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Abstract. The purely algebraic notion of CQG algebra (algebra of functions on a compact quantum 

group). IS defined. In a straightforward algebraic manner, the Peter-Wey! theorem for CQG algebras and 

the existence of a unique positive definite Haar functional on any CQG algebra are established. It is 

shown that a CQG algebra can be naturally completed to a C*-algebra. The relations between our 

approach and several other approaches to compact quantum groups are discussed. 

Mathematics Subject Classifications (1991). 81R50, 16W30, 22C05. 

0. Introduction 

Compact quantum groups are fairly well understood on the one hand for special 

cases such as SUq(2) (cf. the early paper [13]) and, more generally, quantum 

analogues of the classical compact Lie groups and beyond (cf. [11]) and, on the other 

hand, in a general theory started by Woronowicz [16-18] for compact matrix 

quantum groups. A crucial aspect of Woronowicz's general theory is the existence 

theorem for a positive Haar functional. Some C*-algebra theory is used in the 

demonstration of that theorem and, actually, a C*-algebra is already present in 

Woronowicz's definition of a compact matrix quantum group. This is in contrast 

with the special cases where a Hopf *-algebra is presented as an algebra by 

generators and relations. The demonstration of a C*-completion for such explicit 

algebras can be quite cumbersome and is actually not necessary for many 

applications where one is only interested in algebraic aspects. Thus, in special cases, 

one usually develops the theory in an ad-hoe algebraic manner, and in this way one 

arrives at results fitting into Woronowicz's general theory without actually invoking 

his theorems. By the way, also in the general case, the main results of Woronowicz's 
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theory (Schur orthogonality relations, Peter-Wey! theorem) can be formulated in a 
meaningful way on the algebraic level. 

In this Letter, we propose a purely algebraic approach to general compact quantum 
groups. After some preliminaries in Section 1, we define, in Section 2, a CQG algebra 
(associated with a compact quantum group) as a Hopf *-algebra which is the linear 
span of the matrix elements of its finite-dimensional unitary corepresentations. A 
CMQG algebra (associated with a compact matrix quantum group) is then a finitely 
generated CQG algebra. These definitions and the subsequent development of the 
theory (in Section 3) do not involve C*-algebras. All main results of [16], as far as they 
are on the Hopf *-algebra level, are thus proved in an algebraic way. In particular, the 
existence of a unique (not a-priori positive) Haar functional on a CQG algebra is 
immediate, and its positivity and faithfulness (on the CQG algebra) is one of the 
results of Section 3. We show in Section 4 that a CQG algebra has a natural 
C*-completion, by which we make contact with [16]. The Letter concludes (in Section 
5) with a comparison of various approaches to compact quantum groups which have 
appeared in the literature. Particular mention should be made here of the paper [5] by 
Effros and Ruan, who earlier introduced the same algebras as our CQG algebras, but 
called them differently and also developed the theory in a different direction. We also 
mention the paper [2] (see also [6]), in which, among other things, a notion of so-called 
preferred deformation of the algebra of representative functions on a compact 
connected Lie group is defined and a number of its properties are studied. Although the 
techniques used in [2] are quite different, some of the results are similar in spirit to ours. 

The results presented here are also part of the PhD thesis of Dijkhuizen [ 4], while a 
more tutorial presentation will appear in lecture notes by Koomwinder [8]. 

1. Preliminaries 

All vector spaces are taken over the field of complex numbers C. All tensor products 
of vector spaces are algebraic unless explicitly mentioned otherwise. We canonically 
identify the tensor products V 0 C and C 0 V with V, for any vector space V. For 
more information about the material treated in this section, see [12, 4, 8]. 

In a Hopf algebra A, we write '1: A --> A 0 A for the comultiplication, c;: A --> C for 
the counit, and S: A-+ A for the antipode. We recall the symbolic notation for ,1 and 
its iterates: 

Ll(a) =I a(1 1 0 a12» 
(a) 

('1®id) 0 Ll(a) = (id 0 '1) o ,1(a) = L a11 ) 0 a< 21 0 a<3)· 
(a) 

(1.1) 

A Hopf *-algebra is a Hopf algebra A endowed with a conjugate linear involutive 
mapping*: A--> A such that A as an algebra is a *-algebra and such that i1 and t: are 
*homomorphisms. It then follows that the antipode S is bijective and satisfies 
s 0 * 0 s 0 * = id. 
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Let A be a Hopf algebra. A corepresentation of A in a vector space V is a linear 
mapping n: V ~ V ®A such that 

(n ®id) 0 TC =(id® Li) on, (id® e)on =id. 

We shall sometimes use the following symbolic notation for n and its iterates: 

n(v) =I v< 1 > ® v< 2» 
(v) 

(n ®id) 0 n(v) =(id® Li) o n(v) = L, v(l) ® v< 2> ® v< 3 >· 
(v) 

( 1.2) 

( 1.3) 

Here v E V, the v< l) are in V, and the v< 2» v( 3 ) in A. If the corepresentation space Vis 

finite-dimensional and { vi} is a basis of V, then we write TC(vj) = l:i vi C:9 nii' where the 
nu are elements of A. Then TC = (nij) is a matrix corepresentation of A: 

Li(nij) = I nik ® nki' 
k 

( 1.4) 

Given two corepresentations n in V and pin W, a linear mapping <p: V--+ W is called 
an intertwining operator if pa <p = (<p ®id) o TC. 

Given a corepresentation n of A in a finite-dimensional vector space V, the contra
gredient corepresentation n' of n is the corepresentation of A in the linear dual V' 

defined by 

(v ®id) o TC 1(v') = (v' ® S) a TC(v), v' E V', v E V. ( 1.5) 

Ifwe write n = (n;i) with respect to a basis {vd of Vand TC 1 = (nii) with respect to the 

dual basis {vi} of V', then 

(1.6) 

Given two corepresentations TC, p in finite-dimensional vector spaces V, W, respec

tively, their tensor product n ~ p is the corepresentation of A in the vector space 

V ® W defined in symbolic notation by 

n [8J p(v ® w) = I v(l) ® w<l) ® v(2)w(2). (1.7) 

(v),(w) 

If we write n = (nii) and p = (pk1) with respect to a basis { vd of V and { wk} of Wand 
if we write n [8J p = ((n [8J p h.i1) with respect to the basis { vi ® wd of V ® W, then 

(n l:8J P)ik,jt = TC;iPkt· 
Suppose A is a Hopf *-algebra. Let V be a vector space endowed with an inner 

product. A corepresentation n of A in V is called unitary if 

I (v(l)• w)S(v<2>) = L, (v, w<l))w(2> Vv, w E V. (1.8) 
(v) (w) 

Suppose Vis finite-dimensional and n = (TCii) with respect to an orthonormal basis { vi} 
of V. Then TC is unitary if and only if the following equivalent conditions are satisfied: 

S(nii) = nj; <=> L, nt;nki = Dii 1 <=>I TC;kTCJ',c = Dii 1. 
k k 

(1.9) 
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A corepresentation n in a vector space V is called unitarizable if there exists an inner 
product on V such that re is unitary with respect to this inner product. 

The usual notions from representation theory such as direct sums, invariant 
subspaces, irreducibility, complete reducibility, etc., all have an obvious meaning in 
corepresentation theory. Note that a unitary corepresentation is always complete
ly reducible, since the orthogonal complement of an invariant subspace is again 
invariant. 

2. CQG Algebras 

THEOREM 2.1. Let A be a Hopf algebra. Let :E denote the set of equivalence classes 

of .finite-dimensional irreducible corepresentations of A. For each a E :E, let the matrix 

core presentation nlZ = (rcfi) be a representative of the class a and let Al% c A denote the 
span of its matrix coefficients. Then LIZe:i: Aa is a direct sum and the nfi are linearly 
independent. 

This theorem is rather standard. In 2.1.3, 1.1.33, 1.1.54, and 1.1.16 of [ 4], it is pointed 
out that the theorem is already valid in the case of finite-dimensional irreducible 
corepresentations of a coalgebra, and that, by duality, the proof can be reduced to a 
similar result for algebra representations, see for instance [3] Section 13, No. 3, 
pp. 154-155. A self-contained proof not referring to algebra representations but 
assuming that S is invertible, is given in [8], Proposition 1.28. 

From now on, we will work with a Hopf *-algebra A, and :E will denote the set of 
equivalence classes of finite-dimensional irreducible unitary corepresentations of A. 
For a E :E, let re(% and A. be as in the above theorem, but the matrix corepresentation 
(nfi) is now supposed to be unitary. 

DEFINITION 2.2. A CQG algebra is a Hopf *-algebra which is spanned by the 
coefficients of its finite-dimensional unitary (irreducible) corepresentations. We then 
say that A is the Hopf *-algebra associated with a compact quantum group. The 
decomposition A = Lael: Al% is called the Peter-W eyl decomposition of A. 

PROPOSITION 2.3. Let A be a CQG algebra. Then: 

(i) Every .finite-dimensional irreducible corepresentation of A is equivalent to some 
n1Z (a. E :E). 

(ii) Every .finite-dimensional irreducible corepresentation of A is unitarizable. 

(iii) If n is a .finite-dimensional unitarizable matrix corepresentation of A then so is 
its contragredient n'. 

Assertion (i) is an immediate consequence of Theorem 2.1 and Definition 2.2. 
Assertion (ii) follows from (i). For (iii), observe that a finite-dimensional unitarizable 
corepresentation n is completely reducible, hence so is n'. 
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PROPOSITION 2.4. For a Hopf *-algebra A the following conditions are equivalent: 

(i) A is a .finitely generated CQG algebra. 

(ii) There is a .finite-dimensional unitary corepresentation of A whose matrix coeffi

cients generate A as an algebra. 

(iii) There is a.finite-dimensional corepresentation n of A such that both n and n' are 

unitarizable and such that A is generated as an algebra by the matrix 
coefficients of n and n'. 

(iv) There is a.finite subset {a1 , ... ,an} c L such that the matrix coefficients of the 

na' (1 ~ i ~ n) generate A as an algebra. 

Assume (i) and pick a finite set of generators of A. By definition of CQG algebra, 

each of the generators is a linear combination of matrix coefficients of finite

dimensional unitary corepresentations of A. Taking the direct sum of all the co

representations involved, we obtain a finite-dimensional unitary corepresentation 

whose matrix coefficients generate A. This proves (i) =>(ii). The implication (ii)=> (iii) 

follows from Proposition 2.3(iii). The implications (iii)=> (iv) and (iv)=> (i) are 

immediate. This concludes the proof. 

DEFINITION 2.5. A CQG algebra is called a CMQG algebra if it satisfies the 

equivalent conditions of [2.4]. A CMQG algebra is said to be associated with a 

compact matrix quantum group. 

It can be easily shown (cf. [4] pp. 57-60) that the category of CQG algebras is 

closed under taking inductive limits (for a definition of inductive limit see also [10] p. 

67). The standard fact that any compact group can be written as a projective limit of 

compact Lie groups, generalizes to the statement that any CQG algebra is the 

inductive limit of CMQG algebras. Conversely, given a family of CQG algebras 

(A;.).l.eA, the tensor products of finite subfamilies of (A.<heA naturally form an 

inductive family whose limit generally is a nonfinitely generated CQG algebra. In 

this way, one can construct examples of nonfinitely generated CQG algebras starting 

from an infinite family of CMQG algebras. 

3. The Haar Functional 

We now discuss the concept of Haar functional and its relation to CQG algebras. 

DEFINITION 3.1. Let A be a Hopf *-algebra. A Haar functional on A is a linear 

functional h: A-+ C which satisfies h(l) = 1, and is such that 

(h®id)aA(a)= h(a)l =(id®h)oA(a), a EA. (3.1) 

The invariance (3.1) of a Haar functional h: A-+ C with respect to comultiplication 

can also be written as 

I h(a(1J)a(2 J = h(a)l =I h(a(2))a(lJ> a EA. (3.2) 
(a) (a) 
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A Haar functional h: A -+ C is called positive if h(a*a) ;;?; O for all a E A, and it is called 
positive definite or faithful if h(a* a) > 0 for all nonzero a EA. It can be easily proved that, 
if a Haar functional h satisfies h(a* a) E IR for all a E A, then h(a *) = h(a) for all a E A. 

Let now A be a CQG algebra. Denote by 1 the unique ex E 1: such that rca is equivalent 
to the one-dimensional unitary matrix corepresentation (1). Also, for each o: E 1:, let o:' be 
the unique f3E1: such that rcP is equivalent to (na)', cf. Proposition 2.3(iii). 

We now define a linear form h: A-+ C by setting 

_ {O, if a E Aa, ex i= 1, 
h(a) - 1 ·f = 1 , 1 a . 

(3.3) 

PROPOSITION 3.2. Let A be a CQG algebra and let h: A -+ C be the linear form defined 
in (3.3). Then his a Haar functional on A and satisfies h(S(a)) = h(a) and h(a*) = h(a) for 
all a EA. Any linear functional h': A-+ C such that h'(l) = 1 and (h' ®id) 0 A(a) = h'(a) 1 
for all a E A is equal to h. 

The proof is completely elementary. 
Let G be a compact group and let A be the corresponding CQG algebra of 

representative functions on G. If dx denotes the Haar measure on G, then the Haar 
functional on A is given by 

h(a)= L a(x)dx 

and (3.1) expresses the invariance of the Haar measure with respect to group multi
plication. It is well known that the Haar measure is a positive measure and that the 
support of dx is equal to G, in other words, the Haar functional his positive definite. We 
are going to prove the same result for a general CQG algebra. We first prove an 
important lemma: 

LEMMA 3.3. Let A be a Hopf algebra and suppose h: A-+ C is a linear form satisfying 
(3.1) and such that h(I) = 1. Let panda be matrix corepresentations of A. Then 

I h(a;jS(pkzl)P1m =I auh(a1jS(Pkm)), (3.4) 
I l 

I h(S(pij)akiJa1m =I Pilh(S(ptj)akm). (3.5) 
l l 

With the notation 

A~{kl := h(aijS(pk1)), (3.6) 

the identities (3.4) and (3.5) can be rewritten as 

(3.7) 

Thus, A U.k) is an intertwining operator for p and a, and B<j,k) is an intertwining operator for 
a and p. 
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For the proof of (3.4) we write 

h(aiiS(pk1))1 =(id® h)(.1(aiiS(pk1))) 

= L (id® h)((a;p ® O'pj)(S(Pni) ® S(Pkn)) 
p,n 

p,n 

Substituting this equality in the left-hand side of Equation (3.4) and then using that 
1:1 S(Pn1)P1m = bnm 1, we arrive at (3.4). Similarly, (3.5) is obtained from a substitution of 

h(S(pzj)akm)l = (h ® id)(.1(S (ptj)Ukm)) 

in the right-hand side of (3.5). 

PROPOSITION 3.4. Let A be a Hopf algebra and suppose h: A -t IC is a linear form 

satisfying (3.1) and such that h(l) = 1. If panda are nonequivalent irreducible matrix 
corepresentations of A, then 

We use the notation of Lemma 3.3. By the Schur lemma for corepresentations, (3.7) 
yields that Alf.kl= 0 and Bl{·kl = 0. Hence, by (3.6), the assertion. 

If (n, V) is a finite-dimensional corepresentation of a Hopf algebra A, then the 
corepresentation space V" of the double contragredient corepresentation n" of n can be 
naturally identified with V. 

PROPOSITION 3.5. Let A be a Hopf algebra with invertible antipode Sand suppose 

h: A-+ IC is a linear form satisfying (3.1) and such that h(l) = 1 and h(S(a)) = h(a). Let p be 

an irreducible matrix corepresentation of A. Then p is equivalent to its double 

contragredient p". Let F be any invertible operator intertwining p and p". Thentr(F) '# 0 
and tr(F- 1 ) =I 0 and 

Fil 
h(Pk1S(pii)) = bki tr(F), 

(F- 1);1 
h(S(pkz)P;i) = bki tr(F_ 1 )° 

(3.8) 

(3.9) 

Putting a= p" in [3.3] and using the fact that h(S(a)) = h(a), we deduce from (3.4) and 
(3.5) that 

L. h(Pk1S(pij))P1m = L. s 2(P;1)h(PkmS(p1j)), 
I I 

L h(S(pkz)Pii)S 2(P1m) = L Puh(S(Pkm)Pii). 
I I 

With the notation 

A.lf·kl = h(Pk1S(pii)), (3.10) 



322 MATHUS S. DIJKHUIZEN AND TOM H. KOORNWINDER 

we have 

Ji.U.klp = p" A<i,kl and jjU.klp" = pJ3U.kl. 

On the other hand, if we apply Lemma 3.3 to p and rr = p, we obtain operators A U.k) 

and EU.kl intertwining p with itself. It follows from (3.6) that 

A-u.kJ _ AU,il 
il - kj ' 

B-U.kl _ B(l,iJ 
il - kj . 

By the Schur lemma, there are complex numbers rt.ik and f3jk such that 

A (j,k) ~ 
il = ajkuil, B (j,k) f3 ~ 

ii = jkUit. 

since p is irreducible. If we sum over i = l in (3.10) we get 

tr A (j,k) = 6 ·k J , 

(3.11) 

(3.12) 

(3.13) 

Hence, there exists a nonzero intertwining operator F for p and p". Since S is 
invertible, p and p" are both irreducible and therefore Fis invertible. So p and p" are 
equivalent corepresentations. Since an intertwining operator between equivalent 
irreducible corepresentations is uniquely determined up to a scalar factor, we 
conclude from (3.13) that tr(F) =I= 0 and tr(F - 1 ) =I= 0. Moreover, there exist complex 
numbers a.jk and ~k such that 

A-u.k) - F 
;1 = ajk ;1, B-u.kl _ /3 (F-1) 

ii - jk ii· (3.14) 

Combination with (3.13) yields that 

iJ.jk tr(F) = likj, Pjk tr(F- 1 ) = likj· (3.15) 

The identities (3.8) and (3.9) follow from (3.10), (3.14) and (3.15). This concludes the 
proof. 

Let V be a finite-dimensional vector space with inner product (, ). We recall that 
a linear mapping T: V-+ Vis called positive definite if T is self-adjoint, i.e. T = T*, 
and if (Tx, x) > 0 for all x =I= 0. A matrix (T;j) is positive definite (with respect to the 
canonical inner product on IC") if and only if Tu= Tj; and Li,j x;xj Tj; > 0 for any 
n-tuple (x 1 , ... , Xn) =I= 0. If T is any invertible matrix then 171' is positive definite, 
where T =(Tu). 

PROPOSITION 3.6. Let A be a CQG algebra and let p be a finite-dimensional 
irreducible unitary corepresentation of A in an inner product space V. Let F be an 
invertible operator intertwining p and p". Then F is a constant multiple of a positive 

definite operator on V. It can be uniquely normalized such that tr(F) = tr(F- 1 ) > 0. 

Let us fix an orthonormal basis of V. Then p and p" can be viewed as matrix 
corepresentations. By Proposition 2.3(iii), there is a unitary matrix corepresentation 
rr which is equivalent to p'. So there is an invertible complex matrix T such that 
rrT = Tp'. By (1.6) and the unitarity of <rand p, we have the identities 
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It now follows from CIT= Tp' that CI 1T = Tp and 1TCI' = p" 1T. Hence, 1TTp = p" 1T't. 

In other words, 1TT intertwines p and p". Therefore, Fis a constant multiple of 1TT. 

Since 1TT is a positive definite matrix, the first assertion follows. The second one is 
trivial. 

THEOREM 3.7. Let A be a CQG algebra. Then the Haar functional h: A -7 C is 
positive definite. 

It follows from Propositions 3.4, 3.5, and 3.6 that there exist positive definite matrices 
011. such that 

h((n%i)*nfj) = OapOuGfko rx, /3 E "f.. 

Let a = La.k,1 c'k1nk1 be an arbitrary element of A. Then 

h(a*a) = L I:ck1ci1Gik;?; 0, 
a,l i,k 

since G" is positive for every rx EL. Suppose h(a*a) = 0. Then Likck1ci1Gfk = 0 for 

all rx and k. By positive definiteness of the G" this implies that all coefficients ck1 are 0, 
whence a= 0. 

Remark 3.8. The way we have proved Theorem 3.7 is quite analogous to the proof 

of Proposition 3.5 in [17]. 

PROPOSITION 3.9. Let A be a Hopf *-algebra on which there exists a positive 

de.finite Haar functional. Then any finite-dimensional core presentation n of A is 

unitarizable and therefore completely reducible. In particular, the conclusion holds if A 

is a CQG algebra. 

Let us denote the corepresentation space of the finite-dimensional corepresentation n 

by V and let (,) be any inner product on V. We define a new inner product (, )h on 
V by putting 

(v, w)h = I (v(l)• w<ll)h(wr2)v(2Jl· 
(v),(w) 

Indeed, it is clear that (,)his a Hermitian form. Let (v;) be an orthonormal basis of 

V with respect to the inner product (,) and let us write nij for the matrix coefficients 

of n with respect to this basis. Then 

(v;, vi)h =I (vb v 1 )h(n~nk;) = L h(ntink;)· 
k,l k 

Hence 

and if the left-hand side equals 0, then '1:,;c;nk; = 0 for all k by the positive 

definiteness of h. Hence, ck = e( '1:,, C;.nk;) = 0 for all k, which proves that (, )h is an 
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inner product on V. Using (3.2), one deduces 

L (v(l>• w(li)hw~iv< 2> 
(v).(w) 

= L, (v(li. w<ll)h(w(2>v(2J)w(3>V(3) 
(v),(w) 

= L, (v(IJ> w(l))h(w(2iv12i}l = (v, w)hl, 
(v),(w) 

in other words, the corepresentation n is unitary with respect to the inner pro

duct (, >h· 
THEOREM 3.10. Let A be a Hopf *-algebra. Then there exists a positive definite 
Haar functional on A if and only if A is a CQG algebra. 

The implication= follows from Theorem 3.7. Conversely, suppose that there exists a 
positive definite Haar functional on the Hopf *-algebra A. By Proposition 3.9 any 
finite-dimensional corepresentation of A is unitarizable. We next claim that every 
element a EA occurs as a matrix coefficient of some finite-dimensional (hence, 
unitarizable) corepresentation of A. Indeed, by the Fundamental Theorem on 
Coalgebras (cf. [12], Th. 2.2.1, p. 46) there is a finite-dimensional subcoalgebra C of 
A containing a. Let us denote the restriction of 11 to C by n. Then clearly n is 
a corepresentation of A in the finite-dimensional vector space C. To prove our 
claim, it suffices to exhibit an element c EC and a linear form c' on C such that 
(c' ®id) o n(c) =a. We take c =a and c' = Bic· It is trivial to check that this works. 
This concludes the proof . 

. 4. C*-Algebra Completion 

We shall now show that any CQG algebra can be naturally completed to a unital 
C*-algebra. Let us recall that a *-representation of a *-algebra A in a Hilbert space 
::If is a *-algebra homomorphism of A into the algebra £'(::/f) of bounded operators 
on ::If. 

Let A be a unital *-algebra. A seminorm p on A is called a C*-seminorm if 
p(ab) ~ p(a)p(b) and p(a*a) = p(a) 2• It then automatically follows that p(a*) = p(a). 
In addition, if p # 0 then p(l) = 1. A C*-seminorm p on A is called a C*-norm if 
p(a) = 0 implies a = 0. Given a C*-norm p on A, the completion of A with respect to 
p naturally is a unital C*-algebra such that the canonical injection of A into its 
completion is a *-algebra homomorphism. If n: A-+ Bis a *-algebra homomorphism 
of A into a C*-algebra B, then the mapping a H 11 n(a) II is a C*-seminorm on A. In 
particular, every *-representation of A gives rise to a C*-seminorm. 

LEMMA 4.1. Let A be a *-algebra with a C*-norm p. For any a EA, there exists an 
irreducible *-representation n: A-+ £'(::/f) of A in some Hilbert space ::If such that 
11n(a)11 = p(a). 
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The result will follow from the corresponding statement for the C*-algebra comple

tion A of A. For a proof in that case see, for instance, [l] (Corollary to Theorem 
1.7.2, p. 34). 

LEMMA 4.2. Let A be a Hopf *-algebra. Let n be an algebra homomorphism of A 

into the algebra of linear operators on some pre-Hilbert space V such that (n(a )v, w) = 

(v, n(a*)w)for all a EA and all v, w E V. Let p = (P;J) be a unitary matrix corepresenta

tion of A. Then n(piJ) is a bounded linear operator on V of norm ~ 1 for all i, j. If A is 

a CQG algebra then n can be uniquely extended to a *-representation of A in the 

Hilbert space completion of V. 

Since p is unitary, we have Lk PtJPkJ = l. Hence, for all v E V, 

II v 11 2 = (v, v) = L (n(ptJPkJ)v, v) = L (n(pkj)v, n(pkJv) ~ II n(piJ)v 11 2 • 

k k 

LEMMA 4.3. Let A be a Hopf *-algebra and let p be a C*-seminorm on A. If p = 

(piJ) is a unitary matrix corepresentation of A, then p(pii) ~ 1 for all i, j. 

The subset N ={a EA I p(a) = O} is a two-sided *-ideal in A and the quotient A/N 

naturally is a *-algebra. Let <p: A~ A/N denote the canonical surjection. Then we 

can put p(<p(a)) = p(a), and j5 clearly is a C*-norm on A/N. Fix i, j. By Lemma 

4.1 there is a *-representation if of A/N in some Hilbert space Yf such that 

II n(q>(P;J)) II = p(q>(P;J))· Hence, the *-representation n = no q> of A in Yf satisfies 

n(piJ) = p(piJ). Now apply Lemma 4.2. This concludes the proof of our assertion. 

THEOREM 4.4. Let A be a CQG algebra and let '+! denote the set of C*-seminorms 

on A. The set 113 is nonempty. For any a EA, the number 

II a II oo =sup p(a) (4.1) 
pe'i\ 

is finite. The mapping a~ II a II 00 is a C*-norm. The norm completion At of A with 

respect to II· II 00 naturally is a unital C*-algebra. 

Clearly, the mapping x ~ le(x)I of A into~ is a C*-seminorm. The fact that (4.1) is 

finite follows from Lemma 4.3. It then is clear that II· II ro is a C*-seminorm. To show 

that II • II 00 actually is a norm, it suffices to exhibit a C*-norm on A. Leth denote the 

Haar functional on A. We define an inner product on A by putting <a, b )h = h(b*a). 

It follows from Proposition 3.2 and Theorem 3.7 that all the inner product axioms 

are satisfied. Left multiplication on A defines an algebra homomorphism of A into 

the algebra of linear operators on A such that the properties of Lemma 4.2 are 

satisfied. Hence, by Lemma 4.2, this algebra homomorphism can be extended to a 

*-representation n of A on the Hilbert space completion Yfh of A by Lemma 4.2. 

Clearly, n is faithful and therefore a~ II n(a) II his a C*-norm. Here II· llh denotes the 

operator norm on the space of bounded operators on the Hilbert space Yfh. 

Remark 4.5. The essence of Theorem 4.4 can be extracted from [17] (after 

Proposition 3.5). N. Andruskiewitsch communicated to us that a detailed proof of 
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Theorem 4.4 is contained in a letter of his to A. Guichardet dated June 1993. This 
proof is also included in [7]. 

For obvious reasons, the norm II· II 00 is called the largest C*-seminorm on A. We 
call At the universal C*-algebra completion of A. It is uniquely determined (up to a 
unique isomorphism) by the following universal property: 

THEOREM 4.6. Let A be a CQG algebra and let 1: A ->At denote the canonical 
injection of A into its universal C*-algebra completion At. If B is a C *-algebra and 
rr: A-> B a *-algebra homomorphism, then there exists a unique C*-algebra homo
morphism n t: At-> B with the property that n to z = n. 

This is a direct consequence of the definition of At ( cf. Theorem 4.4) and the fact that 
a>--> II n(a) II is a C*-seminorm. 

PROPOSITION 4.7. Let A be a CQG algebra. For any a EA, one has II a II 00 = 
sup" II n(a) II, where n runs through a complete set of irreducible *-representations of A. 

This follows by applying [4.1] to the C*-algebra completion At of A. 

Remark 4.8. Let A be a CQG algebra. Counit and comultiplication on A have 
unique extensions to At. For the counit this follows from Theorem 4.4, since 
i;: A ...... C is a one-dimensional *-representation of A. For the extension of L1 to At, we 
need a suitable C*-norm on the algebraic tensor product At 0 At. We define the 
injective cross norm on At 0 At by setting 

llall;= sup ll(n10n2 )(a)ll, aEAt0At, (4.2) 
1t t. 1t2 

where n 1 and n2 run through the set of *-representations of the C*-algebra At. 
The mapping a >-+ II a II; clearly is a C*-norm on At 0 At. Now a >--> (n 1 0 n2 )(Ll(a)) 
is a *-representation of A for any two *-representations n 1 and n2 of A, so 
ll(n1 0n2)(Ll(a))ll ~ llallcxi, whence llL1(a)lli ~ llall 00 • This implies that L1 extends to 
a continuous mapping of At into the completion of At 0 At with respect to II· II i· 

Remark 4.9. Let A be a commutative CQG algebra. Then the irreducible *
representations of A are exactly its one-dimensional *-representations, in other 
words, the points of the compact group G = G(A) corresponding to A. So II a II = 
SUPxeG 11 a(x) II, where we view a EA as a representative function on G. By the 
Peter-Wey! theorem, At is isometrically isomorphic to the C*-algebra of continuous 
functions on the group G. 

5. Comparison with Other Literature 

(a) Woronowicz [16-18] 
W oronowicz, in his influential 1987 paper [ 16], gives the following definition of a 
compact matrix quantum group (originally called compact matrix pseudogroup). It is a 
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pair (B, u), where Bis a unital C*-algebra and u = (uij);,j= 1 .. .,N is an N x N matrix 

with entries in B, such that the following properties hold. 

(1) The unital *-Subalgebra A of B generated by the entries of u is dense in B. 

(2) There exists a (necessarily unique) C*-homomorphism .6.: B _,. B 0 B such that 

Ll(uij) = L,f = 1 uik 0 ukj· 

(3) There exists a (necessarily unique) linear anti-multiplicative mapping S: A_,. A 

such that S 0 *a So* = id on A and L~= 1 S(u;dukj = bij 1 = L,f = 1 uikS(ukj). 

In his note [18], Woronowicz shows that, instead of property (3), we may equivalent
ly require: 

(3') The matrix u and its transpose are invertible. 

Woronowicz now essentially shows (cf. [!6] Prop. 1.8) that there exists a (necessarily 

unique) *-homomorphism i:: A_,. C such that <:(uij) = bij and that A becomes a Hopf 

*-algebra with comultiplication Ll, counit c: and antipode S. In [!6], the notation 

A, d, <l>, e, K is used instead of our B, A, Ll, c:, S, respectively. Note that the above 

*-algebra A is very close to what we have defined as a CMQG algebra (cf. Definition 

2.3). However, it is not postulated and not yet obvious in the beginning of [16] that 

the corepresentations u and u' are unitarizable. 

A central result in the paper (see [16], Theorem 4.2) is the existence of a state 

(normalized positive linear functional) h on the C *-algebra B such that (h 0 id) o 

Ll(a) = h(a)l = (id 0 h) 0 Ll(a) for all a E B. This state is necessarily unique and it is 

faithful on A. Then h may be called the Haar functional. 

Woronowicz [16], Section 2, defines a representation of the compact matrix 

quantum group (B, u) on a finite-dimensional vector space V as a linear mapping 

t: V _,. V 0 B such that (t@ id) o t =(id@ .6.)" t. If t(v) = 0 implies v = 0, then the 

representation is called nondegenerate and if t(V) c V@ A, then the representation is 

called smooth. A smooth representation is nondegenerate iff (id® s) o t =id. Thus, 

corepresentations of A on finite-dimensional vector spaces, as defined in Section 1, 

correspond to nondegenerate smooth representations of (B, u) in [16]. 

As a consequence of the existence of the Haar functional, it is shown in [16], 

Theorem 5.2, Proposition 3.2, that nondegenerate smooth representations of (B, u) 

are unitarizable. This implies that the dense *-algebra A of Bis a CMQG algebra. 

Conversely, if we start with a CMQG algebra A with fundamental corepresenta

tion u as in Proposition 2.3, then we have shown the existence of a positive definite 

Haar functional h on A (cf. Theorem 3.7) without using C*-algebras, and we have 

next obtained a C*-completion At of A by making essential use of the existence of a 

positive definite Haar functional (cf. Section 4). Then it is clear that the pair (At, u) is 

a compact matrix quantum group in the sense of Woronowicz. However, the 

C*-algebra At possesses the universal property of Theorem 4.6 but this is not neces

sarily the case with the compact matrix quantum groups (B, u) of Woronowicz, 

since the norm induced by B on A may not be the largest C*-seminorm on A. 
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Accordingly, the counit e: sf-> C does not necessarily have a continuous extension 
to a linear functional on A (cf. [16] (second Remark to Proposition 1.8)). 

In his paper [17], Woronowicz starts with a compact matrix quantum group (B, u) 
in the sense of [16], then constructs out of its finite-dimensional unitary representa
tions a so-called complete concrete monoidal W*-category (see [17], Theorem 1.2) 
and next constructs from any such category a compact matrix quantum group 
(At, u ). Then At is not necessarily isomorphic to A, but it has the universal property 
of Theorem 4.6 with respect to the CMQG algebra A generated by the entries of u. 
The relation between CQG algebras and monoidal W*-categories is much closer 
(cf. [4]). 

Both in [16] and in this Letter, there is a similar key result [16] (last statement 
of Theorem 5.4, resp. Proposition 3.6). We got the idea of the statement and 
proof of Proposition 3.6 from [16], but in this Letter, different from [16], the 
positivity and faithfulness of the Haar functional on .91 is a corollary rather than a 
prerequisite. 

(b) Woronowicz [19] and S. Wang [14, 15] 
Woronowicz [19] defines a compact quantum group as a pair (B, i'.1), where B is a 
separable unital C*-algebra and i'.1: B-> B Q9 B is a C*-homomorphism, such that 
the following properties hold. 

(1) (L'l Q9 id) 0 ,1 = (id Q9 Li) 0 i'.1. 
(2) Span{(b Q9 l)Li(c) I b, c E B} and Span{(l Q9 b)L'l(c)I b, c E B} 

are dense subspaces of B Q9 B. 

In particular, if (B, u) is a compact matrix pseudogroup as defined in [16] and if Li is 
the corresponding comultiplication, then (B, i'.1) is a compact quantum group as just 
defined. Conversely, it is shown in [19] that, if (B, i'.1) is a compact quantum group 
and if A is the set of all linear combinations of matrix elements of finite-dimensional 
unitary representations of (B, A), then A is a dense *-subalgebra of Band A is a Hopf 
*-algebra. The existence of a Haar functional is also shown. It is observed that the 
representation theory as developed in [16] can be formulated in a similar way for 
compact quantum groups. 

It is pointed out by Wang ([14], Remark 2.2) that the results of [19] remain true if 
separability of the C*-algebra B is no longer required, but if it is assumed instead 
that the C*-algebra B has a faithful state. This observation would imply that a 
compact quantum group (B, L'l) in the sense of Wang gives rise to a CQG algebra A 
(A being constructed from B as in the previous paragraph), and that conversely each 
CQG algebra A would give rise to a compact quantum group (B, .1) (B being 
completion of A with respect to maximal C*-seminorm), provided B has a faithful 
state. 

In [15], Wang defines the notion of (noncommutative) Krein al.gebra, which is 
essentially equivalent to our notion of CQG algebra. 
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(c) Effros and Ruan [5] 

In different terminology, CQG algebras were earlier introduced by Effros and Ruan 
[5]. They defined these algebras as cosemisimple Hopf algebras with a so-called 
standard *-operation and they called these structures discrete quantum groups. This 
name was motivated by the fact that special examples of these algebras are provided 
by the group algebra of a discrete group, while the name CQG algebra comes from 
the class of examples where we deal with the algebra of representative functions on a 
compact group. In the final section of [5], the authors define a compact quantum 
group as a natural generalization of the compact matrix quantum groups defined 
in [16]. Their definition involves a unital C*-algebra B with a dense unital *
subalgebra A, where A is a CQG algebra (in the terminology of the present paper) 
and the comultiplication on A extends continuously to B. Conversely, they show that 
a CQG algebra A gives rise to a compact quantum group according to their 
definition. This involves a C*-completion, for which a Haar functional h on A is 
needed. This Haar functional is obtained in a way very different from the method in 
the present paper. The authors first show the existence of a left Haar functional cp on 
a certain subspace of the linear dual of A. Then h is constructed in terms of cp. For a 
detailed comparison of [5] with the results in this Letter, see [9] (section 6). 
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