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1. Lemma 2.1 of chapter 2 of this thesis can easily be generalized to
higher dimensions.

2. Consider chapter 5 of the thesis. Suppose that A is periodic and
Lipschitz, and (5.4) holds. Let A, s be as in (5.91). Then, for any
§ in a neighborhood of k7 and any ¢’ in a neighborhood of I7, with
max(k,l) = o(|Wy]|) as n — oo, we have that

P (An,éa An,é’) -5 1

as n — oo, |0 — kr| = 0, and |¢' — I7| — 0. Here p denotes the
correlation coefficient.

3. Let the conditions of Proposition 2 be satisfied and let B, 5 be as
in (5.92). Then, for any J and ¢’ as in Proposition 2, we have that

p(BnsyBug) =0 <\/min(k,l)/max(k,l)> ,

asn — 0o, |d — k7| = 0, and |’ — I7| — 0.

4. Let m = m, = O(|W,[), for some 0 < ¢ < }. Define
m
~ %
Z k,n>
k=1
where 7} is the estimator defined on page 104 of this thesis. Sup-

pose that the conditions of Theorem 5.4 are satisfied. Then 77, ,
has smaller asymptotic variance than ;*n

oot
LN m

5. The second names of Balinese children are periodic with period 4.
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Chapter 1

General introduction

The topic of this thesis is nonparametric estimation of the global and local
intensity of a cyclic Poisson process with unknown period. It is supposed
that only a single realization of a Poisson process is observed. Since a
cyclic Poisson process is a special case of an inhomogeneous Poisson pro-
cess, we begin with presenting the basic properties of an inhomogeneous
Poisson process in section 1.1. The description of a cyclic Poisson process
is briefly discussed in section 1.2. In section 1.3, we present an overview
of the thesis, while in section 1.4 we discuss briefly some related work in
the area of estimating Poisson intensity functions.

1.1 Inhomogeneous Poisson process

Let X denote an inhomogeneous Poisson point process on the real line
R with absolutely continuous o-finite mean measure p w.r.t. Lebesgue
measure v and with (unknown) locally integrable intensity function A :
R — R*' U {0}, ie., for any bounded Borel set B, we have u(B) =
S A(s)ds < oo. Let (2, A, P) be a probability space, and let us suppose
that, for some w € Q, a single realization X (w) of the Poisson point
process X is observed, though only in a bounded interval (called window)
W C R. For any set B C R, X(B) denotes the number of points of
X in B; pu(B) = EX(B), for any Borel set B, where E denotes the
expectation. The Poisson process X can be characterized by the following
two properties:

(a) P(X(B)=k) = %B!)ke*“(’?), k = 0,1,..., for each Borel set B
with pu(B) < oc.

(b) For each positive integer m and pairwise disjoint Borel sets By, Bo,
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... By, with pu(Bj) < o0, j =1,...,m the random variables X (B),
X (B3), ..., X(By,) are independent.

We refer to Kingman (1993) for an excellent account of the theory of
Poisson processes.

This study is concerned with the statistical problem of estimating the
‘global’ and ’local’ intensity, using only a single realization X (w) of the
Poisson point process X observed only in W. The intensity function A at
a given location s € R, i.e. the local intensity, can also be expressed as

A(s) Blf{r.i}P(X(B) 1)/|B| (1.1)
provided X is continuous at s (Kingman (1993), p. 13). Here B | {s}
means that the Borel set B shrinks to {s}; |B| denotes the Lebesgue
measure of a Borel set B and {s} is the singleton set, which consists of
the point s only.

Since A is locally integrable, the Poisson point process X always places
only a finite number of points in any bounded subset of R. Hence, in
order to make consistent estimation possible, one must accumulate the
necessary empirical information. One way to achieve this is by adopting
a framework called ’increasing domain asymptotics’ (see, e.g., Cressie
(1993), p. 480). We let the window W depend on n = 1,2,..., in such a
way that

|Wy| — o0, (1.2)

as n — oo, where |W,,| = v(W,,) denotes the size (or the Lebesgue mea-
sure) of the window W,,. The global intensity 6 of the process X, whenever
well-defined, can be given by

6= lim EX(Wn)

1.3
n—00 |Wn| ( )

In this set up, a necessary condition for the existence of a consistent
estimator is that (cf. Lemma 1.1)

/ A(s)ds = oo, (1.4)
R

ie. u(R) = EX(R) = oo, which implies that there are, almost surely,
infinite number of points in R placed there by the point process X. If,
on the other hand, EX(R) < oo, then there are, almost surely, only a
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finite number of points in R placed there by the point process X, and
consistent estimation is clearly impossible.

The condition (1.4) also shows up in Rathbun and Cressie (1994),
Helmers and Zitikis (1999), and Helmers and Mangku (2000), as a neces-
sary condition for consistency.

Lemma 1.1 For any Poisson point process X with mean measure p, if
uw(R) = EX(R) = oo then for P-almost all w the point pattern X (w)
contains infinite many points, i.e. X(R) = oo. On the other hand,
if w(R) = EX(R) < oo, then the probability that X (w) contains only
finitely many points is equal to 1.

Remark 1.1 Since in (1.2) we only assume that |IW,| = oo as n — oo,
we also need that (1.4) holds true if for example we replace R by R or
by any unbounded Borel set. However, the proof of Lemma 1.1 remains
valid if R is replaced by R* or by any unbounded Borel set. O

Proof: Suppose A, Ao, ... are disjoint measurable subsets of R such

that U2, A; = R. Then, we can write

o0

XR) =) X(4). (1.5)

i=1

By Fubini’s theorem for nonnegative functions, we have that
o0 o0
EX(R) =) EX(4) =) n(4). (1.6)
i=1 i=1

First, we will show that EX(R) = oo is equivalent to >_>°, P(X(A4;) >
1) = oo. To prove this, we first write EX(R) = 32, fO“(Ai) dt and

iP(X(Ai) > 1= f: (1 - e*““‘”) = i/w‘” e~tdt. (1.7)
i=1 i=1 70

=1

Let K be a positive real number. We consider two cases, namely, (i) there
are infinitely many ¢ such that u(A;) < K, and (ii) there are infinitely
many ¢ such that p(A4;) > K. Note that, if EX(R) < oo then we are not
in case (ii). For case (i), (taking only 7 such that u(A;) < K), we have

. i /M(Ai) i m(A) , f: n(A;)
e~ dt < / e 'dt < / dt (1.8)
=170 =170 =170 ’
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while for case (ii), (taking only ¢ such that p(A4;) > K), we have

0o K 00 n(A;) s n(Aq)
Z/ e—fdt§Z/ e tdt < Z/ dt. (1.9)
i=1 70 i=1 70 =170

Because Y ;2 fOK e tdt =32, (1 - e*K) = 00, we also have that,

if }2°, P(X(4;) > 1) < oo then we are not in case (ii). Hence we have
that EX (R) = oo is equivalent to > 72, P(X(A4;) > 1) = co. Because A;
and A; are disjoint for all i # j, we have that X (A;) and X (A;) are inde-
pendent, for all i # j. Therefore, by the Borel-Cantelli lemma, we have
that EX(R) = oo is equivalent to P(X(R) = oco) = 1. This completes
the proof of Lemma 1.1. O

The proof of Lemma 1.1 (generalizing a statement of the author for
the case of bounded \) is due to R. Zitikis.

Though (1.2) and (1.4) are necessary conditions for consistent esti-
mation, one generally requires also some information about the shape of
the intensity function in order to be able to estimate 6 or A(s), at a given
point s, consistently. Parametric models, e.g. the case where A(s) has
exponential quadratic and cyclic trends (with known frequency) are par-
ticularly convenient (cf. Helmers and Zitikis (1999)), but nonparametric
intensity functions can also successfully treated. For example, if we know
A(s) to be purely cyclic (with unknown period), one can estimate 6 and
A(s) consistently, without any further information about the shape of
the intensity function. In fact, our aim in this study is to propose and
study consistent estimators for @ and A(s) for the important case of cyclic
Poisson process (with unknown period 7). To achieve this goal one also
requires a consistent estimator for the period 7, while the rate at which
one can estimate 7 should be sufficiently fast.

1.2 Cyclic Poisson process

In this study we consider the special case of an inhomogeneous Poisson
point process, namely cyclic Poisson point process, that is a Poisson
point process where its intensity function X is cyclic (periodic) with period
7€ RT, ie. we have

As+ kT) = A(s) (1.10)

for all s € R and k € Z. If it is not stated otherwise, we consider
throughout the case when we do not know the period 7.



(&3]

1.3 Overview of the thesis

The motivation to consider a cyclic Poisson process is twofold. First,
in a cyclic Poisson process, the limit in (1.3) is well-defined, and further-
more, we can write the global intensity 6 more explicitly as (cf. (2.2))

g= l/ A(s)ds, (1.11)
T Ju,

where U, denotes any interval of length 7. Second, and more importantly,
periodicity of A together with (1.2) makes it possible to obtain consistent
estimators of A at a given point s, using only a single realization X (w).
This is evident, because, since A is periodic, we not only can use the
information in a neighborhood of s € W,, to estimate \ at s, but also
the information in a neighborhood of s + k7, for any integer k, provided
s + kT € W,. Indeed, without imposing a ’structural property’ like for
instance ’periodicity’ on A, consistent estimation of A at s using only a
single realization X (w) is clearly impossible, even though (1.2) holds true.

We also note that, for a cyclic Poisson process, condition (1.4) is
automatically satisfied, provided # > 0. This implication also holds true
if R in (1.4) is replaced by R or by any other unbounded interval. Due
to this reason, throughout this thesis, we assume that

0> 0. (1.12)

There are potential applications for the purely cyclic Poisson model
(1.10). It has been observed that solar storms are cyclic or, in other
words, periodic with peaks occurring about every 11 years; the last peak
of storm activity occurred some time between 1989 and 1992. During a
peak, a number of large geomagnetic storms can occur. Electrical utilities,
especially those located in northern latitudes, are highly susceptible to
these storms. It is therefore hoped that the occurrence of the solar storms
can be accurately predicted so that operating precautions can be taken to
protect the supply of electricity (cf. Molinski (2000)). Other applications
can be found in modelling the arrival of patients at an intensive care unit
of a hospital (cf. Lewis (1972)). We also refer to page 3 of Kutoyants
(1998) for some examples of cyclic intensity functions occurring in applied
problems.

1.3 Overview of the thesis

This study is concerned with nonparametric estimation of the global in-
tensity, the intensity function at a given point, and the period of a cyclic
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Poisson point process, using only a single realization X (w) of the cyclic
Poisson process X observed in an interval (called window) W,,. An esti-
mator of the global intensity € is given by

O = X(Wn)/‘Wnla

where for any interval A, X (A) denotes the number of points in A, and
|A| denotes the size (Lebesgue measure) of A. An estimator of the period
T is given by
Tp = argmin Qp, (0
n g e Qn(9),

where O denotes the parameter space, © C RT, and for any 6 € ©, Q,,(9)
is given by

1 Nys

Nns

1
8 = S| XWss) = > X(Wsh) |
Q ( ) an| = ( (),) Nnd ( 0])

with N,,5 = [|[W,|/d], which denotes the (maximum) number of adjacent
disjoint intervals Us; of length ¢ in the window W;,. A kernel estimator
of the intensity A at a given point s is given by

. B o= 1 = (s+kTy .
/\n,K(S) = — Z h; . K <_(h—)> ‘X (dl),

where h,, is a sequence of positive real numbers converging to 0, and K
is a function K : R — R, called the kernel.

Let s;, 1 = 1,..., X(W,,w), denote the locations of the points in
the realization X (w) of the Poisson process X, observed in window W),.
Here X (W,,,w) is nothing but the cardinality of the data set {s;}. Set
X(W,,w) = m. Let now 8, i = 1,...,m, denote the location of the
point s; (i = 1,...,m), after translation by a multiple of 7,, such that
8 € B; (s), foralli =1,...,m, where B; (s) = [s — %75 + %) Let k,
be a sequence of positive integers converging to oo as n — 0o. A nearest
neighbor estimator of the intensity A at a given point s is then given by

1 ;Ank'n
)\, 8) = s
n’(S) 2|W7n||§(kn) '9|

if X(W,) > k, and A, (s) = 0 otherwise. Here |3(k,.) —s| denotes the k;-th
order statistics of [3; — s|,..., |8, — s|, conditionally given X (W,,) = m.

In chapter 2 we study asymptotic properties of the estimator 0, of
the global intensity 6. If X is assumed to be periodic and locally inte-

grable, we have the following results: (i) 6, is asymptotically unbiased
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and weakly consistent in estimating 6, (ii) 6, converges completely to 6,
as n — oo, which also implies strong consistency of 6, in estimating 6,
and (iii) |[W,|"/2(0,, — 0) =3 N(0,0), as n — oo, where N(0,0) denotes a
normal random variable with mean zero and variance 6. Furthermore let,
conditionally given X (W,,), X*(W,,) denote a realization from a Poisson
distribution with parameter X(W,,). If X(W,,) happens to be equal to
zero, we set X*(W,,) = 0. Define % = X*(W,,)/|W,|. Then we also have
(iv) |W,|'/? (é; - én) L} N(0,0), as n — oo, in P-probability.

In chapter 3 we investigate asymptotic properties of the estimator
j‘n, Kk (s) of X at a given point s. Suppose that X is periodic, locally inte-
grable, and s is a Lebesgue point of A\. Then we have the following re-
sults: (i) A,k (s) is a consistent estimator of A(s). (ii) An.i () converges
completely to A(s) as n — oo, which also implies strong consistency of
/A\n’K(s) in estimating A(s). (iii) Var(j\,LK(s)) converges to 0 as n — oo,
provided |Wy,|h,, — oo as n — oo. Furthermore, we have an asymptotic

approximation to the variance of A, x as follows

I TA(s) ! 2 g !
Var ()\n,K(S)) = m/—l K (mjddn +-a W ’

as n — oo, provided X is bounded. (iv) j\n, K (8) is asymptotically unbiased
in estimating A(s). If, in addition, A has finite second derivative \” at s,

then we have an asymptotic approximation to the bias of A, x as follows

" 1
(B () = Ao)) = X2 / P K (2)dz + o(h2) + O(Wa| ™)

as n — oo. An interesting feature (cf. section 3.2.3) of our results in this
chapter is that the kernel K has to be a ’smooth’ one, otherwise the effect
of estimating 7 by 7, in 5\,”\(9) may destroy the consistency properties
of our kernel estimator of A(s).

Parallel to chapter 3, in chapter 4 we investigate the asymptotic pro-
perties of the nearest neighbor estimator j\n(s) of A at a given point s.
Suppose that X is periodic, locally integrable, and s is a point at which A
is continuous and positive. Then we have the following results: (i) A, (s)
is a consistent estimator of A(s). (ii) A,(s) converges completely to A(s)
as n — oo, which also implies strong consistency of j\n(e) in estimating

A(s). (iii) Var(A,(s)) converges to 0 as n — oo, and furthermore we have
an asymptotic approximation to the variance of \,, as follows

Var () = 52 40 (1),
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as n — 00. (iv) An(s) is asymptotically unbiased in estimating A(s).
If, in addition, A has finite second derivative A" at s, then we have an
asymptotic approximation to the bias of A, as follows

. X s}k K2 1 1
n - A S = P n " B P P
(BAnte) =3)) = iz +© (anV MANTATET

as n — 0o, where ¢ is a positive real number which can be chosen

arbitrarily small.

In a way the only thing we do in chapter 3 is to provide conditions
on the rate of convergence of 7,, approaching 7 and on the kernel K, such
that the asymptotic properties of our kernel estimator of A we discuss are
identical to those that would be obtained if the period 7 were known. A
similar remark applies to the results on nearest neighbor estimation in
chapter 4.

In chapter 5 we focus on estimation of the period 7. In general, 7
can be estimated as follows: first estimate k7, for some positive integer k
satisfying k = k,, = o(|W,,|), by k7, x, which is given by

k%, . = i )
Ty = 918 Il Qn(6),

where 7, denotes the resulting estimator of 7. Here O = (Tk,0, Tk,1) 18
an open interval, such that no other multiple of 7 than k7 is contained
in ©. Suppose that X is periodic (with period 7) and bounded. Then,
for each positive integer k satisfying k = k,, ~ |W,,|%, for some 0 < ¢ < %,
we have the following results: (i) 7, is weakly and strongly consistent in
estimating 7. (ii) If v < i + ¢, we have that |W,|7(7, x — 7) converges in
probability and completely to zero, as n — oo. (iii) If, in addition, A is
Lipschitz, then for any v < %, we have |Wy |7 (Tgn — T) 20, as n — o0.
In order to obtain asymptotic normality, we need to modify our original
estimator 7, ; and obtain a modified estimator %,j’n of 7. For each positive

integer k satisfying k = k,, = o(|W,,]), define

Ten = porg min Qn(9),
where for any § € O, QX(0) = Qn(d) + X(W,, \ Wn,,)|Wn| . Note
that X (W, \ Wx,,) denotes the number of points in a realization of X
inside the window W,,, which are not used in the construction of (), (0).
If X is periodic and Lipschitz, then for each positive integer £ satisfying
k = ky ~ |[Wy|¢, for some 0 < ¢ < %, we have

|Wn|1/2 (%;:n - T) - N (O,Uf) = (k.—l/Q) 7
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as n — oo, where

5 6 93

= TTNs) — 0)2ds | 4(20k7 + D)(J (A(s) — 0)2ds)?”

Tk
and N(0,0%) denotes a normal r.v. with mean zero and variance ai.

1.4 Related work

In this section, we briefly review some related work. To begin with,
Rathbun and Cressie (1994) investigated maximum likelihood estimators
and Bayes estimators for regular parametric models with unknown finite
dimensional parameter. Helmers and Zitikis (1999) consider a uniform
kernel type estimator for A(s) in the case where X is a parametric function
of spatial location. These authors focus their attention to the case that
X is a Poisson process on [0, 00) with intensity function

A(s) = exp {a + Bs + s + K sin(wgs) + K» cos(wos)} 5

s > 0, where «, 3,7, K1, and Ko are unknown parameters, and wy is a
known ’frequency’. This model is of importance in diverse fields of ap-
plied mathematics. Helmers and Zitikis (1999) obtain Ls-convergence of
their estimator, as (1.2) holds. Their estimation method will be especially
appropriate when the number of parameters is quite large and maximum
likelihood estimation is difficult even numerically to carry out. Doro-
govtsev and Kukush (1996) and Kukush and Mishura (1999) investigated
consistency properties (including rates of convergence) of a nonparame-
tric MLE of A, the intensity function of a cyclic Poisson process X, with
known period 7. To do this, it is assumed, in addition, that A[[0,7), the
restriction of X to [0, 7), belongs to a Sobolev space of functions on [0, 7).
Also an algorithm for the computation of a nonparametric MLE is given.
The paper by Dorogovtsev and Kukush (1996) restricts attention to the
case that X is Poisson, while in Kukush and Mishura (1999) X may con-
sists of three components: a drift, a diffusion and a cyclic Poisson process
with known period 7.

In all these papers and also in this thesis A is assumed to be fixed, but
the observation window W,, increases, that is (1.2) holds. This approach
appears to be a practical one, since the size of W, is often under control
of the researcher. In contrast, the ’infill asymptotic’ framework, when the
number of points observed in a fixed window W increases (A = A\, — 00),
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seems more restrictive for applications. In this setup one typically ob-
serves many realizations of a Poisson process X. For instance, Cowling,
Hall, and Philips (1996) consider the latter setup and develop bootstrap
methods for constructing confidence regions for the intensity function of
a nonstationary Poisson process. In section 8.3.2 of Davison and Hink-
ley (1997) resampling methods for inhomogeneous Poisson processes are
discussed within ’infill asymptotic’ framework. The same type of asymp-
totics is employed in section 4.1 of Reiss (1993), where kernel type esti-
mation of smooth Poisson intensity function is considered (cf. also Ellis
(1991)). We also refer to chapter 6 of Karr (1986), section 8.5.1 of Cressie
(1993), section 13.3.4 of Stoyan and Stoyan (1994), and to Kutoyants
(1998) for a recent account of the statistical theory of estimating Poisson
intensity functions.

An important paper in the context of the problem of estimating 7,
the period of a cyclic Poisson process, is Vere-Jones (1982). He considers
the problem of estimating the frequency wyp in a cyclic Poisson process X
with intensity function

A(s) = Aexp {pcos(wos + @)},

where A > 0, p > 0, wy > 0, and ¢(0 < ¢ < 27) are unknown parameters.
Vere-Jones (1982) established consistency of a periodogram estimate, de-
rived asymptotic normality, and showed that the periodogram estimate
reduces to a maximum likelihood estimate (of wp) in the specific para-
metric model he considers. A rate of almost sure convergence of order
o(n~1) is also obtained, where (0,n) denotes the observation interval (cf.
also chapter 5 of this thesis).



Chapter 2

Estimation of the global intensity

2.1 Introduction

In this chapter we focus on estimation of the global intensity 6, using
only a single realization X (w) of the cyclic Poisson process X observed in
W,,. This chapter is a revised version of section 2 of Helmers and Mangku
(2000). An estimator for this parameter of interest is given by

b, = X (W)/|Wal. (2.1)

One way to obtain the estimator 6, in (2.1) is as follows. If the Poisson
process X is homogeneous, pu(B) = A\gv(B) = \o|B|, for some constant
Ao > 0 and all Borel sets B, the local intensity is constant, i.e. A(s) = Ao
for all s € R. The global intensity 6 is precisely equal to Ag in this
very special case, and the maximum likelihood method can be applied to
estimate 6. Let s;, i = 1,..., X(W,,) denote the locations of the points
in the realization X (w) of the Poisson process, observed in W,,. Then,
the likelihood of (s1,...,sxw,)) is equal to

X(Wy)
_ Xlahds . ,
L,=e fw,, (s)ds I l /\(51) o= €7A0|Wn\/\é\,(wn)7
=1

where X (W,,) denotes the observed number of points in W,, (cf. Cressie,
(1993), p. 655). Maximizing In L,, gives us:
X (W)

=0
+ " )

dinL, d
S = (Ao Wal + X(Wa) Indo) = —

Do dho W

which directly yields the MLE 6,, = X (W,,)/|W,]| of Ao and hence of 0 as

well.

11
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In Lemma 2.1 we prove that for the cyclic Poisson process ¢ is well-
defined by (1.3) and can now also be written as

1
0=- /u, A(s)ds, (2.2)

T

where U, denote any interval of length 7. In Lemma 2.2 we will show
that 6,, is a consistent estimator of the global intensity 6 of X. Complete
convergence (implying strong consistency) of 6, is established in Lemma
2.3, while the asymptotic normality 0,,—0, properly normalized, is derived
in Theorem 2.4. A bootstrap CLT for én — 0 is established in Theorem
2.5.

2.2 Consistency

Lemma 2.1 If X is periodic (with period ) and locally integrable, then

EX(W,) 1

0, = = — / A(s)ds — 6, (2.3)
|Wn| |W”| W (

as n — oo, with 6 as in (2.2). Hence 0, is asymptotically unbiased in
estimating 0.

Proof: Let N,, = [M] Let Wy, . denote an interval of length 7N,

T

contained in W,,, and R,, = W,,\ Wy, _. Then we can write
Wn, | 1 [ 1 /
Op = 5t A(s)ds + A(s)ds. (2.4)
lwn| |WNM| JWnN,, » |W/n| Ry
First note that
1
T )\(s)(ls =46 (25)
IWN,.| Wi, r

because A is periodic with period 7. Since |R,,;| < 7 for all n, we have
that

II/VNnr| _ “/I/’IL' - |Rnr|
|VVn‘ |VV,,1|

- 1, (2.6)

as n — 0o. Because A is locally integrable and |R,,.| = O(1), as n — o0,
we also know that

/ A(s)ds = O(1), as n — <.
Ry~

Hence, the first term on the r.h.s. of (2.4) converges to 6, while its second
term (by (1.2)) converges to zero, as n — oo. This completes the proof
of Lemma 2.1. O
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Lemma 2.2 If \ is periodic (with period T) and locally integrable, then
6, 5 0, (2.7)
as n — 0o.
Proof: To prove (2.7) we must show, for each € > 0,
P(|0, — 0] > ¢) = 0, (2.8)

as n — oo. Since X (W,,) has Poisson distribution with parameter
w(Wn) = [y, A(s)ds, we know that

EX(W,) =Var(X(W,)) = A(s)ds.
Wr’ll
Then we have
. 1 A 1 '
E#,) = — As)ds, and Var(d,) = —/ A(s)ds.
(6n) A (s) (0n) ol . (s)

Now we write

P (|é,1 —4 > e) <P (|é,1 —Ef,| + |Ef, — 0] > e) .

By Lemma 2.1, for sufficiently large n, we have |Eé,L — 6| < ¢/2. Then,
for sufficiently large n, we have

P (|é,,, —4 > e) <P (|é,, — Eb,| > ;) . (2.9)

By Chebyshev’s inequality and Lemma 2.1, the r.h.s. of (2.9) does not
exceed

4Var( An) 4 4
= 8)ds = ——( + o(1 :
2 2|W, |2 / Aiglae 62|Wn|(9 o), (2.10)

€

as n — oo. By (1.2), the r.h.s. of (2.10) is o(1), as n — oo. This
completes the proof of Lemma 2.2. O

Throughout this thesis, for any random variables Y,, and Y on a proba-
bility space (2,4,P), we write Y, 5 Y to denote that Y, converges
completely to Y, as n — oo. We say that Y,, converges completely to Y
if 00, P(|Y, — Y| > €) < o0, for every € > 0.
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Lemma 2.3 Suppose that X is periodic (with period T) and locally inte-
grable. If, in addition, for each € > 0,

Zexp{—eIVVnH» < 1005 (2.11)

n=1
then, as n — oo,

O < 0. (2.12)

Proof: To establish (2.12) we must show
P (|é.,l —4| > f) < o0, (2.13)
n=1

for each € > 0. Now, recall from the proof of Lemma 2.2 that, for suffi-
ciently large n, the probability on the Lh.s. of (2.13) does not exceed
that on the r.h.s. of (2.9). Then, to prove (2.13), it suffices to check that
the probability on the r.h.s. of (2.9) is summable. By an application of
Lemma A.1 (see Appendix), and with 6,, as in (2.3), the probability on
the r.h.s. of (2.9) can be bounded above as follows.

P (|én _Ef,| > %) —p (|W,L|*1|X(Wn) —EX(W,)| > ;)

=P ((EX(WYn))l/ZLY(VVn) - E‘Y(vvnﬂ > Wl%)

4 W, 2(EX (W)~ W
£ Bisgn, § - -9 _ . (2.14
= eXp{ 2+621|W’,,L|(EX(W',L))‘1} eXp{ 80, +2e} (214

For sufficiently large n, since by Lemma 2.1 we have 6, = 6 + o(1), as
n — 0o, the r.h.s. of (2.14) does not exceed 2 exp{—(€?|W,|)(160-+2¢) ' }.
By assumption (2.11), we can conclude that the quantity on the r.h.s. of
(2.14) is summable. This completes the proof of Lemma 2.3. O

In view of Lemma 2.3, we may replace definition (1.3) of the global in-
tensity 6 by the following one

X Yn
6 = lim (W)

n—oo  |W,|

a.5.[P] (2.15)

provided (2.11) holds. Note that (2.15) is similar to the notion of global
intensity described in (8.3.22) of Cressie (1993, p. 629).
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2.3 Asymptotic normality

Asymptotic normality of FA)”, properly normalized, is established in the
following theorem.

Theorem 2.4 If A is periodic (with period ) and locally integrable, then
(W2 (9 _9) 4 N(0,6), (2.16)
as n — 00.

Proof: First we write

W, |1/2 (9 - 9) = [Wa|!/? (9 = 9) + W |28, - 8), (2.17)

where 6, is given by the L.h.s. of (2.3). Then, to prove (2.16), it suffices
to check

[Wal' 726 = 6) 5 N(0,6), (2.18)
and

[Wa|'/2(8, — ) — 0, (2.19)

as n — 0o.
First we prove (2.18). The Lh.s. of (2.18) can be written as

W, |12 X(Wa) for )\,(S)ds
|Wn| |[/[/n|

& \s)ds)'? [ X(W,) — an A(s)ds
|VV71|1/2 (fwrn /\(S)ds)l/2

By Lemma 2.1, (1.2), and the normal approximation to the Poisson distri-
bution, the r.h.s. of (2.20) can be written as (8'/24+0(1))(N(0, 1) +o0,(1)),
which converges in distribution to N(0,60) as n — oo.

Next we prove (2.19). Substituting (2.5) into the r.h.s. of (2.4), and
by writing |Wy,,, | as (|[W,| — |Rn+|), we can simplify the r.h.s. of (2.4) to
get

(2.20)

1R, 1

6, =0-— A(s)ds. 2.21
A +1wn|/Rm e (2.21)

The Lh.s. of (2.19) now reduces to
. 6B 1
Wn L (_ L + / A(s (18)
TR AV A

:< 0| R, | +J}zn,A(S)d5>_ (2.22)

_|1/Vn|1/2 [W,[1/2
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Since |Ry.| < 7 for all n and [, A(s)ds = O(1), as n — oo, then by
(1.2), the r.h.s. of (2.22) is o(1), as n — oo. This completes the proof
Theorem 2.4. O

To conclude this section we derive a bootstrap CLT, parallel to Theorem
2.4. Conditionally given X (W,,), let X*(W,) denote a realization from
a Poisson distribution with parameter X (W,,). If X(W,,) happens to be
equal to zero, we set X*(W,,) = 0. Define

X*(Wy)

et (2.23)
|W/”|

To obtain a bootstrap counterpart of (2.16), we replace 6,, — 6 by HA;*L —0,,
with 6, as in (2.1), and establish bootstrap consistency, i.e. we shall prove
that |Wn|§(6’;§ —6,) has - in P-probability - the same limit distribution
as |Wy| 2 (0, — 0), that is a normal (0,6) distribution. Note that we
have employed a ‘parametric bootstrap’ here. There is no use for Efron’s
bootstrap, instead our bootstrap is based on a parametric model, namely
a Poisson distribution with estimated parameter.

Theorem 2.5 If \ is periodic (with period ) and locally integrable, then
Wal'/2 (8, = 0n) 5 N(0.9), (2.24)

as n — oo, in P-probability. Hence our parametric bootstrap works.

Proof: Since X*(W,) has Poisson distribution with parameter X(W,,),
it suffices to write the Lh.s. of (2.24) as

(S XU () (X011

By Lemma 2.2, (1.2), and the normal approximation to the Poisson dis-
tribution, the r.h.s. of (2.25) can be written as

(072 + 0p(1)) (N(0,1) + 0,(1)) (2.26)

since X (W,,) — oo, in P-probability, as [y, A(s)ds — oo, which is implied
by |Wy,| = oo (cf.(1.2)), because § > 0. Hence, by Slutsky (cf. Serfling
(1980), p. 19), the quantity in (2.26) converges in distribution to N (0, 6),
as n — 00, in P-probability. This completes the proof Theorem 2.5. O



Chapter 3

Kernel estimation of the local intensity

3.1 Introduction

In this chapter we consider kernel type estimation of the intensity function
A at a given point s € W, using only a single realization X (w) of the
cyclic Poisson process X observed in W,,. The requirement s € W, can
be dropped if we know the period 7. This chapter is a revised version of
Helmers, Mangku, and Zitikis (1999) and Helmers, Mangku, and Zitikis
(2000).

Let 7,, be any consistent estimator of the period 7, that is, 7, L7, as
n — 0o. For example, one may use the estimators constructed in chapter
5 or perhaps the estimator investigated by Vere-Jones (1982).

Furthermore, let K : R — R be a function, called a kernel, satisfying
assumptions:

(K.1) K is a probability density function,
(K.2) K is bounded,
(K.3) K has support in [—1,1].

With these notations, we now define the estimator of A(s) as

S 7:71 - 1 €T — (S + k’fn)
/\n 5) = T
7K(b) |V[7n| R ]Ln W ( hn

) X (dw), (3.1)

where h,, is a sequence of positive real numbers converging to 0, that is,
hn 10O (3.2)

as n — o0.

17
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~ Let us now describe the idea behind the construction of the estimator
An.k(8). Note that, since there is only one realization of the Poisson
process X available, we have to combine information about the (unknown)
value of A(s) from different places of the window W),. For this reason, the
periodicity of A, that is assumption (1.10), plays a crucial role and leads
to the following string of (approximate) equations

1

Als) = A(s + kT)I{s + kT € W)}

£

1 1

- | Bh,, (s + k7)| (s+kT)NW,

Q

Ax)dx

2

n -

>

1 1
Nn k; 2hn

X

— X (Bp, (s + kT) N Wp)

Q

X (Bp, (s + k1) N Wy,), (3.3)

where

Ny, =#{k: s+ kr e W,},

and By (z) denotes the interval [z — h,z 4+ h]. We note that, in order to
make the first ~ in (3.3) works, we require the assumptions that s is a
Lebesgue point of A and (3.2) holds true. Thus, from (3.3) we conclude
that the quantity

(0.9}

1
— S X(B, (s + k) N W), (3.4)
Ln

M) =y 2

can be viewed as an estimator of A(s), provided that the period 7 is
known.

The idea described in (3.3) and (3.4) of constructing an estimator
for A(s) resembles that of Helmers and Zitikis (1999) where in a similar
fashion a non-parametric estimator for an intensity function which, in
addition to the periodic trend, also has a polynomial trend. In Helmers
and Zitikis (1999), just like when constructing the estimator A,(s) in
(3.4), the period 7 is supposed to be known.

The quantity A\, (s) of (3.4) can be modified in order to get an esti-
mator of intensity functions with unknown periods. To do this, let 7,
be a consistent estimator of 7. For example, 7,, can be the estimator
given in Chapter 5, or the one constructed by Vere-Jones (1982), or any
other estimator of th(‘ period 7. Then, we modify the quantity in (3.4)
by replacing the unknown period 7 by its estimator 7, and obtain the
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following estimator

g Tn . 2 .
Ak (8) = Z W‘X (Bp, (s + k7)) N Wy,) (3.5)

=—00

of A(s). Note that the estimator /A\n’f((s) in (3.5) can be rewritten as

00 1 1 )
Z F/w 51[71,1} (Bh, (s + k7)) X (dzx). (3.6)

T

N Ty
)‘n,f((s) — Imv |

k=—o0
By replacing the function K = 27! I;_11(+) in (3.6) by the general kernel

K, we immediately arrive at the estimator introduced in (3.1).

3.2 Consistency

3.2.1 Results

To establish that j\n’ K (s) is a consistent estimator of A(s), we need to
impose an additional assumption on the kernel K, that is

(K.4) K has only a finite number of discontinuities.

In section 3.2.3 we will indicate that (K.4) (or (K.4%*)) is really needed in
order to obtain a consistent kernel type estimator of A(s).

Theorem 3.1 Let the intensity function A be periodic and locally inte-
grable, and let the kernel K satisfy assumptions (K.1)-(K.J). Further-
more, let the bandwidth h, be such that (3.2) holds true, and

hn|[Wn| = o0 (3.7)
as n — oo. If
WallZa = 7l/ha 5 0 (3.8)
as n — 0o, then
A (s) B As) (3.9)

as n — 0o, provided s is a Lebesgue point of X. In other words, A, k(s)
is a consistent estimator of A(s).

We note that, the assumption (K.4) can be weakened into the follow-
ing one
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(K.4*) For any « > 0, there exists a finite collection of disjoint compact
intervals Bj,..., By, and a continuous function K, : R — R such
that the Lebesgue measure of the set [—1,1] \ UY4 B; does not
exceed «, and |K(u) — Ko (u)| < o for all u € ua B;.

Therefore, in the next subsection, we give proof of Theorems 3.1 and 3.2

under the weaker assumption (K.4*). This assumption will allow us to
control the fluctuations of the function

s K (:r—(s;lﬁ- krn)>

depending on the fluctuations of 7,, around 7. In particular, it will exclude
functions K like

1
Ky := 51[—1,1]\97

where Q stands for the set of all rational numbers, and I4 denotes the in-
dicator function of the set A. A more detailed discussion on the necessity
of excluding functions like Ky, which satisfies condition (K.1) - (K.3), is
given in subsection 3.2.3.

We proceed with our current discussion concerning condition (K.4%),
with the note that the measurability of function K (which is implicitly as-
sumed by (K.1)) is only slightly weaker assumption than (K.4*). Indeed,
according to the Lusin’s theorem (cf., for example, Hewitt and Stromberg
(1965), p. 159-160), we have that the measurability of K implies that

(L) For any « > 0, there exists a compact set A, and a continuous
function K, : R — R such that the Lebesgue measure of the set
[~1,1] \ A, does not exceed «, and |K(u) — Kq(u)| < « for all
u € Ag.

Note, that by taking A, = Ufﬁ‘iBh we immediately obtain that any
kernel satisfying assumption (K.4*) also satisfies (L). As it is easy to see,
assumption (L) does not exclude the kernel function Ky which, as it has
already been mentioned above, is necessary in order to prove consistency
of An.x(s) (cf. subsection 3.2.3).

Though stronger than (L), assumption (K.4*) still covers all the kernel
functions K of statistical relevance that we can think of. For example, any
kernel K whose set of all discontinuity points can, for any fixed o > 0, be
covered by a finite collection of open intervals of total size not exceeding
a obviously satisfies assumption (K.4*).

Under, naturally, stronger assumptions than those of Theorem 3.1,
we also have the complete convergence of the estimator ;\m K (8) which, in
turn, gives a rate of consistency of the estimator An.x ().
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Theorem 3.2 Let the intensity function X be periodic and locally inte-
grable, and let the kernel K satisfy assumptions (K.1)-(K.}). Further-
more, let the bandwidth h, be such that (3.2) holds true, and

Zexp{ — e/ |[Whlhy} < o0 (3.10)

n=1

for any e > 0. If
[WallT — 7|/ hn =0, (3.11)

then

Ak (8) = A(s), (3.12)
provided s is a Lebesgue point of \.

Remark 3.1 One may naturally want to know where the estimator

An, Kk (s) converges when it is not assumed that s is a Lebesgue point. A
careful inspection of the proof (given in the next subsection) of Theorem
3.1 shows, for example, that under the assumption

1 hn

— A(s + x)dx = O(1)
hn S,

as hy | 0, the estimator 5\”,;((.9) estimates

A*(s) := lim /‘1 K(z)\(s + xh)dz, (3:13)

h—0 J_4

provided that the limit in (3.13) exists. For example, if the left- and
right-hand limits A(s—) and A(s—) of A at s exist, then

A (s) = M(s—) /_01 K(z)dx + \(s+) /0] K(x)dx.

Consequently, if we assume that the function K is symmetric, then, due
to the fact that K is a probability density function by assumption (K.1),
we have the following representation

A (s) = %{)\(s—) + A(s+)}.

In turn, if s is a continuity point of A, then the latter representation
implies the following one

A (s) = A(s), (3.14)
as it should be expected. Let us note in passing that if A is known to be

either right- or left-continuous, then we also have equality (3.14), provided
that K has “one-sided” supports [0, 1] and [—1, 0], respectively. O
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3.2.2 Proofs

Theorems 3.1 and 3.2 are a consequence of the basic probabilistic tool,
which is given in Theorem 3.3.

Theorem 3.3 Let the intensity function \ be periodic and locally inte-
grable, and let the kernel K satisfy assumptions (K.1)-(K.3) and (K.4*).
Furthermore, let the bandwidth h, be such that (3.2) holds true. Then
there exists a constant ¢ such that for every e > 0 there exists a (small)
B := B(€) >0 and a (large) ng(e) such that the bound

p (|X,L,K(s) = AL = e) < cexp{—ey/[Wnlhn}
+ P (|VV"| |7A—’l - 7_| 2 ﬂhn) ) (315)

holds true for all n > ng(e), provided s is a Lebesgue point of the intensity
function A.

To prove Theorem 3.3, we need the following three lemmas.

Lemma 3.4 Let the intensity function X\ be periodic and locally inte-
grable, and let the kernel K satisfy assumptions (K.1)-(K.3). Further-
more, let the bandwidth h, be such that (3.2) holds true. Then

T = 1 K,(.’L‘*(S—Fk‘T)
W

Nn S E . hn

) AMz)dr — A(s), (3.16)
k
provided s is a Lebesque point of .

Proof: Obviously,

1 1 xz — (s+kr)
N, Z hin /Wn K < hn ) )\(ﬂf)dﬂf

_ 1 & 4 z — (s + k1)

- /RK (ﬁ;) Z Mz + s+ kr)I(z + s + kT € Wy,)dx.

k=—o00

(3.17)
Since A is periodic with period 7, we have X(z + s + k1) = Az + s).
Furthermore, it is obvious that

> Ix+s+kr € W) € [Ny — 1, Ny +1]. (3.18)

k=—00
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Consequently, the r.h.s of (3.17) converges to A(s) when n — oo, provided
that

1 x
W RK (h_n> Az + s)dx = A(s). (3.19)

Note that

% /RK <%> As)dz = A(s) /RK (z) dz = A(s),

where we used the assumption that K is a probability density function.
Consequently, statement (3.19) follows if

1 ;

— | K (i> {Mz+5)—A(s)dx — 0,

hn R hn

when n — oo. The latter statement obviously follows from the assump-
tions that K is bounded and with support in [—1,1], and that s is a
Lebesgue point of A. This completes the proof of Lemma 3.4. O

Denote
I == L f x— (s+k7)
Dy = — K|{—— ) X(dx
Nn k‘;w hn / /n < hn ) (( T)
I == 1 xr—(s+kr)
- — K AMa)d
Nn k=—oc0 b Jw ( hy ) (z)dz

Lemma 3.5 Let the intensity function \ be periodic and locally inte-
grable, and let the kernel K satisfy assumptions (K.1)-(K.3). Further-
more, let the bandwidth hy, be such that (3.2) holds true. Then there is a
(large) constant ny such that for any constant ¢, > 0 there exists another
one ¢y > 0 such that

P (|Dy| > c16) < caexp{ — ey/[Walhy }, (3.20)
for every € > 0 and all n > ny, provided s is a Lebesque point of .
Proof: For every ¢ > 0, we have that
P (|Dn| > cre) < exp{—ciet}(Eexp{tD, } + Eexp{—tD,}). (3.21)

To make our further considerations more transparent, we denote

Iy,

n
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and then rewrite D,, as
1 o~ 1, )
By, = N Z h—n{)k ~B¥}- (3.22)

Since h,, | 0, the random variables Yy, k = 1,2, ... are independent for
all sufficiently large n (depending on the period 7). Thus, for sufficiently
large n, we obtain

o0
Eexp{£tD,} = H Eexp{i

k=—00

(Vi — EYk)} . (3.23)

n'tn

Using the well known formula for the Laplace transform of the Poisson
process, we obtain that

Eexp {i : Yk} = exp {/ (XK@ — I)A(x)da:} , (3.24)
Nyha, w,

where we used the notation

% i x — (s + k1)
K(x)::iNhK< . )

Consequently, for every factor on the r.h.s. of (3.23) we have the following
formula (cf. Lemma A.3)

ECXp{ Nh {)k_E)k}}

- exp{/w (X 1 - K*(z ))/\(;r)da:} (3.25)

Since |exp(z) — 1 — 2| does not exceed 22 exp(|z]), we obtain from (3.25)

that

Eexp{ i {V —Eh}} < exp{/w |K*(m)|2elK*<w>lA(m)dm}. (3.26)

n

We now make the following choice

1
# = NP , (3.27)

Cq

Using the assumption that K is bounded and has support in the interval
[~1,1], we obtain from (3.26) with (3.27) that

t 1
Eexp {i N {Yy — EYk}} < exp {CNnhn p (B, (s +kT)N W",l)} , (3.28)
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for a constant ¢ that does not depend on n. Applying bound (3.28) on
the r.h.s. of (3.23), we obtain

(0.9}

1 1
Eexp{*tD,} < exp {(’N— Z h—nu (Bp, (s +kT)N Wn)} ; (3.29)

" p=—00

Furthermore, we note that the quantity p (Bp,, (s + k1) N W),) obviously
equals to

/ A + kT + 2)I(s + kT + 2 € Wy,)dx.
By, (0)

Consequently, using the periodicity of A and (3.18) on the r.h.s. of (3.29),
we obtain that

1
Eexp{£tD,} < exp cf/ As + z)dzx ).
hn /., 0)

n

Since s is a Lebesgue point of A, we have that

1
— A(s + x)dx — A(s),
th Bhn (0)
when n — oco. Thus,
lim Eexp{£tD,} < ¢ < 0. (3.30)
n—oo

Bound (3.30), when applied on the r.h.s. of (3.21), implies that

P (|D,| > €) < exp {—e\/N”hn} ,

due to our choice of ¢ as in (3.27). Lemma 3.5 is therefore proved. O

In our next lemma we use the notation

P, = & Z 1 I((x4(§9+kr)

X(d
N, = hy)w, } X ]

h,

1 = 1 & — (s 4 kTy)
S = . ol Bkl ¢ .
o k;m " /w (5 —) X (dx) (3.31)

Lemma 3.6 Let the intensity function \ be periodic and locally inte-
grable, and let the kernel K satisfy assumptions (K.1)—(K.3) and (K.4x).
Furthermore, let the bandwidth h, be such that (3.2) holds true. Then
there exists a constant ¢ such that for every € > 0, there exists a (small)
B := p(e) >0 and a (large) n(e) € N such that the bound

P(|F,] >¢) < cexp{ — €v/ |VVn|hn} + P (|Wy!|7n — 7| > Bhy), (3.32)

holds true for all n > n(e), provided s is a Lebesque point of A.
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Proof. Fix any a > 0 and denote
My
A, = Bic[-1,1], (3.33)

where By,..., By, are compact disjoint intervals defined in assumption
(K.4*). Furthermore, using the (continuous) function K, of assumption
(K.4*) and the Wmerbtrasq tho()rem we get that there exists a Lipschitz
function L, such that |K(u) — (u | < « for all u € A,. Now, we
decompose K on the right-hand side of (3.31) into the following sum of
three functions:

K(u)= {K(u)— La(u)}1ac (u
+{K(u) L a(u)Ha, (u )
+Lo(u). (3.34)

Using decomposition (3.34), we in turn decompose F}, into the sum of the
corresponding three quantities that we are now to define and estimate.
Since K and L, are bounded, we easily see that the first quantity

1 — 1 x — (s + k) z— (s+kr)
3 - . X
1 — 1 ; z— (s+ ki) £—(5+k)\ vy
WM,CZ;E/ (K La)<——hn )IAQ <—-——hn X (dx)

does not exceed the sum of the following two quantities

1 )
Fop = ((K7La)Nn, Z B ({b+kT+h A }HW,,)
k=—0o0
(. A S .
Foz = oK, La)5 > h — X ({5 + kfn + B AL} NW,),
no_ ‘n

where ¢(K, L,) denotes a constant depending only on sup{|K(u)| : u €
[—1,1]} and sup{|Lq(u)| : w € [-1,1]}. The second quantity

‘ Z / (K — Lu) ( —(s+ kT))IAa (T —(s+ kr)> X (dz)
N, P hn hn hy

(9+an) T —(s+k) )
N Z hn / (K — L,y)( >IAL, <T>A\(d:ﬂ)

does not exceed the sum of the following two quantities

1 | . ,
Fn,B = (YN,I k;% E‘X ({5 + k7 + h/n,[ 11 1]} nw n)a
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o0

1 1. .
Foa = ag > HA({s+kT,l+hn[—1,1]}mwn).

n
k=—00

Next, without loss of generality we assume that the support of the Lip-
schitz function L, is in the interval [—1,1]. Using this fact, we obtain
that

|La(u) — La(v)] < ¢(La)|u —v|({u € [-1,1]} + {v € [-1,1]}) (3.35)

for all u,v € [—1,1]. Let Iy = (—oo,—1), I} = [-1,1], and I» = (1,00).
Consequently, the third quantity

1 «— 1 x — (s+ k1)
E — Lo Z¥——— ) X(ds
’ N” k=—o00 hn’ /‘;‘/n “ ( hn ) ( 'L')

1 «— 1 [ — (s + kty
1 17 (M) X (dx)
N b oo I, W hn,

does not exceed the sum of the following three quantities

1 = |k(#n—-7)]1
o E: n (e . ,
Fn75 = C(LQ)N—H ‘T E)& ({.S+kT+}Ln[ 1,1]}ﬂwn),
k=—o0
1 = |k(F,—7)1 _ .
Fog i= C(L"‘)N—nk;m‘% X (s b+ -1 U} W),

_ 1 3
For = c(La)N— Z Z h—"

M 0<i#£j<2 k=—o0
X({s+kfn+ho L} {s+kr + h;} N W,).

Note that the upper bounds F), 5 and F}, ¢ correspond to the case where
both points (z — (s + k7,,))/hy, and (x — (s + k7))/h, are in the same
interval [—1, 1], which is equivalent to the case z € {s+ k7, +h,[—1,1]}N
{s + k7 + hyp[—1,1]}, so that we can apply (3.35). The upper bound F}, 7
corresponds to the other cases. Before proceeding further, we estimate
F, 7. We can easily see that if, for example, 7 = 0 and j = 1, then

o0
> X({s+kfu+hali} N {s+kr+hoI;} N W,)
k=—o0

= Z X({s+kr+k(fn—7)+hdoN{s+kr+h, L1} NW,)

k=—o00

< Y X([s+kr—hn,s+kr — hy + k(7 — 7)) N Wy).

k=—o00
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Similar estimates are valid for the other three cases: 4 = 1 and j = 0,
i=1and j =2, and i = 2 and j = 1. These bounds show that F;, 7 does
not exceed

(La) o= o= 1
Fn,? = (’NH)Z Z E

i=1 k=—o0

X ({9 + kT + a;h, + hy, {— ’

k(th — 1)
h"l

k(7 — 1)

).
where a1 := —1 and a9 := 1.

The results obtained above show, in particular, that the probability
of the event F, > e does not exceed the probability of the event F, | +
-+ 4+ F, 7 > €. Thus, for any 3 > 0,

P(Fn > 6) < P(Fn,l +"'+Fn,7 > €, |VVn| |7A'n _T| < Bhn)
+ P(|Wy| |70 — 7| 2 Bha) .

We shall now estimate Fj, 1,..., Fy, 7 under the restriction |W,| |7, —
7| < Bhy,. We start with the observation that even though F,, i,..., Fy, 7
are infinite sums they are actually sums of only finite numbers of non-zero
summands. Indeed, due to the assumptions h,, — 0 and |W,,| — oo, we
have that, for all sufficiently large n, the summands of F), 1,..., F), 7 are
equal to 0 for all indices k such that

2
lk| > ;|Wn|
T

Consequently, when estimating F), i,..., F, 7 we can restrict ourselves to
the summands with indices £ such that

2
|k| S _‘Wnl'
T

This immediately implies the following bounds

Boi:Fus % olR, L) EEy;
Fn,Bv F:z,4 S aF**

n
Fn,5aFn,6 S %C(LO)FS*’
Fn,? S C(L(Y)F*

n,2’

where we have denoted

(o9}

Fr, = ; hiX ({5 + kT + h,f,,[— 28/, 25/7’] + h,,LA;} N IfV,,) ,
n—— n
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o0

Fr* ]\} ;Ll—X({s—f-kT—{-hn[—1—25/771+2/3/T]}HW")’
n =0 n
1 2 00 1
Fia = 32 X ({4 b7+ @i+ b [ = 26/7,26/7]} 0 W)

i=1 k=—00

We now see that if the set Af in F;, is replaced by {—1} U {1},

then F*, reduces to F*,. To combine these upper bounds, we argue as
n,l n,2 ’

follows. Define AS, = AS U {—1} U {1}, and let F; denote Fy; with A
now replaced by AS. Note that the size of AS is the same as that of A,
which does not exceed «. Then we have the bound

c(K, Lq) ;{,1 + C(La)F;,Q <Ae(K, La) + c(La) } Fy-
Consequently, we have proved the following bound

P (|Fn| > 5)
< P ({e(K, La) + c(La)}FZ + {a+ 287 (L)L > €)
+P (|Wy| |70 — 7| = Bhy) .

The latter bound shows that the proof of Lemma 3.6 is completed if we
show that

P ({¢(K, La) + ¢(La) }Ey + {a + Be(La) }R™ > €)
<cexp{ — e/|Walh, ). (3.36)
The left-hand side of bound (3.36) does not exceed
P ({¢(K, La) + c(La) }EFy — EF| + {a+ Be(La) }ER" — BET| 2 ¢, (3.37)
where
ce ;=€ —{c(K,Ly) + c(Lo) }EF,, — {a+ fe(Ly) }EE,™.

We now want to show that the parameters o and 3 can be chosen in such
a way that, for example,

e > (3.38)

|

when 7 is sufficiently large. To start with, we note that EF)* can be
rewritten in the following way

2<1+27/3> L i . oy (w>)\(x)dx, (3.39)

Nn e — o hI*L W 2 h,:;
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where h¥ := (14+28/7)h,. Using Lemma 3.4 with K = 27T ;j, we im-
mediately obtain that the quantity of (3.39) converges to 2(1+25/7)A(s)
when n — oo, and so does EF*. This implies that by choosing a > 0
and 8 > 0 sufficiently small, we can make the quantity {a+ fc(Ly) Y EF;*
smaller than €/4 for all sufficiently large n. In view of this fact, we obtain
the desired bound (3.38), provided that

{e(K, La) + c(La) }EF: < i (3.40)

for all sufficiently large n. We are now to prove (3.40). Denote
B:=[-267"1,28771 + A¢

for notational simplicity. Then

. 1 = 1
EF; = k; L—nEX({s + kT + h,BYNW,)
1« 1
= = k;m ™ /hB Mz + s+ kr)I(z + s+ kr € Wy,)da
1 3 o0
= AMx + s I(z + s+ kr e W,)dx
Nnhn /ILnB ( )]\:Z_OO ( n)
2
< — Az + s)dx
hn Jh,B
2
< — {X(z + s5) — A(s) }dz| + 2X(s)|B|. (3.41)
hﬂ h, B

Note that the first summand on the right-hand side of (3.41) converges to
0, due to the assumption that s is a Lebesgue point of X. Thus, in order
to achieve the desired bound (3.40) we have to check that by choosing
sufficiently small @ > 0 and 8 > 0 we can make the quantity |B| as small
as we want. Here, and only here, we use assumption (K.4*). (We note
in passing that if we do not assume (K.4*), then we only have (L). In
this case, the set AS can be so scattered over the interval [—1, 1] that the
set [—f3, 8] + AS, may fill almost all interval [—1, 1] and thus the Lebesgue
measure of [—f3, 3] + A, may be close, for example, to that of [~1,1] —

the case which we want to avoid by assuming (K.4*) ).

By choosing 3 > 0 sufficiently small, we can achieve the situation
when B is a union of disjoint sets [-23/7,2(3/7] + B; and {—1} U {1},
1 =1,..., M,. Consequently,

M, Mo
Bl = S |[-28r7",28r7" 1+ Bi| = Y |Bil + 4Mo S
i=1 =1

|AS |+ 4Mo " < a4+ AMa ST (3.42)
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Obviously, the right-hand side of (3.42) can be made as small as we want
by choosing a > 0 and 3 > 0 sufficiently small. Thus, the desired bound
(3.40) can indeed be achieved for all sufficiently large n. This, in turn,
implies that, for all sufficiently large n, the quantity of (3.37) does not
exceed

P ({e(K, La) + e(La)}F; — EF;| +{a + Be(L) HF;" —EF;"| > £).

The latter quantity does not exceed the sum of P(|F;; —EF;| > ¢j¢) and
P(|F;* — EF}*| > ¢*e), where ¢f > 0 and ¢;* > 0 are some constants.
Using Lemma 3.5 with the kernel K := |B| 'Iz we obtain the bound

P(|F; — EF}| > cfe) < csexp{ — ey/|Wy|hy, },

Furthermore, an application of Lemma 3.5 with the kernel K := |B|~ I,
where

Be=[—1-20:"11 4281

implies
P(|F —EF| > ci*e) <3 exp { — e\/|Wa|hn },

Thus, the quantity of (3.37) does not exceed cexp { — e\/|W,|h, }, which
completes the proof of bound (3.36) and, in turn, of Lemma 3.6. O

Proof of Theorem 3.3: Denote
N T | g—(s+kfn)\ o ;.
Ak (8) == N, k;w ™ /Wn K ( W ) X (dx).

Elementary algebra shows that

P (|An,k(s) = A(s)] > )

TnNV, = Tn IV,
<p ({ nfl _ 1’ + 1] Poclo) = X+ | T2 1’A<s> > ). (343
'Wn ' ’Wn|
It is also easy to check that
7A—n{vn _ & |’/¢-11 - 7—| TJY’II o 1 + |7A—n - T' TNn, _ 1
W, T || Wl
|70 — 7| T T
£ 1] e 3.44
= T\ ) T (3.44)

where the second bound of (3.44) was obtained using |7 N,, — |W,|| < 7.
Since |W,,| converges to oo by assumption, we can make the right-hand
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side of (3.44) as small as we want provided that we assume |W,| |7, — 7| <
Bh,,. Consequently, the right-hand side of (3.43) does not exceed

P (|Xn,K(s) —AG)| > %) +P (W,

|7A—71 - 7-| Z ﬁh’n) E] (345)

It is easy to see that Lemmas 3.4 — 3.6 taken together imply that for every
€ > 0 there exists a (small) 3 := f(e) > 0 and a (large) n(e) € N such
that the bound

P (A (s) = A(s)| > €)
< cexp {—6\/ |W71|hn,} + P (|Wy| |70 — 7| = Bhn) (3.46)

holds true for all n > n(e). Bounds (3.45) and (3.46) taken together
complete the proof of Theorem 3.3. O

3.2.3 The kernel K

We will now discuss the role of assumption (K.4*) in our considerations
and in Theorem 3.1 in particular, and give an explanation about the
necessity to exclude kernel functions like Ky. Let us decompose Ky as

Ky = K| — Ko,

where K, := %I _1,1)» and Ky := %1[71,1 no, with Q stands for the set of
all rational numbers. Consequently, we Lave the following decomposition

5\”71(0 (5) = /A\n’](1 (S) s /\ny}(2 (S) (3.47)

Note that the kernel K satisfies all four assumptions (K.1)-(K.3), (K.4*%).
Therefore, by Theorem 3.3, we have the following bound

P { A (5) =A@ 2 ¢f < coxp{—ey/Walhn}
+P {|‘/V71| I’TA_n - 7-| 2 ﬁhn}y

with the same parameters as in Theorem 3.3. We now easily see that
if hy|W,| = oo and |W,||7 — 7|/hn 20, as n — oo, then An, K, ()
is a consistent estimator of A\(s). In view of this fact and decomposition

(3.47), the random variable \,_f, (s) can be a consistent estimator of A(s)
if and only if

Ay (5) 20, (3.48)

as n — 00. Let us now look at A, f,(s) more closely. By its definition,

An,K»(s) has the following form

o0

A 7A—n 1 A
/\n,KQ(S) = |VV | Z 5 X({S-Fan +th}ﬁWn).

k=—o00
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If 7,, were identically equal to 7, the expectation of the random variable

X({s+ktn+h, Q}NWy) [=X ({s+kT+h, O} NW,)]

would obviously be equal to 0, which, in turn, would be a strong evidence
that the statement (3.48) holds true (in fact, one can easily verify that
it is so under the assumption 7,, = 7). However, if 7, is a truly random
estimator of 7, then the validity of statement (3.48) becomes highly ques-
tionable, provided that no additional information about 7, is available
except that |W,| |7, — 7|/h, = 0, for example. To give a more rigor-
ous justification of the latter claim, we note that statement (3.48) can be
reduced to showing that, for any € > 0 and 3 > 0,

iy {j‘nsz (5) 2 & IWn| |7A_n - T| < ﬁhn} —% 07 (349)
as n — oo. The “restriction” |W,| |7, — 7| < Bhy, in (3.49) actually says

that what we really know about the estimator 7, is only the following
confidence interval

. B
Th €T+ W—nlh”[—l, 1] (350)

With the notation of (3.50), we rewrite (3.49) more explicitly as

O N | R . B
P _‘Y 5 + k' n } n N ‘Vn > L) n € —hn _17 1
{|Wn E T ({s Tn + h, Q} ) >e€ T T+|Wn| [ ]}

| k=—o00

-0, (3.51)

as n — oo. If we now use the only available for us information 7, €
7+ B|Wp| 'h,[—1, 1] to estimate the random variable X{s+kin+h,Q}N
W) in (3.51), we shall inevitably end up with the necessity of proving
that

P{j‘:l,Kg (‘S) 2 E} =2 07 (352)
as n — 0, where
g * 7A—n - 1 - 1 .
$ = —_‘X ‘nl— 4+, n nj -
Ak, (5) T k;w T ({s + k7 + kBIW,| 'hy[-1,1] + h, Q} N W},)

But statement (3.52) appears to be impossible if A(s) > 0. Indeed, since
the interval Wn|*1hn[~1, 1] has a positive Lebesgue measure (and it
does not matter how small it is), we have that the set k3|W,,|~'h,[-1,1]+
hp, @ completely covers the interval h,[—1,1]. This observation immedi-
ately implies that

ko () = Ak, (5).
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But we have already noted above that 5\,% K, (8) is a consistent estimator
of A\(s). Thus, 5\;7 K, (8) cannot converge in probability to 0, as n — oo, if
Als) > 0.

The above discussion indicates that without additional information
about the relationship between X and 7,, in the expression

X ({s+ kin+hnQ}NW,),

it may be impossible to prove statements like (3.49) or (3.48). And we
emphasize that, by not considering any specific estimator 7,, in the present
chapter, we do not have more information about 7, except that 7, is a
consistent estimator of 7 and, possibly, a rate of consistency like |W,,| |7, —
7|/hn 2 0, as n — co. However, it is important to call readers attention
that no matter how attractive the problem of including the kernel Ky into
Theorem 3.1 could be from the mathematical point of view, it does not
seem relevant from the statistical point of view at all. Indeed, as far as we
understand, all the kernels K of statistical relevance satisfy assumptions
(K.1)-(K.4), and are thus covered by Theorems 3.1.

3.3 Statistical properties

In this section, we focus on statistical properties of our estimator, i.e. we
compute the bias, variance, and mean squared error (MSE) of 5\” x- To
obtain our results in this section (cf. also section 4.3) we will need an
assumption on the estimator 7, of 7: there exists constant C' > 0 and
positive integer ng such that, for all n > ng

W.
P(' n| |7A',1,—T| SC) =1
a

n

for some fixed sequence a,, | 0. Our shorthand notation for this assump-
tion will be :
(Wal |70 — 7| = Olan)

with probability 1, as n — oo.
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3.3.1 Results

Theorem 3.7 Suppose that X\ is periodic and locally integrable. If, in
addition, (3.2) holds, and

|Wal 170 — 7| = O (6nhn) (3.53)

with probability 1 as n — oo, for some fized sequence &, | 0 as n — oo,
then

E\yi(s) = A(s) (3.54)
as n — 00, provided s is a Lebesque point of \.

Note that the requirement |W,|h,, — oo as n — oo, which is needed to
obtain weak consistency of ;\n K (cf. assumption (3.7) in Theorem 3.1), is
not needed to establish asymptotic unbiasedness of j\n, K, 1.e. (3.54). The
validity of condition (3.53) for a suitable estimator 7,, will be discussed
in chapter 5. An alternative set of assumptions replacing (3.53) is given
in the following remark.

Remark 3.2 Condition (3.53) of Theorem 3.7 can be replaced by the
following two assumptions

Wal . Wal 1
P n >l N ’
{6nhn |T T| N (5nhn Rk

|Wynl . |I/Vn| X 1+4-¢
E(I n— 7| >1 n — 0
< {(thn |T T| o (thn |T T| -

as n — oo, for some € > 0. A proof of this assertion will appear in
Helmers, Mangku, and Zitikis (2000). We conjecture that the conditions
(3.56) and (3.58) needed in Theorems 3.9 and 3.10 respectively, can also
be replaced by assumptions like the one given here.

and

Theorem 3.8 Suppose that X is periodic and locally integrable. If, in
addition, (3.2), (3.53), and (3.7) hold true, then

Var (AH,K(S)) = o(1) (3.55)
as n — oo, provided s is a Lebesgue point of \.

In order to have an explicit asymptotic approximation to the variance
of 5\n,K (e.g. Theorem 3.9) and one for the bias of j\n,K (e.g. Theorem
3.10), we need to impose a stronger assumption than (K.4) on the kernel
K, that is (K.5) which is given by
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(K.5) K has only finitely many discontinuities and is Lipschitz in between.

Theorem 3.9 Suppose that X\ is periodic and bounded in a neighborhood
of s. If, in addition, (3.2) and (3.7) hold, the kernel K satisfies (K.5),
and

|Wn| |7A_n - T| =@ ((snh}l/2|W7z,|fl/2) (356)

with probability 1 as n — oo, for some fized sequence 0, | 0 as n — 00,
then we have

Var (;\,1,1"((9)) = “7/;/);(;3” /11 K*(z)dz + o (—IW:VM) (3.57)

as n — 0o, provided s is a Lebesgue point of A.

It is clear from the proof of Theorem 3.9 that without the stronger
rate assumption (3.56) (cf. also chapter 5), but still assuming (3.53), the
o(|[W,|~'h;;!) remainder term on the r.h.s. of (3.57) would only be o(1).
As the first term on the r.h.s. of (3.57) is of the exact order 1/(|Wy,|hy),
this would fail to give us desired asymptotic approximation to the variance
of 5\,,,, . We also need (K.5) to do this.

Theorem 3.10 Suppose that X is periodic, locally integrable, (3.2) holds,
the kernel K satisfies (K.5), and

|VVn| |7A-n - Tl =0 ((snhi) (358)

with probability 1 as n — oo, for some fized sequence 0 | 0 as n — 00,
If, in addition, K is symmetric and X has finite second derivative N at
s, then

/\H(S) 1

- B2 [ 2K (x)dx +o(h%) + O(Wa|™!)  (3.59)
-1

EXn i (s) = A(s) +
as n — 00.

From the proof of Theorem 3.10, it is clear that without the stronger
rate assumption (3.58) (cf. also chapter 5), but still assuming (3.53), the
o(h2) remainder term on the r.h.s. of (3.59) would only be o(1). As the
second term on the r.h.s. of (3.59) is of the exact order h2, this would
fail to give us desired asymptotic approximation to the bias of an K- We
also need (K.5) to do this.

The r.h.s. of (3.59) yields a familiar expression for the bias of Aok (5)
provided [W,|"/?h, — oo as n — oo; otherwise the O(|W), ~1) remain-
der term will dominate. We have this O(|W,| ') remainder term as a
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consequence of the fact that we approximate the number of £ such that
s+ kT € Wy, by [W,|/7. This also implies that the absolute value of this
O(|W,|™!) remainder term does not exceed 1/|W,|. If 7 is known and
we replace 7, in (3.1) by 7 and subsequently the factor |[W,|/7 by the
number of k£ such that s + k7 € W, then the O(|W,,|~!) remainder term
on the r.h.s. of (3.59) would disappear.

Corollary 3.11 Suppose that X is periodic, locally integrable, (3.2) and
(3.7) hold.

(1) If, in addition, (3.53) holds true, then

MSE (x,w(s)) = Var (X,,,,K(s)) + Bias® (AH,K(S)) ~50  (3.60)
as n — 00, provided s is a Lebesque point of \.

(ii) If (3.56) and (3.58) hold true, the kernel K satisfies (K.5), and A
has finite second derivative \" at s, then

3 TA(s) l -2
MSE (A k(s)) = — K= (a
5 <)\ 7K(q)) [Walhn [1 Cla)ds

1 . ?
+ (A”(s)/ xﬁ((w)d;r) hyy + 0 (W' hyt) + 0 (k)
-1
(3.61)

as n — 00, provided K is symmetric.

The first statement of this Corollary is implied by Theorems 3.7 and
3.8, while its second statement is due to Theorems 3.9 and 3.10.

Now, we consider the r.h.s. of (3.61). By minimizing the sum of its
first and second terms (the main terms for the variance and the squared
bias), we then get the optimal choice of h,,, which is given by

) [N K2(x)dz .
by = ®) - K@) S| Wl 75, (3.62)

(A”(s) jil ;rzf((r)d:r) ’

With this choice of A, the optimal rate of decrease of MSE(\,  (s)) is

of order O(|W,,|~%/®) as n — oo; and also both (3.56) and (3.58) reduce
to the same condition

[Wallin = 71 = O (8|, )

with probability 1 as n — oo, for some fixed sequence 4, | 0 as n — oo.
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Remark 3.3 The formulas (3.57), (3.59), (3.61), and (3.62) resemble of
course closely corresponding ones in the ’classical” kernel density estima-
tion. Let us consider for a moment estimation of a density f, proportional
to the intensity function A and having support in [0,7]. For simplici-ty,
we consider here only the (unrealistic) case where we know 6 and T,
where 67 = [J A(s)ds (we assume here that 6 > 0). Then we have that
F(s) = A(s)(#7) "1, for all s € [0,7]. Consequently, the quantity

fn,K(S) = 5‘n,K(S)(‘gT)A1

can be viewed as an estimate of f at a given point s. Since A(s) = f(s)07,
we also have that \(s) = f"(s)07, for all s € (0,7). By (3.57), we then

have
Var (f’n,,K(S)) =Var <)‘”—()Ij_@>

1 00 [ e |
_W |VVn|hn /II(Z(J/)dm+O<|Wﬂ|hn>

_ f(s) /1 200N, 1
- ——_9|Wn|hn AK (x)dx + o0 ——|W7,L|h,l ) (3.63)

Note that, due to our ’increasing domain asymptotic framework’, the
number of observations X (W,,) in a given window W,, is random. How-
ever, since \ is periodic, we know (cf. Lemma 2.1) that EX(W,) ~ 0|W,|.
Hence, it seems appropriate to compare 0|W,| with the fixed "sample size
n’ in the ’classical’ kernel density estimation case. If we replace o\w,
on the r.h.s. of (3.63) by n, the r.h.s. of (3.63) indeed reduces to the
well-known expression for the variance in the kernel density estimation.
From (3.59), we have that

r ;\11
Efn,K(S) =E bI:_(S)
_ A(s) | f"(s)07 5 /l 27 : 2 ;=1
=0 + T hn. » 22K (x)dz + o(h;) + O(|W,| )

= f(s) + #hi [1 22K (z)dx + o(h2) + O(|W,|71). (3.64)

Note that the second term on the r.h.s. of (3.64) is the same as the
well-known formula for the asymptotic bias in kernel density estimation.
From (3.63) and (3.64), we also can find formulas for MSE (fn.k(s)) and
optimal choice of h,,, when estimating f. These expressions also reduce to
the corresponding ones in kernel density estimation, if we replace O|W,,|
by n. O
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In chapter 4 we study the statistical properties of a nearest neighbor
estimator of the intensity function of a cyclic Poisson process. It also
contains a detailed comparison of the nearest neighbor estimator with
the uniform kernel estimator.

3.3.2 Proofs

We begin with two simple lemmas, which will be useful in establishing
our results.

Lemma 3.12 Suppose that X is periodic and locally integrable. If the
kernel K satisfy assumptions (K.1)-(K.3) and the bandwidth h, be such
that (3.2) holds true, then

T 0 1 T — (S+k‘7')
= | g(I=ETEY pid ' .
prr 8 [ A () s e

as n — 00, provided s is a Lebesgue point of .

Proof: Let N, denote the number of integers k such that s + k7 € W,,.
Then, the Lh.s. of (3.65) can be written as

Nym 1 1 fx—(s+kT)
— — K|—— ) X(dz). )
(Wl ™ N~ hy -/Wn ( h, ) (dz) (3.66)

oo

By Fubini’s and Lemma 3.4, the expectation in (3.66) is equal to A(s) +
o(1) as n — oo. Hence, it remains to show that

Nut|[Wo| ™' =14 0(1), (3.67)

as n — oo. It is obvious that N, € [r|W,|~! — 1,7|W,|~! + 1], which
implies 1 — 7|W,,| 7! < N, 7|[W,,|~! <1+ 7|W,|~L. By (1.2), we then have
(3.67). This completes the proof of Lemma 3.12. O

Lemma 3.13 Suppose that the assumption (3.53) is satisfied. Then, for
each positive integer m, we have that

E (fn — 7)°™ = O (|Wu| ™52 h2™) (3.68)
as n — o0.

Proof: Easy. O
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Proof of Theorem 3.7

Here we give proof of Theorem 3.7 under the weaker assumption (K.4x)
which implies (K.4), where (K.4%) is defined as in section 3.2.
We will prove (3.54) by showing

En i (s) = A(s) + o(1) (3.69)

as n — oo. First we write EX, k(s) as

R s+ kTn
= (A"A ° |Wn|hn :Z / <_(+_)> ‘Y(d:’:)>
(s + ktn) z— (s+kr) —
crn 5[ () - () )

B Z / (—%’”0 X (dg). (3.70)

By Lemma 3.12, the third term of (3.70) is equal to A(s)+o(1) as n — oo.
Hence, to prove (3.69), it remains to check that both the first and second

terms of (3.70) are o(1) as n — oo.
First we prove that the first term of (3.70) is o(1) as n — oo. The
absolute value of the quantity in this term can be written as

A lhnE|T" 7| Z / (—ﬂb—)>){(da¢). (3.71)

For large n, by (3.2) and (3.53), the intervals

(s 4kt +ha[-1L 1} NW, and {5+ 7 + hy[-1,1]} N W,

are disjoint with probability 1, provided k # j. Since K is bounded, there
exists fixed constant Cy such that K (z) < Cy, for all z in real line. Then
we have that

£ Ln (5

< Co Z X ({s + kn + ha[-1,1]} N W,,) < CoX (Wy). (3.72)

k=—0o0

By (3.72) and Cauchy-Schwarz inequality, the quantity in (3.71) does not
exceed

=

Co
|Wh|hs

=

(E (Fn — T)2> (EX2(W,)) (3.73)
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By Lemma 3.13 with m = 1 (we take §,, = 1), we have that the square-
root of the first expectation in (3.73) is of order O(|W,,| 'h,) as n — oo.
We easily check that (EXZ(Wn))% = O(|W,|) as n — oo, because \ is
periodic. Then, the quantity in (3.73) is of order O(|W,| '), which is
o(1) as n — oo.

Next we prove that the second term of (3.70) is o(1) as n — oco. Fix
any « > 0 and define A, as given in (3.33). Then we decompose both
K in the second term of (3.70) as that in (3.34). Since K and L, are
bounded, we easily see that the quantity

i [ e - oy (FEEE g, (22l

(K — L) (M) L. (#)] X (de)

does not exceed

o(K,La) Y X ({s+kfn+h,ASTNW,)

k=—o0
o0
+e(K,La) Y X ({s+kr+haAS}NW,). (3.74)
k=—00

where ¢(K, L,) denotes a constant depending only on sup{|K(u)| : u €
[-1,1]} and sup{|Lq(u)| : u € [-1,1]}. Note that, by Luzin’s and
Weierstrass theorems, we may assume without loss of generality that
¢(K,Ly) = O(1), as a | 0. The quantity

5 oo (G (=)

k=—o00

(K - L) (@) 1. (%ﬂ)] X (dz)

does not exceed

o0
a > X ({s+kin+ha[-1,1]} N W,)

h=—o0
+a Y X ({s+kr+h-L1}NW,). (3.75)
k=—o0

Let Iy = (—o0,—1), I} = [-1,1], and I = (1,00). Then, by (3.35), the
quantity

£ [ o () ()

k=—o00
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does not exceed

c(Lqy) Z "—k(ﬁl;ﬂ

X ({54 Kt b= 1,11 N W)

k=—o0

> k An -
te(la) Y ‘(T—hﬂ X ({s + kT + ho[~1,1]} N W,,)
k=—o00 o

+e(La) Y. D> X({s+kf+haIi} N {s+kr+haj} N W)
0<i#j<2 k=—0c0

(3.76)

Note that the first and second terms of (3.76) correspond to the case
where both points (z — (s + k7)) /hn and (z — (s + k7))/hy, are in the
same interval [—1,1], which is equivalent to the case x € {s + k7, +
ho[—1,1]} N {s + kT + hy[—1,1]}, so that we can apply (3.35). The third
term of (3.76) corresponds to the other cases. If, e.g., K is a uniform
kernel, we may take L, = K and then the first and second terms of

(3.76) can be dropped.

First we consider the quantity in (3.74), (3.75), and the first and
second terms of (3.76). Since s € W, by condition (3.53), we have
with probability 1 that the magnitude any integer k such that {s+ k7, +
ho[—1,1]}NW,, # 0 is at most of order O(|W},|) as n — oco. By assumption
(3.53), there exists large positive constant C' and positive integer ny such
that

|7A—'n, - Tl < C|VV11|7]6nhn (377)

with probability 1, for all n > ny. This implies, for sufficiently large n,
we have with probability 1

kT — COnhn < ki < kT + Cophy. (3.78)

By (3.78), we have with probability 1 that the quantity in (3.74) does not
exceed

2(K,La) Y X ({s+k7+hn[-C8,,Cp] + hy A} N W) . (3.79)

k=—o00

For sufficiently large n, the quantity C'd,, in (3.78) does not exceed 1. Then
for large n, by (3.78) with Cd,, replaced by 1, we have with probability 1
that the quantity in (3.75) does not exceed

2 f: X ({s+kr+hn[-2,2]}nW,). (3.80)

k=—o00
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By (3.78), we have with probability 1 that |k(7, — 7)/h,| < Cd,. Then,
a similar argument also shows that sum of the first and second terms of
(3.76) does not exceed

2¢(Lo)Cd, f: X ({s+ k7 + ha[-2,2]} N W) . (3.81)

k=—o0o0

Next we consider the third term of (3.76). We can easily see that, for
example for the case i = 0 and j = 1, we have

oo

> X({s+kfn +hoLi} 0 {s + kT + ho;} NW,)
k=—oc0
(o]
= ¥ X({s+ kT +k(fn — 7) + hn(—00,—1)}
k=—o00
N {s+kr + ha[-1,1]} NW,,)
(o ]
< > X([s+kT = hn,s+ kT — hy + [k(F, — 7)) N W,). (3.82)
k=—o00

A similar argument as the one given in (3.82) can be used to treat the
other three cases, namely the case 1 =1 and j = 0,7 =1 and j = 2, and
t =2 and j = 1. Combining all these results, we have that the third term
of (3.76) does not exceed

2

(La)d > X ([s + kT + ashyn — |k(7 — 7)],

=1 k
s+ kT + ajhy, + k(T — )| N W,,), (3.83)

where a; = —1 and ay = 1. Since by (3.78), we have with probability 1
that |k(7, — 7)| < Cd,h,, the quantity in (3.83) does not exceed

(L) Z > X ([s+kr+aihy — Coyhy,

s+ kT + ajhy, + Céh, ] NW,). (3.84)

Combining all these upper bounds (e.g. (3.79), (3.80), (3.81), and
(3.84)), for large n, we have that absolute value of the quantity in the
second term of (3.70) does not exceed

27¢(K, L —
WE S X ({5 4k + ha[~Cu, C8,] + ha AL} O W)
n n k:-—oo

+(2a + 2¢(L,)C6,) {WE Z X ({s+kr+ h,[-2,2]} N VV,L)}
n n k:—()()
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c(Lo)T

Wl

2 fe’e)
EY" > X ({s+ k7 +hala; — Conyai + Co,]} N W) . (3.85)

i=1 k=—o00

Then, to show that the second term of (3.70) is o(1) as n — oo, it suffices
to check that each term of (3.85) is o(1) as n — oo.

First we consider the first term of (3.85). By Fubini’s, this term is
equal to

27¢(K, La)

Wk Mz + s+ kr)I(z + s+ kr € Wy,)dx.
n n

> /
fe oo ! B ([~ C8n,Co0 1+ A)

(3.86)

Since A is periodic with period 7, we have A(z + s + k1) = Az + s).
Obviously we also have that

=~ 2|Wh
> Iz+s+kreW,) < [Wal

k=—o0

(3.87)

T

Then the quantity in (3.86) does not exceed

4c¢(K, L
fol Ky L) / Nz + s)dx
by B ([~C8n,C8n]+AS)

1
<4e(K,Ly)— /
“Thi Jny (~Con.0811 A

+46(K, L)A(8)|[~ C8n, Cn] + AC. (3.88)

Az + s) — A(s)|dz

Since 6, | 0 as n — oo and A5 C [—1,1], for sufficiently large n,
[~C0,,C8,] + A5 C [—2,2]. This implies the integral on the r.h.s. of
(3.88) does not exceed [fg};n |IA(xz + s) — A(s)|dz. Because s is a Lebesgue
point of A, we then have that the first term on the r.h.s. of (3.88) is
o(1) as n — o0o. The second term on the r.h.s. of (3.88), by noting that
|AS| < a, does not exceed

8¢(K, Lo)A(8)Céy, + dac(K, Lo )A(s).

Since 6, | 0 as n — oo, the second term on the r.h.s. of (3.88) can be
made o(1) as n — oo by taking o = @, | 0 as n — oo and noting that it
is easy to check ¢(K, Ly) = O(1) as a;, | 0. Hence the first term of (3.85)
is o(1) as n — oo.

Next we consider the second term of (3.85). To prove this term is o(1)
as n — 0o, we first show that

|WT|h E Y X({s+kr+ha[-2,2}nW,) = O(1), (3.89)
n n b= — 00



3.3 Statistical properties 45
as n — oo. By Fubini’s, the L.h.s. of (3.89) is equal to

o0 2h,
. - / AMa + s+ kn)(z + s+ kr € W,)dx
’Wn|hn b oo ) —2hn

9 2h,

< — Az + s)da
h, —2h.,

< 8a

2h,
/ M@+ s) — A(s)|dx + 8A(s). (3.90)

4h,, . —2h,

Since s is a Lebesgue point of A, the first term on the r.h.s. of (3.90)
is o(1) as n — oco. Since A(s) is finite, we then have (3.89). By (3.89),
the second term of (3.85) is of order O(« + §,,), as n — oo. By taking
a = ay | 0asn — oo, this term is o(1) as n — oo.

Finally we show the third term of (3.85) is o(1) as n — oo. By
Fubini’s, this term can be written as

n(ai+Cdy)

70()7' Z Z / Mz +s+kn)I(z+ s+ kr € W,)dx
IW lh —1 h——o0 (a:—Céy)
2 hn(a;4+Céy)
2¢(L
< M / Mz + s)dx
ho = Jha(ai—Cba)

2

2¢(L (ai+Cén)

< fé ) Z/ A& + 5) — A(s)|da + 8c(La)COnA(s).
L i—1 7 hn(a;—Céy)

(3.91)

To get the r.h.s. of (3.91) we have used (3.87). Since d,, | 0 as n — oo,
the second term on the r.h.s. of (3.91) is o(1) as n — oo. For sufficiently
large n we have that C'9,, < 1. Then, the integral in the first term on
the r.h.s. of (3.91) does not exceed /zgz [A(z + s) — A(s)|dz. Since s
is a Lebesgue point of A, the first term on the r.h.s. of (3.91) is o(1) as
n — 00. This completes the proof of Theorem 3.7. O

Proof of Theorem 3.8

First we write
Var (XH,K(S)) - E (X,LK(S))2 - (Exmk(s))2 . (3.92)

Since by Theorem 3.7, the second term on the r.h.s. of (3.92) is equal to
—A2(s) + o(1) as n — oo, to prove this theorem, it suffices to show that
the first term on the r.h.s. of (3.92) is equal to A%(s) + o(1) as n — .
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The first term on the r.h.s. of (3.92) can be written as

|Wn1|2h2 ) (k_zoo/ ( s+an)>X(dx)>2
|Wi| B () <k_zoo / (——”kT'L)) X(dm))

|W,L|2h (Z/ ( Sh::an)>X(dx)>2' (3.93)

First we consider the first term of (3.93). By (3.72) and Cauchy-
Schwarz inequality, this term does not exceed

C2 (IWa212) ™" (B(Fa — )1)? (BX(W,)?,
1

where Cj is a positive constant. We know that (EX*(W,,))2 = O(|W,|?)
as n — o0o. By Lemma 3.13 for m = 2 (we take ¢, = 1), we have that
(E(7y, — 7)4) O(|W,,|72h2) as n — cco. Hence, the first term of (3.93)
is of order O(|W,,|?), which is o(1) as n — oo. Using a similar argument,
by noting now that (E(7, — 7)2) = O(|W, l_lénhn) as n — 0o, we have
the second term of (3.93) is of order o(|W,|~'h, "), which (by assumption

(3.7)) is o(1) as n — oo.
Next we consider the third term of (3.93). This term can be written
as

7 s+ k7y) z— (s +k7) i ’
|W,.|2h2 < z / { (T) K (T)} X (dz:))
g S x—(s+ k) z—(s+km)\] «
e ® < > / [1‘ ( ™ ) - K (—h—)} X (de)

> [ n( ) xan)

l=—00

+——|W:|2h% (Z/ ( (;l:kT)>X(dm)> (3.94)
k=—o00

We will show that the third term of (3.94) is equal to A%(s) + o(1), while

the other terms are o(1) as n — 0.

First we consider the first term of (3.94). From the proof of Theorem
3.7 (cf. the upper bounds in (3.79), (3.80), (3.81), and (3.84) ), for
sufficiently large n, we have with probability 1 that
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< 2(K,La) Y X ({s + kT + ha[~Cdn, CO] + hn AL} N W)

k=—o00

+2(a + e(La)C8n) Y X ({s+ k7 + ha[-2,2]} N W)

k=—oc0
2 (o)
+e(La) Y D> X ({s + k7 + halai — Cop i + CO, ]} NW,),

i=1 k=—o00

with a; = —1 and ay = 1. Then, to show that the first term of (3.94) is
o(1) as n — oo, it suffices to check

47%c*(K, L)

< 2
T E( > X ({5 + kT + ha[-C8,,C8,) +lz,,,Ag}ﬂW,l)> = 0(1)(3.95)

k=—o0

47% (a4 (Lo )C6,)?
|W,|2h2

E ( > X ({s+kr+ha[-2,2}0 Wn)> = 0(1),(3.96)

k=—o00

and

2 2 2 o 2
waiffg‘jE (Z S X ({s+ k7 + hala; — Cou,as + C8,J} 0 W,L)> — (1), (3.97)

i=1 k=—o00
as n — 0o.

To prove (3.95) we argue as follows. By writing square of a sum as a
double sum, we can interchange summations and expectation. Then we
distinguish two cases, namely the case where the indexes are the same
and the case where the indexes are different. For sufficiently large n, since
hn 4 0asn— oo,

X ({s + k7 + hy[-C6y, Cop] + hp AL} N W)

and
X ({s+j7+ hp[-Cé,,Cé,] + hy AL} N W)

are independent, provided k£ # j. Then, for large n, the expectation on
the Lh.s. of (3.95) does not exceed

> EX*({s+ k7 + hy[~C6,, Co,] + hy ALY N W,,)

k=—o0

o) 2
E ( > EX ({s+ k7 + hn[~C6,,C8,] + hn AL} N Wn,))

k=—o0

o 2
<2 ( > EX ({5 + k7 + ho[~C6y, C8,) + hy AS} N Wn)> . (3.98)

k=—o00
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From proof of Theorem 3.7 (recall the quantity in (3.86) does not exceed
the r.h.s. of (3.88) ), we have that

> EX ({s+ k7 + ha[=C0n, C8y] + ha AL} N Wa)
k=—o00

=0 (U‘|Wn|hn + 6nIVVn|hn) ,

as n — oo. This implies that the Lh.s. of (3.95) is of order O(a? + 42)
as n — o0o. By taking now o = «,, | 0, and by noting that it is easy to
check ¢(K, Ly) = O(1) as a,, | 0, we have that this quantity is o(1) as
n — 00.

Using a similar argument, by noting that

i EX ({s + k7 + ha[~2,2]} N W,,) = O(|W|hy),

k=—00

as n — oo (cf. (3.89) ), we also have that

E < i X ({s+kr+hal-2,2]}0 Wn)> = O(|Wal*h3), (3.99)

k=—o00

as n — 0o, which implies the Lh.s. of (3.96) is of order O(«? +42), which
(by taking o = oy, | 0) is o(1) as n — oo.

Now we prove (3.97). By a similar argument as the one leads to (3.98),
for large n, the expectation on the Lh.s. of (3.97) does not exceed

2 00 2
4 (Z Z EX ({s + k7 + hp[ai — Cén,a; + C8,]} N Wn)> . (3.100)

i=1 k=—o00
Since the third term of (3.85) is o(1) as n — oo, we conclude that

2 00
> N EX ({s+kr+ hya; — O, ai + Con]} N W)
i=1 k=—o00

= O(an|hn)7

as n — oo. This implies the quantity in (3.100) is of order o(|W,|?h2),
which then implies (3.97). Hence we have proved that the first term of
(3.94) is o(1) as n — oo.

Next we prove that the second term of (3.94) is o(1) as n — oo. Since
K is bounded, i.e. K(u) < Cj for all u € R, the expectation appearing in
the third term of (3.94) does not exceed the Lh.s. of (3.99) multiplied by
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C{. By (3.99), we know that the third term of (3.94) is O(1) as n — .
We have proved that the first term of (3.94) is o(1) as n — oo. Then,
Cauchy-Schwarz inequality shows that the second term of (3.94) is o(1)
as n — oo.

Finally, we prove the third term of (3.94) is equal to A%(s) + o(1) as
n — oo. Since hy | 0 as n — oo and the kernel K has support in [—1, 1],
for sufficiently large n, we have that

/w A( (;?: ]T)>X (dx) and / ( (;:kT))X(dx) (3.101)

are independent, provided j # k. Then, for sufficiently large n, the third
term of (3.94) can be written as follows

- |Wn|2h~ :Z Z

k=—o00

E/ ( S+]T)Xd)/ ( “”))X(dx)
= ( 3 B, x =5 X(’J”’))Q

w2 (=, 5 () v

o0 D

+m k;m E </W K (@) X(dx)) - (3.102)

Since the kernel K is bounded, the absolute value of the second term on
the r.h.s. of (3.102) does not exceed

202 o :
W, |z(;1n kZ (EX ({5 + k7 + ha[-1,1)I(s + k7 € W,))?

=0 (ji7z7) = o,

as n — 00, where Cj is a positive constant. A similar argument also
shows that the third term on the r.h.s. of (3.102) is o(1) as n — co. By
Lemma 3.12, we can write the first term on the r.h.s. of (3.102) as follows

k=— . n

n

= (A(s)+ 0(1)) = A%(s) + 0(1),



50 Chapter 3 Kernel estimation

as n — oo. Hence, the first term on the r.h.s. of (3.92) is equal to
A2(s) 4+ o(1) as n — oo. This completes the proof of Theorem 3.8. [

Proof of Theorem 3.9

Since we want to prove (3.57) instead of (3.55), it is not enough now to use
the result from Theorem 3.7 to simplify the expression for Var(An.x(s)).
Hence, instead of writing Var (An.x (5)) as that in (3.92), here we have to
directly compute Var(\, x(s)) as follows

Var (;\,,K(s))
Z / (¢— S+k7"))X(dm)>

2
-
=——— Va
A (
k=—oc0

1 fx—(s+ kT -
+|—VVW Var ((Tn = T Z / K ( A )> X ((11’))

27 s+ k) \ <
+|Wn|2—h% Cov <(Tn —T)AZOO/ <——) X (dz),
Z / < q+an)>X(da:)>. (3.103)
k=—o0

The first term of (3.103) can be written as

2

W, Var (S50, K (5525) X ()
———2 F c—(s+kT -
+|W:|2h‘;; Var (Zfl_m Jip, B (=Bl (B A(dm))
_—2 ’ o9 3 z—(s+kTn - (z—(s+kT
rppmm O (S S, [K (555 - K () | X o),
Y e B G+l s((da;)> (3.104)

We will prove this theorem by showing the first term of (3.104) can be
written as the r.h.s. of (3.57), while the second and third terms of (3.104)
as well as the second and third terms of (3.103) are of order o(|[Wy,|~'h,, ')
as n — 00.

First we consider the first term of (3.104). Since for sufficiently large
n, the quantity in (3.101) are independent, provided j 7 k, this term can
be written as follows

72 = _ (= (s+ k7)) o
w2 (/.. K (T ) i)
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2 00

hn
T 5 X
- — K? A Iz +s+k W,,)dz
W /hn (hn> (z +s) Z (r+s+kre )dz:

k=—o00

= (140 (Wal™))) (W) (hi /j} K? (%) Mz + s)d;z:)
= ([1+0(wal™)) (lW:lhn> (% /_I; K® (%) Az +s) — A(é’))d;z:)

+(1+0(W,]™)) <ﬁ> A(s)[l K?(x)dx. (3.105)

Since s is a Lebesgue point of A and the kernel K is bounded, we have
that

b .
h, ! / KQ(%)|/\(:1: +5) — A(s)|dz = o(1),
—h, n

as n — oo. Hence, the first term on the r.h.s. of (3.105) is of order
o(|W,|7th, 1) as n — oco. Obviously, the second term on the r.h.s. of
(3.105) can be written as the r.h.s. of (3.57). Hence, we have proved that
the first term of (3.104) can be written as the r.h.s. of (3.57).

Next we show that the second term of (3.104) is of order o(|W,,|~'h, 1)
as n — o0o. Since this term does not exceed the first term of (3.94), it
suffices to check that the first term of (3.94) is o(|W,,| 'h,; ') as n — oo.
To do this we argue as follows. Suppose that the kernel K has (m — 1)
discontinuities. Then, K can be written as a sum of m Lipschitz functions
K, ..., Ky which having disjoint supports Iy,..., I, respectively. In
other words we have that

m m
K=} K and UL=[-11]
i=1 i=1
Since K; is a Lipschitz function, for each 4 (i = 1,...,m) we have that
|Ki(u) — K;(v)] < e(K;)|u—v| H{u € L} + v € L}) (3.106)

for all u,v € I;, where ¢(Kj;) is a positive constant depending on K;.
Let Iy = (—o0,—1), I41 = (1,00), and we put K; = 0 when i = 0 or
i =m+ 1 (by assumption (K.3)). Then, the absolute value of the sum of
random variables appearing in the first term of (3.94) can be written as

£ LI () - (225

k=—00 =0 n

BT L () ()

=0 k=—o00
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I(z € {s +kn + hoLi} N {s + kT + hpi}) X (do)|

= x— (s+ kTn) x— (s+kr)
i| —————— | —Kj | ———
i Z Z /w l:K ( hy ) ! ( hn
0<i#j<m+1 k=—o0 n
I(z € {5+ kfy + b} N {s + kT + hyI;}) X (dz)|. (3.107)

Note that, the first term on the r.h.s. of (3.107) correspond to the case
where both points (z — (s+k7y))/hn and (z— (s+k7))/hy, are in the same
interval I; (for some i, 0 <4 < m+ 1), while its second term corresponds
to the case where (z — (s + k7)) /hy € I; and (z — (s +k7))/hy, € 1;, with
i # 3.

#g‘irst we consider the first term on the r.h.s. of (3.107). Since both
points (z — (s 4+ k7,))/hn and (z — (s + k7)) /hy, are in the same interval
I; and Ky = K1 = 0, by (3.106), this term does not exceed

PIPILC)

k(T —1)

X ({s+k#n + hai} W)

. i
k=—o0 i=1
oo m i k(’]ﬁn _ 7_) .
+ YD (K =X ({s+kr+h, [} NW,) . (3.108)

k=—o00 1=1

Since s € Wy, by (3.56), we have with probability 1 that all integer &
such that {s + k7, + hy i} N W, # 0 satisfy |k| = O(|Wy|) as n — oo.
Obviously, all integer k such that {s + k7 + h,I;} N W, # 0 also satisfy
|k| = O(|W,|) as n — oo. Then by (3.56), we have with probability 1
that

k(fn — 7)/hnl < C8nf (Wl /2hi/?) (3.109)
and
k= ho (C0/(Wal 12B1/)) < Ko < k74 ho (C8/(IWal 1))

where C' is a positive constant. By (3.7), for large n, we have that

(C5n)/(|Wn\1/2h,1/2) < 1. Note that |I;| < 2 for all ¢ = 1,...,m. Let
co = Y., ¢(K;). Then, the sum of the first and second terms of (3.108)
does not exceed

2Cco0n  ~= ,
n n  k=—o0o

Next we consider the second term on the r.h.s. of (3.107). Since
K(u) < Cj for all u € R (because of assumption (K.2)), this term does
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not exceed

26 Y Y X ({s+kr+k(f—7) +hali)

0<i#j<m+1 k=—o0
N{s+kr+h,;}NW,).  (3.111)

For simplicity, we put the indexes 1,...,m from left to right in the inter-
vals I;. By (3.7) and (3.109), we see that with probability 1, k(7, —7) | 0
faster than (5nh,l/ QIWN ~1/2 | 0 and hence also faster than hy 40, as n —
0o, for all k such that Js%—k7+k(%n—T)+hnIi}ﬂ{s+kT—|—han}ﬁWH # .
Then for large n, |i — j| > 2 implies {s + k7 + k(7 — 7) + hpI;} N {s +
kT + hyI;} = 0. Hence for large n, we have with probability 1 that the
quantity in (3.111) does not exceed

2C0 ) > X ({s+kr+ k(P — 1) + haLi} 0 {s + k7 + huTix1} N W)
1=0 k=—o00
+2C0 Z X{s+kt+hali} N {s+ kT + k(0 — 7) + hnig1} N Wy).
1=0 k=—00

(3.112)

From (3.112) we can see that, if k(7, — 7) < 0 then the first term of
(3.112) is equal to zero, while if (7, — 7) > 0 then its second term is
equal to zero. Let a; (i = 1,...,m —1) denote the discontinuity points of
K, i.e. the border point of I; and I;;, a9 = —1, and a,, = 1. Since, by
(3.109) we have |k(7, — 7)| < C’(thJ/Q|Wn|‘1/27 the quantity in (3.112)
does not exceed

m o0
200 Z Z X ({S + kT + hpa; + [_0671h}1,/2IWn|71/2,

=0 k=—c0
CohY W, |2} nW,,). (3.113)

Hence, the Lh.s. of (3.107) does not exceed sum of the quantity in
(3.110) and (3.113). To prove the first term of (3.94) is o(|W,| 'k, "),
which implies the second term of (3.104) is o(|W,,| 'h, ') as n — oo, it
suffices now to check

2
52 =
7 E ALt k n(=2, n = n|hn), .
TiAD <Zx ({s + k7 + ho[-2,2} N W )) o(|Wnlhn), (3.114)
and
m o0
B (Z Z X({S"‘k'T"'hnai+[—Cdnh,}/z|I/Vn|*1/27
i=0 k=—o0

9

Co, bYW, |72y n Wn)> = o(|W|hy), (3.115)
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as n — 0o. By (3.99), we have (3.114). By a similar argument as the one
used to show the expectation on the Lh.s. of (3.97) does not exceed the
quantity in (3.100), here we also have that the Lh.s. of (3.115) does not
exceed

m 00
4(2 Z E X({S+k77_+hnai+[—C5,JL1/2|WH|*1/27

1=0 k=—00

2
OB A2 W42} ﬂWn)) . (3.116)

Since ) is assumed to be bounded in a neighborhood of s, sum of expec-
tations in (3.116) can be computed as follows

Cénhi/z‘wrn‘—lm

i f: / Mz + s+ kT + hpa;)

i=0 ke o0 J ~Conhy/*|Wa|=1/2
I(x + s+ kT + hpa; € Wy)de
(m + 1)(2C8, b2 (Wi |~Y2) A0 (2] W /) = O@Gnhi 2| Wa|'/?),
(3.117)

IN

as n — oo. Since the Lh.s. of (3.117) is positive, (3.117) implies that
the quantity in (3.116) is of order O(62h,|Wh|) = o(hy|W,]) as n — oo.
This implies (3.115). Hence, we have that the second term of (3.104) is
o(|[Wy|~th,t) as n — oc.

Next, we consider the third term of (3.104). Because the first term
of (3.104) can be written as the r.hs. of (3.57), we know that this
term is O(|W,|'h, ') as n — oc. Since the second term of (3.104) is
o(|W,|"'h; ') as n — oo, an application of Cauchy-Schwarz inequality
shows that the third term of (3.104) is o(|W,| 'h, ") as n — oo.

It remains to show the second and third terms of (3.103) are
o(|[W,|~'h; 1) as n — oo. The second term of (3.103) does not exceed the
first term of (3.93). From the proof of Theorem 3.8, we know that this
term is of order O(|W,|~2), which is o(|W,| 'h,') as n — oo. Hence,
the second term of (3.103) is of order o(|W,,| 'k, ') as n — co. From the
proof above, we know that the first term of (3.103) is O(|Wy|~th,1) as
n — oo. Since the second term of (3.103) is o(|W,| 'h,!) as n — oo,
an application of Cauchy-Schwarz inequality shows that the third term of
(3.103) is o(|Wn| 'h, ') as n — oo. This completes the proof of Theorem
3.9. O
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Proof of Theorem 3.10

Recall that E;\n’K(s) can be written as the quantity in (3.70). We will
prove this theorem by showing that the third term of (3.70) can be written
as the r.h.s. of (3.59), while the other terms are of order o(h?) as n — occ.

First we prove that the first term of (3.70) is o(h2) as n — co. From
the proof of Theorem 3.7 we know that the absolute value of thN term does
not exceed the quantity in (3.73). We know that (EX?(W,, )) O(|Whl)

as n — oo. By Lemma 3.13 for m = 1 (we take §, = 1, provided
1

we replace the condition (3.53) by (3.58), we have that (E(7, — 7)?)2
= O(|W,| 'h}) as n — oco. Then, the quantity in (3.73) is of order
O(|W,|~'h2), which implies that the first term of (3.70) is o(h2) as n —
00.

Next we prove that the second term of (3.70) is o(h2) as n — co. By
a similar argument as the one used to prove the upper bounds in (3.110)
and (3.113), but with condition (3.56) now replaced by (3.58), we have

that
(s + k7,) (= (s+kT) AEy
> o [ (=52 - o (52 e
k=—o00
< 20cobuhl Y X ({s+ k7 + ha[-2,2]} N W)
k=—o0

m

+2Co Y Z X ({s + k7 + hpa; + [-CO, B3, C8,h3]} N W,,) .

1=0 k=—o00

This implies that the absolute value of the second term of (3.70) does not
exceed

2Cc0(5,lhfl{|w T E Z X ({8 4kt + h,[-2,2]} N W,,) }

27'0()
A Z Z ({s + k7 + hnai + [-Co, 13, CO.B3 ]} N W) .

0 k=—o0

(3.118)

By (3.89) we then have that the first term of (3.118) is of order o(h2) as
n — 00. A similar argument as the one in (3.117) also shows that the
second term of (3.118) is of order o(h?) as n — oo. Hence the second
term of (3.70) is o(h2) as n — oc.
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Next we prove that the third term of (3.70) can be written as the
r.h.s. of (3.59). By Fubini’s, this term is equal to

o0

4 : & — (s +kr) )
|Wh k; H/RK (T) M) (x € Wy)de

—00

o0

T . €T )
= Walhn /RR (;T) ST Mo+ s+ k)@ + s+ kT € Wy)dr.

k=—o0

(3.119)
Since A is periodic with period 7, we have A(z + s + k7) = MMz +

s). Furthermore, it is obvious that X Iz +s+kr € Wy) €
[[Wn|/T — 1,|Wy|/7 + 1] . Then, the r.h.s of (3.119) can be written as

(140 (Wal ™)) /RK (hi> Alw+ 8)dx

hy
_ (1+(9(|W,,,I1))h17/RK(}%> @+ 5) — As)}de
+1+0(Wa ™)) %/RK (%) A(s)dz. (3.120)

By (3.2) and Young’s form of Taylor’s theorem, we have that

L/hn = (i) e 4 Fiin = /llK(x)A(s+mhn)dw

hn —hn hn
AII (S)

1 1
= A(s) + X(s)hn/ oK (z)dr + —z—hi / 2’ K (z)dx + o(h%),
-} —1

as n — oo. Because K is symmetric around zero, we have that
[', 2K (z)dz = 0. Then, the Lh.s. of (3.120) can be written as

(1+ O(Wa| ")) (A(s) + A—gs—)hfﬁ /;1 2K (z)dz + o(h2))
= A + 2 / LK (@)dz + o(h2) + O(Wal ™)

as n — oo. Hence, the third term of (3.70) can be written as the r.h.s. of
(3.59). This completes the proof of Theorem 3.10. O



Chapter 4

Nearest neighbor estimation of the local
intensity

4.1 Introduction

In this chapter we consider nearest neighbor estimation of the intensity
function A at a given point s € W,,, using only a single realization X (w)
of the cyclic Poisson process X observed in W,,. The requirement s € W),
can be dropped if we know the period 7. The first part of this chapter is
a revised version of Mangku (1999).

As in chapter 3, let 7 be any consistent estimator of the period 7,
e.g. the one proposed and studied in chapter 5 or perhaps the estimator
investigated by Vere-Jones (1982).

Let s;, 1 =1,..., X(W,,w), denote the locations of the points in the
realization X (w) of the Poisson process X, observed in window W,,. Here
X (W,,,w) is nothing but the cardinality of the data set {s;}.

It is well-known (see, e.g. Cressie (1993), p. 651) that, for any positive
integer m, conditionally given X(W,,) = m, (s1,...,s;) can be viewed
as a random sample of size m from a distribution with density f, which
is given by

Au)

f(u) = ml(u e W), (4.1)

while the simultaneous density f(si,...,sm), of (s1,...,5y) is given by

F1nnysm) = =1 AG) g ey (4.2)
(an )\(’U)d’l))

Let 5;, « = 1,...,m, denote the location of the point s; (i = 1,...,m),
after translation by a multiple of 7,, such that §; € B; (s), for all i =

o7
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1,...,m, where B;, (s) = [s— 2, s+72). The translation can be described
more precisely as follows. We cover the window W, by N, ; adjacent
disjoint intervals B;, (s+j7,), for some integer j, and let Ny, 7 denote the
number of such intervals, with B (s + j7,) N W,, # 0. Then, for each j,
we shift the interval B;, (s + j7,) (together with the data points of X (w)
contained in this interval) by the amount j7, such that after translation

the interval coincide with B, (s).
Let k = k,, be a sequence of positive integers such that

kp — o0, (4.3)
and
kTL
0 4.4
Ty Lo (4.4
as n — oo.

Let now |5, ) —s| denote the k;-th order statistics of |§1—s|,...,|8m—

n

s|, given X (W,,) = m. A nearest neighbor estimator for A at the point s,
is given by

Tnkn

SR N— 4.5
2|H/n||3(kn) - S| ( )

5\”(3)

if X(W,) > kn, and A, (s) = 0 otherwise.

Let us briefly indicate the relation between the kernel type estimator
investigated in chapter 3 and the idea behind the construction of our
nearest neighbor estimator. Let, for each w, X, (w) denote the set {3;},
where for any data point s; € X(w), §; is obtained from s; by shifting
over a random multiple of 7, such that $; € B; (s). Here and elsewhere
in this chapter let, for any set A, X, (A) denote the number of points §;
in A. Then, the 'uniform’ kernel estimator in (3.5) can also be written as

3 7271 Xn,(Bh (9))
X () = n
n,K(g) |VV,1,| 2’1,”

(4.6)

To obtain our nearest neighbor estimator (4.5), we replace the (random)
number X,,(By, (s)) in (4.6) by a (non-random) positive integer k. i.e.
X, (B, () = kn, which directly yields that we may take h, = |3, — s/,
and (4.6) reduces to (4.5). A detailed comparison of (4.5) and (4.6) is
given in section 4.4.

We remark that nearest neighbor estimators for estimating an un-
known density function have been studied by Loftsgaarden and Quesen-
berry (1965), Wagner (1973), Moore and Yackel (1977), Ralescu (1995),
among others. The condition (4.9) also appears in Wagner (1973). In
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the construction of our nearest neighbor estimator (4.5) we employ the
periodicity of A (cf. (1.10)) to combine different pieces from our data set,
in order to mimic the ’infill asymptotic’ framework.

4.2 Consistency

4.2.1 Results

Theorem 4.1 Suppose that X is periodic and locally integrable. If, in
addition (4.3) and (4.4) hold true, and

2
'VZ"I [fn—7] 50, (4.7)
as n — 0o, then
An(s) B A(s), (4.8)

as n — 0o, for each s at which X is continuous and positive.

Theorem 4.2 Suppose that X is periodic and locally integrable. If, in
addition

Z exp(—ek,) < oo, (4.9)
n=1
for each € >0, (4.4) holds, and
712
W;"' |70 — 7] = 0, (4.10)
then
An(s) S As), (4.11)

as n — 00, for each s at which A is continuous and positive.
Remark 4.1 Since
Pk, < X(W,)) =Pkn/|IWa| < X(W,)/IWa]) — 1, (4.12)

asn — oo, (because of (4.4) and by Lemma 2.2 we have X (W,,)/|W,| 2 6,
with & > 0 ), we can conclude that no matter how we define \,(s) in
case k, > X (W,), Theorem 4.1 remains valid. To check that the above
conclusion also holds for Theorem 4.2, we need to show that

1Pk, > X(Wy)) < 0.

n=1

But, by (4.4), Lemma A.1 (see Appendix), and (4.9), it is easy to show
that P(k, > X(W,)) is summable. O
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4.2.2 Proofs: the case 7 is known

We first consider the situation where we know the period 7. Let 5;, i =
1,...,X(W,,w), denote the location of the points s; (i = 1,..., X (Wy,
w)), after translation by a multiple of 7 such that 5; € B, (s), for all
i =1,...,X(Wy,w), where B;(s) = [s — 5,s + 7). By periodicity of
A, we have that \(5;) = A(s;), for each i = 1,..., X (W,,w). For any
A C B;(s), let X,,(A) denote the number of points 5; in A. Then, of
course, X,,(B,(s)) = X(W,,), where X,, is a Poisson process with intensity
function
o0
An(w) = Au) > I(u+jT € Wy)
j=—00
(cf. Kingman (1993), Superposition Theorem and Restriction Theorem,
p. 16-17). As a result, (cf. (4.1) and (4.2)), conditionally given
X, (B;(s)) = m, (51,...,5p,) can be viewed as a random sample of size
m from a distribution with density f, which is given by

An () - An ()

ml(u € B:(s)) = Wl(u € B.(s)),

flu) =

while the simultaneous density f(51,...,8m), of (81,...,5y) is given by

oA (G ]
(gl, e 7§m) = —I—IL(SL)WI ((§1, o oo .§m) S B.,—(S)m) .

(fwn /\(v)dv)

For any real number x > 0, define

by

H,(z) = P(si—s| <z |[X(W,)=m)
= P(s—x<5<s+z | X(W,)=m)

o u -
= / T%I(u € B;(s))du. (4.13)
s—z  Jw,

Now we consider the order statistics of the random sample

|51 — 8|,y |Sm — s
of size m from H,. Let |5 — s| denote the k-th order statistic of the
sample |51 — s|,...,[Sy, — s|. Define

= Tkp

)\nt = T —== 4.14
®) = Wl — 4 (4.14)

Note that, if we replace 7 and 5, in An(s) by 7, and 3, ) respectively,

5
then A, (s) reduces to the estimator A,(s) given in (4.5). We will now
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first prove that our Theorems are true, when X, (s) is replaced by Ay (s).
In section 3 we will show that our Theorems are valid for A, (s) as well.

Lemma 4.3 Suppose that X is periodic (with period ), and locally inte-
grable. If, in addition (4.3) and (4.4) hold, then

A(s) B A(s), (4.15)
as n — 00, for each s at which X is continuous and positive.

Lemma 4.4 Suppose that X is periodic (with period T), and locally inte-
grable. If, in addition (4.9) and (4.4) hold, then

A (8) S A(s), (4.16)
as n — 00, for each s at which X\ is continuous and positive.

Proof of Lemma 4.3 In view of Remark 4.1, we may assume, without
loss of generality, that k, < X (W,,).
To prove (4.15), we must show that,

Tk
P <‘— _ Al
2IWoll3(k,) — 8|

> e> -0 (4.17)

as n — oo, for each sufficiently small € > 0. Choose ¢ < A(s). Then, a
simple calculation shows that, the probability on the Lh.s. of (4.17) is
equal to

P (i = < 50 — 41 0F g > (500 5
e ————— S — 8| O = F——————— S(1 — 8
2[Wo|(A(s) —¢) = ") 2[W,|(A(s) +¢) = ")

Tk,
<P llg y— o
< ('8““ 2 o) —e>>

Tk
Plls, —sl<—"-"™ . .
* ('S““ 5'—2|wn,|<x<s>+e>> (4.18)

Then, to prove (4.17), it suffices to check that

Tk,
Pllsp ) —s]|>————] =0 4.19
(' O A e>> ()
and
P (150 —s|<—TFn ) g (4.20)
M N S A OED) '

as n — oo, for each € > 0. Here we only give proof of (4.19), because the
proof of (4.20) is similar.
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Recall that X (W,,) is a Poisson random variable with
EX(W,) =Var(X(W,)) = A(s)ds.
Wn

Since \ is cyclic (with period 7), by Lemma 2.1 we have that
/ Ms)ds = 0]W,| + O(1),
W,

as n — oo. Let
Cin = [0|Wa| — 6]Wa])2a) (4.21)
Com = [0|Wa] + BIW,])an), (4.22)
where a,, is an arbitrary sequence such that a,, — oo and

an = 0(|Wn|1/ 2), as n — oo. Then, we can write the probability on the
Lh.s. of (4.19) as

i Tk
P54k, 5> [ X(Wy :m)P X(W,) =m)
";” <| (kxn) | 2|Wn|(/\(8) — 6) | ) ( )
Cin—1 00
< S PEW)=m)+ Y PXW,)=m)
m=kn m=Cs ,+1
+ - rgnfnléc“ P(X(W,)=m)-
Can
Z P <|§(,‘,n) —s| > —Tkn—lX(Wn) = m) . (4.23)
2|Wa|(A(s) — )

m=Cyn

It suffices now to show that each term on the r.h.s. of (4.23) converges

to zero, as n — o0.

First we show that the first term on the r.h.s. of (4.23) is o(1), as
n — oco. Since |EX(W,,) — 0|W,|| = O(1), as n — oo, this quantity is
equal to

P (X(W,) < i — 1) < P (X (W) < 0Wa| = @IWa])*a)

IN

P (IX(W,) — BX(W,)| > (1Wal)2an — [EX(W,) - 6] Wa])

Il

P ((BX(W,))Y2|X (W) - EX(Wa)| 2 O(1)as )

< O(1) exp (—2 ji(l)) : (4.24)

which is o(1), since a,, — 00, as n — oo. Here we have used Lemma A.1
of the Appendix. A similar argument also shows that the second term on
the r.h.s. of (4.23) is o(1), as n — oo.
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Next we prove that the third term on the r.h.s. of (4.23) is o(1), as
n — 0o0. Let m = m, be a positive integer, such that C, <m, < Cy,.
Then m, ~ 6|W,|, which implies that k,/m, = o(1), as n — oo (by
(4.4)). Recall that X(W,) has a Poisson distribution with parameter
p(Wy) = [y, A(s)ds. A simple calculation, using Stirling’s formula,
shows that

maxm,,, C,,<m,<Cs, P (X(Wn) — '"Ln) = O(|Wn|'1/2)7

as n — oo. It is well-known (see, e.g. Reiss (1989), p. 15) that, condition-
ally given X, (B;(s)) = X(Wy) = my, |34,) — s| has exactly the same
distribution as H, '(Zk,.m,), where Zj ... is the k,-th order statistic
of a sample Z,,..., 2, of size m,, from the uniform (0, 1) distribution.
(We remark in passing that k, < m, for all n sufficiently large). Note
that a similar device was employed by Ralescu (1995) in his analysis of
multivariate nearest neighbor density estimators. As a result, the third
term on the r.h.s. of (4.23) is equal to

Can
: : k
o(w, -1/2 P (H;l Ty i) #) . 4.95
(| | )1nnz(fx,1l ( ’ ) B 2|Wn|(/\(5) - 6) ( )

First note that, by choosing € < A(s), we have

7 Tkn _ Tk, > Tk, (1+ € )
2[Wa|(A(s) —€) 2/\(s)|Wn|(1—ﬁ) 2X(5)| Wl A(s)

B Tk, . Tek,, (4.26)
B 2M(8)[W| — 2X2(s)[Wh| ‘

We know that, for each m,,,

EZ;, .m, = kn/(m, +1)

and
Va’r(an:mn) = O(kn/(77L7Q‘L))

We now need a stochastic expansion for H, '(Zy, .., ). First we simplify
the r.h.s. of (4.13) to get for any x > 0

T ahid _
Hy(z) = ((I;TI;/':l :(,()9((11)))) /7 , Aw)I(u € B;(s))du

(% x O(|W,L|_l)> /+ M) Iw € Bola))du

s —T

stz
%/ Auw)I(u € B, (s))du + O(|W,|™), (4.27)

s§—x

as n — oo, uniformly in z. This because [*7 N(w)I(u € B, (s))du < 67.

Define function H(z), which is equal to the first term on the r.h.s. of
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(4.27) for x > 0, and zero otherwise. The density h of H is given by

As + 2)I(s + x € B;(s))
ot
As —x)I(s —x € B;(s))
&t ;
ot
for any z > 0, while h(0) denote the right hand derivative of H at zero.
Next note that

h(z) =

(4.28)

H Y (Zy,.m,) = inf{z: Hy(x) > Zk,.m, }
= inf{z: H(x) > Zk,.m, + O(W,|™")}
Hil (Zk Mn + O(|Wn|71)) ) (429)
as n — 0o. Here and elsewhere in this chaptel we define H ™~ = inf{x :

H( ) >t}, 0 <t < 1. Now we compute H '(0). Since )\( ) > 0 and A
is continuous at s, we see from the first term on the r.h.s. of (4.27) that
H(x) > 0, while z > 0. In other words, the first term on the r.h.s. of
(4 27) is equal to zero, if and only if, z = 0. Hence H '(0) = () Since h
is right continuous at 0 the first (right hand) derivative of H™ Tat 0 can
be computed as

, 1 1 ot

HNO) = 5=y ~70) ~ 220 £-30)

Since H~"(0) is finite, by Young’s form for Taylor’s theorem (Serfling
(1980), p. 45), we can write

k
1 n iy
(SR v ogw )

in

H(0) + ( . 0<|Wn|-1>) H-(0)(1 + o(1))

my, +1
01k, ks
_ 31
e e () 31)
as n — 0o. Because A is continuous at s, we have
/ k, 1
H™! ( B +(9(|Wn|‘1)) =
Tt h (B (G + O0Wal )
1 ot or
= —_ = “+0 1 5 432
RomD ~ 26+ o)~ 26 e

as n — 0o.
Let Zk,:m, = Zkp:mn — BZkymn = Zkyn:mn — kyn/(my,+1). Let us write

H;] (an:mn) = Hgl(an:mn)I(lzknzm,J < €n)
-+ H;1 (an:mn)lﬂzkn:mn' > fn)a
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where €, is a sequence of positive real numbers such that ¢, | 0 as n — oo.
Because

H™" (kn/(mp +1) + O(IWa| 1)) = O(1),
as n — 00, by Young’s form for Taylor’s theorem, we can write
H71_1(anlmn)I(|an:mn| < 6n) as (Cf (429) )
H’fjl(an:mn)I(|an:7nn| < én)
= H™' (Ziyom, + O(Wal ™) X1 Z,:m, | < en)

{71 (g + 0wl ™)

m, +1
kz | k'z =
Z - M Hl 7 1
+< kst mn—i-1> <mn+1+o(|Wn| )>
k .
Zk cm. — ik 1(Zk . | < €n), 4.33
+0 (Zuwmn = 220 ) | 1V < 0 (4.33)

as n — oo. Substituting (4.31) and (4.32) into the r.h.s. of (4.33), we
then have

= Otk k
1 ) ‘ £ o) = n n
7 o W) S ) = { ity +o ()

+ <%> Ziwima + 0 (Ziimn ) } (| 2 oma | < €n), (4.34)

as n — oo. Since m, > C,, the first term on the r.h.s. of (4.34) does
not exceed
01k, " 0tk,,
2X(s) ([BIWn] — (B]W,])/2an] + 1) = 2X(s) (8|Wy| — (0|W,|)/2ay,)
HTk'n Tkn n
= = 4.35
20N Wal (1= (Ol Pan) ~ DN@IWal () 0

as n — oo. Combining (4.34), (4.35), and (4.26), and by noting also
that the first term on the r.h.s. of (4.35) cancels with the first term on
the r.h.s. of (4.26), we find that, for sufficiently large n, the probability
appearing in (4.25) does not exceed

o (an:mn)

) k
H~l 7z . 1(|Z ‘m n L—
FH B M 2| > €0) > i

0r - ~
P <—|an:mn |I(|an:7nn| S 6n) +

A(s) I(|an:mn| <€)

. ek, = Tek,
<P(1Zkoom|>—=2 ) 4P (|o(Zk.m N
<P (1) > i) +P (10Bm ) > i)

~ k
Bl B e W B i) P 6] & e )& 43
P (Gt Wt > e0) > i (4.36)
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First note that, for sufficiently large n, the second term on the r.h.s. of
(4.36) does not exceed its first term. Now we notice that H, ' (Zg,:m,) <
H,'(1) = Z. Then we find that the third probability on the r.h.s. of
(4.36) does not exceed P(|Zk,.m,| > €n). For convenience we take €, =

(ekyn)/(120X(s)|W,]). Then, the r.h.s. of (4.36) does not exceed

~ ek,
3P (120 | > ——n )
(l e | > 129>\(s)|Wn|>

Therefore, for sufficiently large n, the quantity in (4.25) does not exceed

_1: = ekn
O(|I/Vn| 1/2) (C‘Z,n - Cl,n + 1) P (le'nimn| > 129)\(5)”1’7 |)

< O(1)a,P (

kn, ek,
e o — > 4.
Zl\,,.ﬂln ’ITl/n + 1‘ —i 120}\(S)|Wn|> b ( 37)
as n — 0o. By Chebyshev’s inequality, we find that the probability on
the r.h.s. of (4.37) is of order O(k, '), as n — oo. By (4.3) and choosing
now a, = o(ky), as n — oo, we have that the r.h.s. of (4.37) is o(1) as
n — oo. Hence (4.19) is proved. This completes the proof of Lemma 4.3.
O

Proof of Lemma 4.4 To establish (4.16), we must show that

= Tk
Pl|l——— —\(s)
2 (‘2|Wn”3(kn) — s

n=1

> e) < 00, (4.38)

for each ¢ > 0. By (4.18), to prove (4.38) it suffices to show, for each
€>0,

= _ Tkn
2P (10 =12 g =a) < -
and
= Tk,
Sy —38| € s o : ;
2T (a1 gira) < 4D

Here we only give the proof of (4.39), because the proof of (4.40) is similar.
To prove (4.39), it suffices clearly to show that, each of the terms on the
r.h.s. of (4.23) converges completely to zero, as n — oo.

Let Cy,, and Co,p, be as given in (4.21) and (4.22). In order to deal
with the first and second term of (4.23), the sequence a,, will now have to
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satisfy, in addition to the assumption a,, = o(|W,|"/?) which was already
needed in the proof of Lemma 4.3, the additional requirement

Zexp a?/3) <

The argument given in (4.24) will then imply that these terms converge
completely to zero, as n — oo.

It remains to show that the third term on the r.h.s. of (4.23) also
converges completely to zero, as n — oo. To do this, it is clear from the
proof of Lemma 4.3, that it suffices now to check that the r.h.s. of (4.37)
is summable, for each € > 0.

Let us now consider the probability appearing on the r.h.s. of (4.37).
For sufficiently large n, by Lemma A.4 (see Appendix), there exists a
positive constant Cj such that the probability on the r.h.s. of (4.37) does
not exceed

2 exp {—Cot%} ,

where

1/2
. T k€
i (k,l,/(mn + 1) (1 —ky/(my, + 1))) 126X (s)|W,,|

which (for sufficiently large n) can be replaced with impunity by
1
ekn /(24X(s)). Hence, for sufficiently large n, the r.h.s. of (4.37) does not

exceed
(l exp CO(
» P T 576(M(s))2

)exp 4 loga,, — COE ————k, pexp _00762]{
P T 152002 PP\ T 115200 (s))2 "

= O(l)exp{ H&%k} : (4.41)
provided we require a,, to satisfy loga, = o(k,), as n — oo. Note that,
e.g. the choice a, = (k,)'/? satisfies each of the three conditions imposed
on a,, namely a, = o(|[W,|"/?), ¥°°, exp(—a2/3) < oo, and loga, =
o(ky), provided (4.4) and (4.9). By assumption (4.9), we have that the
r.h.s. of (4.41) is summable. Hence (4.39) is proved. This completes the
proof of Lemma 4.4. O
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4.2.3 Proofs
Proof of Theorem 4.1 To prove (4.8), it suffices to check that

Tkn P,
___ TP B (s), 4.42)
Walloeny =5 (

and

L] (4.43)

‘ Takn Tk
2AWall3h,) — sl 2IWall3(ka) — sl

as n — 0o, for each s at which A is continuous and positive.
First, we prove (4.42). To do this, we must show that

A(s)

Tk
Pl — > e) -0 (4.44)
(.QIWnHS(kn) — 5|
as n — oo, for each sufficiently small € > 0. Choose € < A(s). Then, a

simple calculation like the one leading from (4.17) to (4.19) and (4.20),
shows that it suffices to check

P (|§(kn) — s> W) -0 (4.45)
and
P (|§(kn) —s| < Q—Tk—) 50} (4.46)
[Wal(A(s) + )

as n — oo, for each € > 0. We only prove (4.45), because the proof of
(4.46) is similar.

Recall that s;, (i = 1,...,m) denotes the location of the points in
the realization X (w) of the Poisson process X. Let j; denote the random
integer, depending on 7, and s;, such that 8; = s; + J;7y. Similarly, let
ji denote an integer, depending on 7 and s;, such that 5; = s; +3;7. If
S(k,) denotes the point corresponding to 3 ) before translation, then
obviously 5,y = S(k,) + Jk, Tn. Furthermore we have that

18ka) =8I = |S(ka) +IkaTn — 5l
< S(kn) FTkuT = 8| F ik Tn = Tk 7|
< 18ka) = 81+ ka1 = 71 + 7k, — Tk | (4.47)

To prove (4.45), it suffices now to check, for each € > 0,

_ ; Thn
P (lS(k") = SI > ——6|Wn|()\(5) — ()) =0, (448)

A ~ Tky
P (I.]kn ||Tn - T| > W) — 0, (4.49)
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and

k7l
e — 7 D ey B 5

P (b 312 G =) 0
as n — oo. First note that, the proof of (4.19) also yields (4.48). Since
ik, | = Op(|Wy|), as n — oo, assumption (4.7) yields that

k|| — 7] = Op(kn/’WnDa

as n — oo, which directly implies (4.49). Hence, it remains to check
(4.50).

Here we only give the proof of (4.50) for the case 7, > 7 and ji, , Jx,
are both positive; because the proofs of the other seven cases are similar
and therefore omitted. Since 7,, > 7, we also know that j; < Jji, . Hence
we have that 7, = 7 + |7, — 7| and jk,, = Jk,, — |ik,, — Jk,|- Then, we can
write

S(kn) = Skn tIkaTn
= Sk, + Okn = Tk = Tk ) (7 + [T — 7])
= Bk, + 3k |Ta — 7| — Tk, — Tkal — ke — Tk l|Ta — 7] (4.51)

Since 84,y € [s — %", s+ %"), it follows now from (4.51) that

T |7 — T
2 2

< Sk F Tka [To = 71 = Ty = Tk | = [k = Tk 170 = 7]
T |Tn— T

< —
s+2+ 5

(4.52)

Since we also know that (4.52) holds true for any value 55, € [s—7,s+7),
(4.52) directly yields that

Ll < Sl = 7l = Tl = Thal = [k — Ten 170 — 7] < ol

which is equivalent to

1\ . R i _ 1\ .
(e = 5) o =7l <+ 0 b, = < (34 3) a7l (459

Since Ji, = O(|Wy]), as n — oo, together with assumption (4.7), we find
that
ik — Tk | = Op(k’nlwnrl)v

as n — 0o, which implies (4.50). Hence (4.42) is proved.
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Next we prove (4.43). The Lh.s. of (4.43) can be written as

Tk, 1 .,
altir e . lin= =0,(1 kn Wn = 1 s 4.54
2|Wll|l‘§(kn) s |7 7| p( ) Op( I |7%) Op( ) ( )
as n — oo. Here we have used (4.42) and assumption (4.7). Hence (4.43)
is proved. This completes the proof of Theorem 4.1. O

Proof of Theorem 4.2 To establish (4.11), it suffices to check that
(4.42) and (4.43) remain valid, when Py is replaced by <, as n. — oo, for
each s at which X is continuous and positive.

First, we prove that the Lh.s. of (4.42) converges completely to A(s),
as n — oo. Following the structure of the proof of Theorem 1.1, it
suffices to check that the probabilities appearing on the Lh.s. of (4.45) and
(4.46) are summable, for each e > 0. We shall prove that the probability
appearing on the Lh.s. of (4.45) is summable; the proof of the other case
is similar.

In view of (4.47), it suffices now to show that the probabilities ap-
pearing on the Lh.s. of (4.48), (4.49), and (4.50), are summable, for each
¢ > 0. The proof of the probability on the Lh.s. of (4.48) is summable is
exactly the same as the proof of (4.39). Since, by assumption (4.10), we
have

WTL
) < 21 g o)

as n — oo, (for any r.v. Y, we write Y, = o.(1) to denote that Y,
converges completely to zero, as n — 00), then by assumption (4.10) once
more, we have that the probability on the Lh.s. of (4.49) is summable, for
each € > 0. It remains to prove that the probability on the Lh.s. of (4.50)
is summable. We only consider the case that 7,, > 7 and j,, , Jx, are both
positive; the proofs for the other seven cases are similar. An application
of inequality (4.53), by using now assumption (4.10), yields that

[k = Tkal < (Tkn +3) (7 + 0 Au =7l

as n — 0o. Since J, = O(|W,]), as n — oo, by assumption (4.10) once
more, we have that the probability on the Lh.s. of (4.50) is summable.
Hence we have proved (4.42) with 2, replaced by 5.

Next we prove (4.43) with 2y replaced by <. First note that, the Lh.s.
of (4.43) is the same as the Lh.s. of (4.54). Because we have that the 1.h.s.
of (4.42) converges completely to A(s), as n — 0o, by assumption (4.10)
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and Lemma A.5 (see Appendix), we also have that the Lh.s. of (4.54)
converges completely to zero, which of course implies that the L.h.s. of
(4.43) converges completely to zero, as n — oco. This completes the proof
of Theorem 4.2. O

4.3 Statistical properties

In this section we focus on statistical properties of our estimator, i.e. we
compute the bias, variance, and mean squared error (MSE) of 5\” We
refer to section 3.3 for a more precise description of the type of assumption
we will need for the estimator 7, of 7.

4.3.1 Results

Theorem 4.5 Suppose that X is periodic and locally integrable. If, in
addition, (4.3) and (4.4) hold true, and

. ks
'Wn' |T71. - 7-| =0 ((511 W) (455)

with probability 1 as n — oo, for some fized sequence 6, | 0 as n — oo,
then

EXn(s) = A(s) (4.56)
as n — 00, for each s at which X is continuous and positive.

Theorem 4.6 Suppose that X\ is periodic and locally integrable. If, in
addition, (4.3), (4.4) and (4.55) hold, then

Var (5\”(5)) -0 (4.57)
as n — 00, for each s at which X is continuous and positive.

Theorem 4.7 Suppose that X\ is periodic and locally integrable. If, in
addition, (4.3) and (4.4) hold true, and

1/2
[Wal|fn — 71| =0 (5nkn ) (4.58)

Wl

with probability 1 as n — oo, for some fized sequence 6, | 0 as n — oo,
then we have

Var (;\,1(.s)) = )\Zis) +o (ki,) (4.59)

as n — 00, for each s at which \ is continuous and positive.
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Theorem 4.8 Suppose that X is periodic and locally integrable, (4.3) and
(4.4) hold true, and

|Wal |70 — 7] = O <5W> (4.60)

with probability 1 as n — oo, for some fized sequence oy | 0 as n — 00.
If, in addition, X has finite second derivative X" at s, then

R Tz)\”(s)k'Q k2
E n — ‘ y n - n y
Mn(®) = M)+ oegwLe T (|Wn|2>
1 1
2+ 4.61
+0 (|W,1|1/2-f0 + kﬂ) g (4.61)

as n — oo, for each s at which X\ is continuous and positive, where €y is
an arbitrary small positive real number.

Note that, the r.h.s. of (4.61) yields an asymptotic approximation
for the bias of A,(s) provided k, — oo faster than |W,,|3/4F<0 for some
arbitrary small € > 0; otherwise the O(|[W,,|~1/? + k') remainder term
will dominate. However, the optimal choice of k, (cf. (4.64) ) satisfies
this restriction.

Corollary 4.9 Suppose that X is periodic, locally integrable, (4.3) and
(4.4) hold.

(i) If, in addition, (4.55) holds true, then
MSE (5\71(9)) =Var (5\”(3)) + Bias® (Xn(s)) -0 (4.62)

as n — 00, for each s at which X is continuous and positive.

(ii) If (4.60) hold true, and X has finite second derivative \" at s, then

. 2(g O (5))2 kL
MSE () = Ak,(n) +576(:4(i))|)wi|4 ”(51;)

ko o
" (IW |4> +O (IWalo™") (4.63)

as n — 0o, for each s at which X is continuous and positive, where
€o s an arbitrary small positive real number.
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The first statement of Corollary 4.9 is implied by Theorems 4.5 and
4.6, while its second statement is due to Theorems 4.7 and 4.8.

Now, we consider the r.h.s. of (4.63). By minimizing the sum of the
first and second term of (4.63) (the leading terms for the variance and
the squared bias), we obtain the optimal choice of k;,, which is given by

1446 e
kn = [—i)z} | W, |4/5. (4.64)
T (N(s))

With this choice of k,, the optimal rate of decrease of MSE(;\n(é)) is

of order O(|W,|~*/®) as n — oo; and also in this important special case
both (4.58) and (4.60) reduce to the same condition

|Wn| |7A_n - 7—| =0 (67L|Wnl_3/5) (4.65)

with probability 1 as n — oo, for some fixed sequence 6, | 0 as n — oo.

Remark 4.2 The formulas (4.59), (4.61), (4.63), and (4.64) resemble

closely corresponding ones in the ’classical’ nearest neighbor density esti-
mation for one dimensional case. To see this, let us consider for moment
estimation of a density f, proportional to the intensity function \ and
having support in [0, 7]. For simplicity, we consider here only the (unre-
alistic) case where we know 67, where 07 = [ A(s)ds (we assume here
that 6 > 0). Then we have that f(s) = A(s)(87)"L, for all s € [0,7].
Consequently, the quantity f,(s) = j\n(s)(eT)_l can be viewed as an
estimate of f at a given point s. Since A(s) = f(s)07, we also have
that \"(s) = f"(s)fr, for all s € (0,7). From (4.59), we can compute

Var(fn(s)) as follows

Var (fn(é)) — VaF (5\25—3)> _ (071_)2 (f(f;c)fT)z o <kin)

= %Els) +o0 (%) , (4.66)

as n — 00. Note that the r.h.s. of (4.66) is the same as the well known
asymptotic approximation to the variance in nearest neighbor density
estimator for one dimensional case. From (4.61), we have that

s Aa(s)
Ef.(s) = E o

A(s) . 2 ' (s)lrk> N k2
or " 2407(f(s5)0r)2 W, 2 O\ W2
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1 1
+0 (e + 1)
o PR ( K2 )
= O gp@mew.E T\ WE

1 1

as n — oo. Note that, due to our ’increasing domain asymptotic frame-
work’, the number of observations X (W),) in a given window W, is ran-
dom. However, it is easy to check that EX (W,,) ~ 6|W,|. Hence, it seems
appropriate to compare 0|W,,| with the ’sample size n’ in the 'classical
density estimation case. If we replace 8|W,| on the r.h.s. of (4.67) by n,
the r.h.s. of (4.67) indeed reduces to the well-known expression for the
asymptotic approximation to the bias in nearest neighbor density estima-
tion. From (4.66) and (4.67), we also can find formulas for MSE(fn(s))
and optimal choice of &, when estimating f. These expressions also re-
duce to the corresponding ones in nearest neighbor density estimation,
if we replace 8|W,,| by n. For example, the formula for M SE( fu(s)) re-
duces to ’one dimensional case’ of formula (26) in Fukunaga and Hostetler
(1973) (cf. also Mack and Rosenblatt (1979) and Prakasa Rao (1983)).
|

Remark 4.3 Since ;\n(s) =0 if X(W,,) < ky, we have that
El ($)I(X(Wy,) < k) = Var(\,(s)L(X (Wy,) < ky)) = 0.

This implies

and
Var(An(s)) = Var(An(s))I(X (W) > k).

Hence, in all of our proofs in this subsection, we only need to consider
the case X (W,) >k, (cf (4.12)). O

4.3.2 Proofs

We begin with a simple lemma, which we will need in our proofs.

Lemma 4.10 If (4.4) and (4.55) hold true, then we have with probability
1 that

5 _ kn
|3(ka) = 81 = 8(k) =81+ O ( W, |> (4.68)
n

as n — oo, provided X (Wy) > ky.
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Proof: Similar to (4.47), we can write

By —8) = (S(k,) +IkaTn —8)
(8(kn) +TknT = 8) + (ko T — Tk T)
= (E(kn) — 5) +jkn (7A_n - T) + T(jkn _jkn)' (469)

First we will show that the second term on the r.h.s. of (4.69) is of order
O(3,kn|Wy| ') with probability 1, as n — oco. To do this, we argue as
follows. By (4.55), there exists a positive constant C' such that we have
with probability 1

|7A—7L - 7_| S Cénkn|Wn|72- (470)

Since s € Wy, by (4.4) and (4.70), we have with probability 1 that |ji, | =
O(|Wy]) as n — oo. Combining this order bound and (4.70), we then
have with probability 1 that the second term on the r.h.s. of (4.69) is of
order O(8,k,|Wy|™1) as n — oo.

Next we will show that the third term on the r.h.s. of (4.69) is of
order O(6,ky|W,| ") with probability 1, as n — oo. Here we only give
the proof for the case 7, > 7 and ji, , Ji, are both positive; because the
proofs of the other seven cases are similar. Recall (4.53). Since s € W,,,
we have that j,, = O(W),) as n — oo. Then, by (4.70) and (4.53), we
have with probability 1 that the third term on the r.h.s. of (4.69) is of
order O(6,k,|W,|~!) as n — co. Therefore we have that

k
(B, 3 —8) = (B, —.9)+(9(5n a )
(kn) (kn) W]
as n — oo. By the triangle inequality, we have

15ka) = 51 = |O (SnknlWal ™) | < [3(k) — 5]
< Is(kn) - ‘5| + |(9 5nkn|Wn| 1)|

which implies this lemma. This completes the proof of Lemma 4.10. O

Proof of Theorem 4.5
By Remark 4.3, the Lh.s. of (4.56) is equal to

ky, T .

. (X (W,) > ky,
AWl Tonny — ol V) 2 Fn)

Tk, 1
= E X(W,) > Ky,

AWl Ty — 3]k (W) 2 )

kn (T — 1)
E I(X(W,) > k,). .

oW oy — s ) 2 ) .
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We will prove (4.56) by showing that the first term on the r.h.s. of (4.71)
is equal to A(s) + o(1) as n — oo, while its second term is of order o(1)
as n — 0o.

First we consider the first term on the r.h.s. of (4.71). For each n,
let A,, denote the set of all integers m,,, where C, < m, < Cy,, with
Ci, and Co,, are given respectively by (4.21) and (4.22). Let Aj =
[kn,00) \ A,. Then, the expectation in the first term on the r.h.s. of
(4.71) can be computed as follows

X(Wy) = m))

X(W,) = mn>> P(X(W,) = my)

1
— E <E <A——I(X(W”) > k)
|8(k,) — s

1
- T Clmma
n€An 18(ka) =8

Cin—1

1
(= (Fe=
~ |3(ka) = 5

m=knp

CE bl

S(k.,) — S
et (kn) — 51

+

X () =m) ) POXW,) = m)

X(W,) = m>) P(X(W,) = m). (4.72)

First we consider the first term on the r.h.s. of (4.72). To begin with,
we first consider this term with |3, ) — s| replaced by |5(k,,) — 8|, where
5(k,) — s| is defined as in the paragraph preceding (4.14). Recall that,
conditionally given X (W,,) = my € An, |54,) — s| has the same distri-
bution as H,, '(Z,.m, ), where Zy ., denotes the k,-th order statistics
of a sample Zi, ..., Z,,, of size m, from the uniform (0, 1) distribution.
First we write the expectation appearing in the first term on the r.h.s. of

(4.72) as
1 ~ kn ,
E[| ——1 |Zk :mn| < én ‘Y(Wn) = Mmp
|5(k,) — 8l ; my,

1 ~ k
+E ( = I (lZlc,,:m,,l > €pn - )
15k,.) — 5l M,

for some sequence of positive real numbers ¢, | 0 asn — oo, and an:mn =
Zomy — EZky oy = Zkp:my — kn/(my +1). By a similar argument as in
(4.34) (cf. also (4.35)), conditionally given X (W) = my,, we have

X(W,) = mn> ,  (4.73)

_ ~ k
S(kn) — S|I <|anfmn| < fnmn >

n

d 01k, kn or \ - )
N Z, im Z: m
{2)\(8)(mn+1) +O(|I/Vn|> + (2/\(S)> ko n+o< ko n)}

~ k
-1 <|an:mn| S €n = )
My
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Tk, kn 5 kn
= PEVRYE 72l 17 1 (| Zk,m,| < €n s 4.74
Ve o (i) J 1 (1Zmd <o) =

as n — o0o. Combining (4.74) and Lemma 4.10, conditionally given
X (W) = m,, we then have

& ~ k,
Is(kn) - Sll ('an:mn| < fnn” >

ln
d Tk kn = ky,
= 1(1Zkm.| < én
{2)\(5)|Wn| +O<|Wn|>} (I nima | < € m,”>
TR o) (120 ] < e (4.75)
1 22() W] fom L = ) '

as n — oo. By by Lemma A.4 (see Appendix), there exists a positive
constant Cjy such that

kn < .
= ) < 2exp{—Coelk,} < Qexp{—Cgk,Il/z}, (4.76)

n

P <|an:7nn| > €p

as n — oo, provided ¢, ! = o(k}//l) as n — oo (cf. also the r.h.s. of (4.41)
with € replaced by €,). Throughout this proof, we take ¢, ! = o(k}/ 4) as
n — oo. From (4.76), since k,, — oo which implies the r.h.s. of (4.76) is

o(1) as n — oo, we obtain

~ k.
P (len:mn| < en—) =1-o0(1), (4.77)
m

‘n

asn — o0o. By (4.75) and (4.77), we can compute the following conditional

expectation
1 5 kn
E <A$I (|an:mn' S €n )
15k,.) — sl M,

1 ~ n
B B G T+ o) <'Z*‘"””“' < m_>
w (1+o0(1)1I <|an;mn| < 6,1:;—”)

n

X(Wy) = mn>

= E

n

_ 2M(8)[Wal (Wl
= h +o0 W) (4.78)

as n — oo.
Next we consider the second term of (4.73). First note that

= ky, ki kn
I Zy, m n =1 Z :m ) -
(I o "l>€lmn> < Hnitity >mn+1+6nmn>

k, kn
()
my, +1 My
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For the case Zj, .m, > kajH + en%, by Lemma 4.10 and (4.31), condi-

tionally given X (W,,) = m,,, we have

= kTL -1 kn
[kny — 8| = |S(kn —s|—|—o(—) = H_ (Zk";mn)—i»o( )
(kn) = 81 = |8(ka) W] A

k k k k
> H—l ( n ) n — H—l ( n . -1 ) n
=" \m,+1 L (|Wn|> my, +1 +O(Wal ) ) +o W, |

— ﬂ__ +o0 k. Tkn
©2M(s)(mn + 1) [Wal) = 4X(s)[Wal’

for sufficiently large n. Hence, for sufficiently large n, conditionally given
X(W,) = my, we have

1 k &
T Ztim, > —— + e
15k,.) — sl " my, + 1 Ma
AN (s)|[ Wy, | ks ks
< ———T1(Zk.m n— |, 4.79
- ks i > my, + 1 L my, ( )

which in combination with (4.76), implies

E <__1_|I (an;mu > e +e i ) X(W,,) :mn> =o0 (";‘:') (4.80)

A~ n
[$(kn) — 8 m, + 1 M, "

as n — oo. Next we will show

E (;I (an:mn < _kn € kn ) X(Wy) = 77Ln) =0 (“z/—"') (4.81)

~ — Cn—
|8k — S| my +1 M,

as n — oo. By Lemma 4.10, the fact that |54, — s| = B8 v )
and an application of mean value theorem, together with a little cal-
culation showing that H; ' (¢,) = (87)(2A\(s))~" + o(1) as n — oo, for
any (random) point &, € (Zg, .m,, , kn(m, + 1)), whenever I(Zg, .m, <
kn(mn +1)"" — enknm; ') = 1, shows that |3, ) — 5| = ((O1)(2A(s)) ' +
0(1))Zy, .m, + 0(kn|Wy|™!), as n — co. Since EZ,;?:mn = O(m?2k,?) as
n — 0o, by an application of Cauchy-Schwarz inequality and (4.76), we
can easily completes the proof of (4.81). Combining (4.78), (4.80) and
(4.81), we have

1
|8 (ko) — 8

as n — 0o0. By an exponential bound for the Poisson probabilities (Lemma
A.1), we know that (cf. also (4.24) )

X(Wn) =my | = 2A(5)|Wh| +o0 (W] (4.82)
Tk7l k’ll

P(X(W,) € A7) < O exp (522 ). (4.83)
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which is o(1) as n — oo, since a,, — 0o as n — co. This implies
P(X(W,) € A,) = (1 —0(1)), (4.84)
as n — oo. By (4.82) and (4.84), the first term on the r.h.s. of (4.72) is

equal to
2A 3 I/Vn Wn >
(M o <u>> P (X(Wy,) € Ay)
Tk, n
2X(5)| W] Wl
_ 4.
Tk'n o kn ’ ( 85)
as n — oo.

Next we consider the second and third term on the r.h.s. of (4.72).
First, for any integer m € {[ky,C1 ) U (Ca,,00)}, we write the expecta-
tion appearing in this term as (4.73) with m,, replaced by m. For any inte-
ger m € {[ky, C1 ,)U(Co,,00)}, similar to that in (4.74) with m,, replaced
by m, we have a stochastic expansion for [5(, ) = s|I(| Zg,.m| < €nknm™"),
conditionally given X (W,,) = m, as follows

= ~ kn d
|S(kn) — S|I <|an;ml < (n—> =

m
07k, kn,
{QA(s)m to <E) T

1 - N k,
- | < 6o
() s }1 (< 2
01k, kn 1 B k.
- — s spit] B E !
{zrtom +2 () +© () 1 (1o ) LY

as n — 0o. Combining (4.86) and Lemma 4.10, conditionally given
X(Wy) = m, we have

. ~ k
|S(k7z) - S|I (|an:m| < En_n>
m

d 07k, kn ky, oz kn
= — Zi..m| <en— 1, .
{2)‘(5)7”+0<m>+0<|wrn|>}l<| buimn| < € m) (4.87)

as n — oo. Note that (4.76) and (4.77) remain hold true when m,, € A,
is now replaced by m € {[k,,C),) U (C2,,00)}. By a similar argument
as the one used to prove (4.80) and (4.81), but with m,, € A, replaced by
m € {[kn, C1 ) U (Cap,o0)}, conditionally given X (W,,) = m, we have

1 . kn m W]
E—I(|Z1 . n— | =0 — 4.88
|S(kn) = S| (| bt | - € m) <kn ¥ k‘n ( )

as n — oo. Then, by (4.77) with m,, replaced by m € [k,,C),) and
(4.87), in combination with (4.88), we have

E (MH;_S' X(W,) = m> =0 (M) : (4.89)

kn
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as n — oo, uniformly for all m € [k, C} ). By (4.89), the second term on
the r.h.s. of (4.72) is equal to O(|Wy, |k, )P(X (W) € [kn,C1)). Since
by (4.83) we have P(X(W,,) € [kn,C1n)) < P(X(W),) € A7) = o(1), as
n — oo, this term is of order o(|W, |k, ') as n — oco.

For any m € (Ca,,00), since m > (0|W,]) + (O|W,.)'/?a,, (for some
sequence a, — oo and a, = o(|W,|'/?)), we may have the absolute value
of the third term on the r.h.s. of (4.87) is bigger than its first term. If the
first term on the r.h.s. of (4.87) is the leading term, a similar argument
as the one used to prove (4.82) shows that

E(|3k,) — 3\711(|Z~kn:m| < enknnfl)\X(Wn) =) = O(mk;l),

as n — oo. If the third term on the r.h.s. of (4.87) is the leading
term, then there exists a sequence ¢, — 0 as n — oo, such that this
term can be written as ¢, k,|W,| ™! with |c,| > (07|W,|)/(2X(s)m). For
this case, a similar argument as the one used to prove (4.82) shows that
E( S(kn) — 5|_1I(|an,:m| % fnknmil”X(Wn) = m) = O(|Wn|kﬁlcﬁl)
as n — oo. Since |cp| > (07|Wy|)/(2A\(s)m) which implies |c, '] <
(2X(s)m)/(0T|W,|), we also have

E(|§(/€n) - S|_II(|an:m‘ < enkn’m‘ilﬂX(Wn) =m) = O(Tnkgl)a

as n — oo. A similar argument also holds true when the first and third
terms on the r.h.s. of (4.87) are of the same order. Combining this result
with (4.88), uniformly in m € (Cy,,,00), we have

1
3k, — sl

as n — oo. By (4.90), the third term on the r.h.s. of (4.72) can be
computed as follows

0 <i> f: m P (X(W,) = m)

m=C2 n,+1

X(W,) = m> =0 (Z-i) , (4.90)

=& <ki) EX(W)I(X(Wy,) > Can)

n

(Wl
kn

<0 () BX°01,) 7 PUXW) > Co) =0 (

n

) . (4.91)

as n — 00, because by periodicity of A we have (EX2(W,,))"/? = O(|W,|)
as n — 0o, and by (4.83) we have PY/2(X(W,,) > Cy,,) < PV2(X(W,) €
A%) =o0(1), as n = oo.
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Since the first term on the r.h.s. of (4.72) is equal to the r.h.s. of
(4.85), while the other terms are of order o(|W,|k, ') as n — oo, we then
have

1 2X(s)|Wa| [ Wl
E—— I(X(W,)>ky) = , 4.92
PR (X(Wn) > ky) e (4.92)

as n — 0o, which implies the first term on the r.h.s. of (4.71) is equal to
A(s) +o(1) as n — oo.

Next we show that the second term on the r.h.s. of (4.71) is of order
o(l) as n — oo. By (4.70) and (4.92), the absolute value of this term
does not exceed

Co, k> 1 Cé, k> W]
o I(X(W,) >k, = —) '
2iWnl® " |8k, — sl (X(Wn) 2 En) 2|W ( K, )
67lkn
:O(“/VnQ) :0(1)

as n — oo. This completes the proof of Theorem 4.5. O

Proof of Theorem 4.6

By Remark 4.3, we can write

Var (ha(s)) = Var (A(&IX (W) > k)
=E (S\n(s)I(X(Wn) > kn))2 = (E;\n(s)I(X(VVn) > kn))2 . (4-93)

By Remark 4.3 and Theorem 4.5, we have E\,(s)[(X(W,) > k,) =

EM,(s) = A(s) + o(1) as n — co. This implies the second term on the
r.hus. of (4.93) is equal to —A%(s) + o(1) as n — oo. Then, to prove this
theorem, it suffices to show that the first term on the r.h.s. of (4.93) is
equal to A\?(s) +o(1) as n — oo. To do this we argue as follows. The first
term on the r.h.s. of (4.93) is equal to

ok .
+I(‘Y(W/’n) Z kn))
<2|Wn||3(lcn) — 8

2

ki
= Bl oI X(Wj) 2 ky
(2|Wn||s<kn)~s|( (Wn) 2 ))

(Fn — Tk 2
+ E(#IXW, >kn)
AWl — s (Vn) 2 )

_.I_

2K <2|W7 Tkn ) ( (T — 7)kn >I(X(Wn) > k). (4.94)

1r||§(kn) — & 2|I/Vn||§(lcn) — 3
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We will show that the first term on the r.h.s. of (4.94) is equal to A?(s) +
o(1) as n — oo, while its second and third terms are of order o(1) as

n — 0o.
First we consider the first term on the r.h.s. of (4.94). This term can
be written as

T2k2 < 1 )2
’L‘E A I‘Y Wn Zk'".
WP oy o (W) 2 Kn)

Tzkz ( 1 >2
= n‘ EJE A—_—I X VVn Z kn
AW, [? { ( |3(k) — 51 () )

Expectation of the quantity within curly brackets on the r.h.s. of (4.95)
can be computed as follows

> {e((rr=s)

mp€An

Crm—1 ! 2
+ B (— )
2 { ( 13(k) — 81

m=kx

+ E (—>
(2+1 { < |3k, — s

First we consider the first term of (4.96). The expectation appearing
in this term can be written as

1 S k
E (%) I (Ian:mn S €n - )
13 (k) = 8l my,
1 S ky,
+E — ) I{|Zk,m,| > €n XWyp) =mn |,
|3k, — sl " my,

where €, a sequence of positive real numbers converging to zero and

g = o(krll/4), as n — oo. By (4.75) and (4.77), we can compute the

following conditional expectation

1 2 (15 kn
( <|—A‘—_—> I (|Z/\:n:mn| < én )
Bty — 5| my,

- 1
(T2E2)(AN2(s)|[W, |2)~H(1 + o(1))

X(W,) = m> } (4.95)

X(W,) = mn> } P(X(W,)=m,)

(4.96)

X(W,) = mn>

=

X(W,) = m,n>
kll

My, )

21 (|Z~kn:m"\ S €n

_ M(l +o(1))P <|Zk.,l:,,,,11 < e, Fm )

27.2
T2k2 my
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4/\2(5)|Wn|2 |W7n|2

as n — 00. By (4.79) and (4.76), together with a similar argument as the
one used to prove (4.81), we have

2
1 ~ ks
E ( % ) I <IZ]C7L2771,1| > €n > )
|S(kn) = 9| my

X(Wy) = mn>

Wy y
= o <|k—zl> , (4.98)
as n — oo. By (4.97) and (4.98), we have
1 ’ AN ()| Wy |2 W, |?
e 17 n — n v— = = 5 4.9
E<(|‘§(Icn)_5|> Bl =m ) T2k, +0< k3 (499
as n — 0o. By (4.99), the first term of (4.96) is equal to
AN2 ()| W, |2 |W,, |2
' P(X(Wy) € A,
(g vo () pxcome
AN ()| W, 2 [Wal?
=t 0( B > , (4.100)

as n — 0o, because by (4.84) we have P(X(W,) € A,) = 1 —o(1) as
n — 00.

Next we consider the second and third term of (4.96). By a similar
argument as the one used to compute the expectation in (4.99), but with
my, replaced by m, we have that

1 2
of()
|8 (ka) — 8

as n — oo, uniformly for all m € [k,,C} ), and

E ~ )
|5(kn) é|

as n — oo, for each m € (Cy,,,00) (cf. also the argument used to prove
(4.90) to handle possibility that the first term on the r.h.s. of (4.87) is
of smaller order than its third term when m € (Cy,,00)). By (4.101),
the second term of (4.96) is equal to O(|W, [*k, *)P (X (W,,) € [kn, C1.1)).
Since by (4.83) we have P(X(W,,) € [k;,C1,)) < P(X(W,) € AS) =
o(1), as n — oo, this term is of order o(|W,,|?k,;?) as n — oco. By (4.102),

X(W,) = m) =0 (%) , (4.101)

X(W,) = m> =0 (%) , (4.102)
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the third term of (4.96) can be computed as follows

o0

@ (%) > mP P(X(W,) =m)

N7 m=Cs n+1
1 o
= (ﬁ) EX2(W)L(X(W,) > Ca.p)

1/2

S 0 (k'iz) (EX4(W11)) Pl/Q(X(Wn) > CQ,n) =0 (|W"lzk772) ’

as n — oo, because by periodicity of A we have (EX*(W,,))'/2 = O(|W,|?)
as n — 0o, and by (4.83) we have P'/2(X(W,,) > Cy,,) < PY2(X (W) €
AS) =o(1), as n — o0.

Since the first term of (4.96) is equal to the r.h.s. of (4.100), while its
second and third terms are of order o(|W,|?k,, ?) as n — oo, we then have

1 - ’ 4N (5)| W, |? [Wa|?
E <|§(kn) — S|I(‘X (Wp) > kn)> BT +o< w2 ) . (4.103)
as n — oo, which implies the quantity in (4.95) is equal to A*(s) + o(1)
as n — oo. Hence, the first term on the r.h.s. of (4.94) is equal to
M2(s) + o(1) as n — .

It remains to show that the second and third term on the r.h.s. of
(4.94) are of order o(1) as n — oo. By (4.70) and (4.103), sum of the
second term and the absolute value of the third term on the r.h.s. of
(4.94) does not exceed

CEORR:  O'rdak® ) ( 1 ) ?
o — Bwip i~ XV rk
<4|Wn|6 2|Wy|* 3 (k,) — 5l (X (W) &

B C%2k: " Cri.k 0 |W,|? e dakE 5 Onkn
B 4|W,,[6 2|Wy|* k3, B (Wit [Wa|?
= o(1),

as n — oo. This completes the proof of Theorem 4.6. O

Proof of Theorem 4.7

Since we want to prove (4.59) instead of (4.57), it is not enough now to use
the result from Theorem 4.5 to simplify the expression for Var(A,(s)).

Hence, instead of writing Var (A, (s)) as in (4.93), here we have to directly
compute Var(\,(s)) as below. By Remark 4.3 we have

VaT(S\n(s)) = Va"‘(j\n(s)I(X(Wn) > kn))-
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Then, the Lh.s. of (4.59) can be written as

Fuk
Var | st L(X (W) > kn)>
(2|Wn”5(kn) — 3

Tk, R )
= Var| //——7—L(X(W,) > k
<2|Wn||s(kn> my &
(T — T)kn i )
+ Var —A—I X(Wy) > ky)
<2|Wn||s(k — s
Tk, ( )kn > -
+ 2Cov - I(X(W,) > k).
(mwnns( =3 AWalliey — o) X (W) 2 Kn)
(4.104)
The first term on the r.h.s. of (4.104) can be written as
21.2 1
n‘ Var 7—1 X 7 > kn )
4|W, |2 <ls(kn) — 4 (W )
T2k2 (( 1 1 )
+ _Var - - — L(X(W,) >k, )
AWy, |2 13ka) = 8| |5(k,) — 8] ( )
k2 ( 1 1 1 )
—,—.CO'U — § T — I(X(Wn) Z k”>.
2|W,,[? k) = 81 " 18(ka) = 8| |5(ka) — 3]
(4.105)

We will prove this theorem by showing that the first term of (4.105) is
equal to A?(s)k, ! + o(k; ') as n — oo, while the second and third terms
of (4.105), as well as the second and third terms on the r.h.s. of (4.104)

are of order o(k, ') as n — oc. {
First we show that the first term of (4.105) is equal to A?(s)k, ! +
o(k, ') as n — 0o. The variance appearing in this term can be computed

as follows
X(Wy) = m))

X(W,) = m)) . (4.106)

Similar to (4.92) (note that the r.h.s. of (4.74) is equal to the r.h.s. of
(4.75)), we also have

1 2A(s)|W, -
E—I(X(W,) > k,) = As)| Wl + 0 ('W |> 5 (4.107)
15k, ) — 5] Tk, kn

1
E <Var (—I(X(Wn) > k)
|3(k,.) — 5l

+V(l7’ (E <ﬁI(X(Wn) 2 kn)

as n — 00, which is deterministic. Hence, the second term of (4.106) is
equal to zero. The first term of (4.106) is equal to

1
> {vor (e
Mn €A, 18(ka) = 3

X(W,) = mn> } P(X(W,) =m,)
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+(r;"k { (Mk—l— X(Wy) = M) } P (X(W,) =m)
+ (il {Var < | KO = m) } P (X(W,) = m).

(4.108)

First we consider the first term of (4.108). The variance appearing in
this term is equal to

1 kn
VCLT <__ (|Zk mn| < €n—— > ‘Y(W ) - TTln)
1S (k) — 8l Mn
1 - Ky, .
+Var T—I len:m, > €p— X (Wn) = Mnp
|5(k,) — S| My,
1 - k
+2 Cov { <—‘—I <|Zk7,:m,,| < fn—n> ,
|S(kn) e S| my
1 . k
—I (‘an:mn Bin— >>
|S(k") = S| My

To compute the first term of (4.109), we argue as follows. From (4.74),
conditionally given X (W,,) = m,,, we have the following stochastic ex-

pansion
_ 5 k
|S(kn) —s|I (|an:mn| < En_n>
My

ot (o (gt o (51)) 2em)

I <|Z~kn:mn _<_ €n kn > . (4110)

X(W,) = m,,} . (4.109)

My

By (4.110), and by noting that |Wn\k;lzknmnﬂzkn:mn| < epkom;t) =
o(1) as n — 0o, we can obtain the following stochastic expansion

1 5 n
(T—I (‘Zk":mn| S €n . >
ls(kn) - S| s
)W, |{ 1 }
Thy {1+ 0(1) + (B|Walkn" + o(|Walki")) Zityim, }

kn
|Zk mn| <ép—
My

X(W,) = mn>
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W, [2\ - . k.
+O <| kr2l| ) Zl%n:mn } I (’anfmn| S fnmn)
20(s) W] (W] 2/\(3)9|I/Vn|2 |W,1|2 -
. - B
{ Ty TN #2 T\ e Fon 12

Y’ 3 i) > kn
+0 ('W—"> 23 } 1 <|an:mnl < e, ) ) (4.111)

3
k3 M,

By (4.111), we can compute the following conditional variance
1 ~ ky,
Var | ——1 Ian:mnl <én— X(Wn) =My
|5(k0) — 51 M
2X(5)0| W W PN\, (5 : K
= . ;o < €,
( Tk'fl + o0 k,zl Var anJ,LnI 'an,mn| < i€n .

A B k
+0 (W Var annnnl 'anZ"LnI S 671%

5 - .. - k
+0 Wl Cov S Zyimns Zi oo VI (| Zhomn | < en—) b . (4.112)
k5 kp:my,

n

The variance appearing in the first term on the r.h.s. of (4.112) can be
computed as follows

3 = = ~ kn
=Var (an:mn - an:mnI ('an:mnl > 6nTn ))

n

- - ~ k
= Var (Zk,,:m,l) + Var (an:mnI <|Zk":mnl > €y = ))
m

“n

= - - k.
—-2Cov <an:mua an:m,,,I (,an:mnl > €p - )) . (4113)

n

The first term on the r.h.s. of (4.113) is equal to (cf. Reiss (1989), p. 45)

kn(my — k, +1) . ks . ki
(mn +1)2(my, +2) 02|, (Wnl?)’

as n — 00. A simple calculation (using formula (1.7.4) of Reiss (1989, p.
45) shows that

EZ;:TL:m,L = O (k;; |m/"

) (4.114)

as n.— oo. By (4.76), (4.114) and an application of Cauchy-Schwarz
inequality, we have that the second term on the r.h.s. of (4.113) does not

exceed
~ ~ kn i kn
E(Z m I Zy, m > €p— = s ol
( ki, <| ko, | > €n m,,,)) 8 <’”/n |z>
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as 1 — 0o. Another application of Cauchy-Schwarz inequality shows that
the third term on the r.hus. of (4.113) is of order o(ky|Wy|™?) as n — cc.
Combining all these results, uniformly in m,, € A,,, we find that the first
term on the r.h.s. of (4.112) is equal to

4X2(5)0%|W, |4 ‘o |Wa |4 kn g kn
T2kt kL 02|W, |2 |[Wh|?
B 4X2(5)|Whl? W, 2
== U )

as n — oo. By (4.114), the second term on the r.h.s. of (4.112) does not

exceed
Wal®\ 154 [Wa|? [Wal?
O (_k—g :IEan:rn71 = O k;% =0 _k'?l — 5

as n — oo, since k, — oo as n — oo. An application of Cauchy-Schwarz
inequality also shows that the third term on the r.hs. of (4.112) is of
order o(|W,|?k,?) as n — co. Hence we have

1 : ki
Var ,—__‘I len:mnl S €n : *Y(Wn) = Mp
|5(k..) — sl My

2 7 |2 7|2
_ AN (3)[Wal +0(IWnl > (4.115)

2.3 3
T kn kn

as n — oo, uniformly in m, € A,.

Next we consider the second term of (4.109). First note that (4.79)
remains valid if |3(,) — 5| replaced by [5(,) — s|. Then, by (4.79) with
|5(k,.) — | replaced by |5(k,) — 5| and (4.76), by noting that the r.h.s. of

(4.76) is of order o(k;, ') as n — oo, and in combination with an argument

like the one used to prove (4.81), we have

1 2 (15 ke [Wa?
E I (| Zk,:m X(Wyp)=my | = : )
<(|§<kn)—s|> (1l > v ) | X002 ) ("5)

as n — o0o. This implies the second term of (4.109) is of order o(|[Whn |k, %)
as 1 — co. The third term of (4.109) is equal to zero. Combining all of
our results, uniformly in m,, € A,, we have that

1 20 o 7 12 = 2
Var <——_ a1 <|W3|
|.S'(kn) = Sl .

T2k —k—) »  E116)
as n — oo. By (4.116), the quantity in the first term of (4.108) can be
computed as follows

AN2 ()W, |2 Wal?
( 5—2)]1,7;1 | +o0 (‘ k‘?Ll )) P (‘Y(Wn) € An)

4)‘2(5)|Wn|2 |VVHI2
= < = +()< 5 )) , (4.117)

X(W,) = mn>
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as n — 0o, because by (4.84) we have P(X(W,) € A4,) = 1 —o0(1) as
n — 00.

Next we consider the second and third terms of (4.108). Sum of these
two terms does not exceed

S ()

m=kn
o] 1 2
" B (— )
(,};1 { ( |8k — s

By a similar argument as the one used to prove (4.101) and (4.102), but
with (4.87) now replaced by (4.86), and also by noting that (4.88) remains
valid if we replace |3,y — s| by [5(,) — |, we have (4.101) and (4.102)
with |5(y,) —s| replaced by |5k, ) — s|. Now we look at the upper bound for
P(X(W,) € A) as given in (4.83). By (4.83), we can write the following

X(Wy) = m) } P (X(W,)=m)

X(W,) = m) } P(X(W,)=m).

1 a?
& ( 7n 440 < T - o 21 kn ’
P(X(W,) € 71)4(’)<kfl>exp< 2+0(1)+ og )

as n — 0o0. By choosing now the sequence a,, such that a? /3 — oo faster
than 2log k,, we then have that

P (X(W,) € A5) = o (k;?), (4.118)

n

as n — 00, which implies
P(X(W,) € A,)=1-o0(k,?), (4.119)

as n — oo. Then, by a similar argument as the one used to handle
the second and third term of (4.96), but with |34, ) — s| in (4.101) and
(4.102) now replaced by |5(;, ) — s| and also now we use (4.118) as the
upper bound for P(X(W,,) € [kn,C1,)) and P(X(W,) > Cy;) so that
P/2(X(W,) > Ca,) = o(k,') as n — oo, we find that the second and
third term of (4.108) are of order o(|W,|?k,, ) as n — oc.

Since the first term of (4.108) is equal to the r.h.s. of (4.117), while
its second and third terms are of order o(|W,|*k,?) as n — oo, we then
have

1 AN ()| Wy |? | W, |2
E(Var ([ ———X(X(W,)) > k,) ) | = i <
( m<|5(kn)*5| (E) 2 )>> T2k}, +O< k;, )

as n — o0o. Since the second term of (4.106) is equal to zero, we then

have the first term of (4.105) is equal to A*(s)k, ! + o(k,') as n — occ.
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Next, we prove that the second term of (4.105) is of order o(k,!) as
n — oo. To do this, it suffices to check

! Ly (1)
E((— - LX(W,) > k)| =0 =21 ), (4.120
<(|5(kn> =8l 18k — 8|> W )> k3 (4.120)

as n — oo. The Lh.s. of (4.120) can be computed as follows

EJE ( a - 1z ! ) I(X(Wn) > kn) X(Wn) =m
18kny =8| 13(kn) — sl

1 1 :
= E . = g= X(Wo) = mn p P (X(W,) = m,
Z {(lﬁ(km =l [8(kn) —S|> ‘ (W) } (X(W=) )

mn€An

€y, 51 ,
1
+ ™ X(W,)=m » P(X(W,) =m
rng; { ('S(’\ ) — 8| |S(k") —s|) (W) } (X(W,) =m)
1 2
~+ XW,)=m  P(X(W,)=m).
(;1 {< ) = 5| ls(kn)—8|> (W) } (X(Wy) =m)

(4.121)

First consider the second and third term on the r.h.s. of (4.121).
Recall that, by a similar argument as the one used to prove (4.101) and
(4.102), we have (4.101) and (4.102) with |3, ) — s| replaced by |5, ) —s|.
By (4.101) and (4.101) with |3, ) — s| replaced by |5, ) — 5|, we obtain

2 2
E ( —~ 1 — = 1 ) )((Wn) =m = O (|W )| ) 3 (4122)
3(k) =81 15(ka) — 8l k2

as n — oo, uniformly for all m € [k,,C1 ;). By (4.102) and (4.102) with
(k) — S| 1opldced by |5(,) — s|, we obtain

E ( ! ! )2 X (W) 0 ("”2) (4.123)
N = == < n)=1m = el B 2
3(ka) = 81 15(k0) — 5] k2

as n — oo, uniformly for all m € (Cy,,,00). Then, by a similar argument
as the one used to handle the second and third term of (4.96) (cf. also
the argument following (4.102)), provided we are now using (4.118) as the
upper bound for P(X(W,,) € [k,,C\,)) and P(X(W,,) > Cs,,) so that
P/2(X(W,) > Cy,) = o(k, ') as n — oo, we find that the second and
third term of (4.121) are of order o(|W,,|?k, %) as n — oc.

Next we consider the first term on the r.h.s. of (4.121). The expecta-
tion appearing in this term can be written as

X(Wyp) = m”}

2
1 1 ) = '
E % = 1 (le,lnnn' S €n kl’ )
13k) = 81 18 (kn) — 5] ma
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1 1 ’ k
+E{ (- - 1 (|an,,,7"| i i )
[kny — S| 15(kn) — 5l My

First we consider the second term of (4.124). By a similar argument as
the one used to prove (4.99), we have

1 4
e ( (=)
13(k,.) — sl

as n — oo. Similarly, we also have (4.125) with |3, ) — s| replaced by
|5(k,) — 5|- Then, by Cauchy-Schwarz inequality, (4.125), (4.125) with
|3(k,) — 5| replaced by |54,y — s, (4.76), and by using the fact that the

r.h.s. of (4 76) is o(k;?) as n —> 0o, we obtain that the second term
of (4.124) is of order o(|W,|?k, ) as n — oco. Next we consider the first
term of (4.124). By Lemma 4.10 with condition (4.55) replaced by (4.58),
conditionally given X (W,,) = m,,, we have

. ky
|5(k,,) - S|I (le Moy, l <e€p >

my,

= {15k) — sl + O (Guky/2IWa 1) } 1 <|Zk |<en:11>
= 15k — 51 (14 15k, = 5170 (nky/2IWal ) ) 1 (|Zk,ﬁmn| <, ) ,

X(W,) = mn} . (4.124)

X(W,) = 7an> =0 (IVZJAI) , (4.125)

My,

(4.126)

as n — oo. By (4.74), conditionally given X (W, ) = m,,, we have with
probability 1 )

|'§(er) - 5|7II(|an:mn‘ < 6nknmgl) = O(|Wnk;1)l(‘zkn:mn| < Enknmﬁl)v
which implies [5(;,) — 5\*1(’)(5nk:71/2|Wn|*1)I(]an;mn| < epkamt)

= o(NI(|Zk,:m,| < €nknm,,') as n — oo. Then, by (4.74) and (4.126),
conditionally given X (W,,) = m,,, we obtain the following stochastic ex-

pansion
1 ks
('Zk My, | < €n >
— s| my,

: k2w ) b (12 fn
“1Wa Z.,.: <en
k - 9| (kn) _ S|ZO (Onkn |I/I/ | )}I (l kn-??l"| <e -

|5k
. ~ k,
= Oon|Wh % 1 i | S /ni 4.1
{ +o( Wk, )} <|an_ d<e m,,,> (4.127)
0.

By (4.127), conditionally given X (W,) = m,,, we have

1 1 2 k,
(Fom=1 T =) M(Zeemel s ot)
13k.) — 8 1Bka) — 8l my,

as n —
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my

=0 (02|W,|*k;,°) I <|an:mn| <én i ) ;

with probability 1 as n — oo, which implies the first term of (4.124) is
of order o(|W,|?k,, ) as n — oo. Combining this order bound with the
order bound of the second term of (4.124), we obtain

2 2
E ( - ! - ! ) X(W,)=my, =0 <%> ,  (4.128)
18¢kea) =81 [8(ka) = 8l

k3

as n — oo, uniformly for all m, € A,. Substitutuing (4.128) in to the
first term on the r.h.s. of (4.121), we find that this term is of order
o(|Wn|?k,,2), as m — oo. Since the second and third term on the r.h.s. of
(4.121) are also of order o(|W,,|?k, ) as n — oo, we have (4.120), which
implies that the second term of (4.105) is of order o(k, '), as n — oo.

Next we consider the third term of (4.105). Since the first term of
(4.105) is O(k;; ') and its second term is o(k,, ') as n — oo, an application
of Cauchy-Schwarz inequality shows that the third term of (4.105) is of
order o(k, ') as n — oo.

It remains to prove the second and third term on the r.h.s. of (4.104)
are of order o(k, ') as n — oo. By (4.70) and (4.103), the second term
on the r.h.s. of (4.104) does not exceed

(7n — T)k 2
E (——— . (X (W) > k)>
2[Wall8(k,) — sl

Co,, k2 >2
<E bt U I(X(W,) >k,
B <2|”/n|3|s(kn) — s (X ) )

C282 k2 ( 1 )
= -E X I(X(W,) > Ky
2\Wal8 ™ \ I8k, — sl (X (W) )

_ Ok (Wl _ (L
T 2[W,[6 K2 )\ )

as n — oo. Hence, the second term on the r.h.s. of (4.104) is of order
o(k, ') as n — oo. Since the first term on the r.h.s. of (4.104) is of order
O(k, ') as n — oo, an application of Cauchy-Schwarz inequality shows
that the third term on the r.h.s. of (4.104) is of order o(k, ') as n — oc.
This completes the proof of Theorem 4.7. O

Proof of Theorem 4.8

We will prove this theorem by following the outline of the proof of Theo-
rem 4.5. By Remark 4.3, we can write the Lh.s. of (4.61) as the quantity
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in (4.71). We will show the first term on the r.h.s. of (4.71) can be writ-
ten as the r.h.s. of (4.61), while its second term is of order o(kZ|W,|~?)

as n — o0.

First, we show the second term on the r.h.s. of (4.71) is of order
o(k2|W,|72?) as n — oo. By (4.60), there exists a positive constant C'
such that we have with probability 1

|7 — 7| < C8uk3|Wy| 2. (4.129)

Then, by (4.129) and (4.92), the second term on the r.h.s. of (4.71) does
not exceed

Co, k2 1 Conk;, |Whl
n ‘7 > i — n
I(X(W,) > k) 21W”|50< i )

|
o ks k2
- O n'vn = n
<|Wn|4) ¢ <|Wn|2>’
as n — oQ.

It remains to show the first term on the r.h.s. of (4.71) can be written
as the r.h.s. of (4.61). Recall that the expectation appearing in this term
can be written as the one in (4.72). First we will show that the second
and third term on the r.h.s. of (4.72) multiplied by k,|W,|~" are of order
O(k, 1), as n — oo. By (4.89), (4.90), and (4.118) (cf. also the argument
following (4.89) and (4.90), but now we use (4.118)), we find that the
second and third term on the r.h.s. of (4.72) multiplied by k,|W,|~! are
respectively of order o(k;,?) and o(k, '), which are O(k, '), as n — oc.
It remains to show the first term on the r.h.s. of (4.72) multiplied by
(Tkn)/(2|Wy]|), which is

Tk 1
altxr | E Tz 0
AN { <|s<kn> my

7k 1 = ks
= St 1 E{ —1(|Zk,m.| < €n
T 2 1 <|§(kn>—81 (el < cue)

X(W,) = mn> } P(X(W,) =my,)
MpEAn

X(Wy) = mn> }
P(X(Wy) = mn)

Ty 1 = ky,
—1 i n___ n) = Mn
o, 5 {B (it (Bt = ) [ x0 =)}

mn€A, |§(k") n
P(X(W,) =my), (4.130)

can be written as the r.h.s. of (4.61). Here, as before, €, is a sequence of

positive real numbers converging to zero and €, ! = o(k,lq/ 4) as n — oo.
First we show that the second term on the r.h.s. of (4.130) is O(k, ')

as n — oco. By (4.79), (4.76), and an argument similar to the one used to

prove (4.81), but now we use the fact that the r.h.s. of (4.76) is o(k,?)
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as n — 0o, we obtain

1 & kn,
E (A———I (|an:m,n| > 6n—>
ey =8 my

as n — oo. Substituting (4.131) into the second term on the r.h.s. of
(4.130), we find that the second term on the r.h.s. of (4.130) is o(k, ') as

n — 00.

It remains to show that the first term on the r.h.s. of (4.130) can be
written as the r.h.s. of (4.61). By a similar argument as the one used to
prove (4.127), but we now use condition (4.60) instead of (4.58), condi-
tionally given X (W,,) = m,,, we obtain the following stochastic expansion

1 ad ky,
1 <|Zk,,:m"| < eén )
m

|§(kn) - S| n

= {; + O <5nk_1}> } I <|an:mn| S €n k?l > ’ (4132)
|5(k,) — 5| Wl Hin

as n — oo. By (4.132), we have that the expectation appearing in the
first term on the r.h.s. of (4.130) is equal to

1 - k
E < - I <|an:mn| < fn—n>
ET . my,

as n — oo, uniformly for all m,, € A,,. Substituting (4.133) into the first
term on the r.h.s. of (4.130), this term reduces to
X(W,) = mn>>

Tk, 1 - k.,
S | L s | Z e | < €
2|W| 2 ( (|S<kn) — 5| <| i | < 6lmn>
ky
P(X(W,) =my) +o 5 (4.134)

mnp€A,
[Wal?

X(W,) = mn) = g (%) (4.131)

X(W,) = mn> +o (I;};l) (4.133)

as n — oo.

It remains to show that the first term of (4.134) can be written
as the r.h.s. of (4.61). Recall that [5(,) — s| has the same distribu-
tion as H, '(Z, .m,) and consider a modified stochastic expansion of
H; Y2y, .m.) as given in (4.33), but with I(|Zs,.m,| < €n) replaced by
I(\an:mn\ < e knm,t). By (4.32), the sum of the second and third term
on the r.h.s. of the modified (4.33) is equal to Zg,.m, O(1), as n — oc.
In order to have an appropriate expansion of the first term on the r.h.s.
of the modified (4.33), we need to compute the second and third (right
hand) derivative H~'"(0) and H~"(0), besides H~'(0) and H"(0),
which from the proof of (4.34) we already know that H '(0) = 0 and
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HY(0) = 07(2X\(s))~". H ' (0) can be computed as follows

=L _ d -1 = d 1
H 0) = E (H (t))tzo o E <m>t0
CWET@)H @) () _
R2(H-1 (1)) W)

since A'(0) = 0 while h(0) = 2X(s)(07) ! # 0. A simple calculation shows
that h”(0) = 2X"(s)(#7) . Then we can compute H~'"(0) as follows

g = 4 (_h’(Hﬁ((t))H (t)) _ ")
=0

dt ~1(1) h*(0)

C(2X(8)) (8 \'_ 6PN(s)
ot 20(s) )  8Mi(s)
Note here that h’'(0) and h"”(0) denote respectively the first and second

(right hand) derivative of h at 0. Then we can write an expansion of the
first term on the r.h.s. of the modified (4.33) as follows

k 1 k 1
—1 n _ -1 n
" (vnn+1+0<|wn|)> " (mﬁo<|wn|>>

k 1 ,
- n Hil
0+ (2 p0 () ) @ +0
°(fw

= (: ' )) H" (0)(1 + o(1)
- (k ( >2A(s 3
_Qigg%%l<nhl+6)<ﬂéﬁ>)((1+oun, (4.135)

as n — oo. The first term on the r.h.s. of (4.135) can be written as

kn ankn 1 ot
(9|Wn| o <|Wn|3/2> o <|Wn|>) 2A(5)

Tky anks 1
YO AN <|Wn|3/2> o (m |) 150

as n — oo. To simplify the second term on the r.h.s. of (4.135) we argue
as follows. Since a, = o(|[W,|"/?) as n — oo, we have that

k. 1 3 kn ks 1 2
O [ =——s = . @
( " (|Wn|>> (9|Wn| "o <|Wn|3/2> * (ivm))

b (RN k(R
0| I/Vn| |I/an B 93 | Wn |3 |W71 |
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as n — oo. Hence, the second term on the r.h.s. of (4.135) can be written

as
(K () s

PN (s)KD K
= — — ], 4.137
BN WP O <|Wn|3> (4.137)

as n — oo. By (4.135) with its first and second term replaced respectively
by the r.h.s. of (4.136) and (4.137), in combination with the fact that the
sum of the second and third term on the r.h.s. of the modified (4.33) is
equal to O(1)Zg, .m, as n — oo, we can write the modified (4.33) as the
following stochastic expansion

~ kn
H;I(an:mn)l <|Zk,n:mn <eép >

my

[tk PNOE | (RY, o ke

2X(5)|Wh| 48\ (s) Wy |? [Wal? IWnP/Z Wl

. _ k,
+0(1)an:m,, } I <|an:mn S €n ' )

my,

Tk 2N (5)k2 k2 an 1

— ] 1— i n_ n_ : =

2A(s)|[W,,| { 2403 (s)|[ W, |2 ta W, |2 & |W,|1/2 + kn

Wal\ 5 s n
+0 <| n|> an:'mn} I (|an1"ln| g €n ) ’ (4138)

kn Lz

as n — oco. By (4.138), we can compute the following conditional expec-
tation

1 N A
E <———I (len:mn| S €n kn )
m

5 (kn) — 8| »

= E Tl—l <|Z~ku:mn| S Enﬁ)
H, (an:mn) mn
; o 2>\// N\ 1.2 k‘2 4
_ E2A<s>|W|{1+ T\ (s)ks +0< " >+O< ke )

X(Wy) = mn>

ik, 2403 ()| W, |2 W, |2 [Wal?

an 1 Wl 5 Wal® 2

+0O <W + k'—n) -+ O( k. ) Z]\.,n;mn +O< kfb Z/\‘n:'mn

-1 (len:mn| S Enk—n)

mp
[ 2X(s)|Wa] X (8)kn kn an|Wa|'? W
= { . Toeemwa o\ ) T\ T R TR

1
(1-2())

2 n "(s n n 7 f" HE v"
_ REIW |, X ()k +0( k >+0(“ Wl WV I>7(4.139)

Tkn 1222 (s)|Wh| [W,. | kn K3
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as n — oo, uniformly for all m, € A,. Note that, to get the r.h.s. of
(4.139) we have used the facts P(|Zg, n,| < €nknmyt) = 1 — o(k;?)
(note that the r.h.s. of (4.76) is of order o(k; %) as n — 00), EZy, ., = 0,
EZ} . = O(kn|Wyn|™2) so that O(|W,|?k,;*)EZZ . = O(|Walk,?),
and the term of order O(k3|W,|~3) can be written as o(k,|W,|™!) as
n — oo, because of (4.4). Choose now a,, = |W,| for arbitrary small
€o > 0. Substituting (4.139) into the first term of (4.134), this term
reduces to

the [2IWal | TN'Oka | ( ha

2|W| 7k, 12X2(s) | W, | W, |
W, 1/24€9 W,

+O <| |kn + | k.2 |> } P(‘Y(W”) © ‘4")

TN (s} B 1 1
= A\ L n O ——F+ — 4.140
¥ e E (|Wn|2> - (IWnI”“O " k) , (4.140)

as m — 0o, since by (4.119) we have P(X(W,,) € A,) = 1 — o(k,?), as
n — oo. This completes the proof of Theorem 4.8. O

4.4 Comparison of nearest neighbor and kernel type esti-
mators

Consider a special case of the kernel type estimator 5\" K studied in chap-
ter 3 namely the one with a uniform kernel, i.e., K(u) = 1/2 for all
u € [—1,1], and zero otherwise (cf. (3.5) ). In this case, the asymptotic
approximations to the variance, bias, and MSE of 5\,”, Kk as well as the op-
timal choice of Ay, (cf. (3.57), (3.59), (3.61) and (3.62) ) can be simplified
as below.

Suppose that A is periodic and locally integrable, and K is the uniform
kernel on [—1,1].

(i) If hy 1 O, [Wplhy — o0, and |Wy||Tn — 7| = O(6u|Wn|™h) with
probability 1 as n — oo, for some fized sequence 6, L 0 as n — oo,
then we have

. (R _ TA(s) 1
Var (An,K(s)) A +o <|Wn|hn) ; (4.141)

as n — 00, provided s is a Lebesgue point of .

(i) If hn L 0 and |Wy |7 — 7| = O(6,h3) with probability 1 as n — oo,
for some fized sequence 6y, | 0 as n — oo, and A has finite second
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derivative X' at s, then

Eln i (s) = A(s) + B2 + o(h2) + O(|W,|™h), (4.142)

as n — 00.

(iii) If conditions in (i) and (ii) are satisfied, then we have

< TA(s 1 iy
MSE (i) = groii—+ 36 (W) ht
+o (|[Wa|'hyt) + o (hy) | (4.143)
as n — 0Q.

(iv) By minimizing the leading term of the MSE(S\",K(S)) (cf (4.143)
), we obtain the optimal choice of hy,, which is given by

B = l—m} 5 (W] 75, (4.144)
2(N"(s))

Next note that our nearest neighbor estimator A, (s), with optimal
choice of k, given in (4.64), yields the following approximation to the
variance and bias,

N ()P (A(5)"
(144)1/5

Var (Xn(s)) - " (Wol~¥% + 0 <|Wn|*4/5) . (4.145)

and

R 7_2/5 IIS 1/5 S 2/5
E)\,(s) = A(s) + (24((1)i4)(2);£ L

[Wo|~2/5 + 0 (|Wn|‘2/5) . (4.146)

as n — 0o, provided X has finite second derivative X" at s, A(s) > 0, and

(4.65) holds true. Similarly, the uniform kernel estimator 5\n7 K (s), with
optimal choice of h,, given in (4.144), yields the following approximation
to the variance and bias,

s TSN (8))2/5(A(s))V/?
Var ()\n.K(S)) = 2(9/2)1/5

[Wa| /% + 0 (|Wn|*4/5) , (4.147)

and

72/ (X!()) /(A (5))?

E>\n,K(S) = )‘(5) + 6(9/2)—2/5

/5 ) ‘
Wl ™25 + 0 (|Wn|*2/5) , (4.148)

as n — oo, provided A has finite second derivative X" at s and (4.65)
holds true. Note that (144)1/5 = 2(9/2)'/5 and 24(144)~2/> = 6(9/2)~%/°,
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ie. A, and 5\"’ x have the same asymptotic approximations to the vari-
ance and bias, which also implies that the two estimators have the same
asymptotic approximation to the MSE. This is in agreement with the
comparison made by Mack and Rosenblatt (1979) for the density estima-
tion case. Note also that the estimator A, requires condition A(s) >0
which is not needed for 5\n7 K-

Note also that, if we compare (4.59) and (4.61) with (4.141) and
(4.142), we see that the role of 7 and |W,| is different in the asymp-
totic approximations to the variance and bias of An compared to those
of j\n k. For the nearest neighbor estimate, the bias is proportional to
72|W,,|~? while the variance does not depend on either 7 or |[W,|. In
the case of the kernel estimate we have the opposite situation, i.e. the
variance is proportional to 7|W,| ™!, while the bias does not depend on
either 7 or |W,|.







Chapter 5

Estimation of the period

5.1 Introduction

This chapter is concerned with estimation of the period 7, using only a
single realization X (w) of the cyclic Poisson process X observed in W,.

Let © denote the parameter space, 7 € O, and let ©® be an open
interval in R*. A 'nonparametric’ estimator 7,, of 7 is obtained as follows:
for any 0 € ©, define

1 Nn(s 1 Nnj 2
N = X (Us,;) — X(Usj) | 1
Qn(0) ,Wné (Us.1) NM; (Us.s) (5.1)

where N,,; = [|W,]|/d], which denotes the (maximum) number of adjacent
disjoint intervals Us; of length 0 in the window W,. We suppose that
Wy, is a closed interval, and let a,, and b,, denote its left- and right-end
points, that is W), = [ay, b,]. For convenience we shall require that the
Us;’s are intervals of the form [a, + r + (i — 1)d,a, + r + id), for some
r € [0,(|Wn| — dNps)]. Otherwise the specific choice of r is free and
basically no importance (cf. the paragraph following (5.179) in section
5.6). Now we may define

Tn,1 = argmin Qn(9). (5.2)
Clearly, 7 also can be estimated more generally, as follows: first es-
timate k7, for some positive integer k satisfying k = k, = o(|W,|), by

kT, i, which is given by

kﬁ-n,k = arg géll@n Qn((s)v (53)
k

where 7, ;. denotes the resulting estimator of 7. Here Oy = (740, 7%,1) is
an open interval, such that no other multiple of 7 than k7 is contained in

101
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O. Of course ©; = ©. The restriction on the parameter space O that
no other multiple of 7 than k7 is contained in Oy of course requires some
prior information about the value of k7.

Since @, (d) may have 'flat parts’, 7, j is not uniquely determined by
(5.3). However, it can be shown that our results (all Theorems below)
remain valid whatever specific choice of k7, j is made (cf. also Lemma
5.14 in section 5.6).

In all theorems in this chapter, we have to restrict the range of k-

W,|¢, for some 0 < ¢ < 5. The

values. In fact we require k = k, ~
reason for this is easy to explain. Let us write
Qn(d) = Qn((S) + An(9),

where Q,(0) = Qu(0) — EQn(d) and A,(6) = EQn(5). By Lemmas
5.16 and 5.17 (see section 5.6) we have respectively A, () = O(k™') and
Qn(0) = O(K'2|W,|'/?) as n — oo, whenever § € Oy, and both order
bounds are sharp. In order that our estimator k7, ; of k7 is consistent,
we need that the deterministic part of Q,,(d) dominates its purely random
part. But, this requirement automatically leads to the restriction ¢ < 3

We conclude this section with the following remark. Throughout this
chapter, we will assume that

A is not constant a.e.[v], (5.4)

that is, there does not exist a positive constant Ao such that A(s) = Ao,
for all s € R\ N, with v(N) = 0. Note that (5.4) implies 6 > 0 (cf.
(1.12)). For cyclic A with period 7, i.e. A(s+7) = A(s) for all s € R and
some 7 € R, the failure of (5.4) would directly imply that

(B //\ Yds = \ov(B),

for any value of 7 and any Borel set B; here ji, denotes the mean measure
corresponding to a cyclic A with period 7. Hence, to ensure that 7 is iden-
tifiable, i.e. ju, # p, for every 7 # 7', we need (5.4) to hold. Note that,
for every o-finite mean measure yu, there exists, on a given probability
space (£, A, P), a unique Poisson process X with mean measure equal to
. Identifiability is a necessary condition for the existence of consistent
estimators: if 7 is not identifiable, then a consistent estimator of 7 can
not exist.

5.2 Results

Suppose that, for each integer k satisfying k = k, = o(|W,|) as n —
00, O = (7,0, 7k,1) is an open interval, where 74 o and 74 ; are known
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elements of R", and such that no other multiple of 7 than k7 is contained
in ©. Throughout we also assume that A satisfies the condition: if there
exists a t € (0,7) such that, for each n > 1,

A(s)ds =t foralli, i=1,...,N,;, then
Us

v({r: /U A A(s)ds =t0; i=1,...,Np}) =0, (5.5)

with Uy ; = [ap +7+4 (i —1)t,an+r+it), i =1,..., Ny, and Ny = | Wt'n\]
as before.  We refer to (5.179) and the discussion following it for more
details. Note that condition (5.5) is only violated in exceptional cases (cf.
(5.180)). Note also that condition (5.5) implies (5.4).

In the first two theorems of this chapter we establish consistency (The-
orem 5.1) and a slow rate of consistency (Theorem 5.2) using only the
assumption that A is bounded. The resulting rate of convergence is not
the best possible. Note that we only assume boundedness of A and that
our proof of Theorem 5.2 is nothing but a refinement of our proof of
Theorem 5.1. Because Theorem 5.2 covers Theorem 5.1 as a special case
when v = 0, we only prove Theorem 5.2.

Theorem 5.1 Suppose that X is periodic (with period T) and bounded.
In addition, we assume that (5.5) is satisfied, and k = k, ~ |W,|, for
some 0 < ¢ < % Then we have

(%n,k - T) & 07

as n — oo. If, in addition, for each ¢ > 0 we have

o0
1
> exp {—elWa 219} < o,

n=1

then
('f-n,k — T) —C> 0,

as n — o0.

Theorem 5.2 Suppose that X is periodic (with period 7) and bounded.
In addition, we assume that (5.5) is satisfied, and k = k, ~ |W,|°, for
some 0 < ¢ <. Ify <1+ &, then we have

IVVTLI’Y (ﬁl.k - T) _17> 07 (56)
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as n — oo. If, in addition, for each € > 0 we have

[ee]
Zexp{_FIWn‘mm(1+c—4w,5(1+c727))} Z i, 5.7)

n=1
then
Wl (Fn —7) = 0, (5.8)
as n — 0Q.

Note that for the case v < ¢, condition (5.7) is superfluous (cf. the ar-
gument following (5.21)). For the case ¥ = 0 (cf. Theorem 5.1), the
quantity min(1 + ¢ — 47, $(1 4+ ¢ — 2v)) reduces to (1 +c).

In the following Theorem we show that, under an additional smooth-
ness assumption on \, we have a faster rate of convergence of our estima-
tors 7. The rate [Wy,|™7, v < % obtained here is the natural one, when
estimating euclidean parameters.

Theorem 5.3 Suppose that X is periodic and Lipschitz (of order 1). In
addition, we assume that (5.5) is satisfied. Then, for each positive integer
k satisfying k = kn ~ |Wy|¢ for some 0 < ¢ < 3 and for any v < <, we
have

‘Wnp (%k,n - 7) B 0, (5.9)
as n — 0Q.

The Lipschitz condition on X is needed to obtain an appropriate stochastic
expansion for Q,(6) (cf. Lemma 5.12), which we need to obtain a rate
of convergence of order |W,|™7, for v < % and to establish asymptotic
normality.

Perhaps somewhat surprisingly, 7%, is not asymptotically normally
distributed. However a slight modification of 7 ,, has, properly normal-
ized, asymptotically normal distribution. Now we define our modified es-
timator 7, of 7. For each positive integer k satisfying k = k, = o(|Wh)),
Thn 18 givén by

x 1 . "
Tk,n = Earganelgi Qn((S),
where for any § € Oy,

XWy \ Wn,s5)

Qh0) = Qu(d) + =
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That is we add, for each d, a correction term X (W, \ WNm;)|Wn|‘1 to
Q. (8). Note that this term is nothing but |W,|~! times the number of
points in a realization of X inside the window W,,, which are not used in
the construction of @, ().

In the following theorem we show that, for each positive integer k sat-
isfying k = o(|W,,|'/?), our estimator Ty of T is approximately normally
distributed.

Theorem 5.4 Suppose that X\ is periodic and Lipschitz. In addition, we
assume that (5.5) is satisfied. Then, for each positive integer k satisfying
k = kyp ~ |Wy|¢ for some 0 < ¢ < %, we have

Wal/? (0 = 7) = N (0.03) = 0 (K72). (5.10)

as n — oo, where

0 ™ 63
JTONs) - 0)2%ds ~ 4(20k7 + () (A\(s) — 6)%ds)?’

2
G =

and N(O,aﬁ) denotes a normal r.v. with mean zero and variance o}.

Note that o} decreases as [j (A(s) — 0)?ds increases, i.e. when X
becomes less flat. This is as one would expect. A similar phenomenon
was noted by Hall et. al. (2000) for their estimation of the period in a

nonparametric regression context.

Let us now comment briefly on our results. First of all we indicate
how to get rid of the unpleasant requirement on the parameter space 0y,
mentioned above. Set i = O(|W,|) with ¢ < 1. It is easy to check from
the proofs given in this chapter that (

Qn((s) — An((;) + Qn((s) L An((s) (5'11)

with A, (0) = EQ, (), as n — oo and |d — k7| — 0, uniformly for all 1 <
k < m. Here a, X b, means that a,, [ % 1. Relation (5.11) also hold
true, with £ replaced by <, where a,, <~ b, means that Yool i P(lan /by —
1| > €) < oo, for each ¢ > 0. This fact directly implies that we may
define the estimators 7, 1,...,7,, of 7 alternatively to be the first m
locations of the local minima of the function @, (9), for 6 € (0, |W,]).
Inspection of the graph of (),,(0) on the set (0,|W,|) will give us the m-
dimensional vector (7,1,...,7m,); the k-th component (1 < k < m) is
the T-estimate corresponding to the k-th local minimum of Q,,(9), that is
the one obtained through (5.3), by minimizing over the parameter space
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©. Hence the requirement on Oy, that k7 € ©4 but no other multiple of

7 is contained in ©; becomes superfluous.

Let us now describe how to apply the results of this chapter to check
the conditions on 7-estimation, which were needed in chapters 3 and 4.
By way of an example, let us verify the condition (3.8) of Theorem 3.1,
which was needed to obtain (weak) consistency of 5\”7 k (s), when we take

7, to be our estimator (5.3). Let us assume that h, = |W,|~%, where
0 < b < 1 (because of (3.2) and (3.7)). Then, condition (3.8) can be
written as

W' t)7, — 7] B 0 (5.12)

as n — oo, for some 0 < b < 1. Now suppose that we assume that A
is Lipschitz. Then by taking 7, = 7,, 4, we have that, for each positive

integer k satisfying k = ky, ~ |W,| for some 0 < ¢ < 13 and for any v < %,
(Wl |7 — 7| 5 0 (5.13)

as n — 00. Since y < & and 14b > 1, (5.13) is a much weaker statement
than (5.12). However we can do the following. First we construct the
estimator 7, of 7 by using the whole information about X in the window
W,,, and then we use only the information about X in a (smaller) window
Won C W, of size ~ |Wn]”’/ (1+0) " to construct a consistent estimator
An.i (5) of A(s).

Next, let us verify the condition (3.53) of Theorem 3.7, which was
needed to obtain asymptotic unbiasedness of j\n, Kk (s), when we take 7,
to be our estimator (5.3). Let us take d, = |[W,|, for some arbitrary
small positive real number ¢y. Then, condition (3.53) requires that there
exists a constant C' > 0 and a positive integer ny such that

P (|[W,| T 508, —7| > @) =0,

for all n > ng. Since we know |Og| < 27, we have that |k7, ; — k7| < 27,
with probability 1, for all n > 1. Then, by taking 7, = 7, x with k ~
|Whl¢, e < % and arbitrary close to %, we have that

P (|W,|" |7 — 7| > 271) =0,

with v < %, for all n > 1. Again one may proceed by estimating 7 on W),
and compute j\n, k() on a smaller window Wy, of appropriate size.
Better methods for estimating 7 with high accuracy are of course
desirable. Vere-Jones (1982) obtains an almost sure rate of order o(n™')
where (0,n) denotes the observation interval, provided A admits a Fourier
series with coefficients which are monotone decreasing, a condition which
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seems to be rather restrictive in our nonparametric framework. He also
obtained a rate v < % for his estimator in the parametric model he consid-
ers (cf. section 1.4). In Hall et. al. (2000) the problem of estimating the
period of 7 was investigated in a somewhat different context, namely in a
nonparametric periodic regression model. Under strong conditions on the
regression function and assuming rather precise prior knowledge about 7,
these authors obtain a rate of convergence v < % The estimation method
investigated by Hall et. al. (2000) is somewhat more sophisticated than
ours, though both are based on a least squares approach. It seems worth-
while to investigate their method in our Poisson process setting, but this
is clearly outside the scope of the present study.

5.3 Proof of Theorem 5.2

First we prove (5.6). To check (5.6), we must show, for any v < % + &
and for each ¢ > 0,

P(|7A_n,kn - T| > €|I/Vn|77) — 07 (514)
as n — oo. Since ky, ~ |W, |, proving (5.14) is equivalent to proving
P(|knTnk, — knT| > €|Wo|™7) — 0, (5.15)

as n — o0o. Since |@| < 27, we have with probability 1 that |k, 7, 5, —
kn7| < 27. Hence (5.15) automatically holds true if v < ¢. So, it remains
to check (5.15) only for the case v > c.

The basic idea of the proof is a classical one (cf. e.g. Guyon (1995),
page 119-120) and involves the modulus of continuity of the Q,-process.
Let By x = (knm —€|Wy |77, k7 +€|W,|“77), an open interval with centre
kyn7 and of length 2¢|W,,|“"7. We then have

—_— . . 0y <
{|kn7'n’k knt| > €|Wy| } @ {56(_)1;{ank Qn(0) € Qu(kat)},

which implies that

P(|k’n7;n,k - kn7—| > 6|I/V”

<P (| Qi) <Qullun)). (510

0€OK\ By k
For each £, let (730,7,1] be partitioned into L = L, disjoint subinter-
vals (0;_1,0;], each of length n = n,, where n = (73,1 — 73,0)/L, for all
¢t = 1,2,...,L. Hence we have 7,9 = 0p < §; < 02 < -+ < d, =

Tr,1- For the purpose of our proofs we take L, = |Wn|ﬁ , for some
f > 0. Now the modulus of continuity of the @,-process, W, , . =
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SUDs 57 co,; [6—0'|<n |Q@n(0) — Qn(d")], can easily seen to be at most equal
to 3W:ZL » Where

oy = : - ; 1
Wn,L,k lrg%XL a‘i_?gggailQn(é) Qn(di)] - (5.17)

Then we have that

inf  Qu(0) > i G W
56@1:?{8"‘1\762 (9) > i, 6,-61?-)1:{1%,,062 (d:) n,L.k

which implies the r.h.s. of (5.16) does not exceed

P < min Qn(di) =W, 4 < Qn(k,ﬂ')>

i, 6;€OK\Bn &

s ® <{z 5 ergi:iBn‘k Qn(0i) =W, 1 < Qu(knT)}N {VVZZ,L,IC < an})

+P (W’g,L,k > an)

< P i n 61' - n kn n P VV" > nl,
< (i, 00~ Qulhir) <an) 4P (W], > 00)

for any «, > 0. Then, to prove (5.14), it suffices to show, for all suffi-
ciently small a,, > 0,

P ( min Qn(0;) — Quknt) < an> — 0, (5.18)

i, 0;€0R\Bn &
and

P (W, >an) =0, (5.19)

as n — oo. :

First we consider (5.18). Recall that A,(.) = EQn(.) and Q,(.) =
Qn(.) — EQ,(.). By the Bonferroni inequality, the probability on the
Lh.s. of (5.18) does not exceed

z P (Qn (61) - Qn(knT) < an)
i, 5:€0x\Bn .k
= Y P(Quld) ~ Qulkar) < an = (An(6) = Aulkar))) -(5.20)

i, 0; €Ok \Bn i

By part (i) of Lemma 5.16 for the case €, = |[W,|°7 (cf. section 5.6), we
have that there exist ap > 0 and positive integer ng such that

An(6:) = An(knT) > ok {Wa |72 ~ ap|W, |2
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for all 0; € Oy, \ Bpk, and all n > ng. Note that here we require
the assumption that X satisfy (5.5). By choosing o, = a|W,,|*"27 with
0 < a < ap/2, we have that a,, — (A, (0;) — Ay (k7)) is strictly negative,
so that |ay, — (An(6;) — Ap(kn7))| > a|W,,|¢=2 for all n > ng and all §;
outside set B, ;. . Then, the probability on the r.h.s. of (5.20) does not
exceed

Z P <’Qn((s1) - Qn(k'nT)‘ > a|W”|(‘72'y>

i, i €Ok, \ Bn iy,

S in:P (‘Qn(&)

Since we restrict attention to the case v > ¢, we have that 1 + ¢ — 4y <
1 — 2v. By condition v < % + 7, we have that 1 4 ¢ — 4y > 0. Then, by
(1.2) and Lemma 5.5, we have (5.18). Note here that, since v > ¢, the
condition y < % + ¢ automatically gives the restriction ¢ < %

Next we consider (5.19) with «a,, = «|W,|“?’. In order to apply

s 1 € e 1 c , 1
Lemma 5.6, we require v < 3 — 5. But, condition v < 7 + fand c < 3,

2
implies v < % — 5. Obviously we also have that 1+ ¢ — 2y > 0. Then, by
(1.2) and Lemma 5.6 we have that the probability on the Lh.s. of (5.19)
with «,, = a]Wn|‘7*27 converges to zero, as n — oo. This completes the

proof of (5.6).

> %IWnIC‘W) +L,P (‘Qn(km')‘ - %IWMPM) ‘

Next we prove (5.8). To verify this assertion we must show, for any
YL i + ¢ and for each € > 0,

Y P(lfug, — 7| > €lW,| ) < 0. (5.21)
n=1

Recall that, since |©y| < 27, we have with probability 1 that |k, 7,4, —
kn7| < 27. Hence (5.21) automatically holds true if ¥ < ¢. So, it remains
to check (5.21) only for the case v > ¢. Following the structure of proof of
(5.6), to prove (5.21) we see that it suffices to check that, for all sufficiently
small a > 0,

fj {ijP (|@n@] > alwal)

n=1 =1

+L,P (‘Qn(knr)‘ % afW,,,|"*2”)} < 0o, (5.22)

and

T

S (W?,L,k 5 a|W,1|<’*“) < o0, (5.23)
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with L,, = |[W,|?, for some 8 > 0. To check (5.22), we will apply Lemma
5.5. Since we rostrict dttenti()n to the case v > ¢, we have 1 + ¢ —4vy <
1—2v. Since vy < 3 + 7> we have 1 +c—4y > 0. Thon by (’ondltlon (5.7)
and Lemma 5.5 W(‘ have (5.22). Recall that v < $+ § and ¢ < 3 L implies
v < % = o Choose (3 > 2. Then, by condition (o 7) and Lemma 5.6 we
have (5.23). This completes the proof of Theorem 5.2. O

Next we state and prove the two lemmas which were needed in our proof
of Theorem 5.2. Lemma 5.5 will imply an exponential bound for the
probability appearing on the Lh.s. of (5.18), while Lemma 5.6 gives a
similar bound for the probability appearing on the Lh.s. of (5.19).

Lemma 5.5 Suppose that \ is periodic (with period T) and locally inte-
grable. In addition, we assume that k = ky, ~ [Wy|, for some 0 < ¢ <1.
If0 <~y < i + &, then for each € > 0, there exists (large) constants C
and ng such that

L,
> P (1Qu0)] > f[Wal""7) < Cexp {;a€|W,l|'¢’(‘W)} : (5.24)
=1
and
L.P (|Qn(k,ﬁ)| > 6|Wn“’*27) < Cexp {—af|wn|'¢’<w} , (5.25)

with §; € O and L,, = \Wnlﬂ for some 3 > 0, for alln > ng, where o, is a
positive real number depending on €, and ¥ (c,~y) = min(1+c—4y,1—2y).

Note that, in order to have 1(c,y) > 0 so that this lemma is useful,
we require 7y < Inin( + 5 2) Since ¢ < 1, the restriction on y reduces

t00§’y<%+i’.

Proof: Here we only prove (5.24), since the proof of (5.25) is similar and
easier. To prove (5.24) we argue as follows. First note that Q,,(d) in (5.1)
can also be written as

N, .
X’Z(VVNM) =
Z:: Us ;) AT (5.26)

so that

Nns
1 1
W0 = —— 2(Up.g) — —mie— X2 5.2
Q 1 ; 6] |LV,L|N77_5 ( Lé) (0 7)
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For any Borel set B, we can write

X2(B) = X’(B EX*(B) = (X’(B)—kEX(B))Z—EX"’(B)

}-
= X(B)+2X(B)EX(B) + (EX(B))’ - EX*(B)
= X?(B)+2X(B)EX(B) - EX(B)
)

- XxB +2X(B) / A(s)ds. (5.28)

By (5.28), Q,,(0) can be written as

1 o —~—
: - —X2(W
QI 'Wn| Z O J |VVn’Nn6 ( Nné)

Nps %
2 . X(wW
+|W|<ZX<U5,J-> [ Aspas - Z) }j ).<5.29>
n i=1 5.

Nns = Us,;

Since A is locally integrable and for each integer k we have |0, < 27,
Whl( h anhes for each § € ©; we have |§ — k7| < 27, then, uniformly in
Jj(3=12,...,N,s), we have

A(s)ds = /U A(s)ds + O(1) = kT + O(1), (5.30)

Us,j [

as n — oo, uniformly for all § € ©,. Now we consider the third term on
the r.h.s. of (5.29). By (5.30), this term reduces to

Nys
% (Z X(Usj) (k87 + O(1)) — X(Wi,,,) (kb7 + 0(1)))

j=i

=0 (jy7y) X0

as n — oo. Hence we have

~ 1 Nns e 1 .
n ) = Z
@n(9) 1A J»EZIX {Us4) IWn|NmsX (Wn, ;)
189 <|wl|> X(Wn,,), (5.31)

as n — oo.
By (5.31) with 0 replaced by d;, to prove (5.24), it suffices to show

L, Nas, o
>_P ( > X2(Usy)
i=1 j=1

w2y | < Q _ 7 (¥(e)
> 3[Wn| ) £3 exp{ a|[W,| }, (5.32)
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b

w|Q

Ly S
S (|)22(WNM,)\ > §|Wn|1+“‘27Nmi> < Zexp {—aE|Wn|U’(‘W)}, (5.33)
i=1

and
Ly
>p
20
First we consider (5.32). The idea is to apply Lemma A.2 (see Ap-
pendix) with K = k2. To do this, we first have to find an appropriate
upper bound, that is the r.h.s. of (6.2) when Y; = X2(Uy, ;) and K = k3.
By (5.202) we obtain

v € pre-2v) < € _ ¥(e,y)
A(WNMZ_)‘ > <ol ) £ Cxp{ ac|Wal } (5.34)

Eexp{(Xz([};i’j))Q} _ iE<322(U6i,j)) :iO(kil)

l! I
=0 1=0
< G z l'; =Crexp{ki}, {(5.35)
=0 ’

uniformly in j, where Oy is a positive constant. This easily implies

~ 2 P 9
max k2 <Eexp { (Xz(Ua,.,J-)) k;z} - 1) < Osk2, (5.36)
Nys;

J=1

for some positive constant Co. Then, by Lemma A.2, and by noting that
kn ~ |[Wy|¢ and Nps, ~ |[W,|'~¢ up to a constant uniformly in 4, the
probability appearing on the Lh.s. of (5.32) does not exceed

62|W |2+‘2(’—4'y
2 y _ A n :
= { 72(k2 + Cok2) Nys,

} < 2exp {—62C3|VV”|1+6747} , (5.37)

uniformly in 4, for some positive constant C3. By (5.37), the Lh.s. of
(5.32) does not exceed

2 exp {6log |[Wh| — 62C3|Wn|1+6747}

Cs ,
< 2exp {——ége‘M’anPM} ) (5.38)

for sufficiently large n. Since 1(c,y) < 1+ ¢ — 4, by (5.38), we obtain
(5.32).

Next we prove (5.33). Since N5, ~ [Wy|'"¢ and EX(Wy,; ) ~ [Wy|
up to a constant, uniformly in 4, for sufficiently large n, a simpfe calcula-
tion shows that the probability appearing on the Lh.s. of (5.33) does not



5.3 Proofs of Theorems 5.2 113

exceed

X2(Wn,,)| > eCalW, )

P
X(Wn,,,) —EX(W . :
<p [ XWs) Wi, >el/205|Wn|1/“), (5.39)

- VEX(Wh,,,,)

where Cy and Cj5 are some positive constants. Note here that, in order
to have (5.39) holds true, we require that v < % But, this requirement
is implied by condition v < % + ¢ with ¢ < 1. By Lemma A.1, the r.h.s.
of (5.39) does not exceed

2exp < — eC3Wy|' >
P{ 73 T 20, Wn|1/2*7(EX(W7NMi))4/2
< 2exp {—eCal W72, (5.40)

uniformly in i, for some positive constant Cy and for sufficiently large n.
By (5.40), the Lh.s. of (5.33) does not exceed

2exp {Blog [Wy| — eCo|W,|' 27}

< Qexp{f%wnv-“}, (5.41)

for sufficiently large n. Since 4)(c,y) < 1—2v, by (5.41), we obtain (5.33).
Next we prove (5.34). Since EX(Wn,; ) ~ [Wy| up to a constant, the
probability appearing on the Lh.s. of (5.34) does not exceed

. (|X(WNMZ.) “EXOVwol 2o

VEX(Wn,;.)

620‘72|W7lll+20~4w
<2exp{ — : ; :
2+ 6C’7|Wn|1/2+‘3*h(EX(WNWSi))*1/2
221717 [14+2c—dry
< 2exp _eG Wy T ¥
2+ €C81Wn|6727
< 2exp {_EAZCQIWH|1+2074A’} + 2exp {—eCloan[1+c_27} , (5.42)

uniformly in 4, by Lemma A.1, where C7—Cq are some positive constants.
Note that the first term on the r.h.s. of (5.42) corresponds to the case
¢ < 2y, while its second term corresponds to the case ¢ > 2. By (5.42),
the Lh.s. of (5.34) does not exceed

2exp { Blog [W,| — €2Co|W,, | T2¢747}
+ 2exp {ﬂlog IWn| B 6010|Wn|1+('*27}
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2
< 2exp {_F 209 |VV,L|1+2('47}
C .
+ 2exp {— - 210 |Wn|1+6427} ) (5.43)

for sufficiently large n. Obviously ¢(c,y) < min(1 +2¢—4y, 1 +c¢— 27).
Then, by (5.43), we obtain (5.34). Hence we have proved (5.24). This
completes the proof of Lemma 5.5. 0.

Lemma 5.6 Suppose that X\ is periodic (with period T) and bounded. In
addition, we assume that k = kp ~ Wpl¢, for some 0 < ¢ < 1. If
0<y< % — £, then for each € > 0, there exists (large) positive constants
C and ng such that

P (W0, 4, 2 dWal>7) < Coxp {—aul W70} (5.44)

with Ly = |Wy|? for some B> 2, for all n > ng, where a. s a positive
real number depending on €.

Note that we require X is bounded in this lemma (cf. the argument
preceding (5.78)).

Proof: Recall that § € O, and Q,(d) can be written as that in (5.26).
Then, by the triangle-inequality, we have that

Nys Nus;

1 . ,
w < —— ma su X2(Us ) — XUy,
wlE = 2igL 5i71<ggo‘i ; o) le W

X2(W, X2(Whn,,,
e [ T e
n| 13154 i—1<0<9; n nd;

+

A simple calculation shows that the second term on the r.h.s. of (5.45)
does not exceed

2Tk‘1)&’(m/’rn)
[an + Tlf,,labn - Tk:‘l]
o1 X2 (Wa)

+ - —~ max su Nyus, — Nps|. (5.46
‘WnH[an -+ Tk,lab'n - Tk,l]|2 1<i<L 6i71<§§5i | e " | ( )

‘Y(I/Vn \ [an + Tk,labn - Tk,l])

W

Choose 8 > 1 so that |W,|L, ' — 0 as n — oo. Then we have

Wal _ [Wal

nl - |6_5iHWn|
i 0

L |WalLy 'k ™2 +2

+2=

|Nn,(5i - Nn§| < '
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as n — oo. Then, for sufficiently large n, we have that

max sup |Nps, — Nps| < 3. (5.47)
1<i<L 0i 1 <0<6;
Note also that [[an + Tk1,bn — T ]| ~ [Wy| and 741 ~ |[W,|¢ up to a
constant. Then, for sufficiently large n, the quantity in (5.46) does not
exceed

Cl|Wn|672X(Wn)X(Wn \ [an + Tk 1, by, — Tk',l])
+Co| Wy |23 X2(W,), (5.48)
where ('} and C5 are some positive constants.

Next we consider the first term on the r.h.s. of (5.45). This term does
not exceed

Nns;
1 \ -2 2
max sup Z X*(Us,j) — X*(Us;,j
|Wn| 1<:i<L 0i—1<6<4; =1 ( ( j) ( J))
Nus;_y

+

max sup X2(Us)I(j < Nps). (5.49)
|Wn| 1<i<L 6i~1<6§6"’j]§5i+1
For each j, j = N5, +1,..., Ny, we can find two disjoint adjacent inter-
vals U(;Z.’lj and U()'i’[j+1 such that Us; C (U(s‘z-,lj U Ugi,[ﬁ_l), except perhaps
one interval Us, ;.11 which corresponds to the interval Us ; near the end
point of Wy, may has part outside W,,. Then, by a simple monotonicity
argument, the second term of (5.49) does not exceed

Nus;

ﬁ Juax > (X(Us,y;) + X2(Us,g,41)) - (5.50)
J=Nns,+1

Next, consider the first term of (5.49). Let us number the intervals
Us,j and Uy, ; for j = 1,..., Ny, from left to right, and let Us,1 and Us;, |
having the same left-end-point. For each j, j = 1is:0; V05, ot an,j
denotes interval of length jn having the same right-end-point as Us, i
and let also Uy be a point at the left-end-point of Us,.1. We need this
construction because of the the geometric situation. Then, for each j,
we have that Us; C (Us, ; UU(j_1)y;-1) and (U, ; \ Ujp.;) C Usj. This
implies

Nns; Ny,

(X (Us:.3) = X(Ujn,3))” < > X*(Usy)
J=1 J=1
Nns

¢ o o 2
(X (Us,.3) + X(U(j-1yn,j-1))" -

1

IN
7;‘,.
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Now, for each j, let UTk .j denotes interval of length 74 1, having the same
centre as Us, j. Then, the first term of (5.49) does not exceed

Nas;
79 b
|W | 121?<XL Z X~“ j) -2 ; ‘Y(Uéi,j)‘Y(UjmJ)

ZX(UJ17)]1+22 Uéj)((Uj 1)n,j— 1)

IW Wal 1942
2 Nnry o B Noro ) i
< X X+ 2 X)X Tin)
) It nl o
Nuro
g Tume r
AT Y X(Ury )X UG1yn-1)s (5.51)

where we put X (Uj, ;) = 0 and XUy, ) =0if j > Npg,.

Therefore, for sufficiently large n, W, Lk does not exceed sum of the
quantity in (5.48), (5.50), and the r.h.s. of (5.51). Recall our notation
0, = X(W,)|Wp|™"' (cf. (2.1)). Then, to prove (5.44), it suffices now to
show, for sufficiently large n,

P én)((vvn \ [an + Tk,labn — Tk l]) > LIVV'rz‘l;Z’y
’ 6C,

C 1 .
< g &P {—a( |Wn|5(1+"7h)} , (5.52)

. %, Lo
: B2 | & = H(1+e—27) 5
p (X (W) > 60 W ) <3 exp{ a[Wal } (5.53)

1<i<L .
J= NLE +1

ms, 1
( max (X*(Us, ;) + X2(Us; 1;41)) > é‘W [ie- 27)
< E { ae|PV,l|2 (Ite— 2"7)}7 (550
X (Ujns) 2 5IWal*77 | < gexp{_(1(|Wn|%(1+0‘27)}
Iny/ = 12 =g ’

(5.55)

k,0
X(UT’HJ)X(UJ’UJ) 2 L|W7 e m)
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<

>l Q

exp {_Ole|Wn|%(l+072W)} s (556)

and

'"'Tk 0

g r 7 € c—2
P Z XU Tkl]) (UJ )n.j— 1)25|Wn|1+ M)

@l(‘)/\

{ 0 [ Wy | B 1= “)} (5.57)

Here we will only give the proofs of (5.52), (5.53), (5.54), and (5.56),
since proofs of (5.55) and (5.57) are similar to and easier than the proof
of (5.56).

First we consider (5.52). Let A, = Wy \ [an + 74,1,bn — T4 1] =
[an, an + Tk1) U (by — Tk.1, by, and note that | Anz | = 2751 ~ [Wy|¢ up
to a constant, as n — oco. Then, the Lh.s. of (5.52) does not exceed

) . . )
P an An‘r A n 1=2v N 971 < 26
(5uX () > oWl <)
5 € . A
P60, X (A, — W' N 6, >20
(BuX ) > G2l > %)
€ 1—24 A
(29)(( Anren) > oWl >+P(9n>29). (5.58)

From the proof of Lemma 2.3 it can easily inferred that

>0) SQexp{—w}. (5.59)

P(én>29)gP(}l s

Since (1 + ¢ — 2v) < 1, for sufficiently large n, the r.h.s. of (5.59) does

not exceed < TrEND {—alenf 2 (1te- 27)}. Then, to prove (5.52), it remains
to show

¥ (X(A"’T’“’l) 1200

To verify (5.60), we argue as follows. The Lh.s. of (5.60) does not exceed

P |Y( Ny Thy, 1)_E‘Y(*471,Tkn,1)|
EX (A, 1)

C . .
ey - 7 |3(1+c—27)
) < 15 exp{ a | W,| } (5.60)

r {124
Wl EX(A.., ). (5.61
'y Thkp,1

~ 1200, JEX(A o)

Since IAan,L‘1| ~ |W,|¢, we have EX(An,T;{nJ) ~ |W,|¢ up to a constant,
as n. — oo. This implies [W,|' " (EX (A, )" V2 ~ |W,|'-27—¢/2
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and (EX(A,LVTMJ))I/2 ~ |Wn|"/27 up to a constant. In order to have the
probability in (5.61) converges to zero, we require 1 — 2y — £ > §, which
is equivalent to the condition v < 3 — 5. (Hence, this is a necessary
condition to prove convergence of the probability in (5.61)). By this
condition, for sufficiently large n, there exists a positive constant Cj3 such

that the probability in (5.61) does not exceed

b <|X(An,%1) — EX(Aun, )l Fcﬂwnll-h_p/z)

VEX(An s o)

2,2 2—4~y—c
<2expq — = GC?JWn' = :
2+ €Cs|Wp|'=27—/2(EX (An,ry, )1/
20| W, |24~
<9 _ 31Wn 5.62
= exp{ 2+ec4|W,7,|1‘2“}’ (263

by Lemma A.1, where Cj is a positive constant. Here we have used
Lemma A.1 (see Appendix) . Since y < %—% which implies 1 —2y—c > 0,
for sufficiently large n, there exists a positive constant C5 such that the

r.h.s. of (5.62) does not exceed

2exp {—eCs|W,|' 27} < 2exp {—ecs|wn|%““—2“} : (5.63)
We have the Lh.s. of (5.63) does not exceed its r.h.s. because, by condition
v < % — §, we have (14 ¢—2y) < 1—2v. Hence, we have (5.60).

Therefore, we have proved (5.52).

Next we prove (5.53). The probability appearing on the Lh.s. of (5.53)
is equal to
1/2

P (x0m) > oy

VVn|3/‘2*'y*r‘/2>

IX(Wn) - EX(VVn)| (I/QILV”P/Z*’Y*('/Z B s
SP( EX(W,) = (6C2)'/2\/EX (Wy,) VEX(W,) | .(5.64)

By the condition v < % — §, which implies 1 —v — 5 = %, we have that

(EX (W,))"/? is of smaller order than |W |3/ 7=/ (EX(W,,))~ /2. Then
by a similar argument as the one in (5.62), for sufficiently large n, there
exists a positive constant Cg such that the r.hus. of (5.64) does not exceed

P <|X(an,) —EX(W,)| > (1/206|VV"|1_A,C/2>

VEX(W,)
€C2|W, 227~ }

<2e —

= “XP{ 2+ 172Ce[Wo| 7~ (EX (W,)) /2
CR|W, 2>

<2e —

—2“1’{ 2 + /207 | W, | 2-7=c/2 |

(5.65)
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by Lemma A.1, where C; is a positive constant. Since v < % — 5 which
implies  —y — § >0, we have |W,|'/2=77¢/2 _ o6 as n — 0. Then, the
r.h.s. of (5.65) does not exceed

2 exp {_61/208“4;”]3/2777(‘,/2} < 2exp {*61/208|W7n|%(H_Ciz’y)} , (5.66)

for some positive constant Cg, since %(1 gDy & % —p— B
Next we prove (5.54). By Bonferroni inequality, the Lh.s. of (5.54)
does not exceed

Eo, Nns; 4
. y € ot
Pl Y (XZ(Uéi,lj)+XZ(U51-,1]-+1))>E|Wnll+ o
i=1 J=Nyps, +1
L, Nus;_y
2 € 14c—2y
< ZP | > oox (U,;_lj)>24[Wn|
=1 J:Nn5i+l
Ly, Nus;_y
2 € 14+c—2v
& ZP | ox (Ué,,,,j+1)>ﬂ|w,l,| . (5.67)
i=1 J=Nns,+1

Then to prove (5.54), it suffices to show that each term on the r.h.s. of
(5.67) does not exceed

% exp {—(I(IW,,,[%('”’QV)} ) (5.68)
Here we only give the proof that the first term on the r.h.s. of (5.67)
does not exceed the quantity in (5.68), since the proof of the other term
is similar and require the same condition.

To check the first term on the r.h.s. of (5.67) does not exceed the
quantity in (5.68), we argue as follows. Because of (5.47) we know that
[Nus;_, — Npg,| < 3, for sufficiently large n. Here we only consider the
case Nps, | = N,5. + 3, because the other two cases tNps. , = Nps; +2
and Nps,_ | = Ny, + 1) can be treated similarly. For this case, the first
term on the r.h.s. of (5.67) does not exceed

ZP (‘Yz(UJiJN"‘ii“) - %|[1/”[1+<u27>

-2 (77 €y (14e—2y
+> P (x Wsiin, g, 12) > 2 Wal 7727)

; € c—2n &
+ P (X2 Waity, 1a) > ol Wl ) (5.69)
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Then, to prove that the first term on the r.h.s. of (5.67) does not exceed
the quantity in (5.68), it suffices to show that each term of (5.69) does
not exceed 1/3 of the quantity in (5.68). Here we only give the proof
showing that the first term of (5.69) does not exceed 1/3 of the quantity
in (5.68), because the proofs for the other terms are similar and require

the same condition.
The probability appearing in the first term of (5.69) is equal to

€ N . 5_
P (X(Udi,lmiﬂ) > 1/72_|wn|1/z+c/z 7)

|‘Y(U‘Si’ll"n5i+1) - EX(UtsiJNn&iJrl )|
EX(U(;ile”(;i-Q»l)

2\ W, 1/24c¢/2—y -
W — JEX(Usin, ) |- (5:70)
T2EX (U, i, , +1) L

Note that (E)('(U(siJ,\,n&iJrl))'/2 ~ |Wp|¢/? and

\Wnﬂ/“"/‘z*”(EX(U(s N2~ |W,|'/?77 up to a constant, as
n — oo. Since y < 1 — § so that § < %—’y, (EX(U5i7an5i+1))l/2 is
of smaller order than IW,LW“C/‘Z*V(EX(U(;i,kNmsiH))_1/2. Then for suf-

ficiently large n, there exists a positive constant Cy such that the proba-
bility on the r.h.s. of (5.70) does not exceed

p <|X(U5i,lzvn5i+1) - E‘Y(U5i,an5i+1)|

A/ E‘Y(U(Silenai+1)

<2e eC&]W,lll_h
Xp § —
= p 2+61/209IVVnll/zm’(EX(Uéi,lNM_Jrl))71/2

B Ol [Wy [
2+ 61/2010I{/anl/z—w—c/z ?

i’an&i +1

5 61/209|Wn|1/2-7>

< 2exp { (5.71)
by Lemma A.1, where Cyg is a positive constant. Since 7 < % ~ £, We
have that |W,|'/>777¢/? — oo as n — oc. Then, for sufficiently large n,
there exists a positive constant C1; such that the r.h.s. of (5.71) does not
exceed 2exp{—el/2011|Wn|1/2*7+“/2}. Note that we choose L, = IWn\/j
for some constant 3 > 1. Then, the first term of (5.69) does not exceed

2exp {/3 log |W,,| — 20y |VVHI%(1+(‘427)}

< 2exp {—é”c—;—lmﬁ“”w} | (5.72)
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for sufficiently large n. Hence, we have proved (5.54).
Finally we prove (5.56). First note that

Nz, o

Z X(UTk,laj)‘Y( 7jﬂaj)
j=1

Nonry o
7 |€o - 7 ) —€o 7.
< (lvm . angl%)in(Um,hJ)) (|Wn| FZl X(Um,») (5.73)

where € is a real number such that 0 < ¢y < 1+ ¢ — 2. The optimal
choice of €y will be determined later. By (5.73), a simple calculation
shows that the Lh.s. of (5.56) does not exceed

§y 1<j<Nury

P ( max X(UT,WL’J') > %IW,LPH_Z”“))

N"Tk,,,o
+P( Z X(Ujp.;) > |Wn|“’). (5.74)

=

Then, to prove (5.56), it suffices to show that each term of (5.74) does

not exceed the quantity in (5.68).
First we show that the first term of (5.74) does not exceed the quantity
in (5.68). By Bonferroni inequality, the first term of (5.74) does not exceed

Ny o

abi - 2 c—2y—¢€
Z p (‘X(Urkn,l,j)>ﬁlwn|l+ o O)

j=1

No» (T C(U
< zk:n‘o P ,‘X (UTkn,hj) —7E‘X (UT’W" ’j)|
—~ EX(Uxr, ..4)

6|w |l+c 2v—e€g .
‘X Thkn 1J

12,/EX Ur 1)

Note that (EX(UTMI,]-))I/2 ~ |W,|/? up to a constant, as n — co. Now
choose ¢y < 1 — 2. Then we have 1+ § — 2y — € > §, which implies

that (EX(UTA 1J))I/Z is smaller than IW |tHe=2r—Co(EX (U, i) 1/8
for suffic 1011tly large n. Then for sufficiently large n, there ex15ts a poqltlve
constant (9 such that the r.h.s. of (5.75) does not exceed

ko | X(Ur,. .j) —EXU; e
Z P ,,171) b ( k,hl,])'>6012|Wn|1+c/2—27760
E‘Y(U‘fkn,hj)
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Nury

en 0 (QC%2|WLi2+C7477260
<2 — 7 !
- o { 2+ Cra|Wo | Fe/2 =0 (BX (U, 1.0)) /2 }

620;22lWTL|2+c~47—2(0
2+ gCya|We 2= | °

Jj=1

< 2Npn,, o OXD { (5.76)

by Lemma A.1, where Cj3 is a positive constant. Note that Npr, o ~
|[W,|'~¢ up to a constant, as n — oo. Since ¢g < 1 — 2y, we have
|Wp|!=27=¢% — oo as n — oo. Then, for sufficiently large n, there exists
a positive constant Cy4 such that the r.h.s. of (5.76) does not exceed
2Nz, .0 B5D {—eC14|Wn|1+6727_(°}
= 2exp {log Npr,, , — €C14|Wy i+e—2r—E0

< 2exp {_60214 |Wn|1+"276[’}

= Qexp{—60214|VV’“(%(1+0*2V)} , (5.77)
by choosing €y = %(1 + ¢ — 27). Note that, since v < % — 5, this choice
of € satisfies the condition €y < 1 —2v. Hence, we have proved that the
first term of (5.74) does not exceed the quantity in (5.68).

Next we prove that the second term of (5.74), with €9 = T(1+c—2y),
does not exceed the quantity in (5.68). To do this, we argue as follows.
Since 8 > 1 we have n,|W,| — 0 as n — oo. This implies that, for

sufficiently large n, the intervals ij' and Ukn,k are disjoint, provided
qu—, — Nn'r,, =

j # k. Let Apy = szl““o n,j- Then we have ijlk‘"‘o X(Usny) =

X(Ap.)- Recall that n = n, ~ L' = [W| 7, and Nug, o ~ [Wa|'~¢ up

to a constant, as n — oco. Then, we have

Nnry, o . NnTkn O(Nn”rk 0 =+ ].) 2-2¢—p3
|A7L777l — Z j'rl = 7] 2 2 n e an| )
=1

up to a constant. Now we choose 3 > 2 — 2¢ so that |Apyl 4 0 as
n — oo. This, together with the assumption that A is bounded, im-
plies EX (A, ) = O(1), as n — oo. Note that only here we require the
boundedness assumption on A. Now, the probability in the second term
of (5.74) with ¢y = %(1 + ¢ — 27), can be written as

P (X (Angy) > |Wn|1/2+c/2_7)

IX(Ann) — EX(An,)| _ [Wal' /227
SP( VEX(L)  /EX(A.,) M)wﬂs)
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Since vy < % — £, we have that ]I/anl/”C/Q*7 — 00 as n — 00. Then, for
sufficiently large n, the r.h.s. of (5.78) does not exceed

<|X(<4n,n) *EX(A,L"” N |VV”|1/2+C/2‘W>

E‘Y(An,n) 2 EX(A"/J?)

< 2 |M/n|1+('72'y
ex —
=P TIEX(A,,,) (2 + (Wa [ /2H2) 2EX (Ayy) 1)

< 2exp { ~Ci5|Wy | FOHe-2m ] (5.79)

where C5 is a positive constant. Hence we have that the second term of
(5.74) does not exceed the quantity in (5.68). Therefore, we have proved
(5.56). This completes the proof of Lemma 5.5. O

5.4 Proof of Theorem 5.3

To prove (5.9), we have to show, for any v < % and each € > 0,
P (|Wal” |fim — 7| > €) = 0, (5.80)

as n — oo. To prove (5.80), we argue as follows. For each integer k
satisfying k = k, = o(|W,,|), define

k#1 s = arg mi a(6), 5.81
Thin,a = arg min. Qn(9) (5.81)

where Oy, = (k7 — €y, kT +¢€,) and ¢, is an arbitrary sequence of positive
real numbers such that ¢, — 0 as n — oo. Then we have that the
probability on the Lh.s. of (5.80) is equal to

5
P <—'W]:| kg — k7| > e>

<P (W%'W |kThm — k7| > € A ki, = k’ﬁc,n,s) +P (kT # kThon,s)
<P ([Wal"= kg, — k7| > €) + P (ke # kfpns) -
Then, to prove (5.80), it suffices to check
P (kTin # kTin,s) = 0, (5.82)
and for any e > 0,

P (

W'\ kTgn.s — k7| > 6) — 0, (5.83)

as n — oo.
First we prove (5.82) by the following lemma.
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Lemma 5.7 Suppose that \ is periodic and bounded. In addition, we
assume that X\ satisfy (5.5). Then for each positive integer k satisfying
k= ky ~ |Wyp|¢ for some 0 < ¢ < %, we have

P (kﬁ—k,n 7£ k'%k,n,s) —# 07 (584)

as n — 0o, where 7, and Ty s is given respectively by (5.3) and (5.81).

Proof: The probability on the Lh.s. of (5.84) is equal to
P (|kTgn — k7| > ),

with ¢, J 0 as given in (5.81) and the definition of O, following it.
Hence, to prove this lemma, it suffices to check (5.15) for the case v = ¢
and € = ¢,. Repeating the argument in the proof of (5.15), for this case,
we find that it suffices to show, for all sufficiently small oy, > 0,

P ( min Qn(di) — Qnlkar) < an) - 0, (5.85)

i, 0; €O\ By, ,en
and

P (W, >an) =0, (5.86)

as n — 0o, where By, ¢, = (knT — €n, kn7T + €n)-

First we consider (5.85). Following the proof of (5.18), the probability
on the Lh.s. of (5.85) does not exceed the quantity in (5.20) with By x
replaced by By, .. By part (i) of Lemma 5.16 (cf. section 5.6), we have
that there exist ag > 0 and positive integer ny such that

An(8;) — Ap(kpT) > ()zoe%k;1 ~ aoei|Wn|_c

for all §; € Oy, \ Bi,., and all n. > ng. Note that here we require
the assumption that X\ satisfy (5.5). By choosing «;, = ae|W,|~¢ with
0 < a < ag/2, we have that oy, — (Ap(0;) — Ay (k7)) is strictly negative,
so that oy, — (An(8i) — An(kaT))| > ae2|W,|~¢ for all n. > ng and all
8; outside set By, .. Then, the probability on the r.h.s. of (5.20) with
By, i, replaced by By, ., does not exceed

Z P (\Qn(di) — Q,L(k'nr)\ 5 OI€EL|W7,,|*C)

i, ;€O4, \ Bk,

J€n

< iP (|@u

Qo5 e ~ Q9 opr (&
> SenlWal ) + LaP (|Q@ulkar)| > S 2wl ™) (5.87)
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Now we want to apply Lemma 5.5. Inspection of the proof of Lemma,
5.5, we see that o, in this lemma is equal to min(C\e, Coe?), where C;, Cy
are some positive constants. Then, by Lemma 5.5 for the case ¢ = v and
€ = €2, we have the following result:

Suppose that X is periodic (with period 7) and locally integrable. Then,
for each integer k satisfying k = ky, ~ |Wy|¢, for some 0 < ¢ < %, and for
each sequence €y, | 0, there exists (large) constants C3 and ngy such that

Ly,
> P (10n(6)] > €Wl ™) < Cyexp {~Caeh W' 75}, (5.88)

=1

with 6; € O and L, = |W,|? for some >0, for all n > ngy, where C4
18 a positive constant.

Now choose €, — 0 such that enan](l_S"’)/4 — 00 as n — 00. Since
¢ < 5 which implies 1 -3¢ > 0, by (1.2) and (5.88), we have that the r.h.s.
of (5.87) converges to zero as n — oco. Hence, we have proved (5.85).

Next we prove (5.86), with o, = ae2|W,,| . To do this, we will apply
Lemma 5.6. Inspection of the proof of Lemma 5.6, we see that «, in this
lemma is equal to min(Cse'/?, Cge, C7), where C5 — C7 are some positive
constants. Then by Lemma 5.6 for the case ¢ = v and € = €2, we have
the following result:
Suppose that X is periodic (with period T) and bounded. Then, for each
integer k satisfying k = ky, ~ |W,|¢ for some 0 < ¢ < %, and for each
sequence €, | 0 there exists (large) positive constants Cy and ng such that

P (W:L]‘L,kn > 6311|W1l|;('> < Cgexp {—096i|Wn|%“ﬂ)} 5 (5.89)

with Ly, = |Wy|? for some 8 > 2, for all n > ng, where Cy is a positive
constant. (Note that v = c and v < 1 — & implies ¢ < 5.

Next we choose €, — 0 such that en|Wn|%(170) — 00 as n — oo.
But, since (1 — 3¢) < (1 —¢) for ¢ > 0, this requirement is implied by
en| Wy (17394 5 00 as n — oo, which was already needed to establish
(5.85). Then, by (1.2) and (5.89), we have (5.86). This completes the

proof of Lemma 5.7. O

It remains to show (5.83). To prove (5.83) we require Lemmas 5.8 -
5.12. Recall our notation A, (-) = EQ,(-) and Q,(-) = Qu(-) — EQ,(-).
As before, for any r.v. Y with finite expectation we denote Y — EY by
Y. We begin with establishing a stochastic expansion for Q,, (4).
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Lemma 5.8 Suppose that \ is periodic and Lipschitz. Then, for any
positive integer k satisfying k = o(|Wy|) and for any 0 in a netghborhood

of kT, we have a stochastic expansion of Qn(5) as follows

- (6 — k) 1 (6 — kr)?2 k
n(0) = —5 A ———=DB, Op | ——75- O, — |, (5.
Q ( ) ILanl/z ,6+ |Wn|1/z ,6+ P |Wn|1/2 + p |Wn| (5 90)

as n — oo and |§ — kt| — 0, where

Nns
2 N
Ans = W Z X(Us,i) (Cishr — € okr) 5 (5.91)
n i=1
R P
Byns = W—P/j Z X2(Us,i), (5.92)
Wa i=1
Ciskr = Map+r+(@E—-1)(0- k7)), and (5.93)
Nys
C.okr = (Nps)™! Z Ci 5,k (5.94)
=1

Proof: First recall that (cf. (5.29))

~ 1 - 1 o T
Al0) = X2 i) — ——X2(W
Q ( ) |Wn| ~ (Ué) th|Nn6 ( Nné)
Nns 2X (Wn,,) fyr.  A(s)ds
2 2 N"5 WN
4+ —= " X5 / A(s)ds — ns . (5.95)
|W” Us,i .Wn|Nn5

i=1

Note that the first term on the r.h.s. of (5.95) is equal to the second term
on the r.h.s. of (5.90). The variance of the second term on the r.h.s. of
(5.95) is equal to

1 2
[Wal>N7s

1 S ar &3 ?
= WVZ_ {E)&él(WN,La) - (EXZ(WIVM)) }
n nd

1 ’ k2
—_— A(s)ds + 2 / A(s)ds :(9(——_),
WA PNz, (/W ®) < ) ) ) WP

as n — oo. Hence, by Chebyshev’s inequality, this term is of order
O, (k|W,|™!) as n — oo. It remains to show that the sum of the third
and fourth term on the r.h.s. of (5.95) is equal to the first term on the
r.h.s. of (5.90) plus a remainder term of lower order.

B (X2(W,,)
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Since A is Lipschitz, we have (5.189). By (5.185) and (5.189), uni-
formly ini (i = 1,2,..., N,5), we can write

/ A(s)ds = k07 + (5 — k7) ci 540 + O((6 — k7)?), (5.96)
Us.;

with ¢; 547 as in (5.93). By (5.96), the third term on the r.h.s. of (5.95)
can be written as follows

W7 - 2(6 — k1) ( (6 — kr)?

WX(WNM) 4 Z(zékr (Usi) + 0O TALE ) ,  (5.97)

as n — oo, since by Chebyshev’s inequality, we have Zfi"f X (Usz) =
X(Wn, ;) = Op(|W,|'/?), as n — oc. Similarly, we write the last term on
the r.h.s. of (5.95) as

2k07 2(6 — k1) X(Wn,,) (6 — kT)?
- ——X(Wn,,) - = E 6,k , (59
T A A A R L ok +O< oz ) (5:98)

as n — 0o. The sum of the quantities in (5.97) and (5.98) is equal to

200 — k1) } X(Wn,,) (6 — k)2

IWIL| Z Pl < UO Z) a Nmi o Iwrn|1/2 ’ (599)
as n — oo. Note that the first term of (5.97) cancels against the first
term of (5.98). A simple calculation shows that the first term of (5.99) is
equal to (0 — /ﬁT)|Wn|*l/2A"75, while its second term is equal to the third
term on the r.h.s. of (5.90). This completes the proof of Lemma 5.8. O

In the next two lemmas - Lemmas 5.9 and 5.10 - we obtain an asymptotic
approximation to the variance of A,, 5 and B,, 5 respectively and also show
that these terms are approximately normally distributed. The covariance
between A,, 5 and B, 5, and their joint normality is established in Lemma
5.11.

Lemma 5.9 Consider A, ; as given in (5.91), and suppose that X\ is
periodic and bounded, and (5.4) holds.

(i) Then for any positive integer k satisfying k = o(|W,|) and for any
0 in a neighborhood of kT we have

‘471,(5
0(44n,5)

- N (0,1) B o, (5.100)

as n — oo, where N1(0,1) denotes a standard normal r.v.
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(ii) If in addition, X is Lipschitz, then for any positive integer k sat-
isfying k = (|Wn|) and for any & in a neighborhood of kT with
|Wy|k~ |6 — k7| = 00 as n — oo, we have

4 : 2
Var(Ans) = 79 (A(s) — 8)° ds+0(|vf |> +O(|6 — k|)
0
+0O (k|W, |16 — kr|71), (5.101)

as n — oo and |6 — k7| = 0.

Proof: First we prove part (i) of this lemma. Note that for all i #
4, 1,5 = 1,..., Nps we have that X(U(;Z) and X(U5]) are independent.
Furthermore, for each i, i = 1,..., N,5 and any 0 in the neighborhood
of k7, we also have EX(UM) (Cusr ¢s-) =0and Var(X X (i) lcisr —
Ejz)) = gr= 6.75’7) fU A(s)ds, which is finite, because X is bounded.

Now we notice that

Nps 2
(Z(Ci,é,r = a,é,‘r)z / )\(S)dS) = O(|Wn|2)a
Us,:

=1

as n — oo. Then, proving part (i) of this lemma, it suffices to check that
the Lyapounov’s condition

ZE( (Us.i) (cisr — € ,)T))4 = o(|Wa|?) (5.102)

holds, as n — oo (cf. Serfling (1980), p. 30). To prove (5.102) note that

Z

26 Nys

E <X(U6,i) (Cigr — 5,6.7))4 = Z (Cior — 6,5,7)4 E (X(Ué,i)>4

1 i=1

né g 2
(cis,r — C.5,7) (/UM A(s)ds + 3 < - A(s)ds) )

- (9(|Wn|k) = o(|W|?)

I m
z

N

as n — 0o, because k = o(|W,]) as n — oo. Hence we have (5.102),
which implies part (i) of this lemma. Note that (5.4) implies that o(A; 5)

is bounded away from zero, for all large n.
Next we prove part (ii) of this lemma. By (5.185), for each i, we can
write [, A(s)ds = k0T + O(|6 — ktl), as |0 — k7| — 0 uniformly in n.
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Since X(UM) and X(U(;,j) are independent for all i # j; 4,5 = 1,..., Ny,
we can compute Var(A4, 5) as follows.

Nys
4 _ 2
Var(A,s) = WZ/UJ A(s)ds (i kr — C.o.kr)
i=1 )t
4 N5 "
A (k0T + O(|6 — k7l)) (Cigkr — C.o.k7)
nli=1
Nus
k0T & _ 2 |0 — k7|
= — iS5 kr — C — 1
H/an 1221 (cz,é,kr C<,(S,k‘l') +0 ( k ) (5 03)

as

0 — k7| — 0 uniformly in n.
Let Js5r = [lij—le]’ and an approximation for J(;le is given in (5.191).
Since |W,|k~1|§ — k7| — oo, we have Js, = o(Nys) as n — oo and as

|0 — k7| — 0. Because the intensity function \ is periodic with period 7,
we can simplify ¢_s ;. as follows

E.,&,k‘r
g, o
= > Aan + 7+ (i — 1)(6 — kr))
1 N Is ket
— TL(S 1 y — —
= ([Jo_,kr] ; Man +7 4 (i —1)(8 kf))+(9(.15,,”)>
1N Js kT J
_ néd X . 1 8, kT
= o ; Aan 74— 1) —kr)) + 0O (—an )
16 — kr| Js kT 7
_ — RT 2 . 8,k
= ( = +O(((5—kT) ));)\((Ln+r+(z—1)(5—k7’))+(’)<Nn6)
1 RN 7
_ & _ s _ : Jo kT
-1 Zl 16 — kr|A(an + 1+ (i — 1)(6 — k) + O (|6 — kr|) + O ( Nm;)
1 T c J(5 kT
= = (/ )\(s)ds+(’)(|()—kr')) +O(|6—kr|)+0< : )
7 \Jo Nps
— 940 -k 4O (5.104)
N [Wall6 — k7| )’ ’

as n — oo and |0 — k7| — 0. Here we have used the assumption that X is
Lipschitz, and the error for the Riemann approximation is incorporated in
the O(|0 — k7|) remainder term. Replacing ¢ 5k, on the r.h.s. of (5.103)
by 6+ O(|6 — k7|) + O(k|W,,| 710 — k7|71), the r.h.s. of (5.103) is equal
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to
Nns
4kOTN,s 1 . 2
AR ; Man +7+ (i —1)(0 — k7)) — 6)
+ 06 = k1)) + O (k|W,| Y6 — kr|71), (5.105)

as n — oo and |§ — k7| — 0. Now we make the following approximation

AKOTN,;  AkOT <|Wn| >
- +oa
Wi W\ s oW
- 1 16— k7l k
_ 4kor (E +o( = )) ) (IWnI>
|0 — k| k
= 1
e+0< ) o (5r) (5.106)

as n — oo and |§ — k7| — 0. Substituting (5.192) and (5.106) into the
first term on the r.h.s. of (5.105), then we get (5.101). This completes
the proof of Lemma 5.9. O

Lemma 5.10 Consider B, s as given in (5.92), and suppose that X is
periodic and locally integrable, and (5.4) holds.

(i) Then for any positive integer k satisfying k = o(|Wy|) and for any
0 in a neighborhood of kT we have
Bn,5
U(Bn,(j)

as n — oo, where N5(0,1) denotes a standard normal r.v.

— N»(0,1) & o, (5.107)

(ii) If in addition, X\ is Lipschitz, then for any positive integer k sat-
isfying k = o(|Wy|) and for any 6 in a neighborhood of kt with
[Walk=16 — k1| = 00 as n — oo, we have

2
Var(Bys) =20°6+ 6+ O (lgf—l) +0((6-k1)?), (5.108)

as n— oo and |6 — k1| — 0.

Proof: First we prove part (i) of this lemma. Note that for all i #

g, i,j=1,..., Nps we have that X2(Us,;) and X2(Us;) are independent.
Note also that, for each 4, i = 1,..., N5 and any ¢ in the neighborhood

of k7, we also have EX2(Us;) = 0 and an easy calculation shows that

Var <)~(2w5,i)) = /U | A(s)ds + 2 (/U | /\(9)ds> , (5.109)
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which is finite. By (5.109) we have that
2

(Nﬂs Var (XQr(Ea,i))) = O(|W,|*k?),

i=

as n — o0o. Then, to prove part (i) of this lemma, it suffices to show that
the Lyapounov’s condition

Ny —
STE (£2Ws) = oWl (5110
i=1

holds, as n — oo (cf. Serfling (1980), p. 30). To check (5.110), we first
compute, for each i, the following quantity

/\(s)ds)

=EX8U;,;) — 4 A(s)dsEX®(Us ;) + 6 (

Us,i

3 4
—4 (/ A(s)ds) EX'Z(U(;,L'H( A(s)ds) . (5.111)
Us,: Us,i

By Haight (1967) page 7, for any ¢ in the neighborhood of k7, we have
that

EX'(Us;) = O(k?), EX%(Us;) = O(k*), and EX®(Us;) = O(kY),

E (Xz(Tfé,i))4 =E (XZ(UM) -

Us,:

2
A(s)ds) EX*(Us.,)

Us,i

as n — oo, uniformly in 4. Hence, the quantity in (5.111) is of order
O(k*) as n — oo, uniformly in i. Because N, 5 = O(|W,|k~!), the Lh.s.
of (5.110) is of order O(|W,,|k3), which is o(|[W,,|?k?) as n — oo, because
k = o(|W,]) as n — oo. Hence we have (5.110), which implies part (i)
of this lemma. Note that (5.4) ensures that 6§ > 0, and hence o(B,, 5) is

positive for large n.

Next we prove part (ii) of this lemma. Since B, ;5 is a sum of inde-
pendent random variables with expectation zero, by (5.109), its variance
is equal to

L o g oul ’
Var(B,,s) = A Z/U A(s)ds + A Z < ; A(s)ds) . (5.112)
=1 Vs =1 8

By Lemma 5.15 (see section 5.6), the first term on the r.h.s. of (5.112) is
equal to
k

A(s)ds =6 + O (W) , (5.113)

(IWo|+O(k)) 1
(Wl (Wl Jwy
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as n — oo. Since X is Lipschitz, for each ¢ we can write fU (s)ds as that
in (5.96). By (5.96) and by noting that ¢; 5xr = AMan+7r+ (z— )(6—FkT)),
the second term on the r.h.s. of (5.112) can be written as

Nps
Wan + 7+ (i — 1)(8 — k7)) + O((6 — k7)?))”

2](?292 Nn 4kOT(6 — kT)N,,
= |V[: l L 7( " |T) 5 5 Z)‘(a" +r+0G—1)(8— k7))

20—k )ZNn‘
+ (—IWT—I_O o) ZAz ap 47+ (i = 1)(6 — k7)) + O((6 — kr)?),

(5.114)

as |6 — k7| — 0. For any § in the neighborhood of k7 we can write

1__1__(5—1@7) (0 — k1)?
6  kr k272 +O< k3 ’ (a5

as |6 — kt| — 0. By (5.115), the first term on the r.h.s. of (5.114) can be
written as

2k20%72 (W]
|W7n| ( (S +O( ))
_ 9292, 2 i_(é'kT) (0 — kr)? k?
=2k°0°T (kT o + 0O = + O A
_ 2 2
:202k7—292(5—kr)+(’)<(6—]fﬂ—> +O(|§/ I)’ (5.116)

as n — oo and |d — k1| — 0.
Next we consider the second term on the r.h.s. of (5.114). By (5.104),
the second term on the r.h.s. of (5.114) can be computed as follows

41«67'(;4] kT) <|Wgn| n @(1)> (6 + 0O (|6 = kr]) + O <|W—||§TTI>>

_ w O((6—kr)?) +0 (MTW"TT') <|m]in|>
_ 40%kr(6 — k) (kiT < )) ((6 — k) )+O<|mk”|>
=46%(6 — k7) + O ((6 — k7)* ( ) (5.117)

as n — oo and |6 — k7| — 0.
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Next we consider the third term on the r.h.s. of (5.114). By a similar
argument as the one in (5.104), we also have

Nyis i
S N (an +r+i6—kr) = %/ N2 (s)ds + O (16 — kr])
i=1

0

1
né

+O (k|Wy| 716 — k7|71, (5.118)

as 1 — 00 and [0 — k7| — 0. To verify (5.118) we have used the condition
[W|k~ 10 — k7| — 00 as n — oo and the Lipschitz condition on A (which
implies that A? is also Lipschitz). By (5.118), the third term on the 1.h.s.
of (5.114) can be computed as follows

i (3 [ s+ 0@ - ki +o (i)

26 — k)2 (Wl k )
A O( v ) O\ W=

:(’)<(6__W> +(’)<|6_kT|>, (5.119)

k [Wh|

as [0 — k7| = 0 and as n — co. Combining (5.113), (5.116), (5.117), and
(5.119), we obtain
2

k
Var(Bns) = 20%kT+60+20%(06—k7)+ 0O (

A |> + O ((6 - k7)?)

2

Il

2926+0+0< k

) 0 (6 =47,

as n — oo and |6 — k7| — 0. Hence we have (5.108). This completes the
proof of Lemma 5.10. O

Lemma 5.11 Consider A, 5 and By, 5 as given in (5.91) and (5.92), and
suppose that X is periodic and bounded, and (5.4) holds.

(i) Then for any positive integer k satisfying k = o(|W,|) and for any
0 in a neighborhood of kT we have

A” F) Bn, k) ) b, 4
S ) N (0,0,1,1, p(An g, Bug)) B 0, 5.120
(0’(4477,76) O'(Bn_(;) ( /)( 0 O)) ( )

as n. — 0o, where p denotes the correlation coefficient.

(ii) If in addition, X\ is Lipschitz, then for any positive integer k sat-
isfying k = o(|W,|) and for any & in a neighborhood of kt with
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|Wy|k~1|d — k7| = 00 as n — oo, we have

20 k1) (1 [T 2 k
COU(A11,57 Bn,5) - L (T /0 A (S)dS ¢ + |Wn|
+O((6 — kr)2) + O (KWa| 16 = kr| 7Y

(5.121)

as n— oo and |6 — kt| —= 0.

Proof: First we prove part (i) of this lemma by an application of the
Cramer-Wold device. For any real numbers d; and dy, define

Yvn,é = dl An,tS + dQBn,é-
Then, to prove part (i) of this lemma, it suffices to check

Y6 — N(0,Var(Yns))| = 0, (5.122)

as n — oo. To prove (5.122), we argue as follows. By its definition, we
can write

v e R P
s = W72 > X (Us,i) (cighr — Copr) + ALE > X2(Usy)
" i=1 i=1
P o o
= ALE Z {leX(UM) (i 8.6 = B.607) + deZ(U(;,i)} .
n

For each 7 (1 = 1,... Nps), let

b = 201 X (Us ) (Cighr — €.o07) + d2X?(Us,3)-
Then, for any i # j; i,j = 1,... Nps, we have Y, 5; and Y, 5; are inde-
pendent, EY;, 5; = 0 for all 7, and Var(Yys:) can be computed as follows

. L 2
Var(Vus) = 4di(cisir — E.0ar) EX*(Us ) + BE (X2(Us0)

+4dydy (¢ g7 — 500 )EX (Us ) X2(Us,s)

= 4d%(Ci,6J\:T — 5_75’/@7)2/ /\(S) =t d:; )\(S) + 2 </ )\(9)) }
Us. Us,i Us,i

Hdia(cnapr —ne) [ A5) = O)

Us,i
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as n — oo, uniformly for all § in the neighborhood of k7. (Here we have
used the assumption that A is bounded and Haight (1967), p. 7). This
implies

Nns &
(Z me,a,») = O (IWak?),
1=

as n — oo. Then to prove (5.122), it suffices to check that the Lya-
pounov’s condition

Nns
> EYnsa)' = o (IWalk?) (5.123)
=1

holds, as n — oo (cf. Serfling (1980), p. 30). To prove (5.123), we first
note that, for each 7,

. T
E(Y,5:)" = E (QClX(Ua,z‘)(Ci,(s,kT —C.okr) + C’zX2(U6‘i))

0 (E (X(Ua,i))4 +E (Xé(“&h)f) , (5.124)

because A is bounded. We know that E(X (Us;))* = O(k?) as n — oo,
uniformly in ¢. From proof of Lemma 5.10, we know that the quantity in
(5.111) is of order O(k*) as n — oo, uniformly in i. Hence, the quantity
in (5.124) is of order O(k') as n — oo, uniformly in i, which implies the
Lh.s. of (5.123) is of order O(|W,|k?*), which is o(|W,|?k?) as n — oo,
because k = o(|W,,|) as n — oo. Then (5.123) holds true, which implies
part (i) of this lemma. Note that (5.4) implies that both o(4, 5) and

o(B,,5) are bounded away from zero, for all large n.
Next we prove part (ii) of this lemma. Since EA,, 5 = EB,s =0, we
have that

COU(AVL,57 Bn,é) = EAn,éBn,(S

9 Naus ~ Nys  am
- WE (Z (:iy(;,kTX(U(;?i)> > X2(Usy)
n J:1

1=1

2 Ny, ~ Nns o
= |W‘”"EZ X(Usi) Y X2(Us,y). (5.125)
" i=1 j=1

The first term on the r.h.s. of (5.125) is equal to

g [ —
A {Zci,é,kTE4Y(U6,i)X2(U6,i)}
mli=1
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Nns
2 - o
= § SEX (Us,) | X?(Uss) — :
W] 2= ¢i,5,kr BX (Us ;) (Y (Us.i) - A(S’)d5>

9 Nps 9 Nnps
= — (,:i’(;,kTE‘?g(Ug’i) =T ci,(s)kr/ )\(s)ds, (5.126)
IWn' zz::l |Wn| ; Usi

where we used the fact that EX?(Us;) = EX (Uy;) (cf. (1.3-17) of Haight
(1967), p. 7). Similarly, the second term on the r.h.s. of (5.125) is equal
to

2|wale {Z EX (Us;) X2 (U,;l)}

o Nas
2C. 5 kr &

—_ 20, EX ; i) — A i
T ) (Ua,)< *(Us,) /UM (S)dg)

=1
2C. 5.k i 2C. sk s
_ /.,r, b E);yB(U(S,i) — o o HOSNT /\(S)dS (5127)
Wl rl Wl ; Usy

By (5.126), (5.127), and (5.93), we can write

Nns

Cov(Ans,Bns) = /\ Yds Ma, + 7+ (i —1)(0 — k7))

Us
Nys

> /U | A(s)ds. (5.128)

=1

o 26,5,/;7
(Wl

First, we consider the first term on the r.h.s. of (5.128). By (5.96),
this term can be simplified to get

T Nns
+__2(TV;, ’TT) S N (g 4+ (= 1)(6 = kr) + O (3 - krPk) | (5.129)

=1

By a similar argument as the one in (5.104), but with (5.191) is now
replaced by

S 2
+ b0, im(in—T) L0 (5 k),

|0 — k7|
']5,/v‘r = T

as |0 — k7| — 0 uniformly in n, where b(3, k7) = 15jk7| - [|5*k7|]’ we have

1

11(5

Nns
> Man + 7+ (i = 1)(8 — k7))
=1
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- l/ As)ds + 2LEF) |‘5 kT'/ s)ds + O ((5 — kr)? )+0(‘]‘””>
0b(0, kT)|6 — k7| o k
. FO(E k) + O\ sy ) - (B130)

asn — oo and |0 — k7| — 0. Note that, to verify (5.130) we have used the
condition |W,|k~t|6 — k7| — oo as n — oo, and the Lipschitz condition
on A. Hence, the first term on the r.h.s. of (5.129) is equal to

2k67 0b(5, kT)|6 — k7| ) k
winalay AP B N P o Sk | —k7)? L B
|W,,,|N‘5< + - +0((6—kr)*)+0 AT

20%(6 — kT)  260%b(5,kT)|0 — kT|
+
kT T

+O <|I/I]j: |> +O(k’|w/rrlk_l‘($_k7—|il), (5131)

=26° -

+0 ((5 — k7)2)

as n — oo and |0 — k7| — 0. Similar to that in (5.130), we also have

Nips
Nm; Z/\Z (an + 1+ (i — 1)(6 — k1))

1 k )

as n — oo and |0 — k7| — 0. Here we also have used the condition
|Wy|k~1|d — k7| — 0o as n — oo, and the Lipschitz condition on . By
(5.132), the second term on the r.h.s. of (5.129) is equal to

Q(TVI—/n/TT) (IV?LI +O(1)>

<1 / N(s)ds + O (|8 — k7)) + O (m»

-2 [ R o (S5 ) vo () s

Substituting (5.131) and (5.133) into (5.129), we then have that the first
term on the r.h.s. of (5.128) is equal to

‘ 2(6 — 202b(5 ~ k1) [T
pgr _ 2070 — k) | 26°(0,kn)|6 —kr| 26 ’”)/ 22(s)ds
kT T kr? 0
0((6 k))+(’)( F >+0< = ) (5.134)
o T e e B Tm— 9 -
(W, [Whlld — k7|

as n — oo and |0 — k7| — 0.
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Next we consider the second term on the r.h.s. of (5.128). By its
definition, ¢_s 4, is equal to the quantity in (5.130). By (5.186), we have

_ 2 (W +0(1)> <k97+9(6—k7)+0(]f|(|5v;—,j|€7|>>

= 20+0 (@_kﬂ) +0 (W%) : (5.135)

By (5.130) and (5.135), the second term on the r.h.s. of (5.128) is equal

to

202b(3, kT)|d — k7| Lo

T

—20% -

((6 —k7)?) + O (ﬁ) (5.136)

asn — oo and |0 — k7| — 0.

Combining (5.134) and (5.136), we obtain (5.121). Note that, the sum
of the second and fourth term of (5.134) is equal to the leading term on
the r.h.s. of (5.121), while the first and third term of (5.134) cancel with
the first and second term of (5.136). Hence we have proved part (ii) of
this lemma. This completes the proof of Lemma 5.11. O

Lemma 5.11 tells us that (A,,./0(Ans), Bus/0(Bns)) < N((0,0),1),
as n — oo and |6 — k7| — 0, where N((0,0),I) denote bivariate normal
with mean zero vector and identity covariance matrix. Note that

Cov(Ans, Bus) _ o (10 =7l . (6 — kr)?
U(‘/‘ln,&)o-(Bn,é) =0 ( k3/2 +0 }I/Vn| +0 k1/2
kl/2
+0 (m) =o(1),

as n — oo and |§ — k7| — 0, by the assumption |[W,|k~!|§ — k7| = oo as
n — oo. The bivariate normal vector N((0,0),I) can also be expressed
as (N1(0,1), N2(0,1)), where N;(0,1) and N3(0,1) are two independent
standard normal r.v.’s.

Using the results given in Lemmas 5.8 - 5.11, as well as that in part
(ii) of Lemma 5.16, we obtain a stochastic expansion for Q,(d) in the
following lemma. Note that here we add the requirement k = o(|W,| 1/2),
otherwise the quadratic approximation to A, (d) (cf. Lemma 5.16) will
not dominate the O,((0 — k7)2|W,|~'/?) random error term in (5.137).
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Lemma 5.12 Suppose that X is periodic and Lipschitz, and (5.4) holds.

Then, for any positive integer k satisfying k = o(|Wy,|'/?) and for any &
in a neighborhood of kr with |W,|k=16 — k7| — 0o as n — 0o, we have

Qu(6) = Q——’“1)2/7<A<> 0)2ds

k2
(6 —kr) [ (46 B 63/2
- S (7 L oo -ora) o+ g o
(26%kT + )1/2 k |6 — k7|k1/?
T 0) T Ny (0,1) + 6+ O o, (L= EIY
Wiz POD OO () + ]
(0 — k7)? |6 — kT -
N C%’<|MZJD5_ ro (=), (5.137)

asn — oo and |6 — k7| — 0.

Proof: From (5.101) we see that (cf. also (5.4))

Tetna) = (4?0 /OTM(s) ~9)2ds>1/2
<1+O(|V571'>+O(l6_kT|)+O<m))w

(4‘9/ (A(s) ds) 2+0<W§n|>+0(|5—/m)

*O(mmw—kﬂ> (B8

as n — oo and [0 — k7| — 0. By (5.100) and (5.138), we can write

Il

2

o—k 6—k o [7 .\ 2
(|Wn|1/Tz)A"’5 . (IWnll/? (47/0 ()\(s)—ﬁ)“ds> Ny (0,1)

k |6 — k7|k'/? (6 — k)2
+%QMWJ+%<IWJ “”%WWW>’

(5.139)

as n — 0o and |6 — k7| — 0. The error in replacing A, 5/0(4, ) by

N1(0,1) is of order O, (k'/?|W,,|~1/?), which follows easily from the Berry-
Esseen bound for A,, 5/0(A,, 5). This error is incorporated in the O, (|6 —

kT|EY2|W, |~ term of (5. 139) From (5.108) we see that (cf. (5.4))

0(Bns) = (2026+0+O(|V];i[>+O((5—k7)2)>1/2
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e )

9 1/2 k3/2 (6 — k7)? .
(260°6+6) "+ 0O (IW,I,I +O(3m ) (5.140)

as n — oo and |6 — k7| — 0. The first term on the r.h.s. of (5.140) can
be written as

2 12, 628 —kr) 6'(8 — kr)? 16 — kr?
- (5.141
(29 kT+9) =+ (292k7+0)1/2 2(292kT+9)3/2 +0 2 (5.141)
By (5.107), (5.140), and (5.141), we can write
Bn,5
|W,|1/2
L o2y 4 0)/2 4 B0k 6@ —kr)”
[Wa'/2 [(20 kr+6) 7+ (202kT + 6)1/2  2(20%kT + 6)3/2 2(0,1)
k (6 — kT)2
0, (i77) + 0 () (5.142)

as n — oo and |6 — k7| — 0. Here we have used the fact that [6 —
kT|3k~5/2|W,,|~1/? is of smaller order than (¢ — kT)2k~Y2|W,|~1/2, and
O, (k*?|W,,|7%/?) is of smaller order than Op(kl/QIWn|‘1/2). The error
in replacing By, 5/0(By.5) by N2(0,1) is of order O, (k'/2|W,,|71/%), which
follows easily from the Berry-Esseen bound for By, ;/0(B; ). This error
is incorporated in the O, (k|W,|~!) term of (5.142). Substituting (5.139)
and (5.142) into the r.h.s. of (5.90), we then get

Qn(9)
(6 —kr) J (4 [T 2 3 g3/
AL {(7/0 (A(s) = 0) dé) N.1(0,1) + (—QWNZ(O’ 1)
el 6 — kr{k!/? (6 - kr)?
oo, (PEEE) +o (G
k
O (|—W—|) ’ (5.143)

as n — oo and |0 — k7| — 0. Here we have also used the fact that the
error in replacing (An’(;/O'(An,(;), Bn,5/U(Bn,5) by (Nl (Oa 1)7 N (05 1)) is
again of order O(k'/2|W,|~'/2) (cf. Corollary 17.2 of Bhattacharya and
Rao (1976)). Combining (5.183) and (5.143), we obtain (5.137). This
completes the proof of Lemma 5.12. O
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Now we continue the proof of Theorem 5.3, that is we want to show
(5.83). To establish (5.83), we can restrict our considerations to @, (J)
only for § € O, i.e.,  such that (6 — k1) — 0 as n — oo, so that we
can apply Lemma 5.12. First note that, since |© ,,| | 0 as n — oo, (5.83)
automatically holds true if v < ¢. So, it remains to check (5.83) only
for the case v > ¢. Let ),,(6) denotes the leading term on the r.h.s. of
(5.137), that is

Qnld) = ((s_—kT)/T(/\(s)-Q)zds
JO

kr2

6 —kr 40 [T ) L2 93/2
(|Wn,|1/_2) { <?/0 ()\(S) - 9) dé) ]\/1(0, 1) + WNQ(O, 1)}

(2027 + )72

a0 +e. (5.144)

Note that Q,(d) is a quadratic function of (§ — k7). Define the auxiliary
quantity 7, by

By = argégéin Qn(6). (5.145)
k,n

Minimizing Q,,(0) w.r.t. (6 —k7) yields a stochastic expansion for (Thm.s —
T):
(Wal'/? (Fin,s — 7)
_ 73/2 g1/2 N1(O,1) N 72 3/2 NQ(O,I)
(fo (A(s) — 9)2(15)1/2 2020kt + 1)1/2 [T (A(s) — 0)2ds [

(5.146)

Formula (5.146) directly implies that, for any v < %, we have
|I/an’y (?k,n‘s - T) £> 07

as n — 00. Then, to prove (5.83), it now clearly suffices to show, for any
v < %, that

5 _ k
k (Tk.n,s = Tk,n,s) = 0p <W> 5 (5147)
as n — oo.
To verify (5.147) we argue as follows. By (5.137) and (5.144), we know
that

Qn(d) = Qn((s) + Rn(é)a
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where
B |6 — kr|k!/? (0 — kT)? |6 — kr?
R,(0) = O, <——|Wn| + Oy ——an|1/2 +0 —%
k
5.1
+Op (lW |> (5.148)

will be a remainder term of lower order. To check that this term is indeed
negligible for our present purposes, we note that, a simple calculation
using (5.144) yields

n k
W (5 o (WW))
_ k 5—k k
= Qn(0) + 0, <——|Wn|7+1/2) +0p (' = hfl) +o, <|Wn|2w> . (5.149)

as n — oo and as |6 — k7| — 0. Note that if (0 — k1) = O(k|W,|™7), then
|6 — kr|?k~' = o(|6 — k7||W,|7), since ¥ > ¢ which implies k|W,|™7 |
0 as n — oo. Since k = o|W,|'/?) and v < 3, we also have |5 —
R |k W |7t = o(j0— kTHW’I "), (5—k7)? Wy |12 = o(|5—kT||Wal| ™),
and k|W,,| ™! = o(k|W,|%7) as n — co. Hence, since R, (), i.e. the r.h.s.
of (5.148), is at most of order

k 16 — krl k
o \roprire ) Yo\ ) T \iwae

provided |6 — k7| = O(k|W,|~7) and v < %, which does not exceed the
remainder term on the r.h.s. of (5.149), we have proved (5.147). The
requirement |§ — k7| = O(k|W,|~7) is automatically satisfied, since here
it suffices to consider |0 — k7| = o(k|W,|~7). Therefore we have proved
(5.83). This completes the proof of Theorem 5.3. O

5.5 Proof of Theorem 5.4

Before presenting the proof of asymptotic normality of our modified esti-
mator %,’;n of 7, we will first explain why we need to modify our original
estimator 7y .

Inspection of the latter part of the proof of Theorem 5.3 shows that the
transition from 7y, 5 to Tk (cf.(5.147)) will fail to give us asymptotic
normahty of |W, |1/2(nC —7). If we replace o, (k|Wy|~7) by oy (k|Wy |~ e

n (5.147), we will arrive at (5.149) with v = 1/2. But this order bound
’just’ fails to be of the same order as R, (3). Though, since [0 —k7[*k~" =
0(|0 — k7|[Wa|~'/2) and (5 — k7)2|W,| Y2 = o(k|Wy| ') , provided [§ —
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k7| = o((k|W,|~'/?)1/2) as n — oo, the first and second terms on the r.h.s.
of (5.148) poses no problem, the last term O, (k|W,|~!) in (5.148) is "just’
too big, it should o,(k|W,| ') as n — oo. To remedy this, we require a
slight modification to the function @, (0), and hence of the estimator of
the period.

From the proofs of Lemma 5.16 and lemmas 5.8 - 5.12, we know that
the term 6 + O, (k|W,|™!) on the r.h.s. of (5.137) is due to the error in
replacing By, 5/0(By,5) by N2(0,1) on the r.h.s. of (5.142), and the sum
of the following three terms, namely, the second term on the Lh.s. of
(5.175), the second term on the Lh.s. of (5.176), and the second term on
the r.h.s. of (5.95). Note, however, an easy computation shows that the
error due to replacing B;, 5/0(By.5) by N2(0,1) can be written as

Oy (KIWa|™1) + O, (16 — kr|W| 1), (5.150)

as n — oo, where the first term of (5.150) does not depend on 4, while
its second term, which depends on 9, is of smaller order. Hence, the error
due to replacing B,, 5/0(By,.5) by N2(0,1) poses no problem.

It remains to treat the 6 + O, (k|W,|™!) term due to the sum of the

three term mentioned above. Note that the O, (k|W,| ') term here is of
exact order. To handle this, first note that the second term on the Lh.s.
of (5.176) is equal to the expectation of the second term on the r.h.s.
of (5.95), before centering. Hence, the sum of these three terms can be
written as

EX(VVNna) - XYZ(VVNM)
|Wn| |I/Vn|Nn(5

(5.151)

For each positive integer k such that k = k,, = o(|W,,|), we define the
function
_ XMW
|W77/|

X(Wh,,)
(Wl

Qn(9) = Q7(9) =Qn(d) —

Since the difference between @7, (0) and Q)}*(0) does not depend on d, our
modified estimator 7;;, can also be viewed as

g 1 . *%
Tem = Earggrel(l_)ri Qrr(9).

In fact we will use the latter definition of 7, to prove Theorem 5.4.
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Proof of Theorem 5.4:

We will prove Theorem 5.4 by showing that, for each integer k satisfying
k = o(|W,|'/3), we have

|VV |1/2 (Tk n T)

= { 3/2 01/) N (0 1) + 72 93/2 Nz(o,l)
(fo (s)—#6 2d5)1/2 2(20kT + 1)1/2 f()T()\(S) ~oy2ds

+ 0, (k71/?), (5.152
p

as n — oo, where N1(0,1) and N»(0,1) are independent standard normal
random variables. To prove this, we argue as follows. For each integer £,
define

Kin,s = arg min - Q37(9),
0€EOK n

where Oy, , = (k7 — €y, kT +¢€,) and ¢, is an arbitrary sequence of positive
real numbers such that ¢, — 0 as n — oo. Then, to prove (5.10), it suffices
to show

|I/V”|1/2 (72;,71,8 - T)

_ /2 61/2 N1 (0,1) 72 9312 Ny(0,1)
- { (Jy (A(s) — 0)2ds) " " 2ok 1 D2 T (A () - 9)2‘15}
+0,(k™1/?), (5.153)
and
(Wal'/ (3. — i ns) = 0p(K7'7), (5.154)
as n — oQ.

First we consider (5.153). To establish (5.153), we can restrict our
considerations to Q+*(d) only for 0 € O ,, i.e., § such that (6§ — k7) = 0
as n — 00, so that we can apply the result in Lemma 5.12. By its
definition, we can write )}*(0) as the r.h.s. of (5.137), provided the term
0 + O,(k|W,|™1), which is equal to the sum of the quantity in (5.150)
and (5.151), is now replaced by the sum of the quantity in (5.150) and

(5.151) minus X (W, ,)|W,| "', which is equal to

nd‘

= o e k |0 — k7|
—Y(WNn )|Wn| (an )W Nn + Op <—> + 0O < >
§ s | ! 9 |Wn[ p ”/Vn|
Okt 6'/?

_ k |0 — k|
=B N30y - |Wn|l/2N3(o,1)+op<|Wn|>+0 (527)

k k2 o
=t Op <W ~+ W) 5 (0.150)
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as n — oo and |0 — k7| — 0, by Lemma 5.13. Note that the O, (k|W,|™")
term on the r.h.s. of (5.155) does not depend on 4, and the

O, (K32 |W,, |73/ + Y2 |W,| =) term of (5.161) is already incorporated in
this term. Combining this fact, for each k satisfying k = o(|[W,|'/?), we
can write @} (0) as follows

" (6 —kr)® [7
— ;) — 0)7ds
Qn, (5) kT2 L ()\(é) ) as
T 1/2 3/2

(6 —k7) 46 o 0

e e s) — ! N 1 — N 1
+ |W/n|1/2 A (A(s) —6)7ds 1(0,1) + (20kT + 1)1/2 2(0,1)

(26%kT + 6)'/2 Okt 6'/? k

-\ — — ———N. 1 e
+ |W7L|1/2 NZ(Ovl) |w’f‘nle3 (0,1) lVVn‘l/Q 3(0, ) +C)P |Wn|

|6 — 1‘77'|k1/2 (0 — k'T)2 k |6 — /s:7'|3
* G ( [W,| +e [W,.|1/2 +0p |W.[3/2 +0 T E
(5.156)

as n — oo and |§ — k7| — 0, with the O, (k|W,| ") term does not depend
on 9.

Similar to Q, (), let Q*(5) denotes the leading term on the r.h.s.
of (5.156) plus the O,(k|W,| ') remainder term which does not depend
on 4. Note that Q*(8) is a quadratic function of (§ — k7). Since the
difference between Q,(0) and Q7*(8) is only in the constant term (the
term which does not involve (6 — k7)), we have that

arg min **(§) = arg min  Q, () = kT,
g5€9k,n Qn( ) g(Se@k‘” QTL( ) k,n,s

(cf. (5.145)). By (5.146), to prove (5.153), it suffices to show that

kl/Z
k (T]:,Il,s - fk,'n,s) = Op (W) 5 (5157)

as n — 0o. To check (5.157) we argue as follows. Similar to the proof of
(5.147), we have )
Q' (0) = Q" (0) + R, (9),

where

. B |6 — kr|k'/? (6 — kr)? k
Rn (5) = OP ( |anl + OP |VVH’1/2 + OP |I/Vn|3/2
§—kt|?
+0O (';lf——ﬂ—) , (5.158)

as n — oo and as |§ — k7| — 0, which will be a remainder term of
lower order. To verify that this term is indeed negligible for our present
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purposes, we note that, a simple calculation similar to the one in (5.149),
yields

1/2 _ 1/2
as n — oo and as |d — k7| — 0. Now we notice that |§ — lekl/Q\Wnr] =
oo — kT|k:*1/2|Wn|*1/2) provided k& = 0(|Wn]1/2), and I€|I/Vn\_3/2 =
o(k1/2|W,L|*1) provided k = o(|W,|), as n — oo. We also have (0 —
k7)2|Wn|71/2 = o(k/2|W,|™1) and |6 — k73K~ = o(kl/2|W’n|7l)7 pro-
vided (6 — k7) = (’)(k:|Wn|71/2) and k = 0(|Wn|1/3), as n — oo. Hence,
since R}*(d), i.e. the r.h.s. of (5.158), is at most of order

K/ +0< |0 — k7| )
0 10—l
NV RS AR

which does not exceed the remainder terms on the r.h.s. of (5.159), we
have proved (5.157). Therefore we have proved (5.153).

Next we consider (5.154). To prove (5.154), we have to show, for each
e >0,

. - 6k,l/z .
P <|k7k7n — k] 2 W) -0, (5.160)
as n — oo. The probability on the Lh.s. of (5.160) does not exceed
P(k:f',jm # k%,;kns) Hence, by an argument similar to the one employed
in the proof of Lemma 5.7, with Q,,(0) now replaced by @Q;*(6), we obtain
P(k7;, # kii, ) — 0as n — oo, which implies (5.160), and hence
(5.154). Note that, to prove (5.160) we again require k = o(|W,|'/?) as
n — 0o. This completes the proof of Theorem 5.4. O

To conclude this section, we state and prove Lemma 5.13, which was
needed in the proof of Theorem 5.4.

Lemma 5.13 Suppose that X is periodic and locally integrable. Then,
for any positive integer k satisfying k = o(|Wy|) and for any ¢ in a
neighborhood of kT, we have

X%(Wn,,) N XWy,,) _ Okt g1/

= N3(0,1 S
”/Vnuvné |Wn| |U/nl .j( ) )+ |VVn|1/2

K2 k2 |0 — k7l k k?
| eomses e Op | =5 Op | 7555 + 55 | »(5:161
T <|W/n|3/2 * |I/Vn|> T ( |W/11| > T <|I/Vn|'$/z " |I/V,,|Z> (‘) )

as n — 0o and |6 — k7| = 0 with the O, (K*2|W,,|73/2 + k'/2|]W,,|~1) term
does not depend on 0, where N3(0,1) denotes a standard normal r.v.
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Proof: Let Y, 5 = X(Wy ,)|W,|"'/? = Z,N:”f X (Us;). First, we will
show that

0, (5.162)

1=

Vs — N(0, Var(Y,,5))|

as n — oo, where

Var (Ys) = [Wal ! / A(s)ds = 0 + O(k|Wa| ™) (5.163)
. wané

as n — oo, uniformly in §. For any ¢ # j; 4,5 = 1,... Nys, we have X(Ug’i)

and )N((U(;,j) are independent, EX (Us ;) = 0 for all 4, and Var(X (Us;)) =

Ju,, A(s)ds = O(k) as n — oo, uniformly in . Hence we have

Nns 2
(Z V(LT(X(U&,‘,))) = 0| Wal?),
i=1

as n — oo. Then to prove (5.162), it suffices to check that the Lya-
pounov’s condition

iE (XY(U(;,,,')>4 =o(|Wal?), (5.164)

holds, as n — oo (cf. Serfling (1980), p. 30). To prove (5.164), we argue
as follows. For each i, we have BE(X (U;;))* = O(k?) as n — oo, uniformly
in 7. Hence, the quantity on the Lh.s. of (5.164) is of order O(|W,|k),
which is o(|W,|?) as n — oo, because k = o(|W,|) as n — oo. Hence we
have (5.162).

By (5.163) we can compute

V2 L2 L Ok Wa| Y, (5.165)

o(Yns) = (0 +OKIW,|™)
as n — oo, uniformly in 0. By (5.162) and (5.165), we can write
Vs = X(Wn,;)[Wa| 712 = 12N (0,1) + Op(k|Wa| ™), (5.166)

as n — oo, uniformly in 4. By (5.166), we can write the Lh.s. of (5.161)
as follows

5 2 4
1 [ X(Wn,,) e X(Wn,.s)
NmS |Wn|]/2 |[/V”|1/2 |V[,rn|1/2

1 ) 102
= 5 (97N + 0, (kW)
1 1/2 r1—1
+ (e N(0,1) + O, (k|Wa| ))
0 g1/2 k %

2
N0, 1) 4+ ——re N0, 1) +- 8, (anlSﬂ + |Wn|2) . (5.167)

Nnd | LVn | 12
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as n — oo. For any ¢ in a neighborhood of k7, we have the following
approximation

1 B 1 9 <1 4O < k ))
Nns [Wal|o=1 (1 + O(k|Wy,|~1)) Wl (Wl
kr |0 — k7|> ( k> )
— + O < + O c—— ] , 5.168
|I/Vn| |Wn| |‘/I/7l|2 ( )

asn — oo and |d—k7| — 0. Substituting (5.168) into the first term on the
r.h.s. of (5.167), we obtain (5.161). The error in replacing Y;, 5/0(Y,.s) by
N3(0, 1) is of order O, (k'/?|W,,|~/2), which follows easily from the Berry-
Esseen bound for Y, 5/0(Y,, ). Furthermore, we can split this error in to
O, (kY2 [Wo |~ V2)+ O, (10— k7 |k~ /2 |W,|~1/2), as n — oo and [6—kT| — 0,
where the O, (k'/?|W,|7"/?) term does not depend on 6. This error is
incorporated in the O, (k3/2|W,,|=3/2 + EV2|W,,|~1) + Op (|0 — kT||Wy| 1)
term of (5.161). This completes the proof of Lemma 5.13. O

5.6 Some technical lemmas

Let Ok = (7,0, Tk,1) where (k — 1)7 < 70 < kT < 741 < (k +1)7, and
k =k, = o(|W,|) as n — oco. Note that we always can write 7,0 = k7o
and 7,1 = k7 for some positive constants 79 and 7.

First we take a brief look at the fact that 7, ; is not uniquely deter-
mined by (5.3). For each k, define

k7,_ x = inf (arg min Q,L(5)> , and
0€O
ko, 5=8 s min Q,(9) | .
ot k = SUP (arg min Qn( ))

In the following lemma we show that the difference between k7, and

kTpt k, 1. the length of the ’lowest flat part’ of @,(0), is negligible

for our purposes. So, any minimizer of (5.3) will do. Throughout this

thesis, for any r.v. Y,,, we write ¥;, = O.(1) to denote that Y,, is bounded

completely, as n — oo; that is there exists constant M > 0 such that
o L P[] > M) < 00

n=1

Lemma 5.14 Let )\ be periodic (with period 7) and locally integrable.
Then, for any fized k = o(|Wy|),

| WY’ 4 |
k2

(Wl
k
as m — 0o.

(k’f’nJr.k - k%n—.k) = 00(1)7 (5169>

(7A-n+,k, - 72717,!.’) -
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Proof: Consider two points Sa’n and Sb,n in the parameter space Oy,
where 84, = k7, i, and 0y, > 04, such that

(Wl _ (Wl

5a.n 6b,n

+1,

for all n > 1. If, for each n > 1, a change in the value of @Q,(9) is
only caused by a change in the value of N,;s, then we would have that
(koo — kTu— ) = (51,," - 5an) But in fact, for each n > 1, a change in
the value of ),,(9) can also be caused by a change in the value of X (Us;)
for at least one ¢, 1 = 1,2,..., N,s. Hence, we have that, for each n > 1,

(ke — KFne) S (Opan — On)-

Then to prove (5.169), it suffices to show

Z P <|W“| (Bbn — Oan) > CO> < 00, (5.170)

n=1

for some constant Cy. Now note that

I/Vn Wn N N Sa nS n
Wal _ Wal (Bb.n — Ban) = b
6(1,71 6b,n

T,?’l = k%72. Hence we have that, with probability 1,

Since 7,9 < Sa,n < Tk and 74 < Sb,n < Tk,1, we then have that 5a’nf§b7n <

¢ k272 Wal = = .
(éb,n - 6u,n) S |VVT:| ) — k2 (6b,n - 5a‘n) S 7-12‘

By choosing now Cy > 72, we then of course have (5.170), which also
implies this lemma. This completes the proof of Lemma 5.14. O

Remark 5.1 By Lemma 5.14, in order to have that the statement like
(WY (P —7) = 0

as n — o0, remains true whatever specific choice of k7, ; is made, we
require that |W, |k~ > |W,,|7, which is equivalent to k < |[W,|'~7. With
k ~ |W,|¢ this condition reduces to v < 1 — c.

From the proof of Lemma 5.14, we can see that actually we have a stronger
result than the statement in Lemma 5.14, namely we have the following.
Suppose that X is periodic with period T and locally integrable. If k =
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kn = o(|Wy]) as n — oo, then there exists a large positive constant Cy
and ng such that

for all n > ny.

In Lemma 5.15 we state (and prove) a well-known result on (almost)
periodic functions, phrased in a form appropriate for our purposes. Recall
that Wy, , denotes the union of all disjoint intervals Us; of length ¢ in the
window W,,, and 6 denotes the ’global intensity’ of the inhomogeneous
cyclic Poisson process X.

Lemma 5.15 Suppose that X is periodic with period T and locally inte-
grable. Then, for any 0 € Ok with k = k,, = o(|W,|), we have

k
As)ds =0+ 0O (-) , (5.171)
) W,

1

|W7Nn6| o WNné
as n — 0o, uniformly in 0 € Oy.

Proof: Let Rn,é,kT = WNms \WNMT if WNnk'T - WNM;, and Rn,é,kT =

Whn,.. \Whn, s if Wy, C Wy, . Since the intensity function A is periodic

with period 7, we have |[Wy,, | Jwy  Als)ds = 0, for all [Wy| > k7.
’ Ynkr

Then to establish (5.171), it suffices to prove

|VVN l|w7NnJ 1 =1+0 (k|Wn|_1) (5172)

nkr

and

|WN,15|71/ As)ds = O (k|W,|™"), (5.173)
n,d, kT

as n — oo, uniformly in 6 € O.
First we prove (5.172). By its definition, we have

Wn
Wrpeol kN F7) (Bel-0w)  \w.-om
|VVNn5| 6N1L5 ) <|V‘;—"| _ 0(1)) |Wn| — O(k)

=1+ 0 (k|W,|™"),

as n — oo, uniformly in § € Oy, since k = k, = o(|W,|) as n — oc.
Hence we have (5.172).
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Next we prove (5.173). Recall that W,, = [a,,b,]. Since § € Oy
and k7 € O, we have that [a, + 74,1,b, — Tk,1] € Wy,; € W, and
[an + Tk1,bp — Tk1] € Wi, € W,. Then, by its definition, we have
|Rnskr] < |Wh\ [an + Tk1,0n — T,1)| = 27,1 < 27(k + 1). This implies
Jr, ;.. Als)ds < 207(k +1). Since [Wy, ;| ~ [Wy| as n — oo, uniformly
in 6 € O, we then have (5.173). This completes the proof of Lemma
5.15. O

We note in passing that Lemma 5.15 contain Lemma 2.1 as a special
case.

Recall that A, (6) = EQ,(J). First we simplify the expression for
A, (8), which will be useful to illustrate the necessity of condition (5.5)
and to prove Lemma 5.16. From (5.26) we can compute A, (d) as follows.

Ny
1 . 1 .
Ay (0) = i § EX*(Us;) — WBX“’(WNM). (5.174)
n i=1 n n

The first term on the r.h.s. of (5.174) can be simplified as follows

T o g
—— A(s)ds | + A(s)ds
|Wn| 1:21 (r (]ﬁ.i ) |W”| ‘/VNné
N
i=1

2
1 R r k
=T (/U A(s)ds) 1040 (|W |>, (5.175)
nl = JUs ; n

as n — oo. Here we have used Lemma 5.15. The second term on the
r.h.s. of (5.174) is equal to

2

1 Nns 1
—_—— A(s)ds | — —/ A(s)ds
[Wo|Nps (Z /UM ) (WalNas Jwy, (s)

=1
18 2 k
As)ds | — O (—) 5 5.176
/(/5_1' ( ) ) |Wn| ( )

=z

Il

1

b
IWYn]Nn(Y ;

2

as n — 0o, by Lemma 5.15. By (5.175) and (5.176), we have

1 Nas . i Nows  p 4
A(d) = s)ds — 5)ds
,(9) Wl ; ./UM A(s)ds N ]:21 - As)ds | +80
k

+0O (IVV”l) : (5.177)
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as n — oo, uniformly in § € ©,. The expression for A, (d) in (5.177) can
further simplified, by another application of Lemma 5.15, to obtain

1 = ’ k
An(f) = = A(s)ds — 06 +9+O(——),
( ) |W7l| Iz:; < (]5,1' (S) > |Wn|

as n — oo, uniformly in § € O.

In order to prove our consistency result (cf. also Theorem 5.2), we
will require that if A, (0) attains its minimum value 6 + O(k|W,| "), this
implies that 6 = k7 (otherwise (5.181) may fail). In other words, we
assume that: if for each § € Oy, and each r € [0, (|W,| — 0N,s)], we have

A(s)ds = 66 for all i, i = 1,... Ny, then § = kT, (5.178)

Us:s

where Us; = [an + 1+ (i —1)d,a, + 7 +145). Note, however, that (5.178)
need not to hold for each value of r. In fact we can weaken condition
(5.178) slightly, and replace it by condition (5.5), that is: if there ewists
t € (0,7) such that, for each n > 1,

Algids =t# for all i, £ = Ly.. o5 Npg, then
JUyi

v({r: A(s)ds =t0; i=1,...,Np}) =0, (5.179)
Uy

with Up; = [an+7+ (= 1)t,an +7+1t), i =1,..., Ny, and Ny = ['M;"‘]
as before.

First we note that condition (5.5) implies (5.4). For any A satisfying
(5.5), the choice of r in the construction of ), (0) is basically free, i.e. for
v-almost every r € [0, (|[W,,| — 0N,5)], Lemma 5.16 holds true and hence
all of our theorems in this chapter.

In connection with the condition (5.5), here we present two examples
of X, the first example satisfies condition (5.5), while the second one does
not. For the first example, we consider intensity function A of the form
A(s) = cos(s) + 1, which is cyclic with period 7 = 27. Here we have
(sufficiently large n), [; A(s)ds = 76, for all i = 1,..., Npr (where

Uri = [an + 7+ (i —1)m,a, + 7 +in) and Nyp = [IVET—"]), if and only if
we take a, + 17 € {jm;j € Z}, where Z denotes the set of integers. Since
v({jm;j € Z} =0, X in this example satisfies condition (5.5).

In the second example, we consider intensity function A of the form

s —[s], if se By
As) =1 1, if se By (5.180)
1—-s+]s], ifs€ By
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where B; = Uiez{[o, 1) + 21}, By = Uigz{[l,Z) -{—41'}7 B3 = Uigz{[374) +
47}, and we have By U By U B3 = R. Clearly A is cyclic with period
4 and 0 = % Here, for each a, + r € B; and each (sufficiently large)
n, we have that fUz,i A(s)ds = 26, for all ¢ = 1,..., Ny2, where Us; =
[an + 7+ 20 —1),ap, + 7+ 2i) and Nyp = [@] Since v(By) > 0, A in
this example does not satisfy condition (5.5).

For each k, let By, = (kT — €y, k7 + €n), where €, is an arbitrary
sequence of positive real numbers such that By, C Oy, for all n. The
sequence €, may or may not converges to zero, as n — 00.

Lemma 5.16 Suppose that X\ is periodic (with period T) and locally in-
tegrable. In addition we assume that \ satisfy (5.5).

(i) Then, for any sequence of positive real numbers e, such that €,' =
o(|[Whlk, ') as n — oo, and for each integer k, such that k, =

o(|Wp|'/?€,), there exists g > 0 and positive integer ng such that
An(8) = Ap(knt) > Eapok; (5.181)

for all § € O \ Bi,, and all n > ng. In addition, for each k
satisfying k = o(|Wy|), we have

An(kT) =0+ O (K|W,|™1), (5.182)
n — 00.

(ii) If, in addition, X\ is Lipschitz, then for any positive integer k satis-
fying k = qunll/Q) and for any § in the neighborhood of kT such

that |Wy|k™"|0 — k7| = 00 as n — oo, we have
{0 —kr)? /T 9 k
M) = T [ = 0%ds 640 (e
+0O (16 — kPR (5.183)

where the O(|6 —7[2k~1) term holds true as |0 — k| — 0, uniformly
inn, and the O(k|W,|™") term holds true as n — oo uniformly for
all § in the neighborhood of k.

Proof: First we prove part (i) of this lemma. By (5.177) we have

Nn

2
)
/ /\(s)ds)
=1 JUs,;

1 Nus 1
An(d) — Ap(knr) = W Z / A(s)ds — N
ni . Us. no 4

+O(k|W,|™h) (5.184)
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as n — 0o, uniformly in § € ©4. Here we certainly need condition (5.5),
because otherwise the first term on the r.h.s. of (5.184) may equal to zero
when § is not a multiple of 7. In this case, (5.181) can not hold true.

Now we consider the first term on the r.h.s. of (5.177). Let we number
the interval Us; from left to right by 1,2,..., Nys5. Recall that W, \ W, ;
may consists of two separate parts, namely the parts on the left-end-
point and the right-end-point of W,,. Total length of these two parts is
|[Wh| — [%] Let r = 7,5, 0 < r < 0, denotes the length of part of
W, \ Wy, ; which is on the left-end-point of W,. Then, for each 7, 7 =
1,2,..., Nps, the interval Us ; can be written as [a, +r+(i—1)d, ap+r+id).
Hence, for each 7, 1 =1,..., N5, we can write

an+r+id an+r+i(6—kt)
/ A(s)ds = / A(s)ds = kbt +/ A(s)ds. (5.185)
Us,; an+r+(i—1)9 an+r+(i—1)(6—k1)

We also have that

1 N,s 1 an+r+N,,5(6—kT)
A(s)ds = k0T + — A(s)ds
N716 ;/[]5,1' ( ) néd Ja,+r )
‘ (6 = kT) [T
— kor+ =2+ O(Wa|?) M—”/ A(s)ds + O(|6 — kr))
W or o
= k7 + (6 — k1) + O(K|W,,| 1|0 — k1), (5.186)

where the O(|W,|~2) term holds true as n — oo, uniformly in ¢ in the
neighborhood of k7, the O(|d—k7|) term is valid as |0 —k7| — 0, uniformly
in n, and O(k|W,| |6 —k7|), term holds true as n — oo and |6 —k7| — 0.

By (5.185) and (5.186), using the fact that |6 —k7| = O(1) as n — oo,
uniformly in d, (5.184) can be written as

1 Nus —n+r+i(6—kt) 2
An (6) - An,(knT) = / )\(S)ds — 9(5 — knT)
|W71| ; J—n+r+(i—1)(6—kT)
+O(k|Wal ™)
as n — oo uniformly in § € ©. Let J;55r = [ﬁ] for all 6 € ©f \ By.,-
Since A is periodic (with period 7) and €, = o(|W,|k, ') so that for any
0 € O \ By, we have Nm;J(s_le — 00 as n — 0o, we then have

An(0) — An(knT)

2

i Nox Js kr ran+r+i(§—kr) k
Z I né :| (/ A(S)ds - 9(6 - knT)) + O ( ; >
Wl [JMT ; an+r+(i=1)(6—kr) -
; Is kT an+r+i(d—kT) ? k
> p— ) - n 7 ?
> mr s (] o —as=5n) +0 (77

nrH(i=1)(6—kT)
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as n — oo uniformly in § € O \ By,,. Note that, since any multiple
of 7, except k,T, is not contained in O, we have that |0 — k,7| < 7T
for all 6 € ©f. Because A is not constant a.e. w.r.t. v (cf. (5.4)),
then the integrals f;";”{z((s;ﬁ;) kr) A(s)ds for i = 1,2,...,J5,, are not
all identical. For each i, we define a constant ¢;, where

. an+r+i(6—kT)
— {5 =l / s,
(ln+’f'+(l‘*1)((§*k‘7’)

Then we have

Ik
; 1 . k

An(s — {iplhn > 6_kn o - 5.1

B = Anlbar) 2 6= kar? 5 — Y (=07 +0 (i) GasD)

i=1

as n — oo uniformly in § € ©. Since the integrals
ffn":::é(él)]zg) o Als)ds for4=1,2,. JMT are not all identical, we also
have that the constant ¢;’s for ¢ = 1, 2 , Js.k7 are not all identical. This

implies there exists ¢y > 0 such that J(s o ZJ‘) " (¢; — 0)? > ¢p. Now note
also that (6 — k,7)? > €2 for all § € O \ By,,, and § < 74;. Then,
for all § € Oy \ By, , the first term on the r.h.s. of (5.187) is greater
or equal to (€2ep)/(275.1) = (€2€0)/(2kym1). Since ky, = o(|Wy |'/2¢,) and
the O(k|W,| ') remainder term on r.h.s. of (5.187) holds true as n — oo
uniformly in § € Oy, there exists large real number ngy such that the
absolute value of this term does not exceed (e2¢q)/(4k,71) for all n > ny.

By choosing now «g = (€p)/(471), we then get part (i) of this lemma.
Next we prove (5.182). By (5.177) with ¢ replaced by k7 and by
noting that for each i (i = 1,..., Nykr) we have [;, A(s)ds = k0T, we

then get

Ny k0T kOt kO [|W, kOt
/\n(kT) = 5 = |W | |:| |:| —

Wal  IWal (Wl

k
o (e - [ ]) vy oo (rg) o

as n — 0o, since 0 < (";CVT"‘ [|an\]) <L

Next we prove part (ii) of this lemma. Since A is Lipschitz, then we
can write,

Qn+r+i(d—kT1)
/ As)ds = (6 —kr)Nan +7r+ (i —1)(0 — k7))
an+r+(i—1)(6—kT1)

+O((6 — k1)), (5.189)
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as |6 — k7| — 0. Combining (5.185), (5.186), and (5.189), for any 4 in the
neighborhood of k7, we can write the first term on the r.h.s. of (5.177)
as follows

(6 — k7)?
|Wh|

3 (Aan + 7+ (i = 1)(6 = kr)) = 6+ O(8 = kr) + O(k|Wa| )’

- %N{s > AMan +r+(i-1)@—kr) =6 +0 (%)

=1

+O ((6 = kr)*|Wal 1), (5.190)

where the O(|0 — 7|3/k) term holds true as [0 — k7| — 0, uniformly in n,

and the O((6 — k7)?|W,|~!) term holds true as n — oo and |0 — k7| — 0.
Recall our notation Js ., = [WTTICTT]’ and note also that

Tiier = ﬂ + 0O ((6 — k71)?), (5.191)

as |0 — k7| — 0. Since |Wy|k™!6 — k7| — oo, we have J5i, = 0(Nps)
as n — oo and as |0 — k7| — 0. Then, we can compute the following
quantity

N,s

I kr
1
= m{l:]5k‘r:| Z()\(an+r+(z—1)(b—k7))—9) +O(JOI\T)}

Js ke
1 Nps s kr
= Aan —1)(§ — k7)) — :
n,(S JJkT Z ( “ +T+(Z )(6 T)) 0) +O(Nn§ )

= <M+O((6—kr)2)) ZT()\(an+r+(i—l)(6—kr))49)2

’ =1
Jri,kv*
+O ( Nn(S)
1 s kT ,
= = Z |0 — k7| (Man +r+ (1 —1)(0 — kt)) — 6)* +O(l5*kT|)+O(]:,A6’)
= J(} kT B
_ (A ) — 6) ds+O(|5—kT|)+O(N6>, (5.192)

as |0 — kT] — 0 uniformly in n. The idea here is, since A is periodic with
period 7, A(a, +r+ (1 —1)(6 — k7)) for i = 1,..., Nps can be divided into
[Nm;J(;le] blocks, and within each block we have indexes ¢ = 1,..., Jsxr.
The error due to this approximation is of order O(Js k), as |0 — k1| — 0
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uniformly in n. Note that the error for the Riemann approximation is
incorporated in the O(|0 —k7|) remainder term. By (5.192) and by noting
that N5 = |Wp|6~! + O(1) as n — oo, the first term on the r.h.s. of
(5.190) can be written as follows

% (B om) 7 [ -0

(6 - kT)2Nn5 . (J(S,k‘r)>
+—[Wn| O(|6—kr|)+0O N,

_ w /OT()\(S) —0)2ds+ O (%) +0 (M)

|5—kT|)
L0 ( ,

ok /OTu(.s) _0)%ds + 0 ("5—‘k’ﬂ3_) e ('ﬂv‘vff') (5.193)

where the O(|§ — k7|3/k) term holds true as |0 — k7| — 0, uniformly in
n, and the O(|0 — 7||[W,|~!) term holds true as n — oo and |§ — k7| — 0.
Substituting the r.h.s. of (5.193) into the first term on the r.h.s. of
(5.190), and subsequently substituting the r.h.s. of (5.190) into the first
term on the r.h.s. of (5.177), we then get (5.183). This completes the
proof of Lemma 5.16. O

Lemma 5.17 Suppose that X is periodic and locally integrable. Then for
each positive integer k satisfying k = o(|Wy|) as n — oo and for any
positive integer m, we have

- N 2m k»gl
E (Qn(())) = (IW I> , (5.194)

as n — 00, uniformly for all 6 € Oy.

Proof: Recall that Q,(J) can be written as that in (5.31). First we
will show that, for any sequence of intervals A,, such that |A,| — oo as
n — oo and for any fixed positive integer m, we have

— 2m

E (X'z(A,L)) =0 (|42, (5.195)

as n — oo. To verify (5.195) we argue as follows. Proving (5.195) is
equivalent to proving

L 2m . e 2m
E(M(An)) _E<x (4a) _ S Md‘) _o@).  (519)

|An| |A71| |‘4”|
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as n — oo. By Lemma 2.1, we have [A,["" [, A(s)ds — 6 = O(1) as
n — oo. Then, to prove (5.196) it suffices to check, for any positive

integer m,
~ 2m ~ 4m
X2%(A,) X(4,)
=E =0(1 1
E( b ) <|A”|1/2 o), (5.197)

as n — oo. A simple calculation shows that, for any positive integer m,
we have BE(X(A4,))" = O(|A,|*™) as n — oo, which implies (5.197).

Now we proceed the proof of (5.194). By (5.31), to prove (5.194), it
suffices to check

Nys —

E <|Wn|‘1 Z JZZ(U,L,-)) = @ [k W]~} (5.198)

i=1

L 2m

E (|Wn|*‘N,j;X'Z(WNM)) = O (k™ |Wa|™™), (5.199)
- 2m

E (0 (W]~ X(WNM)) = O (kM W,|™™), (5.200)

as n — 0o, uniformly for all § € O.

First we consider (5.199) and (5.200). Note that |[Wy ;| < |W,| and
[Wn, | ~ |W,| as n — oo. Application of (5.195) with A, = Wy yields
that the Lh.s. of (5.199) is of order

O (IVVH|f2m]\]nf(52m|VVNMS "Zm) = () (k;zlm|Wn|72m)
as n — oo, uniformly for all § € O, which implies (5.199), since k,, =

o(|Wy|) as n — oo. By (5.197) with A,, = Wiy, the Lh.s. of (5.200) can
be written as

45 2m
Whas [N [ X(Wh,s) ,
E - 5 = n
o (") (Wit | oo

as n — oo, uniformly for all § € O, which implies (5.200).
Next we prove (5.198). The Lh.s. of (5.198) can be written as

“m)

Noys Nos — -
Wal 2> -0 > EX2(Usi,) -+ X2(Us i) (5.201)
i1 =l tm=1

Now we distinguish 2m cases, namely: case (1) where all indices are the
same, until case (2m) where all indices are different. Next we split the
quantity in (5.201) into 2m terms, where each term corresponds to one of

the 2m cases. Since, for each 1, EX 2(Us;) = 0, all terms corresponding
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to case (m+1) until case (2m) are equal to zero. Now we indicate how to
treat the other m cases. By an application of (5.195) with A, = Us,; and
by noting that |Us,;| = O(ky) as n — oo uniformly in i, we have that, for
any fixed positive integer m,

~ 2m .
E (X‘Z(U(;,,-,)) =0 (k2™), (5.202)

as n — oo, uniformly in 7. By (5.202), the term corresponding to case (1)
can be computed as follows

Nns o 2m
|Wn|72m Z E ()&'Z(UL;J-)) = O (|[/V”|*2mNn6kim)

1=1

Il

O (k21w |~ 2mD) - (5.203)

as n — oo, uniformly for all § € ©f. The term corresponding to case
(m), when there are m different pairs with the same index (this will be
the leading term), is equal to

A Nns Nns e 2 o — 9
|Wy| 2™ Z Z E (4 '2(Uo‘,n)) - E (Xz(Ud,im))
i1=1 .
= O (|Wa| 2 N5EL™) = O (k' [Wa|™™) (5.204)

as n — oo, uniformly for all § € ©,. By a similar argument as the one
given in (5.203) and (5.204), we find that the order of the other m — 2
terms do not exceed O(kI'|W,,|~™) as n — oo, uniformly for all § € O.
This completes the proof of Lemma 5.17. O

Remark 5.2 By Lemma 5.8 (cf. also (5.143)), it is evident that the
order bound in (5.194) is sharp.






Appendix

In this Appendix we present some well-known results which we use in the
proofs of our theorems.

Lemma A. 1 Let X be a Poisson r.v. with EX > 0. Then, for any
€ > 0, we have

X -EX €’

Proof: We refer to Reiss (1993, p. 222). O

The following lemma is concerned with an exponential probability in-
equality for sum of independent r.v’s with expectation zero.

Lemma A. 2 Suppose that Y1,Ys,...,Y,, are independent random va-
riables with expectation zero and with

max K (E(@‘Yilz/l" - 1) < Cy (6.2)

= (A m -

for some positive real numbers K and Cy, then for any o > 0,

P(Zyj 211) §2€Xp{—m}. (6.3)

g=1

Proof: We refer to van de Geer (2000, p. 127-128). O

The following lemma is concerned with the Laplace transform of a Poisson
process X.
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Lemma A. 3 Let X be a Poisson process on real line R with mean mea-
sure ju and intensity function X. Then

Eexp {/R f(z) (X (dz) — /\(I)d.!‘)}
— exp {/R [efm el f(;v)] )\(a:)dx} . (6.4)

provided [g |f(z)|A(z)dz < oo and [g lef®) —1 — f(z)|Mz)dr < oo.

Proof: We refer to Kutoyants (1998, p. 18-20). O

An exponential bound for 'intermediate’ uniform order statistics is given
in the following lemma.

Lemma A. 4 Let k, and my, n=1,2,... be sequences of positive inte-
gers, and Zy, ., denote the ky-th order statistic of a random sample of
size m,, from the uniform distribution on (0,1). If ky,/my, | 0 as m, — oo,
then for each o, > 0 such that a,' = o(mnkﬁl/z) and o, = O 71/2),
there exists a positive absolute constant Cy and a (large) positive integer
ng such that

le,

m 1/2
P Z My — ~ > n
( s my, + 1 ‘ (kn/(mn + 1) (1= kp/(my + 1))) = >
< 2exp{-CoaZ}, (6.5)

for all n > ny.

Proof: A slight modification of the proof of Lemma A2.1. of Albers,
Bickel, and van Zwet (1976) gives our bound. O

Lemma A. 5 For real valued r.v.’s X,, and Y,, if X, S a, for some
€ >
constant o, and Y, — 0, then we have X, Y, 50, as n = oo.

Proof: To prove this lemma, we must show, for each € > 0,
D> P (|XaYa| > €) < oo (6.6)
n=1

To check (6.6), we argue as follows. By definition of X,, > aand Y, = 0

as n — oo, we have for each ¢ > 0,

Y P (X, —a] >e) < oo, (6.7)

=1
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and

> P (JYu] >€) < oo. (6.8)
n=1
The probability appearing on the Lh.s. of (6.6) does not exceed
P (|X,Y, — Y,a| + |[Yaal > ¢)
€ €
< g — = . :
<P (VallXo — a > 5) +P (JallYal > 5) (6.9)
By (6.8) we have the second term on the r.h.s. of (6.9) is summable.

Hence, to prove (6.6), it remains to show that the first term on the r.h.s.
of (6.9) is summable. This term is equal to

P (IVallXa—al > 5 0 Yl <1)

+P (|Y,l

X, —a| > % N Y, > 1)
<P (|Xn —al > %) FP (V] > 1). (6.10)

By (6.7) and (6.8), we have the r.h.s. of (6.10) is summable. This com-
pletes the proof of Lemma A.5. O
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Summary

In this thesis we study nonparametric estimation of the global intensity,
the intensity function at a given point (local intensity), and the period of
a cyclic Poisson point process, using only a single realization of the cyclic
Poisson process observed in an interval (called window).

We begin with a general introduction in chapter 1. The basic proper-
ties of an inhomogeneous Poisson process are presented in section 1.1, and
a description of a cyclic Poisson process is given in section 1.2. Finally
we give an overview of the thesis in section 1.3, and discuss some related
work in section 1.4.

In chapter 2 we propose and study an estimator of the global inten-
sity. Asymptotic properties of the proposed estimator are presented. If
the intensity function is periodic and locally integrable, our estimator is
shown to be asymptotically unbiased, and weakly and strongly consistent
in estimating the global intensity, as the size of window expands (cf. sec-
tion 2.2). Finally, in section 2.3, we establish asymptotic normality and
a bootstrap CLT for our estimator.

Nonparametric estimation of the intensity function A at a given point
s is studied in chapters 3 and 4. In chapter 3 we propose and study kernel
type estimators, while a nearest neighbor type estimator is proposed and
investigated in chapter 4. Suppose that A is periodic, locally integrable,
and s is a Lebesgue point of A. Then, under some assumptions on the
kernel function and the rate of convergence of the estimator of the period,
we show that our kernel type estimator of A at s is weakly and strongly
consistent, as the size of window expands (cf. section 3.2). Asymptotic
approximations to the variance and the bias of the kernel type estimator
are obtained, under additional conditions on A, in section 3.3.

Parallel to chapter 3, in chapter 4 we discuss asymptotic properties of
our nearest neighbor estimator of A at a given point s. Suppose that A is
periodic, locally integrable, and s is a point at which A is continuous and
positive. Then, under an appropriate assumption on the rate of conver-
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gence of the estimator of the period, we show that our nearest neighbor
estimator is weakly and strongly consistent, as the size of window ex-
pands (cf. section 4.2). Asymptotic approximations to the variance and
the bias of the nearest neighbor estimator are obtained, under an addi-
tional condition on A, in section 4.3.

A nonparametric estimator of the period is proposed and investigated
in chapter 5. If the intensity function A is periodic and bounded, then
the estimator is shown to be weakly and strongly consistent in estimating
the period, as the size of window expands. Furthermore, rates of conver-

gence (in probability as well as almost surely) of order o(|W,,|77), as the
size of window |W,,| expands, with v < % are obtained. If, in addition,
the intensity function A is assumed to satisfy a Lipschitz condition, we
obtain a rate of convergence of order o,(|W,|"7) with v < . Asymp-
totic normality of a slight modification of our original estimator, properly

normalized, is also established.



Samenvatting

In dit proefschrift bestuderen we niet parametrische schattingsmethoden
voor de globale intensiteit €, de intensiteitsfunctie A(s) in een gegeven
punt s (de locale intensiteit), en de periode 7 van een cyclisch Poisson
punt proces, voor het geval dat slechts één realizatie van het cyclische
Poisson proces is waargenomen in een begrensd interval W.

In hoofdstuk 1 definiéren we allereerst inhomogene en cyclische Pois-
son puntprocessen (secties 1.1 en 1.2); in sectie 1.3 geven we een samen-
vatting van de voornaamste resultaten van dit onderzoek; sectie 1.4 bevat
een kort overzicht van verwante literatuur.

In hoofdstuk 2 bestuderen we asymptotische eigenschappen van een
eenvoudige niet parametrische schatter van de globale intensiteit, zoals
asymptotische zuiverheid, zwakke en sterke convergentie en asympto-
tische normaliteit.

Niet parametrische schattingsmethoden voor de intensiteitfunctie A
in een gegeven punt s - de locale intensiteit - vormen het onderwerp van
de hoofdstukken 3 en 4. In hoofdstuk 3 bestuderen we ‘kern schatters’
voor de locale intensiteit, en in hoofdstuk 4 onderzoeken we een schatter
gebaseerd op een ‘nabijgelegen’ waarneming. Indien A cyclisch is en lokaal
integreerbaar, en s een Lebesgue punt van A is, dan bewijzen we sterke en
zwakke consistentie van onze kernschatter voor A(s), mits de periode 7 van
het cyclische Poisson proces voldoende nauwkeurig geschat kan worden.
Asymptotische benaderingen voor de variantie en de onzuiverheid van
kernschatters worden ook bepaald, onder additionele aannames voor .

In hoofdstuk 4 bestuderen we een schatter gebaseerd op een ‘nabij-
gelegen’ waarneming. Indien A cyclisch is en lokaal integreerbaar, en
s een punt is waar A continu en positief is, dan bewijzen we sterke en
zwakke consistentie van onze schatter voor A(s), mits de periode van
het cyclische Poisson proces voldoende nauwkeurig geschat kan worden.
Asymptotische benaderingen voor de variantie en de onzuiverheid van
de schatter gebaseerd op (een) ‘nabijgelegen’ waarneming worden ook
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bepaald, onder additionele aannames voor A.

In hoofdstuk 5 bestuderen we het probleem de periode 7 van het
cyclische Poisson proces te schatten. Indien A cyclisch is en begrensd, dan
bewijzen we dat onze schatter - een nieuwe eenvoudige nietparametrische
schatter van de periode 7 - sterk en zwak consistent is; ook geven we
resultaten voor de snelheid van convergentie. Indien A bovendien een
Lipschitz functie is, dan kunnen we de resultaten over de snelheid van
convergentie nog wat verscherpen. Ook bewijzen we dat onze schatter
voor T, mits enigszins gemodificeerd, asymptotisch normaal verdeeld is.



Curriculum Vitae

I Wayan Mangku was born in Ababi, Bali, Indonesia, on March 5, 1962.
He received a Sarjana degree in Statistics from Bogor Agricultural Uni-
versity, Bogor, Indonesia, in 1985.

Since 1986, he is a staff member of the Department of Mathematics,
Bogor Agricultural University, Indonesia.

From February 1989 - January 1992, he joined a Master programme at
School of Mathematics and Statistics, Curtin University of Technology,
Perth, Western Australia, and he received a Master degree in Applied
Mathematics, in 1993.

Since 1996, he has been working towards the Ph.D. degree at Centre
for Mathematics and Computer Science (CWI), Amsterdam.

173






