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In the monograph [21] we study the shape and smoothness properties of an
attracting invariant set for a class of delay differential equations

ẋ(t) = −µx(t) + f(x(t− 1)) (1)

with parameter µ ≥ 0 and C1-smooth nonlinearities f : R→ R satisfying

f(0) = 0 and f ′(ξ) > 0 for all ξ ∈ R.

The present note surveys the results from [21] and explains the major steps
towards these results.

Let us first point out that equation (1) models a scalar system governed by
instantaneous damping (in case µ > 0) and delayed positive feedback, with at
least one rest point given by ξ = 0. This is rather general. Particular cases
are used to describe, for example, the voltage in single, self-excitatory neurons
with graded delayed response. See [16,29] where equation (1) occurs with

f(ξ) = fαβ(ξ) = α tanh(βξ), α > 0 and β > 0.

Much applied work has been devoted to models for networks of neurons. Equa-
tion (1) also determines a part of the behaviour of such systems. We mention
two examples. The system

Cẋi(t) = − 1
R
xi(t) +

n∑
j=1

Tijfαβ(xj(t− τ))
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with = 1, . . . , n was used as a model for a network of n identical saturating
amplifiers (or neurons) with delayed outputs which are coupled by a resistive
interconnection matrix T = (Tij). Here, xi represents the voltage input at the
ith neuron which is characterized by input capacitance C, parallel resistance
R and activation function fαβ as in the previous model for single neurons. If
the coefficients Tij of the interconnection matrix satisfy

n∑
j=1

Tij =
n∑
j=1

Tkj for all i, k in {1, . . . , n},

then the system has synchronized solutions. These are solutions satisfying
x1(t) = x2(t) = . . . = xn(t) for all t. Clearly, synchronized solutions are com-
pletely characterized by the scalar equation (1) with certain µ and f . The sys-
tem above without delay (τ = 0) was proposed by Hopfield [17,18], a similar
model is also due to Cohen and Grossberg [11]. Marcus and Westervelt

[26] incorporated the time delay in order to account for the finite switching
speed of the amplifiers. For studies of the dynamics of such a system, see the
work of Bélair [6], Bélair, Campbell and van den Driessche [7], Bélair

and Dufour [8], Herz [16], Olien and Bélair [28], Wu [42] and references
therein. The system of the 2n equations

ẋi(t) = −µixi(t) +
n∑
j=1

Tijfαβ(xj(t− τij)− sj(t− τij)),

ṡi(t) = −µssi(t) + Tfαβ(xi(t− τ) − si(t− τ))

with i = 1, . . . , n describes a network of neurons with internal dynamic thresh-
old [5]. Here, si is the threshold in the ith neuron, and it is assumed that the
rate of change of the voltage input xi(t) at the ith neuron does not depend on
the past states xj(t− τij) but on their distances from the thresholds sj(t− τij).
Again, if one looks for a single neuron or if one looks for the synchronized
activities and if

∑n
j=1 Tij > T , µs = µi, and τ = τij for all i and j, then xi− si

satisfies equation (1) with positive feedback. See also [3,4,14,19,20,31,32] for
problems with delayed monotone positive feedback.

We return to the study of equation (1). Every element φ of the Banach
space C of continuous real functions on the initial interval [−1, 0] determines a
solution xφ : [−1,∞)→ R of equation (1), i.e., a continuous function which is
differentiable on (0,∞) and satisfies equation (1) for all t > 0. The relations

F (t, φ) = xt, x = xφ, xt(s) = x(t+ s), s ∈ [−1, 0]

define a continuous semiflow F : R+ × C → C. All maps F (t, ·), t ≥ 0, are
injective and continuously differentiable, and F is monotone with respect to
the pointwise ordering on C. The positively invariant set

S = {φ ∈ C : (xφ)−1(0) is unbounded}
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separates the domain of absorption into the interior of the positively invariant
cone

K = {φ ∈ C : φ(s) ≥ 0 for all s ∈ [−1, 0]}
from the domain of absorption into the interior of −K. One of the first results
in [21] is that the separatrix S is a Lipschitz graph over a closed hyperplane in
C. So, we can speak of the parts of C above and below S.

We are interested in a detailed description of the long term behaviour of
solutions of equation (1). A natural object to study would be the global attrac-
tor of the semiflow, i.e., a compact set A ⊂ C which is invariant in the sense
that F (t, A) = A for all t ≥ 0 and which attracts every bounded set B ⊂ C
in the sense that for every open set U containing A there exists T ≥ 0 with
F ([T,∞) × B) ⊂ U (compare Hale [15]). It is not difficult to show that in
case µ > 0 and f bounded the semiflow has a global attractor. However, in
case µ = 0 every solution on [−1,∞) of equation (1) with an initial datum in
the interior of K ∪ (−K) is unbounded, and thus a global attractor does not
exist. So we have to look for substitutes which are present in all the cases we
are interested in. These are the closure of the unstable set

Wu = {φ ∈ C : There is a solution x : R→ R of equation (1)
with x0 = φ and xt → 0 as t→ −∞}

of the stationary point 0 ∈ C, and subsets thereof. Notice that in case a global
attractor A exists, necessarily Wu ⊂ A since for every ball B centered at 0
and for every t ≥ 0, Wu ⊂ F ([t,∞) × (Wu ∩ B)), which implies that Wu is
contained in every neighbourhood of the compact set A, yielding Wu ⊂ A = A
and Wu ⊂ A.

In order to introduce our further hypotheses on µ and f and the subsets of
Wu studied in [21] we linearize equation (1) at the stationary point 0 ∈ C. The
derivatives D2F (t, 0), t ≥ 0, form a strongly continuous semigroup and satisfy

D2F (t, 0)φ = yφt ,

with the solution yφ : [−1,∞)→ R of the linearized equation

ẏ(t) = −µy(t) + f ′(0)y(t− 1) (2)

given by yφ0 = φ. The spectrum σ of the generator of the semigroup consists of
simple eigenvalues which coincide with the zeros of the characteristic function

C 3 λ 7→ λ+ µ− f ′(0)e−λ ∈ C.

There is one real eigenvalue λ0. The other eigenvalues form a sequence of
complex conjugate pairs (λj , λj) with

Reλj+1 < Reλj < λ0 and (2j − 1)π < Imλj < 2jπ

for all integers j ≥ 1, and Reλj → −∞ as j →∞. The number of eigenvalues
in the open right halfplane depends on µ and f ′(0). Any odd integer 2j + 1,
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j ∈ N, can be achieved. Let P , L, and Q denote the reellified generalized
eigenspaces of the generator associated with the spectral sets {λ0}, {λ1, λ1},
and σ \ {λ0, λ1, λ1}, respectively.

In the simplest case where λ0 < 0, Wu = {0}. If Reλ1 < 0 < λ0 then
one can show that Wu consists of 0 and the segments of two solutions on R,
one being positive and the other negative. Interesting structures of Wu appear
only when Wu is higher-dimensional. We make an assumption on µ and f ′(0)
which is equivalent to

0 < Reλ1.

Then the topological dimension of the set Wu is at least 3, and there is a
3-dimensional C1-submanifold Wloc ⊂ Wu of C which is tangent at 0 to the
reellified eigenspace L⊕P of the spectral set {λ0, λ1, λ1} and has the property
that for every φ ∈ Wloc there exist a solution x : R→ R and T ∈ R such that
x0 = φ and xs ∈Wloc for all s ≤ T . The forward extension

W = F (R+ ×Wloc)

of Wloc is an invariant subset of Wu. If Reλ2 < 0 then W = Wu. Moreover,
in some special cases the set W should be the global attractor. We suspect
that this is true, for example, if µ > 0, Reλ2 < 0, and if f is bounded with f ′

being strictly increasing on (−∞, 0) and strictly decreasing on (0,∞). Compare
Walther [39] where a similar situation is studied for equation (1) with negative
feedback.

We investigate the structure of W under mild additional assumptions on µ
and f which are always satisfied by the models for neural networks mentioned
before. We require that either

µ = 0 and −∞ < inf f or sup f <∞

or

µ > 0 and
f(ξ)
ξ

< µ for ξ outside a bounded neighbourhood of 0.

The last property and the inequality µ < f ′(0), which follows from Reλ1 > 0,
together imply that in case µ > 0 there are a largest negative zero ξ− of f−µid
and a smallest positive zero ξ+ of f − µid, and

f ′(ξ−) ≤ µ, f ′(ξ+) ≤ µ.

The final assumption is that in case µ > 0

f ′(ξ−) < µ and f ′(ξ+) < µ.

The main results in [21] concerning W begin with the relatively easy facts
that W is invariant, and that the semiflow defines a continuous flow FW :
R×W →W . For W and for the part W ∩S of the separatrix S in W , we then
obtain graph representations as follows:
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There exist subspaces G2 ⊂ G3 of C of dimensions 2 and 3, respectively, a
complementary space G1 of G2 in G3, a closed complementary space E of G3

in C, a compact set DS ⊂ G2 and a closed set DW ⊂ G3, and continuous
mappings w : DW → E and wS : DS → G1 ⊕E such that

W = {χ+ w(χ) : χ ∈ DW}, W ∩ S = {χ+ wS(χ) : χ ∈ DS}.

We have

DW = ∂DW ∪
◦

DW , W = {χ+ w(χ) : χ ∈
◦

DW},

and the restriction of w to
◦

DW is C1-smooth. The restriction of FW to R×W
is C1-smooth. The domain DS is homeomorphic to the closed unit disk in
R2, and consists of the trace of a simple closed C1-curve and its interior.
The map wS is C1-smooth in the sense that wS | ◦

DS
is C1-smooth, and for

each χ ∈ ∂DS there is an open neighbourhood N of χ in G2 so that wS |N∩DS
extends to a C1-map on N .

Concerning the dynamics we have that

the set
O = W ∩ S \ (W ∩ S) = {χ+ wS(χ) : χ ∈ ∂DS}

is a periodic orbit, and there is no other periodic orbit in W . The open
annulus (W ∩ S) \ {0} consists of heteroclinic connections from 0 to O. For
every φ ∈W , FW (t, φ)→ 0 as t→ −∞.

The further properties of W are different in the cases µ > 0 and µ = 0.

For µ > 0, W is compact and contains the stationary points ξ− and ξ+ in C
given by the values ξ− and ξ+, respectively. For every φ ∈W ,

ξ− ≤ φ ≤ ξ+.

There exist homeomorphisms from W and DW onto the closed unit ball in
R3, which send

bdW = W \W = {χ+ w(χ) : χ ∈ ∂DW} and ∂DW

onto the unit sphere S2 ⊂ R3. If we define χ− and χ+ by ξ− = χ− + w(χ−)
and ξ+ = χ+ + w(χ+), respectively, then the set ∂DW \ {χ−, χ+} is a 2-
dimensional C1-submanifold of G3, and the restriction of w to DW \{χ−, χ+}
is C1-smooth (in the sense explained above for wS). The points φ ∈W \W∩S
above the separatrix S form a connected set and satisfy FW (t, φ) → ξ+ as
t→∞, and all φ ∈ W \W ∩ S below the separatrix S form a connected set
and satisfy FW (t, φ) → ξ− as t → ∞. Finally, for every φ in the set bdW
and different from ξ− and ξ+, FW (t, φ)→ O as t→ −∞.
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Combining all the results stated so far, one may visualize the invariant set W
in case µ > 0 as a smooth solid spindle which is split by an invariant disk into
the basins of attraction towards the tips ξ− and ξ+.

For µ = 0, the sets W and DW are unbounded. There exist homeomorphisms
from W and DW onto the solid cylinder {z ∈ R3 : z2

1 + z2
2 ≤ 1} which send

bdW = {χ+ w(χ) : χ ∈ ∂DW} and ∂DW

onto the cylinder S1×R. The boundary ∂DW is a 2-dimensional C1-submanifold
of G3, and w is C1-smooth. The points φ ∈W \W ∩ S above the separatrix
S form a connected set and satisfy xφ(t) → ∞ as t → ∞, and the points
φ ∈ W \W ∩ S below S form a connected set and satisfy xφ(t) → −∞ as
t→∞. Finally, for every φ ∈ bdW , FW (t, φ)→ O as t→ −∞.

The first steps toward these results exploit the monotonicity of the semiflow.
Among others we obtain that in case µ > 0 the set W is contained in the
order interval between the stationary points ξ− and ξ+, and that there are
heteroclinic connections from 0 to ξ− and ξ+, given by monotone solutions
x : R→ R without zeros.

An important tool for the investigation of finer structures is a version of the
discrete Lyapunov functional V : C \ {0} → N counting sign changes, which
was introduced by Mallet-Paret [23]. Related are a-priori estimates for the
growth and decay of solutions with segments in (sub-)level sets of V , which
go back to [23] and in a special case to [35,36]. These tools are first used to
characterize the invariant sets W \0 and W ∩S \0 as the sets of segments xt of
solutions x : R→ R with α-limit set {0} which satisfy V (xt) ≤ 2 for all t ∈ R
and V (xt) = 2 for all t ∈ R, respectively. Moreover, nontrivial differences of
segments in W and W ∩S belong to V −1({0, 2}) and V −1(2), respectively. The
last facts permit to introduce global coordinates on W and W ∩ S: It is not
difficult to show that the continuous linear evaluation map

Π2 : C 3 φ 7→
(
φ(0), φ(−1)

)tr ∈ R2

is injective on W ∩ S, and the continuous linear evaluation map Π3 : C → R3

given by
Π3φ =

(
φ(0), φ(−1), cP (φ)

)tr
and (

PrPφ
)
(t) =

1
1 + f ′(0)e−λ0

cP (φ)eλ0t,

where PrP is the spectral projection onto P along Q⊕L, is injective on W . The
inverse maps of the restrictions of Π2 and Π3 to W ∩ S and W , respectively,
turn out to be locally Lipschitz continuous.

The next step leads to the desired graph representation. Guided by results
in [40] on negative feedback equations it seems natural to expect maps from
a subset of L ⊕ P = T0Wloc into Q to represent W , and from a subset of
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L ⊂ V −1(2)∪{0} into Q⊕P to represent W ∩S. We mention here that earlier
Y. Ammar succeeded to write the set W in case µ = 0 as a C1-graph over an
open set in L ⊕ P [1]. On the other hand, our attempts to show that W ∩ S
is given by a map from a subset of L into Q ⊕ P , for all µ and f considered,
were not successful. So we give up the decomposition

C = Q⊕ L⊕ P

as a framework for graph representations, and embed R3 ⊃ Π3W and R2 ⊃
Π2(W∩S) in a simple way as subspacesG3 ⊃ G2 into C, so that representations
by maps w and wS with domains in G3 and G2 and ranges in complements
E of G3 in C and E ⊕ G1 of G2 in C, G1 ⊂ G3, become obvious. It is not
hard to deduce that W is given by the restriction of w to an open set, and
that this restriction is C1-smooth. On W , the semiflow extends to a flow
FW : R×W →W , and FW is C1-smooth on the C1-manifold R×W .

Phase plane techniques apply to the coordinate curves in R2 (or G2) of the
flowlines t 7→ FW (t, φ) in the invariant set W ∩ S, and yield the periodic orbit

O = (W ∩ S) \ (W ∩ S)

as well as the identification

Π2(W ∩ S) = int(Π2O),

which implies that also W ∩ S is given by the restriction of wS to an open
subset of G2.

The investigation of the smoothness of the part W ∩ S of the separatrix S
in W and of the manifold boundary

bdW = W \W

starts with a study of the stability of the periodic orbit O. We use the fact
that there is a heteroclinic flowline in W ∩ S from the stationary point 0 ∈ C
to the orbit O, i.e., in the level set V −1(2), in order to show that precisely one
Floquet multiplier lies outside the unit circle. It also follows that the center
space of the linearized period map, or monodromy operator

M = D2F (ω, p0),

given by p0 ∈ O and the minimal period ω > 0, is at most 2-dimensional. The
study of the linearized stability is closely related to earlier work in [22] and to
a-priori results on Floquet multipliers and eigenspaces for general monotone
cyclic feedback systems with delay due to Mallet-Paret and Sell [24].

A first idea to show that the graphW∩S ⊂ V −1(2)∪{0} is C1-smooth might
be to look in the family of 2-dimensional locally invariant C1-submanifolds
with tangent space L at the stationary point 0 ∈ C for a member formed by
heteroclinics connecting 0 with the periodic orbit O. Our approach is quite
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different. We identify pieces of W ∩ S in a hyperplane Y transversal to O, as
open sets in the smooth transversal intersection of W with the center-stable
manifold of the Poincaré return map which is associated with Y and a point
p0 ∈ O. Then we use the C1-flow FW to obtain the smoothness of the set
W ∩ S \ {0}. (Smoothness close to 0 and the relation

T0(W ∩ S) = L

follow by other arguments.) Of course, this approach relies on the existence
of C1-smooth center-stable manifolds at fixed points of C1-maps in Banach
spaces. The general form of the result we need seems not available elsewhere in
the literature, despite the large amount of work devoted to center manifolds. So
in [21] we formulate and prove in detail the following easily applicable theorem
on existence and smoothness of center-stable manifolds for C1-maps.

Let g : U → E be a C1-map on an open subset U of a Banach space E over R,
with a fixed point p. Let L = Dg(p) and assume that E has a decomposition

E = Es ⊕Ec ⊕Eu

into a closed subspace Es 6= {0} and finite-dimensional subspaces Ec 6= {0}
and Eu 6= {0} such that L(Es) ⊂ Es, L(Ec) ⊂ Ec and L(Eu) ⊂ Eu, and that
the spectra of the induced maps

Es 3 x 7→ Lx ∈ Es, Ec 3 x 7→ Lx ∈ Ec, Eu 3 x 7→ Lx ∈ Eu

are contained in a compact subset of {z ∈ C : |z| < 1}, in {z ∈ C : |z| = 1}
and in {z ∈ C : |z| > 1}, respectively.

Then there exist convex open bounded neighbourhoods Nsc of 0 in Es ⊕ Ec,
Nu of 0 in Eu, N of p in U , and a C1-map

w : Nsc → Eu

with w(0) = 0, Dw(0) = 0 and w(Nsc) ⊂ Nu so that the shifted graph

W = p+ {z + w(z) : z ∈ Nsc}

satisfies
g(W ∩N) ⊂W

and
∞⋂
n=0

g−n(p+Nsc +Nu) ⊂W.

The proof employs the method of Vanderbauwhede and van Gils [34].
A technical aspect of the smoothness proof for W ∩ S is that close to a

fixed point of a C1-map with one-dimensional linear center space we have to
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construct open and positively invariant subsets of the center-stable manifold
W cs provided a single trajectory in W cs but not in the strong stable manifold
converges to the fixed point.

Having established the smoothness of W ∩ S we show in a series of propo-
sitions that the manifold boundary bdW = W \ W (without the stationary
points ξ− and ξ+ if µ > 0) coincides with the forward extension of a local
unstable manifold of the period map F (ω, ·) at a fixed point p0 ∈ O. The long
proof of this fact involves the charts Π2 and Π3, and uses most of the results
obtained before.

The next step achieves the smoothness of a piece of W in a hyperplane H
of C transversal to the periodic orbit O. We construct a C1-smooth graph over
an open set in a plane X12 ⊂ H which extends such a piece of W ∩H close to
a point p0 ∈ O ∩H beyond the boundary. Using the flow FW we then derive
that W and W ∩S are C1-smooth up to their manifold boundaries, in the sense
stated before.

The final steps lead to the topological description of W . First we use
the characterization of bdW mentioned above to define homeomorphisms from
bdW onto the unit sphere S2 ⊂ R3 in case µ > 0 and onto the cylinder S1×R
in case µ = 0. Then a generalization due to Bing [9] of the Schoenfliess the-
orem [30] from planar topology is employed to obtain homeomorphisms from
W onto the closed unit ball in R3 in case µ > 0, and onto the solid cylinder for
µ = 0. In case µ > 0 the application of Bing’s theorem requires to identify the
bounded component of the complement of the set

Π3(bdW ) ∼= S2

in R3 as the set Π3W , and to verify that Π3W is uniformly locally 1-connected.
This means that for every ε > 0 there exists δ > 0 so that every closed curve
in a subset of Π3W with diameter less than δ can be continuously deformed to
a point in a subset of Π3W with diameter less than ε. We point out that the
proof of this topological property relies on the smoothness of the set

W \ {ξ−, ξ+},

and involves subsets of boundaries of neighbourhoods of 0, ξ−, ξ+ in W which
are transversal to the flow FW . In order to construct these smooth boundaries
we have to go back to the variation-of-constants formula for retarded func-
tional differential equations in the framework of sun-dual and sun-star dual
semigroups [12]. In case µ = 0 the construction of the desired homeomorphism
from W onto the solid cylinder is different but uses Bing’s theorem [9] as well.

Results on unstable sets and attractors for delay differential equations re-
lated to ours are also contained in the work of Walther [40], Walther and
Yebdri [41], Mallet-Paret and Walther [25] on equations with negative
feedback, in the work of Arino and Krisztin [2] on a 2-dimensional attrac-
tor for a negative feedback equation with a state-dependent time lag and in
Ammar’s thesis [1].
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Problems

The results described above motivate a variety of questions.
Already mentioned was a conjecture that under certain conditions on µ > 0

and f the set W is the global attractor of the semiflow F . A proof would involve
a new uniqueness result for periodic solutions of delay differential equations
since the global attractor contains all ω-limit sets, in particular, all periodic
orbits, while in W there is exactly one periodic orbit.

We also addressed the question whether W ∩ S can be represented by a
smooth map from a subset of L into the complementary space Q⊕ P .

One may ask for diffeomorphisms instead of homeomorphisms from DW

onto the solid cylinder in case µ = 0, and from DW \ {χ−, χ+} onto the unit
ball without its north and south poles if µ > 0.

In the sequel, we focus on the case µ > 0. What can be said about the shape
of W close to the singularities ξ−, ξ+ ? At ξ+, we expect Tξ+W = {0}. For
every C1-curve c : (−1, 0]→ C in W ending at ξ+, i.e., c(0) = ξ+, the tangent
vector c′(0) should be either zero or an eigenvector of the leading eigenvalue of
the generator of the linearized semiflow (D2F (t, ξ+))t≥0.

The hyperbolicity assumption f ′(ξ−) < µ, f ′(ξ+) < µ should be removed.
How is the global attractor organized in case W is a proper subset of A ?

Consider situations where A is a subset of the order interval [ξ−, ξ+] = {φ ∈
C : ξ− ≤ φ ≤ ξ+}. The segments of the solutions x : R → R with V (xt) = 2
for all t ∈ R may form, together with the stationary point 0, a smooth disk-like
submanifold A2 in A which extends W ∩ S beyond O and contains at least
one additional periodic orbit, forming the manifold boundary. In this case, the
unstable sets of the periodic orbits in A2 should contain analogues of bdW \
{ξ−, ξ+}, namely 2-dimensional invariant submanifolds given by heteroclinic
connections from the periodic orbit to ξ− and ξ+. These submanifolds should
subdivide the 3-dimensional subset A≤2 of A formed by 0 and the segments
of all solutions x : R → R with ξ− ≤ x(t) ≤ ξ+ and V (xt) ≤ 2 for all t ∈ R
into invariant layers; a section of A≤2 containing ξ− and ξ+ might have the
structure shown by a sliced onion. It may be that A = A≤2. If A is strictly
larger than A≤2 then we have to expect a finite number of analogues of the
smooth disk A2, given by higher even values of V , and a more complicated
variety of heteroclinic connections, between periodic orbits in the same disk,
between periodic orbits in different disks, from periodic orbits and 0 to ξ− and
ξ+, from 0 to periodic orbits and to ξ− and ξ+. Also connections from periodic
orbits to 0 become possible. A Morse decomposition of A similar to the one
constructed by Mallet-Paret [23] should be useful to describe a part of these
heteroclinic connections.

Suppose now that A is not confined to the order interval [ξ−, ξ+]. Then
there may exist zeros ξ∗ of f − µid below ξ− and above ξ+ with f ′(ξ∗) > µ;
one out of many possibilities is that the part of A in a certain neighbourhood
of a stationary point ξ∗ ∈ C given by such a value ξ∗ looks just as we began to
sketch it for the case A ⊂ [ξ−, ξ+].

Let us emphasize that the main results obtained in [21] and discussed here
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rely on the hypothesis that the feedback function f in equation (1) is monotone.
In the class of equations of the same form, with f(0) = 0 and f ′(0) > 0,
but f not necessarily increasing everywhere, other phenomena are known to
exist – for example, chaotic motion [37,38]. There is recent evidence that
non-monotone feedback occurs in single neurons of living beings and small
assemblies of neurons [10]. See also [13,27,33] for problems with non-monotone
feedback.
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