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Numerical Solution of Steady Free-Surface Navier-Stokes Flow

E.H. van Brummelen

CWI
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ABSTRACT

Numerical solution of ows that are partially bounded by a freely moving boundary is of great practical im-

portance, e.g., in ship hydrodynamics. The usual time integration approach for solving steady viscous free

surface ow problems has several drawbacks. Instead, we propose an e�cient iterative method, which relies on

a di�erent but equivalent formulation of the free surface ow problem, involving a so-called quasi free-surface

condition. It is shown that the method converges if the solution is su�ciently smooth in the neighborhood

of the free surface. Details are provided for the implementation of the method in parnax. Furthermore, we

present a method for analyzing properties of discretization schemes for the free-surface ow equations. Detailed

numerical results are presented for ow over an obstacle in a channel. The results agree well with measurements

as well as with the predictions of the analysis, and con�rm that steady free-surface Navier-Stokes ow problems

can indeed be solved e�ciently with the new method.

2000 Mathematics Subject Classi�cation: 35B20, 35R35, 65R20, 76D05, 76D33.

Keywords and Phrases: free-surface ows, incompressible Navier-Stokes equations, numerical solution meth-

ods, discrete dispersion relations.
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1. Introduction

The numerical solution of ows that are partially bounded by a freely moving boundary is of great
practical importance. The numerical techniques available to solve such free-surface ows, can be cate-
gorized into surface tracking methods, the most prominent being the marker and cell method [13] and
the volume of uid method [15], interface capturing methods, e.g., [17, 21], and surface �tting meth-
ods [9]. It is generally acknowledged that if the free-boundary is smooth, in particular if the surface
can be represented by a so-called height function, surface �tting methods are unsurpassed in accuracy.
Since the free-surfaces occurring in many practical applications, for instance, ship hydrodynamics, are
smooth, surface �tting methods have received much attention.
If time-dependent surface �tting methods are considered, generally there is no essential di�erence

in the treatment of the free-surface in potential ow or Navier-Stokes ow. Then, independent of
the ow model, the solution of the ow equations and the geometry of the free-boundary are usually
separated. The ow equations are integrated over a small time interval, with the dynamic conditions
imposed at the free-surface. Subsequently, the position of the free surface is determined through the
kinematic condition, employing the newly computed velocity �eld.
For surface �tting methods for steady free-surface ows, such a common approach for viscid and

inviscid ows does not exist. Whereas dedicated techniques have been developed for steady potential
ow [5, 6, 24], methods for Navier-Stokes ow simply continue the aforementioned transient process
until a steady state is reached. In [23] several drawbacks of this process are discussed, such as slow
convergence to steady state. In particular, from the results in [19] one infers that at subcritical Froude
numbers, dispersion causes asymptotic temporal behavior of the amplitude of transient waves in Rd

of O(t�(d�1)=2). Hence, if the objective is to reduce the amplitude of transient waves to the order
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of spatial discretization errors, the e�ciency of the time integration approach deteriorates rapidly
with decreasing mesh-width. In practical computations, thousands of time steps are usually required,
rendering the transient approach prohibitively expensive in actual design processes.
For e�ciency, the methods developed for steady free-surface potential ow exploit the fact that

during the solution process neither the kinematic nor the dynamic condition needs to be satis�ed.
Instead of imposing the dynamic condition on the sub-problems (i.e., the ow problems corresponding
to a given free-surface position) and using the kinematic condition to determine a new approximation to
the free-surface location, any combination of boundary conditions can be imposed on the sub-problems
and any operator that locates the free surface can be employed, provided that the sub-problems are
well-posed, the resulting iterative process converges and the converged solution satis�es both the
dynamic and the steady kinematic conditions. This permits the construction of iterative algorithms
that for each sub-problem evaluation provide a more accurate approximation to the steady free-surface
position than would be obtained if the usual time-dependent approach were followed. E�orts can then
be directed to solving the sub-problems e�ciently.
To reduce the computational expense of solving the steady free-surface ow problem, we propose

an e�cient iterative solution method. The method relies on a di�erent but equivalent formulation of
the free-surface ow problem, involving a so-called quasi free-surface condition [4]. The method solves
a sequence of steady Navier-Stokes sub-problems with this condition imposed at an approximation to
the steady free boundary. After each sub-problem evaluation, the free surface is displaced. Due to the
choice of the boundary conditions at the free surface, each sub-problem evaluation yields an improved
approximation to the steady free-surface position. Considering the free-surface ow problem as an
optimal shape design problem, we will show that the iterative method results in the minimization of
a cost functional subject to a constraint, provided that the ow is su�ciently smooth. Convergence
of the method is then ensured.
To improve the accuracy of numerical results, a priori knowledge of the properties of the discretiza-

tion scheme is indispensable. We present a method for analyzing the properties of the discretized
equations corresponding to the sub-problems. The analysis yields valuable information on the ef-
fects of discretization errors on the numerical results. Inversely, it can serve in the development of
discretization schemes with favorable properties, e.g., low numerical damping of gravity waves.
Implementation of the iterative method in parnax [16] is realized and numerical results are presented

for the ow over a protuberance in a channel of unit depth.

2. Incompressible free-surface flow

In this section we state the equations governing incompressible free-surface ow. First, we briey
discuss the equations describing viscous ow. Subsequently, appropriate interface conditions for free
surface ows are given and the quasi free-surface condition is introduced.

2.1 Substrate
As the substrate of the free surface, we consider an incompressible, viscous uid ow, subject to a
constant gravitational force on a time-dependent spatial domain, V(t). The domain is bounded by a
moving boundary, S(t), and �xed boundaries @V nS. The ow is characterized by the Froude number,
Fr, and the Reynolds number, Re. Although we are interested in steady solutions only, for the purpose
of analysis we consider the equations describing the aforementioned ow in their time-dependent form.
The (non-dimensionalized) uid velocity and pressure are identi�ed by v(x; t) and p(x; t), respectively,
with t � 0 and x = x�e

(�) 2 Rd (d = 2; 3). Here e(�) and x� denote Cartesian base vectors and
coordinates, respectively, and the summation convention applies to paired super- and subscripts,
unless mentioned otherwise. Further, assuming the gravitational force to act in the negative (vertical)
xd-direction, it proves useful to introduce the hydrodynamic pressure, '(x; t) � p(x; t) + Fr�2xd.
Incompressibility of the uid implies that the velocity �eld is solenoidal:

M(v; ') � divv = 0; x 2 V(t); t > 0: (2.1a)
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Figure 1: schematic illustration of the free-surface problem.

Conservation of momentum is expressed by

N(v; ') � @v

@t
+ divvv +r'� div � (v) = 0; x 2 V(t); t > 0; (2.1b)

where � (v) is the viscous stress tensor for a Newtonian uid, with Cartesian components

���(v) = Re�1
�
@v�
@x�

+
@v�
@x�

� �(r �v)���
�
: (2.1c)

Here ��� is the Kronecker symbol and � is Stokes' constant. Clearly, for a solenoidal velocity �eld,
the part multiplied by � vanishes. Moreover, if the Reynolds number is spatially invariant, the viscous
term reduces to

div � (v) = Re�1�v: (2.2)

2.2 Free-surface conditions
Free-surface ows are essentially two-phase ows, of which the properties of the contiguous bulk-uids
are such that their mutual interaction at the interface can be ignored. For an elaborate discussion
of two-phase ows, see, for example, [1] and [26]. The free-surface conditions follow from the general
interface conditions and the assumptions that both density and viscosity of the adjacent uid vanish
at the interface and, furthermore, that the interface is impermeable. Moreover, here it will be assumed
that interfacial stresses can be ignored, which is a valid assumption in many practical applications.
Let S0 denote a reference surface, e.g., the undisturbed interface. We consider interfaces that can

be represented as S� = fx+ �(x ; t) ed j x 2 S0g, where x = (x1; : : : ; xd�1) and the vertical distance
from the free surface to the reference surface, �(x ; t), is assumed to be a su�ciently regular function;
see the illustration in Figure 1. The motion of the free surface is governed by a kinematic condition
and d dynamic conditions. Impermeability dictates that a uid particle is con�ned to the free surface:

Dxd
Dt

� D�(x ; t)

Dt
= 0; x 2 S� ; t � 0;

where D=Dt is the total derivative. This translates into the kinematic condition

K(v; �) � @�

@t
+ v �r(� � xd) = 0; x 2 S� ; t � 0: (2.3a)

Continuity of stresses at the interface is expressed by the normal dynamic condition p = 0, or,
equivalently,

N('; �) � '� Fr�2� = 0; x 2 S� ; t � 0; (2.3b)
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and d� 1 tangential dynamic conditions

T�(v; �) � t� �� (v) �n = 0; x 2 S� ; t � 0: (2.3c)

Here, t� (� = 1; : : : ; d� 1) are orthogonal unit tangent vectors to S� and n denotes the unit normal
vector to S� . Notice that (2.3b) implies that the non-dimensionalized pressure vanishes at the free
surface. Hence, assuming that viscous contributions to the normal stress are negligible, which is
generally appropriate because n�� (v)�n is small in the neighborhood of the free surface, the combined
free-surface conditions, (2.3), imply that there is no transfer of either mass or momentum through
the free-surface. Furthermore note that (2.3c) is naturally satis�ed for inviscid uids. Therefore,
equations (2.3c) are often referred to as viscous free-surface conditions.

2.3 Quasi free-surface condition
Free-boundary problems generally permit many equivalent formulations. However, although these
formulations are equivalent, their suitability for numerical simulation can di�er signi�cantly. E�cient
numerical solution of steady free-boundary problems demands that an accurate approximation to the
solution can be computed on a �xed domain. To this end, a condition that holds on a boundary in
the neighborhood of the actual free boundary is required. We refer to such a condition as a quasi free-
surface condition, because the qualitative solution behavior of the corresponding (initial) boundary
value problem is similar to that of the free boundary problem, but the boundary does not actually
move. Below, we derive a suitable quasi free-surface condition for the free-surface Navier-Stokes
problem.
Let S0 designate the undisturbed free surface. We introduce a nearby, �xed boundary by displacing

S0 along the vertical unit vector:
S��� = fx+ ���(x ) ed j x 2 S0g; (2.4)

where ��(x ) stands for a su�ciently regular function, independent of �. Likewise, S�� represents the
actual free surface, which we also assume to be located at an O(�)-distance from S0. We suppose
that p(x; t) and v(x; t) can be extended smoothly beyond the boundary S��� . Taylor expansion in the
neighborhood of S��� then yields for p(x; t) and v(x; t) at the actual free surface,

p(x+ �(�(x ; t)� ��(x )) ed; t) = p(x; t) + �(�(x ; t)� ��(x )) ed �rp(x; t) +O(�2); (2.5a)

v(x+ �(�(x ; t)� ��(x )) ed; t) = v(x; t) + �(�(x ; t)� ��(x )) ed �rv(x; t) +O(�2); (2.5b)

for x 2 S���. By the dynamic condition, (2.3b), the lefthand side of (2.5a) vanishes, and the displace-
ment of the free-surface is estimated

��(x ; t) =
�p(x; t)

ed �rp(x; t)
+ ���(x ) +O(�2); x 2 S��� : (2.6)

We assume that p(x; t) is smooth in xd, in such a manner that the vertical component of the pressure
gradient is dominated by the hydrostatic component, speci�cally, ed �rp = �Fr�2 + O(�). Notice
that (2.5a) and the dynamic condition (2.3b) imply that p(x; t) = O(�) for x 2 S��. Hence,

��(x ; t) = Fr2p(x; t) + ���(x ) +O(�2) = Fr2'(x; t) +O(�2): (2.7)

Inserting this approximation of ��(x ; t) into the kinematic condition (2.3a) and applying (2.5b), one
obtains

@'

@t
+ v �r('� Fr�2xd) = ��(� � ��) ed �rv �r('� Fr�2xd) +O(�2): (2.8)

Assuming that in the neighborhood of S��, v(x; t) is smooth in xd, in particular, ed �rv = O(�),
the righthand side of (2.8) is of O(�2). Hence, summarizing, if the free-surface conditions (2.3a) and
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(2.3b), hold at the actual free surface, S��, at an O(�)-distance from the undisturbed free surface, and
if p(x; t) and v(x; t) are su�ciently smooth in xd in the neighborhood of the free surface, then the
quasi free-surface condition,

K(v;Fr2') = 0; x 2 S���; (2.9)

with K according to (2.3a), approximates to O(�2) the conditions at the �xed boundary S���, also
located at an O(�)-distance from the undisturbed free surface. Therefore, conversely, if (2.9) is imposed
at the �xed boundary S��� , then the solution complies to O(�2) with the kinematic condition (2.3a)
and the dynamic condition (2.3b) at S��. Consequently, the initial boundary value problem that
is associated with the incompressible Navier-Stokes equations with the quasi free-surface condition
imposed on S��� displays similar behavior as the corresponding free-boundary problem. Moreover,
by (2.6), the position of the actual free boundary can be estimated

S�� = fx+ Fr2'(x; t) ed j x 2 S0g; (2.10)

with '(x; t) the solution of the initial boundary value problem.
An iterative method for solving the steady free-surface Navier-Stokes problem based on (2.9)

and (2.10) can now be constructed in the following manner: For a given estimation of the position of
the free surface, one solves the steady Navier-Stokes equations, subject to the steady quasi free-surface
condition and the viscous dynamic conditions at the estimated free surface, and appropriate boundary
conditions at �xed boundaries. Next, the free surface is displaced according to equation (2.10), to
obtain an improved approximation to the free surface position, and the process is repeated.

3. Optimal shape design formulation

Free-boundary problems are closely related to constrained shape optimization problems. A general
characteristic of free boundary problems is that the number of free-boundary conditions is one more
than the number of boundary conditions required by the boundary value problem. Therefore, if a
cost functional is de�ned to be some norm of the residual of any of the free-boundary conditions,
then minimizing this cost functional, subject to the boundary value problem with the remaining free-
boundary conditions imposed at the free boundary, yields the desired solution of the free-boundary
problem. In this section we will further explore this analogy.

3.1 Problem statement
Let O denote the space of admissible domains for the free-surface ow problems. A detailed discus-
sion on admissibility criteria for domains for optimal shape design, for problems governed by elliptic
di�erential equations, can be found in [22]. An optimal shape design problem corresponding to the
steady free-surface ow problem reads:

min
V2O

Z
S

jp(x)j dS (3.1)

subject to the constraint C(V ;v; p):
divvv +rp� div � (v) = �Fr�2ed

divv = 0

)
; x 2 V ; (3.2a)

B(v; p) = b(x); x 2 @V n S; (3.2b)

t� �� (v) �n = 0

v �rp = 0

)
; x 2 S; (3.2c)

with � = 1; : : : ; d� 1. Here, equation (3.2b) stands for boundary conditions on the �xed boundaries.
Equation (3.1) shows the cost functional, and the domain V is referred to as the design variable. If the
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domain V can be parameterized, then the parameters are also called design variables. In particular, if
the free-boundary can be represented by a height function, the height function is the design variable.
Obviously, many equivalent formulations exist. For instance, the second boundary condition in (3.2c)

can be replaced by

v(x) �n(x) = 0; x 2 S: (3.3)

Alternatively, the cost functional can be modi�ed, e.g.,

min
V2O

Z
S

(v(x) �n(x))2dS: (3.4)

However, although these formulations are equivalent, the complexity of the optimization problem can
depend sensitively on the formulation; see [27]. Our choice for formulation (3.1), (3.2) is motivated
below.

3.2 Descent methods
Suppose that the objective is to minimize the functional

E(S;q) =
Z
S

L(q) dS; (3.5)

over all V 2 O � Rd , subject to the constraint C(V ;q), where S � @V and where L stands for an
appropriate operator. Moreover, suppose that the problem has a unique solution. Following [22], we
assume that V is su�ciently regular, so that for a suitable function �(x) on S,

S�� = fx+ ��(x)n(x) j x 2 Sg (3.6)

is the boundary of a domain V�� close to V . Thus, we obtain V�� from V by displacing the boundary
along its normal. We imagine V and V�� to be embedded in a larger domain, E , and we suppose that
for all V � E a solution q(x) of the constraint C(V ;q) extends smoothly beyond the boundary @V , so
that q(x) is well de�ned for all x 2 E . In [22, pp.81{91] it is proved that for �! 0,

1

�
(E(S��;q��)�E(S;q)) �

Z
S

�
��(x)L(q)

R(x)
+ L0(q) (�(x)n(x) �rq(x) + q0�(x))

�
dS; (3.7)

where q�� follows from the constraint C(V��;q��) and q0�(x) is de�ned by

q��(x) = q(x) + �q0�(x) +O(�2); for �! 0: (3.8)

Hence, �q0�(x) is the disturbance in the solution of the constraint, induced by the displacement of the
boundary and the corresponding change in the shape of the domain. Alternatively, �q0�(x) can be
regarded as the projection on V���V of the gradient of q(x) with respect to V . The derivative L0(q)
is de�ned by

L(q+ �q0) = L(q) + �L0(q)q0 +O(�2); for �! 0; (3.9)

for all suitable functions q0(x). Furthermore, R(x) denotes the radius of curvature of S if d = 2 and
the mean radius of curvature if d = 3. In the case that the argument of the integral (3.7) does not
exist at a �nite number of isolated points on S, these points are replaced by appropriate limits.
If �(x) is chosen such that the right-hand side of (3.7) is negative, a modi�cation of the domain such

that the boundary changes from S to S�� according to (3.6), with � a small positive number, results
in a reduction of the cost functional. Such a choice for �(x) is referred to as a descent direction. We
call � the step-size and ��(x) the correction. A (local) minimum of the cost functional can thus be
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obtained by repeatedly modifying the design variable in a descent direction. A method based on this
principle is called a descent method. A minimum is attained if the right-hand side of (3.7) is positive
de�nite for all allowable �(x), i.e., if there exists no �(x) that yields a further reduction of the cost
functional. We require that the corrections vanish when the cost functional approaches its minimum,
thus ensuring that the minimum is a �xed point of the descent method.
The di�culty in determining a descent direction from (3.7) is its dependence on the induced dis-

turbance, q0�(x), which is connected to �(x) through the constraint, C(V ;q). In [28] the dependence
of the variation of the functional on q0�(x) is eliminated by choosing a suitable descent direction.
To determine this descent direction, an adjoint problem is solved. This approach is general, but the
formulation and solution of the adjoint problem can be intricate.

3.3 Quasi implicit boundary conditions
In speci�c cases, the dependence of the variation of the cost functional on q0�(x) can also be eliminated
by a proper formulation of the constraint. In the case that the constraint consists of a boundary value
problem, the di�erence in formulations involves the boundary conditions and the cost functional
only. Next, we construct equivalent boundary conditions with the property that a modi�cation of the
domain from V to V�� introduces a relative induced disturbance,

q0�(x)

�(x)
= O(�); x 2 S: (3.10)

This implies that if V is a domain at an O(�)-distance from the optimal domain and q(x) is the
associated solution of the constraint, and for some suitable �(x), V�� according to (3.6) is the optimal
domain with associated solution q��(x), then kq���qkE = O(�2). Because the solution q(x) satis�es
to O(�2) the actual free-boundary conditions at the modi�ed free-boundary position, S��, we call
such a boundary condition quasi implicit. Thus, if the constraint with the quasi implicit boundary
condition imposed at the free-boundary is solved on V and, subsequently, the domain is modi�ed to
V�� and the constraint with the original boundary condition imposed at the modi�ed free-boundary
is solved, then the incurred disturbance is O(�2) and can be ignored. Then, by (3.7), an allowable
�(x) that satis�es

��(x)L(q)
R(x)

+ L0(q)(�(x)n(x) �rq(x)) < 0; x 2 S; (3.11)

is a descent direction. Note that by (3.11),

�(x) =
L(q)

R(x)
� L0(q)n(x) �rq(x) x 2 S; (3.12)

speci�es a descent direction. Thus, one can express a descent direction explicitly in S, through its
normal vector and curvature, and in the solution of the constraint with the quasi implicit boundary
condition imposed at S. One may note that, due to the disappearance of the induced disturbance, the
determination of a descent direction is disconnected from the constraint and, therefore, it is essentially
the same as determining a descent direction in the case of unconstrained optimization.
We denote the boundary conditions at the free-boundary, S, as speci�ed by the constraint, C(V ;q),

by

S(S;q(x)) = 0; x 2 S; (3.13)

for a suitable operator S. The boundary conditions can depend explicitly on S, for instance, through
its normal vector. Let S denote a boundary at an O(�)-distance from the actual free boundary. Let
�(x) be a descent direction for the cost functional under the assumption that the induced disturbance
is negligible, i.e., compliant with (3.11). The aim is to derive a boundary condition on S with
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the property that a solution of the corresponding constraint obeys to O(�2) the original boundary
condition (3.13) at the modi�ed boundary, S��. Then, conversely, if the domain is changed from V
to V�� and the original boundary condition is imposed on S��, the relative induced disturbance is of
O(�) and the induced disturbance is indeed negligible, so that the initial assumption holds.
Let S stand for an approximation to the free-boundary, at an O(�)-distance from the optimal free-

boundary position. We introduce a nearby boundary, S��, obtained from S according to (3.6), for some
suitable �(x). The corresponding solution of the constraint is denoted by q��(x), i.e., C(V��;q��).
The boundary conditions (3.13) can be transferred from S�� to S:

S(S��;q��(x + ��(x)n(x))) = 0; x 2 S: (3.14)

Hence, equation (3.14) speci�es the conditions at S if the boundary conditions are satis�ed at S��.
Assuming that q��(x) is well de�ned beyond the boundary S�� and continuously di�erentiable in the
neighborhood of S, Taylor expansion yields

q��(x+ ��(x)n(x)) = q��(x) + ��(x)n(x) �rq��(x) +O(�2); x 2 S: (3.15)

From (3.14) and (3.15) it follows that if we introduce a modi�ed constraint, C��(V ;q), similar to the
original constraint, but with the boundary condition (3.13) replaced by

S(S��;q(x) + ��(x)n(x) �rq(x)) = 0; x 2 S; (3.16)

that the relative di�erence between the solution to the modi�ed constraint and the solution to the
original constraint at S is O(�), i.e., if V ;q obey C��(V ;q) and V��;q�� obey C(V��;q��), then the
relative di�erence at S satis�es

q��(x)� q(x)

��(x)
= O(�); x 2 S: (3.17)

Hence, if the modi�ed constraint is solved on V and, subsequently, the domain is changed to V��
and the original constraint is solved on V��, then the relative induced disturbance ful�lls (3.10).
Moreover, condition (3.16) reduces to (3.13) if S is the optimal free boundary, because the correction
��(x) vanish. Condition (3.16) and (3.13) are thus equivalent and (3.16) is a quasi implicit boundary
condition.
We already remarked that many equivalent formulations of the optimal shape design problem exist.

One should anticipate that posedness of the modi�ed constraint, i.e., the boundary value problem
associated with (3.16), depends on the choice of the boundary condition (3.13).
Summarizing, one can determine a descent direction, �(x), from (3.11) under the assumption that

the induced disturbance is negligible. Then, once a step size � > 0 has been decided, the corresponding
quasi implicit boundary conditions can be obtained from (3.16). Next, the modi�ed constraint, i.e.,
the boundary value problem associated with the quasi implicit boundary condition, is solved and
the boundary is relocated according to (3.6). Because the quasi implicit boundary condition ensures
that the induced disturbance is indeed negligible, the initial assumption holds, and S�� improves S.
Moreover, due to the equivalence of the quasi implicit boundary condition and the original boundary
condition, the modi�ed constraint tends to the original constraint as S approaches the optimal free
boundary position.
In practice, it will usually not be necessary to impose (3.16) exactly. For convergence to the

optimal solution, it is su�cient that the boundary conditions are equivalent and that the relative
induced disturbance is su�ciently small to ensure that the assumption that a descent direction can
be determined from (3.11) is not violated.

3.4 Application to free-surface ow
We return to the optimal shape design problem corresponding to the free-surface ow problem, with
cost functional (3.1) and constraint (3.2). Upon applying (3.7) to the cost functional in (3.1), one
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obtains for �! 0,

1

�

�Z
S��

jp��(x)j dS�� �
Z
S

jp(x)j dS
�
=

Z
S

��(x) jp(x)j
R(x)

dS

+

Z
S

sign(p(x))�(x)n(x) �rp(x) dS +

Z
S

sign(p(x)) p0� dS + O(�): (3.18)

If S is su�ciently smooth to neglect the �rst integral on the right-hand side of (3.18) and the relative
induced disturbance is indeed negligible, then a descent direction is an allowable �(x) for which

sign(p(x))�(x)n(x) �rp(x) < 0: (3.19)

More precisely, rearranging (3.18), one �nds that the descent step

��(x) =
�p(x)

n(x) �rp(x)
(3.20)

reduces the cost functional at S�� most e�ectively. Notice that ��(x) vanishes indeed when the cost
functional approaches its minimum, i.e., when p(x) vanishes.
Instead of displacing the free-boundary along its normal, it is usually more convenient to displace

it vertically. Equation (3.20) for the descent step is then replaced by

��(x) =
�p(x)

ed �rp(x)
; (3.21)

with ��(x) ed the vertical displacement of the boundary. If p(x) is smooth in xd, then the vertical
component of the pressure gradient is dominated by the hydrostatic component, i.e., we can estimate
ed �rp(x) � � Fr�2. Thus we obtain

e��(x) = Fr2p(x); (3.22)

as an approximation to the optimal descent step in case p(x) is smooth in xd at S.
The boundary conditions at the free boundary as speci�ed by the constraint are given by (3.2c).

Next, we derive the corresponding quasi implicit boundary condition, i.e., the conditions to O(�2) at
S if (3.2c) applies at S�� = fx+ ��(x) ed j x 2 Sg. Denoting the tangential and normal vectors to S��
by t���(x), � = 1; : : : ; d� 1, and n��(x), respectively,

t���(x) = t�(x) + � ��(x) ed +O(�2); (3.23)

n��(x) = n(x)� �
d�1X
�=1

��(x) e� +O(�2); (3.24)

with ��(x) = e� �r�(x). Hence, by (3.16),

t� �� (v) �n+ �

0@��n �� (v) �n� t� �� (v) �
d�1X
�=1

�� t
� + t� �� (�ed �rv) �n

1A = 0

v �rp+ ��ed �r(v �rp) = 0

9>>=>>; ; (3.25)

speci�es the quasi implicit boundary conditions on S. One infers that the above boundary conditions
are equivalent to (3.2c) for �(x) according to (3.21) or (3.22): at the free-boundary p(x) vanishes and,
as a consequence, �(x) and �(x) vanish. Hence, the parenthesized terms in (3.25) disappear and (3.25)
reduces to (3.2c).
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If (3.25) is imposed at S and, subsequently, the boundary is modi�ed to S�� and (3.2c) is imposed,
then the disturbance thus introduced is O(�2). If, instead, a suitable approximation to (3.25) is
imposed, then one can regard the approximation as a perturbation of (3.25). Assuming that the
associated boundary value problem is well-posed, the change in the solution is bounded by the change
in the boundary conditions. Hence, if an O(�) approximation instead of (3.25) is imposed at S, then the
induced disturbance is bounded by the di�erence between the approximation and (3.25). Therefore,
anticipating that a term in (3.25) is relatively small, this term can be neglected. In particular, one
should note that if v(x) is smooth in xd, rp(x) is smooth in x and, correspondingly, �(x) is smooth
in x at S, then the terms between parentheses can be omitted entirely. For example, considering
perturbations of a uniform ow,

v(x) = v(0) + �v(1)(x); (3.26)

p(x) = �Fr�2xd + � p(1)(x); (3.27)

for constant v(0), the terms between parentheses in (3.25) are of O(�) and can properly be disregarded.
Alternatively, in an iterative method, the relatively small contributions to the quasi-implicit bound-

ary condition can be included by means of a defect correction process (see, e.g., [2]). In any case,
convergence of the descent method is obviously ensured if the argument of the cost functional is re-
duced. Ignoring terms O(�2), this translates into the following requirement for the induced disturbance
and the approximate descent step:

jp
e��(x +

e��(x) ed)j = jp(x) + e��(x) ed �rp(x) + p0
e��
(x)j < jp(x)j; x 2 S; (3.28)

or, equivalently,�����1 + e��(x) ed �rp(x)p0
e��
(x)

p(x)

����� � � < 1; x 2 S (3.29)

for some positive constant �. In conclusion, if (3.29) is satis�ed for a certain choice of the approximate
quasi-implicit boundary condition and the approximate descent step, then the associated descent
method converges with contraction number �.

4. Discretization

We consider the discretization of the incompressible Navier-Stokes equations, implemented in parnax.
The discretization is essentially analogous to the one described in [16]. The discrete equations derive
from a �nite volume discretization of the reduced Reynolds averaged Navier-Stokes equations and the
corresponding boundary conditions in 2 space-dimensions. A mixed Cartesian/contravariant formula-
tion in curvilinear coordinates is adopted, to allow use of a boundary �tted, structured grid without
the occurrence of Christo�el symbols.
The equations are reduced by omitting the di�usive contribution to the momentum equations in

one coordinate direction. This renders the reduced equations partially parabolic, which facilitates the
solution of the corresponding system of discrete equations.
Following [7, 11], to arrive at a consistent and stable discretization, symmetric upwind/downwind

biased di�erencing of the velocity gradients in the continuity equation (2.1a) and the pressure gradient
in the momentum equation (2.1b) is used. In [7] it is shown that if �rst order �nite di�erences are
used, the resulting discretization is unconditionally stable and convergent. This approach permits the
use of collocated grids, instead of staggered grids (see, e.g., [3, 13]).

4.1 Scalar decomposition and reduction
Let T : � 7! x(�), � 2 
 � Rd , x 2 G � Rd denote an admissible transformation from a computational
domain to a physical domain. A transformation is admissible if it has the properties:
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(i) T is bijective.

(ii) T is di�erentiable and the Jacobian,

p
g =

����@x@�
���� =

�����������

@x1

@�1
@x2

@�1
� � � @xd

@�1
...

...
...

@x1

@�1
@x2

@�2
� � � @xd

@�d

�����������
; � 2 
; (4.1)

is bounded and non-zero.

Next, covariant and contravariant base vectors are de�ned by

a(�) = @x=@��; a(�) =r��: (4.2)

Covariant and contravariant tensor components will be indicated by Greek sub- and superscripts, re-
spectively. For example, v� = v�a(�) and v� = v�a(�) and, conversely, v = v�a(�) = v�a

(�). Cartesian
tensor components will be indicated by underlined Greek indices, to distinguish from covariant and
contravariant components.
Introducing the momentum-ux tensor

W(v; ') = vv + I'� � (v); (4.3a)

with I the unit tensor, equation (2.1b) in steady form can be rewritten as

divW(v; ') = 0: (4.3b)

A scalar decomposition in contravariant components of the momentum-ux tensor and the equation
vector and covariant di�erentiation then yields for (4.3b)

W��
;� =

@W��

@��
+

�
�
 �

�
W� +

�
�
 �

�
W � =

1p
g

@
p
gW��

@��
+

�
�
 �

�
W � = 0: (4.4)

where�
�
 �

�
=

@a()

@��
�a(�) = @2x�

@�@��
@��

@x�
(4.5)

is the so-called Christo�el symbol of the second kind, see, e.g., [1]. From (4.5) it is apparent that the
Christo�el symbol comprises second order derivatives of the coordinate transformation. Consequently,
a discrete approximation of the Christo�el symbol will be inaccurate if the transformation is unsmooth.
The occurrence of Christo�el symbols can be conveniently avoided by decomposing the momentum-

ux tensor in mixed Cartesian/contravariant components. For the scalar decomposition of (4.3b) one
then obtains

W
��
;� =

1p
g

@
p
gW��

@��
= 0: (4.6)

This is the approach adopted here. Expanding W results in

1p
g

@

@��
p
g

�
v�v� + a(�)�'�Re�1

�
g�

@v�

@�
+ a()�a

(�)
�

@v�

@�

��
= 0; (4.7)



12

i+ 1

2
e1i� 1

2
e1

i+ 1

2
e2

i� 1

2
e2

�hi


h
i

Figure 2: Cell 
h
i with boundary �hi and boundary midpoints.

with a(�)� = a(�)�e(�) the Cartesian �-component of the contravariant base vector and the contravari-
ant metric tensor g� = a(�) �a(). Here we have used the incompressibility constraint to reduce the
viscous term. Notice that the reduction (2.2) is not allowed, because the Reynolds number is not
spatially invariant due to the use of a turbulence model.
In parnax, a discretization of reduced incompressible Navier-Stokes is implemented. The reduction

consists of discarding the viscous contribution to (4.7) in one general coordinate direction. In par-
ticular, if the equations are reduced in the �1-direction, all derivatives in the �1-direction that occur
in the viscous term are omitted. This implies that the term in brackets is ignored if either � or 
assumes the value 1. The corresponding reduced momentum-ux tensor will be denoted by W.
For the incompressibility condition (2.1a), a scalar decomposition of the velocity vector in con-

travariant components is used:

v�;� =
1p
g

@
p
gv�

@��
= 0: (4.8)

4.2 Discretization
We discuss the �nite volume discretization employed in parnax. Let V � R2 denote the domain of
de�nition of (2.1), and let 
 � R2 denote a reference domain, i.e., T : 
 7! V . We suppose that the
reference domain is composed of cells 
i = f� 2 R

2 j i� � 1
2
< �� < i� + 1

2
g, with the multi-index

i = (i1; i2) 2 Z
2; see Figure 2. The corresponding cells in V are denoted by Vh

i = T (
h
i ).

We integrate (2.1a) over a cell Vh
i . Then, we substitute (4.8) and apply the divergence theorem to

the result. Thus, we obtain,Z
Vh

i

divv dV =

Z

h

i

@
p
gv�

@��
d
 =

I
�h

i

p
gv�n� d� = 0; (4.9)

where �hi denotes the boundary of 
h
i and n� its outward unit normal vector. At the expense of a

discretization error, the integral over the cell-boundary is on each side approximated by the midpoint
rule, and we obtain the di�erence equation

2X
�=1

(
p
gv�) (x(�))

���i+ 1
2
e�

i� 1
2
e�

= 0: (4.10)

Similarly, we obtain for (4.3b), with W replaced by W,Z
Vh

i

divW dV =

Z

h

i

e(�)
@
p
gW��

@��
d
 = e(�)

I
�h

i

p
gW��n� d� = 0: (4.11)

Upon projecting (4.11) onto e(�) and approximating the boundary-integrals, we obtain the system of
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di�erence equations: for � = 1; 2,

2X
�=1

�p
gW��

�
(x(�))

���i+ 1
2
e�

i� 1
2
e�

= 0: (4.12)

A collocated, centered grid arrangement is employed, i.e., the boundary midpoint values of v(x(�))
and '(x(�)) in di�erence equations (4.10) and (4.12) are approximated by an interpolation from values
at the cell-centers. Below, we give some details of the interpolations.
Let grid-functions vh : Z2 7! R2 and 'h : Z2 7! R approximate v(x) and '(x) at cell-centers. The

velocity vector in equation (4.10) is approximated by interpolation from the values vh as

vi+ 1
2
e1

=
3

2
vh(i)� 1

2
vh(i� e1); (4.13a)

vi+ 1
2
e2

=
3

8
vh(i+ e2) +

3

4
vh(i)� 1

8
vh(i� e2): (4.13b)

The pressure at boundary midpoints in (4.12) is approximated by interpolation from 'h:

'i+ 1
2
e1

=
3

2
'h(i)� 1

2
'h(i+ e1); (4.14a)

'i+ 1
2
e2

=
3

8
'h(i) +

3

4
'h(i+ e2)� 1

8
'h(i+ 2e2): (4.14b)

Note that the interpolation stencils used in (4.13) and (4.14) are symmetric. This symmetry is essential
for maintaining certain important properties of the continuum operator, see Section 5.1. A second
velocity vector is interpolated at the boundary midpoints:

vi+ 1
2
e1

=

(
vi+ 1

2
e1
; v1

i+ 1
2
e1
� 0;

0; otherwise,
(4.15a)

vi+ 1
2
e2

=

(
vi+ 1

2
e1
; v2

i+ 1
2
e2
� 0;

vi+ 1
2
e2
; otherwise,

(4.15b)

where,

vi+ 1
2
e2

=
3

8
vh(i) +

3

4
vh(i+ e2)� 1

8
vh(i+ 2e2): (4.15c)

The Cartesian velocity components in the convective contribution to (4.12) are then obtained from
(4.15), whereas the contravariant velocity components are obtained from (4.13).
Due to the reduction of the viscous term, only the velocity derivative (@v=@�2)i+ 1

2
e2

is required for
computing the viscous-ux contribution. This derivative is approximated by a central di�erence:�

@v

@�2

�
i+ 1

2
e2

= vh(i+ e2)� vh(i): (4.16)

To close the discussion of the discretization of (2.1), the covariant and contravariant vectors and
the associated metric quantities have to be speci�ed. In cell-centers these follow immediately from
the assumption that the transformation, T , is a piecewise bi-linear interpolation from 
h

i to Vh
i . The

value at boundary midpoints is obtained as the average of the value at the centers of adjacent cells.

4.3 Discretization of boundary conditions
Generally, either Neumann or Dirichlet conditions are imposed on all boundaries except the quasi free-
surface. The discretization of these boundary conditions is straightforward and will not be discussed.
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The discretization of the quasi free-surface condition, however, requires elaboration. Scalar decom-
position of the steady quasi free-surface condition, (2.9), yields

v �r('� Fr�2xd) = v�a(�)�

@'

@��
� Fr�2v2 = 0: (4.17)

The quasi free-surface condition is a hyperbolic type convection equation for pressure disturbances.
Hence, in the dominant ow direction we choose an upwind biased discretization of the pressure
derivative in (4.17). Speci�cally, associating the free surface with cell-boundaries and the �1-direction
with the dominant ow direction,�

@'

@�1

�
i+ 1

2
e2

=
3

2
'i+ 1

2
e2
� 2'i+ 1

2
e2�e1

+
1

2
'i+ 1

2
e2�2e1 ; x(i+ 1

2
e2) 2 S; (4.18)

with the boundary midpoint values 'i+ 1
2
e2

according to (4.14). The �2-derivative of the pressure is
approximated as�

@'

@�2

�
i+ 1

2
e2

= 'h(i+ e2)� 'h(i); x(i+ 1
2
e2) 2 S: (4.19)

One may note that (4.19) involves values of 'h(i) located beyond the boundary S. Such virtual nodes
merely serve to convenience notation and implementation. The velocity components in discretized
quasi free-surface condition are given by (4.13).

5. Wave solutions of the discrete equations

In [4] it was shown that the incompressible Navier-Stokes equations (2.1) subject to the quasi free-
surface condition (2.9) allow in�nitesimally stable wave solutions. These wave solutions exhibit a
behavior that is dictated by the dispersion relation for the initial boundary value problem. For
stationary waves in a channel of unit depth, this dispersion relation speci�es a unique relation between
the Froude number and the wavenumber:

k�1 tanh(k) = Fr2; (5.1)

where k � �=2� is the wave-number and � the wavelength.
In this section we derive a similar relation for the system of discrete equations introduced in Sec-

tion 4. This relation will be referred to as a discrete dispersion relation. Furthermore, we derive the
discrete dispersion relation for the case of in�nite depth.

5.1 General in�nitesimal solutions
We suppose that the Cartesian domain is partitioned in regular cells fx 2 R2 j (i� � 1

2
)h < x� <

(i�+ 1
2
)hg. The contravariant components in Sections 4.2 and 4.3 then identify with scaled Cartesian

components (for example, v� = v�=h) and the Jacobian of the transformation reduces to
p
g =

h2. Further, we assume the Reynolds number to be spatially invariant, thus ignoring e�ects of the
turbulence model.
We consider the semi-discrete incompressible reduced Navier-Stokes equations, i.e., (2.1) with the

spatial operators replaced by their discrete counterparts as de�ned by (4.10), (4.12) and (4.13)
through (4.16). Let grid-functions vh(i; t) and 'h(i; t) approximate v(x; t) and '(x; t) in cell-centers,
respectively. Then the resulting semi-discrete equations are written as

Nh(vh; 'h) = 0

Mh(vh; 'h) = 0

)
i 2 Vh; t � 0; (5.2)
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where Vh = fi 2 Z2 j x(i) 2 Vg. Similarly,
Kh(vh; 'h) = 0; i 2 Sh; t � 0; (5.3)

expresses the discrete quasi free-surface condition. Here Sh is a set of nodes that we associate with
the free boundary S.
We consider solutions that are a perturbation of a uniform horizontal ow with velocity 0vh =

(0v1; 0) for some constant 0v1 � 0 and with 0'h = 0. The perturbation is parameterized by �, such
that �

vh
'h

�
(i; t; �) �

�
0vh
0'h

�
(i; t) + �

�
1vh
1'h

�
(i; t); for �! 0: (5.4)

Inserting this asymptotic expansion in (5.2) and (5.3) and ignoring terms o(�), we obtain:

Nh(
1vh;

1'h) = 0

Mh(
1vh;

1'h) = 0

)
i 2 Vh; t � 0; (5.5a)

with Nh(vh; 'h) the semi-discrete linear operator

Nh(vh; 'h) �
p
g
@vh
@t

+ e(�)

2X
�=1

hp
g
�
v� 0v� + a(�)�'

�i
i

���i+ 1
2
e�

i� 1
2
e�

� e(�) Re
�1

�p
g

�
g22

@v�

@�2
+ a(2)�a

(2)
�

@v�

@�2

��
i

����i+
1
2
e2

i� 1
2
e2

; (5.5b)

and corresponding quasi free-surface conditions

Kh(
1vh;

1'h) = 0; i 2 Sh; t � 0; (5.6)

where,

Kh(vh; 'h) �
@'h
@t

+ 0v�
�
@'

@��

�
i+ 1

2
e2

� Fr�2v
2

i+ 1
2
e2
: (5.7)

The non-linearity of the momentum equations (5.2) and the kinematic condition (5.3) is of o(�) and
vanishes in the �rst term of the expansion.
Next, we derive general solutions for the �rst-order equations (5.5). For convenience, we introduce

the notation qh = (1v
1
h;

1v
2
h;

1'h). We suppose that qh can be written as:

qh(i; t) =

Z
�

Z
C

q̂(�; �) e�t+��x(i) d� d�: (5.8)

The integration is taken over all � 2 C and all � 2 � = f� 2 C 2 j ��=h < =(��) � �=hg, a strip
in C 2 . The function q̂(�; �) is to be understood in a generalized sense; see, e.g., [20]. In particular,
q̂(�; �) is allowed to vanish almost everywhere in �� C .
Inserting (5.8) into (5.5) and changing the order of operations:

Ph(qh) �
�
Nh

Mh

�
(qh) =

Z
�

Z
C

cPh(�; �) � q̂(�; �) e�t+��x(i) d� d�; (5.9)

with the symbol cPh de�ned by

cPh(�; �) = h2

0B@cHh(�; �) +c�h(�) 0 d@p1h(�1)
0 cHh(�; �) + 2c�h(�) d@p2h(�2)d@d1h(�1) d@d2h(�2) 0

1CA ; (5.10a)
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where

cHh(�; �) = � + 0v1 d@c1h(�1); (5.10b)c�h(�) = Re�1c�2
h(�2): (5.10c)

Here, d@c�h(��) and d@p�h(��) denote the symbols of the discrete approximations to the ��-derivatives of
the velocity and the pressure in Nh, and d@d�h(��) is the symbol of the approximation to the velocity

derivatives in Mh. In formulas, d@c�h(��) = d@d�h(��) = �d@p�h(���), with
d@p1h(�1) = h�1

�
�3

2
+ 2eh�1 � 1

2
e2h�1

�
; (5.11)

d@p2h(�2) = h�1
�
�3

8
e�h�2 � 3

8
+
7

8
eh�2 � 1

8
e2h�2

�
; (5.12)

and c�2
h(�2) = h�2

�
eh�2 � 2 + e�h�2

�
: (5.13)

The values of � and � that satisfy the characteristic equation

det(cPh(�; �)) = �
�d@p1hd@d1h +d@p2hd@d2h��cHh +c�h��c�hd@p1hd@d1h = 0; (5.14)

correspond to nontrivial homogeneous solutions of Ph(qh) and, hence, to solutions of (5.5).
The characteristic equation (5.14) is similar to the characteristic equation corresponding to the

incompressible Navier-Stokes equations (2.1) [4]:

det(P̂(�; �)) = �(� ��)(� + 0v �� �Re�1� ��) = 0: (5.15)

Comparing both characteristic equations in the high Reynolds-number limit, it becomes apparent that
the �rst term between parentheses in (5.14) is an approximation to the symbol � �� in (5.15). More

precisely, d@p�h d@d�h is an approximation to �2�. The symmetry condition,

d@d�h(���) = �d@p�h(��); (5.16)

ensures that certain important characteristic features of the symbol �2� are maintained:

(i) Let � 2 C , then (��)2 = �2 and similarly d@p�h(��)d@d�h(��) = d@p�h(�)d@d�h(�).
(ii) Let � 2 R, then =((i�)2) = 0 and similarly =(d@p�h(i�)d@d�h(i�)) = 0.

Property (i) is easily proved. Property (ii) follows from the general form of the discrete symbols: Let
n; q 2 N and cl 2 R for l = 1; 2; : : : ; n. Then,

d@p�h(i�)d@d�h(i�) = �
nX
l=1

cle
i(l�q)�h

nX
k=1

cke
i(q�k)�h = �

nX
l=1

c2l �
nX
l=1

l�1X
k=1

2clck cos((l � k)�h);

(5.17)

which clearly has vanishing imaginary part. The relevance of these properties will become clear in
Section 5.2.
Further in this section, we will only consider the high Reynolds number case. Because of the

linearity ofPh, any homogeneous solution can be expressed as a linear combination of the homogeneous
solutions corresponding to the roots of the characteristic equation. Let fq̂1(�; �); : : : ; q̂n(�; �)g, n =



5. Wave solutions of the discrete equations 17

dim(ker(cPh(�; �))), denote a basis of the kernel of the symbol, e.g., if d@p1hd@d1h + d@p2hd@d2h = 0 andcHh(�; �) 6= 0, then n = 1 and

q̂1(�; �) =

0B@ d@p1h(�1)d@p2h(�2)
�cHh(�; �)

1CA : (5.18)

A general homogeneous solution to (5.5) can then be expressed as

qh(i; t) =

Z
�

Z
C

nX
j=1

wj(�; �) q̂j(�; �) e
�t+��x(i) d� d�; (5.19)

for certain weight-functions wj(�; �). In order for the semi-discrete initial boundary value problem
to be well-posed, the weight-functions must be uniquely determined by the boundary and initial
conditions, in such a manner that qh(i; t) remains bounded (in some suitable norm) on the domain of
de�nition.

5.2 Finite depth wave solutions
We consider the semi-discrete equations (5.2) on a domain V = R � [0; 1] with , for t � 0, subject to
the quasi free-surface condition (5.6) and the impermeability condition at the bottom:

v
2

i+ 1
2
e2

= 0; x2(i+ 1
2
e2) = �1: (5.20)

Additional boundary conditions are required to make the semi-discrete initial boundary value problem
well-posed. However, we will only consider a speci�c subclass of solutions, viz.,

qh(i; t) =

Z
H

Z
T

w1(�; �) q̂1(�; �) e
�t+��x(i) d� d�; (5.21)

with H = f� 2 � jd@p1hd@d1h+d@p2hd@d2h = 0g, T = f� 2 C j cHh(�; �) 6= 0g and, hence, q̂1(�; �) according
to (5.18). From the previous section, we recall that H � T corresponds to a subclass of solutions of
the di�erence equation (5.5) for which the kernel of the symbol is spanned by q̂1(�; �) only. In the
following, it will become evident that this subclass accommodates the gravity wave solutions. Hence,
the subclass (�; �) 2 H�T su�ces for our purposes. For the above subclass it is su�cient to impose
a single boundary condition on each boundary.
For convenience, we introduce �� � (�1;��2). We divide H in H+ = f� 2 H j;<(�2) � 0g and

H nH+. By symmetry property (i), we can rewrite (5.21) as:

qh(i; t) =

Z
H+

Z
T

e�t
�
w1(�

+; �) q̂1(�
+; �) e�

+�x(i) + w1(�
�; �) q̂1(�

�; �) e�
��x(i)

�
d� d�: (5.22)

Introducing equation (5.22) into the boundary condition (5.20) and requiring that the resulting integral
vanishes, we obtain

w1(�
+; �)d@p2h(�2) bE(�2) + w1(�

�; �)d@p2h(��2) bE(��2) = 0; (5.23)

with bE(�2) the symbol of the approximation to v2 at the boundary x2 = �1, in particular, from
equation (4.13),

bE(�2) = 3

8
e�2(�1+

1
2
h) +

3

4
e�2(�1�

1
2
h) � 1

8
e�2(�1�

3
2
h): (5.24)



18

This yields an expression for the weight function:

w1(�; �) = (�1; �) �2
bE(��2)d@p2h(�2) ; (5.25)

for some suitable function (�1; �). Upon inserting the result, (5.25), into the quasi free-surface

condition (5.6) and expanding cHh, we obtain the relation�
� + 0v1d@c1h(�1)��� + 0v1 c@s1h(�1)� = Fr�2

bE(�2)� bE(��2)bE(��2)d@p2h(�2) �
bE(�2)d@p2h(��2)

; (5.26a)

with

c@s1h(�1) = h�1
�
3

2
� 2e�h�1 +

1

2
e�2h�1

�
(5.26b)

the symbol of the discrete approximation to the �1-pressure derivative in the quasi free-surface condi-
tion according to (4.18). Equation (5.26) can be regarded as a relation between temporal and spatial
behavior of the solution. Such an expression for is usually called the dispersion relation for the initial
boundary value problem.
A gravity wave solution of the continuous equations has strictly imaginary �1 and real �2. Specif-

ically, if the velocities are scaled such that 0v1 = 1, then a stationary gravity wave solution (� = 0)
has � = (ik;�k), with the wavenumber, k, according to (5.1). Although the discrete di�erence equa-
tions (5.2) in principle permit such a solution due to symmetry property (ii), the upwind discretization
of the quasi free-surface condition prohibits its existence. Hence, for stationary wave solutions of the
discrete equations, generally <(�1) 6= 0 and =(�2) 6= 0. Figure 3 displays the relative di�erence be-
tween the wavelength of a stationary wave solution of the continuous equations, � according to (5.1),
and the wavelength of a stationary wave solution of the discrete equations, �h = 2�==(�1) with
� 2 H+ a solution of (5.26) for � = 0, versus the Froude number, for various values of the mesh-width
h. Figure 4 shows the associated wave attenuation per wavelength, de�ned by �h = exp(<(�1)�h).

5.3 In�nite depth wave solutions
We consider the semi-discrete equations (5.2) on the half space V = fx 2 R2 j �1 < x1 <1;�1 <
x2 < 0g for t � 0, subject to the quasi free-surface condition (5.6) and the condition

lim
x2(i)!�1

v
2
h(i; t) = 0; t � 0: (5.27)

Again, we only consider the speci�c subclass of solutions (5.21). Dividing the integration interval
according to (5.22) and requiring (5.27) to hold, we �nd that

lim
x2(i)!�1

w1(�
+; �)d@p2h(�2) e�2 x2(i) + w1(�

�; �)d@p2h(��2) e��2 x2(i) = 0: (5.28)

Therefore, w1(�
�; �) = 0. Substituting the result into the quasi free-surface condition (5.6) and

expanding cHh, we obtain the dispersion relation�
� + 0v1d@c1h(�1)��� + 0v1 c@s1h(�1)� = �Fr�2d@p2h(�2): (5.29)

For � (�) = 0 and 0v1 = 1, solutions of (5.30) should be compared to the corresponding dispersion
relation of the continuous equations:

� = (i Fr�2;Fr�2): (5.30)
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Figure 3: Relative di�erence between the wavelength of a stationary wave solution of the discrete
equations and the wavelength of a stationary wave solution of the continuous equations versus the
Froude number for mesh-width h = 2�l, l = 3 (2); 4 (+); 5 (�); 6 (�).
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Figure 4: Wave attenuation per wavelength, �h = exp(<(�1)�h), versus the Froude number for
mesh-width h = 2�l, l = 3 (2); 4 (+); 5 (�); 6 (�).
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Figure 5: =(h�1) (2) and <(h�1) (+) versus hFr�2, according to dispersion relation (5.29).

Inspection reveals that for � 2 H+ equation (5.29) can be regarded as a relation between h� and
hFr�2. Hence, by (5.30), we have a relation between the non-dimensionalized wavenumbers, scaled
with respect to the mesh-width, of stationary wave solutions of the continuous equations and of the
discrete equations. Figure 5 displays the relation between h�1 and hFr�2 for � = 0.

6. Solution

In parnax, the system of non-linear equations resulting from the discretization of the incompressible
reduced Navier Stokes equations and the corresponding boundary conditions on a logically rectangular
grid, is solved by a block Gauss-Seidel relaxation method. Moreover, nested iteration is employed to
obtain an initial estimate. In this section we describe in detail the solution method and we investigate
the computational complexity. Furthermore, we explain the incorporation of the iterative procedure
for solving the free surface geometry.

6.1 Block Gauss-Seidel relaxation
The objective is to solve the system of non-linear equations (5.2), augmented with the discretized
boundary conditions. Let Vh denote the grid-nodes in the interior of V and let @Vh be a set of nodes
associated with the boundary of the domain. For each i 2 Vh [ @Vh, we write the equations to be
solved as:

Ri(vh; 'h) = 0; i 2 Vh [ @Vh: (6.1)

Equations (6.1) are called the residual equations. Hence, the aim is to �nd vh; 'h such that the
residual equations are solved for all nodes in Vh [ @Vh.
We suppose that the grid-nodes are numbered such that Vh [ @Vh = [0; 1; : : : ; N1]� [0; 1; : : : ; N2].

The block Gauss-Seidel relaxation method implemented in parnax for solving (6.1) reads

Algorithm: Block Gauss-Seidel relaxation
initialize 'h := '0h;vh := v0h
while (kRi(vh; 'h)kVh[@Vh > �)f

store '�h := 'h
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for (i1 = 0; 1; 2; : : : ; N1)f
solve and update vh(i); 'h(i) from: 8 i2 Ri(vh; 'h) = 0

g
for (i1 = N1 � 1; N1 � 2; : : : ; 0)f
8 i2 update 'h(i) := '�h(i) + !('h(i)� '�h(i)) + (1� !)('h(i+ e1)� '�h(i+ e1))

g
g
where k � kVh[@Vh denotes some suitable norm. Note that the residual equations are �rst scanned
in the direction in which the di�usive contribution to the momentum equations has been discarded.
Next, the equations are scanned in the opposite direction, however, then only the pressure variable is
modi�ed. In the second step the residual equations corresponding to i1 are not actually solved, but
the corrections computed in the �rst step are distributed.
Apart from the second step, the aforementioned method is identical to the algorithm described

in [25]. There, it is shown that the contraction number (see, e.g., [12, p.98]) of the iteration is

� � 1�C

�
h

L2

�2�
L1

L2

�2

; (6.2)

with C a constant of order one, h the mesh-width in the 1-direction and L1 and L2 the length of the
computational domain in the 1- and 2-direction, respectively; see also [10, pp.307-313]. In [18] the
convergence rate of the above algorithm is examined by means of Fourier analysis. It is established
that slowest convergence occurs for low-wavenumber errors in the direction normal to the relaxation
direction. The convergence rate of these critical modes is proportional to 1� O(h2).
These results imply that the method is convergent, but that the rate of convergence of the iteration

deteriorates in such a manner that for h! 0 the amount of work per unknown, needed to reduce the
initial error by a �xed factor, is O(h�2). Usually, the objective is to reduce the evaluation error to
the order of the discretization error. Supposing that the initial error is O(1), one can show that in
this case the amount of work required is O(h�2j loghj). We conjecture that this asymptotic behavior
of the computational complexity is unchanged by the second step.

6.2 Nested Iteration
Nested iteration is used to accelerate the computation. Using nested iteration, the initial guess is
obtained by interpolation of the solution from a coarser grid. The initial guess on this coarse grid
in turn is interpolated from an even coarser grid. This process is repeated recursively, until a grid is
reached at which the problem can be solved at negligible computational expense.
Let the sequence of grids be numbered from coarsest to �nest as l = 0; 1; : : : ; L. Furthermore, let

vl and 'l denote grid functions on Vl [ @Vl and let the level l problem be de�ned by:

Rl
i(vl; 'l) = 0; i 2 Vl [ @Vl: (6.3)

The nested iteration algorithm reads:

Algorithm: Nested iteration
initialize '0 := '00;v0 := v00
solve R0

i (v0; '0) = 0 i 2 V0 [ @V0
for (l = 1; 2; : : : ; L)f

initialize '0l := P l
l�1'l�1,v

0
l := P l

l�1vl�1

solve Rl
i(vl; 'l) = 0 i 2 Vl [ @Vl

g
Here P l

l�1 stands for a su�ciently high order interpolation from level l� 1 to level l.
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Let p denote the order of consistency of the discretization. If the initial estimate for the level
l problem contains an error of O(2phpl ), which can be accomplished if the usual mesh-width ratio
of 2 between levels is employed and the interpolation is O(hp) accurate, then O(h�2l ) Gauss-Seidel
iterations are required to reduce the error to the order of the discretization error. The number of
operations on level l � 1 per level l node is then O(2�(p+3)h�2l ), which is only a small fraction of
the work performed on level l. Hence, we can estimate the computational complexity of the nested
iteration algorithm with block Gauss-Seidel iteration by the number of operations expended on the
�nest level when the initial estimate contains an errorO(2phpL), and ignore the costs of determining this
initial estimate. Thus, the computational complexity of the algorithm is O(h�2L ). This implies that the
nested iteration removes the j log(h)j dependence of the Gauss-Seidel relaxation and indeed accelerates
convergence. However, this factor is small in comparison with the remaining h�2 dependence.

6.3 Free surface iteration
To solve the steady free-surface ow problem, we solve a sequence of sub-problems corresponding to
the steady Navier-Stokes equations with the quasi free-surface condition imposed at an approximation
to the steady free-surface. After each sub-problem evaluation, the free-surface is relocated, using the
computed solution. Next, remeshing takes place, so that the mesh coincides with the newly computed
shape of the domain. Finally, the results on the previous grid are transferred to the adapted grid to
generate an initial estimate and the process is repeated.
The residual equations at the nodes associated with the free boundary follow from the discretized

boundary conditions

Bh(vh; 'h) =

�
Kh(vh; 'h)

th �� h(vh) �nh

�
= 0 i 2 @Sh; (6.4)

where the operator Kh corresponds to the quasi free-surface condition and nh; th are discrete approx-
imations to the normal and tangential unit vectors to S, respectively.
After each sub-problem evaluation, the wave-elevation at the sub-domain vertices is determined by

�h(i+ 1
2
e1) = Fr2

�
1

2
'i+ 1

2
e2
+
1

2
'i+e1+

1
2
e2

�
; (6.5)

with 'i+ 1
2
e2
de�ned by (4.14). Subsequently, the nodes of the mesh are relocated, so that the resulting

mesh coincides with the newly computed geometry of the domain. Let xh(j) be the sub-domain vertices
and xh(j) the sub-domain vertices of the adapted grid. We suppose that the remeshing is accomplished
through a mapping:

xh =M(�h;xh): (6.6)

For example, M can prescribe relative vertical stretching

x1h(j) = x1h(j) (6.7a)

x2h(j) = x2h(j) +
x2h(j

1; j2)� x2h(j
1; 0)

x2h(j
1; N2)� x2h(j

1; 0)

�
�(j1)� x2h(j

1; N2)
�
; (6.7b)

where we assume that the vertices are numbered such that x2h(j
1; 0) are associated with the bottom

boundary and x2h(j
1; N2) with the free-surface boundary.

The solution can be transferred from the cell-centers of the grid to the cell-centers of the modi�ed
grid by straightforward polynomial interpolation, e.g., a p-order interpolation:

�h(i) =

p�1X
�=0

�h(i� �e2)

p�1Y
� 6=�
�=0

y2h(i)� y2h(i� �e2)

y2h(i� �e2)� y2h(i� �e2)
(6.8)
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with yh(i) the cell-centers, yh(i) the cell-centers of the modi�ed grid, �h(i) a solution component in
cell-center yh(i) and �h(i) the same component in the modi�ed center yh(i). In general, it will be
necessary to use multi-dimensional interpolation and the transfer can be described by

�h(i) =
X

j2Vh[@Vh

aij�h(j) (6.9)

The interpolation weights, aij, depend on the position of the cell-centers of the modi�ed grid relative
to the cell-centers of the original grid. Usually, the interpolation operation is local and aij is zero for
all j except some j close to i.
The entire iterative procedure can be summarized as:

Algorithm: Free surface iteration
initialize �h := �0h;xh :=M(�0h;x

0
h); 'h := '0h;vh := v0h

compute cell centers fyhg
solve Ri(vh; 'h) = 0 i 2 Vh [ @Vh
while (kFr2'h(i)� �h(i)kSh > �)f

compute wave-elevation, �h, from (6.5)

remesh: xh :=M(�h;xh)
compute cell centers fyhg
transfer solution: (vh; 'h)(i) :=

P
aij(vh; 'h)(j)

update xh := xh;yh := yh
solve Ri(vh; 'h) = 0 i 2 Vh [ @Vh

g
If the residual equations are solved with an iterative solver, the result contains 3 di�erent main
errors. Firstly, an error is present because the residual equations are not solved exactly. We call
this error the evaluation error, �. Secondly, an error occurs due to the fact that the domain on
which the computation is performed, is only an approximation of the domain corresponding to the
actual free-boundary position. We call this error the domain error, �V . Thirdly, the result contains
a discretization error, eh. Therefore, in the above algorithm, the residual equations only have to be
solved approximately. It is su�cient to reduce the evaluation error such that � � �V + eh, because a
further reduction does not essentially improve the result.
The iterative procedure for the free-surface can be incorporated in the block Gauss-Seidel method

with nested iteration in a straightforward manner: The problem to be solved on level l is de�ned to
be the steady free-surface problem on the level l grid. The residual equations are solved by means
of the block Gauss-Seidel relaxation. However, on coarse grids in the nested iteration algorithm, the
discretization error can be much larger than the domain error. Because displacing the free surface on
such a coarse grid does not essentially improve the solution, it is then useful to proceed to the next
�ner grid without making any free-surface adjustments.
We consider the computational complexity of the free-surface iteration. The expense of solving the

sub-problems by an iterative solver decreases during the free surface iteration, because an increasingly
accurate initial estimate can be obtained from the interpolation of the previous solution. We de�ne
the contraction number of the free-surface iteration by

� � kpn+1h (i)kSn+1

h

=kpnh(i)kSnh : (6.10)

with pnh(i) the pressure after n iterations. Because a converged solution is reached if the pressure at
the free surface vanishes, we refer to kph(i)kSh as the pressure defect. Assuming that the disturbance
induced by displacing the boundary is proportional to the displacement and, by (6.5), to the pressure
defect, we infer that the amount of work that is required between consecutive iterations contracts with
� as well. Hence, denoting by W the computational work invested in solving the �rst sub-problem
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Figure 6: Typical example of a grid used in the numerical experiments (h = 2�4).

and by w the incremental work involved in obtaining the solution to the second sub-problem, the
cumulative computational expense of solving the N -th sub-problem is:

W +
N�1X
�=0

�� w =W + w
�N � 1

� � 1
�W +

w

1� �
: (6.11)

Generally, one may expect that w is already much smaller than W . Therefore, for modest values
of the contraction number, the cost of solving the free-surface problem is essentially determined by
the expense of the �rst sub-problem, regardless of the accuracy required. Consequently, for small �,
the computational complexity of the free-surface ow problem is similar to that of a �xed domain
problem.
Observe that the contraction number of the free-surface iteration (6.10) does not depend on the

mesh-width of the grid. Hence, we anticipate mesh-width independent convergence behavior of the
iterative method for the free-surface.

7. Numerical Experiments & Results

To test the algorithm described in Section 6.3 and to verify the results of the analysis presented in
Section 5, we conducted numerical experiments for subcritical ow over an obstacle in a channel at
Fr = 0:43 and Re = 1:5�105, with both parameters scaled with respect to the entrance velocity at the
free surface and the channel depth. An algebraic turbulence model was employed. The geometry of the
obstacle is described in [5]. We considered obstacles with a non-dimensionalized height E = 0:15 and
E = 0:20. The �rst test case displays small amplitude waves that exhibit behavior in accordance with
linear wave theory. This test case serves to verify the results of the analysis presented in Section 5. The
second test case is in accordance with the experimental setup in [5] and displays large amplitude waves
that exhibit typical non-linear behavior, e.g., acute wave-crest angles and wavelength contraction.
The experiments were performed on di�erent grids with horizontal mesh-widths h = 2�l, l =

3; : : : ; 6. In each case, the number of grid cells in the vertical direction was 70 and exponential
grid-stretching was applied to resolve the boundary layer at the bottom. Furthermore, the grid was
exponentially stretched in the horizontal direction towards the lateral boundaries to reduce reections.
A typical example of a grid used in the numerical experiments is presented in Figure 6.
To further reduce reections from lateral boundaries, arti�cial damping was introduced in the

vicinity of the lateral boundaries by inserting a second order derivative into the quasi free surface
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kpnkSn
case I, l = 5 case I, l = 6 case II, l = 5 case II, l = 6

0 6:42�3 6:81�3 1:27�2 1:36�2

1 2:01�3 1:83�3 7:09�3 7:51�3

2 2:51�4 2:97�4 3:13�3 3:96�3

3 3:42�5 5:21�5 8:96�4 1:41�3

4 4:16�6 4:18�6 4:71�4 8:46�4

5 3:79�7 7:75�7 2:31�4 5:21�4

6 1:39�7 1:39�7 1:07�4 3:32�4

7 1:45�7 8:63�8 4:31�5 2:13�4

8 6:34�8 8:77�8 1:55�5 1:37�4

9 4:30�8 8:07�8 6:74�6 8:71�5

10 3:03�8 6:97�8 3:98�6 5:66�5

Table 1: Pressure defect at the free surface after consecutive iterations for test-case I, l = 5; 6 and
test-case II, l = 5; 6.

condition, i.e., the quasi free-surface condition was replaced by

v1
@'

@x1
+ v2

@'

@x2
� Fr�2v2 � �(x1)

@2'

@x21
= 0; (7.1)

with �(x1) a function that vanishes in the interval x1 2 [�2; 4] and increases towards the lateral
boundaries.
Direct solution of the sub-problems with a second order discretization of the quasi free-surface

condition by means of the block Gauss-Seidel relaxation proved fragile. Therefore, the second order
discretized problems were solved by means of defect correction, with the sub-problems with �rst order
discretization of the quasi free-surface condition serving as approximate operator.
After each sub-problem evaluation, the grid was adapted using the relative vertical stretching (6.7)

and an initial estimate on the adapted grid was generated by interpolation from the solution on the
previous grid according to (6.8), with interpolation order p = 4.

7.1 Test-case I
To examine the convergence behavior of the iterative method for solving the free-surface Navier-Stokes
problem, we monitored the of the pressure defect at the free-surface after consecutive sub-problem
evaluations and updates of the free-surface position, de�ned by kpnkS =

P
j hj jpj j=

P
k hk, with

n = 0; 1; 2; : : : the iteration number. Table 1 lists the results for the grids with horizontal mesh-width
hl, l = 5; 6. In Figure 7 the pressure is plotted versus the iteration number. The results con�rm
convergence of the method, with an average contraction number � � 0:14 for l = 5 and � = 0:16 for
l = 6. Indeed, the contraction number appears to be essentially independent of the mesh-width. After
several iterations the contraction number increases. However, this is entirely due to the fact that the
sub-problems are solved only by approximation. If the tolerance on the residual of the sub-problems
is reduced, i.e, if the sub-problems are solved more accurately, then the original contraction number
is recovered.
Figure 8 displays the computed wave-elevation on grids with horizontal mesh-widths h = 2�l,

l = 3; : : : ; 6. The corresponding wavelength and wave-attenuation are compared to the predictions
according to discrete dispersion relation (5.26) in Table 2. For the wave attenuation, the numerical
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Figure 7: Pressure defect at the free surface versus the iteration number for test-case I, l = 5 (2),
l = 6 (�) and test-case II l = 5 (+), l = 6 (�).
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Figure 8: Computed wave elevation for test-case I on grids with mesh-widths h = 2�l, l =
3 (2); 4 (+); 5 (�); 6 (�).

results and the predictions exhibit good agreement. The results for the wavelength display a marked
di�erence. This can be explained by the fact that the wavelength is sensitive to Froude-number
deviations incurred by, e.g., non-uniformity of the inlet-velocity pro�le. More important, however,
is the fact that (5.26) accurately predicts the discretization error in the wavelength of the computed
results.

7.2 Test-case II
To examine the convergence of the iterative method for the second test case, we again monitored
the pressure defect at the free surface. For l = 5; 6, the results are listed in Table 1 and plotted in
Figure 7. The pressure defect vanishes with an average contraction number � � 0:45 for l = 5 and
� = 0:52 for l = 6. The signi�cant mesh-width dependence of the contraction number can be ascribed
to a substantial di�erence between the solutions on the grids with l = 5 and l = 6. Mesh-width
independence of the contraction number is achieved only asymptotically for vanishing mesh-width.
Due to the strong non-linearity, this asymptotic behavior is not yet apparent. Moreover, the strong
non-linearity causes a deterioration in convergence behavior, in comparison with test case I. Figure 9
illustrates the convergence of the wave elevation.
In Figure 10, the computed wave elevation is compared with measurements from [5]. In [5], a non-

dimensionalized wavelength � = 1:10 � 10% and amplitude a = 4:5 � 10�2 � 15% are reported for
the trailing wave. The trailing wave of the computed wave elevation on the grid with l = 6 displays
wavelength � = 1:11 and amplitude a = 6:5 � 10�2. Clearly, the computed wavelength agrees well
with the measurements. The amplitude is, however, slightly overestimated.
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wavelength attenuation
l

comput. analysis comput. analysis
3 1:37 1:33 0:63 0:64
4 1:27 1:21 0:90 0:91
5 1:23 1:17 0:98 0:99
6 1:22 1:16 0:99 1:00

Table 2: Wavelength and wave attenuation of the numerical results and by dispersion relation (5.26)
for h = 2�l, l = 3; : : : ; 6.
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Figure 9: Wave elevation for l = 6 after n iterations: n = 0 (none), n = 1 (2), n = 3 (�), n = 5 (+),
�nal (�).



7. Numerical Experiments & Results 29

±0.1

±0.05

0

0.05

0.1

0 1 2 3 4 5

�

x

Figure 10: Computed wave elevation for l = 6 (solid line) and measurements from [5] (markers
only).
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8. Conclusions

Motivated by the demand for more e�cient computational methods for steady free-surface Navier-
Stokes ow in practical applications, we propose a new iterative solution method. The method solves
a sequence of sub-problems, with a quasi free-surface condition imposed at the free surface. After
each sub-problem evaluation, an improved approximation to the free-surface location is obtained.
The method can be formulated in the framework of optimal shape design methods. This formulation
reveals that the method relies on the quasi free-surface condition to ensure that the disturbance
induced by the displacement of the boundary is small. The update obtained from the normal dynamic
condition is a descent direction and, therefore, convergence is ensured, provided that the ow is
su�ciently smooth.
We considered the discretization of the reduced incompressible Navier-Stokes equations implemented

in parnax and discussed discretization of the quasi free-surface condition. We then analyzed the
properties of the discrete equations. Dispersion relations were derived for the semi-discrete equations
corresponding to the free-surface ow problem in a channel of unit depth and of in�nite depth.
We discussed the block Gauss-Seidel iteration and the nested iteration algorithm used in parnax.

Analysis of the computational complexity showed that for horizontal mesh-width h ! 0, the rate of
convergence of the method is 1 � O(h2). We then considered the free-surface iteration. We showed
that the convergence behavior of the iteration is mesh-width independent. Moreover, if the sub-
problems are solved by an iterative solver and a su�ciently small contraction number for the free-
surface iteration can be realized, the computational cost of the free-surface problem is similar to that
of a �xed domain problem.
Numerical results were presented for ow over a protuberance in a channel of unit depth. The

results show good agreement with measurements and with the predictions of the discrete dispersion
relation. Furthermore, for the test-case presented, the results con�rm that the convergence behavior
of the free-surface iteration is essentially mesh-width independent. Even for a strongly non-linear test-
case a reasonable contraction number for the free-surface iteration is realized and the computational
complexity of the free-surface ow problem is only marginally higher than that of a comparable �xed
domain problem. The results indicate that the new iterative method is indeed suitable for the e�cient
solution of steady free-surface Navier-Stokes ow problems.

9. Recommendations for future research

� The optimal shape design formulation of the problem indicates that the applicability of the
iterative method in its current form is restricted to smooth ows. However, it also reveals that
this restriction can be dissolved by introducing a more accurate approximation of the pressure
gradient in the quasi free-surface condition and the surface update. Di�erent test-cases should
be initiated to establish the limitations of the method in its present form and to investigate the
improvement introduced by a more accurate approximation of the pressure gradient.

� The response of the method to surface penetrating objects should be investigated. In 2D,
a suitable test-case to do so, is the transom stern ow problem, discussed in, e.g., [14, 29].
Alternatively, ow around surface penetrating objects in 3D can be investigated.

� The dispersion relations provide a means to develop discretization schemes with speci�c prop-
erties, e.g., low numerical damping. Discretization schemes with favorable properties should be
determined and tested.

� The transition region that is currently employed in the computations to reduce reections from
lateral boundaries is computationally ine�cient and sensitive to parameter variations, such as
grid-stretching. Moreover, it appears that the complexity of the computational problem, i.e.,
the performance of the iterative solver, depends on the type of lateral boundary conditions
employed. The dispersion relations and the theory developed in [8] can serve in the development
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of suitable highly absorbing lateral boundary conditions for the free-surface ow problem. A
further attempt should be made to derive such highly absorbing boundary conditions.
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