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Abstract 

Recently, Milner and Moller have presented several decomposition results for processes. Inspired 
by these, we investigate decomposition techniques for the verification of parallel systems. In 
particular, we consider those of the form 

(I) 

where Pi and Qj are (finite) state systems. We provide a decomposition procedure for all Pi and 

Qj and give criteria that must be checked on the decomposed processes to see whether (I) does or 

does not hold. We analyse the complexity of our procedure and show that it is polynomial in n, 

m and the sizes of Pi and Qj if there is no communication. We also show that with communication 

the verification of (I) is co-NP hard, which makes it very unlikely that a polynomial complex

ity bound exists. But by applying our decomposition technique to Milner's cyclic scheduler we 

show that verification can become polynomial in space and time for practical examples, where 

standard techniques are exponential. 
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1 Int:roduction 

Most common techniques for the automated verification of parallel systems are based on 
some kind of state-space exploration. Contemporary computer technology limits exploration 
to state spaces of about 107 states. However, state spaces of most parallel systems are 
substantially larger. 
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2 1 INTRODUCTION 

This problem is identified by many researchers, and various solutions have been proposed. 
For instance one may apply minimisation techniques when constructing state spaces [2], one 
may represent the state space using hash techniques [11], or one may restrict the state space 
using some additional information [7]. A more successful approach seems to be the smart 
encoding of state spaces, employing the regularity that is often present in the state spaces 
of parallel systems. In particular, the results based on binary decision diagrams (BDD's) 
seem more than promising [3]. An argument that one could raise against BDD's is that it 
is not directly based on notions inherent to processes, such as amount of communication, 
the structure of processes or the structure of communication, etc. This may obscure the 
true causes of the success of BDD's, and it may hinder further developments and a proper 
understanding of applicability. 

Recently, some interesting decomposition results have emerged in process theory [16, 17]. 
Inspired by these rysults, we study whether decomposition techniques can be applied in order 
to obtain alternative means for the verification of parallel systems. Basically, the idea is as 
follows: Consider processes p = 11::,1 Pi and q = /1}:1 Qj· We want to establish whether p = q 
where '=' represents some reasonable process equivalence. In order to do so, we decompose 
each Pi into Pil ... Pim and each qj into Qjl ... qjn according to some particular decomposition 
rules. Then we must verify whether Pij = Qji for all i and j. The method is beneficial if the 
combination of performing the decompositions of the Pi's and q/s along with checking each 
Pij = Qji is considerably more efficient than checking p = q directly. We show that this is 
indeed so in particular cases, but we show also that it is very unlikely to be true in general. 

This paper first presents the decomposition scheme (after some preliminaries). Then we 
analyse what we have actually gained. It turns out that when there is no communication, 
verification via decomposition has a polynomial time and space complexity in the number 
and size of the processes Pi and Qj. In the case where communication is allowed, we provide a 
straightforward proof that verification is co-NP hard even in the case where the Pi's and qj's 
are finite and determinate. More results of this kind can be found in [18]. Hence, polynomial 
verification is rather unlikely in this case. 

In order to understand whether this .intractability result rules out application of our tech
niques, we consider an example. This is Milner's scheduler [14], which is generally used as a 
benchmark for verification tools [6, 10, 12], due to its simple description, and its exponentially 
growing state spaces that it generates (in the number of 'cyders' from which the scheduler 
is constructed). Verification via decomposition uses only polynomial time and linear space. 
The largest intermediate state space that is used in the verification has size 3k where k is the 
number of cyders in the scheduler. 

Our conclusions from the complexity analysis is that decomposition can indeed be a good 
technique for the verification of parallel systems. When there is little communication, i.e. in 
the case where the system has been adequately structured, the benefits of this technique may 
be especially high. 
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2 P:reliminaries 

In this paper we do not employ a particular process language. Rather, it turns out to be 

handy to work in a setting where processes are viewed as (possibly infinite) transition systems. 

Definition 2.1. A transition system ( TS) p = (Sp, n:p, --+p, sp) is a four tuple, where 

• Sp is a non-empty set of states; 

• G:p is a set of actions; 

• --+p~ Sp x n:P x Sp is a transition relation; and 

a Bp E Sp is the initial state of the transition system. 

We use p, q, r to ran~ over transition systems, and n: to range over sets of actions. Elements 

( t, a, t') of a transition relation --+p are often written as t ...!!:_,,P t'. We also write t a~n P t' 

for t ~P • • • ..!!:!::..+P t'. A function n: gives the set of actions of a transition system, e.g. 

n: ( (Sp, n:p, --+p, sp)) = G:p. The TS p is finite-state if SP is finite, and it is finite if there is no 

. fi 't t a1 a2 a;-1 a; 
m me sequence 1 --+p t2 --+p · · · --+p ti --+p ti+l · ·" 

Definition 2.2. A TS p = (S, a,--+, s) is called determinate with respect to some equivalence 

relation ,....., iff for all t E S and a E a: t ....!!:_,, ti and t ~ t2 implies ti ,..., t2. In general it 

will be clear which equivalence relation is meant, in which case we will simply say that p is 

determinate. 

Definition 2.3. Let a be a set of actions. We have the following 'standard' transition 

systems. 

• The willing process on a is the process that can always do an action from a: 

where --+ = { (s,a,s} I a Ea} 

o The nil process is not willing to do anything: nil ~f w0. 

Definition 2.4. Let p = (Sp, ap, --+p, sp) and q =(Sq, aq, --+q, sq) be TS's. We can define 

the following useful operations on TS's. 

® For an action a the a-prefix of p is the TS 

• Assuming (without loss of generality) that Sp n Sq = 0, the sum or choice of p and q is 

the TS 

where 
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Figure 1: The process p = b:a:nil II c:a:nil 

---+p+q = ---+p U ---+q U { (sp+q, a, s') I Sp _!!:_.,P s' or sq __!!:_., s'}. 

1111 The parallel composition or synchronisation merge of p and q is the TS 

p II q ~ ( Sp x Sq, ap U aq, ---+Pllq' (sp, sq)) 

where 

The synchronisation merge thus forces common actions to synchronise. We write 117=1 Pi 
for PI II · · · II Pn and IJ7=l,i# for P1 II ... II Pk-l II Pk+l II ... II Pn· It is dear from the 
definition that the associativity of the composition operator is immaterial. 

1111 Let a1, 0<2 be two sets of actions. The ( 0i:1, a2)-projection of p is the TS 

r'.:21 (p) clef (s n a ) 1 ~ = P' a2 ap, ---+r~~(p)' sp 

where 

iff s -;;- ~ s with bi 'F 0:2 & a E a 1 n o:2 , or { 
b1···bna I d 

s ---+p s for a E a2. 

The projection operator I is also used for traces: (a1 ···an) la is the trace ai ···an from 
which the actions ai f/:. a are removed. 

Remark 2.5. The projection operator I~~ has, as far as we know, not appeared in the 
literature. In this article, it is solely introduced for the purpose of defining the decompositions. 
For an idea how this operator works, consider the process p, given by the diagram in figure 1. 
This represents a transition system with actions a, band c, states s 1, s2 , s3 , s4 and s5 , initial 
state s1, and a transition relation as suggested by the arrows. Clearly p is the result of 
composing P1 = b:a:nil and P2 = c:a:nil in parallel. Using the projection operator I~~ we can 
project p onto its parallel components, where a 1 contains those actions through which the 
components communicate and a 2 contains all the actions of that component. That is, 

{a} ( ) 
P1 = l{a,b} P and {a} ( ) 

P2 = l{a,c} P · 
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In the composition, the actions a and b appear in p1 , a and c appear in p2, and a is the action 
through which p1 and p 2 communicate. Note that when calculating p1 and p2, the possibility 
of extending actions backwards is essentially used. Also note that if we take a1 = 0, then 

the projection operator 1~2 (p) behaves as the encapsulation operator 8a(p)\a2 (p) from ACP 

[l] and the restriction operator p\ ( a(p) \ a 2) from CCS [15]. 

Remark 2.6. We now have three ways of specifying transition systems. We can describe 
them explicitly, we can write them down algebraically using the operators that have just 
been introduced, or we can draw a diagram such as in figure 1. In this paper, we also specify 
transition systems by simple recursive equations containing only choice, action prefix and a 
single variable. A construction that is sufficient for the examples in this paper is the following. 
Consider an equation 

X = e(X) (1) 
/ 

where e consists of action prefixes and choices only. Define the self-loop TS 

r = ({s},{*},{(s,*,s)},s) 

where*~ a(e(nil)). Construct the TS e(r) = (S,a,--+,t). The TS defined by (1) is then 

the TS p = (S, a\{*}, ::.__,.P, t) where 

--+p = (--+ n (S x a(e(nil)) x S)) U { (t1, a, t2) I ti ~ ti and t ~ t2 }· 

For the examples in this paper, this definition coincides with the generally accepted interpre
tation of equations. 

Remark 2. 7. We can give operational characterisations of the above operators. We do not 
go into this any further except to list them as follows, and refer the interested yet uninitiated 
reader to e.g. [9] for understanding in interpreting these. 

a a:p--+ p 

p~p' 
p+q ~ p' 

p~p' ( ) 
II a ' II a~ a(q) p q--+p q 

3 Basic Axioms 

a I q--+ q 
p+q~q' 

q ~ q' ( ) II a II ' a~ a(p) p q--+p q 

a 1 a 1 p--+p q--+q 

P II q ~ P1 II q' 

We will prove our results using axioms for II, I and W only. In this section we introduce these. 
The axioms hold in strong bisimulation semantics, and therefore in most other reasonable 
semantics as well. 
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Definition 3.L Let p = (Sp, ap, ---+p, sp) and q = (Sq, aq, ---+q, sq) be TS's. We call a 
relation R ~ Sp x Sq a (p, q)-bisimulation relation iff t'Ru implies 

1. if t ~Pt' then u ~q u' for some u1 E Sq with t'Ru1; and 

2. if u _::_,q u' then t ~Pt' for some t' E Sp with t'Ru'. 

Two states t E Sp and u E Sq are (p, q)-bisimilar, written tt±p,qu, iff there is a (p, q)
bisimulation relation R relating t and u. We abbreviate +-'1-p,p by ._p· The two TS's p and q 
are bisimilar, written p+.-+q, if o:(p) = a(q) and sp.......,,p,qBq· 

Lemma 3.2 (Congruence). t:± is a congruence with respect to action prefix, choice, parallel 
composition and (a1 , a2)-projection. 

Proof. Standard'/ D 

The axioms that we use are presented in table 1. We do not strive for completeness of the 
axiomatisation. Rather, the axioms need only be sufficiently complete to satisfy our goal. 

Lemma 3.3 (Soundness). The axioms in table 1 are sound with respect tot:±. 

Proof. For each axiom, we must construct an appropriate bisimulation relation. Let p = 
(Sp, ap, ---+p, sp) and q = (Sq, aq, ---+q, sq)· We present proofs only for axioms R4, Rs and 
~. 

R4 . We will show that the identity relation on Sp is a (I~~ (p), I~~ ( 1~;~~ (p)) )-bisimulation. 
Suppose then that s ~r"'1(p) s'. We will show that s ~."'i(,°'iu"'( )) s'. We know that °'2 '°'2 la2Ua P 
a E a2. We distinguish between the following two cases. 

(a) a r/. a1. Then, s ~P s1 and thus s ~ta1 ua() s'. Therefore s ~r°'i(,a 1 ua( l) s'. 
a2Ua P °'2 I a2Ua P 

we have that s ~t"'i(,a 1 u"(. )) s'. 
"2 la2Ua P 

Now suppose that s ~t"i(,"' 1 ua( )) s'. We will show that s ~r°'I(p) s'. We know that 
°'2 la2U<> P °'2 

a E a2. We distinguish between the following two cases. 

(a) a'/. a1. Then s ~r"1u"'( ) s'. From the side condition that a 2 n a= 0 we know a2Ua P 

that a 'I. a. Therefore s ~P s' and hence s ~r~~(p) s'. 

bi '"bna a E 0:1. Then s ---+ t"'lu"'( ) s' for some bi €/:. 0:2. So bi E a and therefore 
a2Ua P 

(b) 

c11."Cml lb1 cn ... cn b cn+l ... cn+l a 
1 mn n 1 mn+l I • · d H a / s ---+ P • • • ___,. P - P s with cj 'F a 2 U a. ence s -+ r~i (p) s . 
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II 1 p II ( q II r) = (p II q) II r 

112 P II q = q II P 

R1 P = r~(p) (P) 

R2 r~~ (P) = r~~na(p) (p) 

R3 r~~ (P) = r~;na2 (p) 

R4 r~~ (p) = r~~ ( r~~~~ (p)) if a2 n a = 0 

Rs r~ (p II q) = r~~ (p) II r~~ (q) if a1 ~ a(p) n a(q) ~ a2 

Re P = P II r~ (p) if r~ (p) is determinate 

R1 I@ (p) = nil 

W1 P II Wa(p) = P 

W2 w°'l II Wa2 = Wa1Ua2 

W3 I~~ (Wa) = Wa2na 

Table 1: Basic axioms for operators 

Rs. We will show that the identity relation on Sp x Sq is a ( r~~ (p II q)' r~~ (p) II r~; 
(q) )-bisimulation. Suppose then that (s1 , s2) ~t~~(Pllq) (s~, s2). We will show that 

(s1, s2) ~t~~(P)llt~~(q) (s~, s2). W~ know that a E a2. We distinguish between the 

following two cases: 

(a) a ~ a1. Then (s1, 82) ~Pllq (8~, s2). We distinguish between the following three 

sub cases: 

· Th a 1 d a 1 Th f a 1 d 
i. a E ap n aq. en 81 --+P 81 an 82 --+q 82. ere ore 81 --r~~(p) 81 an 

s2 ~t~~(q) 82. Hence (81, 82) ~r~~(P)llt~~(q) (8~, 82). 

11. a~ aq. Then s1 ~P 8~ and 82 = s2. Thus 81 ~t~~(p) 8~ and again we have 

that (81, 82) ~r~~(p)ilt~~(q) (8~, s2). 

iii. a tJ. ap. This case is symmetric to the case above. 
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(b) a E a1. Then (si, s2) bi~aplfq (s]_, s2) for some bi ft a2. As a E 0:1, we know from 
(b1 "'bn)i apa 1 the side condition that a 1 ~ ap n aq that a E ap n aq. Hence s1 ____. P s1 and 

(b1···bn)ra:qa 1 a 1 a I J: s2 ___,. q s2. Thus s1 -r~~(p) s 1 and s2 -r~~(q) s2 and we thereiore have 
(s1, s2) ~t~~(P)llt~~(q) (sl_, s2). 

Now suppose (si, s2) _::_,.r~~(p)lft~~(q) (s]_, s2). We will show (s1, s2) ~t~~(Pllq) (si, s2). 
We know that a E a 2 . We distinguish between the following three cases. 

(a) a E ap n o:q. Then a E a( f~~ (p)) and a E a( f~~ (q)). Hence s1 _::_,.t~~(p) s]_ 
a I bl·"bna 1 Cl"'Cma 1 d and s2 -r~~(q) s2 • Therefore s1 ___,. P s1 and s2 ____. q s2 for some bi, Cj v:; a2. 

From the side condition that apno:q ~ o:2 , we know that bi, Cj <I, o:pno:q. Therefore 
( ) b1·"bnci···cma (' ') ( ) a (' ') s1,s2 / ____. Pllq s1,s2 . Hence s1,s2 -r~~(pllq) s1,s2 . 

(b) a~ aq. Then s2 = s2 and s1 _::_,.r~~(p) s]_. From the side condition that 0:1 ~ o:q, 

we know that a ft a1. Therefore s 1 _::_,.P si. Thus ( si, s2) ~Pllq ( sl_, s2) and so 
again (s1, s2) _::_,.t~~(Pllq) (sl_, s2). 

( c) a ft °'p· This case is symmetric to the previous case. 

~. It is sufficient to prove that the relation 

R ~f { (s, (t, u)) I s+-+pt & 3 v+-+rg(p)u such that v b~n P s for some bi rf. a} 

is a (p, p II r~ (p) )-bisimulation relation. Suppose then that sR( t, u) and s _::_,.p s'. We 
must show that (t, u) _::_,.Plltg(p) (t', u') where s'R(t', u'). We know that t _::_,.Pt' where 

I I bi .. ·bna I d s ±=±pt and that there is some v±=±rg(p)U such that v ___,. P s for some bi v::- a. We 
distinguish between the following two cases. 

(a) a E o:. Then v _::_,.rg(p) s' and thus u ~rg(p) u' where s'±::±rg(p)u'. Hence 
(t, u) _::_,.Plltg(p) (t', u') and s'R(t', u'). 

(b) a tf_ a. Then (t, u) _::_,.Pllfg(p) _(t', u) and s'R(t', u). 

Now suppose that sR(t,u) and (t,u) _::_,.Pllrg(p) (t',u'). We must show that s ~P s' 
I ( I ') b1 "'bn where s R t, u . We know that there is some vnrg(p)U such that v --+ P s for some 

bi tf_ o:. Furthermore, t _::_,.P t' so s _::_,.P s' where s' +-+pt'. It remains to show that 
s'R(t', u'). We distinguish between the following two cases. 

( ) Th a I d a I a I h I I a a E a. en v -r~(p) s an u ---r~(p) u, so v -r~(p) v w ere u +-+r~(p)v. 
From the side condition that r~ (p) is determinate (with respect to f-tt~(p)), we 
have that s'+-+rg(p)V1• Hence s1+-+rg(p)u' and thus s'R(t',u'). 

(b) a f/. a. Then u = u', so again we have that s'R(t', u). 

D 
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Example 3.4. The following examples show why the conditions in R4, R5 and ~ of the 

last theorem are necessary. For the condition in R4 , observe that 

r~b} (a:b:nil) - nilb whereas r~b} ( rm (a:b:nil)) - b:nil. 

By nilb, we mean the TS nil with alphabet {b }, which can be defined by f~b} (a:b:nil). For 

the first condition in R5 , observe that 

r~~'.c} ((a: nit+ b:nit) 11 c:nit) - b:nil 11 c:nit + c:nil 

r~~'.c} (a:nit+ b:nit) 11 r~~:c} (c:nit) - b:nil 11 c:nil. 

For the second condition in R5 , observe that 

r~:~ (b:a:nil 11 ),,a:nit+ b:nil)) - a:nit + a:a:nil 

r~:~ (b:a:nil) 11 r~:~ (a: nit+ b:nit) - a:a:nil. 

whereas 

whereas 

Finally, for the condition in ~' observe that for p = a:b:a:nil + a:b:b:nil, 

P 11 r~:~ (p) - P + a:b:nil. 

4 Verification via decomposition 

In this section we formulate our main result which explains how the verification of an equation 

p = q with p = ll~=l Pi and q = llj:,1 qj can be performed via decomposition. In theorem 4.4 

we describe the decomposition and we give some conditions that must be checked in order for 

the method to be applicable. In the theorem, we use p and q on both the left and right hand 

sides, so that nothing is apparently gained by applying the theorem. However in remark 4.6 

we show how p and q can be eliminated from the right hand side. 

We begin with some straightforward lemmata that are used in the proofs to follow. 

Lemma 4.1. p = p II Wa whenever o: ~ a(p). In particular, p = p II nil. 

Proof. P ~1 P II Wa(p) ~ P II Wa(p) Ii Wa ~ P II Wa. D 

Lemma 4.2. Let p = Pl II P2· p = p II r~ (p2 II Wa) whenever O'. ~ a(p) and r~ (P2 II Wa) is 

determinate. 

Proof. 

lemma 4.1 
p 

lemma 4.1 = 

Pl II P2 I\ Wa 

Pl II P2 II Wa II r~ (p2 II Wa) 

p II r~ (P2 II Wa) 
D 
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Lemma 4.3. l~u~ (p) 111~ (p) =l~u~ (p) whenever 0: n /3 = 0 and r~ (p) is determinate. 

Proof. 

l~u~ (p) R2,~,Re ana(p) ( II ana(p) ( )) l(aU~)na(p) P lana(p) P 
& ana(p) ( ) II ana(p) ( ana(p) ( )) 

l ( aU~)na(p) P l ( aU~)na(p) l ana(p) P 

l~u~ (p) 111~ (p) 

D 

/ 

Theorem 4.4 (Verification via decomposition). Let p = ll~=I Pi and q = 11;:1 qj . .Let a 
consist of the synchronous (communicating) actions of p and q. That is, 

Assume that I~ (Pi II Wa) and I~ (qj II Wa) are determinate for all 1 $ i $ n and 1 $ j $ m. 
Then 

Pii = qji for 1 $ i $ n, 1 $ j $ m, 
m 

p=q itf 
ta (p) - 11 p· · for 1 <_ i <_ n, and I aUa(p;) - . iJ 

J=l 
n 

l~ua(qj) (q) = .11 qji for 1 $ j $ m, 
i=l 

where 

def ( ) p·. - I°' P 
iJ - au (a(p;)na(qj)) 

·and def ( ) q .. -1°' q 
Ji - a U ( a(p; )na( qi)) 

Proof. 

( "*'=) For each 1 $ i $ n we can prove that: 

n 
P lem1!:ha 4·2 P II II l~ (Pj II Wa)· 

j=l,jr'=i 

By repeating this process for all i we get 
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lemma!_ 4.2,4.1 
p (P II Wa) II (.IT . IT .. (I~ (Pj II Wa))) 

i=l J=l,3#:i 
n n n 

II (PillWa) II (II II (f~(PjllWa))) 
i=l i=l j=l,j#:i 

i]1 ((Pi II Wa) II ( iJ!i=Fi r~ (Pi II Wa))) 

. IT ( l~ua(pi) (Pi II Wa) II ( . n. . r~ua(p;) (Pj II Wa))) 
i=l J=l,J#:i 

.IT .IT (i~ua(p;)(PillWa)) 
i=l J=l 

i]l ( f~ua(p;) ( j]l (Pj II Wa))) 

lemma 4.1 

/ 

n 

.11 ( r~ua(p;) (p)) 
i=l 

assu12!:Ption 
n m 

II II Pij 
i=l j=l 

In the same way, we can deduce that q = 11}:1 ll~=l %· Hence from the assumption that 

Pij = qji for each 1 sis n and 1 s j s m, we can deduce that p = q. 

( =>) First it is clear that p = q immediately implies that Pij = qji· So we now prove that 

p = q implies the second condition of the theorem. For each 1 s i s n we can compute 

the following. 

m 

II Pij 
j=l 

= 
lemma 4.1 = 

= 

lemma 4.3 
= 

lemma 4.1 

jl ( r:u(a(p;)na(qj)) (p)) 

j1 ( r:u(a(p;)na(qj)) (q II Wa)) 
m m 

jil1 ( r:u( a(p;)na(qj)) ( kil1 ( qk II w a))) 

jElkITl ( r:u(a(p;)na(qj)) (qk II Wa)) 
m m 

jillkill ·( f~u(a(p;)na(qj)na(qk)) (qk II Wa)) 

~ ( ~ f~ (qk II Wa)) II f~ua(p;) (qj II Wa) 
j=l k=l,k:f;j 

.~ ( f~ua(p;) (qj II Wa)) 
J=l 

r~ua(p;) (j1(qj II Wa)) 

r~ua(p;) (q) 
l~ua(p;) (p) 

Finally, the third condition can be deduced in the same way. D 
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Remark 4.5, One may wonder whether it is enough to only check Pij = Qji in theorem 4.4. 
This would be a substantial optimisation. Unfortunately, this is not possible, as shown by 
the following example. Consider p = (a: nil+ b:nil) II c:nil and q =a: nil II (b:nil + c:nil). One 
may try to verify that p = q by applying theorem 4.4. In this case a= 0, so the determinacy 
constraints are easily satisfied. Calculating each Pij and Qji yields the following. 

P11 Qn = a: nil 
P12 = Q21 nil 

So dearly Pij = Qji for all i and j, but p -::/: q. 

P21 = Q12 b: nil 
P22 Q22 = c: nil 

Remark 4.6. The right hand side of theorem 4.4 can be calculated using the following 
observations. 

Pij = / 1:u(a(p;)na(qj)) C~1 Pk) 

lemma~.1, Rs k~l ( r:u(a(p;)na(qj)) (Pk II Wa)). 

We can calculate l~ua(p;) (p) using the following: 

l~ua(p;) (p) = r~ua(p;J ( .TI (Pj II Wa)) 
J=l 

n 

.11 ( r~ua(p;) (Pj II Wa)). 
J=l 

Of course this also applies to Qji and f~ua(qj) (q). 

In section 6 we give an application of the above technique which takes advantage of the 
preceding remark. However we first analyse the verification problem to demonstrate the 
benefit of the technique. 

5 On the complexity of verification by decomposition 

In this section we consider the complexity of verification through decomposition. We do this 
in the setting of bisimulation equivalence, as the verification of trace based equivalences is 
generally intractable on finite state systems [13]. We show that in the case where there is no 
communication between the components, the verification is polynomial. In the case where 
there is communication between the components, we show that the verification is co-NP hard, 
and hence inherently intractable. The proof that we give is a simplified variant of those given 
in [18]. From these observations we draw the conclusion that verification via decomposition 
is especially worthwhile when there are relatively many asynchronous or non-communicating 
actions, and that its use is rather limited if almost every action is used for communication. 
But it is exactly the former case that leads to enormous state graphs, while in the latter 
case state graphs remain relatively small, and therefore, they can be more readily handled 
by existing means. 
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We start out by reformulating theorem 4.4, but now with the restriction that there are 

no communication actions among the component processes, which means that a = 0. For 

convenience, we write ffJ for f~. 

Corollary 5.1. Let p = ll~=l Pi and q = llj:1 Qj with a(pi) n a(pj) = 0 for all 1 S i < j S n 

and a(qi) n a(qj) = 0 for all 1::; i < j:::; m. Then 

p=q iff 

where 

def / 
Pij = I a(qj) (Pi) 

Pij = Qji for 1 S i ::; n, 1 ::; j ::; m, 
m 

Pi = II Pij for 1 ::; i ::; n, and 
j=l 

n 

Qj = II Qji for 1 ::; j ::; m, 
i=l 

and def ( ) 
Qji = la(p;) Qj 

Proof. From Ri, R2, R1, lemma 4.1 and remark 4.6, we can show that Pi =la(p;) (p) and 

Qj =la(qj) (q), and from R2, R1, lemma 4.1 and remark 4.6, we can show that la(pi)na(qj) 

(p) =fa(qj) (Pi) and fa(pi)na(qj) (q) =fa(pi) (qj)· The result then follows directly from theo

rem 4.4. D 

In order to verify that p = q, we must check the three identities at the right hand side of 

the curly bracket in corollary 5.1. In table 2 we have put the complexities for each step and 

the complexity for the total calculation. Here, Sr and --+r represent the sets of states and 

transitions, respectively, of TS r. We assume that the number of states of our TS's is smaller 

than the number of transitions, as it is reasonable to assume that all states are reachable. 

The complexities in table 2 are motivated as follows. 

1. In order to calculate Pij, we take Pi and remove all transitions labelled with actions not 

in a( Qj). Then we remove all unreachable states, along with their outgoing transitions. 

This takes 0(1 --+Pi I) time and space. In the same way we construct Qji· In order 

to calculate Pij = Qji, we apply a standard bisimulation algorithm [13], which takes 

o( (I --+pi I+ I -+qj I) log(ISp;! + ISqj I)) time and O(I --+Pi I+ I --+qj I) space. As 

this must be repeated for each 1 ::; i ::; n and 1 ::; j ::; m, we obtain the complexities as 

given in table 2.1. 

2. We obtain the second complexity measures via the following observation: 

Lemma 5.2. Let ro = ( Sro' O'.ro' ---+ro' Bro) and r1 = ( Sr1' C¥r1' -r1' Sq) with O'.ro n 
O'.r 1 = 0. For all u, u' E Sr0 and v, v' E Sri: 

I d I u -ro u an v -r1 v jff (u,v) -rollri (u',v'). 

Proof. Straightforward. D 



14 5 ON THE COMPLEXITY OF VERIFICATION BY DECOMPOSITION 

Equality Time complexity 
Space complexity 

Pij = qji (1 Si Sn o(mn(II18?'(/ ---+Pi I+ I -qi l))log(II18?C(ISp;/ + ISqil))) 
iJ ~J 

1 S j Sm) O ( II18?C (I -Pi I + I -qi I)) 
i,J 

m 

0 ( m n mrx I -Pi I log(my-x /SPi I)) Pi= II Pij (1 S i S n) 
j=l 

o( mrx I -Pi 1) 
n 

o(mn m;xl ---+qi llog(mfXISq3 1)) qi= 11 qji (1 S j Sm) 
i=l 

/ o( m;x I -qj 1) 

p=q 0 ( m n ( II1~x(I ---+p; I + I ---+qi I)) log ( ~8?C(ISp;/ + /Sqi I))) i,1 i,J 

~ o( ~8?'(1-Pi I+ 1-qj 1)) 
i,J 

Table 2: Complexities of deciding bisimulation in non-communicating processes 

Reading this lemma from right to left, it says that if r0 II r 1 is not minimised with 
respect to bisimulation, i.e. it contains different states that are bisimilar, then this 
is due to the fact that either ro or r 1 was not minimal with respect to bisimulation. 
Reversing this reasoning says that if we ensure that ro and r1 are minimal, then ro II r1 
will also be minimal. 

We use this observation as follows in constructing 11;:1 Pij· First construct Pil as in
dicated above. This takes 0(1 -:-"'pi I) time and space. Minimise Pil with respect 
to bisimulation, obtaining Pil· Using the ordinary bisimulation algorithms, this takes 
o(/ -Pi / log(/Sp;i)) time and 0(/ ---+Pi I) space. Now construct Pi2 and its minimised 
variant Pi2 likewise. Then calculate Pil II Pi2, but stop if the number of states of the 
result exceed those of Pi· As Pil and Pi2 are minimal w.r.t. bisimulation, Pil II Pi2 is 
minimal. Hence if the number of states of Pil II Pi2 exceed the number of states of 
Pi, then Pi cannot be bisimilar to 11;:1 Pij· The complexity of calculating Pil II Pi2 is 
therefore O(I -•p; I). We thus calculate 11;:1 Pij by stepwise adding Pi3,Pi4, ... ,Pim in 
the same way. This takes o(ml ---+Pi llog(ISp;I)) time and 0(1 -Pi I) space. The 
verification of Pi = 11;:1 Pij can then be done without increasing the time and space 
complexities. The steps above must be repeated for each 1 s i s n. So we obtain the 
figures in table 2. 
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3. The analysis in this case is the same as in case 2, using q instead of p. 

4. Combining the above gives these complexities for calculating p+-+q. 

The procedure sketched above is rather wasteful, e.g. Pij and Qji are calculated rather often. 

We have not investigated optimisations, as we expect that they will not improve the time 

and space complexities. However, the example in section 6 gives the impression that by using 

the regularity of processes Pi and Qj, substantial improvements can be expected. 

In the case where there is communication between the processes, then the verification 

of ll~=I Pi = 11;:1 Qj becomes co-NP hard for each process equivalence between trace and 

bisimulation equivalence. We give a straightforward proof of this fact, actually showing that 

in the case that Pi and Qj are all finite and determinate, this verification is co-NP complete. 

In [18] it is shown that this verification becomes P-space hard if Pi and Qj are finite state. It 

also gives an EXP~ACE completeness result in case abstraction of actions is allowed. 

The proof technique in this section is a straightforward reduction from 3SAT [4]: Let 

x1, ... , Xk be variables and lij E {xi, ... , Xk, --ix1, ... , -.xk}. The question whether 

n , 

/\ (lil v li2 v li3 l 
i=l 

is satisfiable is well-known to be NP-complete. There is a straightforward polynomial way 

of reducing an instance of 3SAT to an instance of 3SAT such that ki1 < ki2 < ki3 where lij 

refers to a variable Xkii 1 . So 3SAT with this restriction is still NP-complete. 

Lemma 5.3, Determining whether ll~=l Pi = 11;:1 Qj holds is co-NP complete for finite 

determinate Pi and Qj. 

P:roof. First we show co-NP hardness by reducing from 3SAT with the ordering restriction 

to the question whether (ll~=l Pi) II p = p', for finite determinate Pi, p and p', does not hold. 

Consider the following instance of 3SAT with restriction over variables x1 , ... , xk: 

n 

/\ (lil v li2 v li3). (2) 
i=l 

The processes Pi, p and p' are constructed as in figure 2. Process Pi has actions lii, li2, li3, 

....,zi1, -.li2, -.li3 and .j. Here -,[ij stands for •x if lij = x and for x if lij = ....,x. A step lij 

corresponds to considering a valuation a that assigns true to lij, and a step -.lij corresponds 

to considering a valuation a that assigns false to lij. Clearly, Pi can perform a .j step iff 

O"(li1 V li2 V li3) is true. 

The process p is used to guarantee that in (Jl~=l Pi) \I p, first a step corresponding to x1 

must be performed, then one corresponding to x2 etc. It has actions x1, ... , Xk, -.x1, ... , ....,Xk 

1First remove all clauses li1 V li2 V li3 that contain a variable occurring both with and without negation. 

Next remove double occurrences of variables in the clauses. Finally, introduce two new variables Xk+l and 

Xk+2 and add these to incomplete clauses. 
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0 0 0 

7~ X1 •X1 X1 X1 

0 0 0 0 

li2 ...,zi2 i~ X2 X2 X2 •X2 

0 

1{}i3 0 9 9 

li3 ...,zi3 17~ x{}x• x{}x, 0 0 0 

jv jv jv jv 0 0 0 

/ 
0 

Figure 2: The processes Pi, p and p' 

and ..;. The process p' is equal to p with the only difference being that it has no ../ step at 
the end. 

We have the following fact, from which our co-NP hardness result follows immediately. 
n n 
/\ ( li1 V li2 V li3) is satisfiable iff ( II Pi) II p = p' does not hold. 
i=l i=l 

Here '=' represents any equivalence between trace and bisimulation equivalence [8]. We now 
prove this fact: 

( =>) Let ()be a valuation satisfying (2). Then (117=1 Pi) II p can perform the trace ai · · · ak ../ 
where 

Clearly, such a trace cannot be performed by p'. So, (117=1 Pi) II p and p' are not trace 
equivalent. 

( <=) If (117=1 Pi) II p can perform a trace ai · · · ak ../, then the assignment () defined as: 

( ) { true if ai = Xi, 
() Xi = 

false if ai = -ixi. 

is clearly a satisfying truth assignment for (2). Thus if (2) is not satisfiable, then rn:1 Pi) II p cannot perform traces ending in ..;. So exactly the traces ai ... ak with 
ai = Xi or ai = -ixi can be performed by both (117=1 Pi) II p and p', and hence they 
are trace equivalent. As all processes are determinate, (117=1 pi) II p and p1 are also 
bisimulation equivalent [5]. 
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9i 

9i+l 9i+l 
@;), 

........ ~i) 
Figure 3: A cycler and a scheduler 

For completeness it is sufficient to guess a trace ai · · · ak J and to check whether for each 

1 ~ i ~ n, akii aki2 akis J is a trace of Pi, where lij refers to a variable Xkij. This can clearly 

be done in polynomial time. As a1 · · · ak J is always a trace of p, it must also be a trace of 

(117=1 pi) II p, while itcannot be a trace of p'. D 

It is not difficult to extend the proof above to include only two-way communication (see 

[18]) or to use only two actions. However this is outside the setting of this paper, and it 

complicates matters sli~htly. 

6 An application 

In this section, we apply the decomposition theorem to Milner's scheduler [14], which is con

structed out of simple components, called cyders. The scheduler is often used as a benchmark 

for programmes which calculate process equivalences [6, 10, 12], because its state space grows 

exponentially with the number of cyders. Using our decomposition technique, we can avoid 

this exponential blowup. 

The scheduler schedules k processes in cyclic succession, so that the first process is reacti

vated after the kth process has been activated. However, a process must never be reactivated 

before it has terminated. It is constructed of k cyders C0 , ... , Ck-I, as depicted in figure 3, 

where cycler Ci is dedicated to process i. The left part of the figure shows the transition sys

tem for cycler Ci, while the right part depicts the architecture of the scheduler. The dotted 

lines indicate where the cyders synchronise. Cycler Ci first synchronises on a signal 9i which 

indicates that it may start. It then activates process i via an action ai. Next, it waits for 

termination of process i, indicated by bi, and in parallel, using 9i+li activates the next cycler. 

Here, the indices are taken mod k, so that 9k =go. It then returns to its initial state. The 

cycler ci is described by: 

Co = ao:(bo:91:Co + g1:bo:Co), 

Ci = 9i:adbi:9i+1:Ci + 9i+1:bi:Ci) for 1 ::; i < k. 

The first cycler is assumed to have been initiated. The complete scheduler for k processes is 

thus described by: 

Schedk = Co II C1 II ... 11 ck-1 · 
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A correctness criterion for the scheduler has been formulated in [14]. The ai and bi actions 
must happen alternately, and the ai actions must happen cyclically. For the purposes of this 
example, we are also interested in the precise relationship between the synchronisation actions 
9i and the actions bj. Therefore we prove the scheduler Schedk equal to the specification 
Correctk from which the behaviour of the scheduler can easily be understood. The process 
Correctk is defined by 

where 

BBk = ao:g1:a1: · · · :gk-1:ak-1:go:BBk, 
Do = ao:bo:go:Do, 
Di = gi:ai:bi:Di for l $ i < k. 

/ 
The letters BB in BB k stand for 'backbone'. It is easy to see that Correctk satisfies the 
correctness criteria as given by Milner. This can be shown formally by applying hiding, but 
as this is rather standard, we do not prove that here. For an idea of the proof, see the 
verification of the scheduler in [14]. ' 

We wish to apply theorem 4.4 to verify that Schedk = Correctk. We thus let Po = Cb and 
Pi= Ci for l $ i < k, and define Qj = Dj for 0 $ j < k and Qk = BBk· 

First note that a = { ai, 9i I 0 $ i < k }. A small calculation tells us that r~ (Pi II Wa) is 
bisimilar to Ei II Wa, where Ei is defined by 

Eo = ao:g1:go:Eo, 
Ei = 9i:ai:9i+1:Ei for l $ i < k, 

and that r~ (qj II Wa) is bisimilar to Fj II Wa, where Fj is defined by 

Fo = ao:go:Fo, 
Fj = gfaj:Fj 
Fk = BBk. 

for l $ i < k, 

Obviously these are all determinate, so theorem 4.4 is applicable. We use remark 4.6 to 
calculate Pij, Qji, f~ua(p;) (p) and f~ua(qj) (q). For i =/: j, we find that 

k-1 

Pij = l~O r~u(a(p;)na(qj)) (pz II Wa) 

k-1 

= II r~ (Pt II Wa) 
l=O 

k-1 

II Ez II Wa 
l=O 

= BBk, 
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and 

k 

qji l~O r:u(a(pi)na(qj)) (q1 II Wa) 

k 

II I~ (qi II Wa) 
l=O 

k 

= II Fi II Wa 
l=O 

BBk· 

For i = j, we find that 

k-1 

Pii = l~O r:y(a(p;)na(q,J) (pz II Wa) 

k-l 

= II l~u{b;} (pz II Wa) 
l=O 

(3) 

k-l 

= II E1 II ci II Wa 
l=O,li'i 

ao 91 9i ai 9i+l ai+1 ak-l 90 ao 
if i"' 0 3 .>L!'.l bi bi b'.I b'.l bi 

9i+l ai+l ak-l go ao 

9i 

and 

k-1 

qii = l~O r:u(a(p;)na(qi)) (q1 II Wa) 

k-l 
= · II l~u{bi} (qz II Wa) 

l=O 

(4) 

k 

= II Fz II Di II Wa 
l=O 

.>r-:1 9ob1 aobj . b; a;-1 
ak-1 90 ao ai-1 

ao 91 
-ccif-i #~0 --~ ... 

9i 

9i 

The initial sequences of actions a0 91 · · · 9i in the two diagrams above are only present if 
i =f. 0. Obviously, Pij and qji are thus equivalent. Note that the number of states of each 
intermediate term is always smaller than 3k, i.e. linear in k. 
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Now note that Pii II BBk = Pii and hence ll~=oPij = Pii· Similarly, 117::-~ qji = qjj· Hence 

= r~ua(p;) (p) 
remark 4.6 

= 

k-l 

.11 ( r~ua(p;) (Pj II Wa)) 
J=O 
k-l 

.11 ( rau{b;} (Pj II Wa)) 
J=O 

k 

II Pij· 
j=O 

Equally, from remark 4.6 and (4) we have that r~ua(qj) (q) = 117::-~ qji So according to theo
rem 4.4, it follows that p = q. 
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