly one maximally salient point
is needed, afocus point. The viewer’s attention is attracted by it and once it is perceived
the eye of the viewer is led by the visual flow of the image. The idea of a visual flow
is not explicitly formulated as a gestalt law, though.

The principle ofproximitystates that grouped elements will be perceived as belong-
ing together. In other words: grouping. Another principle that is considered important
in the context of grouping is that ofsimilarity, which states that similar objects will be
mentally represented as part of the same visual cluster.

Finally, harmonyor unitystates that elements that are bound together acquire a new
form. Elements that are not part of the group are considered unrelated, which can
lead to distraction and confusion. This principle can be seen as a visual variation of
harmonics in music theory. Another aspect that has considerable influence on harmony
is the use of colour In [32], research has been done as to what kind of colour-schemes
are aesthetically pleasing. This has resulted in theCuypers Colorpicker System.

All the gestalt principles described here are concerned with a two-dimensional envi-
ronment, but how do they hold for depth? We will not make use of a three-dimensional
model, but we will consider depth effects in the flat plane later on. Depth effects in a
composition, known aspictorial depth perceptionis achieved by overlapping shapes
on the one hand and varying the size of objects. In the case of grouped objects, depth
can be achieved by applying these tricks to whole groups instead of single shapes.
Practical principles of pictorial depth perception are discussed in the next section (sec-
tion 1.4).

Gestalt theory can provide a basis for the analysis of visual compositions and as is
discussed in the next paragraph, its principles have a sound connection with the ele-



1. Art Perspective 14

(a) symmetry/balance (b) continuation

(c) closure (d) figure vs. ground (Rubin’s vase)

(e) proximity (f) harmony

Figure 2.2: gestalt theory principles (adapted from [12])
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mentary ideas behind graphic design. Theoretically there are several points on which
it is criticised: first, experimental data and conclusions derived from them are less
straightforward than those of psycho-physical approaches to visual perception. Sec-
ond, there is uncertainty about the way abstract patterns should be interpreted in terms
of form perception. On the other hand, after almost a century the main principles of
gestalt still stand and recently much new research is being done in the area ofneo-
gestaltism[34].

Practical Graphics Theory By taking a top-down approach, we started by briefly
discussing aesthetics, the philosophy of art, and after that we laid a theoretical basis
for the analysis of pictorial perception. Finally, we will approach art from a practical
angle by looking at an artwork from the point of view of the creator.

The Composition As was shown in the section dedicated to the history of modern art,
section 1.1, there are many different kinds of art. The most basic, generic description
of a two-dimensional artwork is called acomposition. A composition of a painting
can be seen as a formal framework that specifies what a ‘well-formed’ artwork at the
highest abstraction-level looks like. There is only a limited number of possibilities for
arranging objects in a flat, rectangular plane in a conceptually distinct way. Throughout
history, several forms of composition have proven to be effective. Based on [36], we
will give a short explanation of the most relevant ones.

Let us start by considering the basic features of a composition. An artist who wants
to make a painting will first of all need something to paint on: thecanvas. Within
the boundaries of the canvas, the elements of which the artwork consists are depicted.
These elements can consists of anything: objects that are animate or inanimate, realis-
tically drawn or abstract, detailed pen strokes or wild streaks of paint. Of course, this
is all highly dependent on the style or particular art movement. Now the question is:
how should the elements be arranged? The answer to this can be found in examples of
fine art throughout history.

In still lives, for instance, a couple of inanimate objects (for instance pieces of fruit
or pottery), are placed together in a composition. The still life, in fact, doesn’t need
meaning, it is an exercise in form. What distinguishes the still life by the master
painter from one painted by the art student, apart from superior painting skill, is how
the painting initially ‘grabs’ the attention of the viewer, how attention is gradually
‘led’ through the painting and how natural the distances and alignments between the
composed objects are.

The most straightforward composition is thesymmetriccomposition, in which iden-
tical objects are arranged in such a way that they are mirrored in a vertical axis. This
way, the distances to the left and right of the axis are always equal which results in a
natural, balanced whole. In an asymmetric composition, on the other hand, the choice
of horizontal and vertical measurements between objects is not so straightforward.
Here, we have to make use of certainproportionsto keep the composition in balance.
Since the time of the Greeks, artists have experimented with ways to let construc-
tions such as temples look well-balanced and be structurally sound at the same time.
This has led to the development of several geometric constructions that specify certain
proportional measurements, among others thediagon, the quadriagon, the hemidi-
agon. However, theauron(fig. 2.3(a)), the proportions of which are better known as
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thegolden ratio, is the most significant.
The golden ratio is often denoted asΦ (capital phi) and its value is approximately

1.6180339887.Φ is an irrational number that occurs in nature similarly to the con-
stantπ. It can be found in the proportions of, for example, plant leaf patterns, the
spiral shape of shells and the exponential growth of a population. Important renais-
sance painters such as Leonardo DaVinci rediscovered the golden ratio and applied
its measurements to their paintings, believing to have found the ultimate proportional
balance (the golden ratio is also called thedivine proportion). Mathematically, the
golden ratio is interesting because of the many ways it can be found. The Fibonacci
numbers (0,1,1,2,3,5,8,13,21...), for example, represent the growth pattern of a pop-
ulation. The ratios of the pairs of successive numbers converge toΦ. By aligning
squares with measures that correspond to the Fibonnaci numbers in the way depicted
in figure 2.3(b), drawing a curve through the corners will create a perfect spiral. The
shape of this spiral also regularly reoccurs in nature. There are many other mathe-
matical methods to derive the golden ratio, for example, by dividing the length of a
line between two non-neighbour points with the length of one of the sides of a regular
pentagon (figure 2.3(c)). Any rectangular area can be infinitely divided into parts that

(a) auron (b) fibonnaci num-
bers

(c) pentagon

Figure 2.3: three ways of finding the golden ratio

are proportioned according to the golden ratio. In figure 2.4, for example, a schematic
decomposition (figure 2.4(b)) is depicted next to the original artwork (2.4(a)), which
is based on the golden rule proportions.

Important asymmetric composition types are thediagonal, triangular, andgeomet-
ric composition. The diagonal composition is based on a single diagonal line around
which the important elements are aligned. An example of a diagonal composition is
depicted in figure 2.5. In figure 2.5(a), the painting is depicted in it’s original form.
The main figures are composed around a diagonal line from the top-left to the bottom-
right corner. The mirrored version of the painting is depicted in figure 2.5(b). This
results in a change of the dynamics of the composition. In the first, the composition is
leading downward, in contrast to the second, which seems to be more uplifting. This
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(a) still life, Giorgi Morandi (b) decomposition of golden rule propor-
tions (adapted from [36])

Figure 2.4: use of golden rule proportions in fine art

difference could maybe be contributed to the fact that in Western cultures people have
learnt to read from left to right. It could be that the dynamics of the composition could
be perceived differently in cultures where the reading direction is different.

Theleading lineof a composition is an imaginary line which follows a path through
the most salient elements that are close to the focus point. This has the effect of
continuation, which, as was mentioned earlier, is one of the important principles of
gestalt to visual design. Therefore, in a diagonal composition, the leading line can be
said to coincide with the diagonal line. Compare this to the symmetric composition,
in which there is no explicit line along which objects are placed. Thetriangular or
pyramidalcomposition has a leading line which encloses a triangular area within the
borders of the canvas. Some examples are depicted in figure 2.6.

The name of a geometric composition is somewhat ambiguous in the context of
the topic of this thesis. It is actually concerned with the most extremely abstracted
compositions, for example Mondrian’s later works, in which no actual objects, or even
shapes, are depicted3. Other important composition types are the ones which a ragged
or curved leading line (sometimes denoted asmovementcompositions because they
give a dynamic impression) andover-all compositions, which do not have a singular
point of attention but instead consist of patterns of objects or shapes that cover the
entire canvas.

Depth composition is an important aspect of painting. Figurative paintings must
often be perceived as being three-dimensional, although they consist of a flat surface.
Arranging the pictorial elements in the right way can let some of them seem to be
placed at the back, while others seem to stand right in front of you. This is called
linear perspective. The three basic principles behind linear perspective are thelayer-
ing of objects, thedisappearance pointand thegradual decrease of sizethe further
away an object is placed. Overlapping objects will seem to be stacked, where the top
object is closest and the object at the bottom will be furthest away. The size and the

3Geometric compositions sometimes make use ofmodular proportions instead of the golden ratio,
which means that every measurement is a multiple of some base value.
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(a) normal (b) mirrored

Figure 2.5: diagonal composition: ’The Elevation of the Cross’, Rubens

(a) ’The Martyrdom of St. Se-
bastian’, Pollaiulo

(b) self-portrait, Rembrandt

Figure 2.6: examples of triangular compositions
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distance between the center of the objects determine how far away from each other
they seem. This is called theinterposition of the objects. The further away, the closer
to thedisappearance pointthe object will be. When an object is close, it will tend to
move outwards in the horizontal and vertical direction the further away from the cen-
ter of the view it is. Depth is achieved in the flat plane of the painting through careful
arrangement of the composition. This results in a diagonal or triangular composition
in the flat plane. Interposition is a straightforward way to describe the level of depth
complexity and arrangement properties. Varying the interposition of objects can cause
different kinds of depth-effects [36].

Graphic Design Graphic designis another relatively formal discipline of art theory.
Graphic design and composition are in fact closely related to each other, but whereas
composition is focused on a descriptive set of visual arrangements, graphic design is
based on a couple of principles which can help to guarantee the quality of a compo-
sition. Graphic design is traditionally applied to the formatting of page-layouts, but
is also fundamental to graphic art and especially to two-dimensional vector-based art,
which often has a graphic design look-and-feel. Graphic design is also closely related
to perceptual psychology. When gestalt theory was developed, it was accepted by the
design community as a scientific validation of age-old ideas. Whereas gestalt is ana-
lytical by nature, graphic design is focused more on practical guidelines to create good
layout, typography and art in general. We will discuss the principles of graphic design
based on [40].

The first basic concept of graphic design we will discuss is calledemphasis. Every
piece of art has something to say, a point, be it literal or abstract, or something in
between. This point is almost always conveyed by means of a central place in the
painting, a visual element or group of elements around which all else is composed
(an exception to this is of course the over-all composition, in which all elements can
be said to be equal to each other). This point is called thefocus point, which has an
obvious parallel to the Gestalt focus point mentioned earlier. Furthermore, emphasis
is achieved bycontrastandisolation; the visual elements around and nearby the focus
point are placed relatively further away from other elements or they contrast in color,
shape or size. This separates the group from the rest of the artwork.

The theory of composition explained above corresponds to the concept ofbalancein
graphic design. Not surprisingly, balance is similar to symmetry or balance in gestalt
theory, but it also corresponds to ideas about composition; a good composition is a
balanced composition, so to speak. But we can also look for balance at a more detailed
level: the figure-ground principle, for example, can be applied to an entire canvas but
also to a smaller bounded area.

Rhythmis based on repeating elements. Just as with the leading line principle,
the elements of a visual rhythm pattern can guide the eyes of the viewer through the
painting. In fact, often several rhythmical structures of visual elements are aligned in
the direction of the leading line. But, dependent on how full the composition is, visual
rhythms can also be found throughout the rest of the painting in a less prominent role.
Flowing, connected rhythms will give an impression of harmony, while at the other
extreme a divided distribution of similar objects will give a dynamic impression4.

4This can seen as a visual analogy with rhythms in music.
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The idea ofunity is centered around the observation that “the whole is bigger than
the sum of its parts”. Unity binds all the loose concepts of graphic design together.
There are three principles underlying unity:proximity, which is the same as group-
ing. Repetitionof properties, visual elements or techniques. Rhythm can be seen as a
form of repetition. Other examples are repetition of colour, repetition of texture and
repetition of shape (it should be noted that in our approach visual elements and shapes
are basically the same).Continuationstates that unity can be achieved by aligning
visual elements along lines, edges of a shape or the direction of another element, re-
sembling the continuation principle of gestalt theory. This principle is often applied to
the lay-out of magazines and websites.

2. A I P
We have analysed some ideas in the previous section which can be useful to build a
formal framework for the representation of an abstract geometric artwork. Because we
want to generate different artworks (semi-)dynamically, our second goal is to be able
to adapt and switch between representations. This means that we need a component
that can control this process; the back-end of the system which explicitly or implicitly
contains our problem solving strategies.

In this section we will discuss several disciplines within the field of AI which could
provide a basis for this component. These include quantitative and qualitative spatial
reasoning, constraint-based reasoning and machine learning.

2.1 Reasoning
The most straightforward AI approach to building a system would be by implementing
a set of rules which form a reasoning component. Rule-based reasoning systems are
based on logic [30]. Non-formal ideas are formalised by translating them into descrip-
tive logical sentences. In our case, we would need a reasoning component which is
able to describe two-dimensional vector graphics. More specifically, we would need
a form of two-dimensional spatial reasoning in order to write rules that describe our
knowledge representation.

Spatial Reasoning A logic-based system is built up out of propositional symbols,
the truth symbolstrueand f alseand the connectives∧,∨,¬,⇒,=, which respectively
stand forconjunction, disjunction, negation, implicationandequivalence[10, 30]. To-
gether they can form sentences of propositional calculus. When we want to denote a
certain spatial property, we can define a proposition such as “the circle is under the
square” or “the square is left of the triangle”, which can be true or false. The propo-
sitions are denoted as atomic symbols, for exampleP andQ. Combining the two by
using one of the connectives, for example a conjunction, yields a composed propo-
sitional sentence:P ∧ Q which would mean “the circle is under the square and the
square is left of the triangle”. Now, a new relationship has emerged; because when
the circle is located under the square and the square is left of the triangle, the circle
also must be left of the triangle (assuming that the circle is directly under the square).
This would introduce propositionR, which cannot simply be derived from the previous
propositions.

Predicate calculus provides a more flexible solution. Sentences in predicate calculus
can be composed in the same way as propositional sentences, using the same connec-
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tives [10]. However, relationships between atomic entities can be defined explicitly.
Instead of defining each relationship over and over again in a separate proposition,
a general relationship orpredicate hasposition(Ob ject,Position) can be defined, in
which theterm Ob jectcan be instantiated with any object in the world and the term
Positioncan also have any predefined value. Predicate calculus is the most commonly
applied paradigm in logic programming (although there are various more exotic ap-
proaches, for example temporal and epistemic logic [31]). Therefore, if we choose to
implement our system in a logic programming language, such as Prolog, we will have
to distinguish the atomic entities and relationships involved.

Representation of atoms and relationships is not always straightforward. Colour,
for example, can be represented in several ways [32]. There is the traditional colour-
coding scheme that is used for printing, CMYK (Cyan Magenta Yellow blacK), which
is conceptually not the most suitable for screen-colour representation since colour
monitors generate colours by (additively) emitting light instead of (subtractively) ap-
plying ink to a white surface . There are two candidate additive colour representations:
RGB (Red Green Blue) and HSL (Hue Saturation Lightness). Of these two, RGB is
the most common, but is purely descriptive, while the HSL model is a much more
conceptual representation of colour and has been successfully applied in [32] to im-
plement a system that generates colour sets based on user interface requirements. We
will handle colour in further detail in 2.3.

For our project the most important atomic entity is probably the one that specifies
shape. In a sense, shapes form a ‘visual vocabulary’ to convey the structure of the
composition. The traditional mathematical representation of geometric shapes consists
of pointsandlines(callednodesandedgesin graph theory terms [35]). But as is argued
in [17], a shift to a higher-level description of geometric concepts can give the domain
description a more conceptual twist. A second candidate representation of atomic
objects would in this case be the ‘shape’-entity: a geometrically styled painting must
inherently be built up out of one or more geometric objects. Shapes can vary from
basic rectangles, circles and triangles to complex non-convex polygons or shapes that
have curved edges.

We are primarily interested in the artistic composition of geometric forms. As was
explained in section 1.4, the way that shape objects are grouped and aligned is impor-
tant in this respect. We will therefore focus onspatial relationshipsbetween shape
objects. However, the geometric properties of individual shape are important as well.
When a composition consists of squares, replacing these squares with circles would
not change the locations and alignments of the objects, but the interaction between
the objects and the whitespace between them, the figure-ground principle, would be
entirely different.

In a domain such as architecture there is often an apparent mutual dependency be-
tween shapes and transformations. Take for example a staircase. In one pattern, rectan-
gular objects are arranged in a spiral. Replacing the objects with circles would change
the fundamental aspects of this pattern, disrupting its function. Thus, the properties of
a shape and the role of the shape in a larger context are by default dependent on each
other, although in a more ‘vague’ domain such as ours this is less important. Because
our project is not based on geometric art compositions, dependencies are mainly based
on geometric characteristics.
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2.2 Shape Patterns
If we look at a collection of atomic shapes as a ‘visual vocabulary’, by analogy, con-
veying the underlying ideas of our abstract composition can be seen as communicating
in a certain ‘image language’. A field of research that is based on this point of view
and is relevant to reasoning with shapes is that ofshape grammarsor shape algebras
[13, 24]. Research has been done to analyse the relationships between different forms
of shapes, switching between the shape representation and the traditional point-line
representation in a morphology of two-dimensional graphics. This is classified as the
subshapeproblem.

Interesting research has been done in the same field in higher-level constructions
of shape grammar elements, calledshape patterns. In [11], forms are classified as
(composite) shapes, subshapes, primitive shapesandgroup shapes. Primitive shapes
are atomic, they cannot be decomposed into smaller objects. Composite shapes are
built up from primitive shapes, which are then called the sub-shapes. Shape patterns
include shapes as well as spatial relationships between them. The ideas behind shape
patterns can be related to the design pattern community, which places a relationship
between software architecture and the decomposition of architecture into a finite set
of patterns by Alexander [1, 2, 3]. The designs of artifacts or buildings such as Frank
Lloyd Wright’s Prairiehouseare taken as examples to derive structural algorithms,
that can then be applied to model new constructions. Quantitative as well as quali-
tative topological relationships can be used to describe group transformations. Shape
patterns and shape grammars are used in a wide variety of application areas, for exam-
ple industrial design, archaeology, architecture and planology5. Our prime interest is
in the combination of shape patterns with geometry.

According to [11],‘a pattern is a design in which a certain shape is repeated many
times’. A distinction is made between similarity in shape and similarity in spatial
relationships. An instantiated hierarchy of different shapes that are arranged according
to one or more types of spatial relationships is called aschema. The shape pattern
is the abstracted knowledge contained in such a schema. The point of this is that
different shapes can be arranged according to the same kind of spatial relationships, but
also different kinds of spatial relationships can be applied to similar shapes. Because
patterns are defined recursively they can be nested, which can result in more complex
structures.

In more traditional architecture literature patterns are described in terms offorma-
tive ideas. Based on historical buildings, many distinct types of patterns can be recog-
nised. Although architecture is fundamentally about the design of three-dimensional
structures, many formative ideas can be based on blueprint representations; they have
been projected on one of the perpendicular two-dimensional planes. Several forma-
tive ideas that are based on fundamental architectural ideas have been depicted in fig-
ure 2.7. Each of them is based on one shape. However, some additional shapes have
been added, which do not belong to the particular pattern (greyed out) to indicate that
the pattern is an abstraction from the entire scheme.

Figure 2.7(a) depicts alinear formative idea, which simply consists of a repeated
unidirectional translation. In figure 2.7(b) a second dimension is added to the pattern.
In addition to being translated, in figure 2.7(c) the shapes are also scaled. This is called

5For more information, see http://www.shapegrammar.org.
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(a) linear (b) grid

(c) additive (d) circular (e) nested

Figure 2.7: some formative ideas (adapted from [11])
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an additive formative idea. In figure 2.7(d), shapes are rotated instead of scaled. In
figure 2.7(e), a composite structure of four shapes, each of them rotated 90 degrees,
is copied and subsequently scaled, which results in anestedstructure. From these
examples it can be derived that both transformations as well as shapes can be composed
into groups. This way, simple patterns are combined into more complex ones. Thus,
just like a schema, a pattern consists of a hierarchical set of shapes as well as of a
hierarchical set of spatial relationships between the shapes. In chapter 3, we will map
ideas about shape patterns to our own conceptual model.

Quantitative Spatial Reasoning We make a distinction between two different ap-
proaches to reasoning:quantitativelyandqualitatively. Whereas quantitative reason-
ing is based on precise, discrete values, qualitative reasoning is focused more on the
relative relationships within the domain. We will first discuss quantitative reasoning
about spatial characteristics.

The quantitative approach to spatial properties is based on a mathematical represen-
tation of space. This type of reasoning is often applied in the field of robotics, which is
an obvious choice because computers are particularly suited to deal with large sets of
calculations. The classic mathematical way to divide space into measurable real num-
ber coordinates is by using theCarthesian coordinate systemwith which any point in
space can be represented on the basis of a defined reference point and two or three per-
pendicular axes. Carthesian coordinates are applicable to two-dimensional as well as
three-dimensional space. They can provide a convenient notation form for graphics in
general and in our case specifically for visual art, comparable to the notation of notes
in music [22].

Some of the most important mathematical fields with respect to spatial arrangements
are trigonometry, geometry and topology. They are often applied tospatial analysis,
a practical discipline that is concerned with the analysis of spatial data such as to-
pographic maps or camera data. Spatial analysis is sometimes done using reasoning,
especially by Geographic Information Systems (GIS). Properties such asconvexity,
concavityandoverlappingof surfaces have been thoroughly investigated. These prop-
erties can be used to formalise shape properties as well as spatial relationships.

Although three-dimensional graphics are beyond the scope of this thesis, it is worth
mentioning that it is a highly developed research field within computer graphics. Some
notions of two-dimensional space can be translated directly into parallel ideas in the
third dimension by adding a third variable for the depth plane. Often however, entirely
new concepts are introduced, for example lighting and normals. An important appli-
cation area of three-dimensional spatial reasoning is Computer Aided Design (CAD)
of architecture and interior design. For more information we refer to [5, 15, 21].

An exact spatial notation enables the formalisation of precise inferencing algo-
rithms. Carthesian space is continuous, infinite and is highly suitable for mathematical
formulae and scientific applications. But in some cases, the advantage can turn out to
be a disadvantage. The level of precision that a quantitative approach provides is some-
times not necessary or even too high and a trade-off with a more conceptual notation
is possible.

Qualitative Spatial Reasoning Qualitative reasoning is an approach that is much
more based on ‘common-sense’. Objects are not measured in exact units but instead
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are described in relation to each other. This is, from an artificial intelligence point of
view, a big advantage, because it resembles the more ambiguous, but at the same time
more flexible, human reasoning. James Allen’sinterval algebra[4] is a classic form of
qualitative reasoning in temporal logic. Based on the time intervals, a classification of
relationships is made [23, 29]. Intervals are denoted as pairs of real numbers, [x−, x+],
with x− < x+. The relationships includebefore, after, during andequals. The interval
algebra can be applied in a spatial context, but because time has only one dimension
and a spatial environment has at least two, matching the two can cause problems. This
problem can be avoided by doing independent calculations for width and height (and
in a three-dimensional setting depth).

Common two-dimensional qualitative spatial relationships areabove, to the left, in-
side. When properties are described in terms of relationships instead of measurements,
they will explicitly model the concepts they represent. An example of a qualitative de-
scription of spatial properties is theRegion Connection Calculus (RCC)[17, 18]. This
is a first order predicate logic that is based on theconnectednessof shapes, which
means that they share a common point. The RCC-8 calculus specifies eight different
qualitative relationships:disconnected, externally connected, partially overlapping,
equality, tangential proper part, non-tangential proper part. Of these last two there
also exists a non-symmetric inverse relationship. These binary relationships for pairs
of regions are termed Jointly Exhaustive and Pairwise Disjoint (JEPD). The RCC-8
calculus can easily be extended to describe more complex situations. Theegg-yolk
calculus for example, is an extension of RCC-8 to 252 JEPD relationships [18, 19].
On the other hand, the RCC-5 calculus consists of a subset of the RCC-8 relationships
[26].

The ambiguity of qualitative reasoning can also be an important disadvantage; this
is easy to see with the position-example of section 2.1. We have assumed that the
‘under’-relationship was strictly one-dimensional, so the circle would be located di-
rectly under the square. There is no coordinate or measurement that specifies how
far from the square the circle actually is, so the ‘under’-relationship is in this case a
qualitative relationship. But if ‘under’ is interpreted as being independent of horizon-
tal directionality, it could also mean ‘under to the left’ or ‘under to the right’. When
reasoning is done without regarding the shortcomings of a qualitative representation,
faulty deductions could be made.

3. W P
Domain knowledge and AI techniques can provide a background for a theoretical
model of a generative art system. Apart from creating a formal model, we also want
to build a prototype based on it and so we will need a front-end component. By front-
end we meant the part of the system that contains the translation steps towards the
final output format, as opposed to the back-end knowledge component that makes the
decisions on composition.

There are several different technical options for implementing the front-end. There
are widely available graphics libraries for many common programming languages such
as Java and C++. A possible candidate is the Java 2D API. The functional language
Haskell also supports two-dimensional graphics. Its graphics library Haven is based
on Java 2D, although it offers a more advanced model of scalable vector graphics.
Also, proprietary software, such as Adobe’sLive Motion, Macromedia’sFlash and
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Director and Cycling ’74’sMAX/MSP, is available with which graphics can be edited
and generated through scripts. However, although these would all be valid choices,
neither of them provides the support for reasoning that a logic programming language
does. Since our main perspective is that of AI, we chose to implement the back-end
in Prolog. For the front-end part only an implementation of a suitable 2D graphics
model is needed. We should be able to express concepts such as shapes, colours and
transformations in terms of this model. Also, tools should be available to view and
edit the output format. This has led us to the work of the World Wide Web consortium
(W3C), which develops recommendations for various fields related to the internet. Of
these, the Scalable Vector Graphics (SVG) format seems to sufficiently describe the
common concepts of 2D graphics for our purpose.

3.1 Markup Languages& Standards
The internet has traditionally provided poor support for graphics and formal modelling.
The HyperText Markup Language (HTML) with which websites were encoded has
been a driving force behind popularizing the web because of its simplicity, but at the
same time has limited more professional applications of web technology. This has
been the main reason to develop the eXtensible Markup Language (XML), which is
a subset of the more structured Standard Generalised Markup Language (SGML) (on
which HTML was originally based) [33]. With XML, domain-specific data can be
inherited using so-called Data Type Definitions (DTDs). Thus, XML is independent of
content and XML definitions can specify many different kinds of functionality. These
include:

• semantic annotation (RDF, RDF Schema, DAML+OIL, OWL)

• multimedia (SMIL)

• vector graphics (SVG)

3.2 Vector Graphics
A computer screen consists of a raster of picture elements (pixels), each of which is
assigned a certain colour. Anything that is displayed on it, be it a text, a part of the
user interface or a full-colour image, has to be encoded in pixels. Basically there are
two ways to do this: by storing the (relative) position of each colour in abitmap, or,
more generally, encoding a model of the things to be displayed as well as a way to
translate this model into a rasterised image. Although this last approach demands a
more complex representation and more realtime computations, it is also more flexible
(scalable, easy to combine) and in general takes up less harddisk space. Another ad-
vantage of realtime rasterisation is that it is easy to create animated graphics. Whereas
a bitmap animation consists of a linear sequence of consecutive bitmap images, ani-
mation of vector-based graphics (3D as well as 2D) can be created simply by changing
some parameters of the model each time just before the image is rendered. Standard
image formats such as JPEG, GIF and PNG fall into the bitmap category, while fonts,
two-dimensional (2D) vector graphics and three-dimensional (3D) graphic models are
rasterised. Fonts are generally a subset of 2D vector graphics.

Several popular formats for non-animated 2D vector graphics exists. These include
Encapsulated PostScript (EPS) used for embedding graphics in printable documents,
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the Portable Document Format (PDF), which is similar to EPS but available as free-
ware, and the Adobe Illustrator (AI) format. Macromedia’s animated 2D vector format
ShockWave Flash (SWF) is distributable and several applications, such as Macrome-
dia Director, Macromedia Flash and Adobe Live Motion, also can export to SWF files.
A browser plugin is needed to be able to play SWF files. Adobe Illustrator 10 supports
scripting in several languages, including JavaScript and Python.Actionscript, which
is a scripting language for SWF files that is based on ECMAscript, is widely used.

While EPS and PDF were primarily designed for document lay-out, the more flexi-
ble SWF is a closed source format. Adobe Illustrator is a proprietary software package.
The open web standard SVG provides a good alternative. As mentioned before, SVG
is an XML-based syntax for 2D (animated) graphics. Its functionality includes every-
thing from basic shapes and transformations to Bezier curves and animation. We will
further explain vector graphics principles based on the SVG specification [37].

3.3 Scalable Vector Graphics (SVG)
In fact, most 2D vector formats can also embed bitmap formats. SVG supports bitmap
images as well typography. These can undergo most of the functions that SVG offers,
but we are mainly concerned with general vector graphics: shapes and transformations.

First, we will give a short explanation of the concepts and the environment of SVG.
As described in section 1.4, page 15, the metaphor that is commonly used for the
active area in which graphics are rendered is that of a canvas. This is part of the
painters model. Objects are layered on top of each other. The solid parts of the upper
layer hide the parts under them. Instead of solids, one can also make use ofalpha
channels. This is an extra channel that is added to the colour model (section 2.1) which
specifies transparency. Colour can be specified by an exhaustive list of keywords ( for
example ‘red’, ‘lightsteelblue’, ‘mediumspringgreen’) or by a hexadecimal code which
specifies a certain RGB value (this a common way of encoding colour values on the
web). Colour is part of thePaint class. Paint can be applied to the inside of a shape
called thefill or to thestrokeof its lines. Apart from solid colour, paint can also consist
of a linear or circular gradient, a pre-defined (bitmap) pattern or it can remain empty,
in which case nothing is rendered.

A distinction is made betweenbasic shapesandpaths. The set of basic shapes con-
tains the most typical geometric forms,rectangle, circle, ellipseandline. The general
polygonandpolyline(a polygon path that is not closed) classes are also considered ba-
sic shapes. The polygon class can specify triangles, rectangles, pentagons, hexagons,
et cetera. Each basic shape has a standard set of attributes. We will give a short sum-
mary.

The rectangle basically requires 4 attributes that specify shape,x, y, width and
height. Because the origin of the coordinate system is in the top-left corner of the
canvas, the positive y-axis is directed downwards. Thus,x andy are the coordinates
of the top-left corner of an object:

<rect x="40" y="20" width="20" height="10" fill="red"

stroke="blue" stroke-width="2"/>

The circle and ellipse objects are basically the same, except for the fact that ellipse
has two fields for the radius instead of one. Both shapes have ancx andcy coordinate
for the center point:
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<ellipse cx="40" cy="20" rx="20" ry="10" fill="red" stroke="blue"

stroke-width="2"/>

The coordinates of a polygon or polyline are specified as a list of consecutive points.
Points are denoted as comma-separated pairs of numbers, which in turn are separated
by spaces. There is no difference between the two, except that when the first and the
last coordinate in the point list are different, the path of the polygon will automatically
be closed. The line element is conceptually the same as the polyline and polygon,
but only specifies two points. Therefore, a line has four separate variables for its
coordinates instead of a point list. Obviously, a line is never filled.

<polygon points="40,20 80,60 0,60" fill="red" stroke="blue"

stroke-width="2"/>

<line x1="40" y1="20" x2="80" y2="10" stroke="blue"

stroke-width="2"/>

Any non-curved geometric object can also be described in terms of a polygon.Paths,
on the other hand, provide a similar representation of shape objects, but can also spec-
ify different types of curves. These includecubic Béziercurves,quadratic Bézier
curves andelliptical arc curves. Apart from the notation of fills and strokes, paths
have a different syntax. A list of variables is specified as part of thed attribute (which
stands forpath data). This list is subdivided into several parts which are preceded by
a letter which specifies the functionality. For example, anM is used to denote amoveTo
to a certain coordinate, anL denotes alineTo and aC a curveTo(these are absolute
coordinates, the lowercase equivalents stand for the relative variants). A path element
would look like this:

<path d="M 10 10 L 300 200 L 400 100 z" fill="red"

stroke="blue" stroke-width="2"/>

the path is closed.C, indicating a cubic B́ezier curveTo, can be used instead ofL, but
requires two extra coordinates for the control points. A polybézier can be formed sim-
ply by putting multiple sets of curve-variables in sequence. The principles underlying
the other curve functions are similar to the standardcurveTofunction. There also exist
simplified versions oflineToandcurveTocommands which take fewer parameters.

SVG offers 4 types of transformations,translation, scaling, rotation andskewing
along thex andy-axis, each of which can be specified by adding atransform attribute
to a group-element,<g>, which in turn encapsulates the transformed shape(s). For
example, translation of a line looks like this:

<g transform="translate(10,20)">

<line x1="40" y1="20" x2="80" y2="10" stroke="blue"

stroke-width="2"/>

<\g>

Other values of the transform attribute can bescale(factor), rotate(angle),
skewX(angle), andskewY(angle). Multiple transformations can be done by form-
ing groups with transformations around shape objects, or by listing them in the trans-
form attribute field:
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<g transform="translate(10,20) scale(2) translate(5,12)">

<line x1="40" y1="20" x2="80" y2="10" stroke="blue"

stroke-width="2"/>

<\g>

Technically, representations and transformations for rasterised images are mainly based
on linear algebra. Transformations are calculated with standard linear algebra algo-
rithms. A transformation is represented as the following 3×3 matrix:a c e

b d f
0 0 1


Only the top six values are relevant for the specific transformation. The transformation
matrix is also denoted as [a b c d e f]. The values of the newx andy coordinates are
calculated according to this formula:

The values of the different types of transformations can be found in the appendix.
SVG offers several other interesting types of functionality which will not be applied

here but are worth mentioning, most importantly interactivity and animation. SVG
implements an extension of the Document Object Model (DOM) which is the stan-
dard framework for document structure in HTML and XML. This includes support of
standard user interface events such asmouseover, viewing events such asresizeand
error handling. SVG specific functions includezoomingand SMIL timing events such
asrepeat. Bindings are specified that link the Java and ECMAScript languages to the
(SVG)DOM. Also, the SMIL elementanimate is specified for animation.

4. S
In this chapter we have analysed the background of several fields that are of interest
to our research. In section 1 we discussed modern art. We compared the fundamen-
tal ideas of the expressionist art movement to scientific developments in psychology,
which we in turn related to the practical principles of graphic design. In section 2
we discussed what common methods exist to reason about spatial properties and in
section 3 we explained the basic ideas behind the W3C recommendation SVG, which
provides a suitable output format to encode geometric graphics in. Together, these
three perspective form a theoretical basis for the design of a conceptual framework for
the generation of abstract geometric compositions. This is done in the next chapter.
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Chapter 3

Conceptual Framework

Based on the domain theory, we have designed a conceptual framework. This frame-
work provides the formal basis for our graphics generating system. It should be empha-
sised that at this stage we only focus on descriptive aspects of composition generation.
We will show to what level ideas about the artistic content can be conveyed through
this framework in section 4.

This section is split up into four sections: First, we will start by deciding how to
incorporate the main ideas into an algorithm which can generate a compositional tem-
plate in section 1. After this, we will map the domain knowledge to this template
(section 2). We will then make a top-down decomposition of the framework for ab-
stract geometric art we have created and analyse at which levels what kind of reasoning
could take place (section 3).

1. C T
We will model our conceptual framework in terms of a structural skeleton. As a start-
ing point, we will analyse an example composition. Our goal is to extend the ideas
behind this composition with the rest of our domain knowledge and eventually being
able to produce a similar result on the basis of AI algorithms. We designed a vector-
based abstract geometric composition in a graphics editor, inspired by the ideas of the
domain theory of section 1.4. The result can be seen in figure 3.1. First of all, we have
chosen for an angular composition. There is a certain point, above and to the left of
the middle of the canvas, to which the rest of the composition is oriented. Two points
on either side of the canvas connect with this focus point to form the leading line. Fur-
thermore, several groups of objects are layered on top of each other. Each group has
its own distinct colour. We have chosen to use greyscale tones, because we wanted to
keep the colour scheme as simple as possible for the time being. The shading of an
object is less salient the more it is placed to the back (it is closer to the background
colour). Within each group, the separate shapes are arranged in such a way that they
slightly differ from each other and sometimes partly overlap. Also, the arrangement
of the group can be thought to have a direction that corresponds to that of the leading
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Figure 3.1: example composition

line of the composition. A sense of depth is achieved by layering the groups on top of
each other. Because each group consists of a pattern of shapes, there are gaps through
which the underlying layers are visible. We have chosen the simplest possible shapes,
convex polygons, as a starting point. We have used polygons between three and six
points.

To summarise, several ideas have been applied in this example:

• compositional style,

• the focus point,

• the leading line,

• a visual vocabulary,

• a basic colour scheme,

• layering of objects and

• shape patterns.

Together, they form a minimal set of ingredients for the generation of a composition.
We can now look at properties of the graphics we want to generate at a more holistic
level. Two important observations can be made:

1 The composition can be represented as the three elements canvas, focus point
and leading line,

2 the structure of the composition can be decomposed to several levels of groups
of objects.



1. Compositional Template 32

When the exact values of canvas width, canvas height, thex andy coordinates of
the focus point and the points where the left and right part of the leading line reach the
canvas edge are known, a three-point line can be specified. The combination of these
elements, as depicted in figure 3.2(a) can be seen as the most basic representation of
the triangular composition, which explains our first observation.

To be able to represent the composition at this abstraction-level graphically, we will
introduceguides. A guide is a concept that is often used in graphics tools1 to make
alignments more explicit. Conceptually they have an infinite length and an infinitely
small width, which in practice means that they end at the edge of the viewing area and
are rendered at the same (small) width at every zoom-level. Thus, when we model a
composition graphically, we will represent it as a frame in which guides determine the
alignments of the contents, with some additional information in the form of points at
which guides cross.

1.1 Knowledge Decomposition
A decomposition of abstraction-levels for the knowledge domain can provide a solid
formal basis for the conceptual framework we are designing. In our decomposition2

we will distinguish three levels. The first level we distinguish we will call thecomposi-
tional level. This is the highest level of abstraction and corresponds to the complexity-
level of our desired end-result. The second level is that ofgraphic entities, several
of which are needed as visual content for the composition. Each graphic entity can
consist of one or more distinct objects. Because we have restricted ourselves to vector
graphics, graphic entities can either consist of shapes or coherent shape groups. The
lowest level, that of the coordinates of the points and lines of the shape, is less con-
ceptually significant, but important from a technical standpoint. Because the formal
description of shapes at this level corresponds to that of mathematical graphs, we will
call this thegraph level. The dimensions that are important for each of these levels
will be discussed in section 3.

1.2 Recursive Model
Building a composition from scratch is a bottom-up task. By taking the general struc-
ture of the canvas, focus point and leading line, we can incrementally add graphical
entities according to certain spatial relationships such as proportions and alignments.
This can be defined recursively. In figure 3.2 we have taken the ideas mentioned in
the previous paragraphs and designed a stepwise plan for constructing a compositional
template. This is depicted in figure 3.2(a).

As shown, we started out with the basic representation of a composition, which
consists of canvas, focus point and leading line. Based on the values of these three
elements, we want to subdivide the canvas into smaller parts according to certain pro-
portions. One of the advantages of generating graphics with software is that objects
can be placed and scaled according to exact measurements. This contrasts with our
example composition, in which objects were placed on intuition. We have chosen to
apply the golden ratio, because it is naturally recursive. This approach can be seen as
the inverse of the decomposition of the still life in figure 2.4. The canvas is split up

1For example Adobe Illustrator or Macromedia Flash.
2Notice that the ‘decomposition’ in this case is taken rather literally, i.e. we are breaking down the

compositional structure.
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(a) focus point and leading line (b) first slicing step

(c) new coordinates (d) filling with shape pattern

(e) second slicing step (f) filling of sub-slice: next layer

Figure 3.2: steps in generation of compositional template
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into four areas, which we will callslices. In figure 3.2(e), one of the slices is divided
into four more different sub-slices. The details of this slicing-algorithm are discussed
in section 3.

In this section we took the first steps in translating our domain principles to a more
concrete framework for the generation of abstract compositions by defining a structural
template. Before we give an in-depth knowledge decomposition of our model, we will
first explain how we can extend the framework in such a way that it incorporates the
rest of the principles of practical graphics theory (section 1.4).

2. M  P D C
In section 1.4 we analysed our domain by discussing aesthetics, gestalt theory and
ending with the more practical graphics principles in section 1.4. We have already
applied the most basic of these to the compositional template of section 1. We will
now show how the rest of the ideas about practical graphics theory can be mapped to
our model. We will take colour, composition and the four principles of graphic design
as starting points.

2.1 Composition
We have discussed several composition types in section 1.4. We have chosen the tri-
angular composition here as a starting point because it has a leading line which is easy
to represent. It is also reasonably similar to the diagonal composition and it enables
us to incorporate ideas about depth composition in our model. Because the splitting
up of the canvas into rectangular areas according to certain proportions is similar to a
neo-plasticist approach, our compositional model can even be seen as a geometric one.
For example, assigning a black stroke of fixed width to the guides and filling some
of the slices with the colours red, yellow, blue would generate a result resembling
figure 2.1(g).

Because we have defined our model recursively, each slice can contain any number
of sub-slices, dependent on how deep recursion will go. This means that there can
always be one or more smaller slices that overlap with a part of the original slice.
Interestingly, this creates an automatic layering of objects; the interplay of overlapping
shapes, both belonging to the same group and to groups at different layers, can achieve
the interposition-effect described earlier in the context of depth composition. Thus, the
term ‘depth’ not only applies to recursion, but also to the third dimension.

The idea behind the leading line is that it represents the line in which the important
visual elements are placed in the composition, so this also includes the focus point.
Because this virtual line is formed by the alignment of several objects, the theoretical
principle underlying the leading line is that of closure, as discussed in 1.4.

One of the ways to extend our model is by adding points to the leading line, increas-
ing the complexity of the composition. The triangular and diagonal composition can
be seen as simple examples of movement compositions. This is even more so when the
points are connected by curves instead of lines, giving the composition a more subtle
flow. On the other hand, this would make it difficult to say anything reasonable about
depth composition. Technically, adding a second leading line would also be possible,
but this does not seem desirable because of the emphasis principle, which advocates a
single theme.
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2.2 Graphic Design
The four principles of graphic design as we have defined them are emphasis, balance,
rhythm, unity. We will discuss each of them in relation to our model here.

The two ways of achieving emphasis are contrast and isolation. Our model in-
corporates a focus point and leading line as part of the abstract representation of the
composition. At the same time, these elements indicate the location and direction of
the main, to-be-emphasised, visual objects. Attention should be drawn to the focus
point first, after which the eyes should be guided automatically through the rest of the
composition by the leading line. Therefore, the focus point, the primary element of
the composition, should be most emphasised. We can isolate the focus point spatially
from the other elements in the composition. Contrast can be achieved by making use
of different kinds of shapes near the focus point compared to the rest of the compo-
sition and giving these shapes a colour that stands out from the rest. The same ideas
hold for the elements around the leading line, although they should be less salient than
the focus point.

How to achieve balance at the compositional level has already been explained in
the previous section, but applying balance to smaller parts of the artwork, especially
through the figure-ground principle, still remains an important issue. Because we will
work with proportioned subareas, slices, we have an obvious candidate for a bounding
(back)ground to which we can relate the figure that it contains. Because of recursion,
this applies to all depths. We could then specify the ratio between the area of the
objects the slice contains and the area of the slice that surrounds these objects. As long
as we use convex polygons, calculating the area can be done with formula 2.13.

A =
1
2

n−1∑
i=0

(xiyi+1 − xi+1yi) (2.1)

wheren is the numbers of nodes and (xn, yn) is assumed to be the same as (x1, y1). More
complex formulae are available for non-convex polygons and curved objects. A heuris-
tic method to calculate the approximate area of a non-convex polygon is by calculating
its convex hull. This is the minimal convex polygon that encloses its non-convex coun-
terpart4. There are several convex hull algorithms that have been developed in the field
of geometry. One of these is given in appendix II.

But the most important issue has not been discussed yet: how to choose a sensible
ratio between the figure and the ground. The normal golden ratio relates to linear
measures, not to the area of surfaces. We will have to find a golden ratio for area.
The derivative of the square of the Fibonnaci sequence, as depicted in figure 2.3(b),
might be a candidate. On the other hand, a less algorithmic and more knowledge-
based approach could also be suitable; rules for deciding the size of the figure could
be related to depth or contrast-level.

Rhythm is related to a number of other concepts in graphic design and gestalt theory,
including grouping, similarity and repetition; a rhythm in a painting must consist of
repeating elements that are similar to each other, thus forming a coherent group. How
the elements are similar is up to the artist. This is a fundamental issue though. A
flowing rhythm, for example, would consist of a pattern in which the parameters for

3Adapted from http://www.mathwords.com/a/areaconvexpolygon.htm.
4This can be compared to wrapping a rubber band around an object.
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shape, colour or relative location of subsequent elements would only vary in small
amounts. But with a dynamic rhythm, on the other hand, the parameters would vary
between more extreme boundary values with non-continuous intervals. We will define
a set ofcoherence parametersabout which we can reason. For example, in the case of
strict spatial constraints, too much variation in location would not be desirable, while
larger variations in colour would not be a problem. The coherence parameters we have
chosen are:

• location,

• rotation,

• scale,

• skew and

• colour.

The first four parameters are directly related to the SVG transformations. We will
discuss colour in section 2.3.

2.3 Colour Schemes
Although colour plays a significant role in aesthetic perception, we decided not to
focus on this aspect of visual art. Therefore, we kept our colour model simple. We
have chosen to work with the HSL colouring-scheme, as discussed in section 2.1. HSL
consists of a scale for respectively the hue, saturation and the lightness of a certain
colour. We have chosen to implement a minimal representation of colours for our
system; two HSL-encoded colours are specified.

There are several ways to vary colours. This can be compared to the use of a palette;
a set of basic colours can be continuously blended. Theoretically this leads to an
infinite number of combinations. On the other hand, the colours can be applied to the
canvas in unblended form. The process of painting is then dependent on the set of
available basic colours. By default, colours in vector graphics are discrete, which is
the reason that this last approach is best suited for our model. We will create a set of
colours by interpolating between the two input HSL values in even increments. We
will determine the step size on the basis of the recursion depth. This results in the
fact that more complex compositions will have more subtle colour variations. There
are many options for assigning to graphic entities although this is not the topic of this
thesis. Therefore, we decided to assign the colours randomly.

3. S D
In this section, we will make explicit the different levels into which our model can be
decomposed. This is done top-down in a stepwise refinement from conceptual ideas
about composition and graphics towards the formal, representational aspects. The
conceptual ideas will eventually be implemented by the back-end, which is concerned
with high-level decisions about the composition. A formal representation is important
to be able to translate these ideas to vector graphics.
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3.1 Compositional Level
The representation of the composition consists of the elements canvas, leading line and
focus point. Both in SVG as well as in our own model, every object is a leaf in the tree
hierarchy with the canvas as the root. In SVG, these leaves consist of different types of
vector graphics (or even bitmap images), key concepts in our model are slices, patterns
and shapes.

The leading line consists of several points, connected by lines. Exactly one of these
points is the focus point, while two other points are located on one of the edges of the
canvas. This way, the leading line seems to ‘leave’ the canvas. Technically speaking,
the triangle of the triangular composition lacks one of the three sides. That is why we
prefer to speak of anangularcomposition instead5. We have chosen for this represen-
tation because we want to treat the leading line as a purely conceptual element. Just
like a guide, it has no definitive end, so it cannot stop in the middle of the canvas. The
difference is that guides can only consist of single straight lines.

The skeletal framework described in the previous sections is the starting point for
the generation of the total composition. From it, the canvas is subdivided into smaller
sections using a recursive slicing-algorithm, which eventually results in a mosaic of
sub-slices around the leading line. Each step of the recursion results in a slightly
more complex and granular scheme of child slices that can be superimposed on the
previous layer of parent slices. The result can be seen in figure 3.3, which depicts the
stages of the framework at several iteration-levels. The stacking of layers of slices is
a fundamental aspect of the depth composition in the system; a calculated parent slice
is not thrown away after the sub-slices have been calculated. Instead, it is used as a
enclosing border for a shape pattern that is exactly one level deeper. This pattern is
then one layer behind the shape pattern of the sub-slice. In the following paragraphs,
we will handle some of the important aspects of the algorithm.

The slicing process can be seen as the traversal of a search-tree. A slice is repre-
sented as the values for thex andy position of the top left corner, in correspondence
with the SVG coordinate system, and the values for the height and width. Also, coor-
dinates for the leading line are included. There are three types of possible slices:

1 the slice encloses the focus point,

2 the slice does not contain the focus point but does contain part of the leading
line or

3 the slice contains neither: it is empty.

Because of our three-point model of the angular composition, in the first case the
leading line will always consist of three points. In the second, the leading line will
always be straight. When an empty slice is generated, the recursion is ended. The
reason for this is that the actual shapes will eventually be generated partly based on the
leading line coordinates of a slice. An empty slice is always a leaf in the tree-hierarchy
of slices. Depending on the user-defined recursion-depth, at the deepest level there
will also be one leaf-node of the first form and several of the second. The algorithm is
split up into two parts, which correspond to the first two cases. We will discuss them
in the next paragraphs.

5Angular in this sense would also include diagonal and geometric compositions.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: first 5 iteration steps in framework generations
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The root node corresponds to the initial state of the framework as we discussed in
section 1. It represents the entire canvas, including leading line and focus point, so it
can be classified as an example of the first case. A rectangular area can be divided into
golden ratio proportions in four ways. We have chosen to divide the canvas in such a
way that the slice with the largest area corresponds to the location of the focus point.
The rationale behind this is that propagation of the slicing algorithm will be more likely
the larger the slice is, resulting in a more complex pattern of slices in the focus area.
This is for a large part dependent on the stop-condition of the recursion in the second
and third case, which will be explained shortly. Termination of the recursion in the first
case only takes place when a user-defined iteration-value has been reached. For more
details, see appendix III. No analytical evaluation of the likelihood of propagation has
been done, however. We will return to this in the discussion of chapter 5.

Assigning the largest slice to the focus point area depends on which quarter of the
canvas the focus point is located in6. This is depicted in figure 3.4. Slicing of the

(a) (b) (c) (d)

Figure 3.4: 4 different slicing options

canvas will result in the generation of four new child slices. When the leading line is
cross-sectioned by one of the edges of a slice (this is often the case at several points
at the same time), the intersection point is calculated. After that, the original leading
line is split up into several sub-lines, Each of which is assigned to the corresponding
(sub)slice. Exactly one of these will enclose the focus point. The other three will either
contain a part of the leading line or will be empty.

Because a slice that only contains a part of the leading line (and no focus point) has
a less important place in the composition, the way we will divide it will be simpler.
Instead of four, we will now split the parent slice up into two child slices according
to the golden proportions. There are four options for doing this: two in the horizontal
direction (left or right) and two in the vertical (top and bottom). This is depicted in
figure 3.5. How the parent slice is subdivided influences the placing of the leading
line in the new slices. This influences the generation of graphics, which is partly
based on the leading line coordinates. We therefore decided to let the algorithm try to
minimally contain the child slice. The algorithm only succeeds if the leading line is
not intersected, otherwise the predicate fails and recursion stops. If it does succeed,

6It should be noted that this algorithm is completely dependent on the representation of the leading
line as discussed in section 1. When nodes are added to the leading line or curves are applied, a different
kind of algorithm has to be implemented. Because of limited time constraints we have decided to only
implement the simpler angular composition. However, because of the modular decomposition of our
framework, it would be possible to design a new leading line and slicing algorithm without having to
re-implement the rest of the system.
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(a) (b) (c) (d)

Figure 3.5: Four options for dividing a slice that contains a straight leading line section

one of the child slices will contain the leading line, while the other will be empty and
is therefore discarded.

To summarise, in this section we have discussed several conceptual decisions con-
cerning the generation of the skeletal structure of our compositions. We chose to apply
an angular compositional style because it is basic, yet general. The composition is
divided according to an algorithm that produces focus point slices, containing the fo-
cus point plus an angled part of the leading line, as well as linear slices, containing a
straight part of the leading line. This algorithm is dependent on the representation of
the composition.

3.2 Graphic Entity Level
The next step is the generation of the actual visual content. As we have explained, the
initial representation of the canvas, leading line and focus point, is used to calculate
the coordinates of the slices. In our model, each slice essentially represents a graphic
entity. This entity can consist of a single shape or composite shapes (a pattern). In this
section, we will discuss how shapes and patterns of shapes can be generated based on
the slice coordinates.

Because our research is mainly focused on the composition of graphics, we will not
define algorithms that generate the actual atomic shape objects. We will discuss several
existing shape generation algorithms and how they can be combined with our work in
the conclusion of section 5. Instead, we will experiment with several predefined shape
sets. The first one is the one applied in the example at the start of this chapter, con-
sisting of elementary convex polygons: triangles, squares, pentagons and hexagons.
Because of convexity, the area of these polygons can easily be calculated through for-
mula 2.1. Although this set is reasonably meaningless from an artistic point of view,
keeping the number of variables low allows us to analyse the resulting compositions
more easily. In addition, we will make use of several other, wilder shape set. Because
we view each set as a distinct visual vocabulary, we will not combine them but apply
them one at a time. We further discuss the different shape sets in chapter 4.

As was pointed out in section 1.4, two related aspects that are important for plac-
ing an object in a composition are the proportions and the alignments. The skeletal
structure is built up according to the golden ratio proportions. Therefore, if we align
the objects to the edges of the slices, the alignments will perfectly correspond to the
golden rule measurements. Suppose we have two objects, a pentagon and a hexagon.
We want to align the hexagon, which is the smaller of the two, to the pentagon. To be
able to reason about the alignments of shapes, we will define a virtual rectangular area
that is wrapped around an arbitrary shape. This we will call thebounding box. Fig-
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ure 3.6(a) depicts both objects with their corresponding bounding boxes. Alignment of
a single side can be done four ways: top, bottom, left and right. Figure 3.6(b) depicts
a bottom alignment. Note that this is a relative operation: shifting the hexagon down-
wards or shifting the pentagon upwards yields the same result. Because alignments are
important from a graphic design perspective, we would like to maximise their number.
Creating a second alignment can be done by shifting the smaller shape to one of the
corners of the larger one. If the hexagon would be shifted to the right corner, two sides
of the bounding boxes would overlap of one (figure 3.6(c)). One more side could be
aligned if one of the objects is re-scaled (this is also a relative operation). If the aspect
ratios of two different objects are the same, scaling would cause all four sides of the
bounding boxes to coincide. However, this is often not the case. Possible solutions
are changing the aspect ratio of one of the objects to that of the other by stretching
it (figure 3.6(f) or central alignment (figure 3.6(e). In some cases, for example with
typography, changing the aspect ratio is not desirable.

(a) (b) (c)

(d) (e) (f)

Figure 3.6: several options for alignments

Because in theory well proportioned objects guarantee a certain quality level of the
composition, we will try to maximise the number of ‘good’ alignments. If each slice
contains a single shape, this is most simply achieved by re-scaling the objects to fit
exactly within the containing slice. When a slice contains multiple shapes, additional
ideas about groups are required. This is where shape patterns, which we discussed
in chapter 2 become important. Shape patterns combine predicate calculus with spa-
tial properties. Therefore, they provide a suitable layer of abstraction between the
top-level composition (the skeletal structure) and the visual vocabulary of the shape
sets. We will try to incorporate ideas developed by the shape grammar group into our
representation.

Because shape patterns were originally developed in the field of architecture, there
are several differences between shape patterns as described in the literature and the
way patterns are applied in our model. First of all, building materials have physical
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constraints. We are only constrained to the graphics the screen can display and to the
way we are able to represent these graphics with the available technology. Secondly,
a building has functional constraints; it is used to live in. This functional constraint
can be translated to our goal to design a ‘well-formed’ composition, depending on
the formal principles of composition and graphic design. These ideas are discussed
in this chapter. Thirdly, when architecture is seen as a form of applied art, there is a
level at which the building conveys an artistic idea. The architect in this case is also a
creative artist. The fact that buildings are styled differently can not only be attributed
to the combination of different building materials, requirements and constraints. There
are just as many architectural styles as there are art movements. In fact, historically,
the developments of fine arts and architecture often go hand in hand. This division
between a functional, well thought out structure and an actual work of art becomes
even more apparent in the domain of generative art. Although it is relatively easy to
generate visual contents based on a finite set of shapes and rules, to call something art
requires some higher level of understanding. In section 1.3, we already discussed some
general philosophical approaches to this issue. In chapter 4, we will discuss to what
level we can create ‘genuine’ art by generation. During the structural decomposition
of our framework, we hold on to the more formal approach. Our representation of
shape patterns will therefore be based more on de facto combinations of shapes and
transformations, with the general background theory of chapter 2 in mind, especially
concerning grouping and rhythm.

Because we implement our model in SVG, we make use of the four different trans-
formations: translation, rotation, skewing and scaling. Transformation of a single ob-
ject or a group is done relative to a certain reference point. We will call this theanchor
point. In SVG, when a rotation is performed on a shape it has its anchor point on the
origin. As a result, it will rotate around its axis. When the shape is translated before
it is rotated, the anchor point will stay on the origin. Thus, the location of the anchor
point can have a significant effect on the way the pattern is formed. Applying multiple
different types of transformations to a single shape can already result in a wide range
of distinct patterns. For example, in figure 3.7(a), a figure is translated several times,
while in figure 3.7(b) it is rotated around its axis. In figure 3.7(c) the rotated shapes
of figure 3.7(b) are translated, while in figure 3.7(d) the translated shapes are rotated.
This results in a different pattern structure and shape distribution.

To be able to reason about the alignment of a group, we need to recalculate the
bounding box by finding the outer coordinates of the shapes within the group. There is
a tradeoff between the rhythm created by the pattern and the alignments of the shapes.
Shapes can be aligned to other shapes within the pattern or to graphic entities outside
the pattern. Another property that can contribute to a balanced pattern is the distri-
bution of whitespace between the shapes. Because we regard a pattern as a distinct
graphic entity, in our model the spatial relationships within the pattern are to some
level independent from the spatial relationships of the entire composition. Because the
shapes the pattern consists of are at a lower conceptual level, we give a higher priority
to the alignment of the entire pattern.

There are several methods to determine the number of shapes used for a single
pattern. One is to base the number of shapes in a pattern on the recursion depth.
Another alternative is to take a non-linear approach. The exponential and logarithmic
functions are interesting candidates, because they are mathematically related to the
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(a)

(b)

(c)

(d)

Figure 3.7: switching the transformation order (adapted from [11])
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golden ratio. Additional shape pattern characteristics such as direction and center
point can be based on the leading line and the focus point. In the case of a linear slice,
we will interpolate between the coordinates of the two intersection points. The shapes
can then be evenly distributed along the width and/ or height of the leading line section
that is contained by the slice outline. In the case of a focus point slice, a pattern can
be rotated around the center point. We can also define a more complicated distribution
based on the center point and the two leading line section.

3.3 Graph Level
To generate output, we need to translate the shape level representation to the level of
the output syntax, SVG. In figure 3.8, we have arranged the different SVG classes
into a hierarchical diagram, based on [37]. At the top level, a canvas object forms the
root of the tree hierarchy. Although we are able to do a scale operation at the canvas
level, we will only make use of the width, height and colour7. On the canvas, graphic
elements can be places which can be nested in groups. Each group can contain an
arbitrary composition of different shapes. The transformation operations transform,
scale, skew and rotate can all be specified in one group. Groups can also be nested
themselves, resulting in more complex arrangements.

A graphic element consists of colour values for the fill and the stroke and the stroke
width. Initially, to keep the number of parameters low, we will not use strokes on our
shapes. A list of coordinates is specified that defines the actual points in the shape
graph. How the lines between these points are drawn depends on the choice of basic
shape or path-based shape. In the first case, straight lines are drawn between each
point. Because all shapes out of the simple set are polygons, we can use the polygon
class of the basic shapes to generate them. We can simply implement the point list as a
Prolog list that contains coordinate pairs. If we make use of convex polygons, spatial
properties can easily be calculated based on the coordinates. On the other hand, if we
want to define more extravagant shapes this would not be the case. Calculation of the
bounding box and the shape area would be more difficult. A possible solution could
be to predefine a bounding box and a convex hull around the object. An explanation
of how a convex hull can be calculated is given in appendix II.

4. S
In chapter 2 we analysed the domain of art in general and discussed more formal
principles of the domain theory. In this chapter we tried to formulate a general model
for the generation of abstract geometric art. We did this by defining a simple method
to generate the top-level composition structure and mapping our domain concepts to
it. Finally, we took a more formal approach by giving a knowledge decomposition of
the model. In the next chapter we will show how we implemented our model and in
what type of compositions this resulted. After this, we will discuss to what extent our
model is suitable to express higher-level concepts of art and creativity with.

7Scaling the canvas is useful when nesting different SVG objects. However, we will only generate a
single canvas, so this functionality is not needed.
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Figure 3.8: UML class hierarchy of SVG
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Chapter 4

Results

Based on the conceptual framework developed the previous chapter, we implemented a
prototype system. The idea of this system was not to implement a single composition,
but to be able to generate many different compositions, combining sound theoretical
principles with more specific ideas and randomness. Taking this approach, we were
able to produce a large collection of graphics that have a similar style but differ in the
way they are arranged. For our project, emphasis lay on research. Therefore, rather
than following a strict software design procedure, the system has been implemented
while developing most of the ideas contained in this thesis. This has helped us under-
stand many of the conceptual dependencies and practical constraints involved.

We will first discuss the main input parameters and data structures in section 1.
After this, we will discuss the implementation of the skeletal composition structure.
In section 3 we will discuss how we defined several shape sets that are used as the
visual vocabulary to fill the slices in the composition structure and in section 4 we
will discuss what problems we faced to implement the more higher-level concepts.
Finally, in section 5, we will see how significant the results are from an art perspective.
The exact details of the implementation are explained in appendix III.

1. I P  D S
We will start off with the initial information state of the system. Here is a list of fields
that are required for the demo to run:

• the filling mode,

• the shape set,

• the canvas dimensions,

• the leading line coordinates,

• the colour schemes,
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• a list of booleans for the rendering the guides,

• the values for rendering the guides and

• the depth of recursion.

The first field is thefilling mode, which describes the method of content generation.
By this we mean the way shapes are aligned, composed and scaled within the slices.
Currently, a limited number of different mode options have been implemented, mainly
specifying the way shapes are aligned.

Theshape setis a set of four to five shapes. These shapes have been predefined and
can have arbitrarily different characteristics, although we have selected the sets based
on certain similarities to guarantee a level of consistency in the visual appearance of
the generated compositions. Because the shape sets and the filling modes have been
defined independently, we can experiment with different combinations of visual styles
and generation strategies.

Thecanvas dimensionssimply consist of a value for the width and a value for the
height. Preferably, width and height should be chosen according to the golden ratio.
Three pairs ofleading line coordinatesare required; one for the left edge of the canvas,
one for the right and one for the focus point. For simplicity, we chose not to let the
leading line ‘leave’ the canvas via the top or bottom edge of the canvas. This is done
by always setting thex-coordinate of the left leading line point to zero and they-
coordinate equal to the canvas width. This representation guarantees that the leftmost
point of the leading line is indeed to the left of the focus point and the rightmost
point to the right. This choice has the disadvantage that some angles of the angular
compositions are not possible. However, a situation in which the leading line leaves
the slice via the top or bottom edge does sometimes occur with child slices. At the
moment, this case is not matched by the slicing algorithm, causing recursion to stop.

We have implemented a system which interpolates between two colour values, both
of which are encoded as HSL values. This means that twocolour schemes, each a set
of a value for the hue, saturation and lightness respectively, should be provided. The
first colour determines the background colour, while the second scheme determines
the colour it is mixed with. We have used the colour-conversion libraries of the Cupers
Colorpicker System to convert the colour values to the different types of encodings
(HSL, RGB and hexadecimal). By mixing the two colours, a simple palette is gener-
ated. The number of discrete colours within this palette is based on the recursion depth.
Each graphic entity is assigned a single colour from the palette. This means that the
shapes contained within a group entity will all have the same, discrete colour. In the
current implementation the colours are assigned randomly. To model a sophisticated
colour assigning algorithm, more research on this topic would be needed.

In addition to the above, we have added some options for the visualisation of the
structure and the debugging of the system. The list of booleans specifies if the edges
of the slices, the leading line and the shape bounding boxes are rendered. If so, the
values for stroke-colour and stroke-width specified in the next field are used.

We have provided a test file which instantiates the main predicate with some default
values. For instance, the canvas dimensions are set to 1000 by 618 pixels for most of
the generated example compositions. The guides are rendered in blue with a stroke-
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width of one SVG-unit1. We have provided several values for the leading line, because
this determines the overall composition to a large extent. The values for filling mode,
shape sets and recursion depth are left open because these are the most interesting
fields. Therefore, these values are varied regularly when testing the system.

2. T S C S
Based on the canvas dimensions, the leading line coordinates and the depth value, we
were able to recursively generate the skeletal structure of the composition according to
the algorithm described in the previous chapter. After the initial state of the system has
been instantiated correctly, the slicing predicate is called. By checking the length of
the leading line we decided if the values should be propagated to thefocus point slice
or linear slicepredicates. In the first step, the leading line contains the two edge points
as well as the focus point so the focus point area algorithm will be called. This results
in one to four new slices. The new dimensions of the slice and the coordinates of the
top-left corner, which provides the anchor point, are calculated. Also, the coordinates
of the points where the leading line leaves the new slice are calculated. Thus, at least
one new focus point slice and zero to three linear slices, which have a leading line with
only two points, are generated. The values of these fields are fed back into the main
recursion loop. In its current state, the slicing algorithm is still incomplete. This is
due to the fact that at deeper levels exceptional situations will occur within the slicing
structure, which our demo does not yet handle, although these situations are rare.

To test our slicing algorithm, in the first stage of our system, we generated some
compositions in the style of Mondrian’s lattice compositions (see figure 2.1(g)). A
simple colour scheme was implemented, which consisted of the primary colours red,
blue and yellow in addition to black and white. Note that the colour representation
as described in section 2.3 has not been used for this; the set, consisting of the pri-
mary colours plus black and white, was predefined in a separate list. For every slice, a
single rectangle was generated to which a colour from the set was assigned. We exper-
imented with different probabilities, where the probability for the primary colours and
black were set low and the probability for a white rectangle was set high. The propor-
tional guides were rendered according to a stroke width of 4 and the colour black. We
experimented with several different settings of the leading line and canvas dimensions.
This resulted in the compositions of figure 4.1(a) and 4.1(b).

3. A: S S
As we mentioned in chapter 3, we made use of several different shape sets. The first
one consists of simple convex polygons. We included all the shapes between triangles
and octagons. This is depicted in figure 4.2(a). The second set consists of isometric
shapes, restricted to angles that are multiples of 45 and 90 degrees. These shapes are
depicted in figure 4.2(b). Next to these relatively basic shape sets, we defined two addi-
tional sets that consist of more freestyle shapes. The first one, depicted in figure 4.2(c),
still includes horizontal and vertical lines that coincide with their bounding boxes. The
idea behind this is that the alignment with the slice will still be clear. Another reason
is that this way the shape will sometimes merge with a neighbouring shape with (ap-
proximately) the same colour. Finally, we defined a set which consists of shapes that

1By default, this is equal to one pixel.
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(a) (b)

Figure 4.1: generated Mondrian-like compositions

are so angled and curved that they only coincide with their bounding boxes at single
intersection points.

To test the effect of different alignment strategies, we implemented three simple
filling algorithms. For each of these, a shape is randomly selected from the current
shape set and assigned to a slice. This way, each slice contains a single slice. The
first filling algorithm re-scales the shape object from the shapes set to either the height
or the width of the slice, depending on the aspect ratios. It then simply aligns the
shape to the top-left corner of the slice. This is depicted in figure 4.3(a). The second
algorithm randomly aligns the shape to one of the four corners of the slice. This way,
the shapes are placed within the slice less deterministically2. The result is depicted in
figure 4.3(b). The final alignment algorithm also randomly rotates the objects within
the slice over angles that are multiples of 90 degrees. This is depicted in figure 4.3(c).

Rotating the shapes to angles that were not multiples of 90 degrees turned out to be
more difficult. The reason for this is that the bounding boxes of the objects needed to
be recalculated. If this could be done by simply rotating the bounding box and finding
the new outer coordinates with a goniometric function, there would be no problem.
However, for most shapes, rotation causes the horizontal and vertical outer points to
change. As a result, if we want to reset the bounding box of an arbitrary shape, we
have to analyse the entire outline of the shape. This is illustrated in figure 4.4.

The result of the filling of the composition structure with the polygon shape set can
be seen in figure 4.3(d). We have chosen colours with HSL values that lie far apart to
emphasise the separate objects. Based on this simple setup, some observations can be
made. First of all, many of the objects are aligned to each other, which was the main
goal of the simple shape algorithm. However, because the shapes are so basic, they are
instantly recognizable as polygons. As a result, there is a certain level of balance, but
a higher sense of unity is missing.

To reach more unity in the composition, we replaced the polygons with the isometric

2Because the shape is scaled to fit exactly within the slice to maximise the number of alignments,
either the horizontal or the vertical direction will become unimportant. As a result, in practice there will
only be two alignment options: either top and bottom or left and right.
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(a) polygons

(b) isometric

(c) freestyle set 1

(d) freestyle set 2

Figure 4.2: shape sets
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(a) top left alignment (b) random alignment

(c) random alignment plus rotation (d) result without guides

Figure 4.3: generation based on polygons

(a) (b) (c)

Figure 4.4: recalculating the bounding box
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shape set. This set has some interesting properties. First of all, because the angles of
the objects within the set are restricted, so are the angles in the entire composition.
Secondly, the triangle and square are sub-shapes of the other two shapes. And finally,
when the objects are placed within the framework, the objects will seem to fall together
like a puzzle. This is caused by the isometric angles and the coinciding of parts of the
shape outlines with the edges of their bounding box. For this example, we chose colour
values that lay closer to each other, to enhance this shape fitting effect. A disadvantage
of this is that the simplicity of the colour model becomes more apparent. Some of the
results are depicted in figure 4.5.

(a) (b)

(c) (d)

(e) (f)

Figure 4.5: generation based on isometric shapes
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Finally, we filled the slices with freestyle objects. Because these shapes are more
wildly curved and (especially in the second set) the outlines coincide less with the
bounding box edges, there is much more ground area. Also, some them arecompound
shapes, which means that they have empty areas enclose within the shape outline. The
figure-ground ratio is therefore usually much smaller than that of the shapes in the
polygons and isometric sets. This has a significant effect on the balance of the entire
composition. We experimented with different colour schemes. The results of filling the
composition structure with the freestyle shape sets are depicted in figure 4.6. There
are a couple of observations that can be made. First of all, the use of the freestyle
shape sets often results in very chaotic compositions. The wild characteristics of the
freestyle shapes cause the alignments to be less apparent. Furthermore, there is less
balance because of the many different angles in the shapes. Finally, the shapes do not
seem to flow into each other as well as with the isometric shape set. On the other hand,
whereas with the polygons set the shapes were always recognisable as polygons and
with the isometric set all the composed shapes had triangles and squares as sub-shapes,
layering the freestyle shapes often results in the emergence of completely new shapes.

4. P: M S
Several main concepts of our model have been implemented. At the top level, the
composition structure includes the angular composition style as well as a layered sub-
division of the canvas into well-proportioned slices. For the generation of the actual
visual contents we have designed several shape sets to use as a visual vocabulary. We
now want add shape patterns to our implementation. As discussed in chapter in chap-
ter 3, the grouping of shapes is important because it adds rhythm to the composition
and we are able to represent more complex compositions, filling the gap between the
composition level and the shape level of our knowledge decomposition.

For the generation of patterns we encountered the bounding box resetting problem
again (see figure 4.4). Because we already did some experiments with alignments,
we decided to ignore this problem and generate graphics that did not correspond to
the golden rule proportions. As a result, in this case our framework is used only to
generate the graphics by and does not guarantee that the shapes are aligned correctly
anymore.

The patterns were generated based on the slice dimensions, recursion depth and
the leading line coordinates. To keep it simple we used the polygons shape set for this
example. The number of shapes used for a pattern was determined based on the current
depth value. We implemented two simple shape pattern algorithms, one for the focus
point slices and one for the linear slices. For focus point slices, we defined a pattern
that rotates shapes around the focus point. The rotation step size was determined by
simply dividing 360 degrees by the value of the current recursion depth. The shapes
were translated before rotating them. This is comparable to the pattern in figure 3.7(d),
only with translations of single shapes. The translation distance was determined by
calculating the closest distance between the focus point and a slice edge.

For linear slices, shapes were rotated before they were translated, comparable to
figure 3.7(c) but again with single shapes. This resulted in a more linear pattern, in
contrast to the circular patterns of the focus point slices. The direction and step size
of the translations were determined based on the leading line. The rotation was de-
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: generation based on freestyle shapes
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termined by dividing 180 degrees by the value of the recursion depth. In addition to
translation and rotation, for the linear slice algorithm we also made use of skewing. A
list of skew values was generated randomly. We kept the skew offsets relatively small
to achieve a just noticeable distortion of the shapes. Figure 4.7 depicts some of the
results.

Although these pattern algorithms implement the ideas of chapter 3 to some extent,
they are still very simple. There are several ways we could improve the pattern compo-
sitions. First, correct alignments of the patterns could be achieved by ignoring skewing
and restricting the rotations to multiples of 90 degrees, just like in the third alignment
algorithm of section 3. The next step would be to apply the different alignment strate-
gies to entire shape groups. Also, considering alignments while scaling and translating
the shapes within a group would improve the overall balance of the composition. Here,
the conceptual relationship between the pattern and the shape(s) it consists of becomes
important. We will discuss more intelligent, conceptual level aspects of art generation
in the next section.

5. A S R
Up until now, we have taken an analytical approach. Based on the domain theory, we
have generated a solid framework. The next step was to generate the visual content in
an implementation. We have shown how the ideas described in chapter 3 have been
included in it. The application of a general compositional style and graphic design
principles guaranteed that from a formal point of view the results were well-formed,
although there are many remarks that can be made. At this point, a fundamental issue
in the generation of art is encountered: a higher conceptual idea of the artistic content
of the generated work is still missing. In this section, we will discuss to what extent
we can generate genuine art in generally and specifically with the ideas described in
this thesis in mind.

Because this project was done for a masters degree in artificial intelligence, we have
tried to scientifically analyse the concepts involved in creating art. This has been a
very rational process. However, as we have pointed out in section 3.2, although it
is relatively easy to generate visual contents with the computer as a tool, to call the
result art requires some higher level idea being conveyed through it. These type of
ideas, which give the artwork its artistic meaning and thus its value, are most likely
born at a subconscious, irrational level. How to incorporate such ideas in a computer
(program) is one of the main points of discussion for AI-based art generation. In an
attempt to contribute to this discussion, we already mentioned some approaches to
this issue in section 1.3. To summarise, we distinguished three different views. The
strong-creativity view states that the computer is autonomous and also consciously
aware of its own creative process. The weak-creativity view, on the other hand, does
claim that the first aspect, autonomy, is possible, but the second is unimportant as long
as the difference cannot be told between the computer generated work and art that has
been made by a human. The difference between these two views can be compared
to the larger philosophical discussion about artificial intelligence and consciousness
[20]. However, in the context of art, the conscious or subconscious development of
an idea is essential to the quality of the outcome. Therefore, the distinction between
strong and weak AI is not as useful as with more applied domains in which the main
requirement is functionality. The last view is that of the programmer as the artist. In
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: implementation of simple pattern-based compositions
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this case, the computer can be seen as a very sophisticated tool. There are several levels
of complexity at which this tool can be used. We will discuss this in the following
paragraphs.

Using a graphics editor could be seen as the most direct way of generating art with a
computer. The human user has as much control over his creative output as the software
and the human-computer interface allow. In this case, there are not much high-level
ideas involved at the side of the computer. There is no significant advantage of using
the computer instead of the hand, because generally the results could just as well have
been produced with paint and brush. A second step would be to create more time-
based output, for example video. This type of content can also be produced a large
extent with traditional tools like cameras editing tables, although use of a computer
can usually have an added value by speeding up the process.

Using a computer becomes really interesting if we want to add algorithms, adaptive
behaviour or even some level of autonomy. These possibilities are hardly available in
traditional tools. With algorithmic art, visuals are created based on the artist’s descrip-
tion. Application of algorithms in the generation of graphics can be useful for more
repetitive and precise tasks, which would require a lot of time and effort of the artist,
while the actual task is quite futile. Adaptivity can be achieved by applying machine
learning techniques. This approach emphasises the dynamic nature of the medium.
Although machine learning is part of the field of artificial intelligence, it does not ex-
plicitly represent high-level concepts. It is questionable if compositions that are based
on these type of algorithms can be said to have any meaning in them.

Finally, a graphics generating tool could supply autonomous components to facili-
tate the creative process of the artist. This could be compared to software agents that
autonomously help the user achieve his goals, for example finding a certain topic on
the internet. Although in practical domains such as this autonomous agents can indeed
be very helpful, the question is to what extent the user can benefit from autonomy in
a creative environment. How can the software know what the goal of the artist is if
this goal cannot be precisely described, changes dynamically and is often not even
explicitly known by the artist himself?

In this project, we have chosen to stay close to the meta-art approach. We gener-
ate an arbitrary number of compositions based some formal ideas and a certain level
of randomness. At this point we have generated a framework and a visual vocabu-
lary, but we still have to develop the language to use this vocabulary. To incorporate
higher-level ideas in our model, we could either develop our own creative ideas or
do more research on the ideas of other artists. Take for example Mondrian’s lattice
compositions. Although there are some conceptual differences with original Mondrian
compositions (for example, the coloured squares should sometimes align to other lat-
tices instead of to the ones directly containing them) clearly it is relatively easy to
approximate Mondrian’s visual style with computer graphics. This could be attributed
to his extremely minimalist approach to abstract geometric art, which is highly suit-
able for representation with simple rule-sets. On the other hand, there are also more
conceptual theories involved in his paintings. For example, Mondrian would never
paint one of the larger areas black, but instead would try to balance the colours to the
area, experimenting with the balance of the composition. Kandinsky’s paintings often
symbolised meta-physical ideas. Many of his compositions are also based on more or
less explicit rules, by which conveyed a deeper sense of meaning.
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6. S
In this chapter we have shown how the ideas of chapter 3 can be implemented to a
certain extent. Although our demo is relatively simple it includes most of the basic
concepts of our framework. We have discussed the generation of the composition
structure, as well as the generation of visual contents using alignments and shape pat-
terns. To analyse to what extent genuine art can be generated in general and specifically
for our model, we added a short discussion about the artistic significance of our results.
We will conclude this thesis in the next chapter.
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Chapter 5

Conclusion

To conclude this thesis, we present a summary of the thesis, present our conclusions
on various advantages and disadvantages of the conceptual decisions made during this
project (2) and discuss possibilities to extend our model in the future work section (3).

1. S
In chapter 2 we have shown that the domain of expressionist art, combined with more
formal knowledge about aesthetics, gestalt theory and graphic design, can be used as
basis for the generation of abstract geometric compositions by a computer program.
After analysing the domain theory, in chapter 3 we designed a conceptual framework.
Based on this framework, we have implemented a system to show to what extent we
can use this framework to generate abstract geometric compositions. We also discussed
the possibilities of including higher-level artistic ideas into generative art systems.

2. D  C D
For our research we have mainly focused on the formal aspects of composition. We
have chosen for the domain of abstract geometric art because the basic principles are
formalisable and the visual style can be reproduced with vector graphics. Because
we were primarily interested in entire compositions, emphasis lay on concepts such
as compositional style, alignment and proportions. However, because one of our goals
was to generate compositions based on our analysis, we also had to include lower-level
concepts such as shapes and groups into our representation. We decided to keep these
as general as possible, describing the role of the graphic entities instead of methods to
generate them. For our implementation, we made use of several predefined shape sets.
Theoretically, the shapes in these sets could be replaced with ones that are generated.
The top-level representation of the composition consists of the three elements canvas,
leading line and focus point. We chose for the angular composition style as the starting
point because it is both general and simple.

In section 5 we discussed the importance of higher-level artistic ideas behind the
generated compositions. This is an issue that is inherent to the domain of art. We have
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tried to find out to what extent we can generate art from the formal domain theory.
We gave several options for including these kind of ideas into generated artwork. We
approached generative art as meta-art, where the programmer had the role of creative
artist behind the generated work. Because the main goal of this project was to do sci-
entific research, we did not include our own artistic ideas in the model. On the other
hand, neither did we include existing higher-level artistic concepts. The main reason
for this is that these kind of ideas are difficult to formalise because it is hard to de-
termine how and why they were formed by the artist. Having said this, it should be
possible to include some higher-level ideas into our model by painters such as Mon-
drian and Kandinsky, who took a relatively formal and explicit approach to painting.

The choice for a recursive definition of the generation process made it easier to
implement our demo in Prolog. The framework was generated and at the same time
the information of the generated slices was used to generate the visual contents. A
more detailed explanation of the implementation is given in appendix III. Proportions
are calculated according to the golden ratio. The division of the canvas into slices
is done relative to the focus point and leading line. For the filling of the slices with
shapes and patterns, first several mathematical operations are done to fit the shapes to
the size of the slice, after which the alignments are determined relatively. Thus, our
representation combines quantitative and qualitative spatial reasoning.

We have chosen to analyse a very distinct artistic style. Our choice for geometric
abstract art made it easier to translate artistic concepts to a formal model. Different art
movements are probably more difficult to represent. Post-modernism, for example, is
primarily based on the higher-level contents and ideas that our framework lacks. On
the other hand, theories about composition and graphic design should also generally
apply to more traditional movements.

3. FW
There are many ways in which we could extend our model. First of all, the three point
representation of the leading line could be changed into a more sophisticated shape,
for example a curved line. This would also mean that the slicing algorithm should be
redefined, because it is entirely dependent on the way the leading line is represented.
It should be interesting to see how different slicing schemes affect the structure of the
composition. Statistical analysis of the way the slices are distributed could provide
a mathematical basis for comparison. On the other hand, from a more conceptual
point of view, it would also be interesting to see how different composition styles,
such as symmetric and geometric ones, can be added to our model. Other options
for adapting the structure of the composition include the addition of multiple leading
lines. In [28], canvases by Diebenkorn are analysed with shape grammars. Based on
this analysis new compositions are generated. Besides making use of multiple leading
lines (figure 5.1), partial guides (dotted lines) are also represented. This way, non-
rectangular slices can be modeled.

Besides extending the structure, including more concepts to achieve emphasis could
also help in refining the composition model. As was discussed in chapter 2, the main
ideas to increase emphasis are the addition of a focus point, of contrast and of isolation.
At the moment our colour model is very simple. This often decreases the aesthetic
value of the results. We could define a more sophisticated representation that highlight
the objects in the focus point. This would result in the fact that these shapes are isolated
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(a) ‘Ocean Park 70’, Diebenkorn (b) generated compositional
structure

Figure 5.1: analysis of Diebenkorn compositions with shape grammars (adapted from
[28])

from the other shapes. Also, there would be more contrast between the focus point and
the surrounding objects.

Because our research was focused on two-dimensional compositions, we have left
issues about depth largely outside the discussion, although the triangular composition
seems to be a suitable representation for linear perspective. On the other hand, a
realistic depth representation would probably require a much more sophisticated model
of graphical objects.

At the graphic entity level, much research has been done by others. We have already
mentioned the work of the shape grammar group, on which we have based part of our
domain theory. Furthermore, our predefined shape sets could be substituted with other
sets with interesting characteristics. For example, similarly to the isometric set, we
could define a set of shapes that have angles that are multiples of 30 degrees.

We could go a step further and define shape generation algorithms or incorporate
available algorithms into our code. This would open the door for an analysis of the
lateral dependencies between shapes, their role within the group or even their role
within the entire composition.

Taking technical aspects into consideration results in some new directions we have
not yet discussed. There are still many rendering possibilities that are offered by SVG
that we have not used. These include changing the stroke characteristics, filling the
shapes with (bitmap) textures or gradients (or even leaving the fills of shapes empty)
and applying filters to shape objects.

Throughout this thesis, there has been a balance between the analysis of the domain
theory and the design of a generation framework. Although our work was not done
from a practical point of view, we have designed a general model for the description
of composition. It would be interesting to see if this model can be applied to analyse
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existing art. This way, collections of artworks could be analysed and classified, which
could be an interesting application for musea with online databases.

4. E M
In the previous chapters we have described and implemented a model of a system that
is able to generate a composition from scratch. We have incorporated all kinds of
ideas into the framework, related to composition, design, psychology and aesthetics.
Although the generated results are based on these ideas, an evaluation phase could be
useful because the contents of the artwork are added incrementally. Therefore, it is
difficult to oversee the effect each distinct addition has on the final result. This is the
reason why a holistic evaluation mechanism could be desirable. Also, turning genera-
tion of the compositions into an iterative process could lead to interesting results: the
complexity of the results could be increased and we could research if the results con-
verge or emergent behaviour occurs. It would be interesting to see how we could apply
machine learning techniques in this context. Through analysis of the output composi-
tion we could refine the input parameters. More extremely, it would even be possible
to apply shape recognition techniques to the output. There has already been done ex-
tensive research in the area of facial recognition. There also exist pattern recognition
algorithms for simpler application areas such as the conversion of images to ASCII-art.

4.1 Quantitative Evaluation
The theory described in chapter 2 provides some good starting points to search for
evaluation dimensions. However, although graphic design principles (such as unity,
emphasis and balance) could be translated into evaluation criteria heuristically, they
are very general concepts that are difficult to quantify. If we want to quantitatively
evaluate the generated graphics, we have to find more explicitly definable criteria.
The figure-ground principle seems to be a good candidate. It is relatively simple to
calculate the area of the shapes. This can be done using formula 2.1 when the shapes
consist of convex polygons, or else making use of a convex hull algorithm as a heuristic
(see appendix II). Thefigure-ground ratiocould then be calculated by dividing the
resulting value by the area of the slice.

A next step would be to compare the properties of different shapes to each other.
For each slice, graphics are generated independently. As a consequence, graphics that
belong to different slices sometimes conflict with one another. The depth order in
which patterns are placed plays an important role in this respect. Sometimes a large
part of the graphics contained by the parent slice are hidden by those contained by its
child slices. We can make a numerical comparison by calculating the figure-ground
ratio of the parent slice and the added figure-ground ratio of the child slices. If the
ratio of the child slices is larger, we could decide to adapt some of the properties of
the composition. There are several options for doing this. First, we could adapt the
distribution or scale of one or more graphics. A second option would be to swap the
contents of one of the child slice with the contents of the parent slice. Finally, we could
swap the shape object the pattern consists of with another, smaller shape.

In the case the slice contains a pattern, some additional remarks can be made. In a
pattern, shapes sometimes overlap. This makes it more difficult to calculate the area
of the pattern. Research of geometric properties could be useful in this respect. A
re-scale operation can be done on the entire group or on the separate shapes within the
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pattern. This has a significant effect on the distribution, the figure-ground ratio and the
absolute bounding box coordinates.

4.2 Qualitative Evaluation
Although mathematical analysis of geometrical properties can provide a formal basis
for evaluation, from an artistic point of view it makes less sense. We could take a more
conceptual approach by evaluating relative properties of the generated compositions.
First of all, we could consider the alignments. As we explained in chapter 3, there are
several options of aligning two objects. Up until now, we have focused on the align-
ments of single objects within a slice. It makes sense to reason about the alignments
of multiple objects within a slice. It would be even better to see how objects of dif-
ferent slices are aligned to each other, because now we would be reasoning about the
representation at the composition level. This would be a step towards the expression
of high-level ideas about content. Again, we refer to the example of Mondrian, who
tried to achieve more balance by placing several objects in counter composition.

It would also be interesting to see how the compositional structure can be adapted
(semi-)dynamically. We could take criteria such as emphasis and continuation into
account to enhance the skeletal structure. For example, in many of our results the
leading line is not clear anymore, leading to chaos. We could try restore its integrity by
taking a look at how the objects are relatively distributed. We have already discussed
how we could enhance the contrast and isolation of the focus point with colour. We
could also choose for a more compositional approach to achieve contrast and isolation
by moving objects further away from the focus point, or more to the back. Finally,
an interesting option for changing the compositional structure would be to add, merge
or remove slices. Although the question is how we could validate such adaptations,
if we would implement a sufficiently sophisticated demo interface, we could make
changes by hand, turning the evaluation process into a type of supervised learning.
Merging a slice could also imply merging the contained graphics. Adding patterns to
each other could be done by composing the shapes of the different patterns, and adding
the transformations. Here the aspect of transformation order becomes relevant again.

Finally, we could try to evaluate the results based on the semiotics of the contents.
This would take us a step closer to genuine artistic content. For example, a more
quality based colour theory could support the artistic evaluation of the compositions.
For example, we could distinguish between warm and cold colours and try to define a
model in which these ideas are linked to the underlying meaning of the results. Some
research on colour has been done in [32]. The choice of a more meaningful visual
vocabulary would provide us with a way of expressing higher-level concepts.

5. C
At the start of this thesis we stated the question: ‘How can artificial intelligence tech-
niques be combined with vector graphics to create geometric abstract art?’ We tried
to answer this question by both analysing the domain of generative art as well as de-
signing a model to generate abstract compositions. We have shown that it is possible
to generate abstract geometric compositions based on ideas of expressionist art move-
ments and more formally, ideas behind the philosophical discipline of exact aesthetics,
the psychological gestalt principles and practical theories of composition and graphic
design. We then showed how the main aspects of our model can be implemented with
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quantitative and qualitative reasoning and how this relates to the creation of genuine art
with computer technology. It turned out that our formal research did not provide some
of the critical aspects of art. We conclude that although we designed a simple, general
framework for generating compositions based on which we can implement a system
which incorporates our formal ideas, it lacks the essential artistic concepts that define
the quality of the artwork. Although this is a difficult topic, some form of higher-level
creativity might be added by either taking a more creative approach, or by doing more
research on the ideas of artists that took a explicit, rule-based approach to painting,
such as Mondrian and Kandinsky.
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Appendix I

Transformation Matrices

Here are the specific matrix values for the SVG transformations as described in sec-
tion 3.3. This is the translation matrix, wheretx is the horizontal translation distance
antty is the vertical (adapted from [37]):

1 0 tx
0 1 ty
0 0 1

 (0.1)

For scaling,sxandsyare multiplication values while the other values are set to zero.sx 0 0
0 sy 0
0 0 1

 (0.2)

Rotation makes use of goniometric functionscos(a) andsin(a), wherea stands for the
rotation-angle.cos(a) −sin(a) 0

sin(a) cos(a) 0
0 0 1

 (0.3)

Skewing is done by making us of thetan(a) function; there are two variations, skewing
in the vertical and skewing in the horizontal direction. In the horizontal case, the
transformation matrix looks like this:1 tan(a) 0

0 1 0
0 0 1

 (0.4)

In the vertical case, thetan(a) function is placed differently: 1 0 0
tan(a) 1 0

0 0 1

 (0.5)
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Appendix II

Convex Hull Algorithm

This is an example of how the convex hull of a shape is calculated from its set of points
using theGraham scan algorithm1.

1 An point is chosen that can be used as the pivot. This point should have either a
minimal or a maximalx or y-coordinate, so it is guaranteed that it is part of the
hull.

2 Sort the points in order of increasing angle around the pivot.

3 Build the hull by traversing the points in this order, adding an edge when we
make a left turn, and back-tracking when we make a right turn.

The important steps of this algorithm are depicted in figure II.1.

1Adapted from http://www.cs.princeton.edu/ ah/alg anim/version1/GrahamScan.html.
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(a) set of initial points (b) sort points according
to angle

(c) step to first point

(d) step to second point:
left turn

(e) step to third point:
right turn

(f) backtrack to first point
and step to third point

(g) step to fourth point:
right turn

(h) backtrack to second
point and step to fourth
point

(i) complete convex hull

Figure II.1: Graham scan algorithm for calculating the convex hull of a set of points
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Appendix III

Technical Details of the Demo Implementation

We will explain some of the technical details of the implementation of our demo for
the purpose of future research. Some software has to be installed before you can run
the demo:

• either Eclipse Prolog or SWI Prolog,

• the batik SVG-browser (for Linux),

• Internet Explorer with the Adobe SVG plugin (for Windows).

The back-end of our system was programmed using Eclipse, a version of Prolog that
was developed by the IC-PARC Imperial College. Later on, some routines were
adapted to SWI Prolog, a version of Prolog which was developed at theSociaal Weten-
schappelijke Informaticadepartment of the University of Amsterdam (UvA). In the
current version of our demo, the main routine includes a predicate calledwhich_prolog

which checks if it has been loaded in either Eclipse or SWI Prolog and fails otherwise.
The software was developed to compile under both Linux and Microsoft Windows,
although the win32 implementation of eclipse turned out to be less stable from time to
time. The generated SVG files were viewed using the Batik SVG-browser (developed
by Apache) under Linux and the Adobe SVG-plugin in Microsoft Internet Explorer
for Windows. As of yet, the software runs from the command line. However, currently
a web interface is being implemented. The code has been split up into several Prolog
files. Here is the list of files the demo consists of:

• main.pl: sets the initial state and calls the main loop,

• focuspointslice.pl: part of the slicing algorithm that deals with the area
around the focuspoint,

• linearslice.pl: part of the slicing algorithm that deals with linear slices,

• fill.pl: contains the graphics generation predicates,
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• colour.pl: generates the colour palette,

• shapes.pl: contains the shape libraries,

• draw.pl: translates Prolog data to SVG,

• util.pl: some helpful predicates,

• compat-swi.pl: checks for SWI Prolog compatibility,

• test.pl: testing presets.

In addition, we have made use of a couple of colour libraries provided by the Cuypers
Colorpicker System:

• hsltorgb.pl

• dec2hex.pl

The output is written to the filesvggen.svg. In the following sections, we will shortly
explain the main implementational issues of the main loop, the slicing algorithm, the
colour-generation and shape generation predicates and the output.

1. M L
Theset_global_parameters-predicate sets the initial state of the Prolog fact database.
Besides asserting most of the user-defined variables, such as the depth and the name
of the shape set to be used, it also calls a predicate to generate the colour palette and
get the list of shape coordinates of the correct set.

When the main parameters have been set correctly, the values for the canvas di-
mensions, leading line coordinates and recursion depth are passed on to the slicing
algorithm, while the other parameters are asserted as global variables. Before the main
recursion is started a file-stream is opened to which the SVG data is written. Aheader

andfooter routine have been added that write the standard XML tags at the begin-
ning and the end of the document. The background is initialised with the values of
the canvas dimensions and the hexadecimal value of the background colour. The main
loop is started by calling theslice-predicate:

open(’svggen.svg’,write,FILE),

asserta(svgfile(FILE)),

header,

draw_canvas([CX,CY],BGSCHEME),

slice([0,0,CX,CY],LEADINGLINE,DEPTH),!,

render_leadingline(LEADINGLINE),

footer,

close(FILE).
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2. T S A
In principle, theslice-predicate takes two simple data structures and a field for de
recursion depth as arguments. The data structures represent the rectangular outline of
the slice and a the leading line.

The slice outline is represented as a list of four arguments. The first two denote the
x andy value of the top-left corner of the rectangle. This is the anchor point of the
slice. The second two arguments contain the width and the height values. Because the
first slice is initialised with the state of the entire canvas, the anchor point is equal to
the origin while the width and height values are equal to the canvas dimensions.

The leading line representation consists of a list of points. Each point is represented
as a coordinate-pair in a sub-list. The convention for the order of the leading line
points we have chosen is the following: focus point ([FPX,FPY]), left corner point
([CPLX,CPLY]) and right corner point ([CPRX,CPRY]). When the slice contains no
focus point, the first point is discarded. When the slice does not contain a part of the
leading line, it is represented as an empty list ([]). We will consistently hold on to this
notation.

slice([X,Y,WIDTH,HEIGHT],[[FPX,FPY],[CPLX,CPLY],[CPRX,CPRY]],N).

There are threeslice-predicates. The first one checks if the maximum iteration
value of the loop has been reached. The loops are counted in decreasing order from
the user-defined depth to zero. If the loop-termination predicate fails, the algorithm
branches out either to a focus point slice or to a linear slice, based on the fact if the
length of the leading line has the value 3 or 2 respectively. However, before the slice is
subdivided by thefocuspoint_slice orstraightline_slice-predicate, the pred-
icates infill.pl are initialised with the current slice values.. This way, before the
next recursion-depth is reached, a new layer of graphics is written to the output. When
the maximum recursion-depth has been reached, the composition consists of a layered
structure of shapes. The graphics generation predicates are discussed in section 3.

The slices that contain the focus point are subdivided into four child slices. The
focuspoint_slice predicate initially determines in which quarter of the parent slice
the point is located, after which the the golden ratio values are calculated. Based on
these, two width values and two height values are calculated1. Taking all the permu-
tations of the width and height values, we get four different rectangles. If the canvas
dimensions comply to the golden ratio, the smallest rectangle will always be a square,
while the second smallest will have the same proportions as the largest rectangle.

To simplify the calculation of the new leading line coordinates, we split up the
triangular leading line into two linear ones. Our representation guarantees that one
of the leading line points is always to the left of the focus point and one is always to
the right. Also, because the canvas is divided into four rectangular areas, a vertical
guide is always present either to the left or to the right of the focus point. A horizontal
guide is always present either above or under the focus point. Added together, these
properties guarantee that the leading line is intersected either one or zero times in both
dimensions. In two dimensions, the leading line is intersected zero to two times on
both sides of the focus point. Crossing the vertical guide twice would only occur when

1Remember that, applying the golden rule, A is to B as B is to C; C is equal to the parent width or
height. The largest of A and B, say A, is calculated by dividing C by the golden ratio,Φ. B is subsequently
calculated by subtracting A from C.
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the focus point is either to the left or to the right of both corner points, which is never
the case. Because the corner points are initially located on the vertical edges of the
parent-slice, the maximum total number of intersections is three: once with the the
vertical guide and twice with the horizontal guide.

The calculate_newLL-predicate is thus called twice, once for the left and once
for the right part of the leading line. This predicate returns a list of intersection points
and one of the flagsvert, horiz, horiz_firts or vert_first to indicate the order.
When the lines intersect not once, only the flagnone is returned. This provides us with
sufficient information to deduce which part of the leading line should be assigned to
which of the child-slices.

The anchor point coordinates and the slice dimensions are temporarily saved in two
lists: [X,Y,X1,Y1] and[W1,W2,H1,H2]. X andY contain the coordinates closest to
the origin.X1 is equal either to the small or to the large golden ratio division of parent
slice width. However, this value has been added to theX-value of the parent-slice
anchor point because of recursion. The same holds forY1. W1 andW2 correspond to
the width of the left and the width of the right two slices respectively, whileH1 and
H2 correspond to the height of the top and bottom ones. Adding them all together, for
each of the four new slices a predicate is called which loops back tomain.pl. This is
done in clockwise order starting from the top-left corner:

slice([X,Y,W1,H1],LL,N), % top-left

slice([X1,Y,W2,H1],LL,N), % topright

slice([X1,Y1,W2,H2],LL,N), % bottomright

slice([X,Y1,W1,H2],LL,N). % bottomleft

When one of the child-slices does not contain a part of the leading line, recursion
stops, which is the reason that the algorithm sometimes branches out to less than
four newslice-predicates. The main difference between thefocuspoint_slice2-
predicates, however, is the way the leading line coordinates are re-divided over the
new calls toslice.

In section 3.1 we have discussed the main ideas behind linear slices. In our imple-
mentation, the parent slice is subdivided accordingly. The leading line list consists of
two points instead of three:

slice([X,Y,WIDTH,HEIGHT],[[CP1X,CP1Y],[CP2X,CP2Y]],DEPTH)

The getminimalslice-predicate first determines which of the four options of fig-
ure 3.5 is optimal. If a new guide cannot be added without intersecting the leading line
in either direction, the predicate returns the valueno. This terminates the recursion
loop. Else,straightline_slice2 calls aslice with the values of the child-slice
that contains the leading line section.

3. C S  F A
Each iteration of the main loop, thefill_slice-predicate is called with the values
of the current slice node, the current leading line, the slice type and the recursion
depth. In addition, a colour is randomly selected from the palette. Infill_slice, the
global names of the pattern and set are matched and added to the parameter list of the
fill-predicate, which contains the actual graphics generation steps. In the current im-
plementation of the demo, there are three different fill-types which use single shapes:
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single_shape, single_shape_randomalign and
single_shape_randomalign_rotate. We will only discuss the last, because it con-
tains the code of the first two.

First, a shape is matched from the shape set randomly with theget_shapes-predicate.
It returns the coordinates of the shape and its bounding box. There are two types of
shapes: polygons, which consist of actual Prolog lists, and path shapes, which consists
of strings containing SVG code. The polygon notation can be used to do calculations
on. For example, when a polygon is matched, the bounding box is calculated by the
simpleget_BB-predicate. In the case of the path shapes, the bounding box has to be
set by hand.

shape(polygons,[LIST,BB]):-

LIST = [[0.5,0],[1,0.67],[0,0.67]],

get_BB(LIST,BB).

shape(paths,[LIST,BB]):-

LIST =

[’M50.45,18.602l-16.646,5.113 ... L0.904,49.25z’],

BB = [100,100].

When a shape has been selected, it is re-scaled to fit inside the slice by the
rescale_to_fit-predicate. Because the shape minimally fits inside the slice either
horizontally or vertically, the direction is returned, which can be important for the re-
alignment transformation. Theget_rotationvalues-predicate gets a random rota-
tion that is a multiple of 90 degrees and calculates the translation accordingly. Finally,
the values are passed on to thedraw_transformations-predicate:

draw_transformations(

[TYPE,[COORDS1,BB2]],

COLOUR,

[[translation|[TRANSLATION2]],

[scale,[FACTOR]],

[translation|[TRANSLATION1]],

[rotation,[ROTATION]]],

N).

Here,TRANSLATION1 denotes the translation to correct the rotation of the shape and
TRANSLATION2 denotes the re-alignment translation. The order in which the different
transformations are placed is important. We designed thedraw_transformations-
predicate to be able to write multiple transformations of multiple types. Therefore,
each transformation list has the type as the head and a list of transformation values as
tail. With single shapes, the tail will contain only one value and the depth (N) will be
set to1. However, if we want to fill each slice with multiple shapes, we can easily
extend this predicate.

The current version of our demo does not contain shape patterns. In chapter 4, we
explained how we faced several problems. We solved some of these problems for
single shapes by redefining the requirements. For example, we restricted the rotations
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to multiples of 90 degrees and discarded skewing. Due to time constraints, we were
not able to re-implement the pattern algorithms according to the adjusted requirements.
However, an earlier version contained the generation of multiple shapes to some extent.
Here, we made use of a list of values for translations and rotations. For the translation
values we interpolated between the values of the corner points of the leading line.
We determined the rotation step size by dividing 360 degrees by the recursion depth.
Re-scaling was done by taking the natural logarithm of the recursion depth2.

shape_pattern(focuspointslice,debug,[X,Y,_,_],COLOUR,

[[_,_],[CP1X,CP1Y],[CP2X,CP2Y]],N):-

get_shapes(SHAPE1),

ln(N,LN), rescale_points(LN,SHAPE1,SHAPE2),

H_STEPSIZE is (CP2X - CP1X)/N,

V_STEPSIZE is (CP2Y - CP1Y)/N,

R_STEPSIZE is 360/N,

get_translations(X,Y,H_STEPSIZE,V_STEPSIZE,N,TRANSLATIONS),

get_rotations(R_STEPSIZE,N,ROTATIONS),

draw_transformations(SHAPE2,COLOUR,

[[rotation|ROTATIONS],[translation|TRANSLATIONS]],N).

For the linear slice pattern, we took a rotation step size of 180 degrees and switched
the order of the rotations and translations. In addition, we made use of small skewing
values.

4. O: D F
Thedraw.pl file includes all the predicates that are concerned with the translation of
prolog code to SVG-syntax. At startup, in themain-predicate a new file is created:

open(’svggen.svg’,write,File),

wheresvggen.svg is the name of the output file. The corresponding Prolog instance
is matched by the variableFile. We assert the factsvgfile(File), so we are able
to open the file stream from another predicate by matchingsvgfile(SVGfile) and
then calling awrite-predicate withSVGfile as argument. As was mentioned earlier,
before the main loop is entered a predicate is called that writes the standards XML
header lines. These include the version, the SVG DTD and the SVG namespace. Be-
fore termination, a footer-predicate closes the file with the tag<\svg>.

The predicates for rendering the proportional guides and leading line are depen-
dent on the command line input parameters and are strictly meant for visualising the
underlying structure of the framework. The input parameters are asserted in the main
predicate. The rendering predicates indraw.pl simply match these global values. The
draw_proportions-predicate is called at the moment the location of the new guides
is know. In the focus point-slicing algorithm, this is right after the orientation of the

2The bounding box was not used yet.
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focus point has been established and the measurements of the child-sliced have been
calculated accordingly. For linear slices, this is done in the predicate
straightline_slice2. TherenderProportions predicate decides if the guides
should rendered and if so, if all lines are rendered the same width or with gradual
increments. Also, the colour of the lines should be specified.

The most important predicates are those that write the SVG syntax for shapes and
transformations. First of all, a single point is only written in the case the intersection
points with the leading line are rendered. Thedraw_pointlist-predicate, which
traverses a list while writing the contained point coordinates in SVG-syntax, is called
when we generate the coordinates of a shape. It is used bydraw_polygon. This
predicate draws an entire shape, including fill and stroke. Because we generally do not
apply strokes to our shapes, we have implemented an extra predicate,draw_shape,
which sets thestroke argument to’none’ and thestroke-width to zero.

Thedraw_transformations-predicate is used to write the shape patterns. It recur-
sively draws a number of shapes, dependent on the depth variableN, and encapsulates
it in a transformation group. Because it should be possible to do multiple transfor-
mations at once, a second predicatedraw_transformations2 is needed to parse
multiple lists of transformation-coordinates in parallel. For each of the transformation
types (rotation, translation, scale and skew) a list of values should be specified. At
the head of the list, the type should be indicated as a term. A list for a shape that is
subsequently rotated and skewed would look like this:

[[rotation|ROTATIONS],[skewX|SKEWSX],[skewY|SKEWSY]]

where the names in capitals denote the lists of transformation values. Note that the
skew transformation takes two arguments and therefore needs lists of values for bothx
andy coordinates. A resulting SVG shape nested inside a transformation group would
look like this:

<g transform="rotate(264.0) translate(733.3,242.0) ">

<polyline points="-54.1,-108.3 54.1,-108.3 108.3,-54.1 108.3,54.1

54.1,108.3 -54.1,108.3 -108.3,54.1 -108.3,-54.1 "

fill="#6db428" stroke="none" stroke-width="0"></polyline>

</g>

The values fordraw_transformations are calculated by the shape pattern algo-
rithms. Finally, some predicates are included to write the polygons shapes and paths.
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Appendix IV

Acronyms

AI Adobe Illustrator

AI Artificial Intelligence

CAD Computer Aided Design

CMYK Cyan Magenta Yellow blacK

CWI Centrum voor Wiskunde en Informatica

DOM Document Object Model

DTD Data Type Definition

EPS Encapsulated PostScript

GIF Graphics Interchange Format

GIS Geographic Information System

HTML HyperText Markup Language

HSL Hue Saturation Lightness

JEPD Jointly Exhaustive and Pairwise Disjoint

JPEG Joint Photographic Experts Group

PDF Portable Document Format

PNG Portable Network Graphics

RCC Region Connection Calculus

RGB Red Green Blue
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SVG Scalable Vector Graphics

SWI Sociaal Wetenschappelijke Informatica

SMIL Synchronized Multimedia Integration Language

XHTML eXtensible HyperText Markup Language

XML eXtensible Markup Language

XSL(T) eXtensible Stylesheet Language (Transformations)
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