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Abstract

A minimal variation is proposed of a recently described secret-key certificate scheme that is derived from
the Schnorr signature scheme. The issuing protocol of the variation is conjectured to be restrictive blind
in parallel mode, motivated by a recent argument of Schoenmakers. The variation demonstrates that the
double use of a generator is not problematic in any way, contrary to the belief expressed by Schoenmakers.
A more profound argument for the conjectured security in parallel mode is provided, and similar variations
are described for secret-key certificates based on Brickell-McCurley signatures. To create some order in the
variety of restrictive blind certificate schemes that have been proposed to date, their specific merits and

limitations are categorized and discussed.
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1. INTRODUCTION
Since this report is a direct continuation of [9, 10], the reader is referred to those

references for motivation and background information.

In [3, 4, 5] generally applicable techniques have been described for designing restric-
tive blind issuing protocols for secret-key certificates derived from Fiat-Shamir type
signatures. There are many essentially equivalent ways to define the certificate ver-
ification relations of these restrictive blind secret-key certificate schemes. To prove
that a certificate issuing scheme is restrictive blind in sequential mode, for an “iso-
lated” receiver, a generally applicable proof technique has been demonstrated in [4, 5].
This proof technique is made possible by the simulatability of certified public keys, a
property that is characteristic to secret-key certificate schemes [3]. The importance
of provable security for isolated receivers in sequential mode is that it provides solid
evidence in support of the conjecture that the restrictive blind issuing protocol at hand

is generally secure in sequential mode.
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Unfortunately, such solid evidence is not known for the security of restrictive blind
certificate schemes in parallel mode: it seems that one cannot do much better than
assess the security of restrictive blind issuing schemes in parallel mode on an ad hoc
basis, by submitting them to algebraic attacks. For instance the parallel mode security
of the restrictive blind (public-key) certificate scheme in [1] has been conjectured on
the basis of an ad hoc assessment.

A conjecture for parallel mode security of an issuing protocol is much more plausible
if the security of that protocol in sequential mode can be proven under some reason-
able intractability assumption, because this rules out the majority of possible attack
strategies, namely those that also apply in sequential mode. Only attacks that are

41

typical for parallel mode have to be assessed, which is a significant advantage: “al-
gebraic” parallel mode attacks are fairly specialized, and one can form a pretty good
picture of what they must look like. This observation has been put to good use in [10],
where an immunization technique for preventing typical algebraic attacks in parallel
mode has been proposed. The immunization technique consists of destroying certain
multiplicative relations that are believed to be typical for algebraic attacks in parallel
mode [4, 9], by “masking” these multiplicative relations with an additional one-way

function in such a way that all the properties of the unmodified schemes are preserved.

Although the immunization technique of [10] is generally applicable, both to RSA
and Discrete Log based schemes, it negatively affects notably the on-line efficiency for
the receivers. It therefore is worthwhile to assess whether the immunization technique is
really required; perhaps there are simple variations of the secret-key certificate schemes
of [4] for which parallel mode security can be argued. It will be shown in this report
that such variations indeed exist for the Discrete Log based schemes, motivated by
a recent argument provided by Schoenmakers [13], but unfortunately do not seem to
exist for RSA based schemes.

The organization of this report is as follows. In Section 2 a minimal variation of
the Schnorr-based secret-key certificate scheme of [4, 5] is described. This variation
demonstrates that the belief expressed by Schoenmakers, namely that the double use
of a generator is problematic (see Section 7 of [13]), is false. In fact, there are various
alternative definitions of the certificate verification relation that all result in issuing
protocols that are believed to be restrictive blind in parallel mode, by the same argu-

ment.

The attackers in the algebraic parallel attacks described in [4, 9] can retrieve a cer-
tified key pair with an uncorrelated blinding-invariant part by combining powers of
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their respective verification relations, and solving relations that are expressed in terms
of their respective challenge values and their secret or public keys. The argument of
Schoenmakers in essence is that these algebraic attacks should not work for variations
in which the relations can be made to be expressed in terms of the respective responses
instead of in terms of the respective challenges, since the responses cannot be antici-
pated on by the attackers. Ad hoc assessment of security properties is always a delicate
affair, and so it is of great importance that more convincing arguments are provided.
A step in this direction is made in Section 3, where a more profound argument than
that of Schoenmakers [13] is provided for the conjectured security in parallel mode.

In Section 4 it is shown that there are similar variations for secret-key certificates
based on Brickell-McCurley signatures, whose corresponding restrictive blind issuing
protocols are believed to be secure in parallel mode on the basis of the same argument;
since the Brickell-McCurley identification scheme is known to be witness hiding, the
security for the issuer in these schemes is at least as high as that in the Schnorr-
based schemes. It is then argued that there are no variations for RSA-based secret-key
certificate schemes that are restrictive blind in parallel mode.

A disadvantage of the variants described in Section 2 and Section 4 is that they
cannot be used in conjunction with a variety of useful credential techniques, including
techniques for implementing framing protection [1], currency exchange [2| and anony-
mous accounts and electronic checks [6], and for updating and demonstrating predi-
cates of credentials [7]. To bring some structure in the many restrictive blind certificate
schemes (and their variations) that have been proposed to date, their specific merits
and limitations are discussed in Section 5.

2. SECRET-KEY CERTIFICATES BASED ON THE SCHNORR SIGNATURE SCHEME
In view of the following discussion, we will first summarize the particular variation of
Schnorr-based secret-key certificates that has been described in detail in [3, 5].

Signer S generates a public key (desc(G,), g, h, g1, H(+)) and a corresponding secret
key (log, h,log, g1), denoted by (z,y). Here, desc(G,) denotes the polynomial-size
description (including the specification of ¢) of a group G, of prime order ¢ for which
polynomial-time algorithms are known to multiply, determine equality of elements, test
membership, and to randomly select elements, and for which no feasible algorithms for
computing discrete logarithms are known. Furthermore, g, h and g, are elements
of G,, and H(:) is a polynomial-size description of a correlation-free one-way hash-
function that maps its inputs to Zy: for some appropriate t. A secret key of receiver
R, corresponding to a public key h; is a pair (Sg;, s1;) € Z, X Z, such that h; = g7 ¢°*,
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and a secret-key certificate of S on h; is a pair (r,¢) € Z, x Z,: such that the following

certificate verification relation holds:
= H(h,, gT(h hi)_c).

Clearly there are a great many essentially equivalent definitions of the certificate
verification relation (as well as of the key pair definition for R;). It is easy to see that
for instance the following alternative definitions of the certificate verification relation
all provide the same security in case the corresponding certificates are issued according
to a non-interactive issuing protocol, or according to a two-move protocol (which can
be designed as in [3]) that prevents the issuer from learning the secret key of R;:

¢ = H(hi,g"h™°h7Y)

¢ = Mk (0
¢ = H(hi,g"(hh;)™°)
¢ = H(hi(g"(hhi) "))

c = H

(9
hz,(gh)h )
c = H(hi, ((gh

(In the variations where 1/c appears in the exponent, H(+) should not map its inputs to
zero.) It will hardly be a surprise that there are many more variations. An example of a
variation in which the key pair definition for R; is modified is to take ¢ = H(h;, g"h; ©),
where h is a representation with respect to, say, (h, g1) instead of (g, ¢1).

For any of these and other variations, a three-mowve issuing protocol can be designed
by applying the technique presented in [4, 5] for designing restrictive blind issuing
protocols described. However, the exemplary variations in that case do not all provide
equivalent security; of the exemplary variations described above, all but the first two
are restrictive blind for an isolated receiver in sequential mode. For the remaining
variations, results similar to those provided in [4, 5] can be proven straightforwardly,
by using the proof techniques of these references. In this way the conjectured security of
each of these variants of the Schnorr-based restrictive blind certificate issuing schemes

in sequential mode can be established.

Although many of the minor variations in the definition of the certificate verification
relation result in issuing protocols that are restrictive blind in sequential mode, not
all of the issuing protocols preserve this property when run in parallel mode; see the
parallel mode attacks in [4, 9]. Which protocols remain secure in parallel mode and
which don’t can only be established on an ad hoc basis, by trying out whether they
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can be subjected to “algebraic” parallel mode attacks such as those in [4, 9]. The
security in parallel mode of one particular variation has recently been conjectured by
Schoenmakers [4], based on the observation that the parallel mode attacks described
in [4, 9] do not seem to work for this particular variation. This belief stems from the
fact that the attacks in [4, 9] for Schoenmakers’ variation require the attackers to solve
relations that involve the respective responses of the issuer, instead of the respective
challenges of the attackers.

It will hardly come as a surprise that the observation of Schoenmakers applies also to
several other variations, such as for instance the fifth and sixth of the alternative forms
described above. Consider for example the fifth of the variations described above; the
certificate verification relation

c="H(hi,g"(hh;)~°)
is modified by this variation into
C = H(h,, (g hi)rh_c).

No further changes are needed. As with all variations, a corresponding three-move
issuing protocol can be designed by applying the technique of [4]. Denoting g; by h;

as in [5], consider the following issuing protocol:

Step 1. & generates at random a number w € Z,, and sends a := g* to R,.

Step 2. R; generates at random a number o € Z; and two random numbers 1,1y €
Z, R; computes h; := h¥g> ¢ := H(hi, a(gh;)"*h™?), and sends ¢ := ¢ +
tymod g to S.

Step 3. S sends r := (cz + w) (yso; + 1)~ mod ¢ to R;.

R; accepts if and only if (gh;)"h~¢ = a. If this verification holds, R; computes r' :=
(r+t1) o™ mod q. Note that (ysp; +1)~' mod ¢ in Step 3 can be pre-computed by S,
and that R; likewise can pre-compute almost all his computations.

As the reader can easily work out for himself by applying the proof techniques of [4],
in sequential issuing mode R; cannot obtain representations of A, with respect to (g1, g)
other than (« sg;, @ — 1) for random «. Note also that, as in [1], the case a = 0 can be
recognized publicly from A, and must be declared invalid.

Contrary to the belief expressed by Schoenmakers [13] the double usage of a gener-
ator, as in the variations used in [4, 5], is not problematic. In fact, if we sweep the
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occurrence of g in the certificate verification relation ¢ = H(h;, (g h;)"h~°) into h;, then
the variation described by Schoenmakers has the same certificate verification relation
as that described here.

3. SECURITY ASSESSMENT

The proof techniques that pertain to the particular variations considered in [4, 5] apply
straightforward to the variation considered in the preceding section. For this reason
the security results for sequential mode are omitted here; they are analogues of those
in [4]. The argument presented below for parallel mode security of the issuing protocol
for the considered variation improves on that of Schoenmakers [13].

As in [4], we will only consider “algebraic” attacks on the parallel version of the
issuing protocol. For the sake of simplicity we will furthermore restrict ourselves to
two parallel executions of the issuing protocol, each with respect to a different blinding-

invariant number; the argument can easily be generalized to any number of attackers.

To facilitate comparison with the security argument provided by Schoenmakers [13],
we will consider the verification relation

¢ = H(hi, KTh )

instead of ¢ = H(h;, (gh;)"h™¢); it is easy to provide the corresponding three-move
issuing protocol, applying the technique of [4], and it is therefore omitted here. We
will let so; and sg; # s¢; mod g denote the presumed blinding-invariant parts of the
two receivers. After the two executions of the issuing protocol, the attackers should be
able to compute a representation (s,t) of a public key unequal to 1, and a secret-key
certificate (¢, r) on that public key, such that

s #tsop mod g, s#tsy modgq.

It will now be argued that this task is infeasible, assuming sequential mode security.
In other words, it will be argued that the blinding-invariant predicate can be recovered
from the blinded secret key (s,t) according to s/t mod ¢, when the public key is not
equal to 1.

The following result plays a vital role in the argument.

Proposition 1 If the Schnorr identification scheme is witness hiding, then no con-
spiracy in the defined secret-key certificate scheme can compute with non-negligible
probability of success a non-trivial representation of 1 with respect to (g, g1,h), even

when polynomially many executions of the issuing protocol are performed in parallel.
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Sketch of proof Consider the following algorithm A, that takes as input a randomly
chosen public key (desc(Gy), go, ho, H(+)) of the honest prover in the blind Schnorr sig-
nature protocol (see [5]). In its first step, A randomly performs one of the following two
simulations of the public key for & (where each of the two alternatives has probability
weight, say, 1/2):

e Set g := go, g1 := ho. Generate at random an element x € Z,, and set h := g*.
The simulated public key for S is (desc(G,), g, h, g1, H("))-

e Set g := go, h :== hy. Generate at random an element y € Z,, and set g, := ¢¥.
The simulated public key for S is (desc(G,), g, h, g1, H(")).

Next, using the simulated public key for S, A simulates for each receiver the actions
that & would perform in the issuing protocol, by making use of the prover in the blind
Schnorr signature scheme. Regardless of how the public key for & has been simulated,
this can easily be done with identical probability distribution (¢f. Lemma 3 of [4] and
Lemma 5 of [5], technical report versions).

Suppose that, after polynomially many executions of the issuing protocol, the con-
spiracy outputs with non-negligible probability of success a non-trivial representation
of 1 with respect to (g, g1,h). Denoting this representation by (a1, as,a3), two cases
can be discerned:

1. a3 = 0 mod q. Since the simulated probability distribution in the issuing protocol
is independent of the particular way in which A simulated the public key for S,
with probability 1/2 did A apply the first simulation method. In that case, A can
output the witness of the prover in the blind Schnorr signature protocol, because
log,, ho = log, g1 = —a1/ay mod gq.

2. a3 # 0 mod q. Since the simulated probability distribution in the issuing protocol
is independent of the particular way in which A simulated the public key for
S, with probability 1/2 did A apply the second simulation method. In that
case, A can output the witness of the prover in the blind Schnorr signature
protocol, because 1 = g* ¢{?h* = ¢g*11¥*2p and so log, ho = log, h = —(a1 +
yas)/az mod q.

Taking both cases into consideration, it follows that the probability that A outputs
the secret key of the prover in the blind Schnorr signature scheme is non-negligible.
Since the blind Schnorr signature protocol is witness hiding if the Schnorr identification
scheme is witness hiding, this contradicts the assumption. O
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Our first observation is that knowing (¢, 7) such that ¢ = H(gi¢", (97¢")"h™¢) is equiv-

alent to knowing (a,r) such that (gg*)"h 79199 = g; the proof is trivial and hence
omitted here. This allows us to specify the target of the attack as being a triple
(s,1), 94", (a,r) such that (g{g*)"h ¢ = a, where c denotes H(gig", a).

Ria Rj

ai, Gj

Ciy Cj

Ti, Tj

(19)"*h™" = a;
(91" 9)"h™% = a;

Task: Compute secret key (s,t) and (7, a)

such that (gi¢")"h=¢ = a for ¢ = H(gig", a),

and such that blinding-invariant predicate is destroyed

Two parallel mode attacks are known, the first of which has been described in [4] (see
also [5]) and the second in [9], and it will be assumed that these are the only possible
types of attack. Because the attackers know their respective blinding-invariant numbers
in advance, it follows that the first of these attacks is the most powerful. In particular,
iof 1t 1s feasible to make parameter choices that make the second attack work then it is
feasible to make parameter choices that make the first attack work. It therefore suffices

to consider only the first type of attack.
Raising the verification relations for each of the two protocol executions to a power
l; and [;, respectively, and multiplying the results, we obtain

S04 Liri 1, —lic; l;
(gl g) h = q; } = giOili"'i‘Fsojlj"'jgli'r‘i—f—lj'l‘jh—(lici-f—ljcj') — al-ialj
2

(giojg)lj'r‘jh—ljcj' — a/-l; 7"
Following the attack of [4, 5], the attackers must determine a pair s, ¢, and numbers

li, lj, ci, ¢; for which the information provided by the issuer can be combined into a

pair (a,r) such that

nggtTh_c =a,
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where ¢ = H(gig¢", a).

Assume first that the attackers compute a := abial

ia; , for l;,1; # 0 mod g that need not
be explicitly known at the time ¢; and ¢; have to be provided. (Note that /; = 0 mod g or
l; = 0 mod ¢ can be excluded because these choices result in sequential mode attacks.)

They then must ensure that

s 'l"l"-|—5 lr,- o . —(]-r- o —
9101 iTi 80585 ngz""ﬁ'lﬂ“]h (Lici+1jc5) — giwgtrh c

Assuming furthermore that /; and /; will be computable by the attackers once the attack
has been completed successfully (a plausible assumption given the algebraic nature of
the attack), it follows from Proposition 1 that the attackers have to (implicitly) solve

S0iliT; + sjljT; = srmod q, ;v +1jr; =tr mod q, lic; +ljc; = cmod ¢

for (I;,1;,s,t,¢;,¢j) and 7; other assignments for the exponents imply the ability of
the attackers to compute a non-trivial representation of 1 with respect to (g, g1, h).
According to the algebraic attack in [4] the implicit choices for (;, 15, s, t, ¢;, ¢;) have to
be made before r; and r; are provided; only r may be computed afterwards.

We now get to the heart of our argument. We concentrate on the first two relations,
50iliT; + 50;l;7; = sr mod ¢ and [;7; 4+ [;7; = tr mod ¢. Since r can be computed by the
attackers after r; and r; have been received, it seems at first sight that there are many
workable choices for /;,1;, s,t. This is not true, since the attackers in fact have to solve,
in terms of [;,l;, s, , a single relation that does not involve r but does involve r; and r;.
More precisely, two cases can be distinguished:

e { = Omodgq. In that case the equality l;r; + [;7; = 0 mod ¢ must hold for
the choices for [;,[; of the attackers. Since r;,7; cannot be anticipated, the only
feasible non-zero choices seem to be to take [; = Ar;* mod g and I; = —AT‘]-_l mod

g, or l; = Ar; mod ¢ and l; = —Ar; mod ¢ for some suitable constant A.

e t # 0 mod g. Multiplying both sides of l;r; + [;r; = tr mod ¢ by s/t mod ¢, and
subtracting from so;l;7; + So;l;7; = sr mod g, we get

(li (s0i — s/t)) i + (1 (s0; — s/t)) r; = 0 mod gq.

Because r; and 7; cannot be anticipated on, and because s/t mod ¢ cannot be
equal to both sy; and sg;, the only workable non-zero choices for I;,1;, s,t seem
to be to take I; = A;r; ' mod g and I; = Aﬂ"j’l mod ¢, or [; = A;r; mod ¢ and
[; = Ajr; mod ¢ for some suitable constants A; and A; that can depend on s
and t.
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Now, it is not immediately clear (although it seems to be true) that the attackers
cannot compute a := aéia;j for such a choice for /;, [;, because /; and [; need not be
ri _

known explicitly for this computation (the attackers know for instance that a;'" =
(g3%g) h=</"). Instead, we focus on the third relation, l;c; + lc; = ¢ mod g. Even if a
could be computed, the fact that c is a one-way correlation-free function of a implies
that its value cannot be expressed in terms of 7; and r;. Consequently, l;c; + l;c; =
cmod ¢ can only be solved for values ¢; and c¢; that are expressed in terms of 7, 7;.
Because ¢; and c¢; have to be provided by the attackers before r; and r; become known,
workable choices for /; and /; should be infeasible.

We assumed in this argument that the attackers compute a := aéia;j . The informa-

tion contained in

SOili"'i'i'SOjlj"'j liT'i+lj7'jh_(liCi+lej) _ L lj
=a;'a;

g1 g

can be combined into
gsrgtrh—c —a
: =
in a more general way. The most general form seems to take
a:= aéiaé-j 92" h

for smart choices for a, 3,7. Applying Proposition 1, we can derive as before three
relations. From the first two of these we can again derive one relation that involves r;
and r; but not r, and that must be solved (implicitly) for I;,[;, s,t. The only way to
arrive at a relation in which /; and [; are not expressions in terms of 7;, 7; (for which the
above argument applies), seems to be by choosing «, 3 such that so;l;7; + sojl;7; +a =
sr mod g and l;r; + l;7; + 8 = tr mod ¢ are linearly dependent in 7; in that case r
cannot be made to drop out of the equations. Such choices for «, 3 seem to require
expressions in terms of 7; and r; that cannot be anticipated on; whether it is indeed
true that there are no implicit choices for a, 3, s,t for which gig’, ¢¢ and ¢g° can be
computed before 7;, 7; become known can only be conjectured.

4. SECRET-KEY CERTIFICATES BASED ON OTHER SIGNATURE SCHEMES

In light of the fact that the presumed security of certain variations in parallel mode
is dependent on the assumption that the underlying identification scheme is witness
hiding, it may be worthwhile to assess whether there are variations for secret-key
certificates that are derived from Brickell-McCurley signatures [11]. The following
variant is at least as secure as the variant of Section 2.

Signer S generates a public key (p, g, h, g1, H(+)), with b = g%, g1 = ¢¥ for a randomly
chosen secret key (z,y) € Z,_1 X Z,_,. Here, p is a prime number such that p—1 is a
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multiple of two distinct primes ¢ and ¢’ of roughly equal size. Furthermore, g, h and ¢;
are elements of order ¢ in Z;, and H(-) is a polynomial-size description of a correlation-
free one-way hash-function that maps its inputs to Z,: for some appropriate t. A secret
key of R; corresponding to a public key h; # 1 is a pair (sq;, $1i) € Zp—1 X Z,_1 such
that h; = ¢g{”¢°", and a secret-key certificate of S on h; is a pair (r,c) € Z, 1 X Zx
such that

¢ =H(h;, h;h™°).

Denoting the not-yet-blinded public key gi®¢g by h;, consider the following issuing
protocol:

Step 1. S generates at random a number w € Z,_;, and sends a := g* to R,. (Note
that S can compute a as a := g¥™°49 in case it saves ¢ as part of its public key.)

Step 2. R, generates at random a number o € Z,_; \ {0} and two random numbers
ti,ty € Z,_1. R; computes hi = h%, ¢ = H(hl,ahi*h?), and sends c :=
d+tymodp—1toS.

Step 3. S sends 7 := (cz + w) (ysp; + 1) mod p— 1 to R;.

R; accepts if and only if ATh~¢ = a. If this verification holds, R; computes r' :=
(r+t)a~! mod p— 1. As before, it can be argued that the blinding-invariant part of
a secret key (s,t) is defined by s/t mod p — 1.

Similar variations also exist for secret-key certificates based on Okamoto’s Discrete-
Log based signature scheme; one such variation has been sketched by Schoenmak-
ers [13]. Oddly enough, the three-move issuing protocols of similar variations based on
Fiat-Shamir type signature schemes in RSA groups, including the schemes of Guillou-
Quisquater, Fiat-Shamir, Feige-Fiat-Shamir, and Okamoto, are not restrictive blind
in parallel mode; they in fact are not even restrictive blind in sequential mode. Con-
sider for instance secret-key certificates derived from the Guillou-Quisquater signature
scheme. The particular variation described in detail in [4] is as follows: Signer S gener-
ates a public key (n, v, h, g, H(-)) and a corresponding secret key (h'/* mod n, g'/* mod
n), denoted by (z,y). Here, n denotes the product of two distinct prime numbers; v
is a prime number that is co-prime with ¢(n); h and g are elements of Z; and H(-)
is a polynomial-size description of a correlation-free one-way hash-function that maps
its inputs to Zs: for some appropriate t. A secret key of R; corresponding to a public
key h; is a pair (So;, $1i) € Z, X Z,, such that h; = ¢g°%s},, and a secret-key certificate
of S on h; is a pair (r,c) € Z, X Zy: such that ¢ = H(h;, 7"(h h;)~¢). Now consider the
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variation in which

¢ = H(hi, (hiT)"h™);

in the corresponding three-move issuing protocol, designed according to the techniques
of [4], R; can multiply arbitrary powers of g, as well as arbitrary v-th powers, into h;.
Similar disappointing results hold for other conceivable RSA-based variations as well.
The only approach currently available for designing restrictive blind issuing schemes
for the RSA-based schemes is to apply the immunization method described in [10].

5. GENERAL APPLICABILITY
Various restrictive blind secret-key certificate schemes have been proposed to this date.

For comparison, a summary is presented below of the peculiarities of each.

We will distinguish between RSA and Discrete Log based schemes. For instance,
in the Guillou-Quisquater based schemes [7] a representation of a public key h; with
respect to a basis (g1,...,gk;v) € Z;, X -+ X Zy X Ly is a tuple (aq,...,ax; ar41) €
Z,x---Ly,xZ, such that h; = ¢i" - - - gz*a}_,, mod n; and in the Schnorr based schemes
a representation of a public key h; with respect to a basis (g1,...,9x) € Gy X -+ X G,
is a tuple (ay,...,ax) € Zy X -+ X Z, such that h; = gi* - - - gp*.

For both RSA based schemes and Discrete-Log based schemes one can consider a
first blinding mode in which h; can be blinded, for random « in Z, (RSA) or in Z,
(Discrete Log), to A, = h mod n and h] = h$, respectively, and a second blinding
mode in which the receiver can obtain A, = h;a” mod n (RSA) or h; = h;g* (Discrete
Log). In issuing protocols that allow the receiver to blind according to the combination
of the two modes, the issuer can easily enforce one of them by a suitable choice of the

basis tuple that must be used in executions of a successive showing protocol.

One can furthermore consider the case in which the issuer needs to know information
about the not-yet-blinded secret key of the receiver, typically h;-L /” mod n in the RSA
situation or log, h; in the Discrete Log based systems, and the case in which the issuer
does not need to know such information. Since RSA has a trapdoor (the factorization
of the modulus), the first case never needs to apply to the RSA-based schemes.

Based on these characteristics, the various types of restrictive blind certificate issuing
protocols known to date can be categorized as follows:

e The restrictive blind certificate issuing scheme in [1, 8]. This is the only one
known thus far for issuing public-key certificates. It is Discrete Log based, and
allows both modes of blinding: for a public key of the form h; = ¢i*--- g%,
the issuer can ensure either that h; can be blinded at best to h, = A% or to
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h} = h;g® (or the combination of the two methods). In general, the first mode
can be enforced by working in successive showing protocols with representations
of h. with respect to bases in which g does not appear; and the second mode
can be enforced by setting, say, a; equal to 1 and working in successive showing
protocols with representations of h/g; with respect to bases in which g; does not
appear.

Since the issuer does not need to know any information about the not-yet-blinded
secret key of the receiver in order to perform the issuing protocol, this scheme
has the most general applicability of all known restrictive blind issuing schemes.
On the downside, the security of the issuing protocol is not well understood
even in sequential mode and no RSA based analogues are known (which were
the main causes for the development of secret-key certificates), and the on-line
computational requirement for the receiver in the issuing protocol equals several
hundreds of modular multiplications.

e The RSA-based schemes that can be developed by the techniques of [4, 10] allow
the preferable second mode of blinding. The issuer does not need to be provided
with information about the not-yet-blinded secret key of the receiver in order
to perform the issuing protocol, since use can be made of the factorization of
the modulus. The sequential mode security of all variants can be proved for
an isolated receiver, assuming merely a plausible intractability assumption. The
variants that are secure only in sequential mode require the receiver to perform
merely a single on-line multiplication (neglecting a small addition and compu-
tation of a hashvalue). On the downside, the immunized variants [10], which
are secure also in parallel mode, require the receiver in the issuing protocol to

perform several hundreds of on-line modular multiplications.

e The Discrete-Log based schemes that can be developed by the techniques of [4, 10]
allow the preferable second mode of blinding. There are also variants that allow
the first mode of blinding, as shown in [13] and this report. The sequential mode
security of all variants can be proved for an isolated receiver, assuming merely a
plausible intractability assumption.

The variants that are secure in parallel mode, and that require the receiver to
perform merely a single on-line multiplication, only allow the first mode of blind-
ing; the variants that are secure in parallel mode and allow the preferable second
mode of blinding (namely those that are the result of applying the immunization

technique of [10]) require the receiver in the issuing protocol to perform several
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hundreds of on-line modular multiplications; and the variants that require the
receiver to perform merely a single on-line multiplication and allow the second

blinding mode are only secure in sequential mode.

A disadvantage of all schemes is that the issuer must know certain information
about the not-yet-blinded secret key of the receiver, typically log, h;, in order to
be able to perform the issuing protocol. It is not known whether there is a prac-
tical protocol that allows the receiver and the issuer to compute this information
together in such a way that neither the issuer nor the receiver leaks additional
information about its secret key. (The alternative of using a trusted party that
must know the secret key of the issuer is highly undesirable.) More generally,
it is not known whether there is a practical protocol which allows two parties,
that both know a vector over Z,, to determine the standard inner product of the
vectors without either party leaking additional information to the other party.

For both RSA-based schemes and Discrete Log based schemes a variety of credential
showing and transferring techniques exists [7]; the off-line electronic cash techniques
developed in [1, 2, 5, 8] are special cases of these techniques. Each of the various schemes
has its own merits, and the choice for one particular scheme will in general depend on
the application at hand. For instance, for the applicability of the updating technique
the issuer should not need to know information about the not-yet-blinded secret key of
the receiver, and for the techniques for demonstrating predicates of credentials (single
values, NOT, OR, AND, linear relations, ...) in general the issuer should be able to
enforce the second blinding mode. To gain some more appreciation for this, it may

help to study the following examples.

Ezample 1. In the credential mechanism described in [7], a special authority issues
digital pseudonyms by performing a restrictive blind certificate issuing protocol. The
issued public keys serve as pseudonyms, and the pseudonyms of one individual are all
related because they have the same blinding-invariant part of the secret key. When
the second mode of blinding is used, a pseudonym of an individual 7 at an organization
j is a public key h;; = g%r}, mod n (RSA) or h;; = g7'g™ (Discrete Log); the r;’s
make the pseudonyms unconditionally unlinkable. (The issuer could instead use an
issuing protocol in which the first mode of blinding is possible, but then the general
credential showing techniques of [7] cannot be used.) To establish a pseudonym with an
organization, the individual must show along with the public key the issued certificate
of the special authority (and perform a proof of knowledge of a secret key, in case of

secret-key certificates). To give out a credential to individual 7, organization j computes
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a certificate on a blinded form of the pseudonym of ¢ with j. This certificate must be
recognizable by other parties as corresponding to that organization (unless one central
facility computes all signatures). To ensure that ¢ can only transfer a credential to one
of his own pseudonyms (which need not be known at credential issuing time), credential
issuing must also be performed by means of a restrictive blind issuing protocol. Note
that a pseudonym can be seen as a special type of credential.

If we use the Discrete-Log based restrictive blind issuing protocol of [1, 8| for creden-
tial issuing, then each organization can issue its own credentials without assistance of a
central facility. Hereto, the public key of organization j comprises a unique generator
h; = g®, preferably certified by a special authority, which performs the same function
as h in [1]. All the credentials of organization j that are issued to individual i can be
maintained and updated in the same number, using the techniques of [7].

With the RSA-based secret-key certificate schemes, use can be made of the fact that
the issuer may know the factorization of the modulus (and so does not need to know
information about issued secret keys). In this way the techniques for maintaining and
updating credentials can be realized, in the same way as when the scheme of [1] is
used, at one cost: for security all the credential issuing must be performed by a central
facility that knows the factorization of the modulus (much as in [12]). This need not
be much of a drawback at all, considering that the public key, in which an individual
maintains his credentials, in general has to be re-blinded once it has been shown, in

order to maintain unlinkability between pseudonyms.

If no use is made of knowledge of the factorization, or when the Discrete-Log based
secret-key certificate schemes are used (for which no trapdoor information for the is-
suer is known), then credential issuing can only be performed using a protocol for

determining inner products; as mentioned, no practical such protocol is known.

Ezxample 2.  Consider in an off-line electronic cash system the encoding of values,
that may not become known to the issuer, into the blinding-invariant part of the secret
key. This is for instance required in the method for framing protection described in [1],
and in the method for anonymous accounts described in [6]. The Discrete-Log based
scheme of [1, 8] can be used because the issuer in that scheme does not need to know
anything about the secret keys of issued triples. Likewise, the RSA-based certificate
schemes can be used for this purpose, since we can let the bank know the trapdoor
information (although it must then be ensured that this does not reveal the particular
secret key known by the receiver, which can be done by ensuring that there are many
secret keys corresponding to the same public key). However, none of the Discrete-Log
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based secret-key certificate schemes are suitable (unless we can find a practical protocol
for determining inner products).

Ezample 3.  Consider in off-line electronic cash systems the encoding into coins or
checks of additional fixed values known to the bank (such as exchange rates, expiration
dates, check denominations, and so on), that have to be released at least in part in
the payment protocol (see [2, 6, 7]). If a great many values can be taken on, then it
is impractical to let the bank use a different public key for each possible value; the
values will therefore have to be encoded by the bank into the blinding-invariant part
of the issued secret keys. Because the identity of account holders has to be encoded
independently into the issued coins, the issuing protocol should allow (and enforce) the
second mode of blinding; certificate issuing schemes that enable only the first mode of
blinding are unsuitable in general (cf. the check extension in [1], extended pre-print).

6. CONCLUSION

It seems that one cannot improve much on the argument for parallel mode security that
has been provided in Section 3. More generally no reductions for the parallel mode
security of any of the restrictive blind certificate schemes proposed to date are known.
It is an open problem to design a restrictive blind signature scheme whose security in
parallel mode can be proven, at least to a great extent, with respect to a plausible
intractability assumption.
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