
/

1

J.F. Groote, F. Moller

Verification of parallel systems via decomposition

Computer Science/Department of Software Technology Report CS-R9203 January

CWI is het Centrum voor Wiskunde en lnformatica van de Stichting Mathematisch Centrum

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11 . 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science. and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

/

Copyright© Stichting Mathematisch Centrum, Amsterdam

Verification of Parallel Systems via Decomposition

Jan Friso Groote1

Department of Software Technology, CWI

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

email: jfg@cwi.nl

Faron Moller
Laboratory for Foundations of Computer Science

James Clerk Maxwell Building, University of Edinburgh,

Edinburgh EH9 3JZ, Scotland

email: fm@lfcs.ed.ac.uk

/

Abstract

Recently, Milner and Moller have presented several decomposition results for processes. Inspired
by these, we investigate decomposition techniques for the verification of parallel systems. In
particular, we consider those of the form

(I)

where Pi and Qj are (finite) state systems. We provide a decomposition procedure for all Pi and

Qj and give criteria that must be checked on the decomposed processes to see whether (I) does or

does not hold. We analyse the complexity of our procedure and show that it is polynomial in n,

m and the sizes of Pi and Qj if there is no communication. We also show that with communication

the verification of (I) is co-NP hard, which makes it very unlikely that a polynomial complex

ity bound exists. But by applying our decomposition technique to Milner's cyclic scheduler we

show that verification can become polynomial in space and time for practical examples, where

standard techniques are exponential.

Key Words & Phrases: Decomposition, Parallel Processes, Verification, Bisimulation.
1985 Mathematics Subject Classifl.cation: 68Q60, 68Q70.
1987 CR Categories: C.2.4, D.2.4, D.3.1, F.3.1. Note: The authors are supported by
the European Communities under ESPRIT Basic Research Action 3006 (CONCUR).

1 Int:roduction

Most common techniques for the automated verification of parallel systems are based on
some kind of state-space exploration. Contemporary computer technology limits exploration
to state spaces of about 107 states. However, state spaces of most parallel systems are
substantially larger.

1The first author's current affiliation is University of Utrecht, Department of Philosophy, P.0.Box 80126,
3508 TC Utrecht, email jfg@phil.ruu.nl.

Report CS-R9203
ISSN 0169-1 i8X
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

2 1 INTRODUCTION

This problem is identified by many researchers, and various solutions have been proposed.
For instance one may apply minimisation techniques when constructing state spaces [2], one
may represent the state space using hash techniques [11], or one may restrict the state space
using some additional information [7]. A more successful approach seems to be the smart
encoding of state spaces, employing the regularity that is often present in the state spaces
of parallel systems. In particular, the results based on binary decision diagrams (BDD's)
seem more than promising [3]. An argument that one could raise against BDD's is that it
is not directly based on notions inherent to processes, such as amount of communication,
the structure of processes or the structure of communication, etc. This may obscure the
true causes of the success of BDD's, and it may hinder further developments and a proper
understanding of applicability.

Recently, some interesting decomposition results have emerged in process theory [16, 17].
Inspired by these rysults, we study whether decomposition techniques can be applied in order
to obtain alternative means for the verification of parallel systems. Basically, the idea is as
follows: Consider processes p = 11::,1 Pi and q = /1}:1 Qj· We want to establish whether p = q
where '=' represents some reasonable process equivalence. In order to do so, we decompose
each Pi into Pil ... Pim and each qj into Qjl ... qjn according to some particular decomposition
rules. Then we must verify whether Pij = Qji for all i and j. The method is beneficial if the
combination of performing the decompositions of the Pi's and q/s along with checking each
Pij = Qji is considerably more efficient than checking p = q directly. We show that this is
indeed so in particular cases, but we show also that it is very unlikely to be true in general.

This paper first presents the decomposition scheme (after some preliminaries). Then we
analyse what we have actually gained. It turns out that when there is no communication,
verification via decomposition has a polynomial time and space complexity in the number
and size of the processes Pi and Qj. In the case where communication is allowed, we provide a
straightforward proof that verification is co-NP hard even in the case where the Pi's and qj's
are finite and determinate. More results of this kind can be found in [18]. Hence, polynomial
verification is rather unlikely in this case.

In order to understand whether this .intractability result rules out application of our tech
niques, we consider an example. This is Milner's scheduler [14], which is generally used as a
benchmark for verification tools [6, 10, 12], due to its simple description, and its exponentially
growing state spaces that it generates (in the number of 'cyders' from which the scheduler
is constructed). Verification via decomposition uses only polynomial time and linear space.
The largest intermediate state space that is used in the verification has size 3k where k is the
number of cyders in the scheduler.

Our conclusions from the complexity analysis is that decomposition can indeed be a good
technique for the verification of parallel systems. When there is little communication, i.e. in
the case where the system has been adequately structured, the benefits of this technique may
be especially high.

3

2 P:reliminaries

In this paper we do not employ a particular process language. Rather, it turns out to be

handy to work in a setting where processes are viewed as (possibly infinite) transition systems.

Definition 2.1. A transition system (TS) p = (Sp, n:p, --+p, sp) is a four tuple, where

• Sp is a non-empty set of states;

• G:p is a set of actions;

• --+p~ Sp x n:P x Sp is a transition relation; and

a Bp E Sp is the initial state of the transition system.

We use p, q, r to ran~ over transition systems, and n: to range over sets of actions. Elements

(t, a, t') of a transition relation --+p are often written as t ...!!:_,,P t'. We also write t a~n P t'

for t ~P • • • ..!!:!::..+P t'. A function n: gives the set of actions of a transition system, e.g.

n: ((Sp, n:p, --+p, sp)) = G:p. The TS p is finite-state if SP is finite, and it is finite if there is no

. fi 't t a1 a2 a;-1 a;
m me sequence 1 --+p t2 --+p · · · --+p ti --+p ti+l · ·"

Definition 2.2. A TS p = (S, a,--+, s) is called determinate with respect to some equivalence

relation ,....., iff for all t E S and a E a: t!!:_,, ti and t ~ t2 implies ti ,..., t2. In general it

will be clear which equivalence relation is meant, in which case we will simply say that p is

determinate.

Definition 2.3. Let a be a set of actions. We have the following 'standard' transition

systems.

• The willing process on a is the process that can always do an action from a:

where --+ = { (s,a,s} I a Ea}

o The nil process is not willing to do anything: nil ~f w0.

Definition 2.4. Let p = (Sp, ap, --+p, sp) and q =(Sq, aq, --+q, sq) be TS's. We can define

the following useful operations on TS's.

® For an action a the a-prefix of p is the TS

• Assuming (without loss of generality) that Sp n Sq = 0, the sum or choice of p and q is

the TS

where

4 2 PRELIMINARIES

Figure 1: The process p = b:a:nil II c:a:nil

---+p+q = ---+p U ---+q U { (sp+q, a, s') I Sp _!!:_.,P s' or sq __!!:_., s'}.

1111 The parallel composition or synchronisation merge of p and q is the TS

p II q ~ (Sp x Sq, ap U aq, ---+Pllq' (sp, sq))

where

The synchronisation merge thus forces common actions to synchronise. We write 117=1 Pi
for PI II · · · II Pn and IJ7=l,i# for P1 II ... II Pk-l II Pk+l II ... II Pn· It is dear from the
definition that the associativity of the composition operator is immaterial.

1111 Let a1, 0<2 be two sets of actions. The (0i:1, a2)-projection of p is the TS

r'.:21 (p) clef (s n a) 1 ~ = P' a2 ap, ---+r~~(p)' sp

where

iff s -;;- ~ s with bi 'F 0:2 & a E a 1 n o:2 , or {
b1···bna I d

s ---+p s for a E a2.

The projection operator I is also used for traces: (a1 ···an) la is the trace ai ···an from
which the actions ai f/:. a are removed.

Remark 2.5. The projection operator I~~ has, as far as we know, not appeared in the
literature. In this article, it is solely introduced for the purpose of defining the decompositions.
For an idea how this operator works, consider the process p, given by the diagram in figure 1.
This represents a transition system with actions a, band c, states s 1, s2 , s3 , s4 and s5 , initial
state s1, and a transition relation as suggested by the arrows. Clearly p is the result of
composing P1 = b:a:nil and P2 = c:a:nil in parallel. Using the projection operator I~~ we can
project p onto its parallel components, where a 1 contains those actions through which the
components communicate and a 2 contains all the actions of that component. That is,

{a} ()
P1 = l{a,b} P and {a} ()

P2 = l{a,c} P ·

5

In the composition, the actions a and b appear in p1 , a and c appear in p2, and a is the action
through which p1 and p 2 communicate. Note that when calculating p1 and p2, the possibility
of extending actions backwards is essentially used. Also note that if we take a1 = 0, then

the projection operator 1~2 (p) behaves as the encapsulation operator 8a(p)\a2 (p) from ACP

[l] and the restriction operator p\ (a(p) \ a 2) from CCS [15].

Remark 2.6. We now have three ways of specifying transition systems. We can describe
them explicitly, we can write them down algebraically using the operators that have just
been introduced, or we can draw a diagram such as in figure 1. In this paper, we also specify
transition systems by simple recursive equations containing only choice, action prefix and a
single variable. A construction that is sufficient for the examples in this paper is the following.
Consider an equation

X = e(X) (1)
/

where e consists of action prefixes and choices only. Define the self-loop TS

r = ({s},{*},{(s,*,s)},s)

where*~ a(e(nil)). Construct the TS e(r) = (S,a,--+,t). The TS defined by (1) is then

the TS p = (S, a\{*}, ::.__,.P, t) where

--+p = (--+ n (S x a(e(nil)) x S)) U { (t1, a, t2) I ti ~ ti and t ~ t2 }·

For the examples in this paper, this definition coincides with the generally accepted interpre
tation of equations.

Remark 2. 7. We can give operational characterisations of the above operators. We do not
go into this any further except to list them as follows, and refer the interested yet uninitiated
reader to e.g. [9] for understanding in interpreting these.

a a:p--+ p

p~p'
p+q ~ p'

p~p' ()
II a ' II a~ a(q) p q--+p q

3 Basic Axioms

a I q--+ q
p+q~q'

q ~ q' () II a II ' a~ a(p) p q--+p q

a 1 a 1 p--+p q--+q

P II q ~ P1 II q'

We will prove our results using axioms for II, I and W only. In this section we introduce these.
The axioms hold in strong bisimulation semantics, and therefore in most other reasonable
semantics as well.

6 3 BASIC AXIOMS

Definition 3.L Let p = (Sp, ap, ---+p, sp) and q = (Sq, aq, ---+q, sq) be TS's. We call a
relation R ~ Sp x Sq a (p, q)-bisimulation relation iff t'Ru implies

1. if t ~Pt' then u ~q u' for some u1 E Sq with t'Ru1; and

2. if u _::_,q u' then t ~Pt' for some t' E Sp with t'Ru'.

Two states t E Sp and u E Sq are (p, q)-bisimilar, written tt±p,qu, iff there is a (p, q)
bisimulation relation R relating t and u. We abbreviate +-'1-p,p by ._p· The two TS's p and q
are bisimilar, written p+.-+q, if o:(p) = a(q) and sp.......,,p,qBq·

Lemma 3.2 (Congruence). t:± is a congruence with respect to action prefix, choice, parallel
composition and (a1 , a2)-projection.

Proof. Standard'/ D

The axioms that we use are presented in table 1. We do not strive for completeness of the
axiomatisation. Rather, the axioms need only be sufficiently complete to satisfy our goal.

Lemma 3.3 (Soundness). The axioms in table 1 are sound with respect tot:±.

Proof. For each axiom, we must construct an appropriate bisimulation relation. Let p =
(Sp, ap, ---+p, sp) and q = (Sq, aq, ---+q, sq)· We present proofs only for axioms R4, Rs and
~.

R4 . We will show that the identity relation on Sp is a (I~~ (p), I~~ (1~;~~ (p)))-bisimulation.
Suppose then that s ~r"'1(p) s'. We will show that s ~."'i(,°'iu"'()) s'. We know that °'2 '°'2 la2Ua P
a E a2. We distinguish between the following two cases.

(a) a r/. a1. Then, s ~P s1 and thus s ~ta1 ua() s'. Therefore s ~r°'i(,a 1 ua(l) s'.
a2Ua P °'2 I a2Ua P

we have that s ~t"'i(,a 1 u"(.)) s'.
"2 la2Ua P

Now suppose that s ~t"i(,"' 1 ua()) s'. We will show that s ~r°'I(p) s'. We know that
°'2 la2U<> P °'2

a E a2. We distinguish between the following two cases.

(a) a'/. a1. Then s ~r"1u"'() s'. From the side condition that a 2 n a= 0 we know a2Ua P

that a 'I. a. Therefore s ~P s' and hence s ~r~~(p) s'.

bi '"bna a E 0:1. Then s ---+ t"'lu"'() s' for some bi €/:. 0:2. So bi E a and therefore
a2Ua P

(b)

c11."Cml lb1 cn ... cn b cn+l ... cn+l a
1 mn n 1 mn+l I • · d H a / s ---+ P • • • ___,. P - P s with cj 'F a 2 U a. ence s -+ r~i (p) s .

7

II 1 p II (q II r) = (p II q) II r

112 P II q = q II P

R1 P = r~(p) (P)

R2 r~~ (P) = r~~na(p) (p)

R3 r~~ (P) = r~;na2 (p)

R4 r~~ (p) = r~~ (r~~~~ (p)) if a2 n a = 0

Rs r~ (p II q) = r~~ (p) II r~~ (q) if a1 ~ a(p) n a(q) ~ a2

Re P = P II r~ (p) if r~ (p) is determinate

R1 I@ (p) = nil

W1 P II Wa(p) = P

W2 w°'l II Wa2 = Wa1Ua2

W3 I~~ (Wa) = Wa2na

Table 1: Basic axioms for operators

Rs. We will show that the identity relation on Sp x Sq is a (r~~ (p II q)' r~~ (p) II r~;
(q))-bisimulation. Suppose then that (s1 , s2) ~t~~(Pllq) (s~, s2). We will show that

(s1, s2) ~t~~(P)llt~~(q) (s~, s2). W~ know that a E a2. We distinguish between the

following two cases:

(a) a ~ a1. Then (s1, 82) ~Pllq (8~, s2). We distinguish between the following three

sub cases:

· Th a 1 d a 1 Th f a 1 d
i. a E ap n aq. en 81 --+P 81 an 82 --+q 82. ere ore 81 --r~~(p) 81 an

s2 ~t~~(q) 82. Hence (81, 82) ~r~~(P)llt~~(q) (8~, 82).

11. a~ aq. Then s1 ~P 8~ and 82 = s2. Thus 81 ~t~~(p) 8~ and again we have

that (81, 82) ~r~~(p)ilt~~(q) (8~, s2).

iii. a tJ. ap. This case is symmetric to the case above.

8 3 BASIC AXIOMS

(b) a E a1. Then (si, s2) bi~aplfq (s]_, s2) for some bi ft a2. As a E 0:1, we know from
(b1 "'bn)i apa 1 the side condition that a 1 ~ ap n aq that a E ap n aq. Hence s1 ____. P s1 and

(b1···bn)ra:qa 1 a 1 a I J: s2 ___,. q s2. Thus s1 -r~~(p) s 1 and s2 -r~~(q) s2 and we thereiore have
(s1, s2) ~t~~(P)llt~~(q) (sl_, s2).

Now suppose (si, s2) _::_,.r~~(p)lft~~(q) (s]_, s2). We will show (s1, s2) ~t~~(Pllq) (si, s2).
We know that a E a 2 . We distinguish between the following three cases.

(a) a E ap n o:q. Then a E a(f~~ (p)) and a E a(f~~ (q)). Hence s1 _::_,.t~~(p) s]_
a I bl·"bna 1 Cl"'Cma 1 d and s2 -r~~(q) s2 • Therefore s1 ___,. P s1 and s2 ____. q s2 for some bi, Cj v:; a2.

From the side condition that apno:q ~ o:2 , we know that bi, Cj <I, o:pno:q. Therefore
() b1·"bnci···cma (' ') () a (' ') s1,s2 / ____. Pllq s1,s2 . Hence s1,s2 -r~~(pllq) s1,s2 .

(b) a~ aq. Then s2 = s2 and s1 _::_,.r~~(p) s]_. From the side condition that 0:1 ~ o:q,

we know that a ft a1. Therefore s 1 _::_,.P si. Thus (si, s2) ~Pllq (sl_, s2) and so
again (s1, s2) _::_,.t~~(Pllq) (sl_, s2).

(c) a ft °'p· This case is symmetric to the previous case.

~. It is sufficient to prove that the relation

R ~f { (s, (t, u)) I s+-+pt & 3 v+-+rg(p)u such that v b~n P s for some bi rf. a}

is a (p, p II r~ (p))-bisimulation relation. Suppose then that sR(t, u) and s _::_,.p s'. We
must show that (t, u) _::_,.Plltg(p) (t', u') where s'R(t', u'). We know that t _::_,.Pt' where

I I bi .. ·bna I d s ±=±pt and that there is some v±=±rg(p)U such that v ___,. P s for some bi v::- a. We
distinguish between the following two cases.

(a) a E o:. Then v _::_,.rg(p) s' and thus u ~rg(p) u' where s'±::±rg(p)u'. Hence
(t, u) _::_,.Plltg(p) (t', u') and s'R(t', u').

(b) a tf_ a. Then (t, u) _::_,.Pllfg(p) _(t', u) and s'R(t', u).

Now suppose that sR(t,u) and (t,u) _::_,.Pllrg(p) (t',u'). We must show that s ~P s'
I (I ') b1 "'bn where s R t, u . We know that there is some vnrg(p)U such that v --+ P s for some

bi tf_ o:. Furthermore, t _::_,.P t' so s _::_,.P s' where s' +-+pt'. It remains to show that
s'R(t', u'). We distinguish between the following two cases.

() Th a I d a I a I h I I a a E a. en v -r~(p) s an u ---r~(p) u, so v -r~(p) v w ere u +-+r~(p)v.
From the side condition that r~ (p) is determinate (with respect to f-tt~(p)), we
have that s'+-+rg(p)V1• Hence s1+-+rg(p)u' and thus s'R(t',u').

(b) a f/. a. Then u = u', so again we have that s'R(t', u).

D

9

Example 3.4. The following examples show why the conditions in R4, R5 and ~ of the

last theorem are necessary. For the condition in R4 , observe that

r~b} (a:b:nil) - nilb whereas r~b} (rm (a:b:nil)) - b:nil.

By nilb, we mean the TS nil with alphabet {b }, which can be defined by f~b} (a:b:nil). For

the first condition in R5 , observe that

r~~'.c} ((a: nit+ b:nit) 11 c:nit) - b:nil 11 c:nit + c:nil

r~~'.c} (a:nit+ b:nit) 11 r~~:c} (c:nit) - b:nil 11 c:nil.

For the second condition in R5 , observe that

r~:~ (b:a:nil 11),,a:nit+ b:nil)) - a:nit + a:a:nil

r~:~ (b:a:nil) 11 r~:~ (a: nit+ b:nit) - a:a:nil.

whereas

whereas

Finally, for the condition in ~' observe that for p = a:b:a:nil + a:b:b:nil,

P 11 r~:~ (p) - P + a:b:nil.

4 Verification via decomposition

In this section we formulate our main result which explains how the verification of an equation

p = q with p = ll~=l Pi and q = llj:,1 qj can be performed via decomposition. In theorem 4.4

we describe the decomposition and we give some conditions that must be checked in order for

the method to be applicable. In the theorem, we use p and q on both the left and right hand

sides, so that nothing is apparently gained by applying the theorem. However in remark 4.6

we show how p and q can be eliminated from the right hand side.

We begin with some straightforward lemmata that are used in the proofs to follow.

Lemma 4.1. p = p II Wa whenever o: ~ a(p). In particular, p = p II nil.

Proof. P ~1 P II Wa(p) ~ P II Wa(p) Ii Wa ~ P II Wa. D

Lemma 4.2. Let p = Pl II P2· p = p II r~ (p2 II Wa) whenever O'. ~ a(p) and r~ (P2 II Wa) is

determinate.

Proof.

lemma 4.1
p

lemma 4.1 =

Pl II P2 I\ Wa

Pl II P2 II Wa II r~ (p2 II Wa)

p II r~ (P2 II Wa)
D

10 4 VERIFICATION VIA DECOMPOSITION

Lemma 4.3. l~u~ (p) 111~ (p) =l~u~ (p) whenever 0: n /3 = 0 and r~ (p) is determinate.

Proof.

l~u~ (p) R2,~,Re ana(p) (II ana(p) ()) l(aU~)na(p) P lana(p) P
& ana(p) () II ana(p) (ana(p) ())

l (aU~)na(p) P l (aU~)na(p) l ana(p) P

l~u~ (p) 111~ (p)

D

/

Theorem 4.4 (Verification via decomposition). Let p = ll~=I Pi and q = 11;:1 qj . .Let a
consist of the synchronous (communicating) actions of p and q. That is,

Assume that I~ (Pi II Wa) and I~ (qj II Wa) are determinate for all 1 $ i $ n and 1 $ j $ m.
Then

Pii = qji for 1 $ i $ n, 1 $ j $ m,
m

p=q itf
ta (p) - 11 p· · for 1 <_ i <_ n, and I aUa(p;) - . iJ

J=l
n

l~ua(qj) (q) = .11 qji for 1 $ j $ m,
i=l

where

def () p·. - I°' P
iJ - au (a(p;)na(qj))

·and def () q .. -1°' q
Ji - a U (a(p;)na(qi))

Proof.

("*'=) For each 1 $ i $ n we can prove that:

n
P lem1!:ha 4·2 P II II l~ (Pj II Wa)·

j=l,jr'=i

By repeating this process for all i we get

11

lemma!_ 4.2,4.1
p (P II Wa) II (.IT . IT .. (I~ (Pj II Wa)))

i=l J=l,3#:i
n n n

II (PillWa) II (II II (f~(PjllWa)))
i=l i=l j=l,j#:i

i]1 ((Pi II Wa) II (iJ!i=Fi r~ (Pi II Wa)))

. IT (l~ua(pi) (Pi II Wa) II (. n. . r~ua(p;) (Pj II Wa)))
i=l J=l,J#:i

.IT .IT (i~ua(p;)(PillWa))
i=l J=l

i]l (f~ua(p;) (j]l (Pj II Wa)))

lemma 4.1

/

n

.11 (r~ua(p;) (p))
i=l

assu12!:Ption
n m

II II Pij
i=l j=l

In the same way, we can deduce that q = 11}:1 ll~=l %· Hence from the assumption that

Pij = qji for each 1 sis n and 1 s j s m, we can deduce that p = q.

(=>) First it is clear that p = q immediately implies that Pij = qji· So we now prove that

p = q implies the second condition of the theorem. For each 1 s i s n we can compute

the following.

m

II Pij
j=l

=
lemma 4.1 =

=

lemma 4.3
=

lemma 4.1

jl (r:u(a(p;)na(qj)) (p))

j1 (r:u(a(p;)na(qj)) (q II Wa))
m m

jil1 (r:u(a(p;)na(qj)) (kil1 (qk II w a)))

jElkITl (r:u(a(p;)na(qj)) (qk II Wa))
m m

jillkill ·(f~u(a(p;)na(qj)na(qk)) (qk II Wa))

~ (~ f~ (qk II Wa)) II f~ua(p;) (qj II Wa)
j=l k=l,k:f;j

.~ (f~ua(p;) (qj II Wa))
J=l

r~ua(p;) (j1(qj II Wa))

r~ua(p;) (q)
l~ua(p;) (p)

Finally, the third condition can be deduced in the same way. D

12 5 ON THE COMPLEXITY OF VERIFICATION BY DECOMPOSITION

Remark 4.5, One may wonder whether it is enough to only check Pij = Qji in theorem 4.4.
This would be a substantial optimisation. Unfortunately, this is not possible, as shown by
the following example. Consider p = (a: nil+ b:nil) II c:nil and q =a: nil II (b:nil + c:nil). One
may try to verify that p = q by applying theorem 4.4. In this case a= 0, so the determinacy
constraints are easily satisfied. Calculating each Pij and Qji yields the following.

P11 Qn = a: nil
P12 = Q21 nil

So dearly Pij = Qji for all i and j, but p -::/: q.

P21 = Q12 b: nil
P22 Q22 = c: nil

Remark 4.6. The right hand side of theorem 4.4 can be calculated using the following
observations.

Pij = / 1:u(a(p;)na(qj)) C~1 Pk)

lemma~.1, Rs k~l (r:u(a(p;)na(qj)) (Pk II Wa)).

We can calculate l~ua(p;) (p) using the following:

l~ua(p;) (p) = r~ua(p;J (.TI (Pj II Wa))
J=l

n

.11 (r~ua(p;) (Pj II Wa)).
J=l

Of course this also applies to Qji and f~ua(qj) (q).

In section 6 we give an application of the above technique which takes advantage of the
preceding remark. However we first analyse the verification problem to demonstrate the
benefit of the technique.

5 On the complexity of verification by decomposition

In this section we consider the complexity of verification through decomposition. We do this
in the setting of bisimulation equivalence, as the verification of trace based equivalences is
generally intractable on finite state systems [13]. We show that in the case where there is no
communication between the components, the verification is polynomial. In the case where
there is communication between the components, we show that the verification is co-NP hard,
and hence inherently intractable. The proof that we give is a simplified variant of those given
in [18]. From these observations we draw the conclusion that verification via decomposition
is especially worthwhile when there are relatively many asynchronous or non-communicating
actions, and that its use is rather limited if almost every action is used for communication.
But it is exactly the former case that leads to enormous state graphs, while in the latter
case state graphs remain relatively small, and therefore, they can be more readily handled
by existing means.

13

We start out by reformulating theorem 4.4, but now with the restriction that there are

no communication actions among the component processes, which means that a = 0. For

convenience, we write ffJ for f~.

Corollary 5.1. Let p = ll~=l Pi and q = llj:1 Qj with a(pi) n a(pj) = 0 for all 1 S i < j S n

and a(qi) n a(qj) = 0 for all 1::; i < j:::; m. Then

p=q iff

where

def /
Pij = I a(qj) (Pi)

Pij = Qji for 1 S i ::; n, 1 ::; j ::; m,
m

Pi = II Pij for 1 ::; i ::; n, and
j=l

n

Qj = II Qji for 1 ::; j ::; m,
i=l

and def ()
Qji = la(p;) Qj

Proof. From Ri, R2, R1, lemma 4.1 and remark 4.6, we can show that Pi =la(p;) (p) and

Qj =la(qj) (q), and from R2, R1, lemma 4.1 and remark 4.6, we can show that la(pi)na(qj)

(p) =fa(qj) (Pi) and fa(pi)na(qj) (q) =fa(pi) (qj)· The result then follows directly from theo

rem 4.4. D

In order to verify that p = q, we must check the three identities at the right hand side of

the curly bracket in corollary 5.1. In table 2 we have put the complexities for each step and

the complexity for the total calculation. Here, Sr and --+r represent the sets of states and

transitions, respectively, of TS r. We assume that the number of states of our TS's is smaller

than the number of transitions, as it is reasonable to assume that all states are reachable.

The complexities in table 2 are motivated as follows.

1. In order to calculate Pij, we take Pi and remove all transitions labelled with actions not

in a(Qj). Then we remove all unreachable states, along with their outgoing transitions.

This takes 0(1 --+Pi I) time and space. In the same way we construct Qji· In order

to calculate Pij = Qji, we apply a standard bisimulation algorithm [13], which takes

o((I --+pi I+ I -+qj I) log(ISp;! + ISqj I)) time and O(I --+Pi I+ I --+qj I) space. As

this must be repeated for each 1 ::; i ::; n and 1 ::; j ::; m, we obtain the complexities as

given in table 2.1.

2. We obtain the second complexity measures via the following observation:

Lemma 5.2. Let ro = (Sro' O'.ro' ---+ro' Bro) and r1 = (Sr1' C¥r1' -r1' Sq) with O'.ro n
O'.r 1 = 0. For all u, u' E Sr0 and v, v' E Sri:

I d I u -ro u an v -r1 v jff (u,v) -rollri (u',v').

Proof. Straightforward. D

14 5 ON THE COMPLEXITY OF VERIFICATION BY DECOMPOSITION

Equality Time complexity
Space complexity

Pij = qji (1 Si Sn o(mn(II18?'(/ ---+Pi I+ I -qi l))log(II18?C(ISp;/ + ISqil)))
iJ ~J

1 S j Sm) O (II18?C (I -Pi I + I -qi I))
i,J

m

0 (m n mrx I -Pi I log(my-x /SPi I)) Pi= II Pij (1 S i S n)
j=l

o(mrx I -Pi 1)
n

o(mn m;xl ---+qi llog(mfXISq3 1)) qi= 11 qji (1 S j Sm)
i=l

/ o(m;x I -qj 1)

p=q 0 (m n (II1~x(I ---+p; I + I ---+qi I)) log (~8?C(ISp;/ + /Sqi I))) i,1 i,J

~ o(~8?'(1-Pi I+ 1-qj 1))
i,J

Table 2: Complexities of deciding bisimulation in non-communicating processes

Reading this lemma from right to left, it says that if r0 II r 1 is not minimised with
respect to bisimulation, i.e. it contains different states that are bisimilar, then this
is due to the fact that either ro or r 1 was not minimal with respect to bisimulation.
Reversing this reasoning says that if we ensure that ro and r1 are minimal, then ro II r1
will also be minimal.

We use this observation as follows in constructing 11;:1 Pij· First construct Pil as in
dicated above. This takes 0(1 -:-"'pi I) time and space. Minimise Pil with respect
to bisimulation, obtaining Pil· Using the ordinary bisimulation algorithms, this takes
o(/ -Pi / log(/Sp;i)) time and 0(/ ---+Pi I) space. Now construct Pi2 and its minimised
variant Pi2 likewise. Then calculate Pil II Pi2, but stop if the number of states of the
result exceed those of Pi· As Pil and Pi2 are minimal w.r.t. bisimulation, Pil II Pi2 is
minimal. Hence if the number of states of Pil II Pi2 exceed the number of states of
Pi, then Pi cannot be bisimilar to 11;:1 Pij· The complexity of calculating Pil II Pi2 is
therefore O(I -•p; I). We thus calculate 11;:1 Pij by stepwise adding Pi3,Pi4, ... ,Pim in
the same way. This takes o(ml ---+Pi llog(ISp;I)) time and 0(1 -Pi I) space. The
verification of Pi = 11;:1 Pij can then be done without increasing the time and space
complexities. The steps above must be repeated for each 1 s i s n. So we obtain the
figures in table 2.

15

3. The analysis in this case is the same as in case 2, using q instead of p.

4. Combining the above gives these complexities for calculating p+-+q.

The procedure sketched above is rather wasteful, e.g. Pij and Qji are calculated rather often.

We have not investigated optimisations, as we expect that they will not improve the time

and space complexities. However, the example in section 6 gives the impression that by using

the regularity of processes Pi and Qj, substantial improvements can be expected.

In the case where there is communication between the processes, then the verification

of ll~=I Pi = 11;:1 Qj becomes co-NP hard for each process equivalence between trace and

bisimulation equivalence. We give a straightforward proof of this fact, actually showing that

in the case that Pi and Qj are all finite and determinate, this verification is co-NP complete.

In [18] it is shown that this verification becomes P-space hard if Pi and Qj are finite state. It

also gives an EXP~ACE completeness result in case abstraction of actions is allowed.

The proof technique in this section is a straightforward reduction from 3SAT [4]: Let

x1, ... , Xk be variables and lij E {xi, ... , Xk, --ix1, ... , -.xk}. The question whether

n ,

/\ (lil v li2 v li3 l
i=l

is satisfiable is well-known to be NP-complete. There is a straightforward polynomial way

of reducing an instance of 3SAT to an instance of 3SAT such that ki1 < ki2 < ki3 where lij

refers to a variable Xkii 1 . So 3SAT with this restriction is still NP-complete.

Lemma 5.3, Determining whether ll~=l Pi = 11;:1 Qj holds is co-NP complete for finite

determinate Pi and Qj.

P:roof. First we show co-NP hardness by reducing from 3SAT with the ordering restriction

to the question whether (ll~=l Pi) II p = p', for finite determinate Pi, p and p', does not hold.

Consider the following instance of 3SAT with restriction over variables x1 , ... , xk:

n

/\ (lil v li2 v li3). (2)
i=l

The processes Pi, p and p' are constructed as in figure 2. Process Pi has actions lii, li2, li3,

....,zi1, -.li2, -.li3 and .j. Here -,[ij stands for •x if lij = x and for x if lij =,x. A step lij

corresponds to considering a valuation a that assigns true to lij, and a step -.lij corresponds

to considering a valuation a that assigns false to lij. Clearly, Pi can perform a .j step iff

O"(li1 V li2 V li3) is true.

The process p is used to guarantee that in (Jl~=l Pi) \I p, first a step corresponding to x1

must be performed, then one corresponding to x2 etc. It has actions x1, ... , Xk, -.x1, ... ,,Xk

1First remove all clauses li1 V li2 V li3 that contain a variable occurring both with and without negation.

Next remove double occurrences of variables in the clauses. Finally, introduce two new variables Xk+l and

Xk+2 and add these to incomplete clauses.

16 5 ON THE COMPLEXITY OF VERIFICATION BY DECOMPOSITION

0 0 0

7~ X1 •X1 X1 X1

0 0 0 0

li2 ...,zi2 i~ X2 X2 X2 •X2

0

1{}i3 0 9 9

li3 ...,zi3 17~ x{}x• x{}x, 0 0 0

jv jv jv jv 0 0 0

/
0

Figure 2: The processes Pi, p and p'

and ..;. The process p' is equal to p with the only difference being that it has no ../ step at
the end.

We have the following fact, from which our co-NP hardness result follows immediately.
n n
/\ (li1 V li2 V li3) is satisfiable iff (II Pi) II p = p' does not hold.
i=l i=l

Here '=' represents any equivalence between trace and bisimulation equivalence [8]. We now
prove this fact:

(=>) Let ()be a valuation satisfying (2). Then (117=1 Pi) II p can perform the trace ai · · · ak ../
where

Clearly, such a trace cannot be performed by p'. So, (117=1 Pi) II p and p' are not trace
equivalent.

(<=) If (117=1 Pi) II p can perform a trace ai · · · ak ../, then the assignment () defined as:

() { true if ai = Xi,
() Xi =

false if ai = -ixi.

is clearly a satisfying truth assignment for (2). Thus if (2) is not satisfiable, then rn:1 Pi) II p cannot perform traces ending in ..;. So exactly the traces ai ... ak with
ai = Xi or ai = -ixi can be performed by both (117=1 Pi) II p and p', and hence they
are trace equivalent. As all processes are determinate, (117=1 pi) II p and p1 are also
bisimulation equivalent [5].

17

9i

9i+l 9i+l
@;),

........ ~i)
Figure 3: A cycler and a scheduler

For completeness it is sufficient to guess a trace ai · · · ak J and to check whether for each

1 ~ i ~ n, akii aki2 akis J is a trace of Pi, where lij refers to a variable Xkij. This can clearly

be done in polynomial time. As a1 · · · ak J is always a trace of p, it must also be a trace of

(117=1 pi) II p, while itcannot be a trace of p'. D

It is not difficult to extend the proof above to include only two-way communication (see

[18]) or to use only two actions. However this is outside the setting of this paper, and it

complicates matters sli~htly.

6 An application

In this section, we apply the decomposition theorem to Milner's scheduler [14], which is con

structed out of simple components, called cyders. The scheduler is often used as a benchmark

for programmes which calculate process equivalences [6, 10, 12], because its state space grows

exponentially with the number of cyders. Using our decomposition technique, we can avoid

this exponential blowup.

The scheduler schedules k processes in cyclic succession, so that the first process is reacti

vated after the kth process has been activated. However, a process must never be reactivated

before it has terminated. It is constructed of k cyders C0 , ... , Ck-I, as depicted in figure 3,

where cycler Ci is dedicated to process i. The left part of the figure shows the transition sys

tem for cycler Ci, while the right part depicts the architecture of the scheduler. The dotted

lines indicate where the cyders synchronise. Cycler Ci first synchronises on a signal 9i which

indicates that it may start. It then activates process i via an action ai. Next, it waits for

termination of process i, indicated by bi, and in parallel, using 9i+li activates the next cycler.

Here, the indices are taken mod k, so that 9k =go. It then returns to its initial state. The

cycler ci is described by:

Co = ao:(bo:91:Co + g1:bo:Co),

Ci = 9i:adbi:9i+1:Ci + 9i+1:bi:Ci) for 1 ::; i < k.

The first cycler is assumed to have been initiated. The complete scheduler for k processes is

thus described by:

Schedk = Co II C1 II ... 11 ck-1 ·

18 6 AN APPLICATION

A correctness criterion for the scheduler has been formulated in [14]. The ai and bi actions
must happen alternately, and the ai actions must happen cyclically. For the purposes of this
example, we are also interested in the precise relationship between the synchronisation actions
9i and the actions bj. Therefore we prove the scheduler Schedk equal to the specification
Correctk from which the behaviour of the scheduler can easily be understood. The process
Correctk is defined by

where

BBk = ao:g1:a1: · · · :gk-1:ak-1:go:BBk,
Do = ao:bo:go:Do,
Di = gi:ai:bi:Di for l $ i < k.

/
The letters BB in BB k stand for 'backbone'. It is easy to see that Correctk satisfies the
correctness criteria as given by Milner. This can be shown formally by applying hiding, but
as this is rather standard, we do not prove that here. For an idea of the proof, see the
verification of the scheduler in [14]. '

We wish to apply theorem 4.4 to verify that Schedk = Correctk. We thus let Po = Cb and
Pi= Ci for l $ i < k, and define Qj = Dj for 0 $ j < k and Qk = BBk·

First note that a = { ai, 9i I 0 $ i < k }. A small calculation tells us that r~ (Pi II Wa) is
bisimilar to Ei II Wa, where Ei is defined by

Eo = ao:g1:go:Eo,
Ei = 9i:ai:9i+1:Ei for l $ i < k,

and that r~ (qj II Wa) is bisimilar to Fj II Wa, where Fj is defined by

Fo = ao:go:Fo,
Fj = gfaj:Fj
Fk = BBk.

for l $ i < k,

Obviously these are all determinate, so theorem 4.4 is applicable. We use remark 4.6 to
calculate Pij, Qji, f~ua(p;) (p) and f~ua(qj) (q). For i =/: j, we find that

k-1

Pij = l~O r~u(a(p;)na(qj)) (pz II Wa)

k-1

= II r~ (Pt II Wa)
l=O

k-1

II Ez II Wa
l=O

= BBk,

19

and

k

qji l~O r:u(a(pi)na(qj)) (q1 II Wa)

k

II I~ (qi II Wa)
l=O

k

= II Fi II Wa
l=O

BBk·

For i = j, we find that

k-1

Pii = l~O r:y(a(p;)na(q,J) (pz II Wa)

k-l

= II l~u{b;} (pz II Wa)
l=O

(3)

k-l

= II E1 II ci II Wa
l=O,li'i

ao 91 9i ai 9i+l ai+1 ak-l 90 ao
if i"' 0 3 .>L!'.l bi bi b'.I b'.l bi

9i+l ai+l ak-l go ao

9i

and

k-1

qii = l~O r:u(a(p;)na(qi)) (q1 II Wa)

k-l
= · II l~u{bi} (qz II Wa)

l=O

(4)

k

= II Fz II Di II Wa
l=O

.>r-:1 9ob1 aobj . b; a;-1
ak-1 90 ao ai-1

ao 91
-ccif-i #~0 --~ ...

9i

9i

The initial sequences of actions a0 91 · · · 9i in the two diagrams above are only present if
i =f. 0. Obviously, Pij and qji are thus equivalent. Note that the number of states of each
intermediate term is always smaller than 3k, i.e. linear in k.

20 REFERENCES

Now note that Pii II BBk = Pii and hence ll~=oPij = Pii· Similarly, 117::-~ qji = qjj· Hence

= r~ua(p;) (p)
remark 4.6

=

k-l

.11 (r~ua(p;) (Pj II Wa))
J=O
k-l

.11 (rau{b;} (Pj II Wa))
J=O

k

II Pij·
j=O

Equally, from remark 4.6 and (4) we have that r~ua(qj) (q) = 117::-~ qji So according to theo
rem 4.4, it follows that p = q.

References /

[1] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

[2] A. Bouajjani, J.-C. Fernandez and N. Halbwachs. Minimal model generation. Prelimi
nary draft. 1991. ~

[3] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model
checking 1020 states and beyond. In Proceedings 5th Annual Symposium on Logic in
Computer Science, Philadelphia, USA, pages 428-439, 1990.

[4] S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, Shaker Heights, Ohio, pages 151-
158, 1971.

[5] J. Engelfriet. Determinacy--+ (observation equivalence= trace equivalence). Theoretical
Computer Science, 36(1):21-25, 1985.

[6] J.-C. Fernandez. An implementation of an efficient algorithm for bisimulation equiva
lence. Science of Computer Programming, 13:219-236, 1989/1990.

[7] J.-C. Fernandez and L. Mounier. "On the fly" verification of behavioural equivalences
and preorders. In K.G. Larsen, editors, Proceedings CAV'91, Aalborg, pages 238-250.
1991.

[8] R.J. van Glabbeek. The linear time - branching time spectrum. In J.C.M. Baeten and
J.W. Klop, editors, Proceedings CONCUR'90, Amsterdam, volume 458 of Lecture Notes
in Computer Science, pages 278-297. Springer-Verlag, 1990.

[9] J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimula
tion as a congruence (extended abstract). In G. Ausiello, M. Dezani-Ciancaglini, and
S. Ranchi Della Rocca, editors, Proceedings rnth !GALP, Stresa, volume 372 of Lecture
Notes in Computer Science, pages 423-438. Springer-Verlag, 1989. Full version to appear
in Information and Computation.

21

[10] . Groote and F.W. Vaandrager. An efficient algorithm for branching bisimulation

and stuttering equivalence. In M.S. Paterson, editor, ProceedingB 17th !GALP, Warwick,

volume 443 Lecture Notes in Computer Science, pages 626-638. Springer-Verlag, 1990.

[H] G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Interna

tional, 1991.

[12] H. Qin. Efficient verification of determinate processes. In J.C.M. Baeten and J.F. Groote,

editors, Proceedings CONCUR '91, Amsterdam, volume 527 of Lecture Notes in Com···

puter Science, pages 471-494. Springer-Verlag, 1991.

[13] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes, and three

problems of equivalence. Information and Computation, 86:43-68, 1990.

[1.4] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com

puter Science. Springer-Verlag, 1980.

[15] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

[16] R. Milner and F. Moller. Unique decomposition of processes. Bulletin of the European

Association for Theoretical Computer Science, 41:226-232, 1990.

[17] F. Moller. Axioms for concurrency. PhD thesis, Report CST-59-89, Department of

Computer Science, University of Edinburgh, 1989.

[18] A. Rabinovich. Checking equivalences between concurrent systems of finite agents (draft

of extended abstract). Preprint, 1991.

/

