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Foreword 

Since March, 1964, a Calcomp 507 digital incremental plotter 

has been operational on the Electrologica X1 computer at the 

Mathematical Centre in Amsterdam. The following report 

describes the specifications of this plotter, and of a 

programming package developed for it. The procedures PLOT, 

PLOTFRAME, PLOTTEXT, PLOTAXIS, PLOTCURVE, HARKEDCURVE, SCALE, 

PLOTAXIS2, and PLOTPICTURE were all written in ALGOL 60 [1], 

and rigourously tested on the X1 in this form; the ALGOL 

texts of all these procedures are included in the present 

report. After this , the procedures PLOT, PLOTFHAi-IE, PLOTTEXT, 

PLOTAXIS, JLOTCURVE, FIXPLOT, ABSFIXPLOT, and FLOPLOT were 

programmed in machine code for use with the IIC I ALGOL system; 

these texts are not included in the report. 

All the procedures except PLOTPICTUHE may be rer,arded as 

more or less basic building blocks, whereas PLOTPICTURE 

1.s a completed "building". The "buildinr, blocks" can be 

used to construct extensions to the present system, such as 

logarithmic and polar scales, isolines, etc. 

The authors wish to thank all members of the Computation 

Department of the Mathematical Centre for their participation 

in numerous fruitful discussions concerninG this project. 

Also, we wish to thank Miss H. de Hoyer for her rapid and 

accurate typing of this report. 

Erratum: The statement 

alpha:=(phi + arctan(arg/s1rt{1 - arg t 2))) x rad+ 180; 

in Sample 1:rogram 4 is incorrect: the phi should be changed 

to read phi 1. However, this change makes very little 

difference in the drawing obtained. 
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1. Description of the Plotter 

1 .. 1 Introduction 

The plotter consists of a drum over which paper passes from a 

supply to a take-up roll. A carriage, carrying a pen, runs parallel 

to the axis of the drum, a few millimeters from the paper. By means 

of special machine instructions in the X1, the drum may be rotated 

forward or backward by one tenth of a millimeter; similarly, the 

carriage, with the pen, may be moved the same distance to left or 

right; finally, the pen may be lowered to the surface of the paper, 

or lifted from it. 

We may define a system of co-ordinates by supposing that we view 

the plotter from the front. Then, the +y direction is to the left, 

and -y to the right; +xis from front to back, and -x from back to 

front; +z is pen up, and -z is pen down. 

The detailed specifications of the plotter follow 

drum speed 300 increments/s 

carriage speed 300 increments/s 

pen up/down 10 operations/s 

step size • 1 mm in x or y 

step size • 1 X V2' mID for X and y simultaneously 

maximum length of paper ca. 3650 cm ( 120 ft) 

width of paper ca. 30.5 cm ( 12 in) 

width available for plotting ca. 27.9 cm ( 11 in) 
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1.2 X1 Plotter Instructions 

The six least significant bits of (A) or (S) can be sent to the 

plotter (PL), with or without inversion. 

6Y 8 XP +(A) =,=> (PL) 

7Y 8 XP -(A) =cc) (PL) 

6z 8 XP +(S)=,> (PL) 

7Z 8 XP -(S) ="> (PL) 

An action is defined only for the following values of the six bits 

reaching the plotter: 

1 +x (drum forwards) 

2 -x (drum backwards) 

4 +y (carriage left) 

8 -y (carriage right) 

16 +z (pen up) 

32 -z (pen down) 

5 +x and +y simultaneously 

9 +x and -y simultaneously 

6 -x and +y simultaneously 

10 -x and -y simultaneously 

If a plotter order is given within 3 ms after another plotter order 

(100 ms after pen up or down), then the X1 delays the execution of 

-_the given instruction for the appropriate length of time. No inter­

ruption facilities are provided. 

A special condition setting P version of the above four orders 

exists to determine whether the carriage is at the border of the 

available plotting area. If the carriage stands at the right-hand 

edge and an instruction to move it further right is given or at 
,. . . 

the left-hand edge and an instruction to move it further left 

is given, the condition register is set affirmative and no motion 

of the carriage takes place; in all other cases, the condition is 

set negative. 
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1.3 Manual Controls on the Plotter 

There are several knobs on the plotter to facilitate setting-up: 

1. power on/off 

2. drum one step forward or backward 

3. carriage one step left or right 

4. pen up/down 

5. drum forward or backward at 100 steps/s 

6. carriage left or right at 100 steps/s 

7. chart drive on/off. 
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1.4 Scaling 

In the sequel, we will make use of certain conventions concerning 

scaling. For any plotting job, it is necessary to map from the 

units of the quantities used in the program (hereafter called 

"data units" or "djts") to some sort of physical "plotter units" 

("plits"). We will usually use capital letters to represent variables 

expressed in data units, and small letters for those in plotter units. 

We imagine a rectangle on the paper (the "plotter space") extending 

from the point (O,O) at lower left to (xmax, ymax) at upper right, 

thus: (O,ymax) (xmax,ymax) 

_I --------1 
(0,0) (xmax, 0) 

The unit in this plotter space is 0.1 mm in both x and y directions. 

The corresponding rectangle in the "data space" extends from (XMIN, 

YMIN) corresponding to (O,O) in plotter space to (XlliAX, YMAX) corres­

ponding to (xmax, ymax), thus: 
(Xi'\lIN, Yl'l!AX) 

(XMIN, \'MIN) 

Defining the scaling factors 

Sex= (XMAX - XMIN)/xmax 

and 

Sey= (YMAX - YMIN)/ymax, 

(XMAX YMAX) 

(Xl\1AX, \'MIN) 

then arbitrary points (X,Y) in the data space and (x,y) in the 

plotter space are mapped onto one another as follows: 

(X,Y) <==>(x x Sex+ XMIN, y x Sey+ YMIN) 

and 

(x,y) <==)(X - XMIN)/Scx, (Y - YMIN)/Scy). ,, 
We now proceed to the description of a number of standard procedures 

developed by the authors. 
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2. Users' Description of the Plotting Procedures 

2.1 The Procedure PLOT 

PLOT constitutes the nucleus of the entire set of plotter procedures; 

all the other procedures call upon it, either to accomplish some 

pen movement, etc., or to obtain information about the current pen 

position, scaling quantities, etc. 

Within PLOT are stored the quantities: XMIN, YMIN, xmax, ymax, Sex, 

and Sey described above; xlast and ylast, representing the current x 

and y co-ordinates of the pen in plits; and the Boolean pen recording 

whether the pen is up (true) or down (false). 

We now give the ALGOL heading of the procedure 

real procedure PLOT(X,Y ,IPEN); value X. Y $ IPEH; 

real X,Y; integer IPEN; 

X and Y usually represent the co-ordinates of a point and may then 

be in either plits or dits. IPEN usually represents the desired 

vertical pen position according to a code described below. 

(a) Calls to Cause Motion of the Pen (0 < abs(IPEN) .::_ 4) 

For all of these calls, the pen is moved from its current position 

(recorded in xlast and ylast in plits) in as straight a line as 

possible to the point represented by X and Y; according as IPEN is 

positive or negative, X and Y are in dits or plits, respectively. 

If the point given by X and Y does not lie within the frame, an error 

(no. 1-27) is signalled; if the program is then continued, the line 

will nevertheless be drawn to the prescribed point, unless it lies 

outside the dimensions of the paper. 
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The pen 1s up or down during the drawing of the line depending on 

the value of abs(IPEN): 

if abs(IPEN) = 1, the pen 1S down; 

2, the pen 1S up; 

3, the vertical pen position is unaltered; 

4, the pen is up, and the prescribed point may lie 

outside the frame in the +x direction. 

In this last case (abs(IPEN) = 4), xlast and ylast are reset to zero, 

thus defining the origin of a new frame. If IPEN = -4 and X < O, then 

the pen moves to the position (xmax + 3000, 0)- i.e. 30 cm beyond 

the frame. 

After each of these calls, PLOT has the value zero. 

(b) Calls to Obtain Information (5 ~ IPEN ~ 19) 

After each of these calls, PLOT has some value which may be used 

by the calling program. 

IPEN = 5 PLOT = the value of X (in dits) converted to plits 

6 PLOT = the value of y (in dits) converted to plits 

1 PLOT = the value of X (in plits) converted to dits 

8 PLOT = the value of y (in plits) converted to dits 

For the above four calls, the relevant quantity X or Y must lie 

within the frame or an error condition will be signalled; if the 

program 1S continued, the conversion is carried out nevertheless. 

IPEN = 9 PLOT = the value of XMIN (in dits) 

10 PLOT = the value of YMIN (in dits) 

11 PLOT = the value of Sex 

12 PLOT = the value of Sey 

13 PLOT = the value of xmax (in plits) 

14 PLOT = the value of ymax (in plits) 

15 PLOT = the value of xlast (in plits) 

16 PLOT = the value of ylast ( in plits) 

17 PLOT = the value of xlast converted to dits 

18 PLOT = the value of ylast converted to dits 

19 PLOT = +1 if the pen is up, -1 if the pen is down. 
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For the above 11 calls, the values of the parameters X and Y are 

irrelevant. 

(c) Initialization Calls, etc. (20 < abs(IPEN) < 25) 

IPEN = 20 

This call is used to cause a single movement of the pen 

according to the value of X; the value of Y is irrelevant. The 

actions corresponding to the various values of X have already been 

given under the heading X1 Plotter Instructions. Note that the 

quantities xlast, ylast, and pen are not updated by this call. 

abs(IPEN) = 21 

This call causes Xl!IN to receive the value of X, and YMIN 

the value of Y; if IPEH = +21, the pen is raised, and the quantity 

pen is initialized. 

IPEN = 22 

This call causes Sex to receive the value of X, and Sey the 

value of Y. 

abs(IPEN) = 23 

This call causes xmax to receive the value of X, and ymax the 

value of Y; if IPEN = +23, then xlast and ylast are initialized, 

and the pen is moved to the point (0,0) in plits((XMIN, YMIN) in 

dits). The frame is thereby centered in the middle of the paper 

in the y dimension. 

IPEN = 24 

This call causes xlast to receive the value of X, and ylast 

the value of Y. 

IPEN = 25 

This call causes pen to be set~ or false according as X 

is positive or not; the value of Y is irrelevant. 
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NOTE 1: Certain interlocks are built into the procedure to prevent 

the use of any quantities which are currently undefined. 

The initialization calls may be used at any time, but, 

for all other calls, (0 < abs(IPEN) ~ 19), it is necessary 

that calls to initialize all of the quantities XMIN, YMIN, 

Sex, Sey, xmax, ymax, xlast, ylast, and pen have been 

given previously. The easiest w~y to accomplish this is 

to use PLOTFRM-1E. 

NOTE 2: Notice carefully that after a call with IPEN = 20, the 

quantities xlast, ylast, and pen become undefined, and 

must be redefined appropriately before calls with 

0 < abs(IPEN) ~ 19 may be employed • 

. NOTE 3: Failure to observe the above points will result in an 

error condition (no. 1-26). 

NOTE 4: A call of PLOT with an invalid value of IPEN will also 

restilt in an error signal (no. 1-25). 
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2.2 The Procedure PLOTFRAME 

The purpose of this procedure is to assign values to the quantities 

XMIN, YMIN, xmax, ymax and to calculate Sex and Sey (these are 

stored within the procedure PLOT, q.v.). The frame is centered in 

they direction on the paper, and the pen is left standing above 

the point ( 0 ,O) in the plotter space ( ( XMIN, YMIN) in data space). 

We here give the ALGOL heading of the procedure, to show the input 

parameters 

procedure PLOTFRJ\ME(XMIN,YMIN,XMAX,YMAX,xmax,ymax); 

value XMIN, YIHN, XMAX • YMAX, xmax, ymax; 

real XMIN,YMIN,XMAX,YMAX; integer xmax,ymax; 

xmax and ymax are given in plits, of course. If ymax is specified 

greater than 2750, an error (no. 1-30) is signalled, and, if the 

program is continued, ymax is set to 2750. 

NOTE 1: PLOTFRAME only defines the frame and leaves the pen in the 

position described above; it does not draw any lines 

around the edge of the frame. 

NOTE 2: Suppose we desire to leave a border around the actual plotting 

area (for scales, labels, etc.); that is, suppose we want 

a border of lb plits to the left, rb to the right, bb below, 

and ab above. Then, we may use the following program to 

define this frame: 

Q: = (XMAX XMIN)/xmax; 

R: = (YMAX YMIN)/ymax; 

PLOTFRAME(XMIN - Q x lb, YMIN - R x bb, 

XMAX + Q x rb, YMAX + R x ab, 

xmax + lb + rb, ymax + bb + ab); 
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2.3 The Procedure PLOTTEXT 

We here give only the ALGOL 60 procedure heading: 

procedure PLOTTEXT(X, Y, angle, height, italicity, first, i, text); 

value X, Y, first, i; 

~ X, Y, angle, height, italicity; 

Boolean first; 

integer i; 

string text; 

By means of the procedure PLOTTEXT, it is possible to draw a 

string of any ALGOL 60 basic symbols, with the exception of those 

delimiters represented by strings of bold-face or underlined letters. 

Furthermore, it is possible to precede the symbols of the (possibly 

empty) string by one of the special characters given below. The first 

nine of these characters are intended for the marking of points on 

curves, etc. Whether any preceeding character is drawn, and if so 

which one, is determined by the absolute value of the parameter i 

according to the following schedule: 

abs(i) = 0 } no extra character precedes-the string 

1 

2 + precedes the string 

3 X " 
4 ~ II 

5 * 
II 

6 y II 

7 z " 
8 X II 

9 [iJ " 
10 ~ " 
11 0 " 
12 TT " 
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The Form of the Characters 

The shape of the plotted characters is determined by the 

parameters angle, height, and italicity in the following way: 

Each character is described within a parallelogram ABCD 

C 

A 

X 

angle prescribes the angle a
1 

(a2 ), in degrees, measured counter­

clockwise from the x axis; 

abs(height) specifies the height h 1 (h2 ) of the parallelogram, in 

plotter units; 

italicity gives the value of the angle i 1 (i2 ), in degrees, 

measured clockwise. 

The Form of the String 

The quantities height, angle, and italicity are evaluated 

precisely once for each character to be drawn, before the drawing 

of the character begins, and in the order given above (notice that 

these parameters do not appear in the value list, and are thus 

,ncalled by name"). Thus, it is possible to vary these quantities 

during the plotting of the string. 



12 

After drawing each character, PLOTTEXT calculates the 

following "reference point"; that is, the position of the corner A' 

of the next parallelogram. This point lies on the continuation 

of AB at a distance of 6/7 h 1 from A. 

The Position of the Reference Point of the First Character 

This is determined by the quantities X, Y, height, first, 

and sign(i). 

The Boolean first specifies whether a new reference point must 

be calculated (first - ~), or that the reference point calculated 

during the last call of PLOTTEXT, FIXPLOT, ABSFIXPLOT, or FLOPLOT 

is to be used (first= false). For this purpose, PLOTTEXT maintains 

the co-ordinates of the reference point in two own variables 

(FIXPLOT, ABSFIXPLOT, and FLOPLOT function by calling PLOTTEXT, and 

do not require direct access to this information). Because of this 

scheme, it is possible to call any of these four procedures with 

first= false provided that any one of them has previously been 

called with first= true. Thus, text and numbers may follow directly 

after one another without the programmer having to concern himself 

with the calculation of the proper co-ordinates. 

We consider now the case first = true. Then, the sign of 1 

determines whether the given co-ordinates X and y specify the 

point A of the diae;ram (i > 0) or the point E(i < 0). The case -
1 < 0 is particularly important for the drawing of the special 

curve marking symbols described above; then X and Y do not specify 

the reference point, but it can easily be derived from them.. The 

sign of height specifies whether X and Y are given in data units, 

and must be scaled to plotter units (height> O), or are given 

directly in plotter units (height< 0). 

In the case first= false, the qu.antities X, Y, and sign(height) 

are completely irrelevant. The new reference point is simply 

derived from the last one calculated by PLOTTEXT. 
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For this derivation, not only the current sign of i, but also 

that of the previous call is of importance. If these signs are 

the same, then the new reference point is equal to the one 

previously calculated and stored by PLOTTEXT. If old i > 0 and 

new i < O, then the reference point left behind by PLOTTEXT indicates 

the point E of the new parallelogram. In this case, the following 

characters are shifted the appropriate amount down and to the left. 

If old i < 0 and new i ~ O, then an analogous shift up and to 

the right will automatically be performed. 

NOTE 1: The pen is always left lowered on the paper. 

NOTE 2: abs{i) > 12 or a call with first= false which has not 

been preceded by a call with first - true will lead to 

an error being signalled (no. 1-31). 

NOTE 3: The basic symbols begin, end,~, Boolean, integer,~, 

array, switch, procedure, string, and label correspond 

with the special characters for abs(i) = 2 to 12 inclusive. 

The symbols goto, if, then, else, for, do, step, until., 

while, comment, value, true,. and false, along w~th tab and 

carriage return, all correspond to a single space. 

NOTE 4: The drawing of the characters for 2 2 abs(i) 2 10 ends at the 

point E of the parallelogram. Thus, for -10 < i < -2, the 

drawing ends at the given point X, Y (provided, of course, 

that first = true). 
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2.4 The Procedure PLOTAXIS 

The purpose of this procedure is to facilitate the drawing of 

co-ordinate axes. We here give the ALGOL procedure heading. 

procedure PLOTAXIS(X, Y, angle, LENGTH, DL); 

value X, Y, angle, LENGTH, DL; 

real X, Y, angle, LENGTH, DL; 

The procedure draws a line beginning at the point given in X and 

Y, in the direction given by angle, for a distance given by LENGTH. 

Tick marks are made along this line at intervals given by DL. 

X, Y, LENGTH, and DL are in dits if LENGTH> O, and otherwise 

i.n pl its; angle is given in degrees measured counter-clockwise 

from the +x axis on the paper. 

If DL < O, the tick marks are made 15 plits to each side of the line. 

If DL > 0 (but DL ~ abs(LENGTH)) then the ticks are made to one side 

of the line only (either above, or to the right, whichever is 

appropriate). 

If abs(DL) > acs(LENGTH), no tick marks whatsoever are given, 
& 

If angle is other than a multiple of 90° and the scaling factors, 

Sex and Sey, are unequal, then no simple interpretation can be 

given to the quantities LENGTH and DL. 

At exit from the procedure, the pen is always down, at the point 

(X + abs(LENGTH) x cos(angle), Y + abs(LENGTH) x sin(angle)). 



15 

2.5 The Procedure PLOTCURVE 

This procedure is used to draw continuous curves through a set 

of given points. A special third degree interpolation formula 

is used. 

We here give the ALGOL procedure heading 

~ procedure PLOTCURVE(X, Y, I); value X, Y, I; 

~ X, Y; integer I; 

X and Y usually represent the co-ordinates (in dits) of one of the 

points through which the curve is to pass. The quantity I is used 

to specify whether we are beginning, continuing, or ending the curve, 

as follows. 

I = 0 

The desired initial value of the slope of the curve is given 

by X (in dits); the value of Y 1s irrelevant. This call serves to 

initialize the procedure to begin the interpolation process. 

I = 

This call is used to initialize the procedure when no initial 

slope is known; the values of X and Y are irrelevant. 

I = 2 

This call supplies the co-ordinates of one of the points 

through which the curve is to pass, in X and Y (in dits). 

I = 3 

This call is used to terminate the current curve; the values 

of X and Y are irrelevant. 

I = 4 
This call is used to terminate the current curve and to 

specify the desired value of the final slope at the last point given. 

X supplies the value of the slope (in dits) and the value of Y is 

irrelevant. 
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NOTE 1: The procedure is intended to be used by first giving 

NOTE 2: 

a call with I= 0 or 1, followed by a number (at least 3) 

of calls with I= 2, followed by a call with I= 3 or 4. 

The pen position is not altered until the third call with 

I= 2; during this call, the pen moves to the first point 

given (pen up, of course!), and then draws the segment 

of the curve to the second point (pen down). During 

successive calls with I= 2, 3 OF 4, the procedure first 

moves the pen to the last point drawn on the curve (pen up), 

if necessary, and then continues the curve to the point 

given in the previous call. Thus, it is possible to use 

other plotter procedures during the drawing of a curve 

(e.g. PLOT, PLOTTEXT, etc.). 

If a call with I= 2, 3 or 4 1S given before a call with 

I = 0 or 1 , or if a call with I = 3 or 4 is given before 

3 calls with I = 2 have been given, or if a call with 

I 'f' o, 1 , 2, 3 or 4 is given, an error 1S signalled (no. 1-28). 

NOTE 3: By slope, we mean dY/dX. 

NOTE 4: After a call with I= 0 or 1 and after the first two calls 

with I= 2, PLOTCURVE has the value zero and the pen 

position is completely unaltered. After any other call, 

PLOTCURVE has the value of the slope of the curve at the 

previously given point and the pen is down at the previously 

given point. 

NOTE 5: If any part of the curve falls outside the frame, an error 

is signalled (no. 1-27). If the program is continued, the 

curve will be drawn nevertheless. 

NOTE 6: In order to guarantee proper interpolation, the following rule 

of thumb is suggested - Imagine straight lines drawn connecting 

the successive, given points on the curve. Then, for best 

results, the angle from each of these lines to the next 

should not exceed 20 degrees, and should preferably be less. 

If the curvature becomes too great, an error (no. 1-29) may 

be signalled. 
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2.6 The Procedure MARKEDCURVE 

This procedure is identical in function to PLOTCURVE, except that, 

when the parameter I= 0 or 1, the parameter Y specifies a special 

marking symbol which is to be drawn to mark all of the given points. 

For each value of abs(Y), the marking symbol specified is the same 

as that for the corresponding value of abs(i) shown in PLOTTEXT. 
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2.7 The Procedures FIXPLOT, ABSFIXPLOT, FLOPLOT 

All three of these procedures may be used to draw numbers on the 

paper. The three procedures differ only in the format in which 

the number is drawn. 

We here give a typical ALGOL procedure heading. 

procedure FIXPLOT(X, Y, angle, height, italicity, first, i, n, m, 

number); 

value X, Y, first, i, n, m, number; 

~ X, Y, angle, height, italicity, number; 

integer n, m, i; 

Boolean first ; 

The interpretation of X, Y, angle, height, italicity, first,and i 

is the same as for PLOTTEXT. In all cases, number is the number to 

be drawn; the interpretation of n and m depends on which of the 

three procedures is used. 

FIXPLOT 

The quantity number is drawn in fixed-point represen~ation 

with n digits before the decimal point and m after. More exactly: 

the sign of number(+ or-); 

the integer part of number, inn digits; 

a decimal point; 

m digits of the fraction part of number; 

a space. 

If m = O, the decimal point is suppressed. 

Nonsignificant leading zeroes in the integer part are replaced by 

spaces, except in the units position when m = o. 

The number is correctly rounded in the last decimal place. If 

abs(number) ~ 10 t n, then "+inf" or "-inf" will be drawn followed 

by spaces, space permitting; otherwise, a shortened version, 
•· 

"+in", ".-in", "+i" or "-i11 will be drawn. 
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The total number of characters (including spaces) drawn is 

m + n + 3 if m > 1 

or n + 2 if m = 0 

The actual parameters for n and m may not be negative, and the 

case n = m = 0 is forbidden. 

ABSFIXPL0T 

This procedure is identical in function with FIXPLOT except 

that the sign of the number is replaced by a blank space. 

FL0PLOT 

The quantity number is drawn in floating-point format. 

The parameter n specifies the total number of digits in the 

mantissa, and m the number in the exponent. More precisely: 

the procedure calculates a mantissa xi and an exponent d, such 

that 

number= xix 10 t d, 

where 

.1 ~ abs(xi) < 1; 

then, the following is drawn 

the sign of xi; 

a decimal point; 

the first n digits of xi, correctly rounded in the last place; 

.LO' 
the sign of d; 

the exponent d, in m (1, 2 or 3) digits, with leading zeroes replaced 

by spaces; 

a space. 

If d > 10 t m, then "+inf" or "-inf" is dra,m (depending on the 

sign of number), followed by n+m+1 spaces, 

If d < -10 t m then a+ or - sign is drawn (depending on the sign 

of number), followed by a decimal point, followed by n zeroes, 

followed by m+3 spaces. 
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n+m+5 characters are always drawn by the procedure, except in the 

case n = 0 when the decimal point is omitted, and m+4 characters 

are drawn. 

The actual parameters for n and m must satisfy n > 0 and 

m = 1, 2 or 3. 
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2.8 The Procedure SCALE 

When plotting a graph, it is usual to divide the axes into a 

number of intervals of equal length, such that each division 

point represents some "nice number" of data units. If the minimum 

and maximum data values are known beforehand, it is usually a 

fairly simple matter to perform this subdivision manually; if, 

however, no a priori bounds are known, then some machine algorithm 

is required. SCALE is such an algorithm. Specifically, SCALE 

examines the data to be plotted, and produces as output a number 

of quantities which may be used as input parameters to 

PLOTFRAME, PLOTAXIS, etc. 

Clearly, we must have a precise idea of what we mean by a 

"nice number" .. Hence, suppose we have a set of so-called "basic 

round numbers" r., j = 1, 2, ••• , m, satisfying 
J 

1 < r < r 2 < ••• < r < 10 and not necessarily all integers. Then, 
- 1 m k 

we will call any number DLjk = r / 10 , for all integers k, a "round 

number". Thus, if we have the set (1, 1.25, 2, 2.5, 4;"5, 8) of 

basic round numbers (this is, in fact, the set which is used in 

the procedure),then the following are examples of round numbers 

in our sense: 

0.1, 1, 10, 12.5, 20, 25, .25, 40, 5, 50, 80, etc. 

Finally, by a "nice number", we shall mean any integer multiple 

of a round number. 

We now define an optimal subdivision of an axis by the following 

four requirements: 

(R1) The difference between consecutive division points must 

be a round number; 

(R2) Each division point must be a nice number; 

(R3) The data must fit into the allotted space; and, 

(R4) Subject to the above three requirements, the data must 

occupy as much as possible of the allotted space. 
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The procedure SCALE operates on only one axis at a time. The 

programmer must supply, for example, the value of the x-co-ordinate 

of each data point to be plotted. SCALE then searches through these 

data to determine the maximum and minimum values present, and, 

applying the four requirements above, calculates parameters which 

determine an optimum subdivision of the relevant axis. If the 

minimum and maximum are already known from the previous calculation, 

then it is possible to provide only these two values as data to the 

procedure. 

The heading of the procedure follows: 

integer procedure SCALE(Ti, i, n, nint, mode, MIN, l1AX, DL); 

value n, nint, mode; 

integer i, n, nint, mode; 

~ Ti, MIN, MAX, DL; 

The parameters have the following interpretations: 

Ti is a real expression, called by name, and depending, in 

general, on i (Jensen device). It is used to give the 

successive values of one of the co-ordinates of the data 

to be plotted. Ordinarily, Ti will simply be a subscripted 

variable; 

i is a running variable, called by name, which assumes 

successively all integer values from 1 ton, inclusive. 

n 

nint 

mode 

is the number of co-ordinate values to be scaled. 

is the number of subintervals into which it is desired 

to divide the total interval. The precise interpretation 

of nint depends on the following parameter, viz® mode. 

may assume the values O, 1, or 2, with the following meaning: 
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mode= 0 the interval is subdivided into precisely nint 

subintervals; 

mode= 1 the interval is subdivided into nint or fewer 

subintervals. This freedom is used to further 

maximize the proportion of the available space 

which is actually used. The actual number of 

subintervals is between .625 x nint and nint. 

mode= 2 the interval is divided into approximately nint 

subintervals (between .625 x nint and 1.6 x nint). 

This freedom is used to maximize the proportion 

of the available space which is actually used. 

MIN is an output parameter giving the value of the first 

division point on the axis (i.e., the point with the 

smallest algebraic value); 

MAX is an output parameter giving the value of the last division 

point on the axis (i.e., the point with the greatest 

algebraic value); 

both MIN and MAX are nice numbers as defined above; 

DL is an output para.meter giving the difference in data units 

between any two successive division points; it is a round 

number as defined above. 

The value of SCALE after a call is the number of subintervals 

actually used. 

NOTE 1: If the minimum and maximum values on the axis are already 

known (from a previous calculation, perhaps) then only 

these values need be given to the procedure, instead of the 

entire set of data. This can be accomplished by using an 

expression of the following form for Ti: 

if 1 = 1 then minimum else maximum 

with n = 2. 



24 

NOTE 2: The boundaries given in the description of mode, for the 

actual number of subintervals used, are dependent upon 

the set of basic round numbers which are used. If the 

user replaces the given set (1, 1.25, 2, 2.5, 4, 5, 8) 
by another, these boundaries may well be altered. 

NOTE 3: We now consider the question of what value of mode should 

be chosen in various circumstances. Apparently, there are 

two conflicting requirements which the programmer may 

wish to satisfy. The first of these is that he may require 

that the physical distance between successive division 

points be some fixed length (e.g. 1 or 2 cm, 1 inch, etc.), 

in order to facilitate interpolation using a ruler (with 

divisions of 1 cm, 1 inch, etc.). Opposed to this 

requirement, may be a desire to cover as much as possible 

of the plotting surface with the material which is to be 

plotted - that is, one wishes to avoid long regions at the 

beginning and end of the grid in which nothing is plotted. 

For the following, let us refer to the total physical 

length of the axis as pl, and the physical length of each 

subinterval as dpl. Consider now the following situations: 

(a) If precisely the eiven values of pl and dpl must be 

used, call SCALE with mode= O, and nint = pl/dpl; 

(b) If an upper bound for pl is given, but an exact value 

for dpl is required, call SCALE with mode= 1, and 

nint = pl/dpl; 

(c) If an approximate value of pl is given, but an exact 

value for dpl is required, call SCALE with mode= 2, 

and nint = pl/dpl; 

(d) If a precise value of pl is required, and it is desired 

to divide the axis into approximately some given number, 

nint, of subintervals, call SCALE with mode= 2, and the 

given, approximate, value of nint. 
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After the call(s) of SCALE, it will presumably be 

desired to call PLOTFRAME. The correct physical length 

to be used here (i.e. xmax or ymax) is calculated by 

multiplying the actual number of intervals (i.e. tbe 

value of SCALE) by dpl (in situation (a) above, this 

is the same as pl). 

NOTE 4: The value of the parameter nint must be at least two. 
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2.9 The Procedure PLOTAXIS2 

This procedure may be used to draw co-ordinate axes, complete 

with tick marks, and with numbers indicating the values corres­

ponding to the tick marks. We here give the ALGOL procedure 

heading: 

~ procedure PLOTAXIS2 (MIN, MAX, DL, horizontal, OTHER); 

value MIN, MAX, DL, horizontal, OTHER; 

~ MIN, MAX, DL, OTHER; 

Boolean horizontal; 

The procedure draws a line from (MIN, OTHER) to (MAX, OTHER) 

if horizontal =~and from (OTHER, MIN) to (OTHER, MAX) if 
,. 
horizontal= false. Tick marks of length 15 plits are drawn at 

an interval of DL from MIN to MAX, either above or to the right 

of the line, as the case may be. Following this, the values 

corresponding to the tick marks are drawn below the line or to 

the left of it. If possible (that is, if the numbers are sufficient­

ly small with respect to the physical distance between tick marks), 

then the numbers are centred by each tick mark; if this is not 

possible, then the procedure skips o¥er a few tick marks between 

numbers, and the tick mark corresponding to each number drawn is 

lengthened to 25 plits. Under certain circumstances, the procedure 

calculates, and draws, a power of ten, by which the figures drawn 

must be multiplied to obtain the actual values. 

MIN, MAX, DL and OTHER are always given in data units. It is 

strongly recommended that MIN, MAX and DL be obtained as output 

from the procedure SCALE, or .at least satisfy similar requirements. 

In particular, MAX - MIN ~ be an integer multiple of DL 

(except, possibly, for small rounding errors). 
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NOTE 1: If the number of digits to be plotted for any number 
I 

along the axis is more than seven, then the plotting 

of all numbers along the axis will be suppressed. In 

practice, this will seldom prove to be a great restriction; 

for instance, the number 

.00000000000123 

has only 3 digits in our sense - it will be drawn as 1.23, 

and a power of ten= -12 will also be drawn along the axis; 

the number 

1230000000000 

also has only 3 digits - it will be drawn as 1.23, with 

a power of ten= +12; however, the numbers 

1234.5678, etc. 9 

contain 8 digits, and cause all numbers along the axis 

to be suppressed. 

This suppression is controlled by the statement 

precision:= 7; 

In general the value of precision should be the smaller of 

the following two implementation dependent quantities: 

(a) The number of decimal digits in the integer capacity, 

(b) two less than the number of decimal digits in the real 

number representation (two less in order to provide 

a few guarding digits). 

NOTE 2: All digits drawn are 28 plits high. If some other height 

should be desired, this can be accomplished by altering 

the statement 

h: = 4; 

near the beginning of the procedure. The value of his one 

seventh of the desired height. 



28 

NOTE 3: PLOTAXIS2 delivers as its value a co-ordinate which may 

be used for drawing a text beside the axis. If horizontal 

= true, this is a Y value; otherwise, an X value. This 

co-ordinate guarantees a reasonable clearance between the 

text and the numbering of the axis, if a height of 28 plits 

is used for the text. In the case that the numbering is 

suppressed (NOTE 1), PLOTAXIS2 has the value of the 

parameter OTHER. 

NOTE 4: It is important to remember, while calling PLOTFRAME, that 

it is necessary to leave a border all around the graph, 

in order to have room for the numbering, power of ten, 

and, possibly, the text. This border must have at least 

the following dimensions: 

left (-x) 336 plits 

right (+x) 132 plits 

above (+y) 14 plits 

below (-y) 100 plits 

See the description of PLOTFRAME for a discussion of the 

method by which these borders may be obtained. 
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2.10 The Procedure PLOTPICTURE 

This procedure may be used to plot complete graphs, including 

annotated axes. The user is not required to call (or even be 

aware of the existence of) any other plotter procedures. 

The user is required to provide a set of points which are to 

be plotted (i .. e. usually through which a curve is to be drawn), 

along with some information about the lengths and divisioning of the 

axes. From this information, PLOTPICTURE can perform the necessary 

scaling operations, draw X- and Y-axes complete with tick marks 

and numbering, and draw a curve through the given points. The 

given points may be marked with special marking symbols, and a 

text may be drawn by the axes to indicate their significance. 

It is possible to draw an arbitrary number of curves (each marked 

with a unique symbol) with each axis pair. It is also possible 

to obtain an arbitrary number of Y-axes corresponding to a single 

X-axis. A system of axes and curves is here called a "picture", 

whence the name of the procedure. 

We now give the ALGOL procedure heading: 

procedure PLOTPICTURE (Xi 8 Yi, i, n, mark, delta.mark, mode, 

XMIN, XMAX, DX, xmax, xstring, 

YMIN, YMAX, DY, ymax, ystring); 

value n, mark, deltamark, mode, XMIN, XMAX, DX, xmax, YMIN, 

YMAX, DY , ymax; 

~ Xi, Yi, XMIN, XMAX, DX, YMIN, YMAX, DY; 

integer i, n, mark, deltamark, mode, xmax, ymax; 

string xstring, ystring; 

The parameters have the following interpretations: 

Xi and Yi are real expressions, called by name, depending, in general, 

on i (Jensen device). They give the X and Y co-ordinates, 

respectively of the i'th point which is to be plotted. 

Ordinarily, Xi and Yi will- simply be subscripted variables 

(array elements); 
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n 

mark 

deltamark 

30 

is a running variable, called by name, which assumes, 

successively, all integer values between 1 and n, 

inclusive; 

is the number of points to be plotted; 

specifies which one of nine special marking symbols, 

if any, is to be drawn to mark the points (Xi, Yi), 

according to the following table: 

abs(mark) = 0,1 

2 

3 

4 

5 
6 

7 

8 

9 

10 

no symbol is drawn 

if deltamark > O, a curve is drawn passing through 

all n of the points (Xi, Yi) in succession; If delta­

mark < O, the drawing of the curve is suppressed. 

Furthermore, if deltamark # 0 9 then every abs(delta­

mark)'th point, beginning with the first (i = 1), is 

marked with the symbol specified by the parameter mark; 

the intermediate points are evaluated, but not marked. 

If deltamark = O, no marking at all takes place, but the 

curve is drawn. For example, if abs(deltamark) = 1, all 

points are marked; if abs(deltamark) = 2, every other 

point is marked; if abs(delta.mark) = n-1, then only the 

first and last point are marked; if abs(delta.mark) > n, 

then only the first point is marked. 
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may be thought of as actually composed of four 

parameters: kg, kd, kx and ky, thus 

mode= 1000 x kg+ 100 x kd + 10 x kx + ky. 

That is, the four parameters are each one decimal 

digit long, and mode is obtained by writing these 

digits in order beside one another. 

kg may have the values 0, 1, or 2. kg= 0 or 1 

indicates that an entire, new "picture", complete 

with annotated axes is to be drawn; kg= 2 indicates 

that the new data is to be plotted in the ~ "picture", 

possibly with a new Y-axis. If kg= 1, then a 

rectangular grid is drawn over the plotting surface 

to the right of the Y-axis, and above the X-axis. The 

grid lines may be thought of as simply extensions to 

the tick marks which are normally placed by the axes 

(see later discussion). If kg= 0, then only the two 

grid lines on the border are drawn, complete with tick 

marks, thereby framing the picture in. If kg= 2, no 

grid lines at all are drawn. 

kd may have the values 0, 1, 2, or 3. It specifies 

whether or not the programmer has provided begin 

and/or end slopes of the curve to be drawn. 

kd = 0 indicates that no derivatives are given; 

kd = 1 indicates that the initial derivative is given; 

kd = 2 indicates that the final derivative is given; 

kd = 3 indicates that both derivatives are given. 

If the initial slope is given, PLOTPICTURE will call 

for it by setting the parameter i to zero, and evaluating 

the expression Xi. Similarly, the end slope is called for 

by setting i to zero and evaluating the expression Yi. 

Thus, a typical expression for Xi might be 

if i = 0 ~ beginslope ~ x[i]. 

• 
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kx and ky are used to specify one of eight possible scalings for, 

respectively, the X- or Y-axis. They exercise influence upon 

the interpretation of all of the remaining parameters. Since the 

possibilities for the two axes are practically identical, we 

describe here the situation with respect to the Y-axis; the X-axis 

is handled similarly, except for one point which will be discussed 

later. 

For ky = O, 1, or 2, the values of the parameters YMIN and YMAX 

are completely ignored. The procedure evaluates the expression 

Yi for all values of i between 1 and n, and determines the 

minimum and maximum values which occur. This minimum and maximum 

are used for the further determination of an optimal scale, 

in a manner depending on the particular value of ky. 

The programmer is given the option of avoiding the above (possibly 

slow) evaluations of Yi, if he already knows the minimum and maximum 

values assumed by Yi. This is accomplished by using 

ky = 3, 4, or 5, and by giving the known minimum and maximum 

values in YMIN and YMAX, respectively. 

For O < ky < 5, the value of DY specifies the desired physical 

distance (in units of one tenth of a millimeter {plits)), between 

tick marks on the Y-axis; ymax specifies the desired physical 

length of the entire Y-axis, in the same units; ymax must be an 

integer multiple of DY. 

If ky = 0 or 3, then the Y-axis drawn has precisely the measurements 

specified by DY and ymax. 

If ky = 1 or 4, then the distance between tick marks on the Y-axis 

will be precisely that specified by DY. However, the total physical 

length of the Y-axis will be chosen, between 0.625 x ymax and ymax, 

in such a manner that the axis be as "full" as possible. 

By as "full" as possible, we mean that the data to be plotted 

extend from a position as near as possible to the bottom (left end) 

of the graph to a position as near as possible to the top (right 

end) of the graph; that is, the unused space is kept as small 

as possiblee 
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If ky = 2 or 5, then the total physical length of the Y-axis 

is precisely that specified by ymax. The distance between tick 

marks is chosen between .625 x DY and 1.6 x DY in such a 

manner that the axis be as '.'full" as possible. 

For the previous values of ky (0 2 ky 2 5), the procedure 

calculates a "nice number", less than or equal to the minimum 

value of Yi (either given or calculated), by the first (lowest) 

tick mark on the axis. Similarly, a "nice number" is chosen for 

the last (highest) tick mark (for a precise definition of 

"nice number", see the description of the procedure SCALE). 

However, if the programmer himself wishes to specify precisely 

the beginning and endinc point of the axis, he may do so by 

choosing ky = 6. Then the axis will be drawn with a physical 

length of precisely ymax, and the tick marks will be drawn at 

YMIN, YMIN + DY, YMIN + 2 x DY, ••• , YMAX - DY, YMAX. The value 

of YMAX - YMIN must be an integer multiple of DY, except for 

possible small rounding errors. 

For all of the above values of ky (0 < ky < 6), a new Y-axis, - -
complete with numbering, is drawn to the left of the pFevious one. 

Also, the text specified by ystring is drawn by the axis. 

If ky = 7 and kg= 2 (old picture), then the values of all the 

parameters YMIN, YM.AX, DY, ymax, and ystring are completely 

ignored, and no new Y-axis is drawn. That is, the last-defined 

Y-axis is to be used for the plotting of the current set of data. 

If ky = 7, and kg= 0 or 1 (new picture), then a new Y-axis is 

drawn (the first one of the new picture), having the same length, 

subdivisioning, numbering, etc., as the immediately previous 

Y-axis (i.e. the last Y-axis of the previous picture), but with 

the current text specified by ystring. 
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The handling of the X-axis , and the para.meters XMIN, XMAX, DX, 

.xmax and xstring is, as previously mentioned, analogous with 

that of the Y-axis and the para.meters YMIN, YMAX, DY, ymax and 

ystring. The one difference is that no provision is made for 

multiple X-axes in one picture. This is realized by the 

following rule: if kg= 2 (old picture), then the actual value 

of kx is ignored; the procedure carries on as though kx = 7 

had been specified. 

NOTE 1: The strings xstring and ystring may contain any valid 

ALGOL basic symbols. However, the following result in 

a blank (space): goto, if, ~, ~• !2!,, .2£., step, 

until, while, comment, value, ~' false, tab, and 

carriage return. Furthermore, 

be~in gives + 
end II X 
own II ~ 
Boolean II 

* inte~er II y 
real II z 
arrai II ;<: 
switch II [iJ 
;erocedure II <v 
string II 0 

label II TT 
NOTE 2: The para.meter ymax < 2500; that is, the Y-axis may be no 

more than 25 cm long. 

NOTE 3: Sufficient room is reserved to the left of each new picture 

to guarantee accomodation for at least ten Y-axes. 

NOTE 4: If delta.mark> O, it is required that n > 3. 
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NOTE 5: The following table may be found useful in the 

construction of the parameter mode. 

kg= 0 

= 1 

= 2 

kd = 0 

= 1 

= 2 

= 3 

ky = 0 

new picture, without grid 

new picture, with grid 

old picture (without grid) 

no derivatives given 

initial derivative given 

final derivative given 

initial and final derivatives both given 

YMIN, YMAX irrelevant; DY exact physical 

length of intervals; ymax exact physical 

length of axis 

= 1 YMIN, YMAX irrelevant; DY exact physical 

length of intervals; ymax upper bound to 

physical length of axis 

= 2 YMIN, YMAX irrelevant; DY approximate physical 

length of intervals; ymax exact physical 

length of axis 

= 3 YMIN, YMAX given; DY exact physical length 

of intervals; ymax exact physical length of 

axis 

= 4 YMIN, YMAX given; DY exact physical length 

of intervals; ymax upper bound to physical 

length of axis 

= 5 YMIN, YMAX given; DY approximate physical 

length of intervals; ymax exact physical 

length of axis 

= 6 from YMIN, in steps of DY to YMAX; ymax exact 

physical length of axis 

= 7 same as previous Y-axis 



NOTE 6: We now give the order in which the expressions Xi 

and Yi are evaluated: 

(a) if O ~ kx ~ 2,and kg f 2, then Xi, i = 19 2, ••• , n; 

(b) if O ~ ky ~ 2, then Yi, i = 1, 2, ••• , n; 

(c) if kd = 1 or 3, then Xi, i = 0 - i.e. the 

initial slope; 

(d) Xi, Yi, i = 1, 2, ••• , n - i.e. x1, Y1, X2 , Y2 , ••• 

••• , X ,Y; n n 

(e) if kd = 2 or 3, then Yi, i = 0 - i.e. the final 

slope. 

NOTE 7: In order to guarantee proper interpolation of the curve 

between the given points (deltamark ~ O), the following 

rule of thumb is suggested - Imagine straight lines 

connecting the successive, given points on the curve. 

Then, for best results, the angle from each of these 

lines to the next should not exceed 20 degrees, and 

should preferably be less. 

NOTE 8: The complete picture, including numbering and text~ 

has the following nrucimum dimensions: 

(a) height: physical length of Y-axis (i.e. ymax) 

+ 114 tenths of .a mm. 

(b) width: physical length of X-axis (i.e. xmax) 

+ 132 +(no.of Y-axes) x 336 tenths of a mm. 
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3. Theory of the ALGOL Procedures 

3.1 Introduction 

In the following ALGOL texts, we make use of the following 

typing conventions 

represents ALGOL 60 • : • -
t II " " ' 
t II II II 

, 
Furthermore, where the ALGOL concept own is employed, the so­

called "static interpretation" [2] is intended. 

The procedure STOP is common to several of the procedures. 

Its purpose is ~o signal error conditions which arise during 

the execution of the procedures, and then (possibly) return 

to the calling procedure. It accepts a single parameter, 

specified as type string, which indicates the nature of the error. 

It is assumed that the following declaration appears in some 

block enclosing that in which the plotter procedures ar,e 

declared: 

Boolean state1, state2, state4, state8, state16, 

state32, state64, firstentrance; 

and that the following statement has been executed before the 

first call of any of the plotter procedures: 

firstentrance: = ~; 

This is used to monitor whether or not certain important 

variables have as yet had values assigned to them. 

Note that users of the machine code procedures for the 

Electrologica X1 are~ required to provide the above-mentioned 

declarations .. 



38 

3.2 The Straight-line Approximation in PLOT 

The procedure first converts (if necessary) the given points 

to plotter units. Then the total move~ent dx in the x-direction, 

and dy in they-direction are calculated. 

It is clear that every straight line which is not parallel to 

one of the basic plotting directions will nevertheless lie 

between a true x- or y-direction and one of the diagonals. 

Thus, we can approximate any arbitrary straight line by a 

suitable sequence of only two of the basic pen movements -

a true x- or y-movement, and one of the diagonal movements. 

Accordingly, we adopt the strategy of transforming the given 

straight line into the first octant, and simultaneously deter­

mining the two basic plotter motions involved. The determinition 

of the plotter motions is somewhat machine dependent (that is, 

it depends on the specific numerical codes correSponding to the 

several directions), and is not further discussed here. 

The transformation to the first octant proceeds as follows: 

we first transform to the first quadrant by replacing d.x and dy 

by their absolute values; then, if dy > dx, we interchange 

the values of dx and dy with one another, thereby arriving in the 

first octant. Note once again that, during these transformation 

steps, some here unspecified process must determine the codes 

for the two relevant plotter motions. 

Now, at the i'th step forward in the x-direction (i.e. at x = i), 

the value of y is clearly 

whereas they-co-ordinate of the actual pen position has some 

value y~. That is, the pen position deviates from the correct 
i 

position by 

* dev. = y. - y .• i i i 3.2.2 
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Then, when we advance to the next value of x (= l. + 1), 

the value of y is 

Yi+1 = (i + 1) x2I-=y. +2I-
dx 1. dx' 

and the y-co-ordinate of the actual pen position l.S 

where g is either O or 1 (i.e. a step along the true direction 

or the diagonal, respectively). This gives rise to a new 

deviation 

* devi+1 = Yi+1 - Yi+1 

= dy * Yi+ dx - Yi - g 

= dev. + 2I.. - g. 
l. dx 

3.2.3 

3.2.4 

3.2.5 

Now we must make this deviation as small as possible in absolute 

value by choosing g appropriately. Since there are o~ly two 

possibilities, this is rather simple; we choose the true 

direction (g = 0) if 

Squaring both sides, we may remove the absolute value signs; 

thus, we choose the true direction if 

(dev
1
. + 5!X,_dxd )2 < (dev. + ~)2 - 2(dev. + :3:1..dd) + 1; 

l. dx l. X 

i.e., if 

2I.. 1 
devi + dx < 2 • 

3.2.6 

3.2.7 

3.2.8 
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Clearly, we choose the diagonal direction if the inequality 

in (3.2.8) is reversed. The question still remains as to 

which choice should be made in the case that both sides of 

(3.2.8) are equal, and this is not such a trivial matter 

as one might think. The difficulty arises if one wishes to 

retrace a section.of straight line, but in the ?pposite 

direction, rather than to raise and lower the pen (at a total 

cost of at least 200 ms - equivalent in time to 60 ordinary 

steps),. 

Suppose that we choose the true direction if (3.2.8) is 

satisfied, and otherwise the diagonal direction (i.e. if 

dev. + dy/dx > 1/2). Then, consider the following situation, 
J. -

where the line to be approximated passes exactly through G, 

the centre-point of BE. 

A B C 

If the pen begins at A, this choice will lead to a diagonal 

step to E, since equality holds, followed by a horizontal 

step to F. However, if the pen begins at F, (i.e. retracing 

the line in the opposite direction), a diagonal step is again 

taken, to B, followed by a horizontal step to A. Thus, the 

pen does not follow precisely the same path during the 

retrace as during the trace, and this may give rise to thick 

spots, or even open boxes in the line. This is not usually 

serious with a step length of .1 mm and a pen .4 mm thick, 

but with a step length of .01 inch and a finer pen, the 

result may be annoying. 
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Fortunately, the solution is very simple; when going from 

left to right, for instance, we use (3.2.8) as it stands, 

but when going from right to left, we replace the< by< 

as the criterion for moving in the true direction. The 

direction (left to right or right to left) can be determined 

once and for all by examining the sign of dx before the 

transformation to the first octant. 

In order to avoid working with floating-point numbers, we 

multiply the equations (3.2.5) and (3.2.8) by 2 x dx, 

obtaining 

and 

2 x dx x devi+1 
= 2 x dx x dev. + 2 x dy - 2 x g x dx, 

i 

2 x dx x dev. + 2 x dy < dx (or~). 
i 

Thus, the final algorithm is as follows: 

(a) Calculate dx and dy; 

(b) Store the sign of dx; 

(c) Replace dx by laxl and dy by I dy I ; 
(d) If dy > dx then interchange dy and dx· , 
(e) During (c) and (d) determine the codes for the 

true and the diagonal direction; 

(f) Calculate dx2: = 2 x dx and dy2: = 2 x dy; 

(g) Set dev: = O; 

(h) Replace uev by dev + dy2; 

(i) If dev < dx (or~ depending on original sign of dx) 

then perform a step in the true direction; 

3.2.5a 

3.2.8a 

and otherwise, a step in the diagonal direction followed 

by the subtraction of dx2 from dev; 

(j) Repeat (h) and (i) dx times. 
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3.3 Some Notes Concerning PLOTTEXT 

We consider here the question of the manner in which the 

various characters drawn by PLOTTEXT are described and how 

these descriptions are stored in a computer. For this purpose, we 

think in terms of a rectangle of' size 7 by l-1 plotter uni ts. 

This rectangle may be subjected to later transformations (such 

as magnification, translation, etc.), but for our present 

purposes, we think only of a rectangle. 

The rectangle is subdivided into squares of one plotter unit 

on eacn side, and the nodes of this grid have Cartesian 

co-ordinates associated with them in an obvious manner. Thus, 

the lower left-hand corner of the rectangle has co-ordinates (O,O), 

and the upper right-hand corner is (4,7). 

Each character is described by a sequence of co-ordinate pairs 

in the rectangle. At the beginning of the character, the plotter 

moves (with pen up) to the point given by the first pair, and 

lowers the pen. Then, the pen is moved in a straight line to the 

point given by the following pair, and so on, until the entire 

character has been drawn. 

Note that the values 5, 6, and 7 for the first co-ordinate 

of a co-ordinate pair do not specify points in the rectangle, 

but are used for the following special purposes. If the first 

co-ordinate is 5 or 6, this means that the entire rectangle is 

to be thought of as being shifted,up(6) or down (5) by the 

number of squares given by the second co-ordinate. If the 

first co-ordinate is 7 the pen is raised, and is moved to the 

position given by the next pair before being lowered again (the 

second co-ordinate is irrelevant if the first one is 7). 
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As an example, we give the description of the semicolon: 

(5,2) 

( 1 ,o) 
(1,0) 

(7,0) 
(3,2) 
(1,5) 

I r 

(3,4) 
( 1 , 7) 

I/ 

(1,4) 
(3,7) 

(1,2) 

(3,5) 
(2,2) 

( 1 ,5) 

The ALGOL 60 procedure assumes the following declaration, 

global to PLOTTEXT: 

inter;er array CX, CY[0:552], N, ENTRANCE[O: 122]; 

The arrays CX and CY contain, respectively, the first and second 

co-ordinates of all the pairs required to describe all of the 

characters which can be drawn by the procedure. The integer 

representation of each strin~ symbol (delivered by STRINGSYMBOL) 

is used to select a unique element from each of the arrays N and 

ENTRANCE. The element from N specifies the number of co-ordinate 

pairs which correspond to the given string symbol,and the element 

from ENTRANCE is the index of CX and CY in which the first pair 

can be found. 
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In machine code, of course, these arrays are actually an 

inherent part of the procedure, and are, furthermore, carefully 

packed to occupy the minimum of storage possible. 

As an economy measure, certain of the characters have been 

described in common. For example, the characters comma and 

semicolon have the same ENTRANCE value, but a different N value 

(for comma, N = 8; for semicolon, N = 14). 

In tables 1 and 2 we give the complete contents of the arrays 

described above. 

Table 1 describes the contents of CX and CY. Any material which 

appears between apostrophes does not form a part of the array, 

but is included for clarification only. The string symbol which 

is being described (or its corresponding value of abs(i) in 

parentheses, where relevant)is given at the left. The co-ordinate 

pairs for this character follow immediately and continue until 

the end of the sequence, unless there appears the character A, 

followed by another character, enclosed in apostrophes, indicating 

that the sequence is terminated for the character following the.A. 

The characterV indicates that the description of the character 

following the V begins with the following co-ordinate pair. 

Table 2 describes the contents of N and ENTRANCE. The first 

column gives the U value, and the second the ENTRANCE of the 

character given in the third column. In the fourth column, 

the integer representation of the character in X1 ALGOL is given. 

For the character corresponding to 2 ~ abs(i) < 12 the values of 

abs(i) are given in an additional column. 

Table 3 shows all the ~haracters that can be drawn by PLOTTEXT, 

in boxes 14 by 24.5 mm (i.e., the distance between grid points 

is 3.5 mm). 



3.4 Theory of PLOTCURVE 

Introduction 

The problem we wish to solve is the following: Given an 

ordered set of points (x., y.) in the plane, to pass a "smooth" 
]. ]. 

curve through these points successively; the problem is not one 

of interpolation in the usual sense, since we wish to admit the 

possibility that the curve may loop around arbitrarily. 

Anticipating the fact that we shall have to be able to evaluate 

the interpolating curve once for each plotter step (i.e., about 

once every 3 1/3 ms) we are practically forced to restrict the 

candidates for this interpolating function to low-order poly­

nomials, in order to achieve a decent speed on a medium-speed 

(or even high-speed) computer. 

We will require at least the following two properties of the 

curve: (a) the curve must indeed pass through the given points, 

and in the given order; (b) the slope of the curve must be 

everywhere continuous, including, in particular, the given points. 

The simplest polynomial that we can consider is the quadratic 

passing through the points (x., y.) and (x. 
1

, y.+
1

) with the ]. ]. i+ ]. 
same slope at (x., y.) as the quadratic in the previous 

]. ]. 

interval from (x. 1, y. 1) to (x., y.). The two conditions of 
l.- l.- ]. ]. 

passing through the two po• :1ts, along with the condition on the 

derivative uniquely determine the three coefficients of the 

quadratic. The objection to this scheme, however, is that if 

the~e is a discrepancy£ between the calculated derivative at xi 

and the "real" derivative, this discrepancy is propagated, with 

a change of sign; that is, errors are not damped out. The following 

diagram illustrates the sort of thing that can happen. 



(x. 1•Y- 1) 1.- 1.-

(x. ,y.) 
l. l. 

46 

Thus, we require a scheme in which the curve between the 

points (x., y.) and (x. 1, y.+ 1) does not depend in any way 
l. l. 1.+ l. 

on too many of the past and future points. In the scheme 

which we have adopted, the points (x. 1 , y. 1), (x., y.), 
1.- 1.- l. l. 

(xi+1 , Yi+l), and (xi+2 , Yi+2 ) are used to determine the 

curve ( a cubic polynomial) between (x. , y.) and (x. 
1

, y. 
1
). 

l. l. 1.+ i+ 
In this way, prapagation of errors is completely avoided. 

The Interpolating Process 

We first transform all the points to plotter units; that is, 

the interpolation is done in the plotter space, not the data 

space. Further, at the time we are considering the segment 

of curve from (xi, yi) to (xi+l' yi+l), we perform a trans­

lation of axes so that (x., y.) = (O,O). Also, for compactness, 
l. l. 

we relabel (xi+k' Yi+k) as (xk, yk). 
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Now, we seek the coefficients of the polynomial 

f(x) = ax3 + bx2 +ex+ d 

where Yo and y1 are the desired values of the slope at x0 
and x

1 
(we discuss the choice of these slopes later). 

A short computation yields 

y' + 
0 

a = 

Y1 
b = 

C = y' 
0 

d = O. 

-

y' - 2y
1
/x

1 1 
2 x, 

3 
Yo x 1 ax1 -

2 
x, 

3.4.1 

3.4.2 

3.4.3 

We must calculate values for the slopes y0 and y1 in such a 

way that they depend upon only a small number of surrounding 

points. If y
1 

is not an end point of the curve, the value we 

choose for y1 is the slope of the unique circle passing through 

(x
0

, y
0
), (x

1
, y

1
) and (x

2
, y

2
). This choice has the advantage 

of being symmetric, and independent of the system of axes. 

Let us consider the circle 

2 2 f(x,y) = x + y +Ax+ By+ C = O, 3.4.4 

passing through the three points. We thus have 
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From the first of these, C = o. 
From the remaining two 

2 2 
+ By1 o, x, + Y1 + Ax1 = 

2 2 o, x2 + Y2 + Ax2 + By2 = 

and hence, 

B = 

2 2 x
1
x

2
(x2 - x 1) + x 1y2 - x2y 1 

x2y1 - x1y2 

Now, we have 

2 2 f(x,y) = x + y +Ax+ By= O. 

Hence, by differentiation, 

and thus 

df 
-= 
dx 

2x + 2y i +A+ Bi= O, 

!!z. _ (2x + A) 
dx - - {2y + B) 

3.4.6 

3.4.7 

3.4.8 

3.4.9 

3.4.10 

gives the slope of the circle through the three points at an 

arbitrary point (x,y) on the circle. 

Thus, after some computation, we have 

Y1(y2 (y2 - y 1) + x
2

(x
2 

- 2x1)) 2 

y' =i I 
+ x1 Y2 

~.4. 11) = 1 
x,(y2(y2 - 2y1) + x2(x2 - x,)) 

2 
x, + x2y1 
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As value for y0, we use the value calculated for y1 one step 

previous, thus ensuring continuity of slope, as required. 

When we first begin, however, we have no previous value of 

y1 to use as our Yo• Hence, we give the user the option of 

specifying the initial slope value if he knows it. If he does 

not, then we simply use the slope of the circle through the 

first three points, at the first of these. Thus, from (3.4.10), 

we use 

y' = ~ 
0 dx · 2 2 • 

x2(x1 + y 1) 
3.4. 12 

Similarly, when we come to calculate the curve between the 

last two points, we give the user the option of specifying 

the final slope. If he elects not to specify this, then we 

use the slope of the circle through the last three points, 

at the last point. For programming reasons, it turns out that 

at this time we have only the values of the last two points 

as (x0 , y0 ) and (x1, y 1), but we also have the slope y0 of the 

circle at (x0 , y0 ). Thus, we must construct Yi from these data. 

From (3.4.10), we have, at (x0 , y0 ) 

y• =~I 0 dx O 

A 
= - 13 , 

and thus, 

Substituting (3.4.14) into (3.4.6), we have 

and hence,2 2 x, + y 1 
B =-----

x1y0 - Y1 

2 2 -Yo<x, +y1) 
A=-------

x1y0 - Y1 

3.4.13 

3.4.14 

3.4.15 

• 3.4.16 
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Hence, substituting (3.4.16) into ( 3. 4 • 10) , 

(2x1 + A) 

{2y1 + B) y' = ~ 1 = -1 dx x, 

3.4.17 

This completes the definition of the interpolating curve except 

for one very important point - we have said that we shall have 

no objection to multivalued curves, and yet, we are using 

polynomials for interpolation and these are certainly single­

valued. We get around this difficulty by the simple device of 

allowing either x or y to be the independent variable; in fact, 

we decide anew for each section of curve between two successive 

points, whether x or y is to be independent in that section. 

To describe how this choice is made, we begin a brief description 

of the ALGOL procedure itself. 

Within the procedure are declared the~ variables x1, x2, y1, 

y2 and the non-awn's xO and yo, which contain the thre~ points 

of current interest, scaled to plotter units. At each normal 

entry to the procedure, the point (x1, y1) is pushed down onto 

(xO, yO), (x2, y2) is pushed onto (x1, y1), and the scaled 

co-ordinates of the new point which has just been eiven, are 

assigned to (x2, y2). Furthermore, the~ ylp (representing y1) 
1s pushed down onto yOp (representing y0). 
We then begin the translation of the given points relative to 

(xO, yO). This is performed by creating the new quantities 

xs1, ys1, xs2 and ys2 (xsO and ysO do not exist,being identically 

zero), corresponding to the quantities x 1, y
1

, x2 , y
2

, respectively, 

in equations (3.4.3), (3.4.11), (3.4.12) and (3.4.17). At the 

same time, we make a further transformation, so that xs1 and xs2 

are values of the independent variable actually chosen, and ys1 and ,, 
ys2 are values of the corpesponding dependent variable; that is, 

for instance , 
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xs1 = x1 - xO 

if xis the current independent variable, and 

xs1 = y1 - yO 

otherwise. In more detail, we make use of the own Boolean xisx 

with the interpretation that xisx =~if xis the current 

independent variable, and xisx = false otherwise. Initially, 

xisx =true.When we come to calculate the scaled co-ordinates 

xs1, ys1, xs2, ys2, we first assume the choice of independent 

variable used in the previous step, thereby calculate the 

scaled quantities, and the derivate y1p (note that yOp and y1p 

are always the derivates with respect to the current independent 

variable). 

Clearly, if we had used the other choice of independent variable, 

we would have the slopes 1/yOp, 1/y1p in place of yOp and y1p. 

Then, if 

max( lyopl, IY1PI) _::. max( j 1/yOpl, I 1/y1pj), 

we accept the previous choice of independent variable as the 

current one; otherwise, we switch over, and recalculate the 

quantities xs1, etc., relative to the new independent variable. 

More intuitively, we may say that we choose the independent 

variable to minimize the greatest slope of the ~urve in the 

current segment. 

When this decision has been completed, we continue on to the 

calculation of the polynomial coefficients themselves. In this 

connection;there is one subtle point to be discussed. Clearly, 

when we convert the given points from data units, the result 

will not, in general, be an integral number of plotter units. 

MATHEMATISCH 
AMSTERDAM 

CENTP-UM 
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Hence, we use the integer quantities xs1i and ys1i instead 

of xs1 and xs2 in the equations (3.4.3), in order to obtain 

a polynomial which passes precisely (aside from round-off 

error) through the grid-points nearest to the given points. 

This trick prevents possible discontinuities of one plotter 

step which otherwise would sometimes occur at the given points. 

However, for maximum accuracy (especially when the given 

points are fairly close together), we use the quantities xs1, 

ys1, xs2, ys2 in the equations (3.4.11·), (3.4.12), and (3.4.17), 

which determine only the slope of the curve c>.t the given points. 

Following the Interpolation Polynomial with the Plotter 

Having now defined mathematically the curve which we wish to 

draw, we turn our attention to the problem of following this 

curve with the (eight) basic motions made available to us by 

the plotter. 

In the sequel, it will be important to remember that the 

quantities x, y, f, xsli are relative to the current independent 

variable, chosen as described in the previous section.-

We define the quantities x, y and fas follows: 

xis the abscissa of the position of the pen; y is the 

corresponding ordinate; and f is the value of the polynomial 

at x. These three quantities are all set to zero at the beginning 

of the current section of curve (i.e. between two given points). 

The quantity incrx is set to +l or -1 according as we need to 

increase or decrease x to arrive at the desired endpoint of the 

current section (thus, incrx = sign(xsli)). 

In order to proceed from the current abscissa to the n.ext 

following, we add incrx to x, and calculate the new value off. 

We then calculate dif = f - y and absdif = abs(dif). Now we are 
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ready to determine the proper plotter action as follows: 

if absdif is less than one half plotter unit, the step is in 

a purely horizontal direction; if between a half and one and 

a half,the step is diagonal and is accompanied by an appropriate 

up-dating of y; if greater than one and a half, the step is 

vertical, accompanied by up-dating of y, and is followed by 

a return (to label "loop2" in the ALGOL procedure) to 

calculate a new dif, and repeat. 

The problem of which action should be performed by the plotter 

is simplified by introduction of the array ACT, which contains 

integers corresponding to the various possible plotter motions. 

The element of ACT which is used may be described by the following 

ALGOL 60 expression: 

ACT((if absdif 2, 0.5 then O else if absdif < 1.5 ~ 8 ~16) 

+ (if xisx ~ 0 ~ 4) 

+ (if incrx > 0 then O else 2) 

+ ( if dif > 0 then O ~ 1 )] 

In the ALGOL procedure, as much as possible of this subscript 

expression is evaluated before enterinc; the loop. At the, end of 

each step, a test is made to determine whether x = xs1i; if it 

does, the section of curve has been completed, and exit is taken 

from the procedure; otherwise, the next step is carried out. 

Evaluatin~ the Polynomial 

In the previous section, we mentioned that we would evaluate the 

polynomial 

3 2 f(x) = ax + bx + ex 3.4.18 

once for each plotter step taken. Since each step of the plotter 

takes only 3.3 ms, we must certainly perform this polynomial 

evaluation in rather less than this length of time, in order to 

leave time for the decision described above, of which plotter 
&, 

movement to take. 
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On machines with fast floating-point hardware, one can 

evaluate (3.4.18) directly for each step. However, for other 

machines, we now give a scheme which can be carried out rapidly 

in fixed-point, although at the cost of some extra storage space 

for the procedure. 

We begin by noticing the important fact that our evaluations 

of f(x) occur, not for arbitrary, but for successive values 

of x. Thus, we expect that, given f(x), the following value of 

f, f(x + h) (h = incrx = .:!:. 1) should not be very greatly different. 

Accordingly, we attempt to calculate this difference. 

Defining 

6f(x) = f(x + h) - f(x), 

we have 

f(x + h) = f(x) + 6f(x), 

and, from (3.4.18) and (3.4.19), 

Thus, if we know f(x) and lif(x), we can easily calculate 

f(x + h) from (3.4.20). 

Setting 

we have 

6f(x + h) = 6f(x) + 62f(x), 

and, from ( 3. 4. 21 ) and ( 3 .l+. 22) , 

2 2 2 6 f(x) = 6ah (x + h) + 2bh. 

Setting 

3.4.19 

3.4.20 

3.4.21 

3.4.22 

3.4. 23 

3.4.24 

3.4.25 
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we have 

82f(x + h) = 82f(x) + 83f{x), 

and, from (3.4.24) and (3.4.25), 

3.4.26 

3 3 8 f(x) = 6ah. 3.4.27 

Thus, the following scheme suggests itself.Suppose that, 

at a given moment, we know f(x), 8f{x - h), 82f(x - 2h), and 

83f, then we can calculate,sequentially: 

8f(x) 

f(x + h) 

= 8f(x h) + 82f(x - h), 3.4.26 

= f(x) + M(x). 

In this,way, we obtain f(x + h) and the 8f and 82f required 

for the next step, at the cost, essentially, of three 

addition and store operations. 

In order to get started, we know that f(O) = 0 from our choice 

of co-ordinate system. At x = O, (3.4.28) becomes 

8f(O) 3.4.29 

f(h) = f(O) + 8f(O). 

Thus, we require the values of 82f(-2h) and 8f{-h) initially. 

From {3.4.21), 

8f(-h) = ah3 - bh2 
+ ch, 

and from (3.4.24), 

2 3 2 8 f(-2h) = -6ah + 2bh. 

3.4.30 

3.4.31 



Now, recalling that h = incrx = + 1, we have to calculate 

the following initial quantities: 

f = o, 

delta = incrx(a b x incrx + c ) , 

delta2 = 2b 

delta3 = 6a 

6a x incrx, 
,, 

x incrx. 

3.4.32 

If the process described above is carried out using fixed-point 

arithmetic, it will probably be sufficiently fast. However, the 

quantities f, delta, delta2, and delta3 are not, in general, 

integers, and hence the question of scaling comes up; that is, 

we must determine how many fieures to keep after the decimal 

or binary point in order to assure that round-off errors do 

not accumulate disastrously. More precisely, we must assure 

that the value off is never in error by more than half a 

plotter unit, since any error less than half a unit will never 

cause a deviation of the pen from the calculated curve of more 

than one plotter step; this we regard as acceptable. 

Accordingly, we now begin a fixed-point error analysis of the 

process defined by equations (3.4.28). 

By definition, 

i-1 
f(i x incrx) = fi = f 0 + l 

j=O 
t:,f .• 

J 
3.4.33 

However, this equation is only theoretically valid; computationally, 

we may write 

i-1 
* f. 
l. 

* \ * * = r
0 

+ l 6f., 
j=O J 

* * where f. and t:.f. represent the calculated values off. and t:.f., 
l. J l. J 
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and the asterisk on the summation sign indicates that a 

rounding error is made, in general, with the addition of 

each new term in the sum. 

. . * By our choice of co-ordinate axes, f 0 = f 0 = o. Further, 

since we carry only a certain (as yet not specified) number 

of digits inf, a maximum rounding error of, say, v, is 

* committed at each addition of a 6 f. to the sum. Hence, 
J 

Now, theoretically, 

6f. 
J 

but computationally, 

* 6 f. 
J 

= j-1 
= 6-f-1 + l * 

k=-1 

3.4.35 

3.4.37 

Again, since we carry only a restricted number of digi~s in 6f, 

we commit a maximum rounding error of, say,µ, with each 
2* addition of a 6 fk' and also in the initial truncation of 

* 6 f_
1 

.. Thus, 

< 
j-1 

(j + 2)µ + 1 
k=-1 

Once again, we have theoretically, 

3.4.39 



but computationally, 

3.4.40 

Since we carry only a finite number of figures in delta2 and 

delta3 (the same for both - there is no advantage in carrying 

more figures in delta3 than in delta2, since the rounding 

error is in any case effectively determined by the number of 

figures in delta2), we commit a maximwr. :rounding error of, say, 

£ with each addition of ~3f to the sum and also with the initial 
2* truncation of~ f_2• Thus, 

+ (k + 2)£ 

< (k + 3)£. 

Hence, substituting (3.4.41) into (3.4.38), 

j-1 
1~*r. - ~r.j < {j+2)µ + £ 2 (k + 3) 

J J - k=-1 

and substituting this into (3.4.35), 

If~ - f. I <iv+µ 
i i -

i-1 
2 

j=O 

i-1 
(j+2)µ + !. L (j+1)(j+4) 

2 . 0 J= 

=iv+ i(~+3) µ + i(i+1)(i+5) £ 

<iv+ 

3.4.41 

3.4.42 

3.4.43 
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Now, we require that this error be less than 1/2; we decide, 

rather arbitrarily, to spread the error equally among the three 

terms of (3.4.43). Thus, we require at the endpoint of the 

current section (i = lxs1il ), 

1xs1ilv < 1/6 
1 z==> \) < 

6lxs1i I , 

( 1xs1 i I + 3)2 
< 1/6 

1 
2 

µ ===> µ < 
+ 3)2 , 3( I XS 1i I 

( !xs1il + 5) 3 
e: < 1/6 

1 
6 ===> e: < 

+ 5)3 
. 

( j XS 1 i I 

At this point, we narrow our consideration to a binary computer; 

3.4.44 

the necessary changes for a decimal machine are obvious, however. 

If we maintain a certain number, say n, of bits after the binary 

point, then the maximum error, m, during addition, assuming a 

proper rounding process, is clearly 

1 -n -n-1 
m = 2 . 2 = 2 • 

Taking base 2 logarithms on both sides, we have 

and therefore, the number of bits required for a rounding error 

no greater than m, is 

Thus, the number of extra bits, nf, required inf is at least 

and similarly, 

ang., 

3.4.45 

3.4.46 

3.4.47 

3.4.48 
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In order to reduce the probability of any error of even as 

much as one plotter step, we arbitrarily carry two further 

guarding bits in the above quantities and obtain finally: 

n~f= log2(3(lxs1ij+ 3)
2

) + 1, 

n 2 = n 
3 

= log2((lxs1ij + 5) 3 ) + 1. 
~ f ~ f 

In ALGOL, the bits after the binary point are expressed by 

carrying the quantities as integers, multiplied by 2 to the 

appropriate n from (3.4.49). This requires the calculation of 

a few auxiliary quantities, but the details should be clear from 

an inspection of the ALGOL procedure declaration. Note that 

3.4.49 

most of the divisions by powers of 2 may actually be carried out, 

in machine code, by corresponding right shift operations, and 

multiplications by means of left shifts. 

Similarly, the base 2 logarithms may be sufficiently accurately 

evaluated, in machine code, by using the binary exponent 'of the 

corresponding normalized floating-point quantity. 
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3.5 Theory of SCALE 

The Case mode= 0 

We begin by formalizing the requirements R1 to R4 [3]. Defining 

MN and MX as respectively the minimum and maximum values of the 

parameter Ti, we have the following conditions: 

( C1 ) 

(C2) 

DL = r. x 10k, for some integer k; 
J 

MIN= p x DL, for some integer p; 

(C3) (a) MN - DL < MIN .::_MN; (MN< MX); 

(b) MAX= MIN+ nint x DL .::_ MX; 

(C4) Of all values of DL satisfying C1, C2, and C3, the one 

chosen is that which has the highest efficiency, defined 

as 

. ( ) HX - l,IH 
eff DL = nint x DL • 

It is immediately obvious from C4 that the smallest of the DL 

satisfying C1, C2, and C3 is the one desired (i.e. because MX, 

MN and nint are constant for each r;i ven problem). 

This suggests that we might proceed by searching through an 

ordered set of candidates for DL, which satisfy C1, beginning 

with the smaller members, and continuing through successively 

larger candidates, up to the first one which satisfies all of 

the conditions C2, C3a, and C3b. This candidate is then the 

desired DL, and satisfies all the requirements. 

It is clear that if, for a given candidate DL, we choose 

. ( MN ) MIN = enti er DL x DL, 

that this value of MIN automatically satisfies C2 and C3a. 

Thus, it only remains to see how large a set of candidate round 

numbers is required to ensure that C3b is satisfied. 
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From C3b and the right-hand inequality of C2, we have 

MN+ nint X DL ~ MX, 

and hence, 

DL > MX - MN• 
- n1.nt 

Consider the inequality 

10k < MX - MN < 10k+1 
0 - n1.nt 

We attempt to find a value of k satisfying (3.5.3). Taking 

logarithms, we have 

( MX - MN) 
k < log10 t < k + 1. - n1.n 

From the right-hand inequality of (3.5.4), 

MX - MH 
k > log,o ( n1.nt ) - 1, 

and thus, 

( HX - MN ) ( I-lX - J:.1N ) log 10 --- - 1 < k < log10 --- • nint nint 

Now 

( ( MX_-MN )) k = entier log 
10 n1.nt 

satisfies the inequality (3.5.6) exactly. Thus, with this choice 

of k, if we begin the search at 

k Rmin = 1 X 10 t 

and continue sufficiently far, then we are sure that the first 

candidate satisfying (3.5.2) will be encountered. 

3.5.2 

3.5.4 

3.5.6 

3.5.8 

Next, we consider what is meant by "sufficiently far". From C3b 

and the left-hand inequality of C 2, we have that C3b is certainly 

satisfied if 

MN - DL + nint X DL ~ MX; 



that is, if 

DL MX - MN 
> (nint - 1) 

That is, the search may be discontinued at any round number 

MX - MN 
Rmax > (nint - 1) 

MX - MN nint =----x-....----,-nint nint - 1 • 

Result (3.5.9) indicates that for nint = 1, the search may 

continue indefinitely. In fact, the requirements C2 and C3 

may easily be shown to be in general inconsistent for nint = 1. 

Thus, we require nint ~ 2. 

With this requirement, we then have 

nint < 2 nint - 1 - ' 

with the equality holding only for nint = 2. 

Thus, from the right-hand inequality of (3.5.3), and from (3.5.10) 

and (3.5.11), we may be assured that the first round number 

satisfying 

k+1 k Rmax > 2 x 10 = 20 x 10 

will certainly satisfy C3b. 

Accordingly, if we expand our set of "basic round numbers" 

r. as follows 
J 

1, 1.25, 2, 2.5, 4, 5, 8, 10, 12.5, 20, 25 

( the 25 is included in order to be absolutely safe against 

rounding errors), then the following algorithm will solve the 

problem: 

3.5.12 
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k: = entier(log10( (MX - MN)/nint)); 

.f.2!. rj: = 1, 1.25, 2, 2.5, 4, 5, 8, 10, 12.5, 20, 25 ~ 

begin DL: = rj x 10 t k; 

if DL.:, (MX - MN)/nint then 

begin MIN:= entier(MN/DL) x DL; 

MAX:= MIN+ nint X DL; 

if MAX ~ MX ~ goto out 

end 

The Case mode= 1 

As motivation for the inclusion of the extra features provided 

by mode= 1, we consider the problem defined by 

MII = -40.1, MX = 35, nint = 15. 

Application of the algorithm described above yields 

J\lIN = -48, DL = 8, and HJ\X = 72, 

with an efficiency of only 63 %. The reason for this rather low 

efficiency is easy to discover - namely, there are four "empty" 

intervals from 40 to 72. This is a consequence of requirine 

precise~ 15 intervals. 

If, however, the user is willing to accept some number of intervals, 

ni ~ nint, 

and to replace the condition C3b by 

(C3c) MAX = MIN + ni x DL ~ MX, 

then it will often be possible to obtain a higher efficiency, 

now defined as 

eff(DL) = MX - MN 
m. x DL ' 



by simply discarding the empty intervals. 

From C3c, we have that 

Ill.> 
MX - MIN 

DL , 

and the value we choose, which certainly satisfies (3.5.18), 1.s 

. ( MX: - MIN ) n1. = ent1.er DL + 1. 

Applying this to the problem (3.5.14), we obtain the solution 

MIN= -48, DL = 8, MAX:;: 40, ni = 11, 

with an efficiency of 65 %. 

We shall now obtain a lower bound for ni. Consider 

k r. 1 10 
J-

< 
MX - HH k 
nint .::. r j 10 , 

where r. 10k 1.s the round number actually used as DL, and 
ll r. 1 10 is the last round number which was too small to satisfy 

J-
C3b. From (3.5.16),and the left-hand inequality of (3.5.21), 

we have 

r. 1 
n1. > nint x ....il:.!. 

r. 
J 

In our chosen set of basic round numbers, 

r. 1 
....il:.!. = .8 

r. or .625 
J 

of which the second is smaller, and hence n1. 1.s always larger 

than .625 x nint. Hence, for mode= 1, 

.625 x nint < ni < nint. 

The Case mode= 2 

The left-hand inequality of (3.5.21) leads us to wonder if we ,, 
might not obtain still higher efficiency by using DL1 = r. 

1 
x 10k 

J-
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. L k(. . 1 instead of D = r. x 10 i.e. by using the argest round 
J 

number which fails to satisfy C3b), and then calculating a 

MN 
MIN1 = entier ( DLf) x DL1, 

and a 

ni1 MX - MIN1 = entier ( DL1 ) + 1, 

and finally, a 

MAX1 = MIN1 + ni 1 x DL1. 

In the procedure SCALE, for the case mode= 2, we calculate the 

quantities described above, and compare the efficiency of the 

solution so obtained with that obtained for the case mode= 1; 

we then choose the more efficient of the two. 

We now obtain bounds for the number of intervals which this 

process may produce. Clearly, if the mode= 1 solution is more 

efficient, we have from ( 3. 5. 2lf) , the lower bound 

.625 x nint < number of intervals. 

Now, the efficiency of the choice DL1 is 

MX - MN 
eff(DL1) = ni1 x DL1 , 

and, since DL1 is chosen only if eff(DL1) > eff(DL), i.e. only if 

therefore 

eff(DL1) 
_e_f_f (.-D-L'"'") ..... = 

nix DL 
. > 1 , ni1 x DL1 
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DL 
nil < ni x DLi" 

< nint x 

r. x 10k . 

x 10k r. 1 J-

< 1.6 x nint. 

Thus, combining (3.5.28) and (3.5.31), 

.625 x nint < number of intervals< 1.6 x nint. 

We have now demonstrated the three possible modes of the 

procedure SCALE, each of which e;ives hicher efficiency than 

the previous one, at the price of allowinc the procedure more 

freedom in the choice of the number of intervals. 
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3.6 Theory of PLOTAXIS2 

In this section we discuss the method by which several of the 

features of PLOTAXIS2 are accomplished. 

We introduce the concept of the "position number" of a digit, 

relative to the decimal point, within a number. For instance, 

in the number 

12345.6789, 

the position of the 5 lS o, of the 4 lS 1 ' of the 3 is 2, 

of the 6 is -1, of the 7 lS -2, etc. From the figure 

. . . X X X X X X X X X X . . . 
4 3 2 0 -1 -2 -3 -4 -5 

it is easy to see that the position number of the left-most 

non-zero digit of an arbitrary number xis the characteristic 

of the base 10 logarithm of the absolute value of x. That is, 

naming this position number A, 

A= entier(log10 jxj ). 3.6.1 

The problem of finding the position of the last (i.e. right-most, 

non-zero) digit of an arbitrary real number is not well-defined. In 

the context of the procedure PLOTAXIS2, however, we are interested 

in the position of the last "significant" digit of the number, 

since we usually wish to draw only the "significant" digits of the 

numbers by the tick marks on the axis. 

This intuitive meaning of "significant" may be made clearer by 

considering DL, the interval between tick marks. Ideally, DL 

contains only one, two, or three significant digits (see the 

description of the procedure SCALE). Clearly, since all of the 

numbers to be drawn by the tick marks are integer multiples of 

DL, then all digits to the right of the last significant digit 
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of DL are theoretically zeroes, and need not (usually) be drawn; 

note that because of rounding errors, there will usually be 

at the end of the number, a sequence of zeroes or nines followed 

by some non-zero digits, but as long as we do not draw them, 

no harm will be done. 

Thus, we must determine the position of the least significant 

digit of DL. This is accomplished as follows: 

we calculate 

(2 - entier(log1o(DL))) 
o = DL x 10 ; 

that is, an integer less than 1000. '!'hen the number of 

significant digits of DL is 

v = 3 - number of trailing zeroes of o, 

and the position of the least significant digit is then 

k2 = entier(log1o(DL)) 

= entier(log1o(DL)) 

(v - 1) 

2 + number of trailing 

zeroes of o. 

The determination of the number of trailing zeroes of an­

arbitrary integer is accomplished in PLOTAXIS2 by the integer 

procedure zeroes. 

Now, the position of the left-most digit of the number with the 

greatest number of digits is 

k1 = entier(log1o(max(jHAXj, jMINj))), 

and the total number of significant digits in this number is 

3.6.2 

3.6.3 

3.6.4 

k3 = k1 - k2 + 1. .3.6.6 

We now consider the question of the drawing of a power of 10 

along with the other numbers. One may be tempted to do this 

whenever there are zeroes between the decimal point and the 

significant digits of the number (i.e. whenever k2 > 0 or kl < -1). 
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In PLOTAXIS2, however, the power of 10 is drawn only if the 

number of significant digits plus the number of zeroes between 

the point and the significant digits exceeds 5 (the value 5 is 

rather arbitrarily chosen). More precisely, a power of 10 

is provided if 

((k2 > o)A (kl~ 5))V((k1 < -1)1\(k2 .::.-5)). 

At this point, we know the number of characters (including 

possible decimal point and minus sign) which have to be drawn 

possibly for all the numbers and certainly for the largest. 

Thus we know the physical length of the numbers to be drawn; 

dividing this physical length (plus a suitable safety margin) 

by the physical distance between successive tick marks, we 

obtain the quantity step with the interpretation that if 

step.::_ 1 there is sufficient room between successive tick marks 

for each number, and that otherwise, at least (step -1) tick 

marks must be skipped over between two successive numbers. 

How~ver, there may be objections to simply beginning at MIN 

and drawing at each following step'th position. For instance, 

consider the case MIN = 0, DL = 2, and step = 4; that i_s, 

3.6.7 

0, 2, l,, 6, 8, 10, 12, 14, 1 G, 18, 20, 22, 24, 26, 28, 30, 

Here, we would have the numbers O, 8, 16, 24, • • • whereas, if we 

use step= 5, we have, instead, the numbers o, 10, 20, 30, ••• • 

The latter choice appears esthetically more desirable. Consider 

also the case MIN= -25, DL = 25, and step= 4; that is, 

-25, o, 25, 50, 75, 100, 125, 150, 175, 200, 225, •••• 

Here, we would have -25, 75, 175, ••• , whereas, if we begin 

at O, and keep the step= 4, we have O, 100, 200, ••• , etc., 

and again, this seems esthetically attractive. 

It would thus appear, from the preceding paragraph, that we wish 

to see, as far as possible, numbers which are integer multiples 

of powers of ten. Clearly, if step< 1, there is no problem, . -
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but if step> 1, then we must consider precise criteria 

for choosing a revised step, and a beginning position other 

than MIN. 

We now digress briefly to consider some simple number theory. 

Each number to be drawn is of the form 

HIN+ i X DL, 

but since MIN is itself an integer multiple of DL, we can write 

all the numbers to be drawn in the form 

N. = j X DL, 
,1 

with some appropriate bounds for j. 

Suppose that we have faun d by some means that the last k 

significant die;its of the number H are zeroes; that is, 
n 

N = n x DL =ax 10k-k2 , 
n 

where a is an integer. Suppose further that vis the smallest 

(positive) intee;er such that 

n = u + v x DL = s x 1ok-k2 , 
n+v n 

where Bis some intee;er; that is, H is the next number after n+v 
N of which the last k (or more) significant digits are zeroes. 

n 
We then consider the numbers 

Ir + = Nn + mv x DL, n mv 

for all integers m. From (3.6.9) and (3.6.10), we have that 

v x DL = (B - a) x 10k-k2 

and hence, from (3.6.11) and (3.6.12), 

N n+mv = (a+m(B-a)) X 10k-k2 

= 0 X 10k-k2 
' ,, 

where 0 is clearly again an integer. 

3.6.9 

3.6.10 

3.6.11 

3.6. 12 

3.6.13 
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That is, all of the numbers N have the property of having n+mv 
zeroes for at least the last k significant digits. 

Furthermore, there are no other numbers with this property; 

for, suppose that Np is a number that does have the property. 

Then, clearly all numbers H + also have the property, but 
p mv 

one of these lies closer to N than N , contrary to the n n+v 
assumption that N was the closest. n+v 

The significance of this is that two numbers with at least 

a prescribed number of trailing zeroes, and between which no 

other number has at least that prescribed number of trailing 

zeroes, determine a sequence which includes all (and only) 

numbers with at least as many zeroes. 

In the ALGOL text of PLOTAXIS2 between the labels CYCLE and 

gotthem, the following process is performed: 

(a) The unique smallest cycle which has a length (i.e. v) 

at least as large as step is calculated by means of a 

rather complicated loop. The loop produces pas, the index 

of a number in the cycle, and the cycle-length cycle; 

(b) Further, we calculate the smallest integer divisor of cycle 

which is at least as great as step (in the program, this is 

called itemp); 

{c) In the case that no sufficiently large cycle exists, we simply 

multiply the largest cycle which does exist by successive 

integers 2, 3, ••• until it is large enough; 

(d) DL is replaced by itemp x DL, and appropriate new values 

of MIN and J:,,1AX are calculated; 

(e) Control is transferred back to the beginning of the procedure 

in order that the decision about the drawing of a power of 10 

may be reviewed {that is, it may no longer be necessary). 

The iteration mentioned in (e) is performed only once. After this, 

eontrol is directed to gotthem, where the actual drawing of the 

numbers and power of 10 is performed. 
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4. Sample Application Programs 

Note that the declarations of the plotter procedures (and the 

declarations of state1, state2, etc.), have, for reasons of 

economy, been omitted in the listings of the sample programs. 

4.1 Circle and Ellipse 

In data units the co-ordinates of 32 points on the circle 

r = 500 are calculated and then plotted_by PL0TCURVE; then, 

a square is drawn around the circle. 

This is done twice, the first time with equal scaling factors 

Sex and Sey, and the second time with Sex= 2 x Sey. With 

equal scaling factors the circle and square appear as a circle 

and square on the paper; however, in the other case, they appear 

as an ellipse and a rectan,~le. 

4.2 Error Da.r:iping by PL0TCURVE 

This program demonstrates that, although a discontinuity qf a 

curve cannot be reproduced very preciselyby PL0TCURVE, it 

nevertheless has no influence on the interpolation process at 

a distance from the discontinuity. 

Specifically, we have two straight lines making an angle of 45, 

90, and 135 degrees with each other. PL0TCURVE follows the first 

line faithfully to the last p oi.nt before the" kink", and from 

the first point thereafter. 

At the same time, the program demonstrates the use of MARKEDCURVE, 

and some of the features of PL0TTEXT. 
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4.3 Demonstrate PLOTPICTURE 

The first call of PLOTPICTURE draws an axis system, complete 

with rectangular grid, and two cycles of the curve y = sin(2nx). 

The curve is given by means of the co-ordinates of 65 points 

equally spaced in x, and by the initial and final slopes 

(both equal to 2n). Every fourth given point is marked with 

one of the speci9.l marking symbols. The scaling of the X-axis 

has been completely specified (kx = 6) by the requirements 

that it be 16 cm (1600 pli~s) long, and with vertical grid lines 

at the points O, .25, .5, ••• , 2. The scaling of the Y-axis 

has been specified by requiring it to be 12 cm long, and with 

horizontal grid lines every 1 cm; the minimum and maximum 

values of the function ere estimated (rather conservatively!) 

to be -1.01 and +1.01 respectively. Appropriate texts are drawn 

beside the axes; notice that a few non-ALGOL characters are 

represented in the strings by corresponding word-delimiters. 

The second call draws two cycles of the curve y = cos(2nx) using 

the axis system, etc. established by the previous call. 

Following this, values of x and cot(2nx) are calculated for 

x = 1/64, 2/64, ••• , 31/64, and stored in arrays. 

The third call of PLOTPICTURE draws a new Y-axis, and one cycle 

of the curve y = cot(2nx). The curve is defined by the previously 

calculated and stored co-ordinate pairs. The scaling of the Y-axis 

is determined by the requirements that it be 12 cm long, with a tick­

mark every 1 cm, and that they-values must "fit" on the axis, with 

as little wasted space as possible. 

The following three calls (in the !£!:-loop) reproduce the curve 

produced by the third call, at positions successively farther 

to the right. The axis system defined and drawn by the third call 

is used by these last three calls. 
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4.4 Digits of TT in a Spiral 

We choose (because of esthetic considerations which are not 

important here), the exponential spiral 

r(¢) = rmax x eP¢, 

with rmax = 650 plotter units, p = .023, and with¢ taking 

on values from Oto approximately -32n. 

4.4.1 

The idea is to write the first 1000 digits of the decimal 

expansion of TT with the feet of the digits following the spiral. 

The height of each digit is to be some fixed proportion, say 

75 %, of the available distance to the digits from the previous 

revolution; that is, the height of a digit at the position¢ 

of the spiral is to be 

h(¢) = .75 x (r(¢ + 2TT) - r(¢)) 

ep¢ x (e2PTT - 1). = .75 x rmax x • 

and the breadth of the digit (including the space to its 

successor) is 

b(¢) = f h(¢) = 

where 

6 ( 2pn 
C = 7 X .75 X rmax X e - 1). 

Because 0f the transcendental character of the spiral, we can 

not make direct use of the above formulas; instead, we proceed 

approximately. 

4.4.2 

4.4.3 

4.4.4 

Referring to the diagram, we assume that the radius r 1 and angle ¢
1 

have been calculated during the drawing of the previous digi. t. We 

then calculate the deEired breadth of the new digit as 
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Using the approximation 

4.4.6 

we calculate 

and 

4.4.8 

and 

r = rmax x eP<I>. 4.4.9 

This implies that the actual breadth of the di~its (i.e., the 

chord AB) will be somewhat different from the desired breadth b
1

, 

but the difference will not be readily visible to the eye. Nevertheless, 

we must calculate the actual breadth b (in order to calculate the 

, actual height). 
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From the cosine law of plane trigonometry, 

b = 2 r ~- 2rr cos ( oq,) 
1 1 

We also reqm.re the angle a.", Clearly~ 

Cl. = qi1 + 1T BAO 

and, from the sine law 

4 BAO = arcs in ( ~ sin ( o qi ) ) • 

Furthermore, the arcsin can be calculated from 

arcsin(arg) = arctan ( --·-,;;;,~-·- ). 

~ 
Clearly, the height of the digit is 

h = t X b. 

Finally, the values of rand qi must be preserved as r 1 and q, 1 
for the follcwing digit. 

4.4 10 

4 .. 4,. 12 

4.4.15 

The above mentioned process is performed by the procedure height, 

which is called by PLOTTEXT just before drawing each digit. 

Note that the string to be plotted (the digits of rr) contains 

a blank or carriage return after each ten digits. Since we do 

not wish to draw these spaces~ we set height to zero for each 

eleventh character with the help of the counter j. 

'l;p.is program was used to produce •rable 3, showing all of the 

102 characters which can be drawn by PLOTTEXT. Note that all three 

pages of the table are produced at the same time 



~procedure PLOT(X,Y,IPEN); ~ X, Y, !PEN; integer !PEN; ~X.Y; 

~ inte!:!'er x, y, xy, dx, dy, dx2, dy2, i, dev, absipen; boolean right; 

own integer xlast, ylast, xmax, ymax; own boolean pen; own real Sex, Sey, XMIN, YMIN; ----- ----- ---
~~ switch:= !PENO ,IPENl ,IPEN2 ,IPEN3 ,IPEN4 ,IPEN5 ,IPEN6 ,IPEN7 ,IPEN8 ,IPEN9 ,IPENl0 ,IPEN11,IPEN12, 

IPEN13 ,IPEN14 ,IPEN15,IPEN16 ,IPENl 7 ,IPENl 8 ,IPEN19 ,IPEN20 ,IPEN21,IPEN22 ,IPEN23 ,IPEN24,IPEN25; 

£2!!.1!!1~ MOVE(alpha) is a boolean procedure (Xl-code) which moves the pen in the direction specified 

by the integer alpha. MOVE is ~ if the plotter carriage is against one of the edges of the 

paper and we are attempting to go further against that edge, otherwise true. 

The following values for alpha are allowed: 

1 + x direction 

2 - x direction 

4 + y direction 

8 - y direction 

16 + z direction (pen up) 

32 - z direction (pen down) 

5 + x and + y direction simultaneously 

9 + x and - y direction simultaneously 

6 - x and + y direction simultaneously 

10 - x and - y direction simultaneously; 

if firstentrance ~ firstentrance:= statel:= state2:= state4:= state8:= state16:= state32:= state64:= false; 

absipen:= abs(IPEN); 

if absipen > 20 V absipen = 0 then goto switch[(if absipen > 25 then 0 else absipen) + 1]; - - ---- - - -!£. 7(statel /\ state2 /\ state4 /\ states /\ state16) then STOP({l - 26:t); 

-.:i 
00 



comment PLOT second page; ---
if IPEN > 0 /\ IPEN < 6 ~ begin x:= (X - XMIN) /Sex; y:= (Y - YMIN) /Sey ~ 

else if absipen < 8 then bee:in x:= X; y:= Y end; -- - ------- -
~ switch[absipen + 1]; 

I PENO : STOP({l - 25*); 

IPENl : if pen then begin MOVE(32); pen:= false end; !!Oto IPEN3; -- --~ 
IPEN2 : if 7 pen ~ begin MOVE(l6); pen:= ~ end; 

IPEN3 : if x < 0 Vy < 0 V y > ymax V (x > xmax A absipen < 4) ~ STOP(·tl - 27:j,); 

dx:= x - xlast; dy:= y - ylast; xlast:= x; ylast:= y; right:= dx > 0; 

if dx < 0 then begin dx:= -dx; x:= 2 end else x:= 1; - -- --
if dy < 0 then begin dy:= -dy; y:= 8 end else y:= 4; xy:= x + y; - -- --
if dy > dx then bee:in x:= y; i:= dx; dx:= dy; dy:= i end; - -- -
dx2:= dx x 2; dy2:= dy x 2; dev:= 0; 

~ i:= 1 step 1 ~dx ~ 

be!!in dev:= dev + dy2; if (if right then dev < dx else dev < dx) then MOVE(x) ---- -- - - - -

-.:i 
co 

~ ~ MOVE(xy); dev:= dev - dx2 end 

IPEN4 

IPEN5 

IPEN6 

IPEN7 

end· _? 

if absipen = 4 ~ xlast:= ylast:= 0; ~ end; 

if IPEN < 0 /\ x < 0 then begin x:= xmax + 3000; y:= 0 end; goto IPEN2; - _.......,__ ' --
PLOT:= x; PLOT51: !!_x < 0 V x > xmax then STOP({l - 27*); goto endd, 

PLOT:= y; PLOT61: if y < 0 V y > ymax then STOP({l - 27J); goto endd; - - -
PLOT:= x x Sex + XMIN; ~ PLOT51; IPEN8 : PLOT:= y x Sey + YMIN; goto PLOT61; 



comment PLOT third page; ---
IPEN9 : PLOT:= XMIN; goto endd; 

IPENll: PLOT:= Sex; goto endd; 

IPEN13: PLOT:= xmax; goto endd; 

IPEN15: PLOT:= xlast; goto endd; 
, -

IPENl 7: PLOT:= xlast x Sex + XMIN; goto endd; 

IPEN19: PLOT:= !!_ pen then 1 ~ -1; goto endd; 

IPENl0: PLOT:= YMIN; goto endd; 

IPEN12: PLOT:= Sey; ~ endd; 

IPEN14: PLOT:= ymax, goto endd; 

IPEN16: PLOT:= ylast; goto endd; -
IPEN18: PLOT:= ylast x Sey + YMIN; goto endd; 

IPEN20: x:= X; MOVE(x); state8:= state16:= false; goto end; --
IPEN21: XMIN:= X; YMIN:= Y; statel:= true; 

if !PEN > 0 then begin state16:= pen:= true; MOVE(16) end; goto end; - -- - --
IPEN22: Sex:= X; Sey:= Y; state2:= true; ~ end; 

IPEN23: xmax:= X; ymax:= Y; state4:= true; 

if IPEN > 0 then be1rin state8:= true; xlast:= ylast:= 0; EDGE: if MOVE(8) then goto EDGE; - ------ -- - --
for i:= (2794 - ymax) .:... 2 step - 1 ~ 1 do MOVE(4) 

end; 

goto end; 

IPEN24: xlast:= X; ylast:= Y; state8:= true; goto end; 

IPEN25: pen:= X > 0; state16:= true; 

end: PLOT:= 0; 

endd: 

~ PLOT; 

00 
0 



propedure PLOTFRAME(XMIN,YMIN,XMAX,YMAX,xmax,ymax); ~ XMIN, YMIN, XMAX, YMAX,xmax,ymax; 

~ XMIN, YMIN, XMAX, YMAX; integer xmax, ymax; 

begin if ymax > 2750 then begin STOP(·tl - 30J); ymax:= 2750 end; ------ - -- -
P LOT(XMIN, YMIN ,21); 

PLOT((XMAX - XMIN)/xmax,(YMAX - YMIN)/ymax,22); 

PLOT(xmax,ymax,23) 

end PLOTFRAME; 

00 
I--' 



procedure PLOTTEXT(X,Y,angle,height,italicity,first,i,text); ~ X, Y, first, i; 

~ 

begin 

~ X, Y, angle, height, italicity; Boolean first; integer i; strim! text; 

integer IPEN, j, k, n, absi, xki; real hecosan, hesinan, x, y, xk, yk, an, he, it, abshe, tanit, cosit; 

~!!. ~x0, y0; ~!:. ;§oolean shift; 

~!!1~ The integer procedure STRINGSYMBOL(j,text) is a code procedure which delivers as its value 

the integer representation of the j'th ALGOL symbol in the string text, j counting from zero. It delivers 

the value 255 in place of the last closing string quote; 

j:= -1; absi:= abs(i); 

if absi > 1 then begin if absi > 12 then goto MISTAKE; absi:= absi + 102; goto SYMBOL end; - --- --- - -
STRING: j:= j + 1; absi:= STRINGSYMBOL(j,text); if absi = 255 then goto end; - --
SYMBOL: he:= height/7; abshe:= abs(he); an:= angle x . 017 4532925199; it:= italicity x . 017 4532925199; 

hecosan:= abshe x cos(an); hesinan:= abshe x sin(an); 

c osit:= cos(it); tanit:= sin(it) /cosit; co sit:= sign(cosit); 

if j < 0 then begin if first -- - ----- -
then ~ first:= shift:= false; state64:= true; 

if he < 0 

~~x0:= X; y0:= Y ~ 

~ ~ x0:= PLOT(X,0,5); y0:= PLOT(0,Y,6) end 

end -
~ if lstate64 then MISTAKE: ~ STOP(·fl - 31:~); goto end end; 

if i < 0 /\ 7shift -
then begin x0:= x0 - (2 x hecosan - 3 x hesinan) x cosit; -

y0:= y0 - (3 x hecosan + 2 x hesinan) x cosit; shift:= true 

end 

~ 



PLOTTEXT second page 

~ 

else if i > 0 I\ shift then 

~ if j :s_ O; 

- - -
~ x0:= x0 + (2 x hecosan - 3 x hesinan) x cosit; 

y0:= y0 + (3 x hecosan + 2 x hesinan) x cosit; shift:= false 

end 

IPEN:= -2; x:= x0; y:= y0; k:= ENTRANCE[absi]; n:= k + N[absi] - 1; 

fork:= k step 1 ~n ~ 

~ xki:= CX[k]; yk:= CY[k] x cosit; 

if xki < 5 

then begin xk:= xki + yk x tanit; -
~ 

PLOT(x + xk x hecosan - yk x hesinan,y + yk x hecosan + xk x hesinan, IPEN); 

IPEN:= -1 

end 

else if xki = 7 - -
then IPEN:= -2 

else if xki = 6 - -
then ~ x:= x - yk x (hesinan - tanit x hecosan); 

y:= y + yk x (hecosan + tanit x hesinan) 

end if xki = 6 



~ 

PLOTTEXT third page 

e~ fork; 

else be£!'in x:= x + yk x (hesinan - tanit x hecosan); -
y:= y - yk x (hecosan + tanit x hesinan) 

end if xki = 5 

xO:= xO + 6 x hecosan; yO:= yO + 6 x hesinan; ~ STRING; 

end: 

~ PLOTTEXT; 

i 



procedure PLOTAXIS(X,Y,angle,LENGTH,DL); ~ X, Y, angle, LENGTH, DL; ~X, Y, angle, LENGTH, DL; 

begin real sina, cosa, markx, marky, temp, dlsina, dlcosa, absdl; --angle:= angle x 0.0174532925199,; sina:= sin(angle); cosa:= cos(angle); 

if abs(sina) < 2M-l6) then sina:= 0 ~ if abs(cosa) < ~(-16) then cosa:= O; 

if LENGTH< 0 then LENGTH:= -LENGTH 

else bee-in X:= (X - PLOT(0,0,9))/PLOT(0,0,11); ..........._ 

end; 

Y:= (Y - PLOT(0,0,10))/PLOT(0,0,12); 

temp:= sqrt((PLOT(0,0,11) x cosa)1~ + (PLOT(0,0,12) x sina);}.2); 

LENGTH:= LENGTH/temp; DL:= DL/temp 

PLOT(X,Y ,-2); absdl:= abs(DL); if absdl > LENGTH then goto end; 

temp:= if sina > cosa ~ 15 else -15; 

markx:= temp x sina; marky:= -temp x cosa; dlsina:= absdl x sina; dlcosa:= absdl x cosa; 

LOOP: PLOT(X + markx,Y + marky,-1); if DL < 0 then PLOT(X - markx,Y - marky,-3); 

PLOT(X,Y,-3); 

LENGTH:= LENGTH - absdl; if LENGTH 2_ -1 ~ ~ X:= X + dlcosa; Y:= Y + dlsina; 

PLOT(X,Y,-3); ~ LOOP 

end 

~ LENGTH:= LENGTH + absdl; 

end: PLOT(X + LENGTH x cosa,Y + LENGTH x sina,-1) 

end PLOTAXIS; 

00 
CTI 



real~ procedure PLOTCURVE(X, Y, I); value X, Y, I; real X, Y; integer I; ------ - -
begin real temp, temp2, a, b, scl, sc2, xsl, xs2, ysl, ys2, maxl, max2, y0p, x0, y0; --

INIT: 

integer x, y, which, whichl, which2, which3, dif, absdif, incrx, f, delta, 

delta2, delta3, x0i, y0i, xsli, ysli, lnl, ln2, ln3, iscl, isc2, isc3, 

isc4, isc5, isc6, isc7, absxsl, xsmin, ysmin, xsmax, ysmax; 

~oolean small, huge, firsttry, oksofar; 

~ ~ ylp, scalef, xl, x2, yl, y2; 

~~ inte!!'er count; 

~ Boolean deriv, xisx; 

~~ integ:er arrav ACT[0:23]; 

~procedure log2(x); ~x; log2 := ln(x) / ln(2); 

PLOT CURVE := 0; 

if I < 1 then ~ if I < 0 ~ oops:begin STOP({l-28:}); ~ exit end; 

deriv := I = 0; xisx := true; 

count := 0; xl := x2 := yl := y2 := 0; 

ACT[0] := ACT[l] := ACT[20] := ACT[22] := 1; 

ACT[2] := ACT[3] := ACT[21] := ACT[23] := 2; 

ACT[4] := AGT[5] := ACT[16] := ACT[18] := 4; 

ACT[8] := ACT[12]:= 5; 

ACT[l0]:= ACT[13]:= 6; 

ACT[6] := ACT[7] := ACT[17] := ACT[19] := 8; 

ACT[9] := ACT[14]:= 9; 

ACT[ll]:= ACT [15]:=10; 

00 
el') 



com~ent PLOTCURVE second page; ---
scalef := PLOT(0, 0, 11) / PLOT(0, 0, 12); 

if deriv then y0p := X x scalef; 

state32 := true; go to exit --
~ if I :s_ 1; 

CHECK:if I> 4 V 7state32 V (I ~ 3 /\ count =l= 4) then ~ oops; 

SHIFT: x0 := xl; y0 := yl; 

NEWPOINT: 

position: 

PENDOWN: 

xl := x2; yl := y2; 

if I = 2 then 

~ x2 := (X - PLOT(0, 0, 9)) / PLOT(0, 0, 11); 

y2 := (Y - PLOT(0, 0,10)) / PLOT(0, 0, 12) 

end; 

if count < 3 ~ begin count := count + 1; 

~ ![. count = 3 ~ position ~ exit 

end -
~ y0p := ylp; 

x0i := x0; y0i := yo; 

![.x0i f PLOT(0, 0, 15) V y0i '+ PLOT(0, 0, 16) then PLOT(x0i, y0i, -2); 

!£. PLOT(0, 0, 19) > 0 ~ PLOT(x0i, y0i, -1); 

firsttry : = true; 

00 
&.;] 



comment PLOTCURVE third page; ---
~ 

scale: if xisx then ~ xsl := xl - x0; ysl := yl - y0; xs2 := x2 - x0; ys2 := y2 - y0; 

xsmin := -x0i; xsmax := PLOT(0, 0, 13) - x0i; 

ysmin := -y0i; ysmax := PLOT(0, 0, 14) - y0i 

end 

else be1rin xsl := yl - y0; ysl := xl - x0; xs2 := y2 - y0; ys2 := x2 - x0; -

if firsttry ~ 

SLOPE:be1rin if I = 3 -

xsmin := -y0i; xsmax := PLOT(0, 0, 14) - y0i; 

ysmin := -x0i; ysmax := PLOT(0, 0, 13) - x0i 

end; 

then bei:rin temp := 2 x xsl x ysl; -- temp2 := ysl .i 2 - xsl ,i 2; 

ylp := (temp + y0p x temp2) / (temp x y0p - temp2) 

end 

else begin if I = 4 

then ylp := if xisx then X x scalef else 1 / (X x scalef) - - - -
else begin temp := xs2 x (xs2 - xsl) + ys2 x (ys2 - ysl); 

end 

end; 

ylp := (ys2 x xsl 1~ 2 + ysl x (temp - xsl x xs2)) 

/ (xs2 x ysl ,~ 2 + xsl x (temp - ysl x ys2)) 

00 
00 



£,2!!1!!,lent PLOTCURVE fourth page; 
~ 

if count = 3 then - -
beQ.'in count := 4; if lderiv then ----- - -

BEGINSLOPE: begin temp := xsl ~ 2 + ysl 1' 2; 

INTERCHANGE: 

POLYNOM: 

temp2:= xs2 1' 2 + ys2 1~ 2; 

yOp := (ysl x temp2 - ys2 x temp) 

/ (xsl x temp2 - xs2 x temp) 

end 

end; 

maxl := abs(yOp); temp := abs(ylp); 

if maxl > temp ~ max2 : = 1 / temp 

else 

if maxl > max2 then 

end if firsttry, 

temp := entier(xl + • 5) - xOi; 

temp2:= entier(yl + • 5) - yOi; 

~ max2 := 1 / maxl; maxl := temp end; 

~ xisx := lxisx; yOp := 1 / yOp; ylp := 1 / ylp; 

firsttry := false; go to scale 

end 

xsli := if xisx ~ temp ~- temp2; 

ysli := if xisx ~ temp2 ~ temp; 

incrx := sign(xsli); 

temp := xsli ~ 2; 

temp2 := ylp - 2 x ysli / xsli + yOp; 

00 
c.o 



corn!!}~ PLOTCURVE fifth page; 

SCALING: 

a := temp2 / temp; 

b := (ysli - xsli x (temp2 + yOp)) / temp; 

X := y := f ;= 0; 

PLOTCURVE := (if xisx ~ ylp ~ 1 / ylp) / scale£; 

absxsl := abs(xsli); 

![. absxsl = 0 ~ begin !f_ count = 3 ~ count := 2; iscG := 1; ~ escape end; 

lnl := log2(6 x absxsl) + 1; 

ln2 := log2(3 x (absxsl + 3) :~ 2) + 1; 

ln3 := log2((absxsl + 5) ,.~ 3) + 1; 

scl := 2 1~ ln2; 

sc2 := 2 ,~ ln3; 

iscl := 2 1 (ln3 - ln2 - 1); 

isc2 := iscl x 2; 

isc3 := 2 1~ (ln2 - lnl - 1); 

isc4 := isc3 x 2; 

isc5 := 2 1' (lnl - 1); 

isc6 := isc5 x 2; 

isc7 := isc5 + isc6; 

,:0 
0 



comment PLOTCURVE sixth page ---
~ 

Overflow of any of the quantities f, delta, delta2, or delta3 

is to be understood to result in an appropriate call of STOP, 

followed by a transfer of control to the label escape; 

DIFFERENCES: delta := (a - b x incrx + y0p) x scl x incrx; 

delta2 := (2 x b - 6 x a x incrx) x sc2; 

delta3 := 6 x a x sc2 x incrx; 

ACTION: 

whichl := (!!_ xisx ~ 1 else 5) - incrx; 

which2 : = whichl + 8; 

which3 := whichl + 16; 

ysmin := ysmin x isc6; 

ysmax := ysmax x isc6; 

oksofar : = true; 

loop: x := x + incrx; 

delta2 : = del ta2 + del ta3; 

delta := delta + (delta2 + iscl x sign(delta2)) .:.. isc2; 

f := f + (delta + isc3 x sign(delta)) .:.. isc4; 

loop2: dif := f - y; 

absdif := abs(dif); 

small := absdif ~ isc5; huge := absdif > isc7; 

which := !£. small ~ whichl ~ if huge ~ which3 ~ which2; 

PLOT(ACT[if dif < 0 then which + 1 ~ which], 0, 20); 

c.o 
l-' 



~ 

comment PLOT CURVE seventh page; ---
if small then go to test; - --
y := y + isc6 x sign(dif); 

if oksofar I\ (y < ysmin V y > ysmax) then begin STOP(·tl-27:P; oksofar := false end; - -- --
if huge ~ ~ loop2; 

test: if oksofar I\ (x < xsmin V x > xsmax) then be!tin STOP{tl-27:~); oksofar := false end; - ----- --
if x + xsli then go to loop; - --

escape: if xisx ~ PLOT(x0 + x, y0 + y .:... isc6, 24) ~ PLOT(x0 + y .:... isc6, y0 + x, 24); 

PLOT(-1, 0, 25); 

!£_ I 2:, 3 ~ state32 := false; 
·t ~ ex1 : tv 

~ PLOTCURVE; 



real~ procedure MARKEDCURVE(X, Y, I); value X, Y, I; real X, Y; integer I; ----- - --
begin own real Xl, Yl; own integer i; own Boolean mark; ----- --- -- ---

MARKEDCURVE := PLOTCURVE(X, Y, I); 

if I < 1 then - begin mark := false; i := -abs(Y) end - - -
else begin if mark then PLOTTEXT(Xl, Yl, 0, 28, 0, true, i, {:~) ----- - - -

~ mark := true; 

Xl := X; Yl := Y 

end 

~ MARKEDCURVE; 

tD Vi! 

C..:> 



integer procedure SCALE(Ti,i,n,nint,mode,MIN,MAX,DL), ~ n, nint, mode; 
~ 

integer i, n, nint, mode; ~ Ti, MIN, MAX, DL; 

begin integer ni, nil; real MN, MX, temp, P, r, rl, min, minl; - --- -i:= 1; MN:= MX:= Ti, f£E. i:= 2 step 1 ~ n ~ 

begin temp:= Ti; if temp > MX then MX:= temp else if temp < MN then MN:= temp end; - - - -- - -
temp:= (MX - MN)/nint; P:= l01~entier(ln(temp)/ln(l0)); temp:= temp/P, rl := . 8; 

~ r:= 1, 1. 25, 2, 2. 5, 4, 5, 8, 10, 12. 5, 20, 25 do 

beirin if r < temp - -
then rl:= r 

else ~ 

end 

end; 

r:= r x P; min:= entier(MN/r) x r; !!_ min + nint x r 2:, MX then 

begin ni:= if mode = 0 ~ nint ~ entier((MX - min)/r + 1); 

if mode = 2 then 

end; 

~ rl:= rl x P; minl:= entier(MN/rl) x rl; 

nil:= entier((MX - minl)/rl + 1); 

if ni x r > nil x rl then - -
~ r:= rl; min:= minl; ni:= nil end 

end; 

~out 

rl:= r/P 

out: DL:= r; MIN:= min; MAX:= min + ni x r; SCALE:= ni 

end SCALE; 
----:-" 

w 
t.f::.. 



real procedure PLOTAXIS2(MIN,MAX,DL,horizontal,OTHER); value MIN, MAX, DL, horizontal, OTHER; ----- -
~ MIN, MAX, DL, OTHER; ~oolean horizontal; 

begin integer kl, k2, k3, pt, n, m, p, q, step, cycle, pos, i, j, j2, h, h6, h7, precision, itemp; --- . 

real factor, lnl0, eps, dl, temp, min, max, other, x, y; Boolean tick, neg; - ----
integer procedure logl0{x); real x; logl0:= entier(ln(x)/lnl0); 

~procedure S(U,i); value i; ~ U; integ-er i; S:= (U - PLOT(0,0,i + 4))/PLOT(0,0,i + 6); 

integer procedure zeroes(i); value i; inteQ.'er i; - -
begin integ-er il, k; 

if i = 0 

then zeroes:= k3 

else begin k:= 0; -
ZA: 

end 

end zeroes; 

il:= i ,:_ 10; :!!_ i = i1 x 10 ~ ~ i:= il; k:= k + 1; goto ZA end; 

zeroes:= k 

precision:= 7; h:= 4; h6:= 6 x h; h7:= 7 x h; lnl0:= ln(l0); tick:= false; 

~ 
CJ1 

if horizontal~ PLOTAXIS(MIN,OTHER,0,MAX - MIN,DL) ~ PLOTAXIS(OTHER,MIN,90,MAX - MIN,DL); 

AA: kl:= logl0(DL x 1. 01); k2:= kl + zeroes(DL x 101'{2 - kl)) - 2; eps:= . 5 x 10~2; 

kl:= logl0(abs(if abs(MIN) > abs(MAX) ~ MIN ~ MAX) + eps); 

k3:= kl - k2 + l; if k3 > precision then begin PLOTAXIS2:= OTHER; goto exit end; - -- - -
if (kl ~ 5 I\ k2 > 0) V (-1 > kl I\ -5 ~ k2) 

then begin pt:= kl; n:= 1; m:= kl - k2; factor:= 10 1~ (-pt) end --- -
else begin pt:= 0; n:= if kl < 0 then 0 else kl + 1; m:= if k2 < 0 then -k2 else 0; factor:= 1 end; 
....,_._ - - ---- - - - - -



~~ PLOT AXIS2 second page; 

q:= (MAX - MIN)/DL; dl:= DL/PLOT(0,0,if horizontal then 11 ~ 12); 

n:= n + (if m = 0 then 0 else m + 1) + (if MIN < -eps then 1 else 0); - -- - --
step:= (if horizontal then (n + 2) x 6 else 21) x h/dl + • 5; if step < 2 then goto gotthem; - - - - --

CYCLE: j := j2 := pos := -1; for i := 0 step 1 ~ q ~ 

bee:in itemp := zeroes(abs(MIN + i x DL) x 10 1~ (-k2)); if itemp > j /\ j2 > j then 
_.._ - - -
~ cycle := i - pos; if cycle < step 

end; 

~ j := j + 1 

else for i := cycle .:... 2 ~ -1 tmtil 1 do 

~ itemp := cycle .:... i; 

if cycle = itemp x i /\ itemp 2:. step ~ go to gothim 

end 

if itemp > j2 ~ begin pos := i; j2 := itemp ~ 

end; 

itemp := cycle; BB: itemp := itemp + cycle; if itemp , step ~ go to BB; 

gothim: temp:= (MIN + pos X DL); DL:= itemp x DL; 

MIN:= temp - pos .:... itemp x DL; MAX:= temp + (q - pos) .:... itemp x DL; tick:= true; ~ AA; 

gotthem: if horizontal 

~~min:= S(MIN,5); max:= S(MAX,5); other:= S(OTHER,6); y:= other - 8 x h; pos:= y - 14 x h end 

~ begin min:= S(MIN,6); max:= S(MAX,6); x:= other:= S(OTHER,5); pos:= x - (n + 2) x h6 end; 

~ 
so:, 



£.2!!1!!1~ PLOT AXIS2 third page; 
~ 

eps := eps x factor; ~ i:= 0 step 1 ~ q ~ 

bei:rin if horizontal -- -then begin x:= max - i x dl; if tick then begin PLOT(x,other,-2); PLOT(x,other + 25,-1) end end -- - -- --
~ ~ y:= max - i x dl; if tick ~ ~ PLOT(other,y,-2); PLOT(other + 25,y,-1) ~ end; 

temp:= (MAX - i x DL) x factor, neg:= temp < -eps; temp:= abs(temp); 

if temp < eps 

~ begin n:= 1; p:= 0 ~ 

else begin n:= logl0(temp + eps) + 1; p:= m; if n < 0 then n:= 0 end; -- - - -
j:= n + (:!.. p = 0 ~ 1 else p + 2); 

itemp:= x - (!f. horizontal then (j - (if neg then 1 else 0))/2 else j) x h6; 

if neg then FIXPLOT(itemp,y ,0,-h7 ,0,true,-1,n,p,-temp) 

~ ABSFIXPLOT(itemp,y,0,-h7 ,0,true,-1,n,p, temp); 

POWEROFTEN: !£.i = q .:..2 /\ pt 'f 0 ~ 

begin p:= if horizontal then 0 else 90; - - -- --
n:= logl0(abs(pt) + • 5) + 1; j:= (min + max - (n + 3) x h6)/2; 

·~ 

PLOTTEXT(!f. horizontal then j ~ pos, if horizontal ~ pos ~ j,p,-h7 ,0,true,-1,<l:x 10:j,); 

FIXPLOT(0,0,p,-h7 ,0,false,-1,n,0,pt); pos:= pos - 14 x h; pt := 0 

exit: 

end 

end for i; 

PLOTAXIS2:= if horizontal ~ PLOT(0,pos - 3 x h,8) ~ PLOT(pos + 3 x h,0,7); 

~ PLOTAXIS2; 



pr0€edure PLOTPICTURE(Xi ,Yi ,i,n,mark,deltamark,mode,XMIN ,XMAX,DX,xmax,xstring, YMIN, YMAX,DY ,ymax,ystring); 

~ n, mark, deltamark, mode, XMIN, XMAX, DX, xmax, YMIN, YMAX, DY, ymax; 

~ Xi, Yi, XMIN, XMAX, DX, YMIN, YMAX, DY; 

integer i, n, mark, deltamark, mode, xmax, ymax; 

strin~ xstring, ystring; 

begin .............. 

scalex: 

~x. Y, Xl, Yl; integer kg, kd, kx, ky, j; Boolean new, increase, curve; 

~~ ~XMN, XMX, XDL, YMN, YMX, YDL, P, Q, R; ~~ integer xint, yint, xmx, ymx; 

kg:= mode .:... 1000; mode:= mode - kg x 1000; 

kd:= mode : 100; mode:= mode - kd x 100; 

kx:= mode : 10; ky:= mode - kx x 10; new:= kg < 2; 

if new ;\ kx + 7 !hen 

be!!in --

end; 

if kx = 6 

then begin XMN:= XMIN; XMX:= XM.-\X; XDL:= DX; xint:= (XMX - XMN)/XDL end - -
else begin xint:= if kx > 2 

end; 

~ SCALE(if j = 1 ~ XMIN else XMAX,j,2,xmax/DX,kx - 3,XMN,XMX,XDL) 

~ SCAL E(Xi ,i ,n,xmax/DX,kx,XMN ,XMX,XDL); 

if kx = 1 V kx = 4 then xmax:= xint x DX 

P:= (XMX - XMN)/xmax; xmx:= xmax + 5200 

t.O 
GO 



£2!!1!!1~ PLOTPICTURE second page; 
~ 

scaley: if ky + 7 ~ 

begin if ky = 6 - -

end; 

then begin YMN:= YMIN; YMX:= YMAX; YDL:= DY; yint:= (YMX - YMN)/YDL end - - -
else begin yint:= if ky > 2 - -

end; 

~ SCALE(if j = 1 ~ YMIN ~ YMAX,j,2,ymax/DY,ky_ - 3,YMN,YMX,YDL) 

~ SCALE(Yi,i,n,ymax/DY,ky,YMN ,YMX,YDL); 

!f_ky = 1 V ky = 4 ~ ymax:= yint x DY 

Q:= (YMX - YMN)/ymax; ymx:= ymax + 250 

!f_ new V ky f 7 ~ 

begin if new then begin R:= XMN; PLOT(0,0,21); PLOT(0,2750,23) end; 
~ - -- -

PLOT(XMN - 5000 x P,YMN - 200 x Q,-21); PLOT(P,Q,22); PLOT(xmx,ymx,-23); 

R:= PLOTAXIS2(YMN ,YMX,YDL,false,R); PLOTTEXT(R,YMN ,90,28,0,true,0,ystring); 

R:= R - 84 x P; 

if new then - -
begin Y:= PLOTAXIS2(XMN ,XMX,XDL,true,YMN); PLOTTEXT(XMN ,Y,0,28,0,true,0,xstring); - - -
grid: if kg == 1 

then begin Xl:= XMN; Yl:= YMN end - - -
else ~ Xl:= XMX - 15 x PLOT(0,0,11); Yl:= YMX - 15 x PLOT(0,0,12) end; 

~ 



comment PLOTPICTURE third page; ---
increase:= false; 

horiz: ~ j:= 1 step 1 until yint Q£_ 

begin increase:= lincrease; Y:= YMN + j x YDL; -

end; 

if j = yint I\ kg = 0 ~ begin Xl:= XMN; increase:= ~ end; 

PLOT(if increase ~ Xl ~ XMX,Y,2); 

PLOT(if increase ~ XMX else Xl,Y,1) 

increase:= true; 

vert: for j:= 1 ~ 1 ~xint do 

begin increase:= lincrease; X:= XMN + j x XDL; -

end 

end if new -
~ if new V ky + 7; 

if j = xint I\ kg = 0 ~ begin Yl:= YMN; increase:= false end; 

PLOT(X,if increase ~ Yl ~ YMX,2); 

PLOT(X,if increase ~ YMX ~ Yl,l) 

curve:= deltamark ~ 0; deltamark:= abs(deltamark); 

if curve then ~ !f_ kd = 0 V kd = 2 

~ PLOTCURVE(0,0,1) 

else be2:in i:= O; PLOTCURVE(Xi,0,0) end --end; 

,_.. 
0 
0 



~!!1~ PLOT PICTURE fourth page; 

' 
j:= (if deltamark = 0 then -n ~ deltamark) - 2; mark:= -abs(mark); 

!£E. i:= 1 step 1 until n do 

begin j:= j + l; X:= Xi; Y:= Yi; 

if curve ~ PLOTCURVE(X,Y,2), 

if j = deltamark then begin j:= 0; PLOTTEXT(Xl,Yl,0,28,0,true,mark,<~p end; - --- - -
Xl:= X, Yl:=Y 

end; 

if curve then begin if kd < 1 -
then PLOTCURVE(0,0,3) 

; else begin i:= 0; PLOTCURVE(Yi,0,4) end 
§ end; -- -
::i:: -
~ if j + 1 = deltamark then PLOTTEXT(Xl,Yl,0,28,0,true,mark,<q-), 

PLOT(xmx,0 ,-2) 

► !end PLOTPICTURE; 
3. :r:-
~ m 
m 3: 
;a ~ 
0-
)> "' 
3: ft 

0 

2 
~ 
~ 

I-"" 

;2 



begin 
~ 

end 

££!!1!!1~ Sample program 1: Circle and Ellipse_; 

integer i, ~ twopi, breadth; 

twopi:= 2 x 3.141592654; 

for breadth:= 1400, 700 do 

bei:rin PLOTFRAME(-700 ,-700 ,700 ,700 ,breadth,1400); -- PLOTTEXT( 0 ,0 ,0, 70 ,0 ,true ,-5 ,<j::p; 
PLOTCURVE{i010,0,0); ~pent initial slope infinite; 

~ i:= 0 step 1 ~ 32 ~ PLOTCURVE(500 x cos(twopi x i/32),500 x sin(twopi x i/32),2); 

PLOTCURVE{i010,0,4); ~pent final slope infinite; 

box: PLOT( 500,-500,2); PLOT(-500,-500,1); 

PLOT(-500, 500,3); PLOT( 500, 500,3); PLOT( 500,-500,3); 

clear: PLOT( 700,-500,2) 

end; 

PLOT(-1,0,-4) 

,.... 
0 
N) 



begin comment Sample Program 2: Error Damping by PLOTCURVE; ----- ---

end 

~ rad, angle, sina, cosa, X; integer inc; 

PLOTFRAME(-100, -100, 2200, 1400, 2300, 1500); 

rad:= 3.141592654 / 180; X := 0, 

f2E. angle := 45, 90, 135 ~ 

begin PLOTTEXT(X, 400, 0, 28, 0, true, 0, <fangle of kink =:i,); - -
FIXPLOT(0, 0, 0, 28, 30, false, 0, 3, 0, angle); PLOTTEXT(0, 0, 0, 28, 0, false, 11, {:!,); 

MARKEDCURVE(0, 6, 1); 

f2!:. inc := 0 step 100 ~ 500 do MARKEDCURVE(X + inc, 500, 2); 

X := X + 500; 

sina := sin(angle x rad); cos a := cos(angle x rad); 

for inc := 100 step 100 ~ 500 do MARKEDCURVE(X + inc x cosa, 500 + inc x sina, 2); 

MARKEDCURVE(0, 0, 3); 

X := X + 300 

end for angle; 

PLOTTEXT(0, 200, 0, 56, 0, true, 0, {Sample Program 2: Error Damping by PLOTCURVE:j,} 

I-' 
0 
c.:i 



~ 

' 

££._ID£1~ Sample program 3: Demonstrate PLOTPICTURE with sin cos cot; 

real twopi, x, delta; integer i; Boolean first; real arrav X, cot[l:31]; - ------ --
twopi := 2 x 3.141592654; 

plotsin: PLOTPICTURE(if i = 0 ~ twopi .. else (i - 1)/32, !f_ i = 0 ~ twopi ~ sin(twopi x (i - 1)/32), i, 65, 

10, 4, 1363, 

0, 2, 0.25, 1600, ·txt, 
-1.01, 1.01, 100, 1200, •tprocedure is sin(2~). ~~ is cos(2~):t); 

plotcos: PLOT PICTURE(!!_ i = 0 then O ~ (i - 1)/32, !f_ i = 0 ~ 0 else cos(twopi x (i - 1)/32), i, 65, 

9, 4, 2377, 0, 0, 0, 0, {:I,, 0, 0, 0, 0, ·J:';t>; 

~ i := 1 step 1 ~ 31 do 

begin X [i] := i / 64; x := twopi x i / 64; 

• cot[i] := cos(x) / sin(x) 

~ for i; 

first := true; 

plotcot: ~ delta := o. 0, 0. 5, 1. 0, 1. 5 92. 

end 

begin PLOTPICTURE(X[i] + delta, cot[i], i, 31, 7, 4, if first ~ 2070 else 2077, 

0, 0, 0, , 0, ,t:I,, 
0, 0, 100, 1200, {real is cotan(2labelx) = cos(2labelx) /sin(2~):}); 

first := false 

end for delta 

I-' 

i: 



begin comment Sample program 4: Demonstration of PLOTT EXT, 1000 decimals of. pi in an exponential spiral; 
........,,.__!'> ---

integer j; ~ r, rl, phi, phil, deltaphi, c, p, rmax, b, arg, alpha, twopi, rad; 

~ procedure height; 

be!!in if j = 10 then begin j := 0; b := 0; goto exit end; 
--w..- - ----- .._ -

j := j + 1; deltaphi := c x exp(p x phil) / rl; phi := phil - deltaphi; r := rmax x exp(p x phi); 

b := sqrt(r ,1' 2 + rl ~ 2 - 2 x r x rl x cos(deltaphi)); arg := r x sin(deltaphi) / b; 

alpha := (phi + arctan(arg / sqrt(l - arg i 2))) x rad + 180; rl := r; phil := phi; 

exit: height:= b x 7 /6 

~ calculation of alpha and height; 

twopi := 2 x 3.141592654; rad:= 360 / twopi; p := .023; rl := rmax := 650; phil := O; j := 8; 

c := (6/7) X • 75 X rmax X (exp(twopi X p) - 1); PLOTFRAME(-1350, -1350, 1350, 1350, 2700, 2700); 

PLOTTEXT(rmax, 0, alpha, height, 0, true, 0, <~3. 

.... 
~ 

1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 

8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 

4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 

7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 

3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 

9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 

0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235 

4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 

5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8i42061717 7669147303 

5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989:~); 

PLOT(-1,0,-4) 

end 



begin comment Sample program 5: Draw all PLOTTEXT characters; 
----......,,_ - --

end 

integer boxes, box, i, j, X, Y, x, y, xl, yl, x2, y2; 

PLOTFRAME(0, -200, 10000, 1800, 10000, 2000); 

Y := 1540; for boxes := 30, 30, 22, 20 do 

begin X := 0; Y := Y - 385; for box := 1 step 1 until boxes do - - --
begin if box = 11 V box = 21 then X := X + 1050; for i := 0 step 1 ~ 7 ~ 

bee.'in y := Y + i x 35; yl := if i = 0 then y else y - 8; -- - - --
y2 := g_ i = 7 then y else y + 8; ~ j := 0 step 1 ~ 4 do 

begin x := X + j x 35; xl := if j = 0 then x ~ x - 8; 

x2 := g_ j = 4 then x ~ x + 8; 

PLOT(xl, y, 2); PLOT(x, y, 1); PLOT(x, yl, 3); 

PLOT(x, y2, 3); PLOT(x, y, 3); PLOT(x2, y, 3); 

~ for j 

end for i; 

X := X + 210 

end for box 

end for boxes; 

PLOTTEXT(0, 1155, 0, 245, 0, true, 0, <0123456789 

PLOTTEXT(0, 770, 0, 245, 0, true, 0, {AaBbCcDdEe 

for i := 2 step 1 ~ 10 ~ PLOTTEXT(0, 0, 0, 245, 

PLOTTEXT(0, 385, 0, 245, 0, true, 0, {FfGgHhiiJj 

PpQqRrSsTt ,. 10 :0[}tt:j,); 

UuVvWwXxYy :=:!,); 

0, false, i, <~l,); 

Zz+-x/J>2_ {); 

for i := 11, 12 do PLOTTEXT(0, 0, 0, 245, 0, false, i, <J::t); - - -
PLOTTEXT(0, 0, 0, 245, 0, true, 0, ·tKkLlMmNnOo =<:s_+l/\Vl=;:j,); PLOT(-1, 0, -4) 

I-' 
Ci:) 
O') 



'Table 1' 

'0' 1 0 0 1 0 6 1 7 3 7 4 6 4 1 3 0 
1 0 'A 0' 7 0 2 2 4 0 'AQ' 

'1' 2 0 2 7 1 6 
'2' 0 5 0 6 1 7 3 7 4 6 4 4 0 1 0 0 

4 0 
131 0 1 1 0 3 0 4 1 4 3 3 4 1 4 3 4 

4 5 4 6 3 7 1 7 0 6 'A3' 0 5 1 4 
0 3 0 1 'A8' 

'4' 3 0 3 7 0 3 4 3 
'5' 0 1 1 0 3 0 4 1 4 3 3 4 0 4 0 7 

4 7 
'6' 0 3 1 4 3 4 4 3 4 1 3 0 1 0 0 1 

0 6 1 7 3 7 4 6 
171 0 6 0 7 4 7 1 0 
'8' 'see 3' 
191 'see g' 
'a' 4 0 4 3 3 4 1 4 0 3 0 1 1 0 3 0 

4 1 4 4 'Aa' 4 7 'Ad' 
'b' 0 7 0 0 1Vo1 0 1 1 0 3 0 4 1 4 3 

3 4 1 4 0 3 'Ab' 0 1 'Ao' 
'c' 4 1 3 0 1 0 0 1 0 3 1 4 3 4 4 3 

'Ac' 4 2 0 2 'Ae' 
'd' 'see a' 
'e' 'see c' 
'f' 0 0 0 4 2 4 0 4 0 6 1 7 3 7 4 6 
'g' 5 3 'V9' 0 1 1 0 3 0 4 1 4 6 3 7 

1 7 0 6 0 4 1 3 3 3 4 4 
'h' 0 7 'V n r' 0 4 0 0 0 3 1 4 3 4 4 3 

'Ar' 4 0 'Ahn' 
Ii t 1 0 3 0 2 0 2 4 1 4 
'j' 'see y' 
'k' 1 7 1 0 1 1 4 4 2 2 4 0 
'l' 'see I' 
'm' 0 0 0 4 0 3 1 4 2 3 2 0 2 3 3 4 

4 3 4 0 
'n' 'see h' 
'o' 'see b' 
'p' 5 3 0 0 0 7 0 6 1 7 3 7 4 6 4 4 

3 3 1 3 0 4 
'q' 5 3 4 0 4 7 4 6 3 7 1 7 0 6 0 4 

1 3 3 3 4 4 
'r' 'see h' 
's' 0 1 1 0 3 0 4 1 3 2 1 2 0 3 1 4 

3 4 4 3 
't' 1 7 1 4 0 4 2 4 1 4 1 1 2 0 3 0 

4 1 
'u' 0 4 0 1 1 0 3 0 4 1 4 0 4 4 
'v' 0 4 2 0 4 4 
'w',c 0 4 0 1 1 0 2 1 2 3 2 1 3 0 4 1 

4 4 
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'x' 5 1 'V X (2) (3) (4)' 0 1 4· 5 2 3 0 5 4 1 
'AX X1 2 3 'A(2)' 'V - + (1)' 0 3 4 3 'A-' 
2 3 'A(3)' 2 5 2 1 'A+' 2 3 ','\(1) (4)' 

'y' 5 3 0 1 1 0 3 0 4 1 4 7 'Aj' 4 4 
3 3 1 3 0 4 0 7 

'z' 0 4 4 4 0 0 4 0 
'A' 0 0 0 4 4 4 4 6 3 7 1 7 0 6 0 4 

4 4 4 0 
'B' 0 0 0 7 3 7 4 6 4 5 3 4 0 4 3 4 

4 3 4 1 3 0 0 0 
'C' 4 5 4 6 3 7 1 7 0 6 0 1 1 0 3 0 

4 1 4 2 'AC' 4 3 3 3 'AG' 
'D' 0 0 0 7 3 7 4 6 4 1 3 0 0 0 
'E' 'see F' 
'F' 4 7 0 7 0 4 3 4 0 4 0 0 'AF' 4 0 

'AE' 
'G' 'see C' 
'H' 0 0 0 7 0 4 4 4 4 7 4 0 
I I' 1 0 3 0 2 0 2 7 1 7 'Al' 3 7 'AI' 
I JI 'see U' 
'K' 0 0 0 7 0 3 4 7 1 4 4 0 
'L' 0 7 0 0 4 0 '!\L' 4 7 0 7 'AO' 
'M' 0 0 0 7 2 4 4 7 4 0 
'N' 0 0 0 7 4 0 4 7 
'0' 'see L' 
'P' 0 0 0 7 3 7 4 6 4 5 3 4 0 4 'AP' 

3 4 4 3 4 0 'AR' 
'Q' 'see 0' 
'R' 'see P' 
'S' 0 1 1 0 3 0 4 1 4 3 3 4 1 4 0 5 

0 6 1 7 3 7 4 6 
'T' 2 0 2 7 0 7 4 7 
'U' 0 7 'VJ' 0 1 1 0 3 0 4 1 4 7 'AUJ' 
'V' 0 7 2 0 4 7 
'W' 0 7 1 0 2 4 3 0 4 7 
'X' 0 0 2 4 0 7 2 4 4 7 2 4 4 0 
'Y' 2 0 2 4 0 7 2 4 4 7 
'Z' 0 7 4 7 0 0 4 0 
'+' 'see x' 
'-' 'see x' 
'X' 'see x' 
'/' 0 0 4 7 
I. I 1 2 1 0 3 0 3 2 1 2 '/\. I 7 0 1 4 

1 6 3 6 3 4 1 4 'A:' 7 0 0 3 4 3 
'A:' 

',1\' 2 0 2 6 0 4 2 6 4 4 
'>' 'see >' 
'>' 0 5 4 3 0 1 'A>' 7 0 'V<' 0 0 4 0 

'A>' 7 0 'V<' 4 1 0 3 4 5 'A<<' 



109 

'=' 'see f' 
'<' 'see>' 
'<' 'see >' 
'f' 0 2 4 2 7 0 4 4 0 4 'A=' 7 0 4 6 

o, 0 'Af' 
'7' 0 4 4 4 4 2 
'A' 0 0 2 6 4 0 
'V' 0 6 2 0 4 6 
'7' 0 1 3 1 4 2 4 4 3 5 0 5 ,;-, 0 1 4 1 7 0 4 3 0 3 7 0 0 5 4 5 ,, 

'see ;' 
' ' ' 'see :' 

' ' 5 2 0 2 1 3 1 0 7 0 2 0 4 0 4 3 JO 

2 3 2 0 
' . ' 'see :' 
I el 5 2 1 0 3 2 3 4 1 4 1 2 2 2 1 0 , 

'A,' 7 0 1 5 1 7 3 7 3 5 1 5 'A;' , __ , 
1 2 1 1 0 1 0 2 1 2 7 0 2 2 4 2 .-
7 0 4 4 2 4 7 0 1 4 0 4 0 5 1 5 
1 4 

'(' 4 0 3 1 3 6 4 7 
I) I 0 0 1 1 1 6 0 7 
I [t 4 0 2 0 2 7 4 7 
1 ]' 0 0 2 0 2 7 0 7 
'{' 6 2 2 3 2 5 4 7 3 5 4 5 4 3 2 3 

'1' 6 2 0 3 1 5 0 5 0 7 2 7 2 5 0 3 
I (2)1 'see x' 
'(3)' 'see x' 
'(4)' 'see x' 
I (5)' 'see x' 
I (6 )t 2 1 2 3 0 5 2 3 4 5 2 3 
I (7)1 0 1 1V(8) 1 4 1 0 5 4 5 0 1 2 3 11\(7)(8) 1 

'(8)' 'see (7)' 
'(9)' 2 1 0 1 0 5 4 5 4 1 2 1 2 3 
'(10)' 2 1 0 3 2 5 4 3 2 1 2 3 
'(11)' 6 2 0 5 1 4 2 4 3 5 3 6 2 7 1 7 

0 6 0 5 
'(12)' 1 0 1 4 0 4 4 4 3 4 3 1 4 0 
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'Table 2' 

9 0 '0 0' 
3 12 '1 1' 
9 15 '2 2' 

13 24 '3 3' 
4 41 '4 4' 
9 45 '5 5' 

12 54 '6 6' 
4 66 17 7' 

17 24 '8 8' 
12 111 '9 9' 
10 70 'a 10' 
10 81 'b 11' 

8 92 'c 12' 
11 70 'd 13' 
10 92 'e 14' 

8 102 'f 15' 
13 110 'g 16' 

8 123 'h 17' 
5 131 'i 18' 
6 225 'j 19' 
6 136 'k 20' 
5 294 'l 21' 

10 142 'm 22' 
7 124 'n 23' 
9 83 'o 24' 

11 152 'p 251 
11 163 'q 26' 
6 124 'r 27' 

10 174 's 28' 
9 184 't 29' 
7 193 'u 30' 
3 200 'v 31' 
9 203 'w 32' 
6 212 'x 33' 

11 225 'y 341 

4 236 'z 35' 
0 0 36' 

10 240 'A 37 1 

12 250 'B 38' 
10 262 'C 39' 

7 274 'D 40' 
7 281 'E 41' 
6 281 'F 42' 

12 262 'G 43' 
6 288 'H 44' 
6 294 'I 45' 
5 347 'J 46' 
6 300 'K 47 1 

3 306 'L 48 1 

5 311 'M 49' ,, 
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4 316 'N 50' 
5 306 '0 51' 
7 320 'P 52' 

12 0 'Q 53' 
10 320 'R 54' 
12 330 'S 55' 

4 342 'T 56' 
6 346 'U 57' 
3 352 'V 58' 
5 355 'W 59' 
7 360 'X 60' 
5 367 'Y 61' 
4 372 'Z 62' 
0 0 
5 219 I + 64' 
2 219 65' 
5 213 'x 66 1 

2 376 '/ 67' 
14 378 ,. 68' 

5 392 '1 69' 
3 397 '> 70' 
6 397 '> 71' 
5 407 ,;- 72' 
6 401 '< 73' 
3 404 '< 74' 
8 407 'f 75' 
3 415 17 76 1 

3 418 'I\ 77' 
3 421 'V 78', 
6 424 17 79 1 

8 430 ,;- 80 1 

0 0 'goto 81' 
0 0 ,rr- 82' 
0 0 'then 83' 
0 0 'else 84' 
0 0 '~ 85' 
0 0 'do 86 1 

8 448 I 87' • 
5 378 I 881 

10 438 I 89' 10 

11 378 ,. 90' 
14 448 I • 91' , 
17 462 

, __ 
92' .-

0 0 'space 93' 
0 0 'step 94' 
0 0 -'until 95' 
0 0 'whlle 96' 
0 0 'comment 97 1 

4 ,, 479 ,r-- 98' 
4 483 ') 99' 
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4 487 I [ 100' 
4 491 '] 101' 
8 495 :t 102' 
8 503 103' 
6 219 'bee:in 104 2' 
6 213 I~ 105 3' 
9 213 'own 106 4' 

12 213 'Boolean 107 5' 
6 511 'intel!'er 108 6' 
6 517 'real 109 7! 
5 518 'iir'r'av 110 8' 
7 523 'switch 111 9' 
6 530 'procedure 112 10' 

10 536 'strilll!' 113 11' 
7 546 'label 114 12' 
0 0 'vaiue 115' 
0 0 'true 116' 
0 0 'false 117' 
0 0 1fab"" 118' 
0 0 'new line 119' 
0 0 120' 
0 0 I II 1211 
0 0 'stopcode Oi' ? 122' 



J. .&. J. J. J. J 

++ 
++ 
++ 

+ + .. 
+ + .. 
J. J. J 

rTTTTTT"1 

1-++++++ ➔ 
1't I I I I I I 
1-'lt-+++++-1 
LJ.J..&..&.J.J.J 

Table 3: Output from Sample Program 5 

,.,.,.[ill, 
1-++ + + 
I-++ + + 
I-++ + + 
LJ..&.J. J 

TTTTTT 

++ +++ 
++ +++ 
++ +++ 

I-++ 
I-++ 
I-++ 

,._ ...... .....,......,_, 
++++++ 
++++++ 
++++++ 

I-++ 
I-++ 
I-++ 

I-++ 
I-++ 
I-++ 

rTT..-,._,._,,_ 

I-++ 
I-++ 
I-++ 

+ + + .. 
+ + + .. 
+++-i 

r T T ...-..-..-..-.--

f- + + + + + + -1 
1-++++++ ➔ 
1-++++++-1 
LJ.J.J.J.J.J.J 

L .L .L ..L .L .J.. 

r"TTTTTT, 

1-++iiii] I-++ 
1-++ +++ 
LJ.J.J.J.J.J.J 

r"TTTTTT"1 

(++++++] 
- I I I I I I -

++++++ 
L.&.J..&..&.J.J.J 

I-++ 
I-++ 
I-++ 

1-++ +++-I 
1-++ +++-I 
I-++ +++-I 

I-++ 
I-++ 
I-++ 

T T T "I" T , 

TTTTTT"1 

++ +++-I 
++ +++-I 
++ +++-I 

++++++ 
++++++ 
++++++ 

I-++ 
I-++ 
I-++ 

,.,.,.,.,.,.,., 
I-++++++ 

++++++ 
LJ.J.J..&.J...&.J 

,.,.,.,.,.,.,. 
1-++++++ 
1-++++++ 
1-++++++ 

1..1..1..L.&.J.J.J 



I" "I" T "I" TT 

L .,_ .I. .I..,_.,_ J 

"I" "I" T "I" "I" "I", 

++++++-I 

++++++-I 
.,_.,_.,_.,_.,_.,_ J 

I-++ 
I-++ 
I-++ 

I-++ 
I-++ 
I-++ 
L .,_ J. .....a..,_.,_,__, 

r "I" T -,-_.,....._,_, __ 

I-++ 
I-++ 
I-++ 

I-++ 
,. + + 
1-++ 
L.L..,_....__.._..._ __ _ 

+ + +-1 
+ + +-I 
++ +-I 

r "I" T 

,. + + 
,. + + 
I-++ 
L .,_ J. 

H.4 

........... I.,. ... , 
1-+++ ++-I 
1-+++ ++-I 
I-+++ ++-I 
LJ..L..L. .L.J.J 

r T "I" T 

,. + + + 
,. + 
.. + + + 
L .,_ .,_ .,_ 

,. .,. .,. 
.. + + 
.. + + 
.. + + 
L J. .,_ 

T T , 

+ + i 
-f 

+ + -f 
J. .I. J 

r T "I" T "I" T "I", 
~:ill~ 
L .,_ .,_ .,_ J. .,_ .L. J 

rTITITI, .. + + + -f 
.. + + + -f 
.. + + + -f 
L .,_ .,_ .,_ J 

L .I. .,_ .,_ .,_ J 

l"TTmT, 
I-++ +++-I 

-1-++ +++-I 
1-++ +++-f 
L.1-.L. J.J.J.J 

rTTITI.,., I-++ + +-f 
.. + + + +-f 
,. + + + +-f 
L .,_ .&. J. .I. J 



rTTTTTT, 

t-++++++-1 
+ +++-I 
+++ +-1 
•••• .I 

TTTT, 

+ + + +-t 
+ + + +-1 

t-++++++-1 
I. •••••• .I 

r.,..,.,.,.,.,., 
t-++++++-1 

f 
I .1 I I I I ~ 
++++++ 
•••••• 

f
TTTTTTl 
++++++ 
I I I I I I 

t-++++++-t 
I. .I. .I. •••• .I 

l'"TTTTTT, 

t-++++++-t 
t-++++++-1 
hi I I I I 1,.-1 
✓ •••••• '\t 

111..."" T T ,. T T.)11 
t- 11 I I I I I" -I 
t-++++++-1 
t-++++++-1 
I. ••• .I. .I. .... .I 

rTTTTTT, 

~tn:ill 
I. .I. ........ .I 

r'TTTTTEJ 
t-+++++ -I 
1-+++++ 
1-++++i kl 
... .I. ..... .I. .i.'\t 

rTTTTTT"I 

t-++++m 
t-++++ + 
t-++++ 
I. .I. .I. .I. .I. .... .I 

rTTTTTT, 

t-++++~ 
1-++++ + 
1:- + + + + 
I. • .I. .... .I. .I. .I 

rTT~TT, .. + + + + -I 
.. + + -I 
.. ++ + + -I 
L .J.. ..L ..L. J. J. J .. ,.ffiH, .. + + + + -I 
I-+ + -I 
.. + + + + -I 
I. .I. .I 

r T 

I-+ 
I-+ 
I-+ 
I. .I. 

r T tifilT T , I-+ + -I 
I-+ + + -I 
I-+ + -I 
L ..L ..L .J. _,_ .J 

l'"T~T "I I-++ + -I 
.. + -I 
I-++ + -I 
I. .I. ... .&. .I 

I" T T T 

I-+++ 
I-+ 
I-+++ 
I. .I..&. .... 

T T , 

++-I 
-I 

+ +-I 
•• .I 
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l"TT~TT I-++ -I 
t-++ +++-I 
.. ++ 
I. • .&. ....... .I. .I 

l'"TTTTTT"I 

0
+++++-1 
+++++-1 
+++++-I 
.I. .......... .I 
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Output from Sample Program 1 



~ 

angle of kink = t- 45 ° angle of kink = t- 90 ° angle of kink = t-/35 ° 

Sample Program 2~ Error Damping b~ PLDTCURVE 

1-l 
k-" 
-.::i 
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Output from Sample Program 3 

0 X 
C\I 0 (D (0 ...,.. C\I 0 C\I ...,.. (0 CD 0 C\I 

a a a a a a a a IJ II IJ IJ - ..- I I I I - -I I 

(XllG) soo St l!I d (XllC:) UtS St ♦ 

C\I 0 (D (0 ...,.. C\I 0 C\I ...,.. (0 (D 0 C\I - I I I I .-
I 

(XllG)UtS/(XllC:)SOO = (XllC:) uo1-oo st X ,, 
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