An Integrated System to

Manage Crosscutting Concerns in

Source Code

1IN STITU
O
r

v
R 20y,

o

&
$
&

4)
kONDE En AT
The work in this thesis has been carried out under the auspitéhe research

school IPA (Institute for Programming research and Aldonics).

An Integrated System to

Manage Crosscutting Concerns in

Source Code

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus Prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op vrijdag 25 januari 2008 om 10.00 uur
door

Marius Adrian MARIN

Diplomat Engineer in Civil Engineering — Buildings Services
Licentiate in Economics — Economic Cybernetics, Statistics and

Informatics
geboren te Boekarest, Roem&ni

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. Arie van Deursen

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. A. van Deursen Technische Universiteit Delft &
Centrum voor Wiskunde en Informatica

promotor
Dr. ing. L.M.F. Moonen Technische Universiteit Delft
Prof. dr. P. Tonella ICT-irst & Universitdegli Studi di Trento
Prof. dr. S. Demeyer Universiteit van Antwerpen
Prof. dr. P. Klint Centrum voor Wiskunde en Informatica &

Universiteit van Amsterdam
Prof. dr. C. M. Jonker Technische Universiteit Delft
Prof. dr. ir. H.J. Sips Technische Universiteit Delft

Copyright(C) 2007 by A.M. Marin

All rights reserved. No part of the material protected bg ttwpyright notice may be
reproduced or utilized in any form or by any means, electronimechanical,
including photocopying, recording or by any informatioarsige and retrieval system,
without the prior permission of the author.

ISBN 978-90-9022675-0

Author email:a. m mari n@udel ft. nl

To my parents,

Dan and Doina

Contents

Acknowledgments Xi
1 Introduction 1
1.1 Software Evolution in the Presence of Crosscutting Caorscer. . . . 1
1.2 ProblemStatement, 4
121 AspectMining 5
1.2.2 ConcernModeling, 5
1.2.3 Aspect-Oriented Programming and Refactoring Towaspects 5
1.2.4 Challenges and Problem Statement 6
1.3 Objectives e e 6
1.4 Research Method and Evaluation 7
15 OVerview 8
1.5.1 A Study of CrosscuttingConcerns 8
1.5.2 CrosscuttingConcernSorts 9
1.5.3 Crosscutting Concern Mining, Modeling and Refactoriag u
INgSOMS 10
1.6 Contributions 13
1.7 Roadmap e 14
2 ldentifying Crosscutting Concerns using Fan-in Analysis 17
2.1 Introduction e 17
2.2 Aspect Mining: Background and Related Work 9 1
221 Terminology e 19
2.2.2 Query-Based Approaches 22
2.2.3 Generative Approaches 23
2.2.4 Aspect Identification Case Studies 24
2.3 Aspect Mining Using Fan-in Analysis 25
2.3.1 AFan-in Metric for AspectMining 25
2.3.2 MethodFiltering, 27

2.4

2.5
2.6

2.7

2.8
2.9

3.1
3.2

3.3

3.4

3.5

3.6

233 SeedAnalysis. 28

2.3.4 TheFan-inTool FINT 29
The Case Studies 30
24.1 FirstFindings 31
2.4.2 Case Study Presentation 33
PETSTORE 34
JHOTDRAW e 37
26.1 TheUndoConcern 37
2.6.2 Persistence 39
2.6.3 Observersin JBrDRAW 40
26.4 OtherConcerns i 41
TOMCAT e e 44
2.7.1 Lifecycle 45
2.7.2 Valves/Chain of Responsibility 46
27.3 OtherConcerns 46
DISCUSSION 48
ConcludingRemarks 52
29.1 Contributions 52
29.2 FutureWork 53
Applying and Combining Three Different Aspect Mining Techniques 55
Introduction 55
Backgroundconceptso 57
3.21 Fan-in. 57
3.22 ConceptAnalysis 58
3.2.3 Terminology 60
The three aspect mining techniques 61
3.3.1 Fan-inAnalysis 61
3.3.2 Identifier Analysis L. 62
3.3.3 Dynamic Analysis e 63
Results of the AspectMining 64
3.4.1 The Fan-in Analysis Experiment 64
3.4.2 The Identifier Analysis Experiment 66
3.4.3 The Dynamic Analysis Experiment 68
ComparingtheResults 69
3.5.1 SelectedConcerns 69
3.5.2 Limitations 72
3.5.3 Complementarity, 73
Toward Interesting Combinations 74
3.6.1 Motivation 74
3.6.2 Definition of the Combined Techniques 75
3.6.3 Analysisindicators 75
3.6.4 ExperimentalResults 76

3.7 Summaryand FutureWork oo 78

Crosscutting Concern Sorts 81
4.1 Introduction 81
4.2 CrosscuttingConcernSorts 83
42.1 TheQueryModel. 84
4.2.2 Description and Formalizationof Sorts 84
4.3 Sort-Based ConcernModeling 89
4.3.1 SDQUET . . . e 91
4.3.2 Documentation of FigureChanged Observer 2 9
4.3.3 SQUET Support for Software Evolution 93
4.4 SortsinPractice 93
441 JHOTDRAW e 94
4.4.2 Enterprise Applications. 97
45 SortsinDesignPatterns oo 0o 99
45.1 Interfacing Commands adiding variabilityto Commands
andVisitors 101
4.5.2 Design enforcemern Singleton and Prototype 102
453 OtherPatterns. 102
4.6 DIiSCUSSION 104
4.6.1 Coverage of the Crosscutting Concerns by Sorts. 04 1
4.6.2 Using Sorts in Aspect Mining and Refactoring 061
4.7 RelatedWork 107
4.8 Conclusions e 108
A Framework for Evaluating and Combining Aspect Mining Techniques 109
5.1 Introduction 109
5.2 A Common Framework for AspectMining. 111
5.2.1 Crosscutting ConcernSorts 113
5.2.2 Defining the Common Framework 113
5.3 Three Aspect Mining Techniques 151
531 Fan-inAnalysis 115
5.3.2 GroupedcallsAnalysis 117
5.3.3 Redirectionsfinder 118
5.4 Combining Techniques 119
5.4.1 Improving Precision 119
5.4.2 Improving AbsoluteRecall 120
5.4.3 Improving the Seed-Quality 120
55 ToolSupport 123
5.6 Experiment 123
5.6.1 AppliedFilters 124
56.2 Results 125
5.7 Retrofitting Existing Techniques 129

vii

5.7.1 Role Superimposition 129

5.7.2 ConsistentBehavior 131
573 ContextPassing., 132
5.7.4 Name-Based Approaches 133
58 DISCUSSION 133
59 RelatedWork 136
510 Conclusions 136
An Integrated Strategy for Migrating Crosscutting Concerns 139
6.1 Introduction 139
6.2 CrosscuttingConcernSorts 140
6.3 An Integrated Migration Strategy 141
6.3.1 AspectMining 143
6.3.2 Concern Exploration 144
6.3.3 Concern Modeling and Documentation 144
6.4 AspectRefactoring 145
6.5 Aspect Refactoring of JBffDRAW 147
6.5.1 AJHOTDRAW e 147
6.5.2 Consistent BehaviorinCommand 148
6.5.3 Undo Functionality 149
6.6 DISCUSSION 154
6.6.1 Applicabilityin Practice 154
6.6.2 BenefitsandRisks 155
6.6.3 Automation 156
6.6.4 SeparationofConcerns. 156
6.7 RelatedWork 157
6.8 ConcludingRemarks 158
Conclusions 161
7.1 Summary of Contributions 161
7.2 Discussion and Evaluation L, 316
7.2.1 Revisiting Thesis Objectives 163
7.2.2 Independent and Integrated Migration Steps163
7.2.3 Queriesversus Aspects 164
7.3 Opportunities for Future Research 166
7.3.1 AspectMining 166
7.3.2 Crosscutting Concern Documentation and Modeling . . . 167
7.3.3 Refactoring to Aspect-Oriented Programming 167
7.3.4 Integration of Migration Steps 916
7.4 ClosingRemarks 169

A FINT 181

A.l Installation 181
A2 Usermanual 181
A21 Fan-inanalysis 182
A.2.2 Groupedcallsanalysis 195
A.2.3 Redirectionsfinder 195
A.2.4 Combinationoftechniques 203
A.2.5 Seedsmanagement 203
B SOrts QUEry Tool (SOQUET) 207
B.1 Installation 207
B.2 Usermanual 207
B.2.1 Modeling and documenting concerns m@UET 208
B.2.2 Using ®QUET to aid program comprehension and software
changetasks 223
Samenvatting 235
Curriculum Vitae 241

Acknowledgments

It does not happen often that you get the chance to acknowlgdgpeople that make
a difference for you, and, as | am getting to learn, peoplemesto know that you
appreciate them. | would start by saying that these 4 yegpentsn Delft working
on my PhD research have been particularly special for menahdnly because | got
paid for doing what | like, but also because the people | met.

It was an honour and a privilege to meet and work with Arie {pwan Deursen),
and just as much of a pleasure. If it is true that meeting atgneator is (mainly) a
matter of chance, then | can surely call myself lucky.

During these years | collaborated, in various degrees, wittumber of fellow
researchers, and | had the opportunity to co-author papérsame of them: first of
all Leon Moonen, then Paolo Tonella, Tom To@wKim Mens and Mariano Ceccato.
| would like to thank them as well as the members of the conemitor their valuable
comments on this thesis: prof. dr. P. Tonella, prof. dr. SnBger, prof. dr. P. Klint,
prof. dr. C. M. Jonker, prof. dr. ir. H.J. Sips.

A number of people who experimented with the tools | devalppdNT and -
QUET, kindly provided me with their feedback, which | very mugbpaeciate.

| would also like to thank dr. Carlos Infante Ferreira, whoeswgsed my Master’s
thesis in Delft, and who encouraged me to take on a PhD clggleRrom the same
group, | need to mention Dong-Seon Kim who was always availalith a friendly
advice.

Eamonn McDonagh willingly went over some of my first paperfidraand it was
always fun and good lessons to have his comments.

Coming back to SWERL, thanks to my "warriors”, football and "t@df teams (i.e.,
{{{Bas Cornelissen, Cathal Boogerd, Rui (...) AbreBas Graaf, Marco Lormans
(also a very enjoyable tennis partnerpli Mesbah (yes, we still need to write “that”
paper together), Leon Moonen (WCRE in Delft was the most pleasarference to
me!), Gerd Gross, Peter Zoetewgjjall of which | so gladly joined. You guys keep
up the good work!

Special thanks go to my room mates, Bas (alias sebas) and Aaidynzn, who,

Xi

besides accepting the shades to be raised, helped me spwitidthe Dutch summary.
All the other colleagues in the group, particularly Fransvees, contributed to a

special atmosphere.

| shall conclude this part with two friends from completeliffetent parts of the
world: Giorgio Alfarano and Ulysses Locadia. It is alwaygaf, and so comforting,
spending time with you.

Last word is for my wife, loana: you know, all the good things ao because of
you.

Delft Marius Marin
December, 2007

Xii

Chapter 1

Introduction

Evolution of software systems accounts for the largest plattheair lifecycle and
costs. Software engineers therefore, more often than danglmew systems, work on
complex, existing ones that they have to understand in daderodify them. Under-
standing such systems requires insight into the various@ms the systems imple-
ment, many of which have to be inferred from source code. dedatily challenging
for software comprehension, and consequently, softwareigon) are those concerns
said to becrosscuttingimplementation of such concerns lacks modularity andltesu
in scatterecandtangledcode.

The research presented in this thesis proposes an intatjegtproach to consistent
comprehension, identification, documentation, and migradf crosscutting concerns
in existing systems. This work is aimed at helping softwaréneegs to more easily
understand and manage such concerns in source code. As atipadf our approach,
we also experiment with the refactoring of crosscutting come¢o aspect-oriented
programming and reflect on the support provided by this nesg@mming technique
for improving modularization of concerns.

1.1 Software Evolution in the Presence of Crosscutting
Concerns

Software engineers are often confronted with the daunasg of analyzing and un-
derstanding complex software systems into which they htleedr no a priori insight.
Many of these systems consists of millions of lines of codkiaterdependent projects
developed by large teams. For example, the 2007 coordinatgect release of the
popular Eclipsé open development platform consists of 21 projects and ovenil
lion lines of code contributed by more than 310 developersn@ared to the previous
year’s release, these figures show that the code size hasgedt by around 100%.

thtt p: / / waw. ecl i pse. or g/

2 Chapter 1. Introduction

Analyzing such systems is inherent in operation and maamtea& of software,
which is estimated to account for as much as 50 to 90% of thevad's total costs
[Sommerville, 2004; Erlikh, 2000; Pigoski, 1996].

In order to deal with this complexity and support the engiaae their compre-
hension tasks, techniques for modularization and separati concerns have been
proposed [Parnas, 1972; Dijkstra, 1997; Baldwin and Clar@9].9\evertheless, com-
plete separation of concerns is difficult or even impossiblachieve using modular-
ization mechanisms available in today’s most popular @ogning paradigms, such
as object-oriented programming [Tarr et al., 1999]. In ¢hparadigms, concerns like
monitoring of objects’ events or state, persistence, eimeandling, security, au-
diting, and other various policies to be implemented cdesity are typically non-
modular, spanning multiple modules in a software system.

Unmodularized concerns are said to dresscuttingand exhibit symptoms like
scattering— the implementation of a concern is spread over severaramognodules
—, andtangling— a program module implements multiple concerns —. Thes@®yms
are illustrated in Figure 1.1 for a a crosscutting concerdHioTDRAW, a framework
for drawing applications which we shall analyze in detaitlirs thesis. The concern is
part of an Observer pattern solution, which allows for awgbonotification and update
of a set of objects (i.e., the Observers) with the state abmofan object they depend
upon (i.e., the Subject) [Gamma et al., 1994]. In our casentitification is realized
by invocations of a dedicatedi{anged) method by all the actions whose execution
alters the state of the observed object. These invocatrensh@wn as horizontal blue
lines in Figure 1.1, and cut across multiple modules reprteskas rectangles for each
class of a caller-method.

The scattering of the observers-notification concern istdube multiple places
where the invocation of thehanged method needs to be inserted. Consequently, a
modification in the requirements for the notification stggtémplies changes to all
the call sites of this method. Furthermore, a caller-metlhke the one shown at the
bottom of Figure 1.1, needs to address multiple, tanglece@ms: besides its pri-
mary concern of modifying thnt attribute of a text display, the method also notifies
observers of this modification. Similarly, any new methodexdito the system that
changes the state of a Subject object needs to be aware ofoasctent with the
notification concern, and implement the concern accorgingl

The challenges posed by crosscutting concerns are funpiparent from the sim-
plified implementation of the Observer design in@HDRAwW, summarized in Fig-
ure 1.2: elements such as connections between figures angraews observe Figure
objects for state changes. To comply with the design, a Eigot only needs to im-
plement its core functionality, like drawing operationst blso a number of operations
that allow observer-objects to be updated with any changes istate. These opera-
tions include thew | | Change andchanged method to be invoked before and after a
modification to a Figure respectively. In a real-life appation, Figures might imple-
ment even more additional roles, ligersistencewhich requires that each Figure type
defines operations to read and write itself from/to a stodegjce, or support for self-

1.1. Software Evolution in the Presence of Crosscutting Carscer 3

- B goH A | W || THE | N
isualiser - Aspect] Provider
| Graphical... § Textare... JPolygons... jPolygonF... .. | PalyLine. ..

1

.. | TextFigure §EbowCa... LineConn...

8
L] 1} | 3
) TextFigure.java &2 =t
public void setFont (Font-newFont) i|_|
willChange () :
fFont = newFont: =1
|
markDirty () ;
changed () |
|

Figure 1.1: Scattering and tangling of the notification @ndor figure changes in the
JHoTDRAW drawing application.

4 Chapter 1. Introduction

Figure FigureChangelistener
moveBy(int, int) observers
public void draw{Graphics) figureChanged{FigureChangedEvent)
addFigureChangelistener(FigureChangedListener) figurelnvalidated(FigureChangedEvent)
removeFigureChangelistener(FigureChangedListener)
changed() o
{willChange())
listener()
o .
I ! ConnectionFigure
AbstractFigure
fListener LineConnection
= connectStart{Connector)
connectEnd{Connector)
disconnectStart()

TextFigure PolygonFigure

disconnectEnd()

I-“'l.g-;ureChanged(..)

setText(String)--___ | smoothPoints() -

willChange();
Subject (fObservable) role
Observer (/Listener) role
Consistent notification of
changes

.../l change figure

changed();

Figure 1.2: FigureChanged Observer.

cloning Each of these different roles shows a distinct concern wihglementation
is tangled with the other concerns in a sole module, namelyigure type.

Lack of modularization of concerns hinders software comension: crosscutting,
scattered concerns are difficult to recognize and revergmesr from source code,
and tangled code is hard to understand. Moreover, softwarkiteon tasks might
easily overlook crosscutting concerns as their underly@hgtions remain “hidden” in
source code. This results in modifications or extension«igtierg systems that are
inconsistent with (crosscutting) policies and rules alsepresent in those systems.
Consequently, the new code breaks compliance with existingarns, or duplicates
their definition and implementation.

1.2 Problem Statement

The problem of crosscutting concerns has been investigatgdrious stages of the
software lifecycle. Researchers have proposed solutiatsiriblude new program-
ming techniques for software development, such as aspectted programming
(AOP) [Kiczales et al., 1997; Filman et al., 2005], softwarealysis techniques for

1.2. Problem Statement 5

identification of concerns in source code (also knowagsect mining[Marin et al.,
2007a; Ceccato et al., 2006], or concern browsing and maglelaproaches [Robil-
lard and Murphy, 2002; Janzen and Volder, 2003; Harrisoh €2@04; Hajiyev et al.,
2006]. Below, we take a brief look at these approaches andtinerulate our problem
statement.

1.2.1 Aspect Mining

Aspect mining is a relatively recent research area aimecatldping (source code
analysis) techniques and tool support for (semi-)autamdgéntification of crosscut-
ting concerns in existing systems.

Identification of crosscutting implementation is a neces8est step to consider in
order to ensure awareness of various concerns implemegtacsstem. As for the
Observer example above, new elements added to a systenorieemt what function-
ality, other than their main concern, they have to implenmerrder to comply with
existing design and requirements. Moreover, this step pomant for understanding
how crosscutting concerns occur in real life applicatidnosy they are typically imple-
mented, and what specific properties distinguish them frmaracconcerns.

1.2.2 Concern Modeling

A next issue to consider is the representation of the idedtiérosscutting concerns
in source code, to consistently describe, model and docuthem. A number of ap-
proaches to concern exploration, representation and saade querying, like Con-
cern Graphs [Robillard and Murphy, 2002] and the Concern Mdatmpn Environ-
ment [Harrison et al., 2004], have been proposed so far.

Concern modeling allows us to persistently document disealveoncerns and em-
phasize those program elements that pertain to the implati@m of these concerns.
Moreover, such documentation can make explicit crosswutlations between pro-
gram elements, and hence help in conducting software cdrapsgon and evolution
tasks.

1.2.3 Aspect-Oriented Programming and Refactoring Towards As-
pects

Aspect-oriented programming subsumes various progragtechniques designed to
support modularization of crosscutting concerns in soootk by using new language
constructs and composition mechanisms. The most popultrest approaches to
date is Aspect[Kiczales et al., 1997], a Java language extension basedgoimpmint
model. This model allows a programmer, for instance, to ifpém a declarative

2ecl i pse. or g/ aspectj /

6 Chapter 1. Introduction

way) sets of execution points in a program where a certaie clikke the observers-
notification invocation discussed earlier, to be executed.

To improve modularity of concerns in existing systems by mse# aspect-oriented
techniques, we need toigratethese concerns by refactoring their implementation to
aspect-oriented solutions.

Most of the available refactoring solutions are examplesnated [Laddad, 2003b].
Preliminary steps towards systematic, reusable solutmmefactoring to aspects have
been taken by Hannemann et al. [2005], who proposed a raledapproach to refac-
toring design patterns, and Monteiro and Fernandes [20@%],initiated a catalog of
fine-grained refactorings.

1.2.4 Challenges and Problem Statement

Despite this considerable research, a number of importaaitenges to enhancing
the management of crosscutting concerns in source coddmrepan. The various
solutions available to date are typically hard to integnaiilh each other and do not
define uniform criteria for assessment. Even within the sappoach, like for con-
cern mining or refactoring, crosscutting concerns are egiird at different levels of
granularity, which makes it difficult to compare and combsadutions. Furthermore,
open tool support and detailed case-studies are ratherescar

Similarly, the solutions to concern modeling do not distiisty specific character-
istics of crosscutting concerns, and typically have a beoadope than these concerns,
such as code browsing.

This thesis focuses on crosscutting concerns in exististesys and proposes to
answer the research question of:

How can we consistently manage, i.e. identify, model, dontiarel
possibly migrate, crosscutting concerns in existing systm order to bet-
ter support program comprehension and effective softwastugon?

1.3 Objectives

In answering our research question, we set the followingaihjes for our solution:

Objective 1 The solution should provide a coherent and consistent wagtivess
crosscutting concerns in source code. Currently, the faotlpprehensive, yet vague,
definitions of concerns in general, regarded as “any matieterest in a software sys-
tem” [Sutton and Rouvellou, 2005], or of crosscutting consen particular, (“proper-
ties” that “cannot be cleanly encapsulated in a generafizededure” [Kiczales et al.,
1997]) do not ensure such consistency. As a consequenc@sfest mining and

3We will give a more detailed introdution into AspectJ in Cteaf®, and report on our experience
with applying it in the last chapter of this thesis.

1.4. Research Method and Evaluation 7

refactoring approaches address concerns at various levgtanularity and complex-
ity. The examples of concerns range from simple logging tions or authorization
mechanisms, to complex designs, transactions managemeamsioess rules [Laddad,
2003b; Hannemann et al., 2005]. Such approaches are theedsfficult to integrate,
to consistently assess, compare or combine.

Objective 2 Our solution should result in common benchmark(s) thataththers
to experiment with new techniques for identification of cems, and compare with
our own results. Such benchmarks ask for detailed repottecispect mining results
and a consistent system to present and document thesesreddireover, we aim
at providing tool support to enable assessment of the peapteschniques on new
benchmarks, as well as reproducible results.

Objective 3 At the time of writing, a multitude of aspect mining techneguexist.
Unfortunately, their results are often hard to compare, iatehrating multiple tech-
niques into one tool has proved difficult, as argued before.90lution should provide
criteria and make it possible to integrate, compare, anldiatedifferent aspect mining
techniques in a reproducible manner.

Objective 4 Managing crosscutting concerns consists of differentssteciuding
identification, documentation and modeling, and refantpitio aspect-oriented pro-
gramming. We aim at a well-integrated system allowing onegkample, to directly
use aspect mining results in a concern modeling tool, whieh tan be used to come
up with a suitable solution to refactor to aspects.

Objective 5 The concern documentation and refactoring solutions sheukure
flexibility and re-usability so that they support (futurejegration in development en-
vironments. This requires that the solutions aim at abstrigirom particular concerns
and are applicable to all concerns that share the same piesper

1.4 Research Method and Evaluation

The research methodology adopted in this thesis rests tjedioitowing pillars:

e Use of descriptive case studies for obtaining a better @taleding of the prob-
lem domain. This includes, for example, a detailed accottival occurrences
of crosscutting concerns in existing systems.

e Development of new theory, concepts, and techniques, suab\eel aspect min-
ing techniques, concern modeling approaches, or a newatbaeation of the
notion of crosscutting concerns.

8 Chapter 1. Introduction

e Development of tools to permit application of the methodd &athniques to
existing software systems.

¢ Validation of the new methods and techniques through eapi@ case studies,
in which the software tools developed are applied to a rarfigepen source,
Java) systems.

e Analytical generalization of the case study results initiga critical discussion
of the case study findings. This evaluation is done per chagsewell for the
full thesis in the conclusions, based on the objectivesggeg in the previous
section.

Thus, in this thesis, tool development and case studies &rimmportant part of
the research methodology and evaluation approach, in litte ebservations from
Kitchenham et al. [1995] and Yin [2003].

1.5 Overview

In order to address our research question and meet our wkgate adopt the follow-
ing approach:

1. We start by conducting a study of crosscutting concerrectoal systems. To
support this study, we propose a new aspect mining technique

2. Given our understanding of crosscutting concerns inehslgstems, we propose
a categorization of concerns sortsby typical implementation idioms and spe-
cific relations.

3. Next, we use the crosscutting concern sorts to build @&grated system to man-
age crosscutting concerns in source code. The system tooéithree main
components, for aspect mining, for documentation and neglef concerns,
and for refactoring of concerns to aspect-oriented satsticespectively.

Each of these steps will be discussed next.

1.5.1 A Study of Crosscutting Concerns

Our first step consists of acquiring a better understandimdnat crosscutting concerns
are, how they occur in practice, and how they are typicallglemented in software
systems. To this end, we conduct aspect mining tasks on aetoflopen source,
object-oriented (Java) systems, from several applicatmmains, that comprise over
500,000 non-comment lines of code. These systems includenaeivork for draw-
ing applications (JBTDRAW?), a J2EE enterprise application (Sun’s Jaga BrorRE

“http://jhotdraw.org

1.5. Overview 9

applicatior?), and a servlet engine (McAT®), as well as a J2EE-based application
server (JBss), and the Java Development Tools component of the Eclipsgriated
development environment (JDT plugf)n

In a first experiment described in Chapter 2, we profasen analysisas a general-
purpose aspect mining technique. The technique searcheefbods with large num-
bers of scattered callers, which are likely to implementoeons like logging, listeners
updates, exception handling, etc. In our experiment, wéydpp-in analysis to three
of the open-source systems just mentioned. The resultseoéxperiments are cov-
ered in detail and show a significant variety of examples o$stutting functionality,
including concerns not previously discussed in literature

We extend this experiment in Chapter 3 with a comparativeysdfithn-in analysis
with two different aspect mining techniques developed Ihebtesearch groups. This
joint study uses JHTDRAW as a common benchmark. This makes it possible to see
what sort of crosscutting concerns are discovered by eabhitgue, and whether these
techniques yield overlapping results.

The joint study also revealed the inherent complexity ofialty comparing aspect
mining results. A major difficulty consists of the tediou$oef of correlating mining
results of different techniques due to the lack of a systecotsistently describe these
results and the identified crosscutting concerns. Formastaif we assume that one
technique is able to identify the crosscutting roles in thsé&ver design, and another
technique recognizes the crosscutting implementatiohehbtification mechanism,
a question here is how to report these two valid results. Tadlenge lies in the
fact that a common practice in aspect mining (and refaggaienaspects) is to report
and describe results by referring to well-known examplemfliterature that discuss
crosscuttingness. The Observer design is one such exam@e\spectJ Team, 2003].
However, the two techniques in our case find distinct crasisgmess in the design’s
implementation that can not be reported as the same result.

While Chapter 3 focuses on the various mining results obtairead the three
techniques, Chapter 5 will address the comparison challemgipropose a framework
for consistently comparing and assessing the quality ad@spining techniques.

1.5.2 Crosscutting Concern Sorts

The experience gained from our aspect mining experimentsase studies allows us

to recognize and categoriagomiccrosscutting concerns, i.e., concerns that cannot be
decomposed into smaller, yet meaningful, concerns. We 8¢ dastinguishing atomic
concerns based on properties like their specific underlgategions and implementa-
tion idioms in object-oriented (Java) systems. For ingammoncerns like logging,
authorization and authentication checks, events noiificaétc, follow a same idiom,

Shttp://java.sun.com/blueprintsEPSTORE
Shttp://tomcat.apache.org/
http://www.jboss.org/products/jbossas
8http://www.eclipse.org/jdt/

10 Chapter 1. Introduction

namely scattered invocations to the method implementiegctiosscutting concern.
These concerns can be grouped based on their shared idiowhistirect category of
concerns, which we can ca&llonsistent behavior

Similarly, the idiom to assign multiple roles to a classeliersistence or observ-
ability for changes, consists @fnplementrelations for the members of each of the
various roles. The concerns associated to these roles beujgouped together in a
different category, such &ole superimpositian

The resulting categories are called concgorts which are discussed in Chapter 4.
This chapter not only proposes sorts, but also presentabgaif the most commonly
encountered sorts.

We also observe that complex designs and mechanisms comackriowledged
for their crosscutting properties can be described as csitipas of the atomic con-
cerns that we recognize. For example, the crosscuttingnabe Observer pattern
discussed earlier consists of the composition of the twesumpposed roles, the Sub-
ject and the Observer roles to be implemented by observataldistener elements
respectively, and the mechanism to consistently notifyeoles's of changes in the sub-
ject’s state. Each of these atomic concerns isnatanceof one of the two different
sorts introduced above.

1.5.3 Crosscutting Concern Mining, Modeling and Refactoring us-
ing Sorts

We use the classification of crosscutting concerns inte$oraddress three important
issues in managing crosscutting concerns in source cods, We propose an evalua-
tion framework for aspect mining. Second, we offer an intiweavay of conducting
concern modeling. Last but not least, we provide a systemafproach to refactoring
object-oriented code towards aspect-oriented progragmmin

A common framework for aspect mining We use the classification of crosscutting
concerns in sorts to define a common framework for consisigigim-driven aspect
mining and assessment of mining techniques. The framewutkta applications are
described in Chapter 5.

The framework requires that a mining technique:

1. Defines its search-goal as instances of a specific sorexaonple, Fan-in anal-
ysis aims at th€onsistent behaviasort.

2. Describes the representation of its mining results. iRamalysis, for instance,
reports results as method-call relations.

3. Defines a mapping between the representation of its sesnit the idiom typi-
cally used for the targeted sort. Fan-in analysis resutsexample, can directly
map its results onto the representation of @mnsistent behaviosort, provided

1.5. Overview 11

Grouped (/cloned) calls analysis result: method-callers are grouped together by sets of shared callees

Fan-in analysis result: callers are displayed as child elements of their shared callee
v v

SR g | WY HEY AT B W W 5| =S - F H |95’Java| o

2 = " = T =
[% Package Explorer &2 8| IRglygonFigure.java & =0l Fan-in Analysis View %, g
(= _’_‘,./ b4 BE No. shown results: 120 (filtered: 5,958). Creation time: 841 ms. =
= 52 JHoiDraw54bl (=l &
= s o . g m T Tn S e
b BCH.ifa.daw | e insertPointAt(Point p, i I T2 CH.ifa.draw.framework.DrawingView.checkDamage() : 2§
B : : .)
b EECH.\fa_draw.applet ‘Eg CH.ifa.draw.framework.Figure.willChange() : 25 |:|
b i CH.ifa.draw.application s int[n]; |\r‘CH.\fadraw.(untnb.(}raphl(alCumpnswteF\gurEAundate(;
¢ int [n] |
[» B CH.ifa.draw.contrib For (int = 0: Png 15 443 { =
I f# CH.ifa.draw.contrib.dnd xs[§] = getIntempalPolygon() rorr— e r—
, . < -
b 3 CH.ifa.draw.contrib, html ys[j] = getInternaPolygon() Eiwm"—m[--f--“—qu—--'-‘-’“-'q'-r-‘-'-m-r-“'ﬁ Al
b i CH.ifa.draw.contrib.zoom) :

xs[i] = p.x;
= i CH.ifa.draw figures ys[il = p.y;
= [J] AbstractLineDecoratio| for (j_][ﬂ: J ;]i; J <IpointC§?’lzlt-
= i xs[j + = getInternalPolyg

- (& AbstractLineDecor: | ys[j + 1] = getTnternalPolyg

@@ Cloned calls View I = |
No. shewn results: 21 (filtered: 3,560). Creation time: 1,194 ms ~

|30 & 8 B [}

i serialVersionUIl| 1 T2 [changed; willChange; } : 25 =
o fBorderColor b heckD : ite; i 111
setInternalPolygon(new Polygon(x s (checkDamage; exccute; view; }

o fFillColor . changed() ; |2 CH.ifa.draw.figures.GroupC ommand.execute()

2 myBounds | t |2 CH.ifa.draw.figures.UngroupCommand.execute()

& AbstractlineDe:| L] I

: | 8| *prblds vaid sarovaPETREALCINE 1Y) { |5 CH.ifa.draw.standard.AlignCommand. execute()

@ displayBox(= willChange(); = |45 CH.ifa.draw.standard. Bring T oF rontC ommand.execute(Fl
) 1 —T—— 3 P — ¥
® Seeds View 2 2% B ey~ ™8
! Seed | Fan-in | Grouped calls | Redirector finder ! Concern description |

Figure post-change notification

ifa.draw.standard. AbstractFigure.willChange() + {changed; }

Confirmed results are marked as "seeds” and can be associated a description of their identified concern

Figure 1.3: FINT views for source code analysis and manageai¢he aspect mining
results.

that they preserve the mapping of the endpoints of the oglathe crosscutting
element is on the callee side, and the crosscut element ikeonadilers side.
Mining results that do not map count as false positives.

4. Defines a set of metrics to assess its performance. Fancesta metric like
precisioncan be used to indicate the percentage of valid results itothéset
of reported results of a technique. A new metric that we psepgeseed qual-

ity, which measures the mapping between a mining result andrdissautting
concern it identifies.

We use the framework to design two new aspect mining teclesitjuat target dif-
ferent concern sorts. These, together with Fan-in analgses implemented in our
aspect mining tool FINT, which is openly available as an i plug-ir® Figure 1.3
shows results of two of the techniques in FINT, which are a@i@etheConsistent be-
havior sort. TheSeeds vieyat the bottom of Figure 1.3, assists the user in managing
the aspect mining results of the various techniques.

Shttp://swerl.tudel ft.nl/view AVR FI NT

12 Chapter 1. Introduction

[Sort | Short description \

(Method) Consistent behaVvA set of method-elements consistently invoke a specifioacs a step
ior in their execution.

Redirection layer A type-element acts as a front-end interface having its oustiespon
sible for receiving calls and redirecting them to dedicateihods of &
specific reference, optionally executing additional fimmality.
Expose context (Context Method-elements part of a call chain declare additionahpeter(s

passing and pass it as argument to their callees for propagatingxgbintfforma-
tion along the chain.
Role superimposition Type-elements extend their core functionality throughithglementa;

tion of a secondary role.

Table 1.1: Sorts of crosscuttingness.

Moreover, in Chapter 5, we give an overview of the most impuréspect mining
techniques at the moment and position them into our framewor

Query-based documentation and modeling of concernsTo document the identi-
fied concerns, we use sorts and formalize each sort by meangusry over a source
code model, which we cover in detail in Chapter 4. The sorrguaptures the sort’s
relation and describes its idiom.

As an example, the intent of théonsistent behaviosort is to extend the core
concern of a set of methods by means of a systematic call te spetific functionality,
such as notification of observers. Thus, the queryJonsistent behavioreports all
the call relations between two (user-)defined sets of progri@ments: one set consists
of the crosscutting element, i.e., the callee, while theoiet comprises the crosscut
elements, i.e., the callers that are part of the concerntefest.

Similarly, the query folRole superimpositiodescribes ammplementrelation be-
tween a set of program types, on the one side, and membeisalbag to a crosscut-
ting role implemented by these types, on the other side. rGities, some of which
are shown in Table 1.1, are formalized by similar, albeit stimes more complex,
queries, as we shall see in Chapter 4.

The queries form the basis for tBert Query Too{SOQUET9), our concern mod-
eling and documentation tool, described in Chapter 4. Figjutshows how SQUET
can be used to document an instance ofibasistent behaviaort: the query receives
a parameter to indicate the method whose calls are crosggtich as the notification
method for Figure changes, and another parameter to de@redtlection of crosscut
callers, which, in this case, includes only the set of thadkers that are declared in
theFigure type hierarchy.

The parameterized sort queries document concrete, at@mnimems in the code.
These can be grouped together in composite, hierarchicaleco models to further
document complex features or designs, such as an ObsettempaAn example of
concern model is shown in the same Figure 1.4.

©nitp://swerl.tudelft.nl/view/ AMR/SoQueT

1.6. Contributions 13

omposite concern _Sortinstance and query [Sort-guery results view (results for CB as list of crosscut callers)|

chg,

Package Explorer [Concern Model ?f R % B Hew~ 0@ 8 = O Search 33 =0

fOrig.IzlE "org.jhotdraw framework.Figure.changed()' - 38 references in hie =

||gL,raChange NOYIf\CaTIOn[CB (p:cjecr JhotdrawEDbl (no JRE)) invoke (wnlChange (i
on

7 @ Jromraw ‘, setAt| TR A
- @ Flgures 2 gg?z{: @ addPoint(int, int) - org.jhotdraw.contrib. PolygonFigure =
o ‘ F\gure;hange()bserver D {® addPoint{int, int) - org.jhotdraw.figures. PolyLineFigure
QObSEWEN@F\QUfe[RS" (project ‘jhotdraw60bl' (no JRE)) implement (Fit {® & bring T oF ront(Figure) - org.jhotdraw . standard.CompositeFigL

9FuureChangeL\stenerLRS[: [prqecr Jhotdrawﬁ(}bl (no JRE]] |mplemen @ achanged() - org.jhotdraw.figures . TextFigure

@ . connect(Figure) - org.jhotdraw.figures. TextFigure
1C Vo uAd|spIayBox(F’omr Paint) - crgjhordraw standard. AbstractFi¢

ﬁgure{hangedfF\gureChangeEvent] org.jhotdraw .cantrib.h

Consistent Behavior
figureC hanged(FigureChangeEvent) - org.jhotdraw figures.T

Context Passing

insertPointAt(Point, int) - org.jhotdraw.contrib. PolygonFigure

Exception Propagation Target context
Redirection Layer Search string (* = any string, 7 = any character): insertPointAt(Point, int) - org.jhotdraw.figures.PolyLineFigur
Role Supermposition Ecrg.}hutdraw.framewmk.F\gure.(hangedo‘] mﬂveEvEmt int) - org.jhotdraw.contrib. TexrAreaFlgure
Support Classes

Search For mwer(mr. |nt) = urg.jhctdmw.standard.ﬁ\ 5 rach\gure

(@ Method O Constructor removePointAt(int) - org.jhotdraw.contrib. PolygenFigure [

removePointAt(int) - org.jhotdraw.figures.PolyLineFigure

= replace(Figure, Figure) - org.jhotdraw.standard. CompositeFi
Scope - Source Context 2 R R
rotate(double) - org.jhotdraw.contrib. TriangleFigure

o @ : g Y ¥
S eEEn e S | {ierarchy of *Figure) | scaleRotate{Point, Polygon, Point) - org.jhotdraw.contrib.Pc

Choose... sendToBack(Figure) - org.jhotdraw.standard.CompositeFigL

sendTolayer(Figure, int) - org.jhotdraw.standard. Composite

@ Benich | Cancel setArc(int, int) - org.jhotdraw.figures.RoundRectangleFigure
e <etAttribtalEinnme Attribitel” anstant Ohiect) - nra ihatdr. .:E E

I]

[Dialog to parameterize the (CB) sort query|

Figure 1.4: SQUET views and dialogs.

Refactoring to aspect-oriented programming Last but not least, crosscutting con-
cern sorts offer a way of conducting systematic refactoohgbject-oriented systems
towards aspects. For each sort, a specific refactoring cdefbeed. To actually refac-
tor a sort instance, the corresponding sort query can beassadtarting point.

Sort-based refactoring ensures an optimal trade-off ketvlee complexity of the
refactoring and comprehensibility of the refactored concevhile addressing mean-
ingful concerns, the refactoring (mainly) consists of ospext language mechanism,
which allows for a high degree of flexibility of the aspectig@n for the various in-
stances of a sort.

Furthermore, sorts form the glue for an integrated conceagration strategy, in
which results from aspect mining can be directly used (vadbrresponding sort-
based documentation) as starting point for a subsequeattoeing. This integrated
strategy is the topic of Chapter 6.

1.6 Contributions

The main contributions of the thesis can be summarized sl

e The most comprehensive report on aspect mining results rsdautting con-
cerns in source code available to date. We analyze and riepetail, in Chap-

14 Chapter 1. Introduction

ters 2, 3 and 5 on three relevant open-source systems.

e A set of three aspect mining techniques and tool supporh&sd techniques and
their combination, discussed in Chapters 2 and 5.

e A novel classification of crosscutting concerns on distugcproperties, and a
tool-supported, query-based approach to documenting anttklng concerns,
described in Chapter 4.

e Anew approach to refactoring of concerns to aspect-ornigmtegramming based
on atomic crosscutting concerns, and a show-case for ceflagtto aspects that
is available as an open-source project, AIBRAW. This is also the largest
system publicly available to date that is the result of aateiang towards as-
pects. The approach and its application are discussed int&t&ap

e An integrated migration strategy including steps for asp@ning, concern doc-
umentation and modeling, and aspect refactoring. Thisaseurted in Chapter 6.

1.7 Road map

The chapters of this thesis cover three main research topics

e The identification of crosscutting concerns in source cati known as aspect
mining, which is covered in Chapters 2, 3, 5;

e The systematic documentation and modeling of crosscuttimgerns, which is
described in Chapter 4;

e The refactoring of crosscutting concerns to aspect-aggbptogramming, which
is covered in Chapter 6.

Each of the chapters in this thesis is directly based on at @@ peer reviewed
publication. While this results in some duplication, it aksesures that the various
chapters can be read independently.

Most of the publications have been co-authored with Arie Daoairsen and Leon
Moonen; The publications of Chapter 3 have been co-authoitbdwariano Ceccato,
Kim Mens, Leon Moonen, Paolo Tonella, and Tom Toanil' he following list gives
an overview of these publications:

Chapter 2 This chapter has been accepted for publication in the Tciioss on Soft-
ware Engineering and Methodology (TOSEM) in January, 200drin et al.,
2007a]. An earlier version of the chapter appeared in piiogs of the 11th
IEEE Working Conference on Reverse Engineering (WCRE), 2004if\Maal.,
2004].

1.7. Road map 15

Chapter 3 This chapter is published in the Software Quality Journ@J)5 2006 [Cec-
cato etal., 2006]. An earlier version of the chapter appkisrproceedings of the
13th IEEE International Workshop on Program ComprehensWwPC/ICPC),
2005 [Ceccato et al., 2005].

Chapter 4 This chapter integrates several publications from ACM SafenEngineer-
ing Notes (proceedings of the International Workshop oMbdeling and Anal-
ysis of Concerns in Software), 2005 [Marin et al., 2005c], pineceedings of
the 21st IEEE International Conference on Software MainteadlCSM), 2005
[Marin et al., 2005a], the proceedings of the 14th IEEE WagkConference
on Reverse Engineering (WCRE), 2007 [Marin et al., 2007b], aagtbceed-
ings of the 29th International Conference on Software Eraging (ICSE), 2007
[Marin et al., 2007d].

Chapter 5 The chapter is an extension and integration of two pubbeatin the pro-
ceedings of the 13th IEEE Working Conference on Reverse Eegntge(WCRE),
2006 [Marin et al., 2006a,b].

Chapter 6 This chapter will appear in the proceedings of the 7th IEBErhmational
Conference on Source Code Analysis and Manipulation (SCAM)7 ZMarin
et al., 2007c].

Chapter 2

|dentifying Crosscutting Concerns using
Fan-in Analysis

Aspect mining is a reverse engineering process that aimadinfy crosscutting con-
cerns in existing systems. This chapter proposes an aspeictgnapproach based on
determining methods that are called from many different@éaand hence have a high
fan-in, which can be seen as a symptom of crosscutting functiondlity approach is
semi-automatic, and consists of three steps: metric calmr, method filtering, and
call site analysis. Carrying out these steps is an inter&cpvocess supported by an
Eclipse plug-in called=INT. Fan-in analysis has been applied to three open source
Java systems, totaling around 200,000 lines of code. The imesesting concerns
identified are discussed in detail, which includes severateons not previously dis-
cussed in the literature on crosscutting concerns. Thelt@show that a significant
number of crosscutting concerns can be recognized usingnfanalysis, and each of
the three steps can be supported by tools.

2.1 Introduction

Aspect-oriented software development (AOSD) is a progrargmaradigm that ad-
dresse<rosscutting concerndeatures of a software system that are hard to isolate,
and whose implementation is spread across many differedules. Well-known ex-
amples include logging, persistence, and error handlirsgpeAt-oriented programming
captures such crosscutting behavior in a new modularizaiot, theaspect and of-
fers code generation facilities teeaveaspect code into the rest of the system at the
appropriate places.

Aspect minings an upcoming research direction aimed at finding crossgutbn-
cerns in existing, non-aspect-oriented code. Once theseecas have been identi-
fied, they can be used for program understanding or refact@urposes, for example
by integrating aspect mining techniques into the softwaeetbpment tool suite. In
addition to that, aspect mining research increases ourrstasheling of crosscutting

17

18 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

concerns: it forces us to think about under what circum&sracconcern should be
implemented as an aspect, it helps us find crosscutting comtleat are beyond the
canonical ones such as logging and error handling, and ileaayto concerns that are
crosscutting, yet not easily modularized with current aspechnology (such as, e.g.,
ASPECT)).

In this chapter we propogan-in analysisan aspect mining approach that involves
looking for methods that are called from many different cilés and whose func-
tionality is needed across different methods, potentsisead over many classes and
packages. Our approach aims at finding such methods by comgghe fan-in met-
ric for each method using the system’s static call graphelles on the observation
that scattered, crosscutting functionality is likely tongeate high fan-in values for key
methods implementing this functionality. Furthermores itonsistent with the guide-
lines of applying aspect solutions when the same functigna required in many
places throughout the code [Colyer et al., 2005].

Fan-in analysis is a semi-automated process consistingreé tsteps. First, we
identify the methods with the highest fan-in values. Secarelfilter out methods that
may have a high fan-in but for which it is unlikely that theseai systematic pattern in
their usage that could be exploited in an aspect solutiopicly examples are getters
and setters, as well as utility methods. Third, we inspezictil sites of the high fan-
in methods, in order to determine if the method in questioesdodeed implement
crosscutting functionality. This step is the most laboemnsive, and it is based on an
analysis of recurring patterns in, for example, the cadissif the high fan-in method.
All steps are supported by an Eclipggug-in called FINT, which is also discussed in
the chapter.

We discuss the application of fan-in analysis to three ggstpen source systems
(the web shop PTSTORE, the drawing application JeirDRAw, and the servlet con-
tainer TOMCAT) implemented in Java. For all systems our approach foundardoatof
interesting crosscutting concerns that could benefit fraraspect-oriented redesign.

When evaluating the quality of an aspect mining technique, ¢hallenges have
to be faced. The first is that a benchmark system must exishiohithe crosscutting
concerns are known already, for example because they haveithentified by an ex-
pert. At the moment, such a benchmark does not exist. A ggpwimber of aspect
mining researchers, however, are usingp¥BRAW as their case study, which is thus
evolving into such a benchmark system.

The second evaluation challenge is that the decision thanaetn is crosscut-
ting and amenable to an aspect-oriented implementatiordesgn choice, which is
a trade-off between alternatives. Thus, there is not a gesfswer to the question
whether a concern identified is suitable for an aspect imefgation. As a conse-
quence, quantitative data on the number of false negath@s (nany crosscutting
concerns are missed) or false positives (how many of theerosave identified are in
fact not crosscutting) has a subjective element to it. Theams that an evaluation of

L www. ecl i pse. org

2.2. Aspect Mining: Background and Related Work 19

an aspect mining technique just in terms of, for examplegresages of false positives
and negatives, or in terms of precision and recall, is ansovglification.

To deal with these issues, we decided to discuss a substauntidoer of concerns
found in considerable detail, explaining for what reasdrey tshould be considered as
crosscutting concerns. In order to encourage a debate aesuits, we selected open
source systems on purpose, allowing others to see all cadisdehen desired.

As a result, the chapter can be read in two ways. First ofta$f,the presentation
of the fan-in aspect mining technique. Second, it is a dsonsof those crosscutting
concerns that were found in three open source systems bysnoé&an-in analysis —
thus establishing a first step towards a common benchmatrkdhebe used in further
aspect mining research.

The scope of the present chapter is aspect mining itselingtsie aspect mining
results, for example for refactoring tosRECT, is a separate topic, for which we refer
to, e.g., Binkley et al. [2005], as well as to our own work omrgiementing concerns
discussed in this chapter, described in Chapter 6 of thesthesi

This chapter is organized as follows. We start out by sungxisting work in
the area of aspect mining. Then, in Section 2.3, we preserfatizin metric, the anal-
ysis steps, as well as the Eclipse plug-in supporting faaralysis. In Section 2.4
we present an overview of the case studies. In Sections Z.5+& cover the results
obtained from applying fan-in analysis to three open sogase-studies presenting
several of the concerns found in considerable detail. Weak@in these case stud-
ies, on the reasons for success, and on the limitations ofygpnoach in Section 2.8.
We conclude with a summary of the chapter’s key contribiand opportunities for
future work.

We assume the reader has basic knowledge of aspect-orjgmghmming, and
we refer to Gradecki and Lesiecki [2003], The Aspect] Tea@03?, and Laddad
[2003b] for more information.

2.2 Aspect Mining: Background and Related Work

Since aspect mining is a relatively recent research areatareout by providing some
uniform terminology. We then discuss the most importaneasmining approaches
published to date.

2.2.1 Terminology

Sutton and Rouvellou [2005] provide a discussion on what titoess a “concern”.
Following them, we take concern generally to be “any matténterest in a software
system.” Concerns can live at any level, ranging from requémets, to use cases, to
patterns and contracts. In this chapter we will focus on eamsthat play a role at the
source code level.

We distinguish between a concerimgentandextent

20 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

e A concern’sintentis defined as the objective of the concern. For example, the
intent of a tracing concern is that all relevant input andpatiparameters of
public methods are appropriately traced.

e A concern’sextentis the concrete representation of that concern in the system
source code. For example, the extent of the tracing conamrsists of the col-
lection of all statements actually generating traces favargmethod parameter.

In aspect mining, we search for source code elements thamdpéd the extent of
concerns thatrosscutthe software system’s modularization structure. Scrolsscut-
ting concernsare not dedicated to a modularization unit like a single pgek class
hierarchy, class, method, but sseatteredover all these units. As an example, the
tracing concern will affect many different methods distitdd over different packages
or classes. A consequence of this scatterintangling modular units cannot deal
exclusively with their core concern, but have to take intocamt the implementation
of other concerns that crosscut their modularization a& wel

Aspect-oriented software development aims at avoidingrthimtenance problems
caused by scattering and tangling by making use of the neecaspodularization
construct. As a simple example, consider an implementatfche tracing concern
in AspECT), as shown in Figure 2.1. Thieclarestatement at the top of the aspect
body ensures that all classes contained in a particulargogckxtend th&raceable
interface, using a so-called inter-type declaration. Tiaeeablanterface itself is pro-
vided in the subsequent lines, including a default impletawgon of the interface. In
this way, the aspect extends multiple classes, therebygagtthe statically crosscut-
ting nature of tracing. The remainder of the aspect captiegynamic crosscutting,
using a “pointcut” which intercepts all calls to public metts, and “around advice”
that emits a string with the signature of the executing me¢fbist before and just after
its execution. The aspect can be woven into the base codainkethe latteioblivious
to the tracing concern. This helps to reduce the tanglingerbase code and provides
a non-scattered implementation of the crosscutting concBurthermore, a (small)
reduction in code size can be achieved if the crosscuttisgfficiently regular (as is
the case with the tracing concern: the pointcut expressaomaoantify over all public
methods).

Aspect mining aims at finding crosscutting concerns in @gdst non-aspect-
oriented code. Such concerns could possibly be improvegplyimg aspect-oriented
solutions or can be documented for program comprehensiggopes. The mining
involves the search for source code elements belongingetaniplementation of a
crosscutting concern, i.e., which are part of the conceaxtent. We will refer to such
code elements aseeds Once we have found a single seed for a concern, we can try
to expand the seed to the full extent of the concern, for exaimypfollowing data or
control flow dependencies.

2w, aspect j . or g

2.2. Aspect Mining: Background and Related Work 21

package nyaspects;
public aspect Tracing {

decl are parents: nypackage.* inplenents Traceable

public interface Traceable {
public void traceEntry(String methodSig);
public void traceExit(String methodSig)

}

public void Traceable.traceEntry(String methodSig) {
System. out. println("Entering" + methodSig)

}

public void Traceable.traceExit(String methodSig) {
System. out. printin("Exiting_" + methodSig)

}

poi ntcut thePublicMethods(Traceable t)
target (t) &&
execution(public * mypackage..*(..)) &&
'within(Tracing);

Obj ect around(Traceable t): thePublicMethods(t) {
t.traceEntry(thisJoinPoint.getSignature().toString());
Obj ect result = proceed(t);
t.traceExit (thisJoinPoint.getSignature().toString());
return result;

Figure 2.1: AspPeEcT definition for the tracing concern

Aspect mining generally requires human involvement. Tloees we will say that
aspect mining tools yieldandidate seedsvhich can be turned intoonfirmed seeds
(or simply “seeds”) if accepted by a human experipon-seedd rejected. Sometimes
a non-seed is also referred to afalse positive- afalse negativehen is a part of a
known crosscutting concern, potentially detectable byenique, but missed due to
inherent limitations of the approach or due to the specifierBlapplied in it. The key
aspect mining challenge is to keep the percentage of cordis®eds in the total set of
candidate seeds as high as possible, without increasingutinber of false negatives
too much. As we will see, with fan-in analysis this percertagabove 50%.

The origins of aspect mining can be traced back to the corasgpgnment prob-
lem, i.e., the problem of discovering domain concepts arsigasg them to their
realizations within a specific program [Biggerstaff et aB94]. Work on this prob-
lem has resulted in such research areas as feature loddtiealfke and Quante, 2005;

22 Chapter 2. Identifying Crosscutting Concerns using Fan-inlgsia

Wilde and Scully, 1995; Xie et al., 2006], design patternimgriFerenc et al., 2005],
and program plan recognition [Rich and Wills, 1990; Wills909van Deursen et al.,
2000].

In aspect mining we specifically search for concerns (cosg¢ephose realization
in a given program cuts across modular units. Several aspieatg approaches have
been published, for which we propose a distinction betwepssry-basedndgener-
ative approachesQuery-basedpproaches start from manual input such as a textual
pattern. Generativeapproaches, including fan-in analysis, aim at generateeyls
automatically making use of, for example, structural infation obtained from the
source code. Below we discuss these two categories of aspeicignapproaches.
Moreover, we discuss techniques that are most closelyecktatour fan-in analysis.

2.2.2 Query-Based Approaches

Query-based, explorative techniques rely on search patterovided by the user.
Source code locations that match the pattern correspondgeautting concern seeds,
which can subsequently be expanded to more complete cagsimy a tool.

One of the first query-based tools, the Aspect Browser, ugesleattern match-
ing for querying the code, and a map metaphor for visualitirgresults [Griswold
et al., 2001]. The Aspect Mining Tool AMT extends the lexisaarch from the Aspect
Browser with structural search for usage of types within &gigiece of code [Hanne-
mann and Kiczales, 2001]. Both tools display the query resunla Seesoft-type view
as highlighted strips in enclosed regions representingutesde.g., compilation units)
of the system [Eick et al., 1992].

AMTEX is an AMT extension that provides support for quanitify the characteri-
zation of particular aspects [Zhang and Jacobsen, 2003]TEX] in turn, has evolved
into PRISM, a tool supporting identification activities by ams of lexical and type-
based patterns calldthgerprints[Zhang and Jacobsen, 2004]. A fingerprint can be
defined, for example, as any method in a given class of whiem#éme starts with a
given word. A software engineer defining fingerprints is stesi by so-calle@dvi-
sors PRISM currently provides a ranking advisor which reporesiiost frequently-
used types across methods. This idea is akin to fan-in asalyich reports the most
frequently used methods across a system. There are, howevegports about the
successfulness of applying the approach implemented inMRShe identification
of crosscutting concerns.

The Feature Exploration and Analysis Tool FEAT is an Eclipkey-in aimed at
locating, describing, and analyzing concerns in source ¢Babillard and Murphy,
2007]. Itis based owoncern graphsvhich represent the elements of a concern and
their relationships. A FEAT session starts with an elemenotkn to be a concern seed,
and FEAT allows the user to query relations, such as dirdctedations, between the
seed and other elements in the program. The results of thg thet are considered
relevant by the user to the implementation of a (crossajttioncern can be added to
the graph-based representation of the concern.

2.2. Aspect Mining: Background and Related Work 23

The Concern Manipulation Environment CME aims at providingpsut across
the whole lifecycle of an aspect-oriented developmentgatdHarrison et al., 2004].
This support also includes aspect identification facgitierough an integrated search
component (Puma) that uses an extensible query languagehé@Pg[Tarr et al., 2004].
The Panther language includes the static part of the Aspeaticut language. CME
also allows for concern management similar to FEAT. Mostartgntly, CME provides
a possible infrastructure for the integration of differapproaches to aspect mining,
including seed identification and concern exploration aatagement.

Various query-based tools (the Aspect Browser, AMT, and FE#ave been com-
pared in a recent study [Murphy et al., 2005]. This study shtivat the queries and
patterns are mostly derived from application knowledgdea@ading, words from task
descriptions, or names of files. As the study shows, prioinkedge of the system or
known starting points strongly affect the usefulness ofaleomes of the analysis.

2.2.3 Generative Approaches

The second group of aspect mining approaches aim at autm@aiatjenerating cross-
cutting concern seeds with a good quality: seeds that wdlice the effort of further
understanding and exploring the concern. The approachéssicategory can be de-
scribed agenerativedechniques and will typically provide the input for the exaltive
approaches.

Many generative approaches use program analysis teclatigleok for symptoms
of code scattering and tangling and identify code elemexitb#ing these symptoms
that can act as candidate aspect seeds.

Shepherd et al. [2004] use clone detection based on progependence graphs
and the comparison of individual statement’s abstractesytrees for mining aspects
in Java source code.

Three clone detection tools, implementing matching on nekebstract syntax
trees, and on program dependence graphs, respectivedyavated by Bruntink et al.
[2005] on an industrial C component. The starting point wete dedicated crosscut-
ting concerns that were manually identified and annotatéukeicode beforehand. The
evaluation assesses the suitability of clone detectiordéntifying these concerns au-
tomatically by measuring the coverage of the annotatederosdy detected clones.

Code clones in object-oriented systems would typically Hactered through
method extraction [Fowler et al., 1999] which results intgad calls to the extracted
method [Laddad, 2003a]. Fan-in analysis looks for the corscenplemented by these
scattered calls, which could be further refactored inteeaspdvice.

Dynamic analysis has been considered for aspect idenidfiichy examining ex-
ecution traces for recurring execution patterns [Breu anidKker 2004] and by ap-
plying formal concept analysis to associate method exaasitto traces specific to
documentation-derived use-case scenarios [Tonella anck@e@004a]. Particularly
challenging for dynamic analysis techniques is to exeraiskinctionality in the sys-
tem that could lead to aspect candidates. This implies thpelminary activity is

24 Chapter 2. Identifying Crosscutting Concerns using Fan-inlgsia

needed in which use-case scenarios are defined for the systden investigation.
Fan-in analysis does not require such a preliminary agtivit

The first of the two dynamic techniques has been adaptedthetestatic analysis
to search for recurring execution patterns in control floapips [Krinke, 2006]. The
technique is similar in some respect to fan-in analysisctvsearches for recurrent call
relations. The experimental results of the technique aeudsed by comparison with
our own results reported for one of the analyzed systemssha&t many common
findings.

Formal concept analysis has also been applied in an idergif@ysis that groups
programming elements based on their names [Téewand Mens, 2004]. This analysis
starts from the assumption that naming conventions candxtoselate the scattered
elements of a concern. Although fan-in analysis could useimgconventions for the
investigation of the automatically generated resultspiiinary functionality relies on
structural relationships.

The suitability of refactoring certain interfaces implartedd by a class has been
investigated through a number of indicators like the nanpiatiern used by the inter-
face definition, the coupling between the methods of the emginting class and the
methods declared by the interface, or the package locatitreanterface and its im-
plementing class [Tonella and Ceccato, 2004b]. By compamgtnfan-in analysis
which focuses on method seeds, this technique is directgtiag interface definitions
for seed identification.

Besides our own experiments, assessments of fan-in andigsi&e propose have
been provided by Gybels and Kellens [2005] who used the masrian approximate
heuristic for measuring scattering. Another assessmehi®analysis has been made
available through the Timna framework [Shepherd et al. 52D@vhich uses machine
learning techniques to combine the results of several aspiaing techniques.

In their more recent work, Breu and Zimmermann [2006] seaocttdncerns by
analyzing the changes in the values of the fan-in metric betwdifferent versions of
the system under investigation. The technique they programines the version his-
tory for insertions of method calls. Similar to fan-in argf; a reported seed consists
of a set of one or more methods with same call site locatiorss technique could
complement fan-in analysis by giving insight into the ewln of the metric’s values
in a system, and hence into the evolution of the concern oftaade

2.2.4 Aspect Identification Case Studies

The subject systems that we have analyzed in the previousriMaal., 2004] and
present work have also been used by related research [SHegthal., 2005a, 2004;
Janzen and Volder, 2003; Binkley et al., 2005] or in tool desti@iions (e.g., FEAT
[Robillard and Murphy, 2007]). However, our work on fan-inadysis is the first at-
tempt to establish a common benchmark for the developmeasméct mining tech-
niques, by explicitly reporting the results obtained foruanier of case-studies and
discussing them in significant detail. This work has beertinoed in a comparative

2.3. Aspect Mining Using Fan-in Analysis 25

study [Ceccato et al., 2006] of the fan-in technique with tlgaaanic [Tonella and
Ceccato, 2004a] and identifier analysis [Toarand Mens, 2004] approaches. The
JHOTDRAW case-study targeted by the comparison experiment is iatetadbecome
the de-facto benchmark for aspect mining.

2.3 Aspect Mining Using Fan-in Analysis

Fan-in analysis fits in the category of generative aspecingiapproaches. The main
symptom of crosscuttingness it tries to captursciasttering the code for one concernis
spread across the system. If the scattered pieces of codéurationality in common,
it is likely that this will have been factored out in helpertimads. These methods are
then called from many places, giving them a high fan-in valmean aspect-oriented
re-implementation of such concerns, the method would dorsi{part of) the advice,
and the call site would correspond to the context that needee tcaptured using a
pointcut.
Fan-in analysis consists of three steps:

1. Computation of the fan-in metric for all methods;

2. Filtering of the set of methods to obtain the methods thatraost likely to
implement crosscutting behavior;

3. Analysis of the remaining methods to determine which ehthare part of the
implementation of a crosscutting concern.

The next subsections describe each of these steps, as wed ta®l FINT supporting
these steps.

2.3.1 A Fan-in Metric for Aspect Mining

The metric we will use for aspect mining is based on methodrawhich is a “mea-
sure of the number of methods that call some other methodthBerville, 2004].
Thus, we will collect the set of (potential) callers for eankthod — and the cardi-
nality of this set gives the required fan-in value. The alctatue, however, of method
fan-in depends on the way we take polymorphic methods (sadle well as callees)
into account.

Therefore, our first refinement is that we count the numbedifbérent method
bodiesthat call some other method. Thus, if a single abstract nadethonplemented
in two concrete subclasses, we treat these two implemensatis separate callers.

Our second refinement deals with calls to polymorphic methdglecall that we
are interested in methods that are called from many diffgpaces, since these are
potentially part of a crosscutting concern. If we find thataigular methoanbelongs
to such a concern, it is very likely that superclass dedlamator subclass overrides of

26 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

,,,,,,,,,,,,,,,,,,,,,,,,,,

C1 Cc2

void m() void m()

(a) Example Class Hierarchy

Fan-in contribution
Call site Al.m| A2.zm | B.m| Cl.m| C2.m
f1(Alal){ al.m();} 1 0 1 1 1
f2(A2 a2){ a2.m();} 0 1 1 1 1
f3(B b) {b.m(); } 1 1 1 1 1
f4(C1 c1){ c1.m();} 1 1 1 1 0
f5(C2 c2){ c2.m();} 1 1 1 0 1
| Total fan-in | 4 | 4 | 5 4 | 4 |

(b) Corresponding Fan-in Values

Figure 2.2: Example class hierarchy and correspondingrfamalues

m belong to that same concern. For that reason, if we see thifocheY applies
methodm to an object of static typ€, we addn' to the set of (potential) callers for
eachmdeclared in any sub- or superclassof

With this definition, (abstract) method declarations highihe inheritance hierar-
chy act as fan-in accumulators: whenever a specific subttggdementation is ex-
plicitly invoked, the fan-in of not only the specific but alebthe abstract method is
increased. In this way, if there are many calls to differgueécsfic implementations,
we get a high fan-in value for the superclass method. An aspemnted reimplemen-
tation would aim at capturing the many specific call sites @fpointcut, and invoke
the abstract method in the advice, relying on polymorphismispatch to the proper
specific implementation.

An example hierarchy is shown in Figure 2.2. The exampletitates the effects
of various calls to a polymorphic methadin different positions in the class hierarchy.
Note that, given our definition, the fan-in for method m inss&C1 is not affected by
calls to m defined in C2 and vice versa: the same holds for gilslmsses Al and A2.

2.3. Aspect Mining Using Fan-in Analysis 27

Our last refinement is concerned with super calls. For suaks,ave explicitly
know which method is targeted, which therefore is the onlyhoé whose call set is
extended.

Observe that there are multiple ways in which a fan-in meiaic be defined. His-
torically, the notion of fan-in was introduced by Henry andfira [1981] as an indi-
cator for coupling in procedural software. They includeadatcess in fan-in as well,
which we do not. An overview of coupling indicators for oljeciented systems is
discussed by Briand et al. [1999]. In some cases these matddsmsed on a derivative
of the fan-in metric, which then often is taken at the clagsllénstead of the method
fan-in we use) — see, e.g., Henderson-Sellers et al. [1986Jther cases calls from
private methods are excluded from the fan-in count.

2.3.2 Method Filtering

After having computed the fan-in values of all methods, welaphe following filters,
in order to obtain a smaller set of methods with a higher chasfcimplementing
crosscutting behavior.

First, we restrict the set of methods to those having a faabove a certain thresh-
old. This can be an absolute fan-in value (say, 10) or a velgtercentage (say, the
top 5% of all methods ordered by their fan-in values). Not& #n absolute value
threshold not only acts as a filter, but also an indicatoriierdeverity of the scattering.

In our case studies, we experimented with several valuesfamd 10 to be a
useful trade-off between the number of concerns that ondicdrand the number of
methods that need to be inspected.

Second, we filter getters and setters from the list of meth®lis is either based on
naming conventions (methods matching the “get*” or “set&ttern) or on an analysis
of the method’s implementation.

Last but not least, we filter utility methods, likeStri ng(), classes such a&ML-
DocumentUtilscontaining “util” in their name, collection manipulationetiods, and
so on, from the remaining set. This is a manual step that nayineesome familiar-
ity with the subject system. This familiarity can be imprdwafter each iteration by
looking at the results and analyzing apparent indicat&esriames or easily accessible
documentation, such as descriptive comments in the codeh&turistics we used for
identifying utility methods in our case studies are basetherfollowing categories:

e Methods that belong to collection classes and/or packagés. JHOTDRAW
case study, for example, comes with its own library for adlten classes. We
typically recognized these based on class or package nanwsad-igureEnu-
merator, HandleEnumeratqrlListWrapper and so on.

e Documented utilities, based on naming and easily availdbteimentation cri-
teria. For example, for PrSTORE, the utility methods belong to two classes:
XMLDocumentUtilandPopulateUtils which creates and prints SQL statements

28 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

used to populate the sample database for the applicatidroMTAT, we marked
classes from thetil.buf package as utility, which deals with encoding and de-
coding buffers. We also marked thil.digester.Digesteclass as utility - the
class is described as an XML parser in Tomcat’s documentatio

2.3.3 Seed Analysis

Our final step is to conduct a manual analysis of the remaisa@igf methods. This
analysis follows a number of guidelines, part of which berfedm automatic support.
Reasoning about the reported candidates can take a top-ddvattom-up approach.

In the bottom-up approach we look for consistent invocaiohthe method with
a high fan-in value from call sites that could be captured kgoantcut definition.
Examples of such consistent invocations include:

e The calls always occur at the beginning or the end of a method;

e The calls occur in methods that are all refinements of a sialgééract method,
as, for instance, for contracts exercised across claszrbiees;

e The calls occur in methods with similar names, like handlersnouse or key
events;

o All calls occur in methods implementing a certain role, as gkample, listener-
objects that register themselves as observers of a sulijgstt state.

The regularity of these call sites typically will make it pdde to capture the calls in
a pointcut mechanism, and the high fan-in method into advibe main challenge of
the bottom-up approach is to recognize these patternsigaalipointcuts. As we will
see in the next section, it is possible to offer tool supperehthat helps the human
engineer in conducting this analysis.

In the top-down approach, we take domain knowledge or kriydeof typical
crosscutting concerns into account, as described by, ldapnemann and Kiczales
[2002] or Laddad [2003b]. For example, a number of desigtepat define (crosscut-
ting) roles and methods specific to these roles that can app#we list of seeds. The
human engineer can take advantage of such knowledge whbsziagethe candidate
seeds to recognize the pattern-specific roles. The Compazitern, for example, de-
fines roles and methods to allow parent-objects to refer adpulate child-elements.
Similarly, the methods in a decorator class are charaeighy the consistent redirec-
tion functionality they implement.

2.3. Aspect Mining Using Fan-in Analysis 29

Java - AbstractFigure.java - Eclipse SDK

File Edit Source Refactor MNavigate Search Project Run Window Help

iz #r0-G- | B EHE | B® 5 m Ef |@! Java 2

»,

7 E_ [3] Figure.java] AbstractFigure java 2 =t | Fandin Analysis View X =0

| # Package Expl... & i 3
B [<]2||No. shown methods: 128 (filtered: 5,950). Creation time: 665 ms. =

&
T & KB < @B
= * Informs that a figure changed thi| | >t CH.ifa.rdraw.stand'arrd.AhrslractCommand.execule() 124 E]
H (default package) 7 } b 2 CH.ifa.draw. dard.AbstractC d.isExecutable() : 12
HCH “ IEEF;EE?EZEZE;E“t b Y2 CH.ifa.draw.standard.AbstractCommand.name) : 15
fHCH.ifa f) i I Te CH.ifa.draw.standard. AbstractCommand.view() : 47
I B2 CH.ifa.draw D“bllj-': voj.d m() { B E CH.ifa.draw.standard.AbstractConnector.owner() : 18
I» 8 CH.ifa.draw.applet ﬂvﬁigi;ﬁx)‘é) 1= mull) { D] CH.ifa.draw.standard.AbslractFigure.addFigureChangeLisu|:|
P 8 CH.ifa.draw.applicatic listener().figureChanged(ne: "~ CH.ifa.draw.standard . AbstractFigure.changed() : 37 .
I» [CH.ifa.draw.contrib } |=CH.ifa.draw.contrib.GraphicalC ompositeFigure.update()
I> {8 CH.ifa.draw.contrib.dr ¥ |2 CH.ifa.draw .contrib.html.HTMLTextAreaFigure.figureC hange
b # CH.ifa.draw.contrib.ht = fe [<= CH.ifa.draw.contrib.PolygonFigure.addPoint(l[)
I 8 CH.ifa.draw.contrib.zc| * Gets the center of a figure. A el [<= CH.ifa.draw.contrib.PolygonFigure.insertPointAt(QPoint;1)
I 8 CH.ifa.draw.figures 1.‘!methcd thnt dn/zRely fovernidden '_‘ [<= CH.ifa.draw.contrib.PolygonFigure.removePointAt(l) E]
I 8 CH.ifa.draw.framewor b @[] ,;‘ -]—’]* ([s - |' = = oo "'E]'
I {2 CH.ifa.draw.images = - = ey
I> H2CH.ifa.draw.samples ® SeausVim > ol B 7 El,
[EBCH.ITE.de.SaleES._: ‘ Seed |Faan | Concern description ||:|
b S CH.ifa.draw.samples CH.ifa.draw.figures. TextFigure.changed() 36 |:|
b [CH.ifa.draw.samples. | CH.ifa.draw.framework. DrawingEditor.toolDone() 21 Consistent behavior - tool done notification
b B CH.ifadraw.samples. CH.ifa.draw.framewaork.DrawingView.checkDamagel) 28 Consistent behavior - post-command execution notitifcation
b [CH.ifa.draw.samples. CH.ifa.draw.framework. DrawingView.selectionCount() 16
b CH.ifa.draw.samples. \w.framework.Figure.addFigureC hangeListener{QFigureChange 11 FigureChange Observer - listeners consistent registration
b E3CH.ifa.draw.samples. CH.ifa.draw.framework.Figure.changed() 36 FigureChange Observer - consistent notification of changes
b 48 CH.ifa.draw.standard CH.i.dw.ramork.Figu.mclude_s_(QFigure‘) 4 Composite figure - Composite role
I 1 CH.ifa draw test (=il CHIfa.ﬂmﬁammnrkFignmﬁs{empo
| T [¥] || framework Figure.removeFigureChangeListener(QFigureChan 10 =]

= = = F— 7 0 —

Figure 2.3: FINT in action, showing thH&an-in Analysis Viewtop right) and the&seeds
View (bottom right).

2.3.4 The Fan-in Tool FINT

The Fan-in Tool FIN? is an Eclipse plug-in that provides automatic support fer th
metric computation, method filtering, and candidate ansisteps of fan-in analysis.

To compute the fan-in metric, the tool first builds the aldtsyntax tree for the
user-selected sources, and then creates a call graph witihe@thods declared in the
selected sources and their callees. The fan-in metric isatkfrom this graph, as
described in Section 2.3.1. The results are displayed iRahen Analysis viewshown
in Figure 2.3, together with the list of callers for each noeth The results can be
ordered alphabetically or by their fan-in value. Optiopathe results can also be
stored on file.

The same view is used for the filtering step of fan-in analy$isus, the user can
indicate an absolute threshold for the fan-in value. Funtioee, the user can choose
to filter out accessor methods by their signature based ofg@t& or “set*” naming
convention, or based on their implementation.

S http://swerl.tudel ft.nl/bin/view AVR FINT. The features discussed in this chapter are
part of FINT 0.6.

30 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

In addition to that, the user can indicate groups of elemehtsse methods are to
be excluded from the callee or caller sets. Excluded cabeesndicated as utility-
methods and represent methods considered irrelevantétysas Similarly, the user-
selected callers will not contribute to the fan-in metridloé analyzed methods. Both
filters can be applied, for instance, to (JUnit) tests, whack neither relevant as
candidate-seeds nor as callers. The user marks these éteim@nbrowser window,
which displays the Java elements in the hierarchy of theyaadlelements, similar to
Eclipse’'sPackage Exploreview. The user can select a check-box for the enclosing
package, file, or declaring class of the method to be filtered.

Methods not declared in the analyzed sources, but callethélyzed methods are
consideredibraries and can optionally be included in the analysis. These method
cannot contribute to the fan-in metric of a method.

The Fan-in Analysis Views also the starting point for the last analysis step. From
this view, the engineer can inspect the reported methodthanccallers. Methods can
be marked as seeds and added td3&eds Viepnshown at the bottom of Figure 2.3. In
this view, the seeds can be documented with a concern deésuoripaved to a file or
loaded from a previous analysis.

The analysis and seed views from FINT support the user irgrézimg recurring
patterns and similarities as discussed in the previousosgdtelping him or her in
deciding whether one or more high fan-in methods belong t@sscutting concern.

The various ways in which methods and call sites can be sartddnspected in
FINT help to discover such patterns. Furthermore, the tomlides automatic support
for detecting some of the possible relations between thersalf an analyzed method,
like grouping of the callers by common hierarchies or therldring interfaces, by the
position of the analyzed call, or by other callees sharedbycallers.

As an example, Figure 2.4 shows the view for analyzing thieisabf a method
with a high fan-in value by investigating their declaringgiriaces. The callers declared
by the same interface are shown in a same, distinctive cBlach analysis is helpful,
for example, in identification of (crosscutting) respoiigibs that are to be fulfilled
by a number of classes.

The same figure also shows a relational table for the callietiseomethod with
the high fan-in value and the relative position of the cathia body of the caller. This
analysis investigates whether the call occurs on the fesgrsd, first before last, or last
position. These positions would typically indicate a befor after advice as a natural
aspect-refactoring solution for the candidate seed arsitef callers.

2.4 The Case Studies

We have applied fan-in analysis to several case studiese thir which we describe
in detail in this chapter. All cases are open source systafl@ying validation of
our results by others. TheeERSTORE and JHOTDRAW systems are demonstration
applications of J2EE technologies and design patternpectisely. TOMCAT is the

2.4. The Case Studies

31

E) Java - AlignCommand.java - Eclipse SDK |;||E|z:|
‘Relations]
Zallers-BeforeAfterCallPositions Relations 1 =h 4 B [@,’Java 2
Callers-BeforeAfterCallPositions Relations 52 =
Reaos tabe . ment: CH.ifa.draw.standard.AbstractCommand.execute() (references; 24'"V |
T &
First call | Second call | Before last call ‘ Last | % = i i
e e | = ‘ i 1 & R 0B e
ard.AlignCommand.execute() X |~ CH.ifa.draw.contrib.C d(QActionEve |~
ard. Bring T oFrontC ommand.executa() X = _H.ifa.draw.contrib.C “ommandMenu.actionPerformed{QA "i;
ard.ChangeAttributeCommand.execute() X F |<=CH.ifa.draw.contrib.zoom.ZoomCommand.executel)
ard. CopyC ommand.execute() X |2 CH.ifa.draw.figures. GroupCommand.execute()
ard. CutCommand. execute() X |- CH.ifa.draw.figures.InsertimageCommand.execute()
ard. DeleteCommand.execute() X | CH.ifa.draw.figures.UngroupCommand.exec ute{)
ard. DuplicateCommand.executel) X <= CH.ifa.draw.standard.AlignCommand.execute()
ard.PasteCommand.executa() X |5 CH.ifa.draw.standard.BringT oF rontCommand. exec ute()
ard.SelectAllCommand.executel) X |- CH.ifa.draw.standard.C hangeArtributeC ommand.execute()
ard.SendToBackCommand.execute() X |5 CH.ifa.draw.standard.CopyCommand.execute()
ard.StandardDrawingViewSDrawingViewlK |<=CH.ifa.draw.standard.C utCommand.execute{)
ard. ToggleGridCommand.execute() X |2 CH.ifa.draw.standard.DeleteCommand.execute()
ymmandButton. actionPerformed(QActionE X |~ CH.ifa.draw.standard. DuplicateCommand.execute()
»mmandChoice.itemStateC hanged(Qltem Ll |2 CH.ifa.draw.standard. PasteCommand.execute()
(4] [[|2 CH.ifa.draw.standard. SelectAllC ommand.executef)
|~ CH.ifa.draw.standard.SendT oBackCommand.execute()
|5 CH.ifa.draw.standard. ToggleGridCommand.execute()
FHCHrEdraw. ot — o te) 1
B I (= public void execute FoCH ffad e o W AP j{QltemEvent:
b !%IAmmatabIe.J. . super BTV (): ifa.draw.u ce emEvent;)
b D Bowndsjave | setUndoActivity(createtndorc | TR
b [Clipboard.ja| I] // get selected figures in t |<=CH.ifa.draw.util. RedoCommand.execute()
i - | x getUndoActivity().setAffecte . | L
I |7 CollectionsF = [((AlignCommand.UndoActivity) [= :@ii.lza.jmw.un:.:.: nf(:ib{ec om:land.exeiuteo [+
P — | [- “a . - £ aal i Armoa il " Armmnand avas ko
(8 T i0 1 TR | I [[3]

Figure 2.4: Seed inspection using FINT. The color codingbéright window indi-
cate inheritance from common interfaces; the table at ttiarlarks the positions of
calls to a high fan-in method.

largest system, and one that is widely used in web serveosailthe world.
Before going into detail in the case studies, we first discussrmaber of general
observations, and explain in what format we will presentttitee case studies.

2.4.1 First Findings

Key statistics for our case studies are provided in Table&first observation that can
be made from this table is that filtering methods above thestiwld of 10 reduces the
number of methods to be inspected to 1, 6, and 3 percentHfosPORE, JHOTDRAW
and ToMCAT, respectively. Figure 2.5 shows the fan-in distributiontfee three case-
studies. As can be seen, the vast majority of methods have éovefan-in. The large
percentage of methods with a fan-in value of 0 can be expldiyethe nature of the
applications. PetStore, for instance, is a J2EE applicaia a number of calls are not
explicit in the code but made by the container (EJB-specifithous).

A second observation that can be made from Table 2.1 is tleaa¢hessor and
utility filters eliminate about half of the high fan-in meth® Note that the utility

32 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

PETSTORE JHOTDRAW TOMCAT

size in non-comment lines of code 17,032 20,594 149,219
number of methods 1,917 3,230 13,489
methods with fan-ir> 10 16 (1%) 205 (6%) 424 (3%)
Statistics for methods with fan-ir 10

utility methods 3 20 16
accessors 5 71 181
confirmed seeds 7 (87%) 58 (51%) 164 (73%)
non-seeds 1 (13%) 56 (49%) 63 (27%)
concerns 5 10 10

Table 2.1: Key statistics of our case studies

Fan-in distribution
40%

38% 1 [

35% i

33% 1 1 H

30% 1 1 H

28% 11 1 M
B 25% 1
g 23% 1 1 M [PetStore1.3.2
T 20% 11 1 I JHotDraw54b1
€ 18% 1 4 H [] Tomcat5.5.(17)
X 15% m

13% —

10% — —

8% — —

Al B I I §

3% 1 —

0% —+ \ \ \ \ ‘\ *\Lwﬁj*\

o 1 2 3 4 5 6 7 8 9 >0

Fan-in value

Figure 2.5: Fan-in distribution for the three case studies.

2.4. The Case Studies 33

methods filtered out here are the ones that are part of themsystder study. Utility
methods in external libraries are not taken into accounhénfirst place, and do not
occur in the table. If necessary, the scope of the systenrstady can be extended
to include certain libraries as well. This is a decision tlegfuires a certain amount of
domain knowledge, for example that a particular librarysedifor addressing a known
crosscutting concern (we will encounter such a situatioifeloggingconcern in the
TOMCAT case study in Section 2.7).

The methods of the system under study that are not filtereditilgive the set to
be analyzed in a last, tool-assisted step. This shouldtriesalklassification as either a
seed for a crosscutting concern, or as a hon-seed. Our theethation from Table 2.1
is that for all cases, a significant percentage (87%, 51%7af@for the three cases) of
the methods that need to be inspected manually turn out tofférmed seeds. Thus,
while this step may be more labor-intensive, it does give adgchance of finding
crosscutting concern seeds.

A final observation is that there are many more seeds tharecasic This is due
to two reasons. First, there may be multiple concern ingtsfar one sort of concern.
For example, JBTDRAW makes use of more than one Observer. Second, a single
concern is often identified through multiple seeds. For gdanfor the Observer de-
sign pattern, we may not only find a high fan-in for the nottiima method, but also
for the methods for attaching different observers to a sitbje

2.4.2 Case Study Presentation

In the next sections we discuss theTSTORE, JHOTDRAW, and TOMCAT case stud-
ies. We particularly focus on the third step, in which seedseither confirmed or
rejected as belonging to a crosscutting concern, sincatisimplies various consid-
erations, inherent in the mining process, about the claasibin of a candidate seed.
For each case study, we discuss several of the concerns flowatsiderable detail,
explaining why we think that they are crosscutting, andyanag to what extent these
concerns are amenable to an aspect-oriented re-impletioentA full list of all high
fan-in methods and the concerns they belong to are publglijedle on our web sife
The site furthermore describes which methods exactly wexkkeal as utilities, thus
making our experiments fully reproducible.

In order to give an impression of the limitations (and hengpastunities for im-
provement) of fan-in analysis, the next sections also @ssome of the false positives
(rejected candidate seeds) and some of the concerns thebh@amn from the litera-
ture or from related studies that our analysis missed (fagmtives). Note that while
we can compute the percentage of false positives (the nuofbhesn-seeds divided
by the total number of seeds), we cannot determine the pageiof false negatives.
This would require a common benchmark that documents atinb&scutting concerns
exhibiting the symptoms (code scattering) targeted byirfiaamalysis. At the time of

“http://swerl.tudel ft.nl/bin/view AVR Fanl nAnal ysi sResul ts

34 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

Method Fan-in Concern
XMLDocumentException(String) 27 Contract enforcement
ServiceLocatorException(Exception) 22 Exception wragpi
CatalogDAOSysException(String) 19 Exception wrapping
PopulateException(String, Exception) 11 Exception wnagp
TransitionException(Exception) 15 Exception wrapping
XMLDocumentException(Exception) 23 Exception wrappimgldracing
for debugging
ejb.ServiceLocator() 30 Service locator
XMLDBHandler() 10 False positive

Table 2.2: BETSTORE high fan-in methods and concerns

writing, no such benchmark exists.

2.5 PETSTORE

The first case study we discuss IETSTORE. This is a sample J2EE e-business ap-
plication developed by SURLIt is a demonstration of a Web application allowing
customers to purchase via a web browser. In addition, itaes modules to perform
administration tasks like sales statistics, orders anppaig management, etc.ER
STORE is an application demonstrating the proper use of most of & concepts,
and can be considered a well-designed system.

An overview of the methods with a fan-in of 10 and higher, tian-in value, and
the concerns they represent is given in Table 2.2. In thiptelnave explain why these
concerns are indeed crosscutting. Details on their refactdowards ASPECT are
presented by Mesbah and van Deursen [2005].

Service Locators The method with the highest fan-in value (30) belongs toSke
viceLocatorclass from theejb package, which implements the J2EE pattern of the
same name [Alur et al., 2003]. The intent of the pattern isrtwigde a single point of
control to clients that need to locate and access a componsastvice in the business
or integration tier. The common solution is to have a singance of the service
locator class for an application or, at least, for a tier dngtto have it implemented
as a singleton. The advantages of this solution, howevematr always clear for the
EJB-tier and thus the adopted solution can vary [Johnsor8]200

PETSTORE contains two different service locators: the web-tier omaenple-
mented as a singleton but the fan-in of the method returriegunique instance is
only 7; the identified EJB-tier locator is not a singleton amel tnethod reported is the
constructor of the class.

Shttp://java.sun.com bl ueprints/, PETSTORE version 1.3.2.

2.5. PETSTORE 35

public class InvoiceTD i nplenments TransitionDel egate {

/+** sets up all the resources that will be needed to do
* a transition
*/
public void setup() throws TransitionException {
try {
ServicelLocator sl = new ServicelLocator();
qFactory = sl.getQueueConnectionFactory(JNDI Names. ...);
q = sl.getQueue(JNDI Names. ...);
queueHel per = new QueueHel per (qFactory, q);
} catch(ServicelLocatorException se) {
throw new TransitionException(se);

}
}

/+** Send an order approval to the O derApproval Queue...
*/
public void doTransition(Transitionlnfo info)
throws TransitionException {
String xm Compl etedOrder = info.getXM.Message();
try {
queueHel per. sendMessage(xm Conmpl et edOr der) ;
} catch (JMSException je) {
throw new TransitionException(je);
}
}
}

Figure 2.6: Error handling in rSToRE

The service locator defines a consistent lookup mechanisthéalependencies of
the various application components, which couples thesgooents to the infrastruc-
ture framework and tangles them with the lookup logic.

A possible refactoring for the service locator is Dependency Injectiopattern
(also callednversion of Contrglused in lightweight containers to avoid directly ref-
erencing a service locator [Fowler, 2004], a mechanism tbsg¢mbles the aspect-
oriented mechanisms for injection. For Singleton impletagons, the aspect refac-
toring of the pattern [Murali et al., 2004] and the optionatking mechanism [Laddad,
2003Db] are in place. The exception wrapping discussed seadsd applicable to the
Service Locator identified.

Exception Wrapping The majority of the seeds are constructors farBTORE ex-
ceptions. As an example, Figure 2.6 shows Tn@nsitionExceptiorcase, which is
thrown from 15cat ch blocks in different classes and packages.

As in thelnvoiceTDclass in the figure, most of the methods throwing the excep-
tion implementdoTransi tion(..) andsetup() declared by thdransitionDelegate

36 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

interface. All the transition delegates handle exceptretated to the particular func-
tionality and re-throwlransitionExceptionThis mechanism is common to many J2EE
design patterns [Alur et al., 2003], such Basiness Delegatdiscussed by Laddad
[2003a]. The exception wrapping Business Delega@ms at hiding the implementa-
tion details of a business service. The issue hidden in #ss & the sort of exception
that can be thrown by the actual implementation.

This consistent mechanism is spread over many places, afdcaring solution
is discussed by Laddad [2003a]. Aspects can be used toagbmexception handling
and to wrap the original exception thrown by the underlyingpiementation in the
new exception. This will result in improvements in code sipealization and clarity.
Studies of exception handling refactoring [Lippert and &sp2000] show a reduction
of cat ch statements when using AOP of up to 95%. For the case at hanfhund
that the classes affected were reduced by 20% [Mesbah aridexaisen, 2005].

Contract Enforcement A method with a fan-in value of 27 is a constructor for the
XMLDocumentExceptionlass. This exception is raised if the structure of the XML
document does not comply with the expected structure. By axagithe call sites,
we were able to observe that 9 of them airenDOM Node) methods, all throwing the
exception if a certain compound condition fails. It turng that all complex conditions
share a common check, which can be easily factored out aspactdsy means of
before advice — giving rise to the concerns similar to the @nel post-condition (design
by contract) examples discussed by The AspectJ Team [2003].

In this manner, the code will be better localized and new ougwill be prevented
from omitting the required checks.

Moreover, a set of another 14 call sites are methods of the sdmss that throw
the reported exception if certain conditions do not hold. ub-set of 11 methods
from these callers check the same condition, namely the Bookalue of an input
parameter.

Debug Information TheXMLDocumentExceptiociass has a second constructor with
a high fan-in. This constructor is (like for the businessedates) used as an exception
wrapper. In addition to that, before being wrapped the etxae@t hand is written
on the error output stream. This additional behavior (onabghe wrapping) can be
added as another aspect, which indicates which exceptionldive printed before
being wrapped. Turning printing debug information into apect helps to ensure a
common debugging strategy, and to isolate the concernglmherwise crosscutting.

False PositivesThe one case considered as non-aspect in the first set ofleaeslis
an XMLDBHand| er constructor with a fan-in value of 10. The callers astup(. .)
methods in classes that populate the associated datalbde® wath data from XML
files. Thesetup(..) implementations are only slightly different: they retumia-
stance of an anonymous inner class extendiMl.DBHandlerthat is an XML filter.
Because all the callers are well localized in a single pacleagkthere is only one
popul ate(..) method that triggers the whole process at a client’s requestde-
cided to label this candidate as non-crosscutting.

2.6. JHOTDRAW 37

False Negatives As briefly mentioned at the beginning of this section, onehef t
missed concerns is the service locator in the web-tier,emphted as a singleton, but
whose method for accessing the unique instance has a faitie of only 7.

A second concern potentially identifiable by fan-in anaysitransaction manage-
ment. If J2EE’s built-in transaction mechanism is used,ctwecern is well-isolated.
PETSTORE, however, also includes explicitly encoded transactionagament, which
consists of calls to the Java Transaction API (JTA). In pplecthese can be detected
by fan-in analysis, but since they belong to an externahiygrwe normally would not
include them in our analysis. Furthermore, the fan-in vafoe the two methods in the
JTA API (thejavax.transaction.’package) used byE¥STORE code have a value (of
just 2) well below our threshold.

2.6 JHOTDRAW

JHoTDRAW® is an application framework for two-dimensional graphi¢ss an exer-
cise in developing software making use of design patterasr{@a et al., 1994].

Our filters eliminated around half of the methods with top-fiarvalues. We
were rather cautious not to eliminate too many methods. Tihe methods desig-
nated as “utility” are enumeration manipulators (eFggur eEnuner at or . hasNext -

Fi gure()/nextFigure()).

An overview of the concerns found is given in Table 2.3. Fazheeoncern, it
lists the number of different high fan-in methods that pethto the concern, and the
maximum fan-in value for this concern. In the next sectioesdigcuss these concerns
in more detail. Aspect solutions for some of these concerasailable through the
open source AJHTDRAW’ project, an ongoing activity to refactor #HDRAW to
AspPECT starting from the results reported in the present chapter.

2.6.1 The Undo Concern

In the top of the list of methods sorted by fan-in, a number ethnds point to the
undo functionality, such as themdo method inUndoableAdapterAn undo in a graph-
ical editor is clearly a concern that cuts across many featand activities, although
textbooks on aspect-oriented programming, such as Greaedk esiecki [2003], The
AspectJ Team [2003], Laddad [2003b], do not discuss usipgas for undo function-
ality .

A (somewhat simplified) representation of the participgthasses in the Jbir-
DRAW undo implementation is given in Figure 2.7. JFDRAW offers various sorts
of activities which are contained in a class hierarchy. Examples of ete@ctivities
include handling font sizes, triangle rotation, or image&tion.

6http://jhotdraw. org/, version 5.4b1
"http://ajhotdraw. sourceforge. net/ . AJHOTDRAW is described in more detail in Chapter 6
of this thesis.

38 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

| Concern | No. of methods| Max fan-in |
Adapter 1 37
Command 2 24
Composite 12 24
Consistent behavior 20 31
Contract enforcement 3 31
Decorator 6 57
Exception handling 1 11
Observer 10 37
Persistence 6 22
Undo 3 25

Table 2.3: Concerns found for ZHDRAwW, together with the number of high-fan in
methods, and the highest fan-in among those methods.

The interfacdJndoableencapsulates the notion of undoing an action, for which it
provides theundo method. Each class implementing a concrete activity thatbea
undone defines a static nested class conforming tdthiableinterface. The nested
class knows how to undo the given activity, and has accesB tbeadetails of the
activity that may be needed for this. Whenever the activityifies its state, it also
updates fields in its associated undo-activity needed talgtperform the undo. In
addition to that, a list o&ffected figuress maintained, whose state must be adjusted if
the activity is to be undone.

In JHOTDRAW, there are 22 activities that can be undone, causing thecor®rn
to be spread over these classes. This, in turn, leads to dangh for the methods of,
for example Undoable which helped us to identify this crosscutting concern.

An aspect-oriented solution for the undo concern is prestby Marin [2004]. It
consists of a number of steps.

e First, the existing activities are extended with an assmrido their undoables
by means of an inter-type declaration.

e Second, existing operations are extended with functignedikeep track of the
old state so that the action can be undone. These existingtope can be
captured using a pointcut, and then the updates can be cedtai advice code.

e Last but not least, the various nested classes containeagriioable activities
can be added by means of inter-type declaratfons.

Thus, this refactoring captures the undo “protocol” in anpait and advice, ensuring
that undo functionality is properly invoked whenever comum are executed. Fur-

8 The present version of #PECT does not support introducing inner and static nestedegass

2.6. JHOTDRAW 39

DrawingEditor

UndoManager

*

: .. lundoActivity : laffectedFigures * 1 . !
. Activity , Undoable r 1 Figure !
e ! b ! Lo
I void execute() : ! void undo() :
L___R____ ———p————
'\ /A
/o /o
- -
1 1
Concrete |nested class 5| Concrete
Activity Undoable

Figure 2.7: Patrticipants farndoin JHOTDRAW.

thermore, the methods and (inner) classes devoted entorelpdo functionality are
moved out of the command classes, and are remodularizednraspect.

2.6.2 Persistence

Another crosscutting concern that pops out clearly thrauglgh fan-in is persistence.
The concern was easily spotted, as there are six differetitads involved, each hav-
ing a name built from words like “read”, “write”, “storable®input”, and “output”.
Storing and restoring figures is performed by methods itdefrom theStorablein-
terface. This interface offers methods to read one self fa@torablelnputstream, or
write one self to é&torableOutpustream.

The implementation of the persistence concern is spread3févelasses. Figures
implementing theStorableinterface invoke several methods from th®rableOutput
andStorablelnputclasses. The two classes are specialized in writing/rgaginous
(primitive) types, (e.g., String, Color, int, etc.) to/froanstoring device. This results
in a high fan-in for their methods, which allowed us to detbet persistence concern
using fan-in analysis.

The Storableinterface can be consideredgacondaryinterface, i.e., one that does
not define the primary role of the implementing class but adgs supplementary
functionality to it. An aspect-oriented implementatiorr this concern can super-

40 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

Subject observers Observer
*
attach(Observer) ! g
detach(Observer) update()
notify() ...f . for each observer o {
o.update();
}
ConcreteSubject subject | ConcreteObserver
subjectState observerState
getState() observerState =
setState() subject.getState() update()

Figure 2.8: Class diagram illustrating the participantsim®bserver design pattern.

impose such as secondary role onto relevant classes by widates-type declarations
(as done in the AJHTDRAW project). In this way, the persistence logic is isolated in
the aspect, and figure classes need not contain any pecsistelated code.

Observe that this refactoring merely moves methods fromselsto aspects, and
involves neither a pointcut nor advice. Thus, this refangpdoes not have an effect on
anyfan-invalue, and the methods from tl&torableOutputind Storablelnputclasses
will continue to have a high fan-in. In the original implentation, however, these calls
came from many different classes or even different packdgeke aspect solution, all
calls are from the persistence aspect. This suggests thayibe interesting to lift the
call relation to the class, aspect, or package level, andtcéar example, the number
of other packages using a particular method. We have noixpétred this direction.

2.6.3 Observers in JFOTDRAW

Several methods with high fan-in point to instances of @®serverdesign pattern.
Example methods includé gur e. addFi gur eChangeLi stener(..) (fan-in 11) and
Fi gure. changed() (fan-in 36).

The participants of the Observer design pattern are showigire 2.8, taken from
[Gamma et al., 1994]. One method that we expect to have a higiinfisnotify:
this method is called for every different kind of change avibie observer wants to
hear about. Furthermore, we expect the fan-in forahteach anddet ach methods
to be related to the number of observers involved. Tbeer ver. updat e() method

2.6. JHOTDRAW 41

public void execute() {
/'l performcheck whether view() isn't null.
super . execute();

/1 prepare for undo
set UndoActivity(createUndoActivity());
get UndoActivity().set AffectedFigures(view().selection());

/1 key logic: cut == copy + delete.
copyFigures(view().selection(), view().selectionCount());
del eteFigures(view().selection());

/1l refresh viewif necessary.
view().checkDamage();

Figure 2.9: (Simplified) execute method in 3FDRAW exhibiting tangling.

is likely to have a low fan-in value, as it is only called frohetSubj ect . noti fy()
method.

These expectations are met indHDRAW: TheFi gur e. changed() method cor-
responds to th&ubj ect . noti fy() and indeed has the highest fan-in, allowing us to
discover this concern. Observers are calléstenersin JHOTDRAW, and theadd-

Fi gur eChangeli st ener corresponds to that t ach method.

Matching on the naming conventions used in the first obsdorerd led us to an-
other instance of the pattern (with a somewhat lower fan-iffjus, fan-in analysis
provides initial seeds and application understandingcivtiien can be used by com-
plementary techniques to identify further cross cuttingasons.

The Observer is a prototypical example of a design suitadlem aspect imple-
mentation: Inter-type declarations can be used to supposethebserveror Subject
roles onto classes of interest, and pointcuts and adviceeased to weave in the ap-
propriate calls taot i fy().

The notification protocol used in 3¥DRAW is somewhat more complicated than
a simple call tochanged(). Before the change is being made, the affected figures
should be invalidated, which should be done by means of aac#le methoad | | -
Change() (fan-in value 25). Such policy enforcementoncern calls for an around
advice, which helps to ensure that the protocol is propenjyléemented.

2.6.4 Other Concerns

Command and Related ConcernsA method with high fan-in value (24) that is easy
to connect to a design pattern Abst r act Command. execute(). The crosscutting
nature of the Command pattern is discussed by Hannemann ardl&s [2002]. They
propose a (fairly complex) aspect-oriented represemtatiovhich different roles (such

42 Chapter 2. Identifying Crosscutting Concerns using Fan-inlgsia

as the commanaohvokerandreceive)) are distinguished. Therotocolbetween these
is based on a pointcut capturing all places where invocatoe required (for example
when a GUI button is pressed). The advice then is to actihatedceiver for the given
invoker. This corresponds to calling te&ecutemethod, which in the aspect solution
has a low fan-in, and in the non-aspect implementation adwgh The applicability of
this solution to JbTDRAW is not clear: isolating the Command concern in this way
is complicated by the interaction with t@doandredoconcerns.

The various implementations of the speciicecut e() commands exhibit two
further concerns, as illustrated by t@@tCommanaexample in Figure 2.9:

e Eachexecut e implementation starts with a super call responsible fockimg
a common pre-condition, throwing an exception if it does Imoid. This is a
Contract enforcemertoncern as discussed foEPSTORE.

e Most execut e implementations conclude with a check if the figure has been
changed in order to trigger a refresh of the view if necessmis is aProviding
consistent behavioroncern as discussed by The AspectJ Team [2003].

Factoring these (as well as the undo functionality) out efdbde in Figure 2.9 would
leave theexecut e method with just its core functionality, which is an implemtagtion
of the cut operation by means of a copy and delete operation.

Consistent Behavior The seeds reported by fan-in analysis cover 11 different in-
stances of the “consistent behavior” concern. In other wjotidere are 11 different
contexts into which a set of method-callers invoke a methiblal avhigh fan-in value as
part of a consistent mechanism. Examples include the prsljaliscussed notification

to conclude the execution of commands, consistent (dédicin of tools, initializa-
tion of tools, etc. Each of these 11 instances is a suitalvldidate for replacement by
an aspect solution by means of a pointcut and advice.

Composite High fan-in values are also obtained for the children malaipon methods
from the Composite pattern (e.@dd(Fi gure), fan-in value 13). The high fan-in in
this case is largely due to the fact that these manipulatiethads are widely used, but
there was no systematic pattern in this usage. The highfarot directly related to
the crosscutting nature of the Composite pattern, and, qoesgly, not affected by a
refactoring to the aspect-oriented Composite implementatiggested by Hannemann
and Kiczales [2002] (which consists of one aspect contgimier-type declarations
for the various composite participants).

Decorator, Adapter Several of the high fan-in methods are related to the Deco-
rator or Adapter patterns. These patterns are differemh,fre.g., Command and
Observer, which have characteristic methods likely to havigh fan-in (execute
and notify, respectively). Instead, the Decorator and Aelapatterns make use of
consistent forwarding, which allows us to recognize thatreh with the pattern

of the several methods with a high fan-in value reported lfigg toncern (such as
Decor at or Fi gur e. cont ai nsPoi nt, fan-in value 15).

2.6. JHOTDRAW 43

The aspect solution for these patterns as discussed by hi@ammeand Kiczales
[2002] is to drop the decorator and adapter classes altegetinectly weaving in the
relevant decorations or adaptations in the appropriatesela Whether this solution
is applicable to JBTDRAW is not clear, since JBITDRAW relies on enabling or dis-
abling decorations (which is less easy to do in the implisgext solution).

False Positives The group of false alarms for 3¥DRAw consists of 56 methods.
More than half of these methods are implementations of twthaas: di spl ayBox
andcont ai nsPoi nt. The first of the two returns the display box of a figure. The
method has a high fan-in value because it supports many afctiens associated with
afigure, like drawing or moving figures, etc. However, thésralcould not be grouped
by a clear relationship, and no clear call idiom could be oleswhen investigating
the call sites.

Similar observations apply to tle@nt ai nsPoi nt method, which checks if a point
is inside a figure. Except one implementation, which togetiiéh other reported
methods in theDecoratorFigureclass implement the consistent logic of redirecting
incoming callscontainsPoinhas been marked as a false positive.

Other false alarms include fiveoveBy methods fronFigure classes, which im-
plement actions for moving a figure, and a number of complerssor methods that
could not be filtered using the name or implementation cater

False NegativesAs discussed for the identified Observer pattern instantter an-
stances of this pattern can be discovered starting fromahenf seeds. Th®raw-

ing classes, for example, are part of a different Observer imeigation and define
role-specific methods with names that are similar to thoslkeafigure classesadd/ -
removeDr awi ngChangelLi st ener (..). These role methods have lower fan-in values
because thBrawing Observer implementation has a smaller extent, with fenassds
that register aBrawing observers.

The comparison experiment using SFDRAW as common benchmark revealed a
few concerns missed by fan-in analysis [Ceccato et al., 2006¢ of these concerns
is aVisitor pattern instance. The pattern defines specific roles andoa&tisuch as
the visit operations for th¥/sitor role, and theaccept method implemented by the
Visitable elements. Thei sit method in theVisitor role would collect calls from
all the Visitable classes that pass self-objects as arguments to this meathdwetihg
visited. A large number dfisitableelements would therefore increase the fan-in value
of the visitor method. However, in J3YDRAW only two Figure classes implement
the methods to accept visitors. The large majority of figulesot override the default
implementation for this task, which also implements the traversal for composite
elements.

We have found implementation of the Visitor pattern througha role-specific
methods by applying FINT to its own source code, as well asam3AT, as we
shall see in the next section.

44 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

| Concern | No. of methods| Max fan-in |
Chain of responsibility (pipeline 24 18
Command 2 16
Composite 9 37
Consistent behavior 34 90
Contract enforcement 9 46
Lifecycle 73 34
Logging 1 10
Observer 6 56
Redirector 4 25
Visitor 1 28

Table 2.4: Concerns found foroMCAT, together with the number of high-fan in meth-
ods, and the highest fan-in among those methods.

2.7 TOMCAT

Apache TOMCAT is the servlet container that is used in the reference imgiea

tion for Sun’s Java Servlet and JavaServer Pages techeelo§MCAT is developed
within the open-source Jakarta project at the Apache Softwaundatiorf. The main
elements of DMCAT are the servlet container called Catalina, the JSP engitexical
Jasper, and thedMCAT connectors. We analyze and discuss the results for version
5.5(.17) of TomcAT 10,

The main architectural components adWcAT are shown in Figure 2.10 [Moodie,
2005]. The outeBervercomponent offers a number 8kerviceghrough variouson-
nectors The default connector implements HTTP. THaging HostandContextcom-
ponents are altontainer componentsepresenting the top-level container, the virtual
host, and the actual web application, respectively. Insafeainers there can Ioested
componentsvhich can provide various administrative services. Sonmegmments can
be contained more than once and are marked with a star in tme fiarticularly rel-
evant for our discussion are the nested components d#lleds these can intercept a
request and process it before it reaches its destination.

The crosscutting concerns found fooMCAT are summarized in Table 2.4. Again,
some of the concerns are related to crosscutting behavenamsintered in design pat-
terns, but there are also some concerns not previouslyidedcBelow we elaborate
some of the concerns in more detail.

9http://jakarta. apache. org/toncat/
Ohttp://toncat.apache. or g/ t ontat - 5. 5- doc

2.7. TOMCAT 45

Server
Service*
Engine
Host*
Context*
Apache
pache _ Connector F{ Valve* } Servlet*
Coyote
IIS —| Connector Valve* JSP*
AJP
Web _ ‘ * *
Browser ConnectOSrSL ‘ Valve }—{ HTML

Figure 2.10: Example @MCAT configuration

2.7.1 Lifecycle

Lifecycleis a common interface for several Catalina components, girayia consis-
tent mechanism to start and stop the component. It is a sacpmterface, adding
new, supplementary capabilities to the core logic of thel@menting classed.ifecy-
cleis implemented by more than 40 classes. $hart andst op methods for these
classes have fan-in values varying between 25 and 34. Thef sesults of fan-in
analysis comprises 73 implementations of these two Lifiecyethods.

Thestart andst op methods are part of a particular type ainsistent behav-
ior scheme: Thetart operation has to be called before any public method of the
component, whilest op terminates the object’'s use and should be the last call for a
component’s instance. Furthermore, implementors ofLifecycleinterface have to
adopt theSubjectrole from theObserverpattern: listeners can be added which must
be notified of start or stop events. The key methods to suppese operations have
fan-in values as high as 56.

The Lifecycle concern can be seen as a generalization ofsta@fist op() meth-
ods to remedy Java’s expensive finalization mechanism gvgk2002; Goetz, 2004].
Those methods take care of cleaning up the object’s reseursigle the program code
to avoid the overhead of having finalizers but will result ingscutting for the object’s
clients.

The Lifecycle concern is complex, comprising several aoggg concerns. Al-

46 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

though aspect-oriented solutions have been presentedrfu parts of it, a complete
refactoring solution remains an open issue. One of the pnobis that the type of con-
sistent behavior needed by the concern cannot be expresagubintcut-based aspect
language like APeCT (because it requires specifying “before accessing aniicpub
methods of class” and “after last use of class”).

2.7.2 Valves/ Chain of Responsibility

A method occurring around 20 times in the seed list is theoke(..) method in the
Valve hierarchy. Valves are nested components that implementigggable request-
processing operation for an associated container. Valkes@nnected through a
pipeline structure, in which each valve passes the reqoetteti nvoke method of
the next valve in the pipeline. Examples of valve classelkideAccessLog Valveo
create standard web servers log filRemoteAddress Valve filter the requests by the
IP address of the client that submitted themSogleSignOn Valvi® grant user access
to the web applications associated with a virtual host.

The pipeline organization of the valves is implemented gigie Chain of respon-
sibility pattern [Gamma et al., 1994]. This implies that a valve’sdogic is crosscut
by the functionality of retaining the reference to the nealve in the pipeline and
consistently passing the invocation to it. Furthermore arious implementations of
thei nvoke method are tangled with other concerns. PaghenticatorBasabstract
class, for instance, implements the basic functionalityhef request authentication
valve. However, its nvoke method also performs logging operations for debugging
activities. Similarly, the previously mentionéktcessLog Valvenplements aiming
operation for the request/response operation it has toAagaspect-oriented solution
for theChain of responsibilitypattern is provided by Hannemann and Kiczales [2002].

2.7.3 Other Concerns

A number of architectural components ocbNcAT and Catalina are Container ele-
ments. TheContainerinterface defines these elementLasnpositestructures. Stan-
dard implementations of the interface are abstractione@fToMCAT container com-
ponents, likeStandardEnginer StandardContextFan-in analysis identifies the chil-
dren manipulation methods specific to tGempositestructure of these components
and reports them as concern seeds (fan-in values of up to 37).

In the same category of design patterns, a number of seedsspond to the
Observer, like the notifier for Container even@i(t ai ner Base. fi r eCont ai ner -
Event (..)) (fan-in value 55) and thexecut e method of theCommandpattern im-
plementation (fan-in value 16). Similar to the cases disedsor JHFOTDRAW, the
Command seed methods reported faMICAT are also part of aontract enforcement
that consist of a pre-execution attribute validation. Tbatract is implemented as
a call to the method in the super class. Other seed resultslmenethods that par-
ticipate in the implementation of consistartirectionfunctionality (Wrappers; the

2.7. TOMCAT 47

methods implement non-trivial accessors that are invokeal large number of meth-
ods that simply redirect their callers to dedicated mettufdise reference returned by
the reported seed. The fan-in values for these seeds are2%p to

Different pre-condition check enforcemerase also part of the various implemen-
tations for thelLifecyclest art andst op methods. The reported seed method in this
case is the constructor of the exception thrown if the preditmn does not hold (fan-in
value 32).

Theloggingconcern is particularly interesting because of the newémgntation
strategy in version 5.x of @MCAT. This concern used to be implemented in the pre-
vious versions using Logger classes that were part of thdi@ataPl. However, the
current implementation uses logging functionality avalgathrough specialized, ex-
ternal libraries. Although we have been able to directlyntdg logging methods in
the analyzed code (e.dloduleClassLoadgr as well as logging functionality tangled
with the implementation of other seed methods, a numberrettbogging seeds are
missed. This is due to our choice not to include library conguus in the analysis, as
discussed in Section 2.4.

The remaining seeds include, besides other instances abtieerns already dis-
cussed, a large number (up to 25) of different instances etdmsistent behavior
concern, as well as seeds for the super-imposed role iigiter pattern.

False PositivesA group of 13 false alarms consists of methods inispReadeand
ServletWriterclasses. The first class is an input buffer for the JSP paaser.the
reported methods are utilities for parsing JSP files, likeho@s to match an input
String in a file or to skip space-characters. The callers athaals in the JSParser
class.

The methods reported f@ervletWriterprint String elements in various formats to
an output stream. The callers of these methods belong tGémeratorclass, which
outputs Java code from an internal, tree-based (XML) remtasion of JSP docu-
ments.

These classes could have been consideradibity, if we would have had more
detailed knowledge about the system prior to analysis.

Among the other false alarms there are 12 implementatiotisexft or e method
in the StoreFactoryBaséierarchy. The classes in this hierarchy are specialized in
storing configuration elements, such@erver Service Engine or Contextto a XML
configuration file (server.xml). The callers of the reportedthods are declared in
classes in the same hierarchy or are overloaded implenrgatf thest or e method
in the classStoreConfig This class is part of the same concern as the reported neethod
and so no crosscutting element could be identified.

False Negatives The literature on ©DMCAT discusses hardly any crosscutting con-
cerns, making it difficult for us to assess whether there ayeigteresting false neg-
atives we missed. The crosscutting concern that is disdusgiely for TOMCAT is
logging, and often it is mentioned as an example of poor naytadtion. As already
discussed, fan-in analysis helps us to identify severalsés the logging concern.

48 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

However, the analyzed version oDMCAT is extensively using logging methods de-
clared by external libraries (therg.apache.commons.loggingoackage). By cancel-
ing the filter for library methods in FINT and looking for caflo externally declared
methods, we noticed that there are 19 methods from the Igguackage that are re-
ferred from the analyzed @uCAT sources. From these ones, 13 methods belong to
theLogclass and show a fan-in value higher than the consideresktbic: of 10. The
fan-in value for the logging method for debuggingg. debug), for example, is as
high as 465.

2.8 Discussion

High Fan-in as Indicator As we have seen in the previous case studies, fan-in anal-
ysis identifies high fan-in methods, applies a series ofr§ilte these methods, after
which more than half of the remaining methods turn out to keted to a crosscutting
concern.

We can distinguish three main situations in which a highifavalue indicates the
presence of crosscutting concerns:

e The method has a high fan-in because it is partaf@amiccrosscutting mecha-
nism. The typical refactoring will be to capture the calésithrough a pointcut,
and to move the method call to advice. Examples that we enemainclude
exception wrapping, contract enforcement, observer natitin, and life cycle.

e The method has a high fan-in because it is used $tathc crosscutting mecha-
nism. A typical example is a secondary interface that mustripgemented by
a series of classes. The various implementations are ltketgake use of the
same helper methods, giving these a high fan-in. The refagte to collect all
these interface implementations into one or more intee-typclarations. This
we encountered for the persistence concern.

e The method has a high fan-in because it is part of a concetipldags a key role
in the design. The method happens to be part of a crosscuatimgern, which
will benefit from an aspect-oriented refactoring. The redang, however, will
not affect any of the call sites of the high fan-in method. sTiwe encountered
for the composite concern.

These situations are not mutually exclusive. In many casefncern involves
static as well as dynamic crosscutting, as we have seen éourtdo concern. We
then are likely to see multiple seeds, which may either pagnto the static or to the
dynamic crosscutting behavior.

The Type of Concerns Identified The fact that we were able to find similar aspects
in various case studies suggests that their identificasiooi accidental. We identified
various crosscutting concerns that are discussed in gmatitre, including those that

2.8. Discussion 49

stood at the origins of aspect-oriented programming. Inteohd we have identified a
number of new aspects, suchldsdoandLifecycle Given the different nature of the
three case studies, we feel that these results can also iseedtfor other cases.

A notable source of crosscutting behavior is formed by wexidesign patterns:
for both JHOTDRAW as well as DMCAT they account for approximately half of the
concerns identified. This suggests that it may be worthwbil@avestigate the use of
design pattern mining techniques (see, e.g., Ferenc e2@05]) for aspect mining
purposes.

Reasoning about Seeds and Non-seedne of the subjective elements of our aspect
mining approach is the third step in which the human engihastto distinguish seeds
from non-seeds. We adopted the following reasons for dlasgia high fan-in method
as a seed:

e \We were able to link the method to a concern that is known tatgscutting.

e We considered the method’s concern to be conceptually sepaiom the key
functionality of the calling classes. Thus, it would be megful to make the
base implementation oblivious of method’s concern.

e We could discover an idiom, recurring patterns, or otherilanities in for ex-
ample the call sites found, suggesting an implicit relaiop between these call
sites that could be made explicit through a pointcut withieelv

e We were able to identify a refactoring tosSRec™ that may be beneficial in
terms of modularization, flexibility, or evolution. Usuglithese refactorings
were composed from basic refactorings as included in thedagg provided by
Laddad [2003a] and Monteiro [2004].

When rejecting a high fan-in method as a seed, we were not@blehieve any of the
above.

Utility Filtering A step requiring some manual effort is the filtering of uyilihethods.
The intent of this is to remove groups of methods for whicls i&ipriori obvious that
they do not belong to crosscutting concerns. It is not necgds capture all utility
methods. Therefore, the amount of effort involved in thepss very limited: if it is
not immediately clear if something is a utility, it is sim@gfe not to filter the method,
and analyze it in detall if it turns out to have a high fan-in.

Percentage of False Positive3 he percentage of false positives in the three case stud-
ies is 13%, 49% and 27% foreRSTORE, JHOTDRAW, and TOMCAT, respectively
(see Table 2.1). Based on these figures, and based on experiveenonducted with
other systems, we conjecture that 50-75% of the candidattsghat we identify auto-
matically can be confirmed as belonging to a crosscuttingeon

Note that this percentage is conservative in two ways: ,Fist only discarded
classes or methods as utilities when this was immediatehoab. Second, we only

50 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

confirmed seeds when we clearly could see the crosscutttogenaf the underlying
concern. In other words, it is possible that with a more imedlanalysis of some of
thenon seed$érom Table 2.1 these could turn out to be crosscutting carscas well.
For this reason, it is reasonable to expect that other sgstathexhibit a similar (or
perhaps higher) success rate.

False NegativesWhile working on our case studies, analyzing their designiemd
plementation in considerable depth, we did encounter abeensscutting concerns
not found through fan-in analysis, some of which were disedsn the previous sec-
tions. As an example, for ®¥STORE we found transaction management, scattered
implementations of the Serializable interface, and opoties for making use of 8-
PECTJ’s approach to imitating multiple inheritance [Mesbah aad Deursen, 2005].
As for the logging example discussed fooMiCAT, key methods implementing trans-
action management are likely to be missed as well, becaeyeatie part of imported
libraries that we do not include in our analysis. Crosscgttioncerns found in Jéir-
DRrAw through other aspect mining approaches are discussed amghoed by Cec-
cato et al. [2006]. An example concern fan-in analysis didfimal is bringing a figure
to the front or sending it to the back, simply because the auzhnvolved were not
called sufficiently often.

Based on these observations, we can make the following maergeclaims about
the sort of crosscutting concerns that will not be found digitofan-in analysis. First,
the “footprint” of the concern should be above the threshdldhus, if the concern
involves dynamic crosscutting, the number of scattereld sabuld be higher than the
threshold. Furthermore, if the crosscutting is purelyistéte concern will usually not
be found, unless the scattered implementation relies oredHanctionality, and the
number of call sites is higher than the threshold.

Note that the effect of the threshold is twofold. First of #llhelps us reduce the
number of methods to be inspected. In addition to that,atxadlus to find those aspects
that are likely to significantly influence the modularity b&tsource code. Thus, while
we certainly miss some crosscutting concerns, we are lilcefind the ones that are
most scattered, and hence good candidates for refactoring.

Percentage of False NegativedHow to arrive at a percentage for false negatives is
less clear. This would require a report of all the crossegttioncerns that could be
found in the case studies considered. Such reports haveeantdvailable prior to our
experiments. Furthermore, such a report would be affecteleodifficulty of deciding
objectively what is and what is not a crosscutting concern.

The way to achieve progress in this direction is by estaivlgsh common bench-
mark of known crosscutting concerns in existing systemsshSubenchmark would
not only be a simple list, but also a summary of the reasonscehtgin concerns are
deemed crosscutting. Our coverage of the concerns we féwadgh fan-in analysis
is aimed at establishing and promoting such a benchmark.

Seed Inspection Effort How much effort is involved in inspecting seeds by hand? An
important observation to make is that in many cases it isiples® decide for a group

2.8. Discussion 51

of methods together whether they constitute a seed. Onerréasthis is our treatment
of polymorphism. In our definition of the fan-in metric onélaaould increase the
metric value for several methods in the hierarchy of the ksbcallee. Therefore,
method implementations in the same hierarchy, which masineonly implement the
same concern, also share many of their callers.

Such situations are very common in the cases analyzedohncRT, for instance,
the over 200 seed and non-seed methods are implementatideslarations of only
less than 100 distinct methods. As another example, thef sindlidates for JET-
DRAw includes more than 20 implementations of thaepl ayBox method, which we
marked as non-seed. Grouping methods by their declaradi®ssipported by FINT
considerably reduces the investigation effort requiredech method.

FINT offers further ways to reduce the manual effort invalwe seed inspection.
This includes various analyses to detect relations betweercallers of a reported
method with a high fan-in value, as discussed in Sectiort2.Bor example, by ex-
amining the callers (of any of the around 20 reported imples@t@ns) of the nvoke
method in TOMCAT’s Valves pipelineconcern, FINT shows that more than 80% of
these callers are alsmvoke methods irvalveclasses. The tool groups these callers as
shown in Figure 2.4. Such relations are present for a sigmfinumber of discovered
seeds, including crosscutting elements discussed forD#Aw’s Undoconcern and
the concerns in th€ommandhierarchy, as well agException wrappingoncerns in
PETSTORE.

Required Expertise Level How much domain knowledge or expertise is required for
conducting fan-in analysis? For the bottom-up approackenwie look for consistent
invocations of the method with a high fan-in value from caks that could be cap-
tured by a pointcut definition, little specific knowledge seded. For the top-down
approach more a priori knowledge is required. The top-doppr@ach relies on easily
observable relations between tool-reported candidatekaomwn examples of cross-
cutting functionality; design patterns are the most comimavur cases. The rules we
employed for associating patterns to candidates are sintifdenethods are part of the
roles defining the design patterns and/or they executerecsipecific to responsibilities
of participants in the pattern implementation (e.g., dafiems of actions).

Note, however, that many crosscutting concerns describ#tkeicontext of design
pattern implementations will typically be found by meansted bottom-up approach
as well. For instance, calls to notification methods in imatations of the Observer
pattern, or invocations to the action of the next elementpipaline (chain of respon-
sibility) are typical examples of crosscutting concerrgeged by fan-in analysis. In
this case, the discussion of the patterns serves to deskal@ger context into which
the crosscutting concern occurs.

Aspectd Fan-in analysis is an aspect mining approach that is eptinelependent
of AsPECT or any other aspect-oriented language. Fan-in analysisteshnique
for understanding a system’s modularization, helping ge¥s to find crosscutting
concerns. Some of these can be candidates for a refactanvayds ASPECW (as

52 Chapter 2. Identifying Crosscutting Concerns using Fan-inlpsia

discussed for PTSTORE and JHFOTDRAW by Mesbah and van Deursen [2005] and
Marin et al. [2005b]). For other concerns, alternative aspeiented solutions, such
as composition filters [Bergmans and Aksit, 2001] or the ign@T of control pattern
[Fowler, 2004], while for still other concerns present agpeiented languages do not
offer a suitable modularization mechanism yet.

Thus, fan-in analysis is not only a possible first step inatfiang to aspects. It
also is a program comprehension technique that can helpderstand crosscutting
concerns in existing applications.

The Fan-In Metric The variant of the fan-in metric we have used, has been apguini
for aspect mining purposes, and, as shown in this chaptehroaight us good results.
An open question is whether this metric can be further imgdovOne possible route
would be to lift the fan-in metric to the class, inheritanderarchy, or package level,
as we briefly discussed for the persistence concern @TIHRAW in Section 2.6.2.
Fine tuning the metric such that it reflects, e.qg., call sit@mtions instead of the mere
number of methods containing call sites is an issue for éuntesearch.

2.9 Concluding Remarks

2.9.1 Contributions

We consider the following as our three key contributions.

First of all, we propose a new, metrics-based, aspect miappgyoach. The ap-
proach aims at capturing crosscutting concerns by focumingethods that are called
from many places, and hence have a high fan-in. Our casesstalow that after ap-
propriate filtering more than 50% of these methods turn obetong to a crosscutting
concern.

Our second contribution is FINT, a tool that is freely dowadable that supports
fan-in analysis. FINT not only shows how the fan-in metrid d@he filters can be
implemented, but also offers support for the final manual stnsisting of exploring
the high fan-in methods and their call sites, and managieg&ed-methods.

The third contribution consists of the extensive case stigie conducted. We
argue in detail why we think that certain concerns are crgfisg in three existing
open source Java systems. Some of these concerns were viouphg described in
the literature as crosscutting (such as undo or lifecydreover, in most cases we
discuss alternative aspect-oriented implementationkese concerns. The resulting
list of concerns and their manifestation in the three systenrelevant not only for
fan-in analysis: it is of value for the validation of any aspeining approach.

In addition to that, we offer an explanation of our resultadsntifying the factors
contributing to the success of fan-in analysis as an aspeognapproach, as well as
the limitations of the approach.

2.9. Concluding Remarks 53

2.9.2 Future Work

We are presently in the process of extending our resultgdtmnfollowing lines.

First, we are considering various extensions to FINT. Onderds to integrate
FINT with other concern elaboration tools, such as FEAT [Ratd and Murphy,
2007] or the Concern Manipulation Environment CME [Harrisdrale, 2004]. We
could use such tools to explore and describe a concern arréetu its full extent,
starting from the (partial) set of elements and relatiomsidied by FINT as part of
the crosscutting concern implementation.

Another option is to combine FINT with other automated aspeentification
techniques, such as, for example, techniques based onlfoomzept analysis, identi-
fier analysis, or clone detection. A prerequisite for combon is to be able to assess
and compare aspect mining techniques and their results.

In addition to that, we continue to elaborate our case ssudighis will provide
further data on optimal threshold values, typical numbexasfcerns that can be found
in existing applications, and figures for the percentagefalst positives and false
negatives.

The results presented in this chapter show that the recedoipsscutting concerns
follow various implementation idioms. Fan-in analysis @&tgcularly suited for iden-
tifying method invocations that cut across a set of othethimds. However, concerns
like those encountered in the Decorator pattern are tylgitsss likely to occur among
the results of this technique. In Chapter 5 of this thesis, vedl sake a number of steps
towards design of mining techniques that target specifidempntation idioms, and
their implementation in FINT.

One of our activities directly related to one of the case istugresented in this
chapter is AJkbTDRAW, a sourceforge project in which we offer an aspect-orierged
implementation of JBTDRAW, based on the concerns found in the present chapter.
In this way, the case studies presented here form the gigudimt for a benchmark for
comparing aspect mining and refactoring approaches.

Uhttp://sourceforge.net/projects/ajhotdraw/. Also dised in Chapter 6.

Chapter 3

Applying and Combining Three Different
Aspect Mining Techniques

Understanding a software system at source-code level regjuinderstanding the dif-
ferent concerns that it addresses, which in turn requires a teagentify these con-
cerns in the source code. Whereas some concerns are dypkgtesented by program
entities (like classes, methods and variables) and thusasg to identifycrosscutting
concerns are not captured by a single program entity butsaatteredver many pro-
gram entities and ar¢éangledwith the other concerns. Because of their crosscutting
nature, such crosscutting concerns are difficult to idgnahd reduce the understand-
ability of the system as a whole.

In this chapter, we report on a combined experiment in which wetdriden-
tify crosscutting concerns in the JHotDraw framework auttoadly. We first apply
three independently developed aspect mining techniquésiatDraw and evaluate
and compare their results. Based on this analysis, we prabege interesting com-
binations of these three techniques, and show how theseiatiolns provide a more
complete coverage of the detected concerns as comparee tritfinal techniques
individually. Our results are a first step towards improvirg tunderstandability of a
system that contains crosscutting concerns, and can beassadbasis for refactoring
the identified crosscutting concerns into aspects.

3.1 Introduction

The increasing popularity of aspect-oriented softwarestigament (AOSD) is largely
due to the fact that it recognises that some concerns caergagiured adequately us-
ing the abstraction mechanisms provided by traditionagj@mmming languages. Sev-
eral examples of suatrosscuttingconcerns have been identified, ranging from simple
ones such as logging, to more complex ones such as transawdivagement [Fabry,
2005] and exception handling [Lippert and Lopes, 2000].

An important problem with such crosscutting concerns is thay affect the un-

55

56 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

derstandability of the software system, and as a resulteetsi evolvability and main-
tainability. First of all, crosscutting concerns are diffictco understand, because their
implementation can be scattered over many different pakagjasses and methods.
Second, in the presence of crosscutting concerns, ordoca@rgerns become harder
to understand as well, because they get tangled with theauti;ig ones: particular
classes and methods do not only deal with the primary cortbegnaddress, but also
may need to take into account some secondary, CrosSscuttimgems.

Several authors have presented automated code miningdaelsngenerally re-
ferred to asaspect minindechniques, that are able to identify crosscutting corggrn
the source code. The goal of these techniques is to provideeawiew of the source-
code entities that play a role in a particular crosscuttiagcern. This not only im-
proves the understandability of the concern in particula af the software in general,
but also provides a first step in the migration towards apglgspect-oriented software
development techniques. However, since the research $idliin its infancy, very
few experiments have been conducted on real-world casestubmparisons of dif-
ferent techniques are lacking, and no agreed-upon ben&hmavailable that allows
to evaluate the existing techniques.

This chapter reports on an experiment involving three iedently developed as-
pect mining techniques: fan-in analysis [Marin et al., 28)Q&lentifier analysis [Mens
and Tourve, 2005; Toung and Mens, 2004] and dynamic analysis [Tonella and Cec-
cato, 2004a]. In the experiment, each of these techniquaspised to the same case
study: the JHotDraw graphical editor framework. The goahefexperiment is not to
identify the “best” aspect mining technique, but rather tatually compare the indi-
vidual techniques and assess their major strengths andneesés. Additionally, by
identifying where the techniques overlap and where thegamgplementary, the exper-
iment allows us to propose interesting combinations angpdyathese combinations
on the same benchmark to verify whether they actually perioetter.

The JHotDraw framework which we selected as benchmark caseonginally
developed to illustrate good use of object-oriented desajterns [Gamma et al., 1994]
in Java programs. This implies that the case study has beedesigned and that care
has been taken to cleanly separate concerns and make itestamtiable as possible.
Nevertheless, JHotDraw exposes some of the modularisitiiations present even
in well-designed systems, and contains some quite integestosscutting concerns.

The contributions of this chapter can be summarised asaslio

e We provide an overview of the major strengths and weaknexfssee aspect
mining techniques. This information is valuable for deyars using these tech-
nigues, as it can help them choosing a technique that seitsrtéeds. Other as-
pect mining researchers can take this information into aetto compare their
techniques to ours, or to fine-tune our techniques;

e We discuss how the individual techniques can be combinedderdo perform
better, and validate whether this is indeed the case by mgpthie combined
techniques on the same benchmark application and comphengsults;

3.2. Background concepts 57

interface A {
public void m);
}

class B inplenents A {
public void m() {};
}
class Cl extends B {
public void n() {};
}
class C2 extends B {
public void m() { super.m);};
}
class D {
void f1(A
void f2(B
void f3(C

}

Figure 3.1: Various (polymorphic) method calls.

e We present a list of all crosscutting concerns that the tteeleniques identified
in the JHotDraw framework. Such information is valuabledtrer aspect min-
ing researchers who want to validate their techniques, agtitrtead to JHot-
Draw becoming a de-facto benchmark for aspect mining techas;

The chapter is structured as follows. Section 3.2 introdube necessary back-
ground concepts required to understand the three aspeictgrtechniques explained
in Section 3.3. Section 3.4 presents the results of appblauty technique on the com-
mon benchmark, while Section 3.5 uses these results fousksty the benefits and
drawbacks of each technique with respect to the others. Bastds discussion, Sec-
tion 3.6 presents useful combinations of the techniquesreports on the experience
of applying such combinations on the benchmark applicatiSection 3.7 presents
our conclusions. For an overview of related work concerr@agect mining, we re-
fer to the previous chapter and the papers discussing tinedodl techniques [Marin
et al., 2007a; Mens and Touew2005; Tourg and Mens, 2004; Tonella and Ceccato,
2004a].

3.2 Background concepts

3.2.1 Fan-in

Thefan-inmetric, as defined by Henderson-Sellers [1996], countsuh#ber of loca-
tions from which control is passed into a module. In the cxindé object-orientation,
the module-type to which this metric is applied is the methal define théan-in of

58 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

a methodM as the number of distinct method bodies that can inWdkeBecause of
polymorphism, one call site can affect the fan-in of sevarathods: a call to method
M contributes to the fan-in d¥, but alsoto all methods refined by, as well asto all
methods that are refining (see the previous chapter).

Method | Potential callers Fan-in
A.m D.f1, D.f2, D.f3 3
B.m D.f1, D.f2, D.f3, C2.m 4
Cl.m D.f1, D.f2, D.f3 3
c2.m D.f1, D.f2 2

Figure 3.2: Fan-in values for program in Figure 3.1.

As an example, Figure 3.2 shows the calculated fan-in fomb#tods namech
in the program of Figure 3.1. Note thBt f3 is reported among the potential callers
of B.m, even though this situation cannot actually occur at roreti However, the
resulting effect of having higher fan-in values reportedrfeethods in super-classes is
arguably positive for the purpose of the present analysig,emphasizes the concern
implemented by the super-class method, which generallydssssed by its overriding
methods as well.

3.2.2 Concept Analysis

Formal concept analysis (FCA) is a branch of lattice theoay tlan be used to identify
meaningful groupings oélementghat have commorproperties[Ganter and Wille,
1997]1

Programming| object-oriented functional | logic | static typing| dynamic typing
language
Java V - - V -
Smalltalk V V
C++ Vv - - Vv -
Scheme - V

Prolog - - V - V

Table 3.1: Programming languages and their supported amuging paradigms.

FCA takes as input a so-calledntext which consists of a (potentially large, but
finite) set ofelements Ea set ofproperties Pon those elements, and a Booleaai-
dence relation Thetweert andP. An example of such a context is given in Table 3.1,

lWe use the termelementandpropertyinstead obbjectandattributeused in traditional FCA liter-
ature, because these latter terms have a very specific nggarobject-oriented software development.

3.2. Background concepts 59

which relates different programming languages and praggertA mark,/ in a table
cell means that the element (programming language) in tiregmonding row has the
property of the corresponding column.

Starting from such a context, FCA determirmasximalgroups of elements and
properties, calledonceptssuch that each element of the group shares the properties,
every property of the group holds for all of its elements, tieo element outside the
group has those same properties, nor does any propertgeuls group hold for all
elements in the group. Intuitively, @nceptcorresponds to a maximal ‘rectangle’
containing only,/ marks in the table, modulo any permutation of the table’ssrand
columns.

Formally, the starting context is a trip(&, P, T), whereT C E x Pis a binary rela-
tion between the set of all elemertisand the set of all considered element properties
P. A concept ds defined as a pair of setX,Y) such that:

X={ecE|VpeY:(ep €T} (3.1)
Y={peP|VecX:(ep eT} (3.2)

whereX is said to be thextentof the conceptExtc]) andY is said to be itsntent
(Int[c]). It should be noticed that the definition above is not “camngive”, being mu-
tually recursive betweeX andY. However, given a paifX,Y), it allows deciding
whether it is a concept or not. FCA algorithms provide cortdive methods to deter-
mine all pairs(X,Y) satisfying the constraints (1) and (2).

{3

{Java, Smalltalk, C++, Scheme, Prolog}

{00} {dynamic typing}
{Java, C++, Smalltalk} {Scheme, Prolog, Smalltalk}
{static typing, OO} {dyn. typing, OO} {dyn. typing, funct.} {dyn. typing, logic}
{Java, C++} {Smalltalk} {Scheme} {Prolog}

{OO0, funct., logic, static typing, dyn. typing}
¢

Figure 3.3: The concept lattice for Table 3.1.

The containment relationship between concept extentsefprivalently, intents)
defines a partial order over the set of all concepts, whichbeashown to be a lat-
tice [Ganter and Wille, 1997]. Figure 3.3 shows the concaftick corresponding to
Table 3.1. The lattice’s bottom concept contains those efsnthat have all prop-
erties. Since there is no such programming language in cample, that concept
contains no elements (its extent is empty). Similarly, the ¢oncept contains those
properties that hold for all elements. Again, there is nchguoperty (the concept’s
intent is empty). Other concepts represent related groftipgogramming languages,

60 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

such as the concegfJava, C++, {static typing, OO}), which groups all statically-
typed object-oriented languages, a sub-concept of all @Qulages. Intuitively, the
sub-concept relationship can thus be interpreted as aadation of more general no-
tions. Elements (resp. properties) in boldface are thasteatte most concept-specific,
being attached to the largest lower bound (resp. least upmand) concept. When
using the so-calledparse labelingpf the concept lattice, only these boldface labels
are retained, without loss of information.

More precisely, when usingparse labelinga nodec is marked with an element
e € Extc] only if it is associated with the most specific (i.e., lowesihcept havinge
in the extent; a nodeis marked with a propertp € Int[c] only if it is associated with
the most general (i.e., highest) concetavingp in its intent. The (unique) node of a
lattice L marked with a given elemestis thus:

y(e) =inf{ce L | ec Extc|} (3.3)

whereinf gives the infimum (largest lower bound) of a set of concepisil&ly, the
unique lattice node marked with a given propeptis:

U(p) =sup{celL | peint[c]} (3.4)

wheresup gives the supremum (least upper bound) of a set of concepits.sé&t of
elements in the extent of a lattice nadlean then be computed as the set of all elements
at or belowc, while the set of properties in its intent are those markirog any node
abovec.

The labeling introduced by the functiopgndy give the most specific concept for a
given element (resp. property). Thus, with sparse labgthrgelements and properties
that label a given concept are those that characterize it spesifically. Sometimes it
is convenient to get the labels of a given concept througlfidli@ving functions:

a(c) ={peP|up) =c} (3.5)

B(c) = {ec E|y(e) =c} (36)

a(c) gives the set of properties labeling a concepivhile 3(c) gives the concept’s
elements, according to tisparse labeling

3.2.3 Terminology

We conclude this background section by introducing sommitexlogy that will be
used throughout the remainder of this chapter.

A concern is a collection of related source-code entities, such assely methods,
statements or expressions, that implement a particulatibmality or feature
of the application. Acrosscuttingconcern is a concern whose entities are not
captured into a single localised abstraction, but aree@attover many different
locations and tangled with other concerns.

3.3. The three aspect mining techniques 61

A (concern) seedis a single source-code entity, such as a method, or a dolect
such entities, that strongly connotes a crosscutting gonde offers a starting
point for further exploration and understanding the whateset of that concern’s
implementation.

A candidate seedis identified by an automated aspect mining technique asempat
concern seed but is not yet confirmed to be an actual concedroseather a false
positive.

Seed expansionis the manual or automated process of completing the setuntso
code entities constituting a seed into the entire set ofcesoode entities of
which the crosscutting concern corresponding to that seesists.

3.3 The three aspect mining techniques

In this section, we give a brief overview of three techniquieveloped independently
by different research groups, that support the automasemdery of crosscutting con-
cerns in the source code of a software system that is writtennon aspect-oriented
way.

3.3.1 Fan-in Analysis

Crosscutting functionality can occur at different levelsnabdularity. Classes, for
instance, can assimilate new concerns by implementingpraiihterfaces or by im-
plementing new methods specific to super-imposed roleshéhtethod level, cross-
cutting in many cases resides in calls to methods that asldrdgferent concern than
the core logic of the caller. Typical examples include loggitracing, pre- and post-
condition checks, and exception handling. It is exactlg tigpe of crosscutting that
fan-in analysis tries to capture.

When we study the mechanics of AOSD, we see that it employ®toalgedadvice
construct to eliminate crosscutting at method level. Thisstruct is used to acquire
control of program execution and to add crosscutting fmetiity to methods without
an explicit invocation from those methods. Rather, the cutsisig functionality is
isolated in a separate module, called aspect, and woventlgtimethod implicitly
based on the advice specification.

Fan-in analysis reverses this line of reasoning and lookerfzsscutting function-
ality that is explicitly invoked from many different methedcattered throughout the
code. The hypothesis is that tnember ofof calls to a method implementing this
crosscutting functionality (fan-in) is a good measure f& importance and scattering
of the discovered concern.

To perform the fan-in analysis, a fan-in metric was impletedras a plug-in for

62 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

the Eclipse platforry and integrated it into an iterative process that consisteree
steps:

1. Automatic computation of the fan-in metric for all metisad the investigated
system.

2. Filtering of the results from the previous step by

¢ eliminating all methods with fan-in values below a choseaeshold (in the
experiment, a threshold of 10 was used);

¢ eliminating the accessor methods (methods whose signatatehes a
get*/set* pattern and whose implementation only returns or sets a-refe
ence);

¢ eliminating utility methods, like oSt ring() and collection manipulation
methods, from the remaining subset.

3. (Partially automated) analysis of the methods in theltiegy filtered set by
exploring the callers, call sites, naming convention ugbd,implementation
and the comments in the source code.

Besides code exploration, the tool supports automatic retog of a number
of relations between the callers of a method, such as comoies, rconsistent
call positions, etc.

The result of the fan-in analysis is a set of candidate seegsesented as methods
with high fan-in.

3.3.2 Identifier Analysis

In the absence of designated language constructs for aspaching conventions are
the primary means for programmers to associate relateditaind program entities.
This is especially the case for object-oriented prograngmivhere polymorphism al-
lows methods belonging to different classes to have the sagmature, where it is
good practice to use intention-revealing names [Beck, 198974 where design and
other programming patterns provide a common vocabularywhkrimy many program-
mers.

Identifier analysiselies on this assumption and identifies candidate seedohpg
ing program entities with similar names. More specificatlgpplies FCA with as ele-
ments all classes and methods in the analyzed program (gkose that generate too
much noise in the results, like test classes and accessbod®t and as properties the
identifiers associated with those classes and methods.

The identifiers associated with a method or class are compugesplitting up
its name based on where capitals appear in it. For examplegthoch named

2 http://swerl.tudelft.nl/view/AMR/FINT

3.3. The three aspect mining techniques 63

creat eUndoAct i vi ty yields three identifiersreat e, undo andactivity. In addition,
we apply the Porter stemming algorithm [Porter, 1980] to enaltre that identifiers
with the same root form (likendo andundoabl) are mapped to one single represen-
tative identifier or ‘stem’. It is these stems that are usedraperties for the concept
analysis.

The FCA algorithm then groups entities with the same idensifi&Vhen such a
group contains a certain minimum number of elements (in xXpe®ment, a threshold
of 4 was used) and the entities contained in it cut acrosgpteittlass hierarchies, the
group is considered a candidate seed. The only remainingdsit difficult task is that
of deciding manually whether a candidate seed is a real seadadse positive. To
help the developer in this last task, thelfSTofsource-code mining tool presents the
concepts in such a way that they can be browsed easily bywaefengineer and so
that he or she can readily access the code of the classes d@hddsidelonging to a
discovered seed.

3.3.3 Dynamic Analysis

Formal concept analysis has been used to locate ‘featurgs’acedural programs
[Eisenbarth et al., 2003]. In that work, the goal was to idgrthe computational
units (procedures) that specifically implement a featuee, (requirement) of interest.
Execution traces obtained by running the program undengeenarios provided the
input data (dynamic analysis).

In a similar way, dynamic analysis can be used to locate #ésjpeprogram code
[Tonella and Ceccato, 2004a] according to the following pthoe. Execution traces
are obtained by running an instrumented version of the jpragrnder analysis, for a
set of scenarios (use-cases). The relationship betweentexe traces and executed
computational units (methods) is subjected to conceptyaisal The execution traces
associated with the use-cases are the elements of the ¢@madypsis context, while
the executed methods are the properties. In the resultingepo lattice (with sparse
labeling), thause-case specifoncepts are those labeled by at least one trace for some
use-case (i.ea contains at least one element), while the concepts with aernore
properties as labels (those with an emplyare regarded agenericconcepts. Thus,
use-case specific concepts are a subset of the generic ones.

Both use-case specific concepts and generic concepts cmmnation potentially
useful for aspect mining, since they group specific methbdsdre always executed
under the same scenarios. When the methods that label onesnicgpt (using the
sparse labeling) crosscut the principal decompositioandiclate aspect is determined.

Formally, letC be the set of all the concepts and@gbe the set of use-case specific
concepts|@(c)| > 0). A concept is considered a candidate se#d

Scattering: 3p,p’ € B(c) | pref(p) # pref(p’)
Tangling: dp € B(c),3c € Q,3p € B(c) | c# ' A pref(p) = pref(p’)

64 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

where Q = Cs for the use-case specifiseeds, whileQ = C for the genericseeds.
The first condition $cattering requires that more than one class contributes to the
functionality associated with the given conceptdf (p) is the fully scoped name of
the class containing the meth@il The second conditiortgngling) requires that the
same class addresses more than one concern.

In summary, a concept is a candidate seed if:s¢Bttering: more than one class
contributes to the functionality associated with the gieemcept; (2)tangling: the
class itself addresses more than one concern.

The first condition alone is typically not sufficient to idéptrosscutting concerns,
since it is possible that a given functionality is allocatedeveral modularized units
without being tangled with other functionalities. In faittmight be decomposed into
sub-functionalities, each assigned to a distinct modulés dnly when the modules
specifically involved in a functionality contribute to othieinctionalities as well (i.e.
the second condition) that crosscutting is detected,rurfor a candidate seed.

3.4 Results of the Aspect Mining

In this section, we present the results of applying eachnigcie to version 5.4b1 of
JHotDraw, a Java program with approximately 18,000 nonfoented lines of code
and around 2800 methods. We mutually compare the resultseaiechniques, and
discuss the limitations of each technique as well as thenptementarity.

3.4.1 The Fan-in Analysis Experiment

As described in Subsection 3.3.1, fan-in analysis firstqgger$ a number of succes-
sive steps to filter the methods in the analyzed system. Theslibld-based filtering,

which selects methods with high fan-in values, kept arolrd¥ the total number of

methods. The filters for accessors and utility methods abiteid around half of the
remaining methods. In the remaining subset, more than lidhdeomethods (52%)

were categorized as seeds, based on manual analysis.

Table 3.2 gives an overview of the types of crosscutting eomcthat were identi-
fied and the seeds that led to their identification. Severtiiede concern types, such
asconsistent behavioor contract enforcemerjirhe AspectJ Team, 2003], have more
than one instance in JHotDraw; that is, multiple unrelatedgscutting) concerns exist
that conform to the same general description. For exampgeirstance ofontract en-
forcementhecks a priori conditions to a command’s execution, whilether instance
verifies common requirements for activating drawing todlee number of different
instances that were detected is indicated in the # column.

We distinguish three different ways in which the fan-in neetran be associated
with the crosscutting structure of a concern implementafi@so indicated in Ta-
ble 3.2):

3.4. Results of the Aspect Mining

65

| Concern type

| # | Seed’s description |

Consistent behavior

4

Methods implementing the consistent beh
ior shared by different callers, such as che
ing and refreshing figures/views that ha
been affected by the execution of a co
mand.

Contract enforcement

Method implementing a contract that nee
to be enforced, such as checking the ref
ence to the editor’s active view before ex
cuting a command.

Undo

Methods checking whether a command
undoable/redoable and thendo method in
the super-class, which is invoked from t
overriding methods in subclasses.

Persistence and resurrecti

Methods implementing functionality com
mon to persistent elements, such as re
/write operations for primitive types wraf
pers (e.g., Double, Integer, etc.) which &
referenced by the scattered implementati
of persistence/resurrection.

Command design pattern

The executeamethod in the command class
and command constructors.

Observer design pattern

The observers’ manipulation methods a
notify methods in classes acting as subjec

Composite design pattern

The composite’s methods for manipulati
child components, such as adding a n
child.

Decorator design pattern

Methods in the decorator that pass the ¢
on to the decorated components.

Adapter design pattern

Methods that manipulate the reference frg
the adapterandle to the adapteeHjgure).

Table 3.2: Summary of the results of the fan-in analysis expnt.

AvV-
ck-
ve
m_

ds
er-
e_

is

ne

|
ad-
)
re

NS

es

nd
L.

ng
ew

alls

bm

66 Chapter 3. Applying and Combining Three Different Aspect Mjriechniques

1. The crosscutting functionality is implemented througmethod and the cross-
cutting behavior resides in the explicit calls to this methd&xamples in this
category includeonsistent behavicandcontract enforcement

2. The implementation of the crosscutting concern is sadtthroughout the sys-
tem, but makes use of a common functionality. The crossautsides in the
call sites, and can be detected by looking at the similarlietween the calling
contexts and/or the callers. Examples of concerns in thégjoay argersistence
andundo(see Chapter 2).

3. The methods reported by the fan-in analysis are part ofdles superimposed
to classes that participate in the implementation of a depagtern. Many of
these roles have specific methods associated to thensutiectrole in an Ob-
server design pattern is responsible to notify and managelkserver objects,
while the compositerole defines specific methods for manipulating child com-
ponents. In general, establishing a relation between thasg-methods and the
complete concern to which they appertain might require sebé&miliarity of
the human analyzer with the code being explored, than fqoitéaous two cate-
gories. However, many of these patterns are well-known awd b clear defined
structure, which eases their recognition [Hannemann anddtes, 2002].

For more details regarding fan-in analysis and a completeudsion of the JHotDraw
results, we refer to Chapter 2.

3.4.2 The ldentifier Analysis Experiment

Applying the identifier analysis technique of Subsectio®.3.0on JHotDraw yielded
230 concepts and took about 31 seconds when using a thredfivbfdr the minimum
number of elements in a concept. With a threshold of 10, timelo&r of concepts pro-
duced was significantly less: only 100 concepts remainet <ering, for a similar
execution timé In both cases, 2193 elements and 507 properties were coasideis
a good sign that the number of properties is significantlyllemtnan the total number
of elements considered, as it implies that there is quiteesoverlap in the identifiers
of the different source-code entities, which was one of tlenisses of the identifier
analysis technique.

The manual part of the experiment, i.e. deciding which cptewere real seeds,
was much more time-consuming. Overall, this took about&tleeys for the experiment
with threshold 4, where 230 seed candidates needed to bstigated. For each of the
discovered concepts, the code of the entities in its extettd be inspected to decide
whether (most of) these entities addressed a similar cond@ther than allowing to

3Whereas the threshold of 4 was chosen arbitrarily, the tbtdsif 10 was determined experimen-
tally: below that threshold the amount of concepts that wegarded as noise was significantly higher
than above the threshold.

3.4. Results of the Aspect Mining 67
| Crosscutting concern | Concept(s) | #elements| Some elements |
Observer change(d) 67 | figureChanged(e)
check 14 | checkDamage()
listener 65 | createDesktopListener
release 12 | ...
Command execution command execute(4 | commandExecuted(...
execut(abl)e 51 | commandExecutable(.|.
Undo undo(able) 53 | createUndoActivity()
redo(able) 14 | redo()
Visitor visit 12 | visit(FigureVisitor)
Persistence file 15 | registerFileFilters(c)
storable 5 | readStorable()
load 8 | loadRegisteredimages|
register 7 | loadRegisteredimages|
Drawing figures draw 112 | draw(g)
Moving figures move 36 | moveBy(x,y)
moveSelection(dx,dy)
Iterating over collections iterator 5 | iterator(), listlterator(),

Table 3.3: Selection of results of the identifier analysigseziment.

browse the source code of the elements in the extent of a pgribe DelfSTof code
mining tool provided no direct support for this.
Table 3.3 presents some of the seeds discovered by manoallzang the classes
and methods belonging to the extent of the concepts producéue FCA algorithm.
The first column names the concern, the second column shevidanhtifiers shared by
the elements belonging to the concept(s) correspondirftatacbncern. The third col-
umn shows the size of the extent for each concept. Finaliylléistration purposes, the
fourth column shows some program entities appearing inxteneof the discovered

concepts.

Out of 230 candidate seeds, 41 seeds were retained, whenaiiimeshold of 4
for the minimum number of elements in a concept. These deseavconcerns were
classified in three different categories:

1. Some of these concerns looked like aspects in the moritidread sense (e.qg.,
observerundoandpersistence

2. Many other concerns seemed to represent a crosscuttietjdoality that was
part of the business logic (e.glsawing figuresmoving figurels The distinction
between these two first categories was somewhat subjelctvever.

0

68 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

| Crosscutting concern | Concepts| Methods |
Undo 2 36
Bring to front 1 3
Send to back 1 3
Connect text 1 18
Persistence 1 30
Manage handles 4 60
Manage figure change event 3 8
Move figure 1 7
Command executability 1 25
Connect figures 1 55
Figure observer 4 11
Add text 1 26
Add URL to figure 1 10
Manage figures outside drawing 1 2
Get attribute 1 2
Set attribute 1 2
Manage view rectangle 1 2
Visitor 1 6

Table 3.4: Summary of the results of the dynamic analysigexent.

3. Three Java-specific concerns were discovered (ggating over collections
that are difficult to factor out into an aspect because thigyae or extend spe-
cific Java code libraries.

3.4.3 The Dynamic Analysis Experiment

The dynamic analysis technique of Subsection 3.3.3 is stggbby theDynamoaspect
mining toof. The first step required bpynamois the definition of a set of use-cases.
To accomplish this task, the documentation associatedthdtimain functionalities of
JHotDraw was used to define a use-case for each functiowni#gribed in the docu-
mentation. Amongst others, a use-case was created to drestamgle, one to draw a
line using the scribble tool, one to create a connector batviwo existing figures, one
to attach a URL to a graphical element, and so on. In total, 87fcases were obtained.
When executed they exercised 1262 methods belonging to JaletElasses, so that
the initial context for the concept analysis algorithm emsméd 27 elements and 1262
properties. The resulting concept lattice contained 15den.

Among the concepts in the lattice, 11 satisfied the crosagutbnditions (scatter-

4Available fromhttp://star.itc.it/dynano/ under GNU General Public License (GPL).

3.5. Comparing the Results 69

ing and tangling), described in Section 3.3, for the use&cpecific concepts, while
56 (including the 11 above) satisfied the conditions for thaegic concepts. Next,
both the use-case specific and generic concepts were eevisénually, to determine
which ones could be regarded as plausible seeds and whistsboald be considered
false positives. The criterion followed in this assessmeat the following: a concept
satisfying the crosscutting conditions is considered d gee

e it can be associated to a single, well-identified functidpathis usually ac-
counts for the possibility to give it a short descriptionttlzdoels it), and

e some of the classes involved in such a functionality haveffardnt primary
responsibility (indicating crosscutting with respect e fprincipal decomposi-
tion).

Of course, due to the nature of crosscutting concerns ancttfiied design decisions,
some level of subjectivity still remains (as is the case lherdther techniques).

In the end, the list of candidate seeds shown in Table 3.4 wisned. The four
topmost concerns are use-case specific. As apparent frosettoed column of the
table, and as was the case for the identifier analysis expatjinsome crosscutting
concerns were detected by multiple concepts. In total, gntioe 56 generic concepts
satisfying the crosscutting conditions, 24 concepts wadgegd to be associated with
18 crosscutting concerns.

The methods associated with each candidate seed (countlee iast column of
Table 3.4) are indicative of the “aspectizable” functiatyalAlthough they may be not
the complete list (dynamic analysis is partial) and may aonfalse positives, they
represent a good starting point for a refactoring inteneenaimed at migrating the
application to AOSD.

3.5 Comparing the Results

In this section we discuss some selected concerns that deméfied by the different
techniques. We selected some concerns that were detectdbthsee techniques, as
well as a representative set of concerns that were detegtedrbe techniques but not
by others. This allows us to clearly pinpoint the strengthd weaknesses of each
individual technique.

3.5.1 Selected Concerns

Table 3.5 summarises the concerns we selected. The firshnatames the concern.
The other columns show by what technique(s) the concern igaewered: if a tech-

nique discovered the concern, we put a + sign in the correbpgrtolumn, otherwise

a - signis in the table.

70 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

Concern Fan-In Identifier | Dynamic
Analysis Analysis | Analysis
Observer + + +
Undo + + +
Persistence + + +
Consistent behavior / + - -

Contract enforcement

Command execution + + +
Bring to front / Send to back - - +
Manage handles - + +
Move Figures + (discarded) + +

Table 3.5: A selection of detected concerns in JHotDraw.

Observer

The Observer design pattern is an example of a concern egpbyt all techniques.
Other examples includ@ommand executigyndofunctionality andPersistencewhose
implementation in JHotDraw is described in detail in Chagiteheir identification
should come as no surprise, because they correspond t&naelin aspects, frequently
mentioned in AOSD literature, or to functionalities for whian AOSD implementa-
tion looks quite natural.

Concerns identified by all three techniques are probably déisé diarting point for
migrating a given application to AOSD, because developarslie quite confident
that the concern is very likely to be an aspect. However, &t that only four of
such concerns were discovered, stresses the need for avaappghat combines the
strengths of different techniques.

Contract enforcement / Consistent behavior

Thecontract enforcemergndconsistent behaviaroncerns [The AspectJ Team, 2003]
generally describe common functionality required fromjroposed on, the partici-
pants in a given context, such as a specific pre-conditioskcha certain methods
in a class hierarchy. An example from the JHotDraw case i€tramanchierarchy
for which theexecutanethods contain code to ensure the pre-condition that dinéac
view’ reference exists (is not null).

We classify these concerns as a combination of contract@srftent and consistent
behavior since these types often have very similar implé¢atiems, and choosing a
particular type depends mainly on the context and on (patsorierpretation.

Fan-in analysis is particularly suited to address this kihdcattered, crosscutting
functionalities, which involve a large number of calls t@ ttame method, while the
other two techniques potentially miss it. In fact, contrastorcement and consistent

3.5. Comparing the Results 71

behavior are usually associated with method calls thatroccaveryexecution sce-
nario, so that they cannot be discriminated by any specifccase. On the other
hand, identifier analysis will miss those cases where théoadstthat enforce a given
contract or ensure consistent behavior do not share a comaramg scheme.

Command execution

This concern deals with the executability and the actuatetien of objects whose
class belongs to theommandierarchy. Identifier analysis identified a concept which
contains exactly thexecutemethods in theCommandhierarchy. Dynamic analysis
identified the classes containirgiexecutablenethods. Indeed, thexecutanethods all
have the same name and manual inspection showed they esimbér behavior: they
nearly all make a super call to @xecutemethod, invoke @heckDamagenethod and
(though not always) invoke setUndoAcivityandgetUndoActivitymethod. A similar
argument can be made fmExecutable

Hence, whereas identifier and dynamic analysis may not deteanore generic
Contract enforcement / Consistent behavior aspect diretthy can identify some
locations (pointcuts) where potentially such an aspeciddoe introduced.

Bring to front / Send to back

The functionality associated with this concern consistthefpossibility to bring fig-
ures to the front or send them to the back of an image. Whenisgerat executes
specific methods that have a low fan-in, hence they were riettésl by fan-in analy-
sis. Identifier analysis also missed them, because theenatrenough methods with
a sufficiently similar name to surpass the threshold. Hedgeamic analysis is the
only technique that identified this concern. This exampla good representative of
crosscutting concerns that are reported only by dynamilysisawhenever the meth-
ods involved in a functionality are not characterized by #yimg naming scheme (or
there are not enough of them), neither do they have highrfathe other two tech-
niques are likely to fail.

Manage Handles

A crosscutting functionality is responsible for managihg handles associated with
the graphical elements. Such handles support interagogeations, such as resizing
of an element, conducted by clicking on the handle and dragthe mouse. This
seed is interesting because it is detected by dynamic asalgd by identifier anal-
ysis, but in different ways. Identifier analysis detects twncern based on the pres-
ence of the word ‘handle’ in identifiers. Consequently, it s8is methods such as
north(), south(), east(), west(), which are clearly related to this concern, but
do not share the lexicon with the others. On the other hanghmyc analysis reports
both the latter methods and (some of) those containing thd Whandle’. However,

72 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

since not all possible handle interactions have been esegtcthe output of dynamic
analysis is partial and does not include all the methodsrtegdy identifier analysis.

The manage handlesoncern was missed by the fan-in analysis because the calls
are too specific: they are similar but different calls indtefone single called method
with a high fan-in.

Moving figures

The three techniques discard concerns on different basese sf the concerns are
filtered automatically while others are excluded manuallye move figuregoncern,
seeded by thenoveBymethod in theFigure classes, is one example where different,
subjective decisions can be made depending on whether tivegbis classified either
as a candidate aspect or as part of the principal decommasithemoveBymethods
allow to move a figure with a given offset. The team which usedif analysis argued
that the original design seems to consider this functibnak part of a@igure’'s core
logic. The other two teams considered it as part of a crossgufunctionality and
included it in the list of reported seeds.

This example highlights the difficulty of deciding objealy on what is and what
is not an aspect and corroborates our choice to conduct aajival, instead of a quan-
titative, comparison.

3.5.2 Limitations

As a consequence of applying each technique to the samescase of the limitations
of the respective techniques have become obvious. For dgame obtained a better
idea of potential ‘false negatives’, i.e. concerns thatevest identified by a particular
technique but that were identified by another. Below, we sunis@aome of the dis-
covered limitations. In the next section we then descrilve togpartly overcome these
limitations by combining different techniques.

Fan-in analysis mainly addresses crosscutting concerns that are largatiesed and
that have a significant impact on the modularity of the syst&ime downside of this
characteristic is that concerns with a small code footpaimd thus with low fan-in
values associated, will be missed. For example, the ideatiifin of Observerdesign
pattern instances is dependent on the number of classesnmapting the observer
role. These classes contain calls to specific methods isubjectclass for registering
as listeners to the subject’s changes. The number of obsglagses will determine
to a large extent the number of calls to the registration ogth the subject role. A
collateral effect is the anticipated unsuitability of treehinique for analysing small
case studies.

Identifier analysis tends to produce a lot of detailed results. However, thesatse
typically contain too much noise (false positives), so aeneffective filtering of the
discovered concepts, as well as of the elements inside tws=epts, is needed. In

3.5. Comparing the Results 73

Technique Concerns
Dynamic analysis 18
Fan-in analysis 16

Dynamic analysi$) Fan-in analysis 30
Dynamic analysi§) Fan-in analysis 4

Table 3.6: Concerns identified by either dynamic or fan-inysis.

addition, the discovered concepts are often incompletdharsense that they do not
completely “cover” an aspect or crosscutting concern. IQfteore than one concept is
needed to describe a single concern, as was the case fObderveraspect. The in-
dividual concepts themselves may also need to be complatkédditional elements
that are not contained in those concepts. This was the casbheftyndo aspect: in
addition to the methods with ‘undo’ or ‘undoable’ in theirne, some of the methods
calling these undo methods need to be considered as pag obtkaspecias well.

Dynamic analysis is partial (i.e., not all methods involved in an aspect ateewed),
being based on specific executions, and it can determineasplgcts that can be dis-
criminated by different execution scenarios (e.g., agpttt are exercised in every
program execution cannot be detected). Additionally, esloot deal with code that
cannot be executed (e.g., code that is part of a larger framkewut that is not used in
a specific application).

3.5.3 Complementarity

The three proposed techniques address symptoms of crissgduhctionality, such as
scattering and tangling, in quite different ways. As showiiable 3.6, fan-in analysis
and dynamic analysis show largely complementary resudt s@tong the 30 concerns
identified by either dynamic or fan-in analysis, only 4 arentified by both techniques.
This is an expected result. Fan-in analysis focuses onifgengt those methods that
are called at multiple places. However, when a method isdatlany times, it is likely
to occur in most (if not all) execution traces. Hence, no spasse-case can be defined
to isolate the associated functionality, and dynamic asislyill fail to identify it as a
seed.

Identifier analysis is the least discriminating of the thiesghniques and has a large
overlap with the other two techniques. When a concern caneadifabd through fan-
in analysis and/or dynamic analysis, identifier analysisafen isolate it too, since a
common lexicon is often used in the names of the involved oush

In the next section, we will use these observations to ppasew aspect mining
technique that is a clever combination of the three indialdechniques.

74 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques
3.6 Toward Interesting Combinations

Based on the discussion in the previous section, this septesents three combined
aspect mining techniques and reports on the results of eygpllyese combined tech-
niques on the JHotDraw application. Based on the analysisdtats ofrecalled meth-
odsandseed qualitywe compare whether these combined techniques provide a more
complete coverage of the detected concerns than each ofigieabtechniques indi-
vidually.

3.6.1 Motivation

As has been explained in the previous sections, the fanalysis and dynamic anal-
ysis techniques are largely complementary, and addrefeseatit symptoms of cross-
cutting. An obvious and interesting combination of thesshtéques thus consists of
simply applying each technique individually and taking threon of the results. Ad-

ditionally, the seeds in the intersection of the resultsuf) are likely to represent the
best aspect candidates, because both techniques iddwify fThis was illustrated in

our experiment, in which both techniques identified @leserver, Undo, Persistence
andCommand executiocandidates.

As for other combinations of the techniques, two intergstitbservations were
considered. First, the manual intervention required bytifier analysis is very time-
consuming and is not justified by the fact that it producesenmtteresting results. This
makes the technique less suited than the others for larcgges. Second, both fan-in
analysis and dynamic analysis identify only candidate sebdt serve as a starting
point for seed expansion. Dynamic analysis in particuldfessi from this problem
as it is based on a (necessarily partial) list of executimnados. Similarly, fan-in
analysis is only focused on invocations of high fan-in megjovhich represent just
a portion of the whole concern. Interestingly, while penforg fan-in analysis and
dynamic analysis, we observed that the classes and methdte iseed expansion
often exhibited similar identifiers.

Consequently, we believe better results can be obtained seddentifier anal-
ysis as a seed expansion technique for the seeds identifiettH®r fan-in analysis
or dynamic analysis, or by the seeds identified by both thedeniques. In this way,
the search space for identifier analysis is reduced signtficand more automation is
provided for the manual seed expansion needed by both fandlysis and dynamic
analysis. A final manual refinement step is anyway necessiapg the expanded seeds
may contain false positives and negatives.

In the remainder of this section, we will present three défg techniques: a com-
bination of fan-in analysis with identifier analysis, of @&mic analysis with identifier
analysis, and of the union of fan-in analysis and dynamidyarsawith identifier anal-
ysis.

3.6. Toward Interesting Combinations 75

3.6.2 Definition of the Combined Techniques

The combined techniques work as follows:

1. Identify interesting candidate seeds by applying faaralysis, dynamic analy-
sis or both to the application;

e For candidate seeds identified by dynamic analysis, (mbnudter out
those methods that do not pertain to the concern;

2. For each method in the candidate seed, find its enclosasg,chnd compute the
identifiers occurring in the method and the class name, doaptto the algo-
rithm used by identifier analysis;

3. Apply identifier analysis to the application, and seatef concept, among the
concepts it reports, that is “nearest”. The nearest coneefpte concept that
contains most of the identifiers generated in the previcgs. 3t more than one
nearest concept exists, take the union of all their elements

4. Add the methods contained in the nearest concept(s) tatindidate seed.

5. Revise the expanded list of candidate seeds manually toveefalse positives
and add missing seeds (false negatives).

In what follows, we experimentally validate these techesjwn the JHotDraw
case.

3.6.3 Analysis Indicators

Before applying the combined techniques, we define two meaguarvalidate the re-
sults. A common way to measure classification techniqueslisdprecisionandrecall
as performance indicators. Unfortunately, this requinégrmation about all crosscut-
ting concerns present in the application, and this is notaMa. Therefore, we have
chosen alternative metrics, which we use for measuring tiadity of the individual
seedsbtained using the various techniques. We call these mextadled methods
andseed quality

Recalled methodsis the number of methods reported in a seed that actuallynbe@
the crosscutting concern.

Seed quality is the percentage of a seed’s recalled methods with respéie ttotal
number of methods in the seed. This indicator estimates Ifwaudt it is to spot
a concern in the methods provided by the seed.

76 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

With respect to the definitions above, it is important to rdnthat for fan-in, two
interpretations of seeds are possible: the first takes trycallees with high fan-in
into account; the second interpretation includes, bediuegallees with high fan-in,
also all callers to these methods. These differences stem the fact that the fan-
in technique is actually based on the aallation and the interpretations use either
one or both sides of the relation in seed representationgin@exploration these
differences are not that important because we can easilgatavifrom caller to callee
and vice versa. However, when we start assessments basedrding elements, these
interpretations do have considerable impact.

In the first case, the number of recalled methods will be lances call-sites are
not considered in the seeds), and the seed quality will aveay100% since the high
fan-in callees belong to the concern by definition. The sdaoterpretation will result
in higher values of recall and yields a more complete pictifrthe concern. How-
ever, lower values for seed quality are possible since mot#is may be caused by a
crosscutting concern.

The next section describes the results of applying combeathiques on the JHot-
Draw appication, and evaluates the above indicators beifodeafter the experiment.
We include results for both interpretations of fan-in sedidsussed above.

3.6.4 Experimental Results

Table 3.7 shows the values of the indicators before and &ftecompletion experi-
ment (based on the first interpretation of seeds for fan#dfhough the completion
technique can be applied to all concerns identified by efdrein analysis or dynamic
analysis, we performed the experiment only on the concalastified by all three
techniques. The sole reason is that we need to assess hoantipdetion technique
influences the recalled methods and seed quality indicatoe®@mpared to their initial
values, which can only be done for thikndo, Command execution, Persistercel
Observerconcerns.

When looking at the common results, it is important to noté¢ tia-in seeds point
to distinct crosscutting concerssrtsthat can occur as parts of more complex struc-
tures like implementations of tHebserverpattern [Marin et al., 2005c,a], a topic we
will explore in depth in the next chapter . In the experimethgse are grouped to
obtain the same level of granularity obtained by the othehrigues.

A deeper look into the results of the completion with ideatitinalysis reveals in-
teresting information: For th&lndo concern, the results of both fan-in analysis and
dynamic analysis improve a lot in terms of recalled methéas(23 and 3 up to 183
and 94). There is a negative impact on the seed quality fongéeted) dynamic anal-
ysis (from 64% down to 55%), but the seed quality for fan-iaspidentifier analysis
remains at 100%. For theommand executioand Persistence&oncerns, the number
of recalled methods increases significantly for the congumetechnique (from 20 and
3 up to 132 and from 29 and 6 up to 104), while the seed qualihanes at the same
level.

3.6. Toward Interesting Combinations 77

Concerns Undo Command execution
Technique Recalled Seed | Recalled Seed
Methods® Quality* | Methods® Quality™
Dynamic analysis 23 64% 20 80%
Fan-in analysis 3 100% 3 100%
Dyn U Fan-in 24 63% 22 81%
Dyn + Identifier 183 55% 132 80%
Fan-in + Identifier 94 100% 132 80%
(Dyn | Fan-in) + Identifier 183 55% 132 80%
Concerns Persistence Observer
Technique Recalled Seed | Recalled Seed
Methods® Quality* | Methods® Quality™*
Dynamic analysis 29 97% 3 100%
Fan-in analysis 6 100% 10 100%
Dyn | Fan-in 32 97% 13 100%
Dyn + Identifier 104 100% 121 14%
Fan-in + Identifier 104 100% 146 15%
(Dyn | Fan-in) + Identifier 104 100% 146 15%

Table 3.7: Recalled methods and seed quality before andcaitepletion {based on
the first interpretation of seeds for fan-in)

For theObserverconcern, the results are less encouraging than for the otimer
cerns. Even though the number of recalled methods incréaséree completion tech-
nique, the quality of the seeds drops to an unacceptablé (eoen 100% down to
14% and 15%). Clearly, the completion does not provide a gopadresion of the
original seeds. Closer inspection reveals that no cleadiinditive nhaming conven-
tion has been used to implement @bserverconcern. ThaJndo, Command execu-
tion andPersistenceoncerns employ distinctive identifiers suchuago/ undoabl e,
execut e/ command andst or e/ st or abl e, which are used extensively only within the
concern implementation. Consequently, the completionigeavby identifier analysis
gives good seed expansions. However, the identifiers usatid@bserverconcern
are the more generdl gur e/ updat e/... that are used extensively throughout the ap-
plication, and not only in the concern implementation. Efere, identifier analysis is
not able to provide a good expansion for the seeds found bgtte techniques.

An overview of results based on the second interpretaticseetls for fan-in, i.e.
taking also the call-sites into account, is shown in Tab& &or theUndo concern,
we show both the individual values for each of the three haghih callees reported
as seeds earlier and the recall and seed quality of the catrdnof these three. The
seed quality is lower than 100% in these cases since some ohtls found were not
considered to be part of the actual crosscutting concemthé®bserverconcern we

78 Chapter 3. Applying and Combining Three Different Aspect Mjriiechniques

Seed Recalled| Seed
Methods | Quality
Undo (callee #1) 24| 92%
Undo (callee #2) 25| 88%
Undo (callee #3) 24| 83%
| Undo (combined) | 73| 88% |
| Observer (combined) 83| 100% |

Table 3.8: Recalled methods and seed quality for fan-in arsabased on the second
interpretation of seeds for fan-in

only show the value for the combined high fan-in calleesesibhevould go too far to
go over all individual values here. The seed quality is 108%hese cases since there
are no calls from outside this concern to the reported callee

The seeds identified by fan-in analysis and their qulity aesss for the aforemen-
tioned as well as for the other concerns, are available ehlin

3.7 Summary and Future Work

The purpose of the chapter was to compare three differeeicagpining techniques,
discuss their respective strengths and weaknesses byirapphem to a common
benchmark application, and develop combined techniqusscdban this discussion.

We observed that all three techniques were able to idengiégs for well-known
crosscutting concerns, but that interesting differenceseafor other concerns. These
differences are largely due to the different ways in whiantéchniques work. Fan-in
analysis is good at identifying seeds that are largely sgadtthroughout the system
and that involve a lot of invocations of the same method, tm#nnot be used to analyse
smaller applications. ldentifier analysis is able to idgrgeeds when the associated
methods have low fan-in, but only if these methods share antmmlexicon. The
main drawback of this technique is the large number of reploseeds that had to be
inspected manually. Finally, dynamic analysis is able td fieeds in the absence of
high fan-in values and common identifiers, but the technigwaly partial because it
relies on execution traces.

We also observed that the three techniques are quite coraptany: fan-in analy-
sis and dynamic analysis require a manual effort to expa@debds into full concerns,
whereas identifier analysis covers a large part of a conbeitrrequires extensive fil-
tering of the reported seeds. Hence, to improve automafibotb fan-in analysis and
dynamic analysis, and to reduce the search space for igeraifalysis, we proposed
a combined technique in which seeds from either fan-in @mayr dynamic analysis

Shttp://swerl.tudel ft.nl/view AVR Conbi nationResul ts

3.7. Summary and Future Work 79

are expanded automatically by applying identifier analyBisverify the performance
of this combined technique, we applied it to JHotDraw andrmteted the results in
terms of two indicatorsrecalled methodandseed quality The measures show that
for three out of the four concerns we considered, the conaliehnique outperforms
the individual techniques. In only one case, the combineldrtigue performed worse.

Future work mainly consists of extending our comparisomwther aspect mining
techniques, and potentially proposing new interestinglmoations with such tech-
niques. This will not only allow us to come up with better (daned) aspect mining
techniques, but will also allow us to evaluate the three iciened techniques even bet-
ter, as new concerns will be identified that we were not awéreAdditionally, we
could come up with extra quality indicators that complentbatecalled methodand
seed qualityindicators, and empirically establish their validity bynstdering other
benchmark applications as well.

Chapter 4

Crosscutting Concern Sorts

Our analysis of crosscutting concerns in real-life softwaystems (totaling over
500,000 lines of code), and in reports from literature, sholeg many of these con-
cerns are compositions of primitive building blocks, whigke atomic crosscutting
concerns. Moreover, our study indicated a number of propethat allow for the cat-
egorization of these blocks intwosscutting concern sorté/e use the concern sorts to
describe the crosscutting structure of many (well-knownigissand common mecha-
nisms in software systems.

In this chapter, we formalize the notion of crosscutting @ncsorts by means of
relational queries over (object-oriented) source modeid describe a number of com-
monly encountered sorts. Based on these queries, we presentarn management
tool called SOQUET, which can be used to document the occurrences of crossguttin
concerns in object-oriented systems. We assess the smgsHapproach by using the
tool to cover various crosscutting concerns in two open-sesystemsIHOTDRAW
and JavaPETSTORE.

4.1 Introduction

The typically ill-modularized, scattered and tangled iempéntation of crosscutting
concerns in existing software systems is known to be a aigdléo understanding,
and hence to the maintenance and evolution of these sysi@espite significant re-
search efforts on the design and development of aspectteddéanguages, as well as
on concern identification techniques (i.e., aspect minittggre is still little consen-
sus on what exactly constitutes a crosscutting concernhawdsuch concerns can be
recognized, understood, and clearly documented in sowee. c

The need for a coherent system to address and represerntuttmgsconcerns oc-
curs for many, different steps towards better managemetarterns in source code.
For example, we need to be able to consistently documentiepgring results in

81

82 Chapter 4. Crosscutting Concern Sorts

order to ensure common benchmarks for comparison and catidnrof mining tech-
niques. Similarly, a consistent approach to modeling araioh@ntation of concerns
helps in exploring existing systems and in becoming awart@fcrosscutting con-
cerns that they implement. We believe that (enabling) stest understanding and
documentation of crosscutting concerns in existing codiaskey to making such
systems easier to comprehend and maintain.

Over the last three years, we have analyzed crosscuttirggoasin a range of Java
systems, including JBoss,OMCAT, JHOTDRAW, and the J2EE PTSTORE, totaling
over 500,000 lines of code. A detailed description of thesscatting concerns in the
latter three of these systems is provided in Chapters 2 andH3sahesis.

In our study, we found several “building blocks” for crostog concerns. These
show typical, idiomatic crosscutting implementations. éxample is the superimpo-
sition of a new role on an existing class. An instance of suobl@superimposition
can be found in the drawing application 3FDRAW, in which all classes representing
figure types that are to be stored on file should implement 8terable” interface.
In Aspectd, such a crosscutting concern would typicallyrbplémented through an
“introduction” mechanism.

Another building block we noted involves “consistent babgv As an example,
again from JbTDRAW, theexecut e methods as occurring in tl@ommandierarchy
consistently invoke their super method in order to chectagepreconditions. Another
consistent behavior occurs at the end of treeseut e methods, which have to refresh
the drawing view upon completion. Here the Aspect] equitale a pointcut and
advice.

The building blocks we observed amicconcerns, i.e., concerns that cannot be
naturally decomposed into smaller, yet meaningful coreefifhese atomic concerns
can be categorized by distinctive properties, such as $peicific underlying relations
and implementation idioms in source code. For instancacaymplementations of
tracing [The AspectJ Team, 2003], authorization checkslflaa, 2003b], or notifica-
tion of listener-objects as part of tli@bserverdesign solution [Kiczales and Mezini,
2005a,b] follow the same idiom that consists of method iatons. We distinguish
each category of concerns that share their implementadiomias a concersort. A
number of concern sorts, which we shall discuss in detaihis ¢thapter, are briefly
described in Table 4.1.

The concern sorts can be used on their own, but can also beosehfo construct
more complex designs or features. For example, the Obseatrn, often used as an
example of a design whose implementation is crosscuttargbe seen as consisting of
two role superimpositions (one for the Subject and one ferQbserver role), and two
consistent behaviors (one for the notification and anottraihe observer registration).
Likewise, we have seen several well known complex crossgutbncerns that can be
composed from our sorts, like transaction management athal support.

In this chapter, we introduce the notion of concern sorts @disduss in detail a
number of these sorts. Particularly, we set out to providavans to a range of open
guestions: What exactly is a “sort”? Is there a way to forneaifas notion? Based on

4.2. Crosscutting Concern Sorts 83

such a formalization, would there be a way to unambiguowntify the occurrence
of a sort in source code? Can we offer tool support for documgrdrosscutting
concerns based on sorts? And, last but not least, how “t@ca the sorts we have
proposed? Do these sorts indeed occur in practice? Howftienv can certain well
known crosscutting concerns as occurring in existing systiee captured using sorts?

Subsequent chapters will focus on specific applicationsoatern sorts, partic-
ularly on consistent aspect mining and refactoring: weldbak at how the sorts’
distinctive properties can be used for identification oft estances in source code,
and for design of re-usable solutions for migration to maduaspect-based imple-
mentations of concerns.

The main contributions of this chapter are:

e We recognize and describe a number of commonly encounter&df cross-
cutting concerns, showing their specific implementatioon and a significant
number of examples of the sorts instances.

¢ We formalize the notion of crosscutting concern sort by abtarizing each sort
by a specific query over a model of the source code, and présesd queries.

e We present SQUET, an Eclipse plug-in that implements the queries for each
sort, which can be used to document crosscutting concerfe/amapplications.

e We provide an in depth study of sorts occurring in existingaJsystems. In
particular, we use SQUET to document a variety of crosscutting concerns as
presently implemented in the drawing applicationcd®RrRAw, and the web ap-
plication FETSTORE. We also show how the sorts can describe the crosscutting
concerns in the design patterns solutions discussed by Gaghal. [1994].

The next sections each cover one of these contributiores,wftich we conclude with
a discussion on these results, a survey of related work, amdidook towards future
work.

4.2 Crosscutting Concern Sorts

Crosscutting concern sort@re generic descriptions of atomic crosscutting concerns
that share a specific relation and implementation idiomn#fsaconcerns are therefore
instancesof a particular sort, which can serve as building blocks ofencomplex
concerns or designs.

In our analysis of crosscutting concerns in source codega@gnized several sorts
of crosscuttingness, which recur in many well known anddegsown crosscutting
concerns. In this chapter, we cover in detail six most comynencountered sorts,
discussing their general intent and specific implemematamms. For each concern
sort, we also show various instances, i.e., crosscuttingerms encountered in practice
or presented in literature. Moreover, we look at how we cam#dize the notion of

84 Chapter 4. Crosscutting Concern Sorts

| Sort | Short description \
(Method) Consistent A set of method-elements consistently invoke a specifioncs a step in
Behavior their execution.

Redirection Layer

Atype-element acts as a front-end interface having its odsthesponsible
for receiving calls and redirecting them to dedicated mashaf a specific
reference, optionally executing additional functionalit

Context)

Expose Context (PassMethods in a call chain consistently use parameter(s) tpggate context

information along the chain.

Role Superimposition

Type-elements extend their core functionality throughithplementation
of a secondary role.

Support Classes for
Role Superimposition

Type-elements implement secondary roles by enclosingstjgtasses.
The class nesting mechanism enforces (and defines) therelstween
the role of the enclosing class and that of the support class.

Exception Propaga{ Method-elements in a call chain consistently (re-)throwegtions from
tion their callees in the absence of an appropriate answer.

(Declare throws

Clause)

Table 4.1: Sorts of crosscuttingness.

concern sorts. To that end, we express the six sorts, shoWabie 4.1, as queries over
a meta-model describing object-oriented source code.

4.2.1 The Query Model

Our query model is aimed at providing a standard, formaldestription of the rela-
tions underlying each of the crosscutting concern sorts.fibdel consists of a generic
query definition and a set of query templatssr{ querie$ that capture the relations
specific to each of the sorts.

A sort query is a binary relation between elements of two, $béssource context
and thetarget context The elements in these contexts are program elements, such a
classes or methods. The relation between them is based antanagion of various
source code relations, such eall or inheritancerelations, that can be extracted us-
ing static analysis. A query can limit each context by sédectlauses that impose
restrictions to the elements that participate in the rehati

The elements and collaborations relevant to the sort quareeshown in Figure 4.1.
These relations are used to pose restrictions in querieb, & “any methodan that
is_of type T'. The type of a method is considered to be its returned type.

4.2.2 Description and Formalization of Sorts

This section covers the set of six crosscutting concerrts shown in Table 4.1. Be-
sides these sorts, we discuss a number of additional corodmin Section 4.5, where
we show how new sorts can be contributed to our list.

4.2. Crosscutting Concern Sorts 85

ProjiI

=== contains has-parameter

Package
encloses Name

contains
i has-argumept
Type i IS_Of_type IMeanerl:g

declares dataflow

implements Field invokes

|Interface|—| Class l ConstructorH Method I—
L

extends

invokes invokes

throws

Exception

Figure 4.1: Meta-model relevant to sort queries

(Method) Consistent Behavior The crosscutting relation specific to this sort occurs
between a set of methods in a defined (source) context anéa gotion implemented
by a method. The methods in the set consistently invoke therato fulfill a require-
ment additional to their core functionality.

While the target context is defined through one method, nathelinvoked action,
the definition of the source context can cover various cdsegxample, in the case
of a logging concern, we could define the source context asatef all methods in a
Java project. In this example, the definition of the contexuires gprojectelement.
In other cases, the context could cover a type hierarchystithe set of methods of a
class, etc. Each of these contexts requires a differen¢ @§pelement for definition.
Our helper functiorContexgg extracts all methods from a given starting pantvhich
we shall call contexseed

We formalize the concern sort and document its instancesigfr a query that
takes as input the invoked method and the seed element te dieirsource context.

CB(Elements, Methodm) := { (m/,m) |
m € Method Contextg(s) A m invokesm }

The common idiom to implement instances of this sort in arcbpriented language
(particularly Java) consist of scattered method callsnffie@ defined context) to the
method implementing the common action to be executed densiy

Another example of consistent behavior is the notificatia@cthanism in the Ob-
server pattern: actions that change the state of the Sutgeetto consistently call the
notification method to allow the observers to update thaiest

86 Chapter 4. Crosscutting Concern Sorts

Yet another example, from transaction management, is aahethintaining data
integrity by ensuring that an operation is committed onlyewtlit is fully completed
and rolled-back otherwise (e.g., in bank transfers bothd#tst and credit operations
have to succeed to keep the data in a consistent state). atteoms management in
Java is supported via JDBC transactions and the Java Traomsagl (JTA).1 A JTA
transaction requires that methods implementing the tdiasalogic consistently in-
voke dedicated methods of tjavax.transaction.UserTransactiomterface: théegi n
method at the beginning and tbemmi t (orr ol | back) at the end to demarcate a JTA
transaction. These invocations are instances oCihesistent behaviosort.

Other instances of this sort include: logging of exceptitmewn in a system,
wrapping service level exceptions of business servicas application level excep-
tions [Marin et al., 2007a], checking credentials as partaothorization mecha-
nisms [Laddad, 2003b], etc.

Redirection layer A redirection layer defines an interfacing layer to an exgstob-
ject, and acts as a front-end that accepts calls and reslitieetn to dedicated meth-
ods of that object, optionally executing additional funotlity. The consistent (yet,
method specific) redirection logic crosscuts this layerthmnds.

The relation for this sort is between the redirecting layed #he target object,
and resides in the consistent redirection of calls betweethod pairs. The source
context is defined by the class acting as a redirector, tgettaontext is the type whose
methods receive the redirection. The implementation idoamsists of the identical
logic in the methods (of a given class) that redirect thelisda partner methods of a
given type.

The query to document instances of this sort is parametewiath the redirecting
type and a reference to the object receiving the redirection

RL(Classc,Memberf) := { (m,m’) | m,m € Method A
cdeclaream A f is_of typec A ¢’ declaresn’ A
invokegm) N method¢c’) = {m'} A
invokes (mf) N methodséc) = {m} }

where invoke{m) = {m | minvokesn'}, invokes*(m) = {m | m' invokesm}, and
method¢c) = {m| ¢ declaresm}.

Implementations of th®ecorator pattern are common examples of instances of
this sort. For example, decorators are used i@IBRAW to allow to attach elements
like borders toFigure objects. The decorators for figures extdbdcoratorFigure
which defines the set of methods to consistently forward ttedis to the stored ref-
erence of the decorated object. Subclassé&¥eabratorFigure like Borderor Anima-
tionDecoratof override its methods to dynamically extend its functidgaConsistent
redirection is also common in implementation of patterke AdapterandFacade as
well as in wrapper classes [Marin et al., 2007a].

Yhttp://java. sun. com j 2ee/ 1. 4/ docs/ t ut ori al / doc/

4.2. Crosscutting Concern Sorts 87

Expose context (Context passing) Instances of this sort are characterized by meth-
ods that are part of a call chain which use an (additionalpater to pass context
along the chain. The caller exposes its context to a callegalsging information to
each method in the call stack of that callee. The idiom spetdifthis sort is the cross-
cutting declaration of additional parameters that are usg@aéss context.

The elements related by this sort are the caller that wishpsopagate the context
info and the callees to which the caller passes the arguri¢mtise transitive closure
to get a complete description of context passing along thech

EC(Methodm) := { (my,n) | (Mg, n) € Methodx NameA
m has-parameten A My = endpoint invokes+(m)) A
VYmp € invokes{m,my) . 3np € Name.

My has-argumertty A n dataflowny A
my # My < — usegp, ny) }

whereendpoint(invokes+(m)eturns last element of the call-chain started fropand
uses(m, np) indicates thatm, uses the value af, for something else than propagation
to its callees (i.eny occurs in another statement than a call to the next methotiseon
call-chain towardsm).

An example instance of this sort is the monitoring of progres long-running op-
erations, such as in Eclipse applications that emffoggressMonitorobjects for this
task. These operations are passed a reference to the mdagerthrough a parame-
ter. They invoke methods of this monitor to indicate progrdi&e thewor ked(i nt)
method to indicate that a given number of work units of thecakiag task have been
completed. Any sub-operations receive a reference to tme saonitor and use it to
report their contribution to general progress.

Laddad discusses several other examples of concerns aattjsas part of trans-
action management or authorization mechanisms, and pes@wsAspectJ solution to
improve modularization (the Wormhole pattern) [Laddad)34).

Role superimposition This sort describes the relation between a type, such as a
class, and the secondary role(s) implemented by this tyjpe. sbrt’'s specific idiom

is, therefore, anmplementgelation. Each of the secondary roles corresponds to an
additional responsibility attached to the type, for examjplue to its participation in
multiple collaborations [Riehle and Gross, 1998]. The ral@s be defined as distinct
interfaces, or just consist of a set of members implemengatddmulti-role type.

In order to get those classes that implement an extra rater ahan their main
one, we specify a seed element for the source context, assvidle role-element. The
definition of the context is done similarly to that of tB®nsistent behaviosort. The
role-element is specified as an interface or class, or, abalesge in Section 4.3, as a
virtual interfaceif the role does not have a dedicated type.

RSI(Elements, Typerole) :={ (t,role) |
t € Typen Contexis)|(S) A ((role € Interfacen
t implementgole) V (role € Class A t extendsole)) }

88 Chapter 4. Crosscutting Concern Sorts

Common examples dRole superimpositionccur as part of implementations of de-
sign patterns defining specific roles, like the Visitor patteor the Observer pattern
discussed before.

The implementation of persistence is also possible throoghsuperimposition:
the Figure elements in JBTDRAW implement aStorableinterface which defines the
methods for a (figure) object to write and read itself to amunfra file. Each figure
implements these methods in a specific way to provide pergistand recovery of
drawings over work sessions.

Other examples of this sort are based on implementationsudtipie interfaces
with dedicated, specific roles, e.§erializable Cloneable Undoable etc.

Support classes for role superimposition The (object-oriented) mechanism of nest-
ing classes both defines and enforces a relation betweemdhesiag and the nested

class. This allows for superimposition of roles, as a nundfeslements can share a
common role by enclosing support classes of a specific type.

Role superimposition through nested, support classesatpioccurs for com-
plex roles and as an alternative to implementation of migltipterfaces: two type
hierarchies interact by having elements from one hieraeshgupport classes for the
elements in the second hierarchy.

The relation between the enclosing and the support clagsliair respective roles)
can be formalized as:

SC(Typec, Typerole) :={ (c1,C2) | €1,C2 € Type A
1 implementsc A ¢ enclose<y A ¢ implementsrole }

An idiomatic implementation of the sort exhibits interactiof hierarchies through
containment of nested classes.

An instance of this sort is present in @HDRAW as part of the support for undo
functionality. Two type-hierarchies interact through pag classes by having the
members of one hierarchy enclosing members of the second Time main hierar-
chy, Commangddefines command elements for executing various applicaiecific
activities like, copy and paste, or operations for setthmg dttributes of a figure, e.g.
color or font size. The second hierarctyndoable defines operations for undo-ing
and redo-ing the results of executing a command. Typicalgh Command class
encloses its associated Undo class.

Other examples of instances of the sort include implemiemstof specialized
iterators for various Collection types and event dispatclesses for managing notifi-
cations of listeners.

Exception propagation The intent of the sort is described by the consistent propa-
gation of exceptions in a call chain when no appropriatealse is available in the
callers. Similar to context passing, the relation of the applies to a call chain. The
callers implement the consistent (enforced) logic of d&aia(and re-throwing) excep-
tions if they are not able to handle them.

4.3. Sort-Based Concern Modeling 89

To document such a concern, the query needs the method it Wiecexception
originates and the type of exception. Optionally, a contedd can be provided to
restrict the set of methods considered for (re-)throwiregekception:

EP(Elements, Methodm, Exceptione) := { (1, e) |
m,m’ € MethodN Contexgp(s) A M invokes+m A
mthrowse A ' throwse }

The query then returns call relations in a call chain, whexehecaller re-throws, i.e.
declares dhrowsclause for, the exception of its callee.

Common examples of this sort comprise checked exceptiorvay 3ach asOEx-
ceptionthat we shall discuss later in Section 4.4.1. Unhandled kdtkexceptions
need to be declared intarowsclause by the users of the method that throws these
exceptions.

4.3 Sort-Based Concern Modeling

The queries discussed in the previous section represemicatmncerns. To further
describe complex relations and designs in source code seaakd to allow for mean-
ingful compositions of such concerns.

Concern modeling tools support software engineers in mogléheir software sys-
tems in terms of concerns. Examples of such tools includ€tdreern Manipulation
Environment CME [Harrison et al., 2004], and the Feature &vgtlon and Analysis
Tool FEAT [Robillard and Murphy, 2002]. An empirical studyratucted by Robil-
lard and Murphy [2002] suggests that concern models ardieien performing
software change tasks.

Currently, concern modeling tools create rather low levetlei®that are built from
concrete source elements from the system that is documeStade allow for user-
defined queries to be attached to these models, althougé #negather simple and
unstructured queries. We propose the userosscutting concern sort® raise the
level of abstraction in concern modeling. We integratessomio concern models by
permitting queries as elements in the concern hierarchy.

As an example, consider Figure 4.2 that illustrates the @bsgattern solution
for figure changes in the J3YDRAW drawing application. Th&igure elements play
the Subject role in the pattern and declare a number of péeiic members, such
as thechanged() method that notifies observers of each change in the Figstas,
the methods to add or remove observer-objects, and the frelctencrete classes to
store the reference to the list of observers. Similarly, dbservers implement the
FigureChangeListenenterface as an additional, super-imposed role.

The concern model for this design is shown at the bottom airéig¢.2. The com-
positeFigureChangeObservanodel groups instances of sorts liR®le superimposi-
tion andConsistent behavidio describe the crosscutting concerns in the implementa-

90 Chapter 4. Crosscutting Concern Sorts

Figure FigureChangeListener
moveBy(nt, ind) observers |
public void draw({Graphics) figureChanged(FigureChangedEvent)
addFigureChangelistener{FigureChangedListener) figurelnvalidated(FigureChangedEvent)
removeFigureChangelistener(FigureChangedListener) il
changed() -
(willChange(})
listener()
;'3 ‘ Connec’[ianigure‘
AbstractFigure Fay
fListener LineConnection
= cornectStart(Connector)
jl connectEnd(Connector)
| | """""""""" 5 disconnectStart()
: disconnectEnd()
TextFigure PolygonF igur&
figureChanged(..)

setText(String)i-... | smoothPoints() .,

willChange();

«oolf change figure

FigureChangeObserver

= @ JHotDraw

=@ Figures
=8 WFiqureChangeobsery
~1z# ObservableFigure[RSI: (project 'MHotDrawS4b1' (no JRE)) implement (Figurs' (no JRE)[virtual: addFigureChangelistenear ; changed ; rem

: 1&# FigureChangedhlotification[CB: {project 'JHatDraws4h1' (no JREY) invoke ('changed' {no JRE}]
j FigureChangeListener[RSI: (project 'HotDraws4bl' {no JRE)) implement: { FigureChangeListenar' (no JREX]

fEr

| S

Sett instance name Sort Query summary

Figure 4.2: Observer for Figure changes and its (partiat}tsmsed concern model in
SOQUET

4.3. Sort-Based Concern Modeling 91

Sort search

W - f Consistent Behavior Role Superimposition
Package Ex{!\?rer [2 Concern Model 32 ;’-' | Context Passing
‘1\\, t E'MQE‘ &, Exception Propagation Target context
SR —1 G :
| ObservableCommand[RSI: (hierarchy of “Command’) implement (Cc Redirection Layer Search string (* = any string, 7 = any character)
7@ JHotDraw| \ T | Choose...
~ @ Commands Support Classes
[@ Wrapper \ Search For
@ UndaSuppon\b'- z) Type role ®) Virtual-type role
& PreExecutionC heck-VlewNorN ull[CB: hierarchy of 'Comi
&# InitCommand[CB (hierarchy of Cgmmand) invoke ("Abst Sones Shue Cantet
1# PostExecutionN otfication-UpdateTioC mdChanges[CB: (hi = |
() Workspace (® Context definition projec raw! no)
2 e i O Work (® Context definiti | (t " JHotDraw54b1' (no JRE))
ommandObserver

& NotificationDis patcherSuppor[SC: (hierarchy of 'Comt _ Choose... |
& CommandExecutedN otification[CB: (project ' JHotDrau

Cl_ LAl kel 0.

(€D] T B J T L4}
%" Search 2% i e = =0
Cgmmand
F‘ A Tk @ Command 5 L& 8 e
M_ =l e addCommandListener{CommandListener) (Role member) [
o @AAbstractCommand L @ execute()

o AlignCommand @ getDrawingEditor()

C} BringToFrontCommand @ getUndoActivity(}

'f_a ChangeAttributeCommand @ isExecutable()

I GAFigureTransferCammand @ name()
'@ GroupCommand ﬁ @ removeCommandListener(CommandListener) { Role member) ﬁ
[W p—— 4 b i b

Sort-search results view
(result for RSI with virtual role's members highlighted)

| Dialog to parameterize the (RSI) sort query|

Figure 4.3: QUET views and dialogs

tion of the Observer design above. A sort instance is desttiily a user-defined name
and an associated query. A concern model is also describadjivgn name.

The FigureChanged relation is part of parent, custom-defiakdions, like the
one grouping all the concerns and design considerationkifure elements in the

JHOTDRAW project. In this case, the project corresponds to the tegHleoncern
model.

4.3.1 SDOQUET

To support sort-based concern modeling, we have built aipgecplug-in called 6-
QUET (SOrts QUETry Tool) that is freely available for downloadhis tool allows one
to describe crosscutting relations in a system based oryiggethe system’s source
code for instances of crosscutting concern sorts. Thesgeguzan be composed and
stored to create persistent, sort-based documentatianokens in existing code. The
tool’'s main user interfaces are shown in Figure 4.3.

SOQUET assists the user in documenting and/or understandingautisg con-
cerns in a system in the following way: First, the user defmegiery for a specific
sort based on its predefined template. The template guidesstr in querying for ele-
ments that pertain to concrete sort instances and the useestict the query context,

http://swerl.tudel ft.nl/view AVR/ SoQueT

92 Chapter 4. Crosscutting Concern Sorts

for example, by limiting it to a certain inheritance hierayc

Next, the results of the query are displayed in 8wt-search resultgiew. This
view provides a number of options for navigating and ingggtng the results, like
display and organization layouts, sorting and filteringiap, links from the query
results for source code inspection, etc.

Finally, aConcern modeView allows one to organize sort instances in composite
concerns and describe them by user defined names. The conodgi is a tree that
defines a view over the system that is complementary to EdipggandardPackage
Explorer. The system’s sort instances are leaves in this tree andnatkate nodes
describe composite concerns. The context menu of an elereprésenting a sort
instance includes options to re-run the query documentiagihstance and display its
updated results. Note that queries can be associated athigari instances and not to
a composite concern. A model can exist at various levels stirattion and describe
complex concerns, system features, or whole projects.

SOQUET introduces the concept ofvartual interfaceto define and describe a role
whose definition is tangled within another type and cannatibetified by means of a
standard (Java) interface. This mechanism allows the asgeate a virtual interface
by selecting in a graphical interface those members of thii-nale type, such as
methods or fields, that are part of the role of interest.

4.3.2 Documentation of FigureChanged Observer

To build the concern model iInGRUET for the Observer solution summarized in Fig-
ure 4.2, we first create a composite concefigireChangedObservito group the
crosscutting concerns in the pattern that we like to docam&he Subject role for
figures changes is defined by a set of methods inFibare interface. The concern
is already tangled with the Figure’s core functionality aeduires the definition of

a virtual interface in 8QUET. The interface comprises the set of methods part of
the Subject role, likaddFi gur eChangelLi st ener, removeFi gur eChangeli st ener,

wi | | Change, andchanged. The seed for the source context is simply the wholedH
DRAW project, since all th&igure implementations inherit the tangled role. Each sort
instance, i.e. atomic concern, is represented by a a syotmine explaining the intent
of that concern, as well as a summary of its associated guesguare brackets. The
summary of the query consists of a two- or three-letter ifienfor the concern’s sort,
the elements used to define the source and target contegits, stmort description of
the sort’s specific relation.

Other sort instances document the consistent behavior tiffying listeners of
changes occurred in the observed figure and the Observerdedleed by the
FigureChangeListeneimterface respectively. Furthermore we can include in our
documentation the pre-change notification implemented doysistent calls to the
wi | | Change method, as well as the consistent registration or deragjistrof listeners.

4.4. Sorts in Practice 93

4.3.3 SDQUET Support for Software Evolution

The support in B8QUET for persistent documentation of crosscutting conceraset
on systematic queries over the source code, is also aimeél@hy the users with
software evolution tasks. We can initiate a software changkmading in SQUET

a concern model for the system under investigation and eXagithe queries in the
model. The tool also allows for searching a concern modeldisyglaying only those
gueries that document concerns associated to a specifieiesuch as &igure.
These queries show that, for instance, Figures are obderglments, and that any
modification in their state should be notified by a call to thanged method. There-
fore, our changes in the implementation d¥igure class, such as adding a method for
resizing Figures, need to be consistent with this concednraplement the notification
call. While not enforcing the notification call, the docunaiin in SOQUET allows
us to become aware of the notification concern and to unaetsts implementation
by examining the results of the associated query.

4.4 Sorts in Practice

In this section, we look at how sort instances occur in restesys. We describe two
cases, totaling around 40,000 non-comment lines of coda) fifferent application
domains: J¥TDRAWS is an open-source drawing application and framework, and
PETSTORE® is a sample J2EE e-business application (an on-line shog)ajeed by
SUN. These applications have been regularly used as bemk&iima(collaborative)
aspect mining studies, and detailed reports of our findiraye fbbeen discussed in the
previous chapters of this thesis.

The discussion of the first case is structured by the mairs sirconcerns en-
countered in the analyzed system. We discuss a significanbauof sort instances
to show how “typical” the proposed sorts are and how they oatpractice> The
concern model created for this case can be downloaded fresetime web-site as the
tool.

The organization of the second case is aimed at showing hdivka@vn crosscut-
ting features and mechanisms can be decomposed and capsungaoncern sorts.

Table 4.3 on page 106 shows the number of identified and dati@chesort in-
stances in the two systems.

Shttp://jhotdraw. org/, version 5.4b1

4http://java.sun.con bl ueprints/, Java PetStore v. 1.3.2.

5An additional discussion of the occurrences of concernssartJHOTDRAW, structured by the
various design patterns implementations in this systeayagable in Marin [20064a].

94 Chapter 4. Crosscutting Concern Sorts

DrawingEditor

DrawingView Tool
Drawing
UpdateStrategy CreationTool || SelectionTool
Locator Handle —— Figure Connector

PA‘

DecoratorFigure CompositeFigure ConnectionFigure

Figure 4.4: Collaborations in JHotDraw

441 JHOoTDRAW

Figure 4.4 shows the core components ofbfBRAW’s architecture and their collab-
orations. Therigure type generalizes the notion of geometrical and text figureke
application. Figure elements support core operationdikging and management of
their display box. On top of these responsibilities, Figyverticipate in collaborations
that require implementation of multiple roles, sucloaservabilityfor changesgcom-
posability, andvisitability for insertion or deletion of figures in composites. Moregver
figures and their enclosing drawings grersistentand implement specializeddad
andwr i t e) methods defined by thetorableinterface.

JHOTDRAW'S user interface contains menus to execute operationsstideng
drawings and manipulating figures. It uses a dedic@mohmandhierarchy of around
40 elements to implement these operations. Figures cabals@nipulated usingool
elements, such as a selection or copy tool. Tools accessdigia a common interface
realized byHandleelements, which act as Figure adapters.

Operations on figures notify listeners, such as drawing sj@f/changes and sup-
portundofunctionality of such changes. Below we give an overview eftlosscutting
concern sorts encountered in JFDRAW together with their concrete instances.

4.4. Sorts in Practice 95

Role superimposition We document the multiple responsibilities in thigure ele-
ments as distinct instances of tRele superimpositiosort. Roles like observing or
manipulating parts of a composite figure require the usertiaiiinterfaces since their
elements are tangled within the mdtigure interface. Concerns such as persistence
simply require to pass tHgtorableinterface as a parameter to instantiate the sort-query.
A similar case holds for drawing persistence.

Other instances dRole superimpositiodescribe listeners (i.e., observers) for Com-
mand and Tool events. These listeners typically implemet¢dicated, secondary
interface. However, th®bservableole is tangled with the definition of the core con-
cerns in the top interfaces for the Command and Tool hierasct@spectively. These
interfaces also include elements to support such roles dse fimctionality, thus in-
creasing the challenge of distinguishing between the uanoles. To document these
secondary roles, we define a virtual interface o®ET for each of them.

The Command, Tool and Handle elements participate in vadesgyn patterns,
like Command, State, and Adapter, respectively. We usersstdnces to distinctively
document each of the roles associated with these patteths three elements.

Other elements of our documentation are drawing views aitdredhat are com-
mon event and change listeners.

Consistent behavior and Contract enforcement A large number of concern in-
stances documented for dHDRAW belong to theConsistent behaviasort. Some of
these implement notification mechanisms for the various=®/as designs, like draw-
ing and figure changes, tool state changes, etc. Otherscatabg Commanchierar-
chy, such as consistently checking that a view is activereefommand execution, or
refreshing that view after execution. The same (named) camaisiinitialize the refer-
ence to the associated undo activity prior to their exeaytmd save the set of figures
to be affected by the execution of the command. Similar c#a are present in the
Tool and Handle implementations.

Several other concerns cut across the Undo activities thagistently conduct a
number of checks before execution, like checking the stat@ecaction to be undone.

Consistent behaviois also present in several constructors, for example, thbse
Command andTools, and in mouse or key handling actions, that implement aeshar
functionality by means o$upercalls. Each of these concerns crosscuts specific type
hierarchies.

Exception propagation The operations to implement persistence, like reading Fig-
ure objects from input streams, are designed to thi©@&xceptios if not success-
ful. This exception is propagated upward in the call chaitheomethod handling the
drawing-recovery command triggered by the user actiongwtatches the exception
and prints an error message. We document the mechanismQu ST through an in-
stance of th&xception propagatiosort: The query starts from the method generating
the exception of the given type, and displays recursivadgéhcallers re-throwing the

96 Chapter 4. Crosscutting Concern Sorts

A & Search Sorts X &
‘readSterable’ - 1 reference in project JHotDraw54bl

@ readStorablel) - CH.ifa.draw.util. Storablelnput E | | Line ICaII

@ readi(Storablelnput) - CH.ifa.draw.contrib. GraphicalCompositeFigure (2 matches) ead(dr

restore(String) - CH.ifa.draw.util. StandardStorageFormat

@
P
P
[read(Storablelnput) - CH.ifa.draw.standard. OffsetLocator

I

[read(Storablelnput) - CH.ifa.draw.contrib.html.ContentProducerRegistry
=

=
@
@ readi(Storablelnput) - CH.ifa.draw.contrib.htm|.HTMLTextAreaFigure
@
@ read(Storablelnput) - CH.ifa.draw.figures.FigureAttributes

e

@ read(Storablelnput) - CH.ifa.draw.figures.AttributeFigure
¥ readStorablel) - CH.ifa.draw.util. Storablelnput

[@ read(Storablelnput) - CH.ifa.draw.figures.RoundRectangleFigure

orablelnp e v figures.ImageFi
? readStorablel) - CH.ifa.draw.util. Storablelnput
read(Storablelnput) - CH.ifa.draw.contrib. TextAreaFigure
read(Storablelnput) - CH.ifa.draw.contrib.PolygonFigure

[
P
[read(Storablelnput) - CH.ifa.draw.figures. TextFigure
I

e & @ @

read(Storablelnput) - CH.ifa.draw.figures.EllipseFigure
[@ read(Storablelnput) - CH.ifa.draw.figures.RectangleFigure
I @ read(Storablelnput) - CH.ifa.draw.figures. TextFigure (2 matches)

I: @ readTacksiStarahlalnaut) - CH ifa draw samnlee nert PeaFinnre I

Figure 4.5: SoQueT view for Exception Propagation

exception (by declaring tarowsclause).

Figure 4.5 shows the results of the query in the@®ET view; The nodes for
the callers re-throwing the exception can be expanded fagisheir own callers that
propagate the same exception further in the call chain.

Redirection layer Besides the figure decorators that were previously discudsted-
DRAW contains a number of redirector instances for event hagdind action delega-
tion.

Command invokers implement thctionListenerinterface whose only method,
actionPer f or med, consistently invokes thexecut e method of the associated com-
mand. We document this action delegation for command exetas an instance of
the Redirection layer sort. Similar Redirection instancemio key and mouse lis-
teners which forward the handling of the captured eventsso@ated tools.

Finally, commands that can be undone are wrapped byrmaoableCommand
which redirects requests to the wrapped command. We doduhisiconcern using a
sort query that reports those methods that consistentiseitdrom the wrapper to the
Commandeference. A similar wrapper is used fowol elements. Redirection layers
are also used to reverse undo/redo activities, as ititoRedoActivitglass.

4.4. Sorts in Practice 97

Support classes Commands use instances of thepport classesort to implement
undo functionality. Similarly, instances of the same soet@esent in the undo support
for Tools as well as for Handles.

Other instances of this sort documéventDispatches nested classes that imple-
ment more complex notification mechanisms for various Qlessy like forAbstract-
Tool. The support class stores the association between a todisdigl of observers,
and notifies the observers of various events.

We use the query foBupport classe® document these instances, by passing as
arguments the defining types of the hierarchies for the destd the enclosing classes
respectively. For the last of our examples of concerns glibese are th&ventDis-
patcherand theTool types respectively.

4.4.2 Enterprise Applications

Several mechanisms commonly encountered in enterprigEjJ@pplication devel-
opment, such as transaction management, persistence pooent lookup are well-
known to be crosscutting and amenable to aspect-orientaticsts [Laddad, 2003b;
Colyer et al., 2005]. To elaborate on the coverage of realelibsscutting concerns by
crosscutting concersorts we discuss a number of these mechanisms as encountered
in our second case HRSTORE. The case is a reference Java web application.

Resource lookup: Service locator and caching, Business dgkge, and exception
wrapping and handling PETSTOREusesservice locatorgAlur et al., 2003] to pro-
vide single access points for resource lookup. The (siog)amplementation of the
service locator in the web tier includes a caching mechatishold references to en-
terprise bean home objects or Java Message Service (JMfirces for re-use. The
locator is used by a business delega#driinRequestBto lookup business compo-
nents. The delegate handles the distributed componentippaecoupling the busi-
ness services from their (presentation-tier) clients,iamdsponsible for catching ex-
ceptions thrown by the underlying implementation and canwg them to application
exceptions. We refer to this mechanism as exception wrgdMarin et al., 2007a].

The documentation of the caching mechanism is based on wgsautting con-
cern sorts: First, the caching support in the service lgdata secondary role and an
instance oRole superimpositianThe role elements comprise the map structure used
for caching. Second, the component lookup USessistent behaviao first check the
cache for the searched component, and then insert the kieg tathe if not present.

The exception wrapping mechanisms, present in both thédoead the business
delegate, are instances@bnsistent behavigrery common in enterprise applications.
The concern implementation consists of invoking the caiestr of a specific excep-
tion type to wrap a caught exception. The delegate classimisiementsConsistent
behaviorfor logging the caught (and wrapped) exceptions.

98 Chapter 4. Crosscutting Concern Sorts

Persistence strategy PETSTORE allows online purchases from a list of items whose
details are stored in an external catalog that is accesdgdarrcreating these lists.
The application uses Data Access Objects (DAOSs) to readatedogy and keep the
data access mechanism hidden.

Client access to the catalog is done through a statelessisdssain CatalogEJB,
which gets the datdtém, Product or Category from its wrapped DAO objectGat-
alogDAO): The data-access methods of the bean forward their ineosato the busi-
ness methods of the DAO object. The DAO object manages pamsis of the $erial-
izable catalog entries by accessing the Enterprise Informaty@te®n (EIS).

The serialization of the catalog entries is an instancRaé superimpositianTo
further document the wrapping of the DAO object in the stdglsession bean, we
need the query for th®edirection layersort. Both the DAO and the session bean
elements implement exception wrapping, by catching spagibie of exception thrown
by their business methods, and re-throwing a different gxoe type; these concerns
are instances of théonsistent behaviosort.

The DAO objects managing access to the persistent stordgeiteseveral other
instances oConsistent behaviortthe business methods consistently require a (JDBC)
connection before executing the specific query, and aftecwdion, the connection is
closed using a specific method invocation.

Similar mechanisms and concerns are present in other J2iSEeace examples
described in literature, such as the use of Hibefhfiie persistence by Colyer et al.
[2005].

Transaction management Programmatic transaction management is often acknowl-
edged as crosscutting due to the consistent calls to Jamadaton API (JTA) for de-
marcation of the transaction, which has to execute comnipletenot at all [Laddad,
2003b]. The transaction mechanism iBTSTORE is similar to the one discussed by
[Laddad, 2003b]: by design, the application’s web-tiergloet benefit from automatic
(declarative) transaction management and hence implerntg¢htough JTA calls (e.qg.,
the TemplateServietervlet).

Transaction control implies several instance€ohsistent behavioffirst, a lookup
action provides &JserTransactiorobject that can be used to begin the transaction by
invoking the object'©regi n method. Next, the execution of the operation is followed
by a commit if no exception occurred, or by a rollback othemviThese actions invoke
specialized methods on the transaction object.

PETSTORE also uses instances Gbnsistent behavidior (simple) exception log-
ging. Laddad’s example exhibits an instance of the sameteavtap the exception
when the lookup operation for the transaction object fails.

The ServletTemplatelass, which implements a templating service for composing
multiple views in one page, dispatches specific requests tappropriate template

Shibernate.org

4.5. Sorts in Design Patterns 99

component by passing itequest andr esponse parameters as arguments. We docu-
ment this mechanism as an instance ofExpose contexgort.

Order processing center: Transition delegates Transition delegates are part of an
asynchronous messaging system implemented by the apphidat processing cus-
tomer orders. After an order is received, a number of awiéxecute specific opera-
tions in a predefined sequence; these include sending eimaistomers to acknowl-
edge orders, sending order documents to suppliers, oringadatiers based on invoice
information. At the end of its execution, an activity asyraiously passes a message
to the next activity by using a dedicated transition delegdthe delegate knows the
successive activity in the workflow to be notified.

The activities are implemented as message-driven bearnsgger the notification
by first setting-up their related transition delegate arehtinvoking the delegate’s
doTransi ti on method at the end of their work. This notification occurs asstrtt
concern from the main logic of the activity sending it, anti¢ewe document it as a
sort instance, in this case @ensistent behavior

4.5 Sorts in Design Patterns

Crosscuttingness in design patterns has been commonlyatddged and discussed
by various authors, such as Hannemann and Kiczales [2002catmpared Java and
AspectJ implementations for the design patterns desclilye@amma et al. [1994].
The report on this comparison shows that AspectJ can impnoe@ularity for the
implementation of a number of patterns, which we summarnzeble 4.2. The sum-
marized patterns are also covered in this section.

Our analysis of crosscuttingness in design patterns iigagsst the use of sorts for
describing each pattern as a composition of those elemendtsedations that make
the pattern’s structure crosscutting, and hence make i mhffrcult to understand and
recognize in source code. We show that instances of the sanoem sorts occur in
various patterns. This motivates a clear distinction betwgatterns and concern sorts,
where the latter ones describe idiomatic implementatidroncerns at a consistent
level of granularity that can be shared, among others, iy et

Furthermore, we investigate in this section how new somsbeaadded to our list,
provided that they describe a common implementation idiimch is distinct from
those of the other sorts in the list. While most of the conceodeils for the discussed
patterns can be described by compositions of the sorts showable 4.1, a few of
them point us to new sorts that we shall discuss next.

100 Chapter 4. Crosscutting Concern Sorts
Design pat- | Composition of sort instances
tern
Adapter Adapter = RSI(contextEl em Adaptee) + RL(Adapter, adapteeReference)
State State = RSI(contextElem Context) +
CB(cont ext El entt at eChanger, Context.changeState(State)) +
RL(Cont ext, stateReference));
Decorator Decorator = RL(Decorator, conponentReference);
Proxy Proxy = RL(Proxy, fiel dRefReal Subject);
Protecti on proxies:
docunent the consistent behavior of checking credentials:
CB(cont ext El em checkAccessPernission());
Visitor Visitor = RSI(contextEl em VisitableEl enent);
Speci fic inpl enentations:
Visitor = AV(Visitabl eEl enent);
Command | Command = RSI (context El enl, Receiver) +
RSI (context El en2, Invoker) +
| L(1 nvoker, commandRef erence);
Particul ar inplenmentations using Cormand for nethod objects:
AV(Command) ;
Composite | Conposite = RSI(contextEl em Conposite)
RSI (context El en2, Leaf)) - not crosscutting
Iterator Iterator = RSI(contextEl em Aggregate);
Flyweight Fl ywei ght = RSI(contextEl enl, Flyweight) +
CB(context El en2, Flyweight Factory. get Fl ywei ght));
Memento Memento = RSI (contextEl eml, Originator) +
CB(careTaker Cont ext El enl, Origi nator. createMenento));
Strategy Strategy = RSI(contextEl em Context);
sonetimes, we could al so have:
RSI (context El enll, Strategy);
Mediator Medi ator = RSl (context El em Col | eague) +
CB(contextEl em notifyMediator));
Chain of Chai nOf Responsi bil ity = RSI(contextEl eml, Handler) +
Responsibility CB(Handl er+, Handl er.next()));
Prototype Prototype = RSI(contextEl em Prototype);
In sonme | anguages, |ike C++, copy constructors are required:
DE(cont ext O oneabl e(hj s,
O oneabl eType. new(const Cl oneabl eType&)) ;
A sinilar instance can be used for requiring inplenentation
of the hject.clone nethod in Java
Singleton Singleton = RSI (contextEl enml, Singleton) +
DE(cont ext El enSi ngl eton, private Singleton.new..)) +
CB(contextEl en2, Singleton.instance());
Observer (bserver = RSI(contextEl eml, Cbserver) + RSI(contextElen2, Subject) +

CB(contextEl enB, notify)+
CB(contextEl eml, attachChserver)+
CB(context El enl, dettachCbserver);

Table 4.2: Design patterns as composition of sort-instance

4.5. Sorts in Design Patterns 101

4.5.1 Interfacing Commands andAdding variability to Commands
and Visitors

One of the patterns that points to new concern sorts i€ttemandattern. A number
of atomic concerns in this design pattern, can be documeadeadstances oRole
Superimpositionlike the roles to define the participants in the pattern. seheles
include Invokers of the command’s action and Receivers thal mut the request,
although, for particular implementations, these roleshhigpt be superimposed, nor
declare specific members.

Another concern, however, occurs in common implementaidcommand invok-
ers, like (Java Swing) graphical user interface elemertig;iwstore a reference to their
associated command and delegate requests to this referBmese invokers “mirror”
the state of the command object through their own state xammele, a button element
in the user interface that is enabled only if its correspogdiommand can be executed
with the current configuration of the application. This paufar wrapping and mir-
roring of the command’s state shows a high (logical) cogpbetween the graphical
button element and the command object, which is due to desigsiderations.

The relation described above resemblesReglirection layersort by having the
graphical element passing requests to its command; hoyéneediscussed concern
exhibits a different general intent than thatRédirection layer which is aimed at
enhancing functionality dynamically. In this case, theoker turns into a visual rep-
resentation of the command’s state, in addition to dealiitlg @oncerns like graphical
display or user action handling. To describe the relatiamvéen invoker and com-
mand, we introduce a new sort, namely theerfacing layersort. The sort’s query
reports all references from the interfacing layer, sucthascommand invoker, to the
object to which it is coupled, such as the command object:

IL (Typet, Memberm) := { (m/,t’) |
m € Member A t declares’ A mis_of typet’ A nt referst’ }

Another interesting set of implementations of Commandsjiqaarly those that
do not require a persistent state, show a new kind of con¢katcannot be mapped
onto any sort in our initial listAdding Variabilitydescribes a contract between client-
callers and server-callees that make use of method-olgsassubstitute for passing
references to methods. Instances of the sort implement sistent mechanism of
building and passing method-objects as method argumengghdd-objects are (typ-
ically) objects of a type declaring one method. The methogieeting arguments of
this type only need and invoke the specific method for thequhebject. Languages
like Java use this mechanism, which is also referredl@suresor functorsor function
objects to achieve a behavior similar to the use of callback fumstiiBloch, 2001].

Instances of this sort occur in other contexts as weélbmponentlements (like
Swing objects), for example, need to execute in a specifeathri.e. the event dis-
patching thread, to avoid deadlocks during painting thelgeal components. Two

102 Chapter 4. Crosscutting Concern Sorts

Java dedicated methodsjvokelLat er andi nvokeAnd\Wi t, ensure that these com-
ponents execute in the special thread. The two methods eapergument of type
Runnablewhose (only)run method contains the code accessing functionality of the
graphical (Swing) component to be executed. Other exangifl@sstances are dis-
cussed in Marin [2006a] as well as in Laddad [2003b]. Thestathe proposes an
worker objectsolution in AspectJ to address asynchronous method erecutiautho-
rization using Java Authentication and Authorization $8\(JAAS) API.

In the list of design patterns in Table 4.1, we can recogmzgances of this sort
among implementations of thésitor pattern, namely for th¥isitableparticipants.

4.5.2 Design enforcement in Singleton and Prototype

One crosscutting element that occurs in typical implentemnta of thePrototypepat-
tern is due to the super-imposition of tReototyperole. The role declares a specific
clonemethod that enables objects to copy themselves. In someadgeg, like C++,
the Prototype must declare a copy constructor for clofing.

In Java, the cloning is realized through ttlenemethod in theObjectclass, which
is a superclass for all the other classes. The class ovagritle default| one method
has to implement th€loneablenterface to indicate to thelonemethod that it is legal
to make copies of the fields of the Cloneable class.

This sort ofDesign enforcemeratlso occurs irSingletonclasses that have special
requirements, most notably, they have to declare the agststr asprivate for not
allowing constructor calls from outside the class.

The Design enforcemerstort discussed above targets declaration of type members
required for compliance with design considerations. Itdances can be documented
using a query that searches for and emphasizes those dieclaraf interest, such as
private or copy constructors. Note that neither Java noredhcan speciffpesign
enforcemenin other way than by comments.

More examples of instances of this sort include the desigidafa)beanobjects
that are required to declare no-arguments constructors.

In addition to theDesign enforcemerntoncern, the access to singletons implies
an instance ofConsistent behaviorsingletons define an access method to the sole
instance of the singleton class, which has to be used bytsliastead of calling the
constructor.

4.5.3 Other Patterns

The discussion of the rest of the patterns is aimed at irgegtstig how our sorts are

able to capture the crosscutting relations that occur isetvarious designs.
Implementations of thédapterpattern could use either multiple roles or object

composition to adapt a class to an interface expected bytslién the first case, the

A copy constructor receives as (single) parameter a constfarence to the object to be cloned.

4.5. Sorts in Design Patterns 103

Adapteeaole is super-imposed to the class implementing the Addiptetionality. The
Adapter class implements both a Target interface and (dg}e¢he Adaptee, which is
an instance of th&ole superimpositiosort.

The solution relying on object composition would typicallge delegation from
the Adapter to a stored reference of the Adaptee object. i§has instance of the
Redirection layesort.

The Statepattern comprises a number of crosscutting elements:Cldmgextrole
is super-imposed and has specific members for maintainiefeaence to the object
defining the current state; second, the notification of ckarg the current state to
be stored in the Context object is an instance of @lmmsistent behaviosort. The
third element is an instance of tiedirection layer the Context object forwards the
received calls to the methods of the object storing the atistate.

The crosscuttingness occurring in the implementation eftacorator pattern is
described by thé&edirection layersort. The methods in the decorator class consis-
tently redirect their calls to dedicated methods in the dsteal class via a reference
stored in the decorator object. A simple decorator is a gipgample of &Redirec-
tion layer instance, and also of a pattern mapping into a single sortteMomplex
implementations of the pattern, however, require multjolgs, and hence a composite
concern model to document them.

The crosscutting element of tfRroxy pattern resides in the consistent forwarding
of the calls to the reference of the real subject class, dtoyehe Proxy object. Another
crosscutting concern occursprotection proxiegs an instance @onsistent behavior
this consists of a method call that checks the access peomssisefore executing the
forwarding operation. Some implementations also condiisteheck if the proxy’s
subject has been initialized. This check is part of the miéfbpaccessing the reference
to the subject, which is invoked by the actions in the proxat torward their calls.

The Visitor and Compositepatterns are often used in combination [Gamma et al.,
1994; Hannemann and Kiczales, 2002]. Both patterns defies tbat in various im-
plementations are super-imposed, like Wisitable and Compositeroles. The roles,
which we document by sort instances, typically define rpleesfic members.

Certain implementations idioms make use of method objec#ider the methods
of the visitor to access thdsitableobject, and hence itccept method. Such imple-
mentations exhibit instances of tield variability sort, as discussed in the previous
sections.

A crosscutting element occurring in the implementationhaf Iterator pattern is
the super-imposeflggregataole. The role defines the eat el t er at or () method to
create an iterator object for traversing the elements oafjggegate (structure).

The concerns documented for thiyweightpattern comprise Role superimposi-
tioninstance for thé&lyweightrole, and aConsistent behavidior obtaining references
to a (new) flyweight object. This behavior consists of callthe accessor method in
the factory class for the flyweight instances, instead afnafiting to build new fly-
weight objects. This behavior is similar to accessiggletonobjects via a dedicated
method, which we also documented@asnsistent behavior

104 Chapter 4. Crosscutting Concern Sorts

The refactoring oMement@attern to AspectJ discussed by Hannemann and Kicza-
les [2002] uses the introduction mechanism for superinmgpieOriginator role. In
addition to this, we document@onsistent behavianstance, namely acquiring a me-
mento object before performing the operation that charfyestate.

The Strategypattern defines two roles, namely the Strategy object an@Stnat-
egy)Context. Most commonly, the Context is a super-imposésl raintaining a
reference to the Strategy object (and defining methods tesacthat reference). In
some cases, the Context object delegates the requests §aiients to the Strategy
reference.

TheMediatorpattern implies a super-imposed roféofleagué to store and access
the reference to th&lediator class. Moreover, each change in the colleague class
results in a consistent notification of the mediator for domating the other colleague-
classes. In some implementations, khediatorrole could also be super-imposed.

The participation in the responsibility chain requiresithplementation of a Han-
dler role. This role defines the method for handling spec#gquests and the member
to store the reference to the next Handler in the chain. Timelleemethods check
the request and consistently pass it to the next handlerirchiin, according to the
Consistent behaviatoncern implemented by all handlers.

The Observerpattern is documented as a compositiorCohsistent behavioand
Role superimpositioinstances. In addition to the consistent behavior of niiify
changes in the Subject’s state, we also document the mechaifor registration and
deregistration of observers.

4.6 Discussion

4.6.1 Coverage of the Crosscutting Concerns by Sorts

The list of sorts is open-ended, i.e. new sorts can be addedftdlowing the rules
of the proposed catalog for formalizing concerns, if thelations cannot be covered
by the existing sorts. The present catalog covers all coiscivat we are aware of in
real-life systems, like PTSTORE and JFOTDRAW, as discussed in this chapter. The
analysis carried out and the examples accompanying theilésc of sorts also show
that these sorts cover well many of the crosscutting cosadescribed in the literature
on aspect-oriented programming.

It is important to notice that the concerns described byssaré meaningful on
their own, although they can also occur in more complex caitipos, like a trans-
action management mechanism or an Observer design. Inctaoinon refactoring
solutions typically address concern sorts, like introdaurcdf roles, or advice for con-
sistent behavior, which are only presented in a larger gbiilea specific feature or
design [Laddad, 2003b; Hannemann and Kiczales, 2002]. HEssification in sorts
helps us to describe those crosscutting concerns at a tamtggsanularity level.

4.6. Discussion 105

Crosscutting concerns as relations The sort-based approach to crosscutting con-
cerns proposed in this chapter looks at such concerns agimnelations between two
sets of elements (i.e., the source and the target contesppectvely). Each sort is
described by a distinctive relation captured by the sopécdic query. While the rela-
tion is common to all instances of the sort, the definitionhaf tontext can vary from
instance to instance: for exampld,@ method (the target context) can be invoked by,
and hence be crosscutting for, all the methods in a systems(ibrce context), while

a notification action (target) is invoked by the set of metholdanging the state of an
Observable object (source). Each of these instances @fdhsistent behaviaort has
particular contexts.

The definition of contexts for describing a concern is a nefetopic on its own,
similar to the definition opointcutsin aspect-oriented languages. Current aspect lan-
guages cover definitions based on naming conventions or stnaetural relations
(e.q., type hierarchies), but do not support specificaticanantext like “all elements
changing the state of a Figure object"oQUET allows for a number of context defi-
nitions, such as class, project, package, or hierarchygeéisaw for simple collections
of elements. Although the last option is very flexible, petimg any selection of
elements, generally, a concise definition based on shamabgies of the context’s
elements is more relevant for capturing the intent of thesratting concern.

Tool usage SOQUET can typically be used from two perspectives, namely, (1) as
a tool for consistentlgreatingcrosscutting concern documentation for a system, and
(2) as a tool forexploringquery-based crosscutting concern documentation that was
defined earlier for the system under investigation. In th& Scenario, the user is
assumed to be acquainted with the concerns to be documénteckample is a devel-
oper that wants to explicitly document some relations thatodherwise “hidden” by

the object-based decomposition of a given system.

In the second scenario, the user explores a given systenmabintp (pre-existing)
sort-based documentation of application into(RET in order to locate and better
understand certain crosscutting concerns in the implestient This documentation
highlights policies and contracts in the code that are egleYor software evolution
tasks and migration towards aspect solutions.

The main challenges with describing and documenting cutissg concerns stem
from to the flexibility of the tool for defining contexts, assdussed above. (QUET
could be improved by supporting set theoretic operationsh @s the union of type
hierarchies. In addition, defining contexts using patteataming on names (e.g., all
set* methods) is not implemented at the moment.

Adding new sort queries in the current version of the toolaisly complex, as
it relies on the “extension points” mechanism in Eclipse. &We exploring how we
can prototype our queries using tools that support morets@urce code queries, as
discussed in the next section. However, this support idistited at the moment.

106 Chapter 4. Crosscutting Concern Sorts

| Sort | JHotDraw | PetStore |
(Method) Consistent behavior 34 15
Contract enforcement 5 1
Redirection layer 15 2
Expose contexiContext passing 1 1
Role superimposition 32 2
Support classes for role superimposition 5 0
Exception propagatiofDeclarethrowsclause) 11 5
TOTAL 103 26

Table 4.3: Number of sort instances.

4.6.2 Using Sorts in Aspect Mining and Refactoring

In the next chapter we shall see how the crosscutting corscets are used to define a
common framework for aspect mining. The framework usesdahiespecific idioms as
a starting point for the design of aspect mining techniquresas a reference for defin-
ing mining results representation that can ensure consistanparison of techniques
and results. The definition and description of sorts allog/$ouconducidiom-driven
aspect miningand to engineer techniques that target specific idioms andehsort
instances.

Sort instances also allow us to group elements particigatinelevant crosscutting
relations, which are not explicit in source code. In thigeed, the concern sorts are
modular units comparable with aspects. Sorts are mainlgaiat supporting cross-
cutting concern comprehension by describing atomic el¢snema standard, consistent
way. However, sorts can be associated with template refaggand sort queries can
help instantiate such refactorings by selecting thoserprogelements that participate
in a crosscutting implementation. This can help in refaotpconcerns to aspect solu-
tions, as we shall discuss in Chapter 6.

The number of sort instances Table 4.3 shows the number of identified and doc-
umented sort instances for each of the two analyzed applisat One observation
about the data shown in the table regards the number of stanices in JETDRAW
case compared to theeEPSTORE one. A reason for this difference is the nature of the
two applications: BTSTORE s a J2EE application and a number of (potential) cross-
cutting concerns can be dealt with by the container, sucheakhtive transaction
management. Therefore, these concerns do not occur ina¥) (Source code.
Another observation is that some sorts are (typically) ntan@mon than others;
examples includ€onsistent behavioand Role superimpositianThis suggests that
aspect language mechanisms aimed at refactoring instafitese sorts could address
most of the encountered crosscuttingness. However, apsly mentioned, a major
difficulty in dealing with these concerns resides in theigbtb define contexts for
the sorts relations. This is similar to the challenge of hg\a flexible and expressive

4.7. Related Work 107

pointcut definition in an aspect-oriented language, asuidsed earlier.

4.7 Related Work

Our approach differs from related work by identifying tygliemplementation idioms

of crosscutting concerns which we formalize as concerrssditte sorts define a sys-
tem to consistently describe crosscutting implementatfoconcerns, which helps us
to recognize and document such concerns in source codénelrure, the approach
aims at emphasizing relations rather than program elenasrdsosscutting, which, we
believe, is a more intuitive way of describing and underditagn concerns.

A number of tools support source code querying and exptordbr concern un-
derstanding. FEAT organizes program elements that impiemeoncern irconcern
graphs[Robillard and Murphy, 2002]. The user can add elements tonaexm graph
by investigating the incoming and outgoing relations to fiach an element that is part
of the concern implementation. The elements in a concephgaee classes, methods
or fields connected byeall, read, write, check, create, decla,superclasselation.

Although the tool allows one to add relations to the graplcdesg a concern,
the focus is on the elements participating in the implentetaof the concern. The
navigation for understanding a concern and incrementalilgling its graph represen-
tation is from a root (class) element to other elements inréfetion chain. That is,
a concern is described by its elements, and an element iectathto other elements
via relations. Unlike FEAT, the sorts-based approach uslasons as the main repre-
sentation of a concern and builds concern models based sa ta&tions. Moreover,
FEAT has no built-in support for describing typical crodsicig relations, focusing on
code browsing and organization instead.

The Concern Manipulation Environment (CME) [Harrison et2004] also allows
for code querying, and, furthermore, for restricting thergudomain similar to context
definitions in ®QUET. The CME concern model is persistent and the queries, writte
in its own (pattern-matching) language Panther [Tarr et28104], can be saved over
work sessions. However, neither CME nor FEAT allow for compleeries like the
ones we used to describe redirections, (exception) projpagaor support classes.

We analyzed the possibility to use CME’s query language andhternal code
representation for implementing our sort queries. As yet,dyntax of the language
is not completely defined and is not fully implemented. Infai communication with
CME developers revealed that they see queries as availaBeQuET, as a desired
extension for CME.

Alike CME, JQuery is a code browser developed as an Eclipggrp[danzen and
\older, 2003]. JQuery uses a logic query language (TyRuBai)asitto Prolog [Der-
ansartetal., 1996]. The TyRuBa predicates supported by y@aeer all relationships
defined by FEAT and include additional ones, such as chedkiagype of an argu-
ment. It also supports additional source relations witlpeesto FEAT and Panther,
such as thrown exceptions.

108 Chapter 4. Crosscutting Concern Sorts

Despite being more flexible than CME for querying code, JQuegs not allow
to save and then re-load a concern model of choice for a gikgagi. The tool is also
not suitable for large systems due to performance issues.

Such performance improvements have motivated the work orQoelst, a soft-
ware query tool using Datalog as a query language, implezdeott top of a relational
database system [Hajiyev et al., 2006]. CodeQuest has he@mived in Semm-
leCodé, a tool that we plan to experiment with for expressing thatiehs of the
concern sorts presented in this chapter.

Sextant is another tool similar to JQuery, which allows girey different kinds of
system artifacts [Eichberg et al., 2005]. The tool represtrese artifacts in XML and
uses the XQuery language to query this representation. Our focus so far &as bn
describing crosscutting relations in source code.

Other approaches to documentation of source code inahtelesional viewswhich
are queries based on logic meta-programming [Mens et &3,2D06]. The work on
intensional views also identifies and abstracts a numbédive) ise-cases, called “us-
age patterns”, for which definition of views could be helgfuprogram development
and maintenance. These “patterns” are rather general asudéfining views to verify
the use of coding conventions or the coverage of the uni.tddy comparison with
the concern sort, they do not denote categories of (cragsgutoncerns or typical
idiomatic implementations of concerns. Moreover, the glarity of the views is not
defined and lies with the user.

Concern sorts can also be conceptually (and by the level tfeaiti®n) compared
to the Java micro patterns discussed by Gil and Maman [20D5¢. latter ones aim
at capturing traces of design, whereas our sorts aim at@agtwaces of crosscutting
concerns. Giland Maman show how many systems are made ugiiofrticro patterns:
we show how the crosscutting concerns known to exist in, ldoTDRAW can be
composed from our catalog of sorts.

4.8 Conclusions

This chapter proposes a model for addressing crosscuttimgionality in source code
based on crosscutting concern sorts. Such a model can prootsistency and coher-
ence for referring to, and describing crosscutting corszefvs a result, sorts are useful
in program comprehension and areas like aspect mining dactoeing.

We have described crosscutting concern sorts as relatengbn sets of program
elements and formalized these relations as queries ovecesoepresentations. We
have discussed a selection of sorts in detail and presamte8bQUET tool for docu-
menting sort instances using queries. Last but not leashave used sorts to analyze
crosscutting relations present in systems from two diffeag@plication domains.

8http://sem e. con
Swwwv. wa. or g/ TR/ xquer y

Chapter 5

A Framework for Evaluating and Combining
Aspect Mining Techniques

The increasing number of aspect mining techniques proposkgerature calls for a
methodological way of comparing and combining them in ordexsisess, and improve
on, their quality. This chapter addresses this challengproposing a common frame-
work based on crosscutting concern sorts which allows for sbesi assessment, com-
parison and combination of aspect mining techniques. Tammdémwork identifies a set
of requirements that ensure homogeneity in formulatingniiv@ng goals, presenting
the results and evaluating their quality.

We demonstrate feasibility of the approach by retrofittingeaisting aspect mining
technique to the framework, and by using it to design and imeig two new mining
techniques. We apply the three techniques to a known aspeitgiienchmark and
show how they can be consistently assessed and combinecteasa the quality of
the results. Furthermore, we position a range of existingeaspnining approaches
into our framework, allowing software engineers to interpratiaZompare the results
of these approaches.

5.1 Introduction

Aspect mining research aims at providing techniques anid that support the iden-
tification of crosscutting concerns in existing code. Suchcerns are of interest as
they are particularly difficult to manage and understand tdutheir specific lack of
modularization and locality. The aspect mining resultsvigte us with first insights
into policies and designs whose implementation is croisgtand hence challenging
for software evolution tasks that have to ensure complianttethese policies.

With a growing number and variety of mining techniques psgubin literature, it
becomes increasingly important to aim at consistency antpetibility between these
techniques and their results. Such properties would alboa 6ystematic evaluation of
the techniques, an assessment of results and the combiatechniques to improve

109

110Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

quality.

However, most mining techniques rely on non-uniform deximms of the cross-
cutting concerns they aim to identify and of the steps to kertdo map their results
onto potentially associated concerns. In some cases, foeipkgon of the discovered
concerns is specific to the context into which they were entmad, and explained
through other, better known, examples of crosscutting tfianality (e.g., CORBA
Portable Interceptotsare described as “observer style entities” [Zhang and Jagb
2003]). Quite often, the mining techniques focus on gengyimptoms of crosscut-
tingness, like tangling or scattering, instead of exphgjtspecific characteristics of the
particular types of concerns they aim to identify. In aduditithere is little consistency
in describing results and concerns, which makes it hard topaose or combine the
results.

Previous experiments aimed at comparing and combiningcaspaing tech-
niques [Ceccato et al., 2006] show that a significant chadlersgs from the lack of a
sound definition of crosscutting concerns. This leads tddtha@wving (hypothetical but
likely) evaluation scenario: One technique describesgsilts through the participants
in an implementation of the Observer pattern that are cutsscthe super-imposed
roles of Subject and Observer [Gamma et al., 1994]. A seamithique reports results
related to the same instance of the pattern, but identifienigh the elements imple-
menting the crosscutting mechanism of the observers-caiibn (that is, the methods
changing the state of the Subject object consistently iexaooRotification method). Hu-
man analyzers interpret the results and agree on ad-hoergmnce rules of them: the
Observer pattern instance is counted as a common findingl lmesthe valid results
from both techniques, and the argument that the pattern isliskwown example of
crosscuttingness. Each technique can further explain heviniplementation of the
Observer is related to its own identification mechanism.

The problems with the sketched scenario are apparent: tivergence relies on an
inconsistent level of granularity for the reported findings the Observer implementa-
tion comprises distinct (atomic) crosscutting conceras tie techniques identify. The
results require a tedious manual correlation effort as thepot (always) overlap di-
rectly but are related by the design decisions they implénMareover, the approach
requires that, despite their inconsistency, detailedrgggms of results and associated
concerns are present. In practice, however, such deseripdire often not available.

To address these issues, we identify a set of requirementsyftematic aspect
mining aimed at ensuring consistency and compatibilitydeniification of crosscut-
ting concerns and description of the mining results. Thegairements form the basis
of a common framework for aspect mining. They comprise arljletefinedsearch-
goalfor the mining technique, descriptions of the rules for magphe mining results
onto the description of the concerns targeted by the tedenignd objective metrics
for assessment.

Contributions of this chapter can be summarized as follows:

1 Object Management Group - CORBA v3.0.3 specification

5.2. A Common Framework for Aspect Mining 111

e We present a common framework that defines a systematic agpto aspect
mining (Section 5.2);

¢ We introduce two new aspect mining techniques and show hesethnd a pre-
viously proposed technique conform to the proposed framiey®ection 5.3);

e We provide tool support for the techniques and their contimnaSection 5.5
and 5.4).

e We apply the three techniques to a common benchmark, bathdodlly and in
combination, and assess the results and the approacho(8ebtb);

e We present a survey of existing aspect mining techniqueslasedss their com-
pliance with the proposed framework (Section 5.7).

The next section introduces the proposed framework andeitsents, such as the
metrics to assess aspect mining techniques. Then, we peesenof three techniques
that consists of a previous contribution and two new tealesg and show how the
framework is used to retrofit and, respectively, design etspening techniques. In
Section 5.4, we discuss a number of combinations of the mitechniques aimed
at improving the quality of their individual results. Theotsupport for each of the
three techniques as well as for their combination is disetigs Section 5.5. We use
the tool to conduct idiom-driven aspect mining on a commamchenark application
and report on the setup and results of our case study in 8€gf0 Section 5.8 gives
an overview of the existing aspect mining techniques anclidees their conformance
with the framework, followed by a discussion of the resulid éessons learned. The
final sections of the chapter present related work, drawlasians and discuss future
work.

5.2 A Common Framework for Aspect Mining

The focus of this work is on systematic aspect mininggenerativetechniques: ap-
proaches that identify program elements which particip@at@ crosscutting concern
based on source code characteristics, without using dokmawvledge about the sys-
tem that is analyzed. The identified elements are known ascutting concerseeds

Most generative aspect mining techniques contain an adtostap in the analysis.
The results of this step aoandidate-seed®r candidate} results which are proposed
as seeds by the tool, but still require human inspection afidation. Rejected candi-
dates ar@on-seed¢false positives).

To ensure consistent and systematic aspect mining, weifilenbumber of re-
guirements for aspect mining techniques. One of these nemgents is to define the
targeted categories of crosscutting concerns; that iss¢hech-goabf the technique.
We propose to define search-goals using the classificatioroegcutting concerns in
sorts defined in Chapter 4.

112Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

| Sort

| Intent

| Object-oriented Idiom | Relation

[Instances |

Consistent Be
havior

tured by a natural pointcut

-Implement consistent beMethod calls to the dg-Set of method
havior as a controlled stegired functionality
in the execution of a number
of methods that can be cap-

invoke a spe
cific action

sLog exception throwt
ing events in a sys-
tem; Wrap/Translate
business service ex-
ceptions [Marin et al|,
2007a); Notify and
register listeners; Authg
rization;

Redirection
Layer

object

Define an interfacing layeiDeclare
to an object (add functioniayer
ality or change the contextjor/adapter),
and forward the calls to themethods in this layer tppair methods in2002];
forward the calls

a routingSet of methodsDecorator
(wrapper/decorain class for-

and havevard calls to

a receiver type

(pattern
Adapter (pattern) [Han
nemann and Kiczales
Local calls
redirection to remot
instances (RMI) [Soare
et al., 2002];

11

(2}

position

Role superimtimplement a specific se

Cinterface
ondary role or responsibilitytion, or direct implementimplement

tation of methods thatsecondary role
could be abstracted into

implementg-Set of typesg

Roles specific to de
sign patterns: Observer,
Command, Visitor, etc|;
Persistence [Marin et al.,

ing)

Wormhole [Laddad, 2003b])

mation to each method in the
call stack to that callee (aka

an interface definition 2007a];
Expose contextExpose the caller's contexAdd arguments to eagtMethod (de-| Transaction manage-
(Context pass-to a callee by passing informethod in the call stack clares and) ment, Authorizatior

passegarame
ter as argumer
(to callee)

[Laddad, 2003b].
t

Table 5.1: Sorts of crosscuttingness.

5.2. A Common Framework for Aspect Mining 113

5.2.1 Crosscutting Concern Sorts

An important limitation of aspect mining comes from the laxfla clear definition of
crosscutting concerns. For example, Filman et al. [200f}r rerosscutting concerns
as “systematic behavior” whose implementation is “scattahroughout the rest of
an implementation”, while Kiczales et al. [1997] defineslsweoncerns as “proper-
ties” that “cannot be cleanly encapsulated in a generafizededure”. Unfortunately,
these definitions do not allow to clearly specify the seajohls of a technique and
the mapping between these goals and the actual resultsoMdiclear definition, as-
pect mining techniques have to resort to ad-hoc descriptwdtheir goals and output
and sometimes even omit a detailed specification of theirrfgsdand the associated
crosscuttingness.

A first step towards overcoming this limitation is a consistystem for addressing
and describing crosscutting concerns. To this end, we pepte use ofrosscutting
concerns sortsa classification system for crosscutting functionalitgganted in the
previous chapter.

Crosscutting concern sorts are categoriestomiccrosscutting concerns (i.e., con-
cerns that cannot be naturally decomposed into smallermgatningful concerns).
They are characterized by a number of properties commori tbeainstances of the
sort, such as a generic description of the sort (i.e., théssotent), and a specific im-
plementation idiom of the sort's instances in a non-aspédented language (i.e., the
sort's specifisymptom

Table 5.1 shows a selection of four crosscutting concens.sdhey are described
by their defining properties and by a number of concrete mt&s. For example, the
roles super-imposed to participants in a typical impleragom of the Observer pattern
(the concrete Subject and the Observer roles) are instahtesRole superimposition
sort. Similarly, the mechanism of consistently notifying<@rver objects of changes
in the Subject’s state by invoking a notification-methodrisrestance of th€onsistent
behaviorsort.

The classification of crosscutting concerns based on soestgres a number of im-
portant properties for consistent aspect mining: firstattoenicity of the sorts ensures
a consistent granularity level for the mining results; sebsorts describe the relation
between concrete instances and the associated crosgduttictionality; third, sorts
provide a common language for referring to typical crodsogmess, and hence for
defining the search-goals of an aspect mining technique.

5.2.2 Defining the Common Framework

We propose a common framewaork for aspect mining that defisgstamatic approach
to identify crosscutting concerns. The framework is aimeersuring consistency of
the mining process and compatibility of results. This cotiigilty would further allow

for assessment and combination of mining techniques andtsesThe framework
insists on the following four steps to be taken by the dewvalay an aspect mining

114Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

technique:

Step 1. Define the search-goal of the mining technique.An aspect mining tech-
nique has to define its search-goal in terms of kinds of cuaseg concerns that the
technique aims to identify. Thus, we use the classificatystesn based on crosscutting
concern sorts to define search-goals.

For example, we can define the search goal of our aspect mieaigiques as
instances of th€onsistent behaviosort. The underlying relation of the sort consists
of method invocations, as shown at the left of Figure 5.1. Jame figure (in the
middle) also shows two techniques, based on identificatieeattered calls and clone
detection respectively, targeting concerns of this sartya discuss next.

Step 2. Describe the representation of the mining results. An aspect mining tech-
nique has to define and describe the format for presentingethéts of the automatic
mining process (i.e., the source code elements that wiBtitote the candidate-seeds).
Such a common format would typically resemble the specifiglémentation of the
crosscutting concerns targeted by the mining technigee {he sort’s implementation
idiom).

Step 3. Define a mapping between the mining results and the goa The mining
technique has to define how the candidate-seeds map ontartjetdeld crosscutting
concerns (i.e., the implementation idiom of the targetet) sbhis mapping forms the
relation between mining results and potentially assodiatsncerns. Furthermore, it
describes how we should understand and reason about thelagmdeeds, and how
we can expand them into complete crosscutting concern imgaiéations.
Candidate-seeds that cannot be mapped to actual crosgadtinerns are rejected.
Considering again the example in Figure 5.1, the first minexhnique, which
searches for scattered calls and reports results as cibres, maps the callee in the
mining result onto the crosscutting element, and the atiato the crosscut elements.
The second technique assumes that the identified clonedisacadractable into a
method that crosscuts its call sites, i.e., the method®simg) the detected clone.

Step 4. Define metrics to assess mining techniques and result We distinguish
three metrics: (1precision (2) absolute recalland (3)seed-qualitynetric. The first
metric evaluates the quality of the whole set of candidatss generated by the mining
technique. The value of the metric is given by the percentdgmrrectly identified
seeds in the whole set of candidates reported by the teahiniqu

The second metric counts the absolute number of identifiadero seeds. We use
this metric instead of the standard recall because the notalber of concerns of a
certain sort in a reasonably large system is typically insfide to determine.

The last metric operates at the level of individual seedterahan at the level of a
full technique. It characterizes each seed by a percenpageiding a measure of the

5.3. Three Aspect Mining Techniques 115

effort required for reasoning about the candidate. Theimetas proposed by Marin
[2006b] and used by Ceccato et al. [2006] to compare threeaspeing techniques.
The quality metric shows what percentage of the (programnehts covered by a
mining result belong to the concern associated with thatlicate. For example, in
Figure 5.1, we assume that our candidate-seed is reportedtasd call relations, and
only four of the six method invocations in our candidate taut to implement the
same (crosscutting) concern (in this case, a conditionkctesdized by an invocation
to thesupermethod that cuts across t®mmandype hierarchy). The quality of this
result is therefore 67%. Candidates with a low value of théityuaetric will typically
be dismissed.

To generalize the seed-quality metric at the level of theimgitechnique, we can
consider araverage seed-qualitipr all the seeds identified by the technique; the met-
ric indicates the level of confidence in the concern seedstiitkd by a particular
technique.

These three metrics form the core set that is used for assaggmowever, this set
can be extended with other metrics provided that they arergéy applicable.

Optionally (but recommended) the mining technique shout@ide guidelines for
improving the metric valuesSuch improvements can be made, for instance, through
combinations of techniques. For example, precision canmipgdved by combining
techniques with the same search-goal: same results rdpoytévo or more differ-
ent techniques are more likely to correspond to valid seédsolute recall can be
improved by combining techniques with different goals, ethwould produce com-
plementary sets of results of different sorts. Seed-quaiituld typically be improved
by generating results that better overlap with the impleaien of their associated
crosscutting concerns, and hence have a higher confiderele le

5.3 Three Aspect Mining Techniques

In this section, we describe three techniques for idemigfyirosscutting concern seeds
and how they conform with our framework for systematic andsistent aspect min-
ing. One of these techniques, Fan-in analysis, is a prewtounsibution, while the
other two technigues are new. This shows how an existingitgak can be retrofitted
to the framework and how new techniques can be designed basth@ framework’s
structure. Furthermore, it shows how the framework allowgaireason about the
impact (be it positive or negative) that adjusting certaiesholds in any of these tech-
niques has. Experiments that apply these techniques to monrnase are discussed
in Section 5.6.

5.3.1 Fan-in Analysis

Fan-in analysis is a mining technique aimed at identifyir@gscutting concerns whose
implementation consists of a large number of scatterecamvons of specific function-

116Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

Consistent Behavior

Sort ot Mining result representation Concrete mining result
g trhepéelsenalgn e.g., (1) call relations,
methed invocation (2) clones, ..
AbstractCommand.execute
m @
crosscutélements log(..) ey
A authenticate(.) - 7
v changed(.) @—O Vo O .
/ ! N\ opyCommand.execute(.)
J . commitirollback(s) r .
/ P % Lt \ .
v \ @ Y Cutcommand.erecutel)
/ot \ P .
.* —@ e Vi) - (]
A\ | AlignCommand.execute(.)
\\ ; ‘ ‘
crosseutting, ! — 3
element \ . pping) : i
N i i .
@ Y GroupCommandevecus ¢
@ = roupCommand.execute(.)
CommandButton.actionPerformed(..)
[
! Commandenu.actionPerformed(..
e

Seed quality = 416 (mapping onto concern (sort instance))

Figure 5.1: Framework elements

ality implemented by a method, as described in Chapter 2 sftht@sis. The number
of distinct call sites gives th&an-in metric of the method invoked. The analysis re-
ports methods with large values of their fan-in metric asdidette-seeds. The seeds
found using Fan-in analysis typically correspond to cra#stg concerns refactorable
by an aspect-orientegbintcut and advicenechanism that exists, for example, in As-
pectJ: the aspect solution captures the call sites in aqaidefinition and triggers the
automatic execution of the method with a high fan-in valuthase call sites.

Fan-in analysis can identify a number of crosscutting comeerts. The typical
one isConsistent behavigisuch as events notification in Observer pattern implemen-
tations, consistent logging or tracing operations, exoaphandling and wrapping,
credentials checks, etc. Another type of concern that caddeified by Fan-in analy-
sis isRole superimpositiarfor example, the implementation of a secondary role, such
as persistence, across a set of classes might consist abasdtiat invoke a particular
helper method; The calls in the persistence methods leatiighgan-in value for the
helper one, which can be recognized by our technique.

To improve assessability, we will differentiate betweemiaas Fan-in analyses
based on the concern sort(s) that are actually targeted laytigydar analysis. This
will allow us to distinguish between intended and unintehdiscoveries.

In this chapter we will focus on Fan-in analysis aimed at iiiging Consistent
behavior When we describe properties particular to this analysisyilleefer to it as
Fan-incc.

Figure 5.2 describes Fangg in terms of our framework. It lists the goals, and

5.3. Three Aspect Mining Techniques 117

Search goal Instances of th€onsistent behaviasort.
Presentation Results are call relations, described by a callee and a satlefs

Mapping The method with a high fan-in value (the callee) maps ontontie¢hod
implementing the crosscutting functionality, and theeallof the method corre-
spond to the crosscut elements.

Metrics We consider three metrics for assessment:

e precision: the percentage of seeds for instances of Conslstdavior in
the whole set of reported candidates;

e absolute recall: number of identified seeds (i.e., valdiaendidates);

e seed-quality: the percentage of callers in the reporteldrelation that
match elements crosscut by the consistent invocation ofmiignod with
a high fan-in value. Callers that increase the metric valedtarse that are
validated as participants in the implementation of the @ssed crosscut-
ting concern.

Figure 5.2: Fan-in analysis represented in the aspect qiframework

provides metrics that can be used to assess the effectsveh&m-in analysis.

In our previous work we discuss a number of properties tHattthe seed-quality
for Fan-in analysis [Marin, 2006b]. These include, for amste, structural or call po-
sition relations between the callers of a method with a haghih value. High quality
candidates contain mostly elements that participate innipdementation of a cross-
cutting concern, and hence are relevant for reasoning abcandidate.

Recall is likely to improve for lower threshold values of tla@fin metric; however,
this is also likely to reduce precision.

5.3.2 Grouped calls Analysis

Our next aspect mining techniques is based on the obsamthabthe implementation
of different crosscutting concerns can be closely reladedhat a single concern can
be implemented by a number of related method calls. Exanptésde pre- and post-
operation notifications, consistent initialization andasi-up of resources, and multi-
step set-up operations. Such concerns typically shaneithent and crosscut the same
elements. We can identify them by looking for groups of mdththat consistently
invoke a shared set of callees.

Thus, we propose a hew aspect mining technique that we callggd calls Anal-
ysis. It works by applying formal concept analysis [Ganted &Ville, 1997; Lindig,

118Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

Search goal Instances of th€onsistent behaviasort.

Presentation The results are concepts, where the grouped callees ardtiibeitas
and the callers are the objects in the concept.

Mapping The attributes in the concept (i.e., the callees) map ontthods im-
plementing crosscutting functionality, and the objectshie concept (i.e., the
callers) match the crosscut elements.

Metrics We consider the same three metrics for assessment as fan Baatysis:

e precision: the percentage of seeds@amsistent behavianstances in the
whole set of reported candidates;

e absolute recall: number of identified seeds;

e seed-quality: is given by two partial measures: (1) thegetage of callers
that are indeed crosscut by a consistent call to a specifatifurality and
(2) the percentage of callees that are part of the crossgutbncern im-
plementation as assessed by an human analyzer. The vahe oktric is
obtained by multiplying the partial measures.

Figure 5.3: Grouped calls analysis represented in the aspeing framework

2000] to all calls in the analyzed system in order to find matignoups of callees that
are invoked by the same callers.
The positioning of this technique into our framework is shaw Figure 5.3.
Improving the seed-quality for this analysis can targetdbeof callers for a re-
ported group of callees, similar to Fan-in analysis, as a&the set of grouped callees,
by selecting only those callees that are relevant for a pi@lgnassociated crosscutting
concern,

5.3.3 Redirections finder

Our third mining technique, Redirections finder, looks fasses whose methods con-
sistently redirect their callers to dedicated methods wmilzer class. Typical examples
include implementations of wrapper types, such as in theoEor pattern [Gamma
et al., 1994]. The Decorator class’ methods receive capipoally add extra func-
tionality, and then redirect the calls to specific methodh@Decorated class.

To detect such a consistent, yet method-specific, redirectncern, the technique
looks for classes (C) whose methods (m) invoke specific mstfrodn another class
D (D.n). The automatic selection rule is:

C.m calls D.n and only n from @nd

5.4. Combining Techniques 119

Search goal Instances oRedirection layer

Presentation Redirection relations described by a set of pair methods tvondif-
ferent classes, related by one-to-one call relations.

Mapping The callers in the reported set match the methods executengetlirection,
while their pair callees receive the redirection.

Metrics We consider three metrics for assessment:

e precision: the percentage BRedirection layerseeds in the set of reported
candidates;

e absolute recall: number of identified seeds;
e seed-quality: the percentage of redirectors in the redamaadidate.

Figure 5.4: Redirections finder analysis represented inghea mining framework

D.n is called only by m from C
Class C and its redirector methods are reported by the teshnicthe numberof
methods in C complying with these conditions is above a antis&shold, and if the
percentagef methods in C complying with the conditions with respedtte total set
of methods of C is higher than a second threshold.

To further improve the seed-quality, we can add a filter thetcks for matching
names between the callers and callees. This is a commongar&at implementing
redirectors, although it could also introduce false negatiand hence reduce (abso-
lute) recall.

The representation of this technique in terms of our framkvi®shown in Fig-
ure 5.4.

5.4 Combining Techniques

Having used our framework to describe three techniques,exeaan use the frame-
work to reason aboutombinationof these techniques. In this section, we discuss
the three metrics in our framework, indicating how theirues are affected through
different combinations of the three techniques just prieskn

5.4.1 Improving Precision

Precision is measured by the percentage of crosscuttingeooseeds in the complete
set of candidates reported by the (automatic) mining teglni A straightforward

120Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

combination of two aspect mining techniques that incre@sesision is achieved by
intersecting their results (i.e., the set of candidateg)wéver, this can be done only
when the techniques target the same crosscutting conces) with compatible rep-

resentations of the results.

Two techniques that satisfy this condition are, for exampkmn-in and Grouped
calls analyses. To combine them, we select those resultamwirFanalysis whose
callees occur as callees in at least one of the Grouped ealtidates.

5.4.2 Improving Absolute Recall

To improve absolute recall, we can simply consider the unidhe results of different
mining techniques. For techniques that target differeniceon sorts, this union will
not contain overlap in the individual results, and the nuntbeseeds for the combina-
tion is the sum of the seeds for each technique.

As argued before, another way of improving the absolutellrechy being less
selective, i.e., by lowering the thresholds. However, ihiskely to reduce precision.
For Fan-in and Grouped calls analyses, precision can bereglsby combining these
two techniques with the same search-goal, and taking teesettion of their results.
The lower thresholds allow for new candidates to be repatetthe intersection filters
the results so the precision does not drop significantly.

5.4.3 Improving the Seed-Quality

Like precision, the seed-quality metric can be improved dayleining techniques tar-

geting the same sort. For example, we can consider the éctéva of the results for

Fan-in and Grouped calls analyses, selecting the commdeesahnd the common

callers of these callees. Thus, for the same value of thaslibté for the number of

callers, we consider only callees reported by both teclesgand the callers reported
by Grouped calls analysis.

Because Grouped calls analysis is the most restrictive dftectiniques, the num-
ber of callers for a callee is typically lower than for Fananalysis. Moreover, the
guality of the combined results will be higher than for Gredgcalls analysis alone
because the combination takes only one callee, and hencaweenlo false positives
grouped together with seeds.

It may be the case that one result of Fan-in analysis occumsuitiple groups of
callees reported by Grouped calls analysis: in this caseselext the Grouped calls
result for which the callers set has the largest overlap théhset of callers for the
Fan-in candidate.

5.4. Combining Techniques 121

& Java - AbstractComman clipse SDK
File Edit Source Refactor Mavigate Search Project Runm Window Help
CE@ kB0 (BEHG- (B8P G- @Bl e ®”
B} Package Explorer £3 Hierarchy ST _ﬁJ GroupCommand. java = O |¥Fan-n Analysis Yiew &3) =0
55 o wviem() .removeFiguresSe lectionli: A O] Mo, shown resulks: 114 (fikered: 5,964). Creation time! 902 ms. b
= MHolDrawsdbL ~ ; ’ SR8 5[
G [¢ CH.ifa.drav.standard, AbstractCommand, view() : 47 -~
£ (default package) = frn fe CH.ifa.draw.framework.Handle.owner() : 37 I
o CH_ * Execites the cotmnand: [CH.fa.draw.standard.AbstractFigure.changed(): 37
&5 CH.!fa L [& CH.ifa.draw.figures. TextFigure, changed() : 36
B e s v SRR I s W
B it o s if (view(] ¢ (8 CH.ifa.draw.standard. StandardDravingtiew. clearSelec iong) ¢
B CHLF i e throw new JHotDrawRuntimeExcep: (g CH.ifa.draw.framework,Drawing¥iew, clearSelection() ; 31
\;1 CB CHl'f .d : i e {2 CH.ifa.draw.framework, Tool. editor() : 30
s JFE CHI:f:Id::x‘EZ:t::h‘hgm\ B [¢ CH.ifa.draw.standard, NullDrawingView dearSelection() : 30
-*[-B CHlifa.draw‘:untnh‘zuum [g CH.ifa.draw.standard, StandardDrawing¥iew.checkDamage() : 28
z (e ! ! S e [¢ CH.ifa.draw.framework.Drawing¥iew.checkDamage() : 2E
[crifs.draw figures % TESES Tf fHE sdimand coH BE sxesues {2 CH.ifa.draw.framework. Figure.willChange() : 25
0 CHafacraw ramework ¥ Ghinch. Per Hefhalh . & aEemare il & CH.ifFaudraw.utl UndosbleAdspter, LndoableAdapter(QDrawingiie
1B CH.iFa.draw images * lesst one figure is’selected iE LHe [CH.fa.draw.standard.AbstractFigure.willChange() : 25
E'éCH'_a'draw‘samD‘“ T A, - T8 CH.iFa.draw.standard, CompositeFigure figures() | 24 =
-_B CH.!fa.draw‘samp\es.]avadrau wf =~ 2 CH.fa.draw.standard.AbstractCommand.execute() : 24
: % E::;:j:::z::s:::l::;‘:u < - public hoolean isExecutsble(] { i i<::' CH.?Fa.draw.cnntr\h‘CnmmandMenuItem‘attmnPerfnrmad(QAw
L P - . | CH.ifa.draw, contrib, CTCommandMenu, actionPerfarmed(QAc
- JE CH.?fa.draw‘samp\es.net 3 — £ - 2 - |42 CH.ifa.draw. contrib, zo0m. ZoomC ammand. eserutel)
jg E:::j:::z::;::z:z:?”g :@'@ Cloned calls Yiew 57 = :;:; CH.i;a.jraw.pgurss‘GruupCummand‘stclete()
2 CH.fa.draw samples.pert.imag | M0 shown resulbs: 13 (Fitered: 3,568). Creation time: 951 me, = i E:' a.draw figures. Insertimagetommand.execute)
.ifa.draw.figures, UngroupCommand, execute)
i ’C_H.lfa.draw‘standard . =} 4—_‘! |2 CH.ifa.draw.standard, AlignCommand. execute()
| y T T ange; } : 25 ~ -7 CH.ifa.draw.standard BringToFrontCommand, execute()
=t Abstractionnector java Tg {toolDone; editar; +; 14 ' 7 |2 CH.ifa.draw.standard, ChangeattributeCommand . exscute()
pl AbstractFigure;dava e {execute"waw‘ }‘: 1‘4 |42 CH.ifa.draw: standard . CopyCommand, exerute()
gl AbstractHand java Tg {Cumman’dMenlJ.l' addi}om |42 CH.ifa.draw.standard, CutCommand. executel)
E‘ AbstractLocator java E {checkDamat;e' e::ecute' view; }: 12 --|<= CH.ifa.draw.standard, Deleter ommand, exerutel)
i!_ AbstractTool java k= CH‘\fa‘\:Iraw.fi:;ures.GrDlijDmr:mn.\:i.executsO |¢2 CH.ifa.draw,standard DuplicateCammand. execute()
%IJ :;nﬂzmﬂl']a\:. o [s drave. Figures. InsertImageCommand. executel) | CH.iFa.draws.standard PasteCommand. execte()
B At [CH.Fa. draw. Figures.LingroupCommand. execute() |47 CH.ifa.draw.standard, SelectAllCommand, executel)
JE 44 Bn.xHand\eKlt.]ava |2 CH.ifa.draw.standard. AlignCammand. executel) -|42 CH.ifa.draw.standard, SendToBackCommand. executed)
E+j| ’_i‘ BringTeFrontCondsien; | |42 CH.ifa.draw.standard. BringToFrantCommand. execute() ~|45 CH.ifa.draw.standard, StandardDr awing¥iewsDrawingViewkey
B gf] BuffereclndateStratecy.) i Ll LS s b Fh e bbb e e oo ko) 152 CH.ifa.draw.standard, ToaaleGridCommand. execute() b
& ¥ ||« ¥ ||& I ¥
Wiikable | Smark Insert | 136 ;24 B

Figure 5.5: FINT views for Fan-in (at the right) and Groupeadls(in the middle, at
the bottom) analysis.

122Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

[3] UndoableHandie.java 52 '_JJ DecoratorFigure. java = O || Fan-in Snalysis Yiew | =
*) ~ o, shown resulks: & (filkered: 86}, Creation time; 41 ms, =
< = publi Fi % -
i) ic Figure owneri) f :‘%} & % o= {:F
return getWrappedHandle () .owner () ; Ak i k[. .
3 = ‘Eg {CH.ifa.draw.figures.BorderDecorator - CH.ifa.draw.standard.DecoratorF #
d 'Eg {CH.ifa.draw.samples. javadraw, AnimationDecorator - = CH.ifa,draw, standard . Decora
=WE] Tg {CH.ifa.draw,standard, Abstract Tool$EventDispatcher -3 CH.ifa. draw. framework, Too
* Gets the display box of the handle. 1 T‘g {CH.ifa.draw.standard. ChangeConnectionEndHandle - = CH.ifa. draw. Framewark. Conr
*7 Tg {CH.ifa.draw,skandard. ChangeConnectionStartHandle - > CH.ifa.draw. framework., Cor
|4 - public Rectangle displayBox (] { | Tg |{CH.iFa.draw.standard.DecoratorFigure - CH.ifa,draw, framework. Figure} ; 22 hre}
return getWrappedHandle () .displayBox | 'Eg {CH.ifa.draw.util.UndoableHandle - > CH.ifa.draw.framework.Handle} : 10

¥ Lol 0 tai
= |2 {displayBox - displayBox}
= fww : |2 {draw > draw}

Tests if a point is contained in the h : 1= {invokeEnd - invakeEnd}
* : |47 {irvokestart - = irvokeStart}
public boolean (int x, int ¥] |45 firvakastart - irvakeStart}
return getWrappedHandle () .containsPoi H 15 {invokeStep - > invokeStep)
3 o |4 dinvokeStep - > invokeStepk

147 {locate - locate}
= H |2 {owner -= owner}

+ Draws this handle, = ?g {CH.ifa.draw.util UndoRedodctivity - = CH.ifa.draw.util.Undoable} : 9
#/ 2 {getAffectedrigures - > getAffectedFigurest

& - public void draw(Graphics o) 2 |47 {getaffectedriguresCount - > getAffectedFiguresCount}

< ¥ < | >

@ Seeds View 22 2% | B g™ =0

Seed Fan-in fGrouped calls | Redirector finder Caoncern description ~
CH.ifa.draw.figures. BorderDecorator W
CH.ifa.draw.framework, Drawing¥iew, checkDamagel) S

CH.ifa.draw. framework. DrawingWiew. checkDamage() + {execute; view; t ¥
CH.ifa.draw,standard. AbstractCommand. executed) ®

CH.ifa.draw.standard. AbstractCommand. execute) 4+ {view; checkDam, .. %
CH.ifa.draw.standard . AbstractCommand. view) + {execute; checkDan... kS

CH.ifa.draw, standard.AbstractFigure.changed() ®
CH.ifa.draw.standard.abstractFigure.changed() + {willhange; + b4
CH.ifa.draw.standard . AbstractFigure, wilChanged) H

CH.ifa.draw,standard. AbstractFigure, wilChange() + {changed; } ;4
CH.ifa.draw.standard.DecaratarFigure %

CH.ifa.draw.util. Undoable isRedoabled) ®
M s cvzine bl | Ao ablabandle v e

Border decarator for figures
Consistent notification after command execution

Consistent check for view reference

Figure pre-change notification

e

Figure 5.6: FINT view for Redirection finder and the Seeds view

5.5. Tool Support 123

5.5 Tool Support

To experiment with the ideas laid out in this chapter, we feagtended our free aspect
mining tool FINT? (see Chapter 2 and Marin et al. [2007a]) to include automatie s
port for the three techniques and their various combinatidfiNT is available as an
Eclips€ plug-in. Figures 5.5 and 5.6 show part of the functionalitgyided by the
tool. Figure 5.5 displays the views to inspect and managesthidts of Fan-in (on the
right side) and Grouped calls (at the bottom) analysis. Tindar view for the results
of the Redirections finder technique is shown on the right sidégure 5.6.

The results for each technique are displayed by followireyrépresentation de-
scribed in Section 5.3. The views allow for various sortipg@tions and code in-
spection from the elements selected by the user in the viee.uEer can further open
and inspect each candidate in a new view, and run a numbeabfsas for improving
the quality of the candidate. These analyses include inigpeof various structural
relationships between the elements describing a candidate

Support for combining techniques is available, for examtiieough intersection
of the sets of results of two techniques: The views showiegdsults can be synchro-
nized so common findings are highlighted in the views. Foreda, the highlighted
elements in the Fan-in Analysis View of Figure 5.5 corresptmmethods that are also
present in at least one group reported by the Grouped callgsis. The bold colored
elements show candidates marked as seeds by the user. Tdrasats are also shown
in the Seeds view.

Each technique allows for a number of specific, automater§tlike filters forutil-
ity elements oaccessomethods. Utility elements are those that the user consaters
irrelevant for analysis. To filter them, the user is presgntéh the hierarchical struc-
ture of the top-level Java element selected for analysis, (&.Java project) in which
the elements to be ignored can be selected (e.g., all theeatsrm packages contain-
ing JUnit tests). The accessor methods, that is getter dtet seethods, are filtered by
automatic inspection of either the signature of the metlmodkseir implementation.

5.6 Experiment

In this section, we apply the mining techniques describeavalio JFOTDRAW?,
which has been proposed and used as common benchmark fot aspeng [Marin
et al., 2007a; Ceccato et al., 2006] as discussed in Chapterd 2.aJFOTDRAW is
an open-source framework for bi-dimensional drawingsoeslit The distribution (v
5.4b1) comes with a default drawing application that we alsalyze. The system is
also a show-case for applying design pattern solutions @wva implementation. Its

2 http://swerl.tudelft.nl/view/AMR/FINT (v0.6)
3 http://www.eclipse.org/
4 http://www.jhotdraw.org/

124Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

] | Fan-incc | Grouped calls | Redirection \
Targeted sorts Consistent behavior Consistent behavior Redirection layer
Utility filters Collection wrappers andCollection wrappers andlest classes

test classes test classes
Accessor filters Accessors by name andéccessors by name anéd
implementation implementation
Threshold filters No. callers: 10 No. callers: (1:) 10 andNo. redirectors: 3;
)7, % redirectors: 50
No. grouped callees: 2
Accepted Seed quality> 50% > 50% > 50%

Table 5.2: Selection conditions applied for the aspectmgi@xperiment.

size is approximatively 20,000 non-comment, hon-blanédinf codé

One goal of this section is to conduct idiom-driven aspecting and to report on
identified concerns in a relevant application. A second aacerimportant goal of this
section is to show how the proposed framework allows for isbaist assessment of the
results of the three aspect mining techniques, as well agaptoposed combinations.
To this end, we present and compare the quality measureadbrtechnique and for
the results of their combinations.

Detailed results of the experiments discussed in this @eand quality metric
values are available on-lifeNext, we discuss the setup of the experiment.

5.6.1 Applied Filters

Table 5.2 shows the filters applied for conducting the mirergeriments on the se-
lected case-study. For all techniques, we filter out the {JWest classes delivered
with the application; i.e., the methods from the test claskenot occur among the re-
ported candidates of any technique, and methods from thasges do not contribute
to the fan-in metric of a method.

Collection wrappers, likéteratorWrapperor SetWrapperare also marked as util-
ities to be filtered from the set of candidates. Similar totdst classes, these wrappers
are typically part of dedicated packagé&d.ifa.draw.util.collections.). Collection el-
ements tend to be frequently used in an application. In masgs; however, they are
not part of a consistent mechanism associated with crassgfiinctionality. Filtering
these elements is likely to reduce the number of candidaith®wi introducing false
negatives.

For Fan-in and Grouped calls analysis, we also filter accessthods from the set
of candidates. The filters check both the signatures of nastget* andget* names)
and their implementation (i.e., only set a field or returnfanence).

A number of threshold values are specific to each case andecaarked by the
user to refine the results:

5 SLOCCount: http://www.dwheeler.com/sloccount/
6 hitp://swerl.tudelft.nl/view/AMR/CombinationResults

5.6. Experiment 125

e Fan-ircc: the threshold value for the number of callers of a candigaget to
10, following considerations from previous experimentedssed in Chapter 2;

e Grouped calls: the first experiment uses a threshold of 1@he®mumber of
callers, which is lowered to 7 for the second experiment;ttineshold for the
minimal number of callees to be grouped by a candidate isyas\wat to 2;

e Redirections finder: the technique uses two threshold vathesfirst sets the
minimal number of redirector methods in a class to 3, and éwersd sets the
minimal percentage of methods in the class executing theectthn to 50%.
Thus candidates reported by this technique will have at Rasdirector meth-
ods, and at least 50% of all their methods execute the rejtedirection.

Candidates are marked as seeds if they correspond to a dtoggcancern accord-
ing to the mapping rules of each technique, and if the seatitgof the candidate is at
least 50%. This metric value shows that most elements in gieerap of a seed belong
to the (implementation of the) crosscutting concern ideatiby that seed; hence, we
estimate that concerns associated to such seeds are égidgnizable by a simple in-
spection of the seed. We believe that in practice only sedtisawelevant high quality
value will be recognized by the user in the set of mining rsspfoduced by a tech-
nique. This is due to the fact that the goal of aspect mining povide a quick insight
into the (crosscutting) concerns of a system, and so it ima-tionstrained activity,
aimed at minimizing the effort of understanding a systemeré&fore, the precision of
a technique should be measured by a certain standard of &fieyapi its results. Note,
however, that lower values of the seed-quality metric &ayito increase the number
of concerns identified by a technique at the cost of increaffed required to analyze
each mining result (i.e., each reported candidate).

5.6.2 Results

This section shows a number of typical results and metrigesfor each of the three
techniques, as well as for their combination. The calcdlatetrics are summarized in
Table 5.3.

Fan-in analysis Before discussing the metric values for this technique, veé ok
at an example of identified seeds and how we select them fresethof candidates. A
number of seeds recognized by Fagdnmplement concerns that crosscut them-
mand hierarchy in J®WTDRAW. Commandclasses follow the design described by
the pattern with the same name; they implemengéxetut e method that carries out
specific activities in response to, for instance, user astiitke menu-items selection.
Figure 5.7 shows the method for executing cut operationgdimaing editor. The
method starts with a precondition check implemented by tmensand’s super-class

126Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

/1 Cut Command. execut e()

public void execute() {
/'l performcheck whether view() isn't null.
super . execute();

/1 prepare for undo
set UndoActivity(createUndoActivity());
get UndoActivity().setAffectedFigures(view().selection());

/1 key logic: cut == copy + delete.
copyFigures(view().selection(), view().selectionCount());
del eteFigures(view().selection());

/1l refresh viewif necessary.
view(). checkDamage();

Figure 5.7: (Simplified) execute method in 3FDRAW’S Command hierarchy.

(AbstractCommand Similarly, the (around 20) methods overriding thiestractCom-
mands execut e method in non-anonymous classes check this condition. dhe c
mands then conclude with a notification of the editor’s view.

The check- and notification-actions implement two crodstgitoncerns scattered
over a large number of methods that invoke these actiondy@meck increase the value
of their fan-in metric. These invocations are typical sefedsnstances of th€onsis-
tent behaviorsort.

To calculate the quality of these results, we have to consiltlthe callers reported
by Fan-irncc for each of the invoked actions. Not all the callers, howglvelong to the
context of theCommandierarchy crosscut by the concerns of the two candidatdssee
For instance, one of the calls to theecut e method originates from an action-event
handler in aMenultemclass. The quality of the candidate for tiveecut e method is
given by the proportion of the 18 methods crosscut by thertedeall, to the whole
set of 24 callers. This value is 75%, above the set threshol% for selecting a
candidate as a seed.

Returning to Table 5.3, th€onsistent behavioseeds identified through Faneip
analysis count 33 methods in the total set of 109 candidefasted. This indicates a
precision of around 30% for the targeted sorts, as shownbleTa3. Despite a lower
precision value when compared to the other techniques thaiseuss next, we notice
that Fan-igc analysis identifies the largest number of seeds, and hehcencerns.

Grouped calls analysis As can be seen from Table 5.3, Grouped calls analysigGC
yields fewer candidates and seeds than Fag;ibut with a higher precision and qual-

" Results for Fan-igc in this work are exclusively for the targeted sorts. Theyedifrom results
reported in Chapter 2 (and in Marin et al. [2007a]) becauglecdihcase more concern sorts were targeted.
All results are documented on the experiment’s web-pagdiorexd earlier (footnote 6).

5.6. Experiment 127

Technique # Candidates| Absolute recall| Precision Average
(# Seeds) Seed-quality

Fan-in.c (F1)’ 109 33 30% (33/109 77.4%
Grouped calls (GQ 11 6 55% (6/11) 91.6%

Grouped calls (G&) 22 12 55% (12/22) 87%
Redirection finder (RH 13 12 92% (12/13) 93.5%
Fl+ GC, 17 7 41% (7/17) 97.6%

FI+ GG, + RF - 51 -

Table 5.3: Metric values for individual and combined tecjuas.

ity. To understand this, consider the precondition chegland notification concerns
just discussed. These two candidates share the largesifghéir callers, and hence
are also among the results reported by the Grouped callgsasialAlthough the two

concerns are distinct, they are related by the set of elesrtaey crosscut (i.e., the
Commancdhierarchy). The Grouped calls analysis does not separatsthconcerns,

but instead allows to put them in a single, shared context.

One of the candidates reported by this technique groupsitew andexecut e
methods in the set of callees, together with 14 common &all¬her candidate
groups the same two methods, but also ¢theckDanmage method, together with 12
common callers. In the first case, teeecut e method is the relevant element for the
crosscutting concern associated with the reported catadidéeview method has no
relevance to this concern, and hence it decreases theyqufatlite candidate. However,
we can still select this candidate as all the callers padiel in the associated concern
and hence the overall quality (for the callees and callesggg) is 50%.

On the second case, each invocation of thew method occurs together with a
call to thecheckDanmage method, which is a seed for the previously discussed instanc
of the Consistent behaviasort. In this case, the reportedew method is relevant for
the crosscutting concern associated with the reporteddatedand contributes to the
quality metric. For this candidate, the quality metric i9¥as all the grouped callees
and callers belong to the implementation of the relatedscnatsing concern.

In comparison with Fan-in analysis, the number of results seeds for this tech-
nigue is lower for the same threshold for the number of call€his is to be expected,
as this technique has more restrictive selection ruleshfocandidates: a callee should
not only have a large number of callers, but it also has to Hlecdctogether with at
least one other same method.

For a lower threshold, namely 7, the number of seeds is aldwmsile, but is still
lower than the one reported for Fan-in analysis. The resilthis experiment are
labeled with GG in Table 5.3. This experiment allows to consider callee$ &na
potentially missed by fan-in analysis due to its higher shdd filter. Most of the
results and seeds of the Grouped calls analysis with a Idwestold overlap with the
results of Fan-in analysis, although, we also observe a pugfimew seeds.

128Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

public abstract class DecoratorFigure {
...
private Figure myDecoratedFigure;

public TextHol der getTextHolder () {
return getDecoratedFigure(). getTextHol der ();

}

public Rectangle displayBox() {
return getDecoratedFigure(). displayBox();

}

/1l Forwards draw to its contained figure.
public void draw(Graphics g) {
get Decor at edFi gure(). draw(g);

}
...

Figure 5.8: (Part of) DecoratorFigure - super-class fouFegbjects decorators.

Redirections finder analysis We observe in Table 5.3 that this technique has the
highest precision of all the techniques employed by our exmnt. The particular
high precision has also been confirmed by experiments om o#éise-studies, such as
Tomcaf and JBos$

A typical example of concerns found through Redirectionsdinsg the Decorator.
A number of classes in JbfDRAw, like Border-or Animation-Decoratorextend the
DecoratorFigureclass shown in Figure 5.8, which provides the basic funetipnto
forward calls to a decoratdeigure object. This example is a typical instance of the
Decoratorpattern: Methods in the Decorator classes consistentlya@dheir callers
to dedicated methods of a target object, before or afteiqoally) providing additional
functionality.

The Redirections finder candidate for this concern consisi2 @all relations, 3
of which correspond to the methods shown in the figure. Siticeejported results
implement the redirection concern, the seed-quality &f thindidate is 100%.

Combination of Fan-in and Grouped calls analysis Table 5.3 also shows that the
combination of the two techniques (FI and §@argeting instances of the sant@ofn-
sistent behavigrsort leads to improved precision when compared with theltesf
the individual technique (Fan-ig). However, this comes at the cost of a significantly
lower absolute recall, of only 7 for the combination.

The quality for each of these 7 seeds is listed in Table 5.4.exected due to

8 http://tomcat.apache.org/
9 http://jboss.org/

5.7. Retrofitting Existing Techniques 129

] Candidate | Fl quality | GC; quality [FI+GC; quality |
framework.DrawingView.checkDamage 64% 100% 100%
framework.DrawingView.clearSelectign 55% 100% 100%
framework.DrawingView.selectionCount 63% 83% 83%

standard.AbstractCommand.execute 71% 100% 100%
standard.AbstractFigure.changed | 100% 100% 100%
standard.AbstractFigure.willChange 100% 100% 100%
util.UndoableAdapter.undo 92% 100% 100%

Table 5.4: Values of the quality metric for individual andwained techniques.

the more restrictive selection rule of the candidates, @educalls analysis achieves
a better seed-quality, which is also reflected in the resiiltee combination. These
results show improved values of the quality metric, tygicaly retaining the higher
value of the Grouped calls analysis results.

All three techniques The combination of all the three techniques is aimed atrgptti
the largest possible set of seeds. Therefore, we selecbfobination the results of

Grouped calls analysis obtained by applying the lower valune threshold for the

number of shared callers, i.e., 7. The result of the comizinas given by the union of

the sets of seeds identified by the three techniques. Thiswansists of 51 distinct

seeds for various concerns in the analyzed system. The otégic values are not

relevant for such combinations of techniques that targégréint concern sorts, as the
combination is applied after selection of concern seedsdoh targeted sort.

5.7 Retrofitting Existing Techniques

In this section we investigate how existing aspect minirfptggues can be retrofitted
to the proposed framework. This survey helps in:

(1) the interpretation of the results of an aspect miningnegue;
(2) clarifying how seeds are translated to crosscuttingeors;
(3) investigating new combinations of aspect mining teghas.

Below, we discuss for each sort the most important aspechguigichniques that tar-
get crosscutting concerns of that sort. The techniques saugs are summarized in
Table 5.5.

5.7.1 Role Superimposition

For detecting role superimposition, two techniques hawnhmoposed: one employs
static analysis, while the other one is based on dynamigsisalThe technique using

130Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

| Technique | Sort search goal[Presentation | Mapping \
Aspectizable inter-Role superimpo-inheritance relations deThe reported interface and [ts
faces [Tonella andsition scribed by groups of methodmembers map onto elements
Ceccato, 2004b] that belong to or can behat crosscut the types imple-

abstracted into an intermenting them.

face definition, and thejr

implementing types.
Concepts inRole superimpo-Set of methods in a type hiThe methods map onto the
traces [Tonella angsition erarchy defining the superimmembers of the superimposed

Ceccato, 2004a; Ceccq
etal., 2006]

to

posed role, and their implé
menting, crosscut classes.

>type and cut across their in
plementing classes.

n

Clone detection [Shef
herd et al., 20053
Bruntink et al., 2004]

pConsistent be

:havior

-Set of relations (and stat
ments) grouped by a cog
fragment that is duplicate
in multiple method bodie

efhe method to extract th
leloned fragment maps on
dhe crosscutting elemern
ghe methods containing the

(and that is refactorable by|aloned code fragment map
method extraction). onto the elements being
crosscut.
Execution patterns (dyConsistent be-Call relations between a sefhe recurrent sequence |of
namic [Breu and Krinke,havior of methods (i.e. callersymethod invocations maps
2004] and static [Krinke, and identical(ly positionedonto the elements cross-
2006)) sequence of other methods) cutting the callers in the
relation.
Fan-in analysis [MarinConsistent be-See Section 5.3.1 See Section 5.3.1
et al., 2007a; Gybels andhavior
Kellens, 2005]
Grouped calls Consistent be-See Section 5.3.2 See Section 5.3.2
havior
History-based mintConsistent be-Call relations between twdrhe invoked methods map
ing [Breu and Zimmerthavior sets of methods, where eaainto the elements crosscut-
mann, 2006] method in the callers set callsng their reported callers.
all methods in the callees set
(i.e., similar to Grouped calls
analysis).
Context flow minq Context passing | Call chain sequence anndFhe caller in each invocatign
ing [Seiter, 2006] tated with the position {:‘in the chain maps onto the
the parameter passed by eaatethod passing the context
caller to its callee in the chainthrough the mapping parame-

ter.

| Redirection finder

| Redirection layerf See Section 5.3.3

|

See Section 5.3.3

|

Name-based min
ing (Identifier anal;
ysis [Tourve and

Mens, 2004], Languag

2005bh])

clues [Shepherd et al.

{Role Superimpqg
sition)

D

Table 5.5: Retrofitting existing techniques to the framework

5.7. Retrofitting Existing Techniques 131

static analysis aims at the detection of interfaces, or tyeenbers that can be ab-
stracted into an interface definition, that crosscut thaplementing classes [Tonella
and Ceccato, 2004b]. The analyses employed by this techohgrk the names of
interfaces to recognize common naming conventions likéke*suffix, or attempt to
use clustering for grouping the members of a type that mighirig to a secondary
role. The technique fits naturally into our framework and e define its search goal
as instances dRole superimpositian

The technique for recognizing role superimposition bagedymamic analysis was
proposed Tonella and Ceccato [2004a]; Ceccato et al. [20068.t&chnique uses for-
mal concept analysis to group execution traces obtainedrwstain use-case scenar-
ios, with methods executed in these traces. The resultingegs are selected by two
rules, namely, (1) the methods grouped by a use-case spamilcept (i.e., containing
traces of only that use-case scenario) belong to more thaglass, and (2) the meth-
ods in that concept occur in more than one use-case speaiftepb The technique,
and the second rule in particular, is aimed at finding cladsgsmplement more than
one functionality, i.e., more than one role. The conceptsréd by the above rules
are reported by the technique as seed candidates. Howeeemare (manual) step is
required to actually mine the potentially secondary raobarfithe set of methods in the
concept, a step that is not explicitly described by Tonelld @eccato [2004a]. From
the reports of the experiments with the technique [Tonelld @eccato, 2004a], we
derive the following additional step, consisting of a rude turning mining results into
(meaningful) concerns: methods in the same type hierardigse implementations
occur multiple times among the methods grouped by a selectecept are considered
to be part of a superimposed role.

We therefore propose that the last step is integrated wathetthnique and the pre-
sentation of the results is a set of methods of the same typeselmethods map onto
the methods of the secondary role, and the percentage obasethapping correctly
gives us the quality of the seed. All the implementationshefrble correspond to the
crosscut elements.

5.7.2 Consistent Behavior

In order to identify instances @onsistent behaviosort, we can consider employing
techniques based on clone detection. A number of aspechgn@xperiments have
been carried out using clone detection [Bruntink et al., 2@)epherd et al., 2005a].
Shepherd et al. [2005a], for example, propose to examineesldor same method
invocations. Related research has explored how well cloteetien can detect several
specific idiomatic implementations of crosscutting consewith best results reported
for such concerns as tracing and checking against NULL gdBrintink et al., 2005].
Both concerns are clear instances of @ansistent behaviosort. There is, however,
no report to our knowledge of a complete analysis of all tlsailte produced by clone
detection-based techniques, and of their total precisnhadsolute recall.

The Grouped calls technique resembles mining based on dieteetion but only

132Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

in some respects: by not considering the position of the aalihe body of the callers,
the technique allows to identify related calls that woulditglly be missed by classical
clone detection tools. On the other hand, it can introdulse fpositives that probably
will not be present in standard clone detection.

The mining for recurring execution patterns in programegafBreu and Krinke,
2004] and control flow graphs [Krinke, 2006] is particulaslyited for identification
of instances of th€onsistent behaviosort. The techniques search dynamically and
statically respectively for patterns such as methods warseution always follows the
completion of another, specific method, or methods that laraya executed first/last
in the body of their callers. In terms of our framework, thehieique results in a
specific call relation. The callee is mapped to the crossguftinctionality, and the
callees are mapped to crosscut elements.

The results of the latter technique, based on static arsalgse compared by its
author to our own results reported for Fan-in analysis orJthleTDRAW case [Marin
etal., 2007a]. The comparison and the overlapping resoitren the compatibility of
the two techniques, as they share the search goal, and praecidar, intuitive mapping
of their results representation into the targeted sortssdption.

HAM (history-based aspect mining) is a technique that rddesnour own Fan-in
and Grouped calls analysis [Breu and Zimmermann, 2006]. &blenique searches
(CVS) version archives for addition of method calls, anddsléhose groups of meth-
ods with a large (threshold-based) number of common calfetditional filters of the
results consider the number of transactions in which ths eadre added, the time and
the authorship of the transactions. The presentation of AKBults is the same as
for Grouped calls analysis, and hence fits naturally in camfwork.

A few other techniques apply similar recognition criterfacmsscutting concerns
as the ones already discussed. For example, the Unique dsdifié&ybels and Kellens
propose several selection conditions for methods with feghin values, such as a
void return type [Gybels and Kellens, 2005]. Other simildefs include selection of
methods with no parameters [Shepherd et al., 2005a].

5.7.3 Context Passing

The Context passingort describes concerns that cut across a call chain, ahdriha
implemented by adding new parameters to the methods in thie ahorder to pass
specific context information along the call chain. This setiargeted by the control
flow mining technique proposed by Seiter [2006]. The techaipoks for sequences
of method invocations in a call chain, where each methodarctain passes a specific
parameter (identified by its position) as an argument toatkee in the chain. The
results are reported as a sequence of methods annotated pgdition of the passed
parameter.

In terms of our framework, the results are mapped to crossgutoncerns in the
following way: for each invocation in the chain, the calleaps onto the method pass-
ing the context information in the chain, and the identifiedgmeter maps into the

5.8. Discussion 133

parameter passed as an argument for carrying the informafithe seed-quality is
given by the number of invocations in the reported sequdmatarideed correspond to
context passing, with respect to the total number of innoaoatin the chain.

5.7.4 Name-Based Approaches

Several approaches to aspect mining rely on naming commventor the identification
of crosscutting code. As an exampléentifier analysisapplies formal concept analy-
sis to group program elements, like classes and methodsplysveccurring in their
identifiers [Tourve and Mens, 2004; Ceccato et al., 2006]. The technique does not
propose an interpretation of the results to recognize cutgsg concerns in the gen-
erated concepts. However, the search for related programegits employed by this
analysis suggests that elements grouped in a concept b&ldhg same role, which
may be crosscutting. The search goal can then be definedtasdas of theRole
superimpositiorsort.

Previous experiments have shown that the inspection oftsefsu Identifier anal-
ysis for recognizing crosscutting concerns is difficult @mle consuming [Ceccato
et al., 2006]. The technique works better as an enhancifmigae that starts from
known crosscutting concern seeds and provides us witletefabgram elements using
names as association criteria.

Another approach to name-based aspect mining uses lexiaaliog; that is, se-
mantically related words recognized in fields, methods daslscnames as well as in
comments are grouped together [Shepherd et al., 2005b]oUtpat of the technique
consists of groups of related words (i.e., chains) that ogstmany different source
files, and pointers to source code entities that corresporldet words in the chain.
However, to understand the relation between these resudtpatentially associated
concerns we still need to turn the list of words into a meafuihgoncern representa-
tion. Therefore, we propose to consider the set of programehts associated with
these words as the results of this aspect mining techniduesélelements would typi-
cally represent members of a potentially superimposed hokerms of our framework,
the technique thus targets instancefkofe superimpositigrand each reported result
proposes a set of elements as possible members of the sppséchrole. The per-
centage of correctly identified members of the superimposiedthen gives the value
of the seed quality metric.

5.8 Discussion

Multiple search-goals As mentioned before, the relation between a technique and
its search-goal is not exclusive: one technique can tangédmces of different sorts if
different mappings are defined and applied.

Earlier, our focus for Fan-in analysis was at identify@gnsistent behavioHow-
ever, if we were to employ Fan-in (or Grouped calls) analysigdentify instances

134Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques

of the Role superimposition sort (Farnzi), we could define the following mapping:
the callers of the high fan-in method belong to the impleragon of a crosscutting,
super-imposed role, and the reported method with a higlmfaatue implements func-
tionality dedicated to and accessed from the scattere@piagplementing the role.

Several instances dRole superimpositioare present in JEITDRAW. A typical
example is the persistence concern: Hgure elements implement th&torablein-
terface that defines ¢ad andw i t e) methods to (re-)store a figure from/to a file. The
scattered implementations of these methods for persistemoke functionality from
classes$torablelnputindStorableOutpytthat are specialized in reading/writing spe-
cific types of data. The candidates reported by the techragee¢he methods in the
specialized classes together with their callers inStarablehierarchy.

The persistence candidates Rwole superimpositiomstances add to the total num-
ber of seeds identified for the analyzed system. Howevergdimese results are not
compatible with theConsistent behavidnstances discussed earlier, they should be ad-
dressed distinctly if the technique is to be compared withtlagr one. This is achieved
by explicitly specifying the search-goal, as is done with$&c and Fan-igs.

Another observation regards two sorts that share thei@mgphtation idiom, namely
Consistent behavioand Contract enforcement The Contract enforcemengort de-
scribes concerns implementing condition checks for delsygcontract. However, the
specific crosscutting symptom for this sort is the same aSdmsistent behavipwith
the only difference consisting in thetent of their instances. This allows for aspect
mining techniques to target instances of both sorts togett@wvever, automatic dis-
tinction of the sort for a certain instance is difficult, aihadi$ this step requires human
analysis. Yet, for the purpose of the analysis presentekisnchapter, the distinction
between the two sorts is not relevant.

Filters and results extension The Grouped calls analysis builds concepts of
callees<callers from the complete (i.e., un-filtered) set of method¢he analyzed
system. To these concepts, we then apply our filters, sudioas for accessor meth-
ods, which eliminate getters and setters from the sets afpg callees. Finally, we
reason about the filtered results and decide whether a atedgla valid seed or not.
However, our filters might eliminate methods relevant to acewsn implementation,
particularly from those concepts marked as seeds. A singilgien to missing rele-
vant methods is to extend the concept of our seeds to théirejolesentation by re-
moving the filters for each of the concepts marked as seeds wHy, we are still able
to eliminate the most unlikely candidates by using filteiempto the manual inspec-
tion of the results, but also to reduce the number of falsexnegs by investigating
all the (remaining) elements in thextendedepresentation of our seeds. For exam-
ple, by extending the concept for the Grouped calls seedissse in Section 5.6.2,
which groups theexecut e, vi ew, andcheckDamage methods (see Figure 5.7), will
also uncover a set of three methods dealing with setting eputido support for a
command, namelyet UndoAct i vi ty, get UndoActi vity, andset Af f ect edFi gure.

5.8. Discussion 135

These methods point us to the undo concern in the body of thenamds’execut e
methods.

Similarly, we can use such extensions for the results of gmebination of Fan-in
and Grouped calls analyses. In order to achieve bettercesdy, the set of callers for
these results consists of only those callers from the resuBrouped calls analysis.
However, this selection of callers might eliminate relaveallers from the typically
more extensive Fan-in result being combined. A recommepdsactice in this case is
to use the combination results for selecting the seeds leamdto extend the identified
seeds with the other callers reported by Fan-in analysis.

Results of previous experiments The framework rules and the survey in Section 5.7
confirm the results of our previous experiments reported iapBdr 3. In that chapter,
we found by manual examination of results (and without usiagsistent compari-
son criteria based on sorts) that Fan-in analysis and ttretséar concepts in traces
(i.e., Dynamic analysis) have a small overlap and are maialpplementary. This
is explained by the different main search goals of the twbnepies that consist of
instances of different sorts.

As we have shown above, Fan-in analysis can be employed te extent to search
for instances oRole superimpositioiFan-irks); This explains the overlap between
some of the results of the two techniques. Another explanati this overlap lies with
the description of those results in terms of complex featuikee Undo or Persistence
support. Such features typically involve more than onesmoting concern and the
distinction between the various concerns proved diffieulbe absence of a framework
like the one proposed in this chapter. Different concerres,(sort instances) part of
the same crosscutting feature were then counted as a commalamgfi

Tool performance Although this work’s focus is less on each individual mintegh-
nique and more on the common framework to consistently assebkpossibly combine
mining techniques, we briefly discuss the performance otarirFINT. The analysis
of the whole JWbTDRAW system for Fan-in analysis requires around 30 seconds on
our test machines (Pentium 4 - 2.66 GHz, with 1GB of RAM) rugniclipse 3.1.x
under either Linux or Windows OS.

The Grouped calls analysis requires the model built for the-if analysis and
takes around 5 minutes to examine all the call relationsr(agmately 6000x 6000
elements). This analysis will not scale up very well to systdike Tomcat or JBoss,
which have up to 35,000 elements. However, trying to undadssuch large systems
in one iteration is hardly advisable due to the cognitive plaxity. We would suggest
dividing them into sub-systems comparable in size witoJBIRAW and gather under-
standing for each of these systems. Actually, to ensuretaiaability, the architecture
of the two aforementioned systems is already conveniepltiis components that are
suitable for analysis in isolation.

The Redirection finder uses the Fan-in model and requiresafdw seconds for

136Chapter 5. A Framework for Evaluating and Combining Aspect Mjrliechniques
execution.

Reproducibility To allow for reproducibility of the experiments describedthis
chapter, we provide both the tool and detailed setup elesraard results sets on the
tool's and experiment’s web-pages, indicated in footn@taad 6.

5.9 Related Work

Several authors have proposed (and taken) steps towardsmh@arison and combi-
nation of aspect mining techniques [Marin et al., 2004; Cexetal., 2006; Shepherd
et al., 2005a]. We are not aware of related work on providimgpmmon framework
for systematic aspect mining, and consistent combinatr@hassessment of mining
techniques.

Shepherd et al. [2005a] report on machine learning teclesidor combining as-
pect mining analyses. Their approach learns from annotaddd and they compare
the results of their combination to results of Fan-in analyslarin et al., 2004]. A
drawback is the required annotation of crosscutting carsecen some significant sys-
tem, which is needed for training the tool. The techniquesimtered for combination
include filters for accessor or utility methods, as also usdeiNT. However, the au-
thors of the experiment do not describe their findings initeta do they provide rules
to consistently associate results of different represiemsto crosscutting concerns.

In the collaborative ARCO effort, described in Chapter 3, three aspect mining tech-
niques are compared and investigated from the perspedto@mbination. The tech-
niques include fan-in analysis, dynamic analysis of exeautaces, and analysis of
shared identifiers in signatures of program elements. Mdijbculties in this experi-
ment were caused by heterogeneity in the search-goals dfirtee techniques and in
the representation of results. Such experiments requéedialts effort from the partic-
ipants in the experiment to bring individual results to camgble levels of granularity.
Due to such issues, the experiment could focus only on addvselection of common
findings. This formed one the motivations for the work preésdrere.

The survey of the existing aspect mining techniques extdreaork of Mens et al.
[2007] that describes a number of aspect mining technigyekdir implementation
characteristics. By comparison, we investigate how exjséispect techniques can
be used to identify instances of typical crosscutting comee We try to answer the
guestion of when to use these techniques, i.e., for whas sbitoncerns, and how to
consistently interpret their results and turn them into mi@gful crosscutting concerns.

5.10 Conclusions

With a growing number of aspect mining techniques and aghes, it is increasingly
difficult to consistently assess, compare, and combinengiresults.

5.10. Conclusions 137

This chapter addresses this challenge by proposing a corframoework to define
systematic aspect mining based on crosscutting concets Sdre framework allows
for consistent assessment, comparison, and combinatioarpliant aspect mining
techniques. It identifies a set of requirements that ensomlyeneity in formulating
the mining search-goals, presenting the results, and &vadutheir quality.

We demonstrate the feasibility of the approach by retrofjttan existing aspect
mining technique to the framework, and by using it to guidedbksign and implemen-
tation of two new mining techniques in our FINT aspect mininfyastructure. Our
application of the three techniques to an aspect mininghraack known from litera-
ture shows how they can be consistently assessed and cahbimerease the quality
of the results. Furthermore, our table containing a mappfngore than ten existing
aspect mining techniques in our framework demonstratewitie applicability of this
framework.

As future work, we would like to extend FINT with new aspeching techniques,
and particularly with techniques that target other consents than the ones currently
supported. We shall also use such new techniques to furétheate our framework.

Another direction to explore is on elaborating our metriggesthat is part of the
framework. For example, we would like to measure how much abrecern’s extent
is covered by a particular identified seed — fsed-coverageThis metric for seeds
complements the seed-quality one, for which we can invagigew techniques for
improving the obtained values.

Chapter 6

An Integrated Strategy for Migrating
Crosscutting Concerns

In this chapter we propose a systematic strategy for miggatirosscutting con-
cerns in existing object-oriented systems to aspect-basédions. The proposed
strategy consists of four steps: mining, exploration, doentation and refactoring
of crosscutting concerns. We discuss in detail a new approa@spect refactoring
that is fully integrated with our strategy, and apply the whstetegy to an object-
oriented system, namely td¢loTDRAW framework. The result of this migration is
made available as an open-source project, which is the la@gsect refactoring avail-
able to date. We report on our experiences with conductirgydase study and reflect
on the success and challenges of the migration process, hasveh the feasibility of
automatic aspect refactoring.

6.1 Introduction

The tangling and scattering that results from implementiregscutting concerns in a
software system using traditional object-oriented prograng is a known challenge
to program comprehension and software evolution. One agprto mitigate these
issues is to migrate the system to aspect-oriented progmagn(AOP) and transform
the crosscutting concerns into aspects, a process knoaspast refactoring

Despite significant research efforts on various parts oféfectoring of crosscut-
ting concerns from existing systems, to date there existoongpelling show-case for
such a complete migration. One of the main causes for this igaihe fact that there
is no clearly defined, coherent migration strategy defgitime steps to be taken to
perform this process.

Successful migration requires a strategy comprising dte@sdentification of the
concerns (i.e., aspect mining), description of the corstre refactored, and consis-
tent refactoring solutions to be applied. Moreover, suctraegy requiresntegrated

139

140 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns

migration steps, so that aspect mining results, for exajeplebe consistently mapped
onto concerns in code, and further refactored by generaicasplutions. The present
state of the art prevents developers and practitioners &qgmerimenting with a com-
plete migration process and assessing the benefits of imigtatAOP.

In this chapter, we propose such an integrated strategy ifgnating crosscutting
concerns to aspects, which consists of four main stepsdidmidriven identification
of crosscutting concerns in an existing system (aspect)n(2) exploration of (the
context of) the concerns identified in the previous stepg(ry-based modeling and
documentation of crosscutting concerns in the system;efdptate-based refactoring
of the object-oriented idioms into AOP solutions.

Our strategy builds upon the classification and decomosdf crosscutting con-
cerns in so-callearosscutting concern sorthat we proposed earlier in Chapter 4.
Each sort describes the typical implementation idiom afatioa of crosscutting con-
cerns. Sorts act as glue between the successive steps ofgraiom: The mining
step in our strategy uses the sort-specific idioms to defiaeckegoals for identifying
crosscutting concerns that belong to a specific sort §agt, instances To support
the exploration and documentation steps, we have fornthtize concern sorts using
gueries over source code and implemented these in a tootdarsing and modeling
crosscutting concerns, as described in detail in Chapter 4.

While the first three steps of our approach have been coveredrigarlier work,
this chapter focuses on the fourth step and its connectidim the three preceding
steps. In particular, we define template solutions for tipeetsrefactoring of our sorts
(to AspectJ). Furthermore, we describe a case study in whelapply the whole
migration strategy to JBTDRAW,! an object-oriented application used in other aspect
mining and refactoring studies as well [Marin et al., 200Zeg¢cato et al., 2006; Marin
et al., 2006a; Binkley et al., 2006]. The results of our migratre available under
version control as an open-source project on sourcefoltglcdJHOTDRAW, which
is also the largest aspect refactoring publicly availablddte that we are aware of.

The remainder of the chapter is organized as follows. In segtion, we recall the
notion of crosscutting concerns sorts. We describe theatiayr strategy and elaborate
on the first three steps in Section 6.3. The sort-based asgfactoring approach that
we introduce for the fourth step is presented in Section &dction 6.5 covers our
experiences with migrating crosscutting concerns imIBIRAW to aspect solutions.
Section 6.6 discusses the results and outlines a numbessaiis learned. We conclude
with an overview of related work and recommendations fanrfeiresearch.

6.2 Crosscutting Concern Sorts

A systematic migration strategy requires a consistent wadtiress crosscutting con-
cerns in source code. To this end, we distinguish a numbetarhic crosscutting

Lhttp://jhotdraw. org

6.3. An Integrated Migration Strategy 141

concerns (i.e., concerns that cannot be split into smadtdk,meaningful concerns)
that share properties like their implementation idioms exldtions. We group con-
cerns that share such properties in categories cattexbcutting concern sorfMarin
et al., 2005a]. These sorts can be used on their own, but sanbal composed to
construct more complex crosscutting designs, for exantipé)bserverpattern, often
used as a typical example of crosscuttingness.

The first column of Table 6.1 describes the identified sort Bable 6.2 shows
several examples of instances (the other columns of Tallevil. be introduced in
later sections) Consistent behavioifor instance, groups concerns whose implemen-
tation consists of scattered calls to a specific method imeiging the crosscutting
functionality. Instances of this sort include, for exampdogging concern, a simple
authentication or authorization concern implemented aallaa@ a method checking
credentials, or a mechanism for updating observers usifggtoa notification method.

Similarly, the idiom for implementation of secondary rqleemmon in design
patterns likeObserveror Visitor, as well as in mechanisms for persistence, is described
by theRole superimpositiogort.

Composite crosscutting designs exhibit multiple sort imség in their implemen-
tation: the aforementione@bserverpattern, for example, comprises two instances
of Role superimpositigrfor the Subject and the Observer role respectively. Furthe
more, it comprises instances Gbnsistent behavigilike the concern for notification
of observers, or the one for observers registration. lessof our sorts are therefore
building blocksfor modeling and describing crosscutting functionality.

6.3 An Integrated Migration Strategy

In this section, we define an integrated strategy for miggatirosscutting concerns in
existing systems to aspect-based solutions. The strategysts of four steps:

Step 1. Idiom-driven crosscutting concern identification (alseWm asaspect min-
ing).

Step 2. Concern exploration.
Step 3. Query-based concern modeling and documentation.
Step 4. Sort-based aspect refactoring.

The remainder of this section discusses the first three stepere detail and the next
section presents the fourth step. We show how the steps t@grated via crosscut-
ting concern sorts using examples from ouralitdrRAW to AJHOTDRAW migration
experience.

142 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns
| Sortand Intent | Idiom | Template aspect solution
(Method) Consistent Be- Method invoca-| Pointcut and advice mechanisms.

havior (CB) A set of
methods consistently in
voke a specific action a
a step in their execution

tions from set of
- methods.
5

around(..) : callersContext(..){
invokeCB(..); //before
proceed();
/1 or after: invokeCB(..);

}

Redirection Layer (RL)
A type acts as a front
end interface having its
methods responsible fg
receiving calls and redi
recting them to dedi
cated methods of a sped
cific reference, option-
ally executing additiona
functionality.

Redirector type
whose methods
5 consistently

r forward calls to
pair methods in
receiver.

)

Pointcut and around advice to replace each redirection.
around(..) : call Receiver.nm(..) &
filteredCallers(..) {
addBehavi or 1();
proceed(..); //redirection
addBehavi or 2() ;

Expose Context (EC)
Context Passing: Meth
ods in a call chain
consistently use pal
rameter(s) to propagat
context information
along the chain.

Method in chain
I passes paramete
as argument tg
- callee.
e

Pointcut and advice, where the point cut collects the camde
2rbe passed - Wormhole [Laddad, 2003b]
around(<cal l er context>, <callee context>):
cflow(cal | er Space(<cal l er context>)) &&
cal | eeSpace(<cal | ee context >){
[l ... advice body

}

Role Superimpositio
(RS} Types extend
their core functionality
through the implemen
tation of a secondary
role.

Set of types
(declare and) im-
plement member
roles (which are
possibly declared
by a distinct
interface).

Introduction mechanisms.
decl are parents :
Type inpl enents SecondaryRol e;
Modi fiers Type Type.rol eFiel d;
Modi fiers Type Type.rol eMethod(..){
...Iloriginal inplenentation

1

Support Classes fo
Role Superimposition
(SC) Types implement
secondary roles by
enclosing nested suppo
classes. The nesting ef
forces (and explicates
the relation betweern
the enclosing and the
support class.

Set of types (in
hierarchy) imple-
ment Role using
nested classes.
r
n

The desired solution, introduction for nested classes,ots
supported by AspectJ. Our solution is to move the sup
classes to the aspect.

n
port

Exception Propagatio
(EP): methods in call
chain consistently (re
)throw exceptions from

their callees in the abt

sence of an appropriat
answer.

Method in call
chain re-throws
exception to
caller.

Softening exceptions mechanisms.
declare soft : ExceptionType :
(call (* rootException(..)
throws ExceptionType));
Capture SoftException at top of the call chain.

Table 6.1: Crosscutting concern sorts.

6.3. An Integrated Migration Strategy 143

| Sort | Examples \

(Method) Consistent Behavior (CB) Logging of exception events in system; Wrapping business
service exceptions and re-throwing them as new exception
type [Marin et al., 2007a]; Notification of Figure change

events.

Redirection Layer (RL) Border decorations for Figure elements (Decorator pattern
Command wrapper for undo support.

Expose Context (EC) Transaction management [Laddad, 2003b]; Credentials pass
ing for authorization; Progress monitor for long-runninmeo
ations.

Role Superimposition (RSI) Figure elements observed by views for changes (Subjedt rple

Visitable elements (Visitor pattern); Storable figuresréfe
tence) [Marin et al., 20074a].

Support Classes for Role SuperimUndo support for Command elements; Event dispatchen for

position (SC) observers’ notification.

Exception Propagation (EP) IOException thrown if Figure elements recovery fails;
Checked SQLException thrown from methods in the JDBC
API.

Table 6.2: Examples of sorts instances.

6.3.1 Aspect Mining

In our earlier work we have proposed and implemented an idlawen approach to
aspect mining based on crosscutting concern sorts [Magh,&t006a]. The approach
supports the design of aspect mining techniques that targi@inces of a specific sort
by searching for the sort’s implementation idiom.

The third column in Table 6.1 shows the implementation idaassociated with
each of the sorts. Consider for example the commands in amiyaayplication, like
JHOTDRAW, that carry out tasks in response to user actions. Each cachomacludes
its execution with a call to theheckDanage method in the drawing view, which up-
dates the view with changes triggered by the command. Thicatibn concern is an
instance ofConsistent behaviowhose implementation idiom is invocation of a spe-
cific method from a (large) set of methods. Aspect mining mégpires such as Fan-in
analysis [Marin et al., 2007a] or Grouped calls analysisiiMat al., 2006a] exploit id-
ioms such as this one in their search process. The techraquitheir implementation
have been discussed in Chapters 2 and 5.

We have implemented the two mining techniques mentionedeabod an addi-
tional technique that targets instancesRadirection layelin our aspect mining tool
FINTZ2. The techniques and their implementation have been disduasChapters 2
and 5. The results of applying FINT to #fDRAwW are the starting point of our mi-
gration case study.

2 Available from http://swerl.tudelft.nl/view/AMR/FINTrad discussed in detail in Chapter 2 and 5

144 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns

Like the notification mechanism above, we have founddbaesistent behaviad-
iom in multiple concerns implementing support for commaadd undo operations.
Examples include consistently checking the reference eaattive view before exe-
cution of each command, consistent initialization of Comdhabjects by means of
super calls, or consistent checks implemented by all astiomndo a command. Our
search for idioms of th&edirection layepointed us to wrapper objects for undo-able
commands: methods in the wrapper delegate calls to theppgdhicommand object.

6.3.2 Concern Exploration

Aspect mining often does not yield complete crosscuttingceon instances, but just
concernseeds (possibly incomplete) sets of program elements that lietora partic-
ular crosscutting concern.

The second step of our strategy, concern exploration, atregganding mining
results (i.e., concern seeds) to the complete implementafithe associated concerns.
In this step, we start from the discovered seeds and use ¢adispelation of the sort
for the seed’s concern to identify all the participants ia toncern implementation.

In our Consistent behaviaxample, this means looking at all call relations directed
to the methoatheckDanage (or another method, depending on the particular concern
targeted). As it turns out, not all of the 28 calls to this noethhat we found are part
of the concern of interest, but around two-thirds of thermaely those fromCom-
mandclasses. Similarly, th&rouped callsmining technique, which applies a more
conservative search, covers only partially the set of gallsicipating in the concern.

Our aspect mining tool, FINT, integrates support for seeg¢oeation and expan-
sion to full concerns, such as detection of structural i@kator similar call positions
for the callers of a method. A number of other tools also gte\jpartial) support for
guerying source code and exploring concern sort relatiBepse IDE, the Concern
Manipulation Environment (CME) [Tarr et al., 2004], FEAT [Ritdrd and Murphy,
2002], JQuery [Janzen and Volder, 2003], CodeQuest [Hagtead., 2006], or B-
QUET [Marin et al., 2007d]. The same tools can be used to furtineletstand the
context enclosing the discovered crosscutting concernthidtstep, we can see, for
example, how the identified sort instances in command and sagport relate to each
other: commands that can be undone enclose a specidlizddActivity class that
knows how to revert the effects of the command’s executiavo df our mined sort in-
stances cover the key methods of the two classesxbeut e method in a command,
and theundo one in the enclosed undo activity.

6.3.3 Concern Modeling and Documentation

Most approaches to concern modeling and their tool supparbtlenforce consistency
across the representation of crosscutting concerns. Tdigiale of what is crosscutting
in a system, and how to best represent that, lies with theafiseese concern modeling

6.4. Aspect Refactoring 145

tools. Such a concern model can contain ad-hoc collectibpsogram elements, such
as methods and classes, that participate in a concern’smapitation.

However, to ensure generally applicable solutions for eamenigration, we need
a coherent way to describe similar concerns and their conpraperties. To this end,
we have defined queries for each of our crosscutting conaets which search for
the sort’s specific relation between source code elemerds.mére information on
these sort queries, we refer to Chapter 4,which formalizesetigueries using relation
calculus over source models extracted from the systemicsmode.

We have implemented support for this third migration stepuinconcern modeling
tool SoQue® [Marin et al., 2007d]. Figure 6.1 shows two of the main vieWshe
tool. TheConcern modeView allows us to organize concerns hierarchically, witht so
instances and their associated queries as leaf-elemehteaiposite concerns describ-
ing more complex crosscutting designs as parents. The asesatect a sort instance
in the concern model and execute its query; The results ofjtleey are displayed in
the Search (Sorts Resuljew, from where they can be navigated to their source code
implementation. To add a new sort instance to the model, gbelaunches the dialog
providing the query templates for each sort, and paranzetethe query for a given
crosscutting concern. For example, to document@amsistent behaviaonstance for
notification of views, we use the knowledge gained at theiptevsteps and search
for all the calls to theheckDanage method from methods in theommandhierarchy.
The method and the hierarchy are our input parameters tagny.gl he instances can
then be added to the model from the results view.

A part of the concern model built to document concerns iIBIRAW is shown
in Figure 6.1. The model is available for download at the seuele-site as the tool and
covers over 100 sort instancéi Section 6.5, we use this documentation to guide our
refactoring and configure the aspect solutions.

6.4 Aspect Refactoring

We employ a sort-based, idiom-driven approach to aspeatt@ing that allows for
consistent integration with the previous steps of our ntignastrategy. Furthermore,
we define template aspect solutions for each of our concetntbat we can instantiate
to refactor an occurrence of that sort. Like the previougsstthe refactoring approach
addresses crosscuttingness at the level of atomic coneenich provides the optimal
trade-off between complexity of the refactoring and corhpresibility of the refactored
element.

The template aspect refactorings for each sort are sumadkainzthe last column
of Table 6.1. A solution basically consist of one aspect legg mechanism. At the
moment, however, some sorts do not have an equivalent msomhanAspectJ (or any
other aspect language existing at this moment). Supp®@seta for example, cannot

3 Available from http://swerl.tudelft.nl/view/AMR/SoQile

146 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns

b e SZ % % E EHx =0
} PreExecutionCheck-ViewNotNull[CB: (hierarchy of 'Command’) invoke ('execute’ (no JRE))] |
= @ |HotDraw @
¥ @ Commands
~ @ Wrapper

& UndoableWrapper{RL: (UndoableCommand' (no JRE)) redirectsTo ('Command' (ne JRE))]
~ @ UndoSupport
= CommandUndoSupport{SC: (hierarchy of "Command’) implement by support classes ('Undoable' (no JRE})]
I# SaveFiguresStateBeforeExecution[CB: (hierarchy of 'Command') invoke ('setAffectedFigures’ (no JRE))]
&# InitU ndoSupport[CEB: (hierarchy of 'Cemmand') invoke ('setUndoActivity' (no JRE))]
= CommandUndoahleRole[RSI: (hierarchy of *Command') implement (Command' (no JRE)[vinual: getUndoActivity ; setlindeActivity ;]j]

= PreExecutionCheck-ViewNotNul[CE: (hirarchy of ‘Command) invoke (execute' (ro JRE)]

& InitCommand[CB: (hierarchy of '‘Command’) invoke (‘AbstractCommand' (no JRE))]
1= PostExecutionMotfication-UpdateToCmdChanges[CB: (hierarchy of 'Command’) invoke (checkDamage' {no JRE}]]
¥ @ CommandObserver
& NotificationDispatcherSupport[SC: (hierarchy of 'Command') implement by support classes (‘EventDispatcher’ (no JRE))]
1= CommandExecutedNctification[CB: (project ' |HotDraw54b1' (no JRE)) invoke ('fireCommandExecutedEvent' (no JRE))]

EF ObservableCommand[RS!: (hierarchy of 'Command') implement (Command' (ne JRE)[virtual: addCommandListener ; removeCommandListener ;)]

-

E# Commandl istener/RSI: (nroiect ' IHotDraw54h1* no IRFY imnlement (‘Commandl istener' ina IRF11

[4] | T
| GroupCommand.java 22 =08 |+ search & 4 4 8 % & Pt TS0
% = public void EXGE;’E() { BE "CH.ifa.draw.standard. AbstractCommand.execute()' - 18 references in hiera:g-
5 D agexecute () R -

CH.ifa.draw.contrib.zoom.ZoomCommand
setUndoActivity(createUndoActivity()); o i

B

Y H A i -+ zexecute() - CH.ifa.draw.figures. GroupCommand
getUndoActivity().setAffectedFigures(view().selection()); St btk e i “HgHrES. Laroupl.omman
{ (GroupCommand. UndeActivity)getUndoActivity()).groupFigur @ aexecute() - CH.ifa.draw.figures.InsertimageCommand
. view().checkDamage(): [=] || ®~execute(- CH.ifa.draw.figures.UngroupCommand
@ [[B @ s executel) - CH.ifa.draw. standard. AlionCommand |l|

Figure 6.1: SQUET documentation of the concerns for Command support io3H
DRrRAW.

be introduced similarly to role members, although, as wédl ska in Section 6.6, this
would be a desired refactoring.

To refactor a sort instance, we start from its query-basedientation (in 8-
QUET). The query points us to the elements participating in treeern, which we use
to configure the template aspect solution. For example, tleeycfor aConsistent be-
havior instance indicates the callers to be captured by a poingfutition (the source
context) and the action to be introduced by the advice (tfgeetaontext). Other con-
figurable elements, such as the type of advice to introdueerbsscutting call (e.g.,
before, after, after throwing, etc.), are decided at thaatefing time.

The solution described in Table 6.1 for tRedirection layersort is a common
approach to refactoring implementations of becorator pattern [Hannemann and
Kiczales, 2002; Lesiecki, 2005]. This consists of replgdime redirector class by an
aspect that intercepts (relevant) calls to the methodsviagdahe redirection, and then
adds the redirector’s functionality by means of an advice.

The aspect solution foExpose contexinstances is discussed by Laddad as the
Wormbholepattern Laddad [2003b]: the extra parameter used to passxtiamreplaced
by using a pointcut to obtain the context from the caller améavice that makes the
context available to the caller’s control flow.

Solutions for static crosscutting, liketroductionanddeclare sofimechanisms in
AspectJ, apply to two of the sorts in the liBiple SuperimpositioandException prop-

6.5. Aspect Refactoring afHOTDRAW 147

agationrespectively. The elements to instantiate these aspeptadéss are again avail-
able through the sort-based documentation of the conctragindicate the members
of a type’s secondary role to be moved to and then introdueed &n aspect, or the
checked exception to be turned into an AspectJ soft exaepmft exceptions, un-
like checked ones, do not need to be caught or re-thrown. alluw's us to remove
the throwsclauses from the (transitive) callers of the method iritgthe exception
propagation. The method at the top of the call chain thatsdedh the exception has
now to catch the soft exception that wraps the original cedakne. The top method
assumes knowledge of the wrapped exception that it has tactxind cast. The code
to handle the (cast) exception requires no modifications.

6.5 Aspect Refactoring of JFOTDRAW

We have used the sort-based migration strategy to refaatonder of crosscutting
concerns in JBTDRAW towards an aspect-oriented solution. Based on these experi-
ments, we would like to obtain answers to the following gioest

1. Are the template aspect solutions proposed in SectioagpHcable in practice?
2. What are the risks and benefits of adopting refactoringegtyahat is sort-based?

3. What level of automation of all four steps and the fourthacédring step in
particular is feasible?

4. Do the refactorings carried out lead to a better separaficoncerns?

In the present section, we report our observations and exmes regarding the
migration of specific crosscutting concerns towards aspecttHOTDRAW. In the
next section, we return to our questions, and try to forneudatswers to them based on
the findings presented here.

6.5.1 AJHOTDRAW

We share the refactored version of GFDRAW as an open-source project on source-
forge®: AJHOTDRAW is, to our knowledge, the largest migration to aspects alvkl
to date. A transparent, gradual migration process is inapofor building confidence
in the aspect-oriented solution. Therefore, our refang®iaim at maintaining the con-
ceptual integrity and stay close to the original design. dditon, by publishing the
refactoring steps in a versioned repository, we providgrisn the migration process
and enable traceability, making the refactored systeneetsunderstand.

We focus our next discussion on the refactoring of sort ims#a contained in the
implementation of the command and undo functionality, Wwhiae also used in Sec-
tion 6.3 to explain the first three steps of the approach. Véetlis organization of

4 http://sourceforge.net/projects/ajhotdraw/

148 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns

public class Abstract Command inplements Command {

public void execute() {
if (view() == null) {
t hr ow new JHot DrawRunt i meException(
"execute_shoul d_NOT_be_getting_called_when_view()_==_null");
}
}
}

public class PasteCommand extends AbtractCommand {

public void execute() {
super . execute()

Figure 6.2: Consistent check - super method idiom.

concerns in the concern model initiating the refactorinddsign the package and type
structure of our aspect solutions. The solutions discubsémv have been integrated
with the source code available on the public repository.

6.5.2 Consistent Behavior in Command

JHOoTDRAW makes use of th€ommanddesign pattern in order to separate the user
interface from the underlying model, and to support suctufea as undoing and redo-
ing user commands. Each command has to realizEtmemandnterface, for which a
default implementation is provided in tAdstractCommandlass. The key method is
executewhich takes care of actually carrying out the command (sicpasting text,
duplicating a figure, inserting an image, etc.).

A typical implementation of a command is highly crosscugtiwith theCommand
top interface defining three different roles: besides tbeie functionality, commands
are undo-able as well as observable elements. The suppdtidsecondary roles
counts for half of th&€omman& members. Similarly, thexecut e method in a typical
concrete command implements multiple concerns.

Eachexecut e method should start with a consistency check verifying thatun-
derlying “view” exists. Therefore, each concrete impletaéion of execut e starts
with a call to theexecut e implementation in the superclass, which is always the one
from theAbstractCommandThis is illustrated in Figure 6.2.

We apply aConsistent behaviorefactoring template from the last column in Ta-
ble 6.1 using a pointcut capturing akkecut e methods, and putting the check itself in
the advice. Observe that mimicking the implementation wtike check is in a super

6.5. Aspect Refactoring afHOTDRAW 149

poi nt cut cmdExecut e(Abstract Command aCommand)
t hi s(aCommand)
&& execution(void Abstract Command+. execute())
&& 'within(*.. DrawApplication.*);

before(Abstract Command aCommand) : cmdExecute(aCommand) {
if (aCommand.view() == null) {
t hrow new JHot DrawRunti meException("...");

}

}

Figure 6.3: Enforcing consistency using advice.

method is not possible in AspectJ: super methods cannotdessed when advising a
method. The resulting solution is shown in Figure 6.3.

The only surprise in this code may be thiet hi n clause in the pointcut. In the
exploration step, we learned thetonymousubclasses oAbstractCommando not
implement the consistency check. Such classes are usedriplescommands like
printing, saving, and exiting the application. Since Agpeaines not provide a direct
way to exclude anonymous classes in a pointcut, we used the n operator to ex-
clude executions occurring in the context of the top levgéctcreating the full user
interface. One can also argue that the anonymous classealsl shdude this check (in
which case the exclusion can be omitted from the pointcuit), ds stated before, we
focus on keeping the behavior as it was, not on modifying it.

Besides the separation of the consistency check from thelogie of the com-
mands, another benefit of the aspect approach is that cemsysthecks cannot be
forgotten. This is illustrated by a number of the anonymdasses, but also by one
non-anonymous commanidyhich does not extend thbstractCommandefault im-
plementation. Consequently, it cannot reuse the consigtemeck using a supercall.
Inspection of thexecut e implementation, however, clearly shows that the code exits
with a null pointer exception in case the check fails. Thiggasts that the aspect that
we are looking for should implement the check not only for AtestractCommand
class, but for all th€ommandmplementations.

6.5.3 Undo Functionality

Support for “undo” functionality was added in &fDRAW version 54. As can be
imagined, it is a concern that cuts across many differerssels. More than 30 ele-
ments of the JBTDRAW framework, comprisingommandstoolsandhandles have
associated undo constructs to revert the changes spawilegibynderlying activities.
Thecommandgroup is the largest in terms of defined undo activities.

SNamely, theUndoableCommand

150 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns

The participants of the “Undo” functionality have the follmg responsibilities:

e Each command is associated with amedo activity whose methodindo can
be invoked to revert the command. The undo activity is imgeted in a
nested class of the command, which is instantiated usingt@arfamethod called
creat eUndoActivity.

e Prior to the execution of the command’s core logic, the conuhsaves a refer-
ence to its associated undo activity, by calling a dedicagtter method.

e The primary abstraction in the undo activity is the list deafed figures: when
the command’'sxecut e method is invoked, the relevant state of the affected
figures is stored in the undo activity.

e Undo activities are maintained on a stack by the undo manager

Support classes for role superimposition

The refactoring that we propose for Undo consists of assngia dedicated undo-
aspect to each undo-able command. The aspect implemergstireundo function-
ality for the given command, while the associated commaasisalemains oblivious to
its secondary (undo) concern.

We use naming conventions to relate the aspect to its sigghbodmmand class.
In a successive step, we refactor each of the sort instandég iundo support. The
command’s nestetdndoActivityclass belongs to &upport classemstance. In the
absence of introduction mechanisms for nested classegi@chAl our aspect solution
consists of moving the&lndoActivityclass into the aspect.

The factory methods for the undo activities éat eUndoActivity()), as well
as the members for managing the reference to the command(activity belong
to an instance oRole superimpositianThe role members move to the aspect, from
where they are introduced back into the associated comnlasses using inter-type
declarations. The design, however, suffers modificatientha visibility of the undo
factory methods has been altereds#ECT cannot be used to introduce the required
factory method aprotected

Consistent behavior

The invocations in thexecut e method that are responsible for setting up the undo ac-
tivity implementConsistent behaviatoncerns: the calls are taken out of #xecut e
method, and woven into it by means of advice. In some casethesponding point-
cut simply needs to capture akecut e method calls. However, in other cases the
pointcut is more complex, depending on the way the undo cedurixed with the
regular code.

As an example toillustrate that automating such refacggrig not at all straightfor-
ward, consider the paste-command, whesecut e method consists of retrieving the

6.5. Aspect Refactoring afHOTDRAW 151

public class PasteCommand extends FigureTransferCommand {
public void execute() {

Fi gureSel ection selection = (FigureSelection)
Clipboard. getClipboard(). getContents()
if (selection = null) {
set UndoActivity(createUndoActivity());
/[l core command | ogi ¢ and ot her undo setup
Fi gureEnumeration fe = insertFigures(...);
get UndoActivity().setAffectedFigures(fe)

Figure 6.4: The original PasteCommand class.

selected figures from the clipboard, inserting them intoctineent view, and clearing
the clipboard. All this is done in a single method, using laeaiables and if-then-else
statements to deal with situations like pasting from an grajgpboard. The undo as-
pect will require the same conditional logic, and acces$i¢ostime data in the same
order. The following alternatives are possible for aspefaatoring:

o if all getters are side effect free, an approach is to setaputido activity in a
simple before advice. In JBirDRAW, however, this is not the case, for example
because of figure enumerators that have an internal state.

e an alternative is to intercept relevant getters, keep tofitke data locally in the
advice as well, and inject advice after all data has beeect®itl. This is the ap-
proach we follow, but some of the pointcuts are somewhdi@all Figure 6.5
shows such a pointcut in the undo aspect foRsteCommandaefactored from
Figure 6.4. TheclipboardGetContents@ointcut captures the call that sets the
reference to be checked by both the command’s core logictendrndo func-
tionality in the aspect.

e The last possibility is to refactor the lorexecut e method into smaller steps
using non-private methods. The extra method calls can leecepted allow-
ing smooth extension with setting up the undo activity, at¢bst of creating a
larger interface and breaking encapsulation. Moreovemvadd still introduce
artificial pointcuts, as our intention is to enhance the bihaof the execut e
method, and not of various steps created for supportingcadmtroduction.

Redirection layer

The design of undo in JBiTDRAW uses wrapper objects to associate undo-able com-

mands to menu items and buttons in the user interface (UB.\Wiappers share their
top level interface with regular commands, so they can canteeUl elements and

152 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns

public aspect PasteCommandUndo {
//store the Cipboard s contents - conmon condition
Fi gureSel ection selection;

poi ntcut clipboardGetContents()
call (Object Clipboard. getContents()) &&
wi t hi ncode(voi d PasteCommand. execute())

after () returni ng(Object select):clipboardGetContents(){
selection = (FigureSelection)select;

}

poi ntcut executePasteCommand(Past eCommand crd)
this(cmd) && execution(void PasteCommand. execute())

/1 Execute undo setup
void after(PasteCommand cmd): execut ePast eCommand(cmd) {
/1 the same condition as in the advi sed net hod
if(selection !'= null) {
cmd. set UndoActivity(cmd. createUndoActivity())

cmd. get UndoActivity(). set AffectedFigures(...);

Figure 6.5: The undo aspect for PasteCommand.

6.5. Aspect Refactoring GFHOTDRAW

[Sort | Limitations and risks \

tion; High degree of tangling might prevent (automatic)ref
preventing generic pointcuts; Calls to super class funetity
quired that omissions are not on purpose; Sophisticatedqas
needed to intercept all relevant state modifications in tivisad

precedence;

Redirection layer

The repetitive logic of redirection for the redirector’s tineds is
not eliminated — the aspect solution addresses the reidinezt

not (automatically) covered by the solution; The aspecitgwt
is not dynamic (dynamic reordering of redirectors) [Hanaam
and Kiczales, 2002]; The aspect solution replaces theaetir

tion to test against; The calls (to the receiver) to be adivfee
redirection need to be detected;

Role superimpositio

nVisibility affected since protected (/non-public) metlsathnno
be introduced.

Support classes fq
role superimposition

its interface public) and weakens the relation with the esiag
class;

Exception propagg
tion

-Type of thrown exception is lost; Refactoritigrowsclauses in

inheritance hierarchy.

Table 6.3: Risks and possible limitations of the aspect golut

cannot be migrated into advice; Modular reasoning affebied
need to keep track of data set in the advised method; Check re-

methods; Check required that advice (position) does naigdia

(wrapper) and hence changes the public interface of thécapp

153

Consistent Behavior Advice constructs in a privileged aspect can break encapsul

toring; Anonymous classes cannot be referred to consigtent

method level and not at type level; New redirector methods ar

Not supported; Nesting the support class in the aspect §reak
dependencies (thus forcing the enclosing class to make afore

154 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns

receive user actions. While most commands are undo-able amoped by arln-
doableCommandbject, there are a few exceptions, such@GspyCommand

Wrappers are instances Bledirection layer The refactoring of such instances
raises several important issues: first, we need to idertidged commands that are
wrapped by arndoableCommandbject and accessed through this object; second,
we need to check if all clients of a command access its funatity via the wrapper.
Only those calls from command clients that are received byapper in the origi-
nal implementation need to be captured by the aspect soltdiattach the wrapper’s
functionality by means of advice.

Further complications that limit feasibility of automatedactoring have to do with
the multiple roles irdndoableCommandsince the aspect solution completely replaces
the wrapper class, this means that introduction of roles il®nger possible. Some of
the original roles in the system are implemented by the weapply to comply with
the top interface of the wrapped element and add no specifatinality, such as the
Observableole of Command. The aspect solution can safely omit these roles. For
other roles however, this is not desired and refactoringireg customized redirector
solutions.

6.6 Discussion

6.6.1 Applicability in Practice

The proposed template aspect solutions proved suitableefactoring concrete sort
instances in the JBITDRAW case and for separating the crosscutting code from the
core system. However, the difficulty of implementing theexgsolution and the qual-
ity of the result will vary from case to case. One of the isssgmintcut definitions:
Ideally, we would like to use pointcut definitions that désera set of elements by for-
malizing a common property instead of a brittle enumeraticthe elements in the set.
In practice, such definitions will not always be feasibléhei because of limitations
in the aspect language, or due to irregularities in the codieuinvestigation.

Desired functionality included for example a pointcut tgtae calls from “all
Commandclasses, except all anonymous classes”, or a pointcut foobgects in-
terested in command events”. Irregularity in the code mrgluire that for certain
methods the advice executes only if a specific conditiondolthis is the case for a
few commands in JHTDRAW that send notifications of their execution only if the clip-
board’s content is not empty. In such a situation, one hasalcera trade-off between a
generic pointcut definition that captures all commandsjdnares the particular con-
dition, and a definition that enumerates all appropriatmel#s. The former solution
would execute the code in the advice in spite of its void effeowever, the latter
pointcut definition needs to be updated (manually) for evieny element added to the
set of interest (i.e., every new command).

Similar observations can be made about the definition ofcadvisometimes we

6.6. Discussion 155

need to modify the original control flow of a method-to-begnated in order to intro-
duce an action to it by means of advice. Although the refangomay have no effect
on the observable behavior of the method, the original floulcbe more natural or
comprehensible.

6.6.2 Benefits and Risks

In comparison with refactoring approaches proposed byrstloeir sort-based migra-
tion strategy gives a clear definition of the input requiredréfactoring (i.e., an atomic
concern) and describes it consistently using queries. dllows for the definition of
reusable solutions and improves comprehension of refagtby addressing meaning-
ful concerns instead of code fragments [Binkley et al., 20@6nteiro and Fernandes,
2005]. Moreover, the concern queries allow us to describetimtext cut across by a
concern, and hence the concern’s intent. This gives a besight into the concern and
its aspect solution than the simple enumeration of joingga@ommon with most previ-
ous refactoring approaches. We believe that a clearly Bpeenput for a refactoring
solution is a necessary condition for ensuring consistegtation of concerns.

Among the main risks of refactoring, we identify the highdewf coupling and
complex dependencies between the base code and the ctimgscahcern. We antic-
ipate that any non-trivial aspect refactoring will requaigject-oriented refactorings,
before the crosscutting concern can be taken out of theadlaisystem.

The issue with coupling is that, before migration, concevdeccan freely access
certain parts of the core code that may have limited visybditer the migration. Pos-
sible risks in such a case are weakening the visibility i@gins of those members
or violating encapsulation by declaring the aspeotileged Other risks include code
duplication in advice and the advised method or definitioartficial pointcuts to cap-
ture return values of calls from the advised method; thidccba the case when some
control logic is required by both aspect and the advised atkth

We encountered several complex dependencies while refaginstances oEx-
ception propagationn JHOTDRAW (see Section 4.4.1 for a descriptionExXception-
Propagationin JHOTDRAW). One example is the propagation of tl@Exception
rooted in the set of methods to read drawings from file. Thénods in the call chain
re-throwing the exception override other methods, whostaded thrown exceptions
might only serve for compliance with the method to be refeerioIn this case, we also
need to address thdinrowsclause within our refactoring. Moreover, the overriding
elements of a method in the chain that throw the same excepéied to be refactored
as well, as their exception declaration is no longer allawed

Table 6.3 summarizes the above risks and limitations irctefang to aspects. Note
that many of these limitations are independent of the gjyadenployed for refactoring.
In spite of that, we are not aware of other papers in the areafa€toring to aspects
that discuss these limitations.

156 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns

6.6.3 Automation

The refactoring step in our strategy currently has the laagimation of all steps in
our approach. However, the other (tool supported) stepsggvmany of the elements
needed for refactoring, such as the crosscutting elemehthencontext it cuts across
which are captured in the concern documentation as redeagabries. Moreover,
the description of these elements by the sort-queries igagim many respects to the
definition of pointcuts for a possible aspect solution.

We believe that the case study presented in this chapteraquared step before
setting out to design (automated) aspect refactoringrigollhe study gives us insight
into the complexity of each refactoring and the trade-aife¢ made. The challenges
and limitations discussed in the previous sections als@atel that completely au-
tomated aspect refactoring is unfeasible in any practitahtson, since the process
requires a significant level of interaction with the userguale the system through the
right decisions.

A particularly challenging automatic refactoring wouldthe one forRedirection
layer instances: the original, dynamic solution uses a commanfaate for both redi-
rectors and potential receivers. This interface hidesdbatity of the object for which
a call is made; However, the refactoring of redirectors meguto know which calls are
meant for a redirector and so need to be attached an adwiodieing the functional-
ity of the refactored redirector.

6.6.4 Separation of Concerns

Our case study had a satisfactory outcome in achieving artsgparation and mod-
ularization of concerns in the targeted application. As weraenable to notice, the
crosscutting code is an important part of the refactorechelgs, in some cases, such
as theCommancelements, over 50%.

We appreciate that the core code is easier to understane mbigence of the mi-
grated crosscutting concerns. To understand the aspeet ondhe other hand, one
typically also needs to understand the base code that is@slviThis is exaggerated
further by (high) coupling between the aspect and the bade, dixe for aspects that
intercept calls from advised methods to reuse the valuased by such calls.

While refactored, crosscutting-free code is easier to cehmgand, modifications to
such code would still require awareness of the advice thaliespto it. For instance,
aspects might assume a certain order of the calls from asedlvhethod, which has
to be preserved to correctly introduce additional behavior

Keeping track of the order of different advice in an aspetitgm and preventing
accidental changes might prove difficult, particularly whbe number of aspects in-
creases. The support from present development envirosmentd not provide much
insight into violations of such ordering, or into the orahgritself. This becomes more
of an issue when the order is set using name-based wildaandsjew aspects match
an existing rule for aspect precedence that should not appiyem. A similar situation

6.7. Related Work 157

might occur when changing an aspect solution that is alreadgred by a precedence
rule, and the changes would not be compliant with that rulean@ng the position
of an advice definition in an aspect could also modify prenedgif multiple advices
in the aspect apply to the same joinpoints. Unspecified piesae could also lead to
interference between new advices introduced by refag@id existing ones Storzer
and Forster [2006]. Automatic refactoring needs to be awériese issues when
adding advices to an aspect source file.

Some concerns might be crosscutting for advices, simikarlthe way they are
crosscutting for methods. For instance, the re-use of afie&il enumerations in
JHOTDRAW requires to reset them after each iteration. Such enuroasatire used by
some advices in the aspect solutions. Applying aspectisokito aspects might prove
challenging for both tool support and comprehensibility.

6.7 Related Work

While each step in the migration of crosscutting concernsbieas addressed by re-
lated research, we are not aware of an integrated strategihke one proposed in this
chapter.

The present approaches to aspect refactoring can genegrltiystinguished by
their granularity. Laddad’s set of refactorings cover Hottlevel ones, such atract
method calls into aspects extract interface implementatipas well as more complex
refactorings, like design patterns, transactions managéerar business rules [Laddad,
2003b,a)]. Although the latter subset typically involvesltipie concerns to be refac-
tored, there is no categorization of these various conaartigeir refactorings.

Hannemann et al. propose an approach to the aspect refactdriesign patterns
based on a library of abstract roles [Hannemann et al., 2886Bnemann and Kicza-
les, 2002]. The role-based refactoring requires one to ngitarn’s implementation
onto the predefined roles describing the pattern, and thalreaa set of instructions to
refactor the implementation to aspects. The approach epagtther towards generic,
abstract solutions to typical problems that involve crasisng functionality. How-
ever, as we have already seen, these patterns typicallyshawmplex (and variable)
structure in source code, which exhibits multiple (atonesi@sscutting concerns. The
refactoring of a whole pattern in one step might prevent tmagrehension of the con-
cerns involved. Moreover, our experience suggests th&tmpaimplementations can
vary significantly from a standard description and one-sééactoring could be ham-
pered by complex dependencies. We cannot make a full assesshthis approach as
the implementation and the experimental results are nalaie, but we believe that
all the limitations discussed in this chapter would equapply to it.

Finer-grained refactorings have been proposed in the fégcode transformations
catalogs [Monteiro and Fernandes, 2005] and AspectJ lawe [@w Borba, 2005].
These transformations can occur as steps in the aspedbméfigoof an (atomic) cross-
cutting concern, but remain oblivious to the refactoredoesn. They describe the

158 Chapter 6. An Integrated Strategy for Migrating Crosscutt®gncerns

mechanics of migrating Java specific units to AspectJ ongs, Extract Fragment
into Advice, Move Method/Field from Class to Inter-typ&imilar approaches have
been proposed Hanenberg et al. [2003], and Ettinger anca®ezlj2004], who em-
ploy program slicing for refactoring to aspects. Such sistalp transformations might
benefit the implementation of automatic refactorings byw@néing complex depen-
dencies and ensuring behavior preservation as discuss€aleyand Borba [2005].
However, more effort is required to assess their generdicaility: for example, the
case-study used for the refactoring in Monteiro and Fereafi2005], is arDbserver
pattern implemented in a demonstrative application, whacks the complexity of a
real system like JHTDRAW.

In comparison to the work on fine-grained refactorings, th-lsased approach
presented in this chapter emphasizes concerns and idemtifiemon properties at a
consistent granularity level. This allows us to design a glete migration strategy,
where the refactoring is integrated with steps for concdemiification and compre-
hension.

Similar observations also apply to the comparison with #faatoring approach by
Binkley et al. [2006]. Their emphasis is on full automationgddhey offer an Eclipse
plugin for conducting six elementary refactorings. Thegu® on our fourth step only,
and assume aspect mining has resulte@eyi n- aspect and@nd- aspect annota-
tions in the code. As an example, one of their six refactarimgves individual calls
to separate aspects, after which a (non-trivial) point@istraction step is needed to
merge the results. Our approach eliminates the need focdiniplex abstraction step,
thanks to the sort-based integration between aspect mamdgefactoring (refactoring
is based on a full concern model in our case). Like us, theyJuerDRAW as one of
their case studies. Somewhat surprisingly, they do notrteymy of the limitations that
we identified, although their results exhibit the same ktiiins.

6.8 Concluding Remarks

In this chapter, we proposed an integrated strategy foratirgy crosscutting concerns
to aspect-oriented programming. We presented in detaitdfeetoring step of our
strategy, and applied the entire migration process to gosde an open-source appli-
cation. Furthermore, we discussed the challenges of mefagtcrosscutting concerns
to aspects and how these could impact the design and imptatisenof automatic
aspect refactoring.

The contributions of this work can be summarized as:

e An integrated strategy for migrating crosscutting consémAOP solutions;

e An aspect refactoring approach based on crosscutting noosoets and a set of
refactoring templates;

e A report on our experience with migrating concerns in a rgatesm to aspects
and the challenges of this process. This report is usefudgsessing the present

6.8. Concluding Remarks 159

support for refactoring and the feasibility of automatipes refactoring for
various categories (that is, sorts) of crosscutting carger

e AJHOTDRAW, a show-case for aspect refactoring in an open-source mgsie
tation that can be further used by researchers and praeirsdo evaluate aspect-

based solutions to crosscutting concerns.

AJHOTDRAW provides a code base for related research to measure codw/anp
ments due to aspect code. Furthermore, this work providedathghe hands-on ex-
perience for designing and implementing sort-based aspéattoring. We plan to
extend our tool support for concern documentatiooQBET, with aspect refactor-
ing options. The refactoring would apply to each query doentimg a sort instance,
and hence benefit from the description of the concerns dlailay the query results.
We appreciate that a significant effort would go into the giesind implementation of
wizards to deal with the various reported challenges.

Chapter 7

Conclusions

Crosscutting concerns are a main challenge to program cohemsion, and hence
to evolution of existing software systems. Their scatteretitangled implementation
makes it difficult to locate and understand these concemshange their implemen-
tation, and to extend a system consistently with its variamserns.

This thesis has focused on better understanding how crtissgaoncerns are im-
plemented in existing systems, and how we can support eéfexdftware evolution in
the presence of such concerns. Particularly, we have adeldetbsee main challenges
in managing crosscutting concerns in source code:

e Crosscutting concern identification;
¢ (Query-based) Crosscutting concern documentation and hmggland

e Concern refactoring to aspects.

7.1 Summary of Contributions

Each of these challenges is a research topic on its own andawewmmarize our
contributions in several research areas of software avolut

e Program comprehension/Ne provide a detailed picture of various (implemen-
tations of) crosscutting concerns in source code by anayand reporting on a
number of open-source Java systems, from different aggicaomains. Our
findings also include a number of concerns not previoushey in literature,
such adJndosupport.

This study of the crosscutting concerns concludes with gstfiaation ofatomic
concerns irsortsbased on their distinctive properties, such as specifitioaks
and implementation idioms. The classification allows fangistency in describ-
ing and addressing concerns at source code level. We deskbglzoncern sorts

161

162 Chapter 7. Conclusions

using source code queries that we implement@@QS8ET, our tool supporting
persistent, query-based documentation and modeling aferos. Documenta-
tion of concerns allows us to build common benchmarks foceamanalysis.

e Reverse engineeringOne contribution of this thesis is the set of three aspect
mining techniques implemented in a freely available todlecaFINT, which
supports (semi-)automatic identification of concerns iaree code. Besides
each individual technique, we discuss criteria and chg#erio comparison and
combination of techniques. The discussion includes remort joint-effort with
two other research groups, and motivates the need for a carframoework and
coherent criteria to assess mining techniques and to supmobinations aimed
at improved quality of the mining results.

We propose such a framework for design, assessment andrcatiobiof mining
approaches and show how new techniques can be built on tap Mbreover,
we cover in a survey existing approaches to aspect mininglacedss how these
can be retrofitted to this framework.

e Program transformation — Aspect-oriented refactoringhe refactoring solu-
tions that we propose ensure a number of important progeltl¢ the refactor-
ings address meaningful concerns, which allows for tramsyy of the refac-
tored concerns; (2) the solutions address concerns at sstamtdevel of granu-
larity, so solutions do not overlap but complement eachroi{3 the solutions
permit for a high level of flexibility so they can be appliedarious implemen-
tations of concerns in source code.

Besides the refactoring approach itself, we implement AJBIRAW, the largest

openly available refactoring to aspects. This open sourgedgt is a show-case
for our approach, and also provides a comparative impleatientof crosscut-

ting concerns in Java and AspectJ respectively.

The feedback from the refactoring case presented in thgstltan also be useful
to researchers working on design and implementation ofcaspeented languages:
we report about main challenges in refactoring to aspeadaianguage limitations,
and present a number of considerations on whether the aspented code improves
comprehensibility and evolvability with respect to an abjeriented one.

These contributions summarize our achievements in ansgvéte research ques-
tion that we proposed to address in the beginning of thisishé$ow can we con-
sistently manage, i.e. identify, model, document and blyseiigrate, crosscutting
concerns in existing systems in order to better support rammgcomprehension and
effective software evolution?

7.2. Discussion and Evaluation 163

7.2 Discussion and Evaluation

7.2.1 Revisiting Thesis Objectives

In the beginning of this thesis, we endeavored to meet a s#tjettives with our so-
lution for enhancing management of crosscutting concerssurce code. We believe
that the aforementioned contributions ensure that we haseessfully achieved each
of these objectives.

First, the categorization system based on sorts allows asldoess crosscutting
concerns in a systematic way. We use distinctive propersigsh as implementation
idioms and underlying relations, to describe concerns amtksign solutions for their
identification, modeling, and refactoring.

Second, our quest to better understand crosscutting amead how they occur
in practice resulted in an openly available set of tools &pext mining and concern
documentation. Moreover, we produced comprehensiblertejpm our analysis of
crosscutting concerns in three relevant open source sgsteiich are already used as
common benchmarks (in aspect mining).

In Chapter 5, we used the concern sorts to develop a commomvirark for evalu-
ation of aspect mining techniques. Conformance with thiméaork ensures our third
objective, namely to consistently assess, compare, antlinoermining techniques.

Concern sorts also act as a glue between the various stepsisomggration of
crosscutting concerns to aspects. This allows for integraif these steps in a coherent
solution for porting object-oriented, crosscutting impkntation of concerns to more
modular solutions.

Finally, we achieve flexibility and re-usability of our cara management solu-
tions by raising the abstraction level of addressing cnatsigiy concerns to categories
of concerns.

7.2.2 Independent and Integrated Migration Steps

Identification, documentation and modeling, or refactpohconcerns to aspects show
different steps towards migration of concerns in sourceecddne way of using the
contributions of this thesis is to apply each step indepetigléo conduct software
engineering tasks. For instance, aspect mining result® jp@i to relevant program
elements and relations that show important code charatitsti but also give a quick
insight into the (design and features of the) analyzed c@ksides the case-studies
that we have covered in detail in this thesis, we obtainedairsuch results for other
systems as well. The results of applyiRgn-in analysis to the JBssserver appli-
cation, for example, show that logging for debugging openatis a main, widely
scattered concern: the four methods with top fan-in valtresy 444 to 966, imple-
ment this concern. The next top values point us to the seoraponent for registration
and management of beaMBean) objects, which is a core element in the (Java Man-
agement Extension (JMX)) architecture of the analyzecdesyst

164 Chapter 7. Conclusions

The metric not only helps us to recognize these concernseirtdle, but it also
gives us a good estimate of the impact and costs of changamg. th

The search for other concern idioms, like redirections gdemented by wrapper
objects, helps us to recognize design decisions and thet@ftideir implementation in
the code. The presence of a wrapper, for instance, coulddtedihat a given (wrapped)
object should be used via its wrapper instead of accessdiggtttly.

Documentation of concerns is aimed at a (persistent) reptason of relevant re-
lations in source code and of design decisions that are ao$parent in the dominant
decomposition of the system under investigation. A main gbaur approach con-
sist of ensuring a structured, coherent understandingeprdsentation of crosscutting
concerns. This allows developers to consistently des¢hbe design decisions by
creating concern-based models of the source code that eampt the main decom-
position of concerns, which is based on modularization raeigms of the employed
language. New developers can use this documentation tstigaée existing (crosscut-
ting) concerns and designs, and check whether changesitivaddo a code element
conform to its concerns.

The refactoring approach we propose follows similar cohegeconsiderations as
outlined for documentation of concerns. By these consigeratve distinguish from
other approaches, most of which overlook an explicit regmegtion of the concerns
used as inputs for refactoring to aspects: For examplegfiamed refactorings, which
describe how class members or relations can be migrategéxtzsdeclarations, as-
sume a priori understanding of the concerns and of the pnogtaments that imple-
ment them. Then the refactoring solutions need to be apfaiedch of these elements.
Other approaches consist of solutions for heterogeneam@rs of concerns, which
require one to map the concerns to be refactored onto theseutar examples.

Overall, our refactorings based on concern sorts look twigeoflexible solutions
for replacing the crosscutting implementation of concevith aspects, and hence for
improving modularity and separation of concerns in the dogleneans of aspect lan-
guages mechanisms.

We observe that while useful on their own, as discussed alogehree different
steps in migration of concerns assume inputs (such as amtebe documented or
refactored), which would typically be provided by the oth&ps (like the mining one).
Our classification of concerns in sorts allows for consisyeior each of these steps,
but also for their integration. The integration of the thségps in a migration strategy,
as proposed in this thesis, and the application of the glydtethe AJFOTDRAW case
are the first attempts of their kind.

7.2.3 Queries versus Aspects

Both the query-based documentation and the refactoringgecss are aimed at en-
hancing comprehensibility of crosscutting concerns by ingakcertain relations in

source code explicit or by improving modularity. The two naigon steps can be re-
garded as complementary, but also as alternatives to atagitconcern-driven design

7.2. Discussion and Evaluation 165

and aspect-oriented programming.

Our experience, reported in this thesis, shows a numberlefamet differences
between the two steps, which may impact on the choice of tbptamh strategy for
approaches to crosscutting concerns. One such differemsests of the modification
required to the code base: while queries simply report ostieg relations, without
requiring code restructuring, aspects introduce behandrneed to modify the code.
We can say that queries arepassiveaddition to the code, by comparison with the
aspects that aractive elements. This difference has both advantages and disadvan
tages on each side: Because their active nature, aspectsfoaceerules in the code
so that they cannot be forgotten, such as having a conslstbatvior attached to new
elements that are covered by a defined pointcut. On the attesrssich behavior could
be added erroneously modifying the correct behavior of tegysPreventing such er-
rors requires advanced tool support for aspect programemdgexhaustive regression
testing. Therefore, developers might find adoption of a ypiaised approach safer.

Documentation of crosscutting concerns, on the other haederves an “optional”
characteristic. Many reports suggest that code often lagkdated) documentation,
and, as a code can function correctly without documentatioere is no strict en-
forcement on providing it. Yet, we believe that queries heseeral advantages over
traditional, textual documentation that might ease thke tdslevelopers of describing
the design and the concerns in their code: the sort quenesndtance, allow for a
structured, systematic way of producing documentation¢chvis supported by query
templates. Moreover, queries help developers to keep thttleir design, and to de-
scribe concerns in a consistent way, without the modulaozdimitations of a certain
programming paradigm. A disadvantage here is the possibitetl expressiveness of
a query, but tool support for concern queries can easilygrate textual descriptions
attached to a query.

Query-based documentation of concerns contributes to coagrehensibility by
providing hints to relevant relations between program elets. This documentation
can be simply assessed as a complement to the availablesmde for understanding
a program. For aspects, however, assessing improvementa aomprehensibility
due to their use is yet an open issue. AAJMRAW is just a first step towards such an
assessment that allows us to compare different implementat a same design in a
software application.

One possible advantage of queries over aspects consist oiviblved complexity
for ensuring comprehensible, expressive descriptionsiéerns. The queries remove
part of this complexity as they do not need an equivalent efatthvice construct. For
example, the query for a concern implemented by method, cailg needs to specify
the rule of selecting those call sites that are relevan#atimcern implementation. The
aspect solution needs to define a pointcut whose definitisimgar to the selection
rule in the query, but also the advice to introduce the cglll@menting the refactored
concern. The complexity of extracting an advice for refangpdepends on the level
of tangling of the concern at the call sites, and it is oftehantrivial task as the call to
be extracted is not a always a simplefore/afterone.

166 Chapter 7. Conclusions

It is important to notice that despite being a key challermgéddscribing concerns,
the problem of expressive pointcuts is typically overlabkg most of the approaches
to refactoring, and even modeling.

7.3 Opportunities for Future Research

Each of the chapters of this thesis discusses a number ofispe®s in the various
steps of the management of crosscutting concerns in soade Gome of the main
issues include:

e The need for further extensive reports on the coverage abusicrosscutting
concerns by sorts including, for example, other domainifipeoncerns.

¢ Investigating additional metrics for the assessment ofmgitechniques includ-
ing, for instance, measures for concern coverage of an aispeing result.

¢ Integration of the refactoring to aspects into softwaresttggment environments.

This section suggests several directions for future woxledag the issues above.

7.3.1 Aspect Mining

In the discussion of our proposed common framework for gagpeung we have cov-
ered existing techniques and showed how they can fit into rdmdwork. Actual
implementation of these techniques and experiments on @mnibanchmarks would
allow us to assess their results and experiment with cortibima

Available tool support and publicly shared, detailed rssale a key element to
better understanding crosscutting concerns and recogytigpical implementation id-
ioms. However, this support is not readily available, arelréports in this thesis are
(among) the most comprehensive ones to date. A larger yarietxamples from dif-
ferent application domains would also be helpful to assesddasibility of existing
aspect-oriented languages, as well as of our sorts, to capevarious crosscutting-
ness.

To better understand the sorts of crosscuttingness, wedwiiel to have at least
one aspect mining technique targeting each of the sorts.d&keription of concerns
by sorts could be particularly useful here, as new miningregues can be designed to
search for a sort’s relation, such as call, implement, estiion, or parameter passing
relations. We have found particularly insightful to expeent with the various tech-
nigues proposed in this thesis and to discover a significamiter of instances for the
targeted sorts. Such techniques give more empirical egelen the use of idioms to
implement concerns.

Combination of techniques is still in its infancy and thisdisecovers the largest
part of the efforts made up to date. The promising resultshtained suggest that this

7.3. Opportunities for Future Research 167

is an interesting direction to further explore for imprayiquality of aspect mining
results.

7.3.2 Crosscutting Concern Documentation and Modeling

Besides extending the list of our sorts and better understgnahat other typical
concerns we encounter in source code, we would also likeegde® a query-based
approach is able to support description of new sorts of amiscd he feasibility of this
approach depends on mainly two elements: the ability toygfera sort’'s specific
relation, and the flexibility to formalize contexts, i.@ restrict the endpoints of a rela-
tion to relevant elements, similarly to defining pointcutsaspect-oriented languages.
Furthermore, a sort and its query have to be able to providiatract representation
of all its instances.

The assessment of the approach to concern documentatied basqueries re-
quires effective tool support. We identify a number of daisie extensions to &
QUET, which include improved integration with traditional aetoring operations. For
example, changes in the source code, like renaming or rdrobgkements, should up-
date the definition of the queries in the concern model accgiyl

Another desirable extension consists of improved supmorgfierying a concern
model (that documents a system) to find relevant querieshatato a given program
element. For example, when changind-igure class in a drawing application by
adding a new method, it is relevant to know that figures paste, for instance, in
an Observer design and any modification to the figure’s stadednbe notified to the
figure’s display. In this case, we would like to search in tbasern model of our
whole application for those queries that document condemiSigure elements. This
search feature is only partially implemented in@UET at the moment: the search for
concerns attached to th&gure class returns all queries for whid¢hgure is an end-
point of the crosscutting relation documented by the quérme such result shows us
that figures ar®bservableslements, and hence implement multiple roles. However,
the query documenting the call to notify the figure’s disptdychanges will not be
reported, since thEigure class is not an endpoint of the call relation, but only one of
its methods. Yet, for this particular case, the notificatbmmcern is relevant for the
intended change operation.

The search for relevant concerns in concern models reqelieesly defined rules
to associate queries to program elements. The rules shpetify when a particular
program element is considered related to a query, so thg guezported as relevant
for the relations of that element. Such extensions®®@S8ET can be summarized as
desired support for querying queries.

7.3.3 Refactoring to Aspect-Oriented Programming

A natural extension of the work presented in this thesis ibuitd tool support for
(semi-)automatic refactoring based on the solutions megdor concern sorts. Pre-

168 Chapter 7. Conclusions

Fan-in analysis results in FINT

‘ [Figure.java Hl] TextAreaFigure java &2 =0 . =a
=5 No. shown results: 43 (filtered: 6,035). Creation time: 257 ms. i
public void setFont(Font newFon:
willChange(); L oH R E £ <
fFont = newFont; I - A =
markSizeDirty(); [CH.ifa.draw.framework.DrawingView.clearSelection() : 31 =1

markFontDirty(); | CH.ifa.draw.framework.Figure.changed() ; 36

k- tr%but esMap = new Hasht a"‘]i 12 CH.ifa.draw.contrib.GraphicalCompos iteFigure.update()
attributesMap.put(TextAttril)
¥: 142 CH.ifa.draw.contrib.html.H TMLT extAreaFigure.figureC hanged(QF
T = |4= CH.ifa.draw.contrib.PolygenFigure.addPoint(l1) i

|2 CH.ifa.draw.contrib.PolygonFigure.inserntPointAt(QPaint;)

+ Qets the number of columns te |<2CH.ifa.draw.contrib.PolygonFigure.removePaintAt(l)

* This method is mandatory by - |<>CH.ifa.draw.contrib.PolygonFigure.scaleR otate{QPoint; QPalygon; |
* used by the TextAreaFigure/Ti

¢ covess the tex: pees alspiey |2 CH.ifa.draw.contrib. PolygonFigure.setPointAt(QPoint;1)
* [<2 CH.ifa.draw.contrib.PolygonFigure.smoothPeints ()
* @return the number of over: 142 CH.ifa.draw.contrib.PolygonS caleHandle$UndoActivity. resetPoly. —
*/ ;
e public int overlayColumns() { |<:'CH.:fa.draw.cuntnb.TextArEaFgure.maveBy[ii)
return 0; |¢'CH.1fa.draw.conmb.TextAreaF\gure.se!Funt(QFun[‘]
} le=cl H.ifa.draw.contrib. TextAreaFigure. setText(QString;)

[¥90H ifa draw Fontrik TavtAraaFiaora undatal aeatinni

Document the (CB) concern for the identified seed

Document the identified (Consistent Behavior) concern using the template query in SoQueT
=5 3 R ok . T .,

No. shown results: 43 (filtered: 6,035). Creat

% & % B

2] FIguIejave [E2] | EXIAdrIgurejavd e Gl

2%~

=
nslbme ey public void setffont(Font newFon:
tDraw [ajhotdra willChange (]} ;

S0rt search

Consistent Behavior Consistent Behavior
Context Passing raphicalComp
Exception Propagation Target context tml.HTMLText
| Redirection Layer Search string (* = any string, ? = any character): olygonFigure..
4 Role Superlmposition |C H.ifa.draw.framework.Figure.changed() | olygonFigure.i
Support Classes St olygonFigure.
@ Method () Constructor e
olygonFigure.!
olygonFigure.:
} Scope - Source Context olygonScaleH
I) Workspace (@ Context definition | ('setText!, 'setFont', ... (no JRE)J lextAreaFigure
lextAreaFigure
i lextAreaFigure
i lextAreaFigure
@ Search ﬂ riangleFigure.t
riangleRotatio

rectj.weaver | |H aram OrIgOrT OrIgUT POINT | | H

* @iparam cormer corner point [<= CH.ifa.draw figures AttributeFigure,

Save the sortinstance and its query in the Concern model,
and Run the refactoring to aspects comamnd for this instance

SoQueT - Run the refactoring of the selected sort instance

B Concem Mo 53‘_ ® P E.J.HE\HVDEII
‘PgureChangeNahﬂcaﬁon[CE. ('setText', 'setFont’, ... (no JRE)) invoke ('changed' (no JRE))]
~ @ JHotDraw

= i@ FigureChangeObserver
& FigureChangeNotification[CE: ('setFext', 'setFont’

- tno JRE}) inveke (‘'changed' (no IR
® Delete
Rename ...

Move ...

@ Expand
’@ Hide elements

Refactoring ¥ | Refactor Sort Instance

[EX] [

Figure 7.1: Integration of migration steps in FINT and@UET.

7.4. Closing Remarks 169

liminary experiments show promising results, mainly beegathe granularity of the
sorts allows for increased flexibility of the refactoringdowever, more work is re-
quired on this tool support implementation.

Another interesting direction to investigate comprisesting strategies to ensure
behavior preservation of the refactoring to aspects. Weldvitke to attach to each
of our refactorings a testing component that automaticzigcks for faults after the
execution of the refactoring.

7.3.4 Integration of Migration Steps

FINT and SSQUET provide us with a proper infrastructure for an integratedration
strategy. A simple extension that we plan to add to FINT waalldw us to turn
mining results into input parameters for the query templateSoQUET. For instance,
the mining results oFan-in analysis, which are displayed by FINT as call relations,
could be turned (automatically) into set of elements thatdbe the contexts for the
Consistent behaviosort query, as shown in Figure 7.1.

Furthermore, BQUET implements support for extending the query-based docu-
mentation of a sort instance in the concern model with ogtifmm refactoring it to
aspects. This support includes mechanisms for reusinghtbemation in the query
documenting a concern to configure the refactoring soldtiothe concern’s sort. The
tool-supported integration of these migration steps isflyrioutlined in Figure 7.1.

7.4 Closing Remarks

The work presented in this thesis advances the state-edrthia the management of
crosscutting concerns in source code by means of a sigrtisedrof techniques, de-
tailed case-studies reports and tool support. Moreovepresented the first integrated
approach to management and migration of concerns. Thesahttions are aimed at
helping software engineers to better deal with the complefiexisting systems and
with the tasks of evolving such systems.

In the last chapter of this thesis, we identify a number oéaesh topics that, we
believe, point to relevant and interesting challengeseéretiea of software engineering
and concern management in particular.

Bibliography

Alur, D., Crupi, J., and Malks, DCore J2EE PatternsSun Microsystems, Inc., USA
[2003].

The Aspect] Team.The Aspect] Programming GuidePalo Alto Research Center
[2003]. Version 1.2.

Baldwin, C.Y. and Clark, K.BDesign Rules: The Power of Modularity VolumeMIT
Press, Cambridge, MA, USA [1999].

Beck, K. Smalltalk: best practice pattern®rentice-Hall [1997].

Bergmans, L. and Aksit, M. Composing crosscutting concerimggusomposition fil-
ters. Communications of the ACM4(10):51-57 [2001].

Biggerstaff, T.J., Mitbander, B.G., and Webster, D.E. Progtenderstanding and the
concept assignment proble@ommunications of the ACN7(5):72—-82 [1994].

Binkley, D., Ceccato, M., Harman, M., Ricca, F., and Tonellald&l-supported refac-
toring of existing object-oriented code into aspetEE Transactions on Software
Engineering 32(9):698-717 [2006].

Binkley, D., Ceccato, M., Harman, M., Ricca, F., and Tonell®WRomated refactoring
of object oriented code into aspects.Rroceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM ;0%ges 27-36. IEEE Computer
Society, Washington, DC, USA [2005].

Bloch, J.Effective Java programming language gui&in Microsystems, Inc., Moun-
tain View, CA, USA [2001].

Breu, S. and Krinke, J. Aspect mining using event traces.Proceedings of the
19th IEEE International Conference on Automated Softwararngsging (ASE '04)
pages 310-315. IEEE Computer Society, Washington, DC, USB4R0

171

172 BIBLIOGRAPHY

Breu, S. and Zimmermann, T. Mining aspects from version hisio Proceedings of
the 21st IEEE International Conference on Automated Soft&agineering (ASE
'06), pages 221-230. IEEE Computer Society, Washington, DC, USBGR

Briand, L.C., Daly, J.W., and Wkt, J.K. A unified framework for coupling mea-
surement in object-oriented systemEEE Transactions on Software Engineering
25(1):91-121 [1999].

Bruntink, M., van Deursen, A., van Engelen, R., and Taar. An evaluation of
clone detection techniques for identifying crosscuttingaerns. InProceedings
of the 20th International Conference on Software MaintenglC&M '04), pages
200-209. IEEE Computer Society, Los Alamitos, CA [2004].

Bruntink, M., van Deursen, A., van Engelen, R., and Taarv. On the use of clone
detection for identifying crosscutting concern cotleEE Transactions on Software
Engineering 31(10):804-818 [2005].

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., d&adirwe, T. A quali-
tative comparison of three aspect mining technique®rateedings of the 13th In-
ternational Workshop on Program Comprehension (IWPC, @apes 13-22. IEEE
Computer Society, Washington, DC, USA [2005].

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., diodirné, T. Applying
and combining three different aspect mining technigqu&stware Quality Journal
14(3):209-231 [2006]. Included as Chapter 3 of this thesis.

Cole, L. and Borba, P. Deriving refactorings for AspectJ.Phoceedings of the 4th
International Conference on Aspect-Oriented Software graent (AOSD '05)
pages 123-134. ACM Press, New York, NY, USA [2005].

Colyer, A., Clement, A., Harley, G., and Webster, Hclipse AspectJPearson Edu-
cation, Inc., NJ [2005].

Deransart, P., Ed-Dbali, A., and Cervoni,Rrolog, The Standard : Reference Manual
Springer Verlag [1996].

van Deursen, A., Quilici, A., and Woods, S. Program plan gaedmn for year 2000
tools. Science of Computer Programmirgf:303—-324 [2000].

Dijkstra, E.W. A Discipline of ProgrammingPrentice Hall PTR, Upper Saddle River,
NJ, USA [1997].

Eichberg, M., Haupt, M., Mezini, M., and Safer, T. Comprehensive software un-
derstanding with Sextant. Proceedings of 21st IEEE International Conference on
Software Maintenance (ICSM '0F)ages 315-324. IEEE Computer Society [2005].

BIBLIOGRAPHY 173

Eick, S.G., Steffen, J.L., and Eric E. Sumner, J. Seesofteal Tor Visualizing
Line Oriented Software StatisticsSIEEE Transactions on Software Engineerjing
18(11):957-968 [1992].

Eisenbarth, T., Koschke, R., and Simon, D. Locating feature®urce codelEEE
Transactions on Software Engineerjr9(3):195-209 [2003].

Erlikh, L. Leveraging legacy system dollars for e-busind3sProfessional2(3):17—
23 [2000].

Ettinger, R. and Verbaere, M. Untangling: a slice extractefactoring. InProceed-
ings of the 3rd International Conference on Aspect-Oriers@ftivare Development
(AOSD ’'04) pages 93-101. ACM Press, New York, NY, USA [2004].

Fabry, J.Modularizing Advanced Transaction Management - Tacklisggled Aspect
Code Ph.D. thesis, Vrije Universiteit Brussel [2005].

Ferenc, R., BesmlesA., Fulop, L., and Lele, J. Design pattern mining enhanced by
machine learning. IProceedings 21st IEEE International Conference on Software
Maintenance (ICSM ’'05)pages 295-304. IEEE Computer Society, Los Alamitos
[2005].

Filman, R.E., Elrad, T., Clarke, S., and Aksit, M., editossspect-Oriented Software
DevelopmentAddison-Wesley, Boston [2005].

Fowler, M. Inversion of control containers and the depegamection patternht t p:
[T martinfow er.comarticles/injection. html [2004].

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts R&factoring: improving
the design of existing cod@ddison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA [1999].

Gamma, E., Helm, R., Johnson, R., and VlissidesPé&sign Patterns: Elements of
Reusable Object-Oriented Softwarkeddison-Wesley, Reading, MA [1994].

Ganter, B. and Wille, R. Formal Concept Analysis: Mathematical Foundations
Springer-Verlag [1997].

Gil, J.Y. and Maman, I. Micro patterns in java code Aroceedings of the 20th annual
ACM SIGPLAN conference on Object oriented programminggesyst languages,
and applications (OOPSLA '0O5pages 97-116. ACM Press, New York, NY, USA
[2005].

Goetz, B. Garbage collection and performance. IBM develdfgerks articles [2004].
www 136. i bm com devel operwor ks/j ava/ .

174 BIBLIOGRAPHY

Gradecki, J.D. and Lesiecki, NMastering AspectJ - Aspect Oriented Programming in
Java Wiley Publishing, Inc., Indianapolis, Indiana [2003].

Griswold, W.G., Yuan, J.J., and Kato, Y. Exploiting the maptaphor in a tool for
software evolution. IfProceedings of the 23rd International Conference on Software
Engineering (ICSE '01)pages 265-274. IEEE Computer Society, Washington, DC,
USA [2001].

Gybels, K. and Kellens, A. Experiences with identifying @sts in Smalltalk using
unique methods. IRroceedings of the 1st Workshop on Linking Aspect Techyolog
and Evolution (LATE '05) at AOS[2005].

Hajiyev, E., Verbaere, M., and de Moor, O. CodeQuest: Scalsdlirce code queries
with Datalog. In D. Thomas, editoProceedings of the 20th European Conference
on Object-Oriented Programming (ECOOP 'Q&plume 4067 oL ecture Notes in
Computer Sciencgages 2—-27. Springer [2006].

Hanenberg, S., Oberschulte, C., and Unland, R. Refactoringp#cioriented soft-
ware. InProceedings of the 4th Annual International Conference one@b
Oriented and Internet-based Technologies,Concepts, amdioations for a Net-
worked World (Net.ObjectDayg)ages 19—-35 [2003].

Hannemann, J. and Kiczales, G. Overcoming the prevalemnadeasition of legacy
code. InWorkshop on Advanced Separation of Concerns at I{28H1].

Hannemann, J. and Kiczales, G. Design pattern implementatiJava and AspectJ. In
Proceedings of the 17th Annual ACM Conference on Object-@mEArogramming,
Systems, Languages, and Applications (OOPSLA [#)es 161-173. ACM Press,
Boston, MA [2002].

Hannemann, J., Murphy, G.C., and Kiczales, G. Role-basedtogfiag of crosscutting
concerns. IrProceedings of the 4th International Conference on Asperted
Software Development (AOSD 'Q%ages 135-146. ACM Press, New York, NY,
USA [2005].

Harrison, W., Ossher, H., Jr., S.M.S., and Tarr, P. Concewhetimg in the concern ma-
nipulation environment. [iBM Research Report RC23348M Thomas J. Watson
Research Center, Yorktown Heights, NY [2004].

Henderson-Sellers, B., Constantine, L.L., and Graham, [.Muplioag and cohesion
(towards a valid metrics suite for object-oriented analgsid design)Object Ori-
ented System8:143-158 [1996].

Henderson-Sellers, BObject-oriented metrics : measures of complexiBrentice-
Hall, Inc. [1996].

BIBLIOGRAPHY 175

Henry, S. and Kafura, K. Software structure metrics baseidfonmation flow. IEEE
Transactions on Software Engineerjinfgf5):510-518 [1981].

Janzen, D. and Volder, K.. Navigating and querying code authgetting lost. In
Proceedings of the 2nd International Conference on Aspeierted Software De-
velopment (AOSD '03pages 178-187. ACM Press, New York, NY, USA [2003].

Johnson, R. J2EE Design and DevelopmentWiley Publishing, Indianapolis, IN
[2003].

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Loges,Loingtier, J.M.,
and Irwin, J. Aspect-oriented programming. In M. Aksit é&dViatsuoka, editors,
Proceedings of the 11th European Conference on Object-@aeRrogramming
(ECOOP '97) volume 1241, pages 220-242. Springer-Verlag, Berlin, &lbitg,
and New York [1997].

Kiczales, G. and Mezini, M. Aspect-oriented programmingd arodular reasoning. In
Proceedings of the 27th International Conference on Softwgineering (ICSE
'05), pages 49-58. ACM Press, New York, NY, USA [2005a].

Kiczales, G. and Mezini, M. Separation of concerns with pthaoes, annotations,
advice and pointcuts. IRroceedings of the 19th European Conference on Object-
Oriented Programming (ECOOP ’'05yolume 3586 ot ecture Notes in Computer
Sciencepages 195-213. Springer [2005b].

Kitchenham, B., Pickard, L., and Pfleeger, S.L. Case studiesn&hod and tool
evaluation.|EEE Software12(4):52—62 [1995].

Koschke, R. and Quante, J. On dynamic feature location.Prbteedings 20th
IEEE/ACM International Conference on Automated Software &ggying (ASE
'05), pages 86—95. ACM Press, Boston, MA [2005].

Krinke, J. Mining control flow graphs for crosscutting cont® InProceedings of
13th Working Conference on Reverse Engineering (the 9th AlS&RWNorkshop)
pages 334-342. IEEE Computer Society, Washington, DC, USBGR0

Laddad, R. Aspect-oriented refactoringwv. t heser ver si de. com[2003a].

Laddad, R. AspectJ in Action - Practical Aspect Oriented Programmirdganning
Publications Co., Greenwich, CT [2003b].

Lesiecki, N. Aop@work: Enhance design patterns with Aspewetw 128. i bm com
devel operwor ks [2005].

Lindig, C. Fast concept analysis. Working with Conceptual Structures - Contribu-
tions to ICCS 2000pages 152-161. Shaker Verlag [2000].

176 BIBLIOGRAPHY

Lippert, M. and Lopes, C. A study on exception detection anthiag using aspect-
oriented programming. liProceedings of the 22nd International Conference on
Software Engineering (ICSE '0Qages 418-427. ACM Press, Boston, MA [2000].

Marin, M. Refactoring JidTDRAW'’s undo concern to AspectJ. Procedings of the
1st Workshop on Aspect Reverse Engineering (WARE '04) at Wp&iges 24-30.
CWI Report SEN-E0502, Amsterdam, The Netherlands [2004].

Marin, M. Formalizing typical crosscutting concerns. Teidal Report TUD-SERG-
2006-010, Delft University of Technology [2006a].

Marin, M., van Deursen, A., and Moonen, L. Identifying aggecsing fan-in analysis.
In Proceedings of the 11th Working Conference on Reverse Eargige(WCRE
'04), pages 132-141. IEEE Computer Society, Los Alamitos, CA [R004

Marin, M., van Deursen, A., and Moonen, L. ldentifying crosing concerns us-
ing fan-in analysisACM Transactions on Software Engineering and Methodglogy
17(1):1-37 [2007a]. Included as Chapter 2 of this thesis.

Marin, M., Moonen, L., and van Deursen, A. A classificatiortaisscutting concerns.
In Proceedings of the 21st IEEE International Conference otwsoé Maintenance
(ICSM ’'05), pages 673—677. IEEE Computer Society, Los Alamitos [200824r-
tially) covered by Chapter 4 of this thesis.

Marin, M., Moonen, L., and van Deursen, A. A systematic aspeented testing
and refactoring process, and its application taoJBRAwW. Technical Report SEN-
R0507, CWI [2005b].

Marin, M., Moonen, L., and van Deursen, A. A common frameworkaspect mining
based on crosscutting concern sorts.Phaceedings of the 13th Working Confer-
ence on Reverse Engineering (WCRE ;q&gges 29-38. IEEE Computer Society,
Washington, DC, USA [2006a]. Extended version included asphed of this
thesis.

Marin, M., Moonen, L., and van Deursen, A. FINT: Tool supdortaspect mining. In
Proceedings of the 13th Working Conference on Reverse Er1gigg WCRE '06)
pages 299-300. IEEE Computer Society, Washington, DC, USBg2 (Partially)
covered by Chapters 2, 3 and 5 of this thesis.

Marin, M. Reasoning about assessing and improving the seadygof a generative
aspect mining technique. IRroceedings of the 2nd Workshop on Linking Aspect
Technology and Evolution (LATE '06) at AOSpages 23-27. CWI Report SEN-
E0604 [2006b]. (Partially) covered by Chapters 3 and 5 ofttiesis.

Marin, M., Moonen, L., and van Deursen, A. An approach to espeactoring based
on crosscutting concern typeSIGSOFT Software Engineering Nat&9(4):1-5
[2005c]. (Partially) covered by Chapter 4 of this thesis.

BIBLIOGRAPHY 177

Marin, M., Moonen, L., and van Deursen, A. Documenting tgpitrosscutting con-
cerns. InProceedings of the 14th IEEE Conference on Reverse Engme@iCRE
'07). IEEE Computer Society, Washington, DC, USA [2007b]. CovergG@bapter
4 of this thesis.

Marin, M., Moonen, L., and van Deursen, A. An integratedtsfyg to crosscutting
concern migration and its aplication to dfDRAW. In Proceedings of the 7th
IEEE International Working Conference on Source Code Anslgaid Manipula-
tion (SCAM '07) IEEE Computer Society, Washington, DC, USA [2007c]. Covered
by Chapter 6 of this thesis.

Marin, M., Moonen, L., and van Deursen, AOQUET: Query-based documentation
of crosscutting concerns. IRroceedings of the 29th International Conference on
Software Engineering (ICSE '07pages 758-761. IEEE Computer Society, Wash-
ington, DC, USA [2007d]. (Partially) covered by Chapter 4 o timesis.

Mens, K. and Toun&, T. Delving source-code with formal concept analy&ksevier
Journal on Computer Languages, Systems & Strucfd®&8—4):183—-198 [2005].

Mens, K., Kellens, A., Pluguet, F., and Wuyts, R. Co-evolvioge and design with
intensional views: A case studZomputer Languages, Systems & Structud2¢2-
3):140-156 [2006].

Mens, K., Kellens, A., and Tonella, P. A survey of automatedezlevel aspect min-
ing techniquesTransactions on Aspect-Oriented Software DevelopndéBpecial
Issue on Software Evolution):145-164 [2007].

Mens, K., Poll, B., and Gorétez, S. Using intentional source-code views to aid soft-
ware maintenance. IRroceedings of the International Conference on Software
Maintenance (ICSM '03)pages 169-178. IEEE Computer Society, Washington,
DC, USA [2003].

Mesbah, A. and van Deursen, A. Crosscutting concerns in JZipkcations. In
Proceedings of the 7th International Symposium on Web SivéuEon pages 14—
21. IEEE Computer Society, Los Alamitos, CA [2005].

Monteiro, M. Catalogue of refactorings for Aspect]. TechhiReport UM-DI-
GECSD-200401, Universidade do Minho [2004].

Monteiro, M. and Fernandes, J. Towards a catalog of aspestted refactorings.
In Proceedings of the 4th International Conference on Aspemr@ed Software
Development (AOSD '05pages 111-122. ACM Press, New York, NY, USA [2005].

Moodie, M. Pro Jakarta Tomcat 5Apress, Berkely, CA [2005].

178 BIBLIOGRAPHY

Murali, T., Pawlak, R., and Younessi, H. Applying aspectatation to J2EE business
tier patterns. In Y. Coady and D. Lorenz, editoBpceedings of the 3rd Work-
shop on Aspects, Components, and Patterns for Infrastre@aftware (ACP4IS) at
AOSD pages 55—-61. University of Victoria, Victoria, Canada [2P0

Murphy, G.C., Griswold, W.G., Robillard, M.P., Hannemann,ahd Leong, W. De-
sign recommendations for concern elaboration tools. In RiEan, T. Elrad,
S. Clarke, and M. Aksit, editorsAspect-Oriented Software Developmepages
507-530. Addison-Wesley, Boston [2005].

Parnas, D.L. On the criteria to be used in decomposing sysietm modules.Com-
munications of the ACML5(12):1053-1058 [1972].

Pigoski, T.M. Practical Software Maintenance: Best Practices for Manggifour
Software Investmengohn Wiley & Sons, Inc., New York, NY, USA [1996].

Porter, M. An algorithm for suffix stripping?rogram 14(3):130-137 [1980].

Rich, C. and Wills, L.M. Recognizing a program’s design: A grggatnsing approach.
IEEE Software7(1):82—89 [1990].

Riehle, D. and Gross, T. Role model based framework designraegration. InPro-
ceedings of the 13th ACM SIGPLAN Conference on Object-Odd?Priegramming,
Systems, Languages & Applications (OOPSLA /98ges 117-133. ACM Press
[1998].

Robillard, M.P. and Murphy, G.C. Concern graphs: finding anceisig concerns
using structural program dependencies. Phoceedings of the 24th International
Conference on Software Engineering (ICSE ;q#3ges 406—416. ACM Press, New
York, NY, USA [2002].

Robillard, M.P. and Murphy, G.C. Representing concerns incedocode ACM Trans-
actions on Software Engineering and Methodoldbfy(1):3 [2007].

Seiter, L. Automatic mining of context passing in java pags. InProceedings of
the Workshop Towards Evolution of Aspect Mining (TEAM) at E@Qgages 9-13.
Delft University of Technlogy Report TUD-SERG-2006-012 [800

Shepherd, D., Gibson, E., and Pollock, L. Design and evaluaif an automated
aspect mining tool. IrBoftware Engineering Research and Practipages 601—
607. CSREA Press, Las Vegas, NV [2004].

Shepherd, D., Palm, J., Pollock, L., and Chu-Carroll, M. Timamkamework for auto-
matically combining aspect mining analysesPiioceedings of the 20th IEEE/ACM
International Conference on Automated Software EngineefA§E '05) pages
184-193. ACM Press, New York, NY, USA [2005a].

BIBLIOGRAPHY 179

Shepherd, D., Pollock, L., and TouewT. Using language clues to discover crosscut-
ting concerns. IrProceedings of the 2005 Workshop on Modeling and Analysis of
Concerns in Software (MACS '05) at IC3tages 1-6. ACM Press, New York, NY,
USA [2005b].

Soares, S., Laureano, E., and Borba, P. Implementing distiband persistence
aspects with AspectJ. Iroceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applitat{@OPSLA '02)
pages 174-190. ACM Press [2002].

Sommerville, I.Software EngineeringPearson, NJ, 7th edition [2004].

Storzer, M. and Forster, F. Detecting precedence-relateita interference. IfPro-
ceedings of the 21st IEEE International Conference on Autedh&oftware Engi-
neering (ASE '06)pages 317-322. IEEE Computer Society, Washington, DC, USA
[2006].

Sutton, S.M. and Rouvellou, I. Concern modeling for aspeletrted software devel-
opment. In R.E. Filman, T. Elrad, S. Clarke, and M. Aksit, editAspect-Oriented
Software Developmerthapter 21, pages 479-505. Addison-Wesley, Boston [2005].

Tarr, P., Harrison, W., and Ossher, H. Pervasive query suppaohe Concern Ma-
nipulation Environment. Technical Report RC23343 (W0409-1E)1 TJ Watson
Research Research Center, Yorktown Heights, NY [2004].

Tarr, P., Ossher, H., Harrison, W., and Stanley M. SuttorN dlegrees of separation:
multi-dimensional separation of concerns.HAroceedings of the 21st International
Conference on Software Engineering (ICSE ;988ges 107-119. IEEE Computer
Society Press, Los Alamitos, CA, USA [1999].

Tonella, P. and Ceccato, M. Aspect mining through the forneaicept analysis of
execution traces. IRroceedings 11th Working Conference on Reverse Engineering
(WCRE '04) IEEE Computer Society, Los Alamitos, CA [2004a].

Tonella, P. and Ceccato, M. Migrating interface implemeatsto aspect-oriented pro-
gramming. InProceedings of the 20th IEEE International Conference otv&oé
Maintenance (ICSM '04)pages 220-229. IEEE Computer Society, Los Alamitos,
CA [2004b].

Tourwé, T. and Mens, K. Mining aspectual views using formal cohegglysis. In
Proceedings of the 4th IEEE International Workshop on Se@ode Analysis and
Manipulation (SCAM '04)IEEE Computer Society, Chicago, Illinois, USA [2004].

Vickers, P. Why finalizers should (and can) be avoided. IBM tgpersWorks articles
[2002]. ww+ 136. i bm cont devel operwor ks/ j aval .

180 BIBLIOGRAPHY

Wilde, N. and Scully, M.C. Software reconnaissance: mappmugram features to
code.Journal of Software Maintenangcé(1):49—-62 [1995].

Wills, L.M. Automated program recognition: A feasibilityechonstration.Artificial
Intelligence 45(1-2):113-171 [1990].

Xie, X., Poshyvanyk, D., and Marcus, A. 3D visualization fmmcept location in
source code. IProceedings of the 28th International Conference on Soft\are
gineering (ICSE '06)pages 839-842. ACM Press, Boston, MA [2006].

Yin, R.K. Case Study Research: Design and Metha8age Publications, USA, 3rd
edition [2003].

Zhang, C. and Jacobsen, H.A. Quantifying aspects in middewatforms. InPro-
ceedings of the 2nd International Conference on Aspectrfatk Software Devel-
opment (AOSD '03)pages 130-139. ACM Press, Boston, MA [2003].

Zhang, C. and Jacobsen, H.A. PRISM is research in aspect milmrigompanion to
the 19th Annual ACM SIGPLAN Conference on Object-Orientedf@raming, Sys-
tems, Languages, and Applicatiopages 20-21. ACM Press, Boston, MA [2004].

Appendix A

FINT

This appendix contains the FINT user manual. The underlylegs are described in
Chapters 2 and 5 of this thesis.

FINT is a (Java) source code analysis tool for detecting Isnuél crosscutting
implementation of concerns. The tool is available as a jpiufpr the Eclipse IDE
(v.3.0.x — v.3.3): The source code of FINT consists of 12,500 NCLOC.

A.1 Installation

The installation procedure simply requires to download sanck the “jar” distribution
of the tool into the “plugins” directory of Eclipse and thee+)start the IDE.

A.2 User manual

FINT implements three code analysis techniques that wé stalnext in action:

e Fan-in analysidooks for crosscutting concerns by investigating all thehod
call relations in a system, and allowing the user to selextélmethods that are
called from many different places, possibly from similalliog contexts. For
example, a tracer for all the method executions in a systeghtabnsist of calls
to a tracing method attached at the beginning of each of thesys methods.
The tracer method will have a large number of callers, andé&e@nhigh fan-in
metric value, which makes it likely to be identified by ourtiamue.

A typical refactoring to aspect-oriented programming (AQ@®P the concerns
identified by fan-in analysis consists of replacing thetecatl method calls iden-
tified by this technique with pointcut and advice constructs

1Some of the figures may be more difficult to read on paper. W the reader to the FINT web
site for the on-line version of this manual, in which the figemare available in high resolution.

2Metrics plug-in, v.1.3.6 — http:/metrics.sourceforgg/nNote that the Metrics tool does not count
lines of code in interfaces.

181

182 Appendix A.FINT

e Grouped calls analysisargets similar code smells and concerns as the previ-
ous technique; however, instead of single method invoestithis technique is
looking for groups of (at least two) methods that are callgdhe same callers.
Examples of crosscutting concerns following this impletagan idiom include
programmatic (JTA) transaction management, where thesdadion demarca-
tion is realized by calls to methods suchbagi n, cormi t , andr ol | back.

¢ Redirections findeaims at identifying wrapper classes (such as decorators) by
analyzing the methods of all the classes in the system umgestigation for
exclusive one-to-one call relations with methods of anotiess.

Each technique has a dedicated view for investigating artidurefining the re-
sults. A fourth view allows us to collect and save the resiligt participate in, and
hence point us to, crosscutting concerns; these results@sscutting concerseeds
The views can be opened from Eclipse’s “Window/Show Viewt.” menu, under
the FINT group, as shown in Figure A.1.

A.2.1 Fan-in analysis

Fan-in is the default analysis in the tool. To run the analytie user chooses the
program elements to be analyzed in fackage Exploreview of Eclipse and selects
from the context menu of these elements (right click) fla@-in Analysisoption, as
illustrated in Figure A.2.

The tool first parses the source code of the selected elenamatbuilds an internal,
in-memory model of the source code that will be used by allathalyses available in
FINT (Figure A.3). The model building (for fan-in analysigkes about 30 seconds
for a system of 20,000 non-comment lines of code (NCLOC) andrat® minutes for
over 360,000 NCLOC, on a Pentium 4 machine (2.66 GHz).

Fan-in analysis looks at all call relations in the systemauridvestigation and
displays the results in a dedicated view, as shown in Figude An this view, each
callee method is the tree root of its callers and has attatthi#gsl name the number of
callers. The fan-in value of each callee is indicated nexkstoame.

As shown in the detailed Figure A.5 the view presents the witra number of
options, like:

e Sorting the results by their name or by their fan-in value;

e Showing/Hiding the library-methods in the view (that is,thaals that are called
from the analyzed element but not declared in this elememth lements in-
clude, for instance, the JDK libraries);

e Showing/Hiding the accessor-methods in the view. The tbelcks accessor-
methods by their name (get* and set* methods) or by impleat@mt (methods
that simply return a reference or set the value of a field).

183

A.2. User manual

[EE=]

-

buibbon pue buyyodd <=1
auury 30d =7
30d =7
ol e
GUISMEI BARE =)
BARL)
diaH =7 |
daydepy DO JpaUED 7
tialy, Spaac .‘.)
Kl JSAR| UDIISaIpa Y _m_ :
mAAIA, SISARUY UI-Ue H_J.
WAL S| pAUD|D mwm_
INI4 =13
Bngag <= d
21e0 3-[
ShD =

Jxa3 deqy 2d4y _

S DS+

d DHUsHY

[DS+
L Dy

Q DSy
I DS

S5l (54
Yueag 0
ssaboid .@
sE|gad Im._ *sanlalagedd
Jaunjdx3 sbepey B A S35 BUMIO, rn._
aung =0 | :
[H{a]w= a]PR=/]

A0320iAER T &

saAlradsIad | 25010

JOpEARL @ |
AlTIEEIH Mw anljaadsiad aso[D
o7 o443 _.Imw anjiadsiad jasay
uopEEIag Awm_ ey asjnadsiag SRS
Bjosuos B *ranyaadsiad 22030

AT, WS

e

19 SMEIIOHE
|- [3
A Al UDOe0X JOUUN M ATIOHE @ -
ARl um3da0x IMELTI0HT _H_ |
eAR('UDEIAUNUT|PUEH _H_ X
eAplajpuey _H_ .
eaplJoqsip2un0H _H_ I
el IauasUoRI3|a5 3Nl [F] -
eapl uaipaEgaInby _H_ "
eapl*uoesELnu3aanty H_ i
eag{ Jaualsabueyainby ﬂ_ i
eall Juangabueyainby H_ |
eal(JuEIsUoDEINgLUI RNty _H_ |
eael aunbiyg _H_ A
earl malpbumeg @ 1
eagl Joypabumeig _H_ 4
eag{ Jauasabueysbumel] _H_ -
eall' juaszabueyobumeI] S A
eAR[BUIMEI] _H_
EAR[I0728UU0T _H_ .
(=20 =T A= ol W W (TR =N 0 [aly _H_ B
HAOMBLEY MRAD BYJ'HD £ -
Seundly Medp R HD £ -4
W00z qUIU0s MEIp B HD F-F
L3y QLaUoa MEdp B HD £
pupquyLoa MEIP'RYHD F -
qryued medpre D -
uoedde: medpeitHo mm
13dde wedp eyt HD B3
MEDBYTHD T3
B'HD
HD £/
(abeoed yneyep) £
uUs FE
FIHC _q\.luu__,w
0 f-wgpl [
Tds'8 2 55090 AL

| Aze

~Q -5 ~uf i E ~hd

uny jpslodd youeas aebiaep J0jIRjSY AunO5 Jp3 aEd

Nas asdiog - eaer

IEWS.

: The FINT vi

Figure A.1

Appendix A.FINT

184

Figure A.2

JuIHY sapedold 24AIOHC ol
3 d sjoa) [paadsy | |7
P sooL3qd PHE [f]-= i
" AADGEIH (2307 WO4Y 240358 muIn [f]-@®
4 s ssedwon =H] E
4 wesy =H]®
4 SISAEUY m_m_u_ _H_ B
161 [=
[C=nlNn} ks L SEPIEA |
) Ipay noJg | ul-uey 1614 _H_ E
= Ta -~ 1 4 Sy _m_u_ M=
Ho o S T Mm MK SPSSE sy Brigag ﬁmr_ :
= = P s UMy [@-
wm_u_ E_.HJ
THLSTH) (1= n_ﬂ 614 _H_H
I
s30alodd pale|2du 2500 __m_u_ il &
yoaloag aso)D N“M _H_ M
B [
— = = — Sd Ysadjay _,,.7.9 r.__n_ M W_.
[=i i at * -
H Lt e G 13al0.4d ping _m;n_ =
[L
sULQ AU Uoead Tpada])L S]Nsad Uaoys o
S 1 8l uogeaIs ..ﬁ,a padEid} 0 5 s 0N g £ 740 [
B4 S5|[ED paL) T Jlx) |
[2emp 3 MaUseIp D & | __.us_“_E_ﬂ_owm m
f] -
4 LEs Y opegy RHD -2
< SHUUSHIY aunos RHD £
‘ Wedping | HHD HE
EYHD £
2320 29320 3 'eyrHD -
AHHD =T 'eYHD -
BHD
ejHD B
JHD H 8
BJ'HD T
+4 Ayl ada] uado BJTHD mm 2
RAOPLILAY, wEh UL iSdo H2 mm i
In=jap) /-
03ug 05 S5 & "
A MM (EHC _q_uhm
— s - N) 0 7-wgpl s B
(4] LG A= v Tds'gz'gssoar M- |
o ‘sW QT salg uoResss (o "_um..gm.u__b 0 $53|nsad UiMows ‘o iy an“,ux =
o - B7 SISARUY Ul-UE .&.._ O — __ o _..A.r_u.hm..hm_I
Tener Tm S : ' g = =
_M%m?%__m RPN =) { ; & A EE B -0 @RF S - -8 -0 -5 -uf O |
day mopulan uny jaelosd youeag =eblapp J0joRjeY AN Jp3 S|4

BHER

Nas asdiog - eaer

Run the analysis from the context menu.

185

A.2. User manual

T4k SMEIIIOHE

A 0K IBUIUNHMEATIOHE @

wel*Udaax IMMEA]I0HE _H_ :

se['UoelawNUIapPUEH _H_ P

eapl'ajpuey _H_ _

ARl oqisip24nby _H_

1l BT | .] A8USSIUOAS|353N0 [f] &
(=Rl Ctpay CUNoE | U-Uey paag =R RN T === e T S

Bl uoesaunu3aIntg H_

auagsabueysanby _H_

Bl quangabueysainby _H_

JejsunDEngUaygaaning _H_ 2

e ainbig H_

earl malibume g H_

ene(io0ypI0umeI] _H_ 4

fw_ 4 ﬁ.1 =] [E b 69 .“"uM sussribueyaBUMEA] [T]

[juasgabueysbumelg @

oy ‘SUL QD AL UDIESUD (0 PaUBlf) O t5|nSa. e s el Bupiei [7]

Hs N Gl E exel npauus [f] -
. AR InBIUIaEUI0 T _H_ :
SHOMBUEY MRAD BY'HD F -
s8N0l MEdp B HD £

W02 QUIL0T MBI EJI'HD -
L3y QUILC D MBI BT HD £

T PUpQuuoT MESRRSHD -
QUL MR B HT
uoljeaydde medp e 'HD £7 -
uoljewnoju| ssaldoigd Jejdde weipreyr Ky £
MEAD'RYHD -

0. . & iy N«..a ! 54 MEl, Spaas @y | WAl 194B| UDIIIEpSY

-

@-E

[(LI

sjuaUia)a pajaajas auY JoJ SIsAEUE U-uey Bulnoaxg n ,_“ !

s g-E
T9PSMEIQITHC nhﬂm
0°7-wapl 7
IR i Tds'g'z gssoqr [0l

Fa 'SUL QT A UoRERD 0 "_um..gmu__b.a 1SNS34 UMOUS “Opy =1 m_.L
O — O o _Eu,_Em_.I L *iidxg aney e

{ 1. B 57 wEl SISAlRUY Ul-UR gy

_ e[ﬂﬁ_m e | R e Eis 2

digk R e N = a1 Q=== Tt =T 1= O [=1 =1 [N [e [= =T |

Nas asdiys] - eavp —

Figure A.3: A progress bar shows the time left to completerkernal model and to

execute the fan-in analysis.

Appendix A.FINT

186

*SUL QB U0ESAD (0 i peuagy) 0 iS)NSad UMOYS tap| |

57wl S[IED pALID)D &

w 62 ¢ [JR0EWETI3Y0 " M1 DUIME 0 0 MALIEL MBIP B HD

¢ |

-~ (50 da3epdn’ UogaauUo ko g3 s24nbly melp el HD _....v_ -

J0EINGUIEANBIL JEINUATES" SNBISInNgUIIY SSNBY MEIP BN HD] -

1B3THIR5E " AR OPUN $EIPURHUAREI0 Y(BURN L QLU0 MEIR BT HD 5]

(212304 aunbi42|0ue | quIL0 wEdp e HD e B8

{uoyea0aiepdn 2unBieauyyEe | QUIL0D MEIR B HD =5
(MBULSh)yxa] 395 aunbiJealy e | ' QUILoD melp el (|

[uUo4tquod32s 2unbIJea gy yea | ' qUIL0D MeIpell HD el 8

(IIMAganom aunbijeaugyxa | quUIL0D mEIp e HD Tt 8

(JU0BA|Dd3asa. ANAN 2OPUNE S| pPURHE|EISUO0AI0 S GUIL0D WEIP BJHD) 5]
(isjuagyoows aunbiguobiijog quuod melpr e 4D [=1 [

{Iungi) pungias - aunbiguabiijog QuUIL0D mEIp BN HD [t 8
aginiunbijogi fjungiyiageioya|eas aunbiguabiijog qUIL0D mEIp BN HD e 8

{Inuodaaowas ainbiguobajog quiuod melp e HD =5

(104803 uo 434esu) 2nBiguobA|0 4 QUIL0D MEIp e HD =

: {11} 4ppe-aunbiduobiiog quiuos melp el (=7
unbi4is ypabueysaanby sunbideaiyxa] Ty LH W3y QUIL0D MEID B HD fuss’ |
(aiepdnaunbigansoduns)

ebueynaunbigiauasatuey HanbiJppe 2unbid HAomaWEL MED B HD
a7 ¢ (UROTUO 28|25 MBI ELIME I A0MAUIE MEIP BN HD

AT 4 (U0023125 MEIABUIME I HOMSUEL MER BY T HD

T ¢ (U2 SIS WS BLIE A0 HOREUEA MEAR BT HD

e 1 1I|.1 —i

Vi | 99,99,90,99,99 99 .

g

*

i)

[+

R

A

© i el N
|| laxgaunurgmeddioHe (]2
Sel*uodanx IMmeAI0HT _M_ -
el uoneswUnuIs|puEY (7] -
eAplajpuey _H_ "l
CpaW | enoas | ukuey s eaplJoqsip2un0H _N_ -
w < & 48u=RsIUOE|35INE [f] -
Fat _w@ i Nm_a dcq eapl uaipaEgaInby _H_ A
e) 57 Mal SPans @ | Mal sake| co:um.,___um.xm weluonessunuIaInBy [F] -m
i — —— . auagsabueysainty _H_ -
< | > | Bl quangabueysainty _H_ A
i R
™ JegsunDEngUayeantiy _H_ |
JUT) 37I0IATUMSS I0303UNOD STTHRd e4e(2B [f] -
7 earl malpbumeg _N_ 1
eagl Joypabumeig _H_ x
13 QUIAIIITR =248y ueDd 2aInb0TT ¥ .
auajsabueysbumelg _H_ ?
BTI STY1 JI0T JI02123UU0D B 139 4
/ [juasgabueysbumeg _ﬂ
e eAR[BUIMEI] _N_
E| { () 3nouuopuen uweaTood 2TTHnE BAEL IOt _M_ i
7 (=2 =T A= ol W W (TR =N 0 [a _M_ -
5 i
) Sg uEo SINBTT STYG T SHOSYS & HAOMBLEY MRAD BYJ'HD £ -
; Seundly Medp R HD £ -4
L W00z qUIU0s MEIp B HD F-F
2. Ton atTTond L 3y Qruo ep eI HD £ -
7 PUP* QLIUOT MEAR B JHD -/
N Quuo MR B HD £ -
¥
SEUBUATTTAH 9855 4 uoie .n_um. MERRYTHD FF
SIEPTITBAUTH 29950 4 ¥e|dde meip eyHD £
sgIsadosgo paisasthaT . PR HD T
BJHD FR-
L ue 2IaBBTIl 0STE pOUIaN STIUL .
Mo By 2ANLTI B 28Ul SIWAOINI . HD B3
/ (abeyaed yne Jap) mm H
o s 7=
(12PuBUDTTTA PTOA OTTYHOA ﬁn?m;wm_“o“on__._wn_ m.m_
2 i % T :
| Tds'g 2 ess0a0 -

palueyaf 9238n 4

IUEPITRAULHE 9385

diay mopuly Uiy

o7 eaelaunbd _H_ [.Eu._m;m_L.

O BRFR -D -

-5 0=

5 t'dxg abeyaed =

§-0-%-uf; @

Jpalold yoeas ajebisepy

iopejay anos 1p3 A

Mas 2sd1j93 - eae(-2indLy - eaer —

thdidated view.

isplayed in

isd

lys

-in ana

The results of fan

Figure A4

A.2. User manual 187

Note that the filter for accessors also checks methods irfaiciEs and eliminates
those methods for which all implementations are accessors.

Change settings Fefresh the model Clean the model and Save results

\J‘:. Jt::. (::. T \ EW/;W'
Fan-in Analysis Wiew (‘}:

Mo, shown resulks: 496 (filkered: 5,582), Creation time: 0 ms., " Sort by o, of references
+ % CH.ifa.drave, applet. Cravspplet figureSelectionChanged(]| w Sort by name ~
- CH.ifa.draw. applet. Drawapplet. toolDoned) : 16

|2 CH.ifa.draw. applet, Drawspplet . initDrawing () w Show seeds

|<= CH.ifa.draw, applet, Drawipplet, readDrawing(CString;
|<= CH.ifa.draw, contrib, CompositeFigureCreation Toal, koo
|<= CH.ifa.draw, contrib, Nested CreationToal koalCaned) Shiow Libraries
|<= CH.ifa.draw.cantrib.PalygonTaol mouseDown{CMaouse | Show {Implementation-)Accessors
|2 CH.iFa.draw. contrib, SplitConnectionToal mouseDownd | Shaw {Mame-1Accessors
|2 CH.ifa.draw. contrib, SplitConnection Toal, mDuseUp{QMDusetvent iy
|2 CH.ifa.draw.cantrib, TextareaToal, mauseDowni QMauseEvent; II)
|2 CH.ifa.draw.cantrib, TextAreaToal, mouselpl QMouseEyvent; 11
|2 CH.ifa.draw figures, ScribbleToal mouseUp{GMauseEvent; I1)
|<= CH.ifa.draw Figures. TextTool.mouseDown QMauseEvent; IT)
|2 CH.ifa.draw figures, TextTool mousepl QMouseEvent; II)
|2 CH.ifa.draw.samples,javadraw, URLTool, mouseDown QMouseEyvent; 1)
|2 CH.iFa.draw, standard, Action Tool. mouselpl QMouseEvent; 1T
|2 CH.ifa.draw.standard, ConnectionTool rouseUp{QMauseEwvent; 1T
|= CH.ifa.draw.standard. CreationTool mouselp{ QMouseEyvent; IT)
[# (CH.ifa.draw,application, Drawapplication, createCrawing() © 5
[# (H.ifa.draw, application, Drawapplication, createToolButtond GString; QString; QToal;) : 6
[# CH.ifa.draw, application, Drawapplication, create Tools{Q1ToolBar;) © 5
[# (CH.ifa.draw. application. Drawapplication. Drawapplication{QString;) © &
[# (H.ifa.draw. application. Drawapplication. figureSelection”hanged(Q0rawingWiew;) : 5
[# (CH.ifa.draw. application. Drawapplication. newwWindow{QDrawing;) ¢ 6
[# CH.ifa.draw, application, Drawapplication,open() : 7
[# CH.ifa.draw, application, Drawapplication, showstatus{ QString;) © 6
[# (CH.ifa.draw,application, Drawapplication, toolDone) : 19
[# (CH.ifa.draw,application, Drawapplicationd 1, executel) :
[# CH.ifa.draw, application, Drawspplicationd 1, executel)
[# CH.ifa.draw,application, Drawapplicationd 1, executel)
[# (CH.ifa.draw,application.Drawapplication$2. executel) :
[# (H.ifa.draw.application.Drawapplication$2. executel) :
[# (CH.ifa.draw. application. Drawapplicationd3, executel) :
[CH.ifa.draw. application. Drawapplicationd4, execute!)

Advisars setkings. ..

O O o O O O O O [= B

e B B e B s I |

Figure A.5: The Fan-in analysis view and the menus for varimotions.

By double-clicking any element in the view, the user can iosgige code for that
element. Further on, the menus in the view allow us to:

e Change the settings of the analysis, like the fan-in threshalue;

¢ Refresh the model by re-analyzing (/re-building the modgltee last analyzed
element;

188 Appendix A.FINT

e Clean the model built for the analyzed element and releaseomyem

e Save the results to file.

Besides the filters for the accessor and library methods shisan in Figure A.6,
the set of filters include:

e Callees filters

— Fan-in threshold: Methods with a fan-in value below the emothreshold
are not shown in the view;

— "Utility” methods: methods that the user chooses to ignare that will
not be shown in the view;

e Callers filters

— Methods that should not contribute to the fan-in value oirtballees.

To select "utility” elements, the user is presented with Jaea element hierarchy
of the analyzed Java element. The user can check the "tugligments in the dialog
window of the Fan-in Analysis Setup. Such utility elememsld include, for instance,
(JUnit) test packages, as in the example shown in Figure A.6.

Reasoning about a candidate

The filtered callee-methods are aandidatedor crosscutting concern seeds. To rea-
son about a candidate, we select it in the view and choosé&xbérito” option from its
context menu, as illustrated in Figure A.7. This commandsphe list of its callers
and activates the toolbar button for launching variousyeeal for the callers.

FINT assists the user through several analyses to decidtharha (high fan-in)
method is a concern seed. These analyses can be accesséuefroenu of the Fan-in
analysis view, as illustrated in Figure A.8.

The option for analyzing the hierarchies of the callers wihleck the top-level
declaring type (i.e., interfaces/classes) of each calfet,highlight with the same color
those methods that are declared by the same type (see Fidl)te A

The option for analyzing the position of the calls to the (gpad) method with
a high fan-in value opens a window that shows all the calléth® method and the
position of the calls to this method. The positions are nedab the caller’s body. This
analysis is illustrated in Figure A.10.

A similar analysis is shown in Figure A.11: in this case, wekiat all the call
relations for the callers of our method to see whether thelkers have other callees in
common besides the method we analyze.

If we decide that a method with a high fan-in value is part ofa@sscutting concern
implementation (i.e., itis a conceseed, we can mark it as such by selecting the Mark

189

A.2. User manual

[(Ews [e

R
*SUL QB U0ESAD (0 i peuagy) 0 iS)NSad UMOYS tap| |

53wl S|IED PALDID & |

=i

| I

(50 da3epdn’ UogaauUo ko g3 s24nbly melp el HD nv_
Joo@ingLaygaan bt)aanguaiies 2unbi4ain gLy sanby melp e i ot (8
1IE012584 A4 OPUN $EIPUEHUCNE0 S BURH | QUILDD MEIP B HD =]
(212304 aunbi42|0ue | quIL0 wEdp e HD =]
(juoijEa07a3epdn 2UnNbIJea g yxa | ' QUIL0D MEIp Bl HD [
(TBULIST)a] 395 2unBiJeauy e | ' QUILOD MEUP BRI HD =5
[uUo4tquod32s 2unbIJea gy yea | ' qUIL0D MeIpell HD)
(IIMAganom aunbijeaugyxa | quUIL0D mEIp e HD Tt 8

(Juobii|ogiasas Apanagopunda|pueHa)easuabi|od qUIL0D mEIp BN HD [|
(isjuagyoows aunbiguobiijog quuod melpr e 4D [=1 [
{Iungi) pungias - aunbiguabiijog QuUIL0D mEIp BN HD [t 8
aginiunbijogi fjungiyiageioya|eas aunbiguabiijog qUIL0D mEIp BN HD =]
(Dyuogasowsa.sunbiguobijog quiuod melp e 4o [|
(17048030 uI0 434950 3.NBIU0BAI0 4 QUIL0D MEIP BJ HD =5
it {11} 4ppe-aunbiduobiiog quiuos melp el =t |

unbi4is ypabueysaanby sunbideaiyxa] Ty LH W3y QUIL0D MEID B HD fat 8
1 (aiepdnaunbidansoduase iy de.s qUILOD MEIR BN HD oyt I

ag pabueya aunbild jomalle) Medp e 4D um .
tebueynaunbigtauasatuey HanbiJppe 2nbid HAomaEL MED B HD &. 2
ww 2
uw B

'v|;

¥

eI

a7 {JIUnO U085 MBI EUIME] D MEUE MEID B HD

LT 1 (U0I38)85 WSl EUIME I "D MSUIE MED EJ'HD

12 ¢ (IU0I22[2522)2! Ml DUIME A0 HOMEWE) MEIR BT HD uw

£ 62 ¢ [JR0EWETI3Y0 " M1 DUIME 0 0 MALIEL MBIP B HD ww

= =g o

e e

il

ot
Flysa4L

S| W04 SPOLIR N0 133

s [eussy

SpO3awl Jossadded-uonejuaEdun Jno Jagg

SpOLaLI JOsSEI0E-SIEL N0 a3)d
SA055200
si39d 29120

< |
T AmEd A e _h_.

& JuaD 352y MEIp'ENTHD £R
MEIREIHD @) £
[iseymep el HD [F]
AOHE - 3593 MEJR'RJI'HD
- plepuEss MEdpRHD R
ad sajdwes' meap'eI'HD FH [l
ad'sajdwes meap'e)'HY fF -
wursaidwes weapeyrHD R]
aursadwes wedpeyrHD f] -
I sajdies Medp e)rHD B e
el sadwes weapeyrHD T[] -
el sadwes wedpeyrHy f] -
[- sajdwes meapej'HD = [l
4C - sabewr meapej'HD TR [l
saowEwey meaprerHd]
[- saunby wedpr et HD E _H_ A
Jozrquyuo wedpegrHD f] -

gy quIueY MEpegtHD FR]
Pt qUILET MEdpRITHD R[] -
AC - quaua MedptegtHD B[] -
uoie|dde medp e 'HD R [~
HE - 1jdde meapreyrHD £3 [
MBIQIDHE - MEdpRgrHD R[]
[T9b5MBImoHE -2t HD B O]
S TqpSMEIdIOHC - HD BR[O -
10HL - (abeyed Jnejap) mm _H_ 5

bl

E-EE-EE

&

JE=RE: RE

=

M

@

BBk

e

|

W

A paddrys 2 0] 5JUSLIS|2 24 SR} UDIJIR[EE AN

dngas sisaeuy ul-ued

ayssults.

-in an

The dialog to set the filters for the fan

Figure A.6

Appendix A.FINT

190

=

||l gaunurysMe ATaoHC
w2l uaiyda0s IMELJI0HT
AR UCE SN IS PUEH

r
]
[F]
eAplajpuey _H_ .
e) | r r T o eaplJoqsip2un0H _H_
H ﬁ._‘ — * ® .nwv am... il 2! g H==5 || deuaisnuonaaRsaunbly [F]
) |~ T2 E % Bl . esel uoRasjesanbiy (] -
*5U0 U U0RESAD (0 peAay) 0i53Nsad UmOYS fOp) | — - . 2
| = 018U uojealn .ﬁ.a ey 05 L . I - 54wy, spaas ‘_ Wl ke co_uum:__um.x “AB[DR sanu32anty q_l o
o - ! .wﬁ Hialh, S|B3 palo)s @@ = ...H._|. — : “uauagsabueysaintby [F
- .A _. - = | < _ l > [quasgebueydanb [f] -
I | — e -
_ R - JEjsunDEingLUgyaantiy
-~ (50 da3epdn’ UogaauUo ko g3 s24nbly melp el HD ot BB el aunbiy
10033 QLAY RANEI4T) 2N 3RS SINBIJAINGATY SENBI MEIR'RITHD] UL ITIOTRSUULS J0dasUUns DTl mi_gmsmc_gs.o
11E30H32524 A4 OPUN $2|PURHUOREI0 S DURL | ' QUIL0D MEUP B HD f= | E i . P

10 AUIAIIITH =ABY ULD 2INETIF ¥ eheloypabuE

WBTT STYl JOF JI0123UU0D B 5135 4
vuf

(0}29230. 2n012)Bue)) | ' QUIL0D MEUR B HD =%
(juoiean3
{fBuEE
(*quo-yy
(I

auajsabueysbumelg
[juasgabueysbumeg
eAR[BUIMEI]
EAR(*I0]38UU0T

]

) 32suuonues ueaTood JTTgnd

SEAAEREESEE

7 (=2 =T A= ol W W (TR =N 0 [a -
uobA|D43R524" AJIAI POpL| *
{juobAjogy i .Mum.qu_.__“ P T— HOMBWEAY MEAR B HD [
ek SN0 MEIP R HD mm
(Tuodi 1y wu

W00 QLU0 MEAR B JI'HD $
W3y U0 MEAR BT H D $ e

i iunbA|ngh uingiy e

[2 d
{thwaued 9ol 230 R Pl . uﬁw: T pupqUUDT MEIEHD £
i [
(T [BPOl Ysaga o & (- * QuyLon e By HD F}
(1 A Dep-: ¥ : a2
= sisAleUe J0) s0uiyes abueyn = P o uoedde medp eyt HD mm
unbiis ypabueysaanby aunl i U | i MMMMMWM“MM”M .H.“Mo_ * ja)dde mEdp EJTHD mm
. aasd =
{Jenepdn 2y _uuum V_E_}_ﬁ c_._v mv o nv_ o : ; = 3 MR RYITHD
. 182 *g3aAI9sSHo paIslsthaIl . G
_mmcmcumc:m_mou:mcmum_._mm_._mr_uE_._m_u__u_um m:_._m_u_ vto_smEmt mEID E_ Ho & -m L uB S3BABTIIN OSTE POUIIM STHL » ' o £
31 : (JAUNGDUOIS|25 MEBUIMEIO HOMBUEL MEp e HD] @ MO EBY BANOTI B IBY1 SIMIAOINI . (sbeped ynegep) B
£1 3 (JUOIR(25" MEBUMEI] HoMBUEL MEp e HD 8 @ vl 2 % -
| 1E ¢ (UORI8[E5I2aR" MEIhDUIME IO HI0MBWRAY e eI'HD 8] -F) 2 iz IqSHRAOHE)
v 62 | (JRBRUIBE" MAIABUIME AT HOMEUIR L M2 B HD ww m {{12BueysTTITA PIOA OTTHM Gt hU
B] IE 5| o 2 | = (ST :
- - > pabueyRg a3sn 4 o hdzibi ot ﬂH...
Fa 'S0 295 AU UnieasD (P9’ ipaualy) £ZT is)nsad Urmoys ol | =232pT Hwbﬁﬁm 23aspl y alu_, _.H" L
[_M_ = A [Mﬂ [=2=I =1]| _H_ O o Eu.@mf. 5 t'dxg abeyaed B
_m..,.m_u—-%_m Ry & = ; »@ wmmu\%._ﬂ?. »&»m@»@»&#»:._ﬂ” {10 >A_|vL

day mopulan uny Jaslodd youeag =ebiapp J0joRjeY AMn0S5 P3S4
W@s asdija] - eael-ain81] - eARr —

|tiead.

Incoming ca

tsi

Select a method to analyze

Figure A.7

191

A.2. User manual

== i

A X AU M ATIOHE

L

SEEN

HAMBADIOHD
_ P ._ _ e BLunu3a|pueH
eaplajpuey _H_ .l
. N |7 vt HoysiaRanbd (1] -@
ﬁ._‘ = ||3Ek b ¢ @9 aﬂh |53 pajEsantl [7]-H
= &=] 1j33j@caIntiy H_)
2 *SUI [AU UoRES.D {0 TpRUaq) 0 1S3 nsad Umoys fop| Swnugantig H_ -
lo . 57wl S|IED PALDID e | = = SUOE(24 $33|/23-S13)Ie3 MoyS] BueyDaunbly ﬂ_ i
- M _ .W 1% SUOIE|SY Sa2|ED|e-542)ED Buenainbly [F] -
=i = ~ nguyyyanbg _H_ .
A TUES U 32INgUI YR INBILE NGl YIRS 2UNDILaU T4 0d SaUnBl MER B HD) SUBIEEA UDIISOd |23 J5JEfEA04a0-5poau mags [Bag(ainbig [f] -6
(DA HIGSRATWR BINBILAUITAO SRINBL" MR B HD =] SUDREIEY UoISOd|E a0y 240)89- SpoUIak wspBUmes [f] -
(IUodt g IUod4as U sunbi4auA|od seunbl) Me p el HD =) oapatume (] =
(IDUIOdPRE SUNBIJaUITA| O S2UnBL eI B HD o] u= suore|2d uolysod ||E3-spoiai wmoys] cm.:Umc?m i if] m
5 i ; it i I = ’
(IUIn414e35 UDIIaUU0 au saunbly* smelp ey HD | SUDIIR[EY UDRIS0d|ED-SPOYIaL oL BLMEA] S -
(IO dpLa" UORIEULOSEUN 2D FEIP B HD = - e o0 Btz @ s
(I15jUI0493epdn U0 3aUU0 k0|3 SaUnDL e p ey HD [| L 3 FHERSISERO R LRI RO L LML _H_ Bl 08U E &
DijuejsuodagnquypaIntiaainguUIies 2unbigaqnguyyg sunbly meap g HD <) = : SUORE|EY S90S, 204 | BULR|IET-Sp0UIEk] -_u._r_o_uumr__._ou _H_ .rwu_
| — BUgUONEI0 IS4 AJAIIYOPUNGS|PURHUDREI0YS|BURL | ' QUIL0D" MEAD B HD] e suoljejad sadAy Buie|aap-spoiau mays [tm:_zﬂ_u_ﬂ___.._u mm E
{Q)a3eqou aunbigabuel | quUIuoD MEIp Bl HD =] = Dl =
i)) i sUDiE|eY sadh | BULERa-SpOUial) 1" MEIPBIHD £
{uoneaotajepdntainbigealyxE | quUIL0d mMELD B HD =] L0 MEREJHO) mm &
(Bunsh]e jas aunblRayxa) QLU0 MEAD BY'HD D] - ezl swes Uy 0 Buojsq sis|ED 1 paL o2 MeIp 'R HD Fi -
{fuogi)juodias aunbidealygne | 'quyuo0 melp B HD ! B ARSI SRS O MR H) mm 2
(114 geaouw aunblJeauypoE | qQUIUOD mMEp B HD |- O3 BRI H mm i
(uobijodyasal Apaopopunga|pueda|easuobiiog quiuos mEIp B HD | |dde eap ey HD mm
(i53u04u300ws* aanbiquobiA|og’ QUILOD MED B HD It poLaW awes e MEdp e H) mm i
(IO e Und3e5 a4nbi4uobA|iod QUILOD MEID B HD b= | SI9ZAEUY 542)2D 12995 MEIPERJITHD @m _.+._
{Fuadi unb Ajodi Iundi jaiei0ya|eas adnbiduobis) g quiuad MEdp B HD fet | dnjas sazhEUY SIE|ED BIHD mm r
(T uogasoua snbi4uobA|og QuIuod sMEp B HD =) B B _ ' o mm
, ; . b o dnjag sisAEUy sI9)ED 5
(T3040)19 3UI0d349 500 SaNBIJUDBA| 0 QUIUO" MEIP BI'HD] abeped yresep) M-
(INUIedpRe: 8InBIJUoBd|od qUIHoD MER B 'HD 5| @ dnjag sishjeuy ui-uey — s) -E
Eueynauntigiyipatueyaaunbny 2anDiJeay x5 L Tl LH' (UIY QLU0 MEIP B HD o S : EEEEEDI._.“ hld
o (1932 PN’ SnBIES OGN EaIYdR AT QLU0 R Y)) 9BuEySTITA PTOA OTTHRA P mu]
B Ty m [+. : 4 & | i il BT ESSD: . ;
b+ PEEUEag 9950 o o Lo 8’2 iess0dr M-
s ‘(9 1583U84a a4) (JPEDUELD AnDI oMeNIE] MEIp B HD (jusa|g | v FUBPITRAUTYE 2320 . s anuv =
I . = T = = . I T = T
{1 5, mﬂ AR 2unbly _H_ O o .Eu,_m;m.__._ i WW dx3 abeyoey w“._ |
er B : : = = = o IR 17! 1 =
[ener 2| 2 - D el B a = SR P BEFR -D-BP-0O -t @ ~5d |

The dialog to select analyses for the callersrogthod (with a high fan-in

Figure A.8
value).

Appendix A.FINT

192

< ; ¥ || _ >
= =N g PRt = g T B g
Sel*uodanx IMmeAI0HT

==

._,m._“__._o_um.._mc._j_._mm__u_._m.I _H_ -

TSI WA U0RERIT (0 pREald O ssnsa) Umogs fop eae{*ajpueH [F] 6

Goo U O EERREE \nemmoons T PR
e r..—El H_l_L_Lr.r_lul.: _H_C__l._r._u_r___ A= 4= l_EEI _Sr..-_l_. r.m_ H_ n _ - ﬂ ._-.....Mu N.mq lo.ﬁ M_PM.H.ED_HUM_DWD.__JU_H_

|
|
|
{Juoneaoaepdn ainbiealy e QUILOT BB HT 0]
e e
(fuodijuogyes E:U_Lm_.E..n...ux.u L' QUIL0D eIpUE g HE =]
feai:
(=]
(IS IUI0 4 3000s S NDIUDEAD 4* QUILI0D WMEIp B HD]
(T gt gauogyes aanbiquobijog quILod medp el o i
{quagiyiunbiogiuogiyiaieioya|eas ainbiguobio g QUIL0D MEID B HD f=pi
(Dyyuogasowasunbiguobiog quauod meap e Ho [
(T gty 4pasuraunbiguobiio g guiuod meap e 4o et 8
(ITuadppe sunbiguobio g quiuos: medp el Ho =)

(=TGN =N =101 [W =W a1 |
auagsabueysainty
Bl quangabueysainty
JegsunDEngUayeantiy
eael aunbiyg

earl malpbumeg

eagl Joypabumeig
auajsabueysbumelg
[juasgabueysbumeg
eAR[BUIMEI]

| O _H_, 57 MEIA SPISS @y | ____co_uumL_nmmm
< I
= R .

1 I0323uuUc) 2TTHnd
i
W ueD An0TIT T o«
IADIUMDD B S135 4
kk._.__

R e

HEEEEESEASEEEEE S

2o ueaTooq oTrTqnd EAR[*I0128ULOD [F] &
3 7 (=2 =T A= ol W W (TR =N 0 [a -
-
STU3 IT EMOSUL 4 HADEIIRAY MR BYHD £}
saunbly medp ey'HD £
¥ __.__

W00 QLU0 MEAR B JI'HD $
W3y U0 MEAR BT H D $

proa oTTynd
Pup qUyoa MEAP BHD F

e quuon M EYHD £}
SUEYSTT TR 98SE H uoiedde Medp e HD £
IEDTTEAUTH aass o - 13dde wedp eyt HD B
isco paisistbai . MEApBYHD -
ITE pOYISW STUL » BJ'HD -
3 1BY] SEMIOTIUT . Ho £+
) (abeped yneyep) £
h =
[DTTT4 PIoA oTTqnd TASMEITOHE (=12
gy B 0°7-wgpl 71
pafETay oosn o 28 Tde'3'z'ess0ar -
VIEDTTRAUTH a3sd ~ 5| &
"|D _ 52 eap(anbly _H_ O o “..A.r_u._m.._m_L. 52 g abesoey W_ |
P - PBATR -D-V-0 % - T -5

day mopulan uny Jaslodd youeag =ebiapp J0joRjeY AMn0S5 P3S4
W@s asdija] - eael-ain81] - eARr —

IS.

hy analys

ierarc

Same-hi

Figure A.9

193

A.2. User manual

2 SUDIRE|EA UoRIsod B3 Ja3 e a0 jag-SpoLIam MOLS

- SUDRE|S Y UORISDH|ET 422 10450-5PoL ek

A0

5

[

(I35 aunbigafue:y
(1 uodi)ImauIngies -=ung
b4 - oiuelsuoDaINgUITYRNOIdDAINgUIYIes BNk

(IIgauodanou) aint
x (I1ungiyIundyas)an

{I1uodppe ang

{ITAUI0g34=35" Uai
{Iauedpus:uoim

B

ERE R S

' iiuesuoTagngLUE RInBIdt iang Uy RS 24Nkl

X ({)e|buguoneioy asal AAgopUn o pUEHUOREY
{)23e30d 2an

{juoiyeaoiagepdn aunby,

suolefRd Uolsod [[23-spoL3aw moys [

suoRE|ad saj04 5, 2dA] Bulepap-spoua moys [
sUopEEY s90ys 2dA L Bulepag-spoyap
sune|ad sadA] BULEIER-SPOLYEI MOLS []

Aueaay awes ayy 0y buojaq siE)ed g yayD]

{Isuogayepdn uoiya poLa aie

sUONE[R) 55

|3-543)j27 ML]
SUDE[EY SEDR-S4EED

SUBIE|EY UBRISOIED-SPaLiE)

sunejy sad4i | Bulepag-spoyag)

Azie izl awes

[EERENTR=IT =l
SI9ZAIEUY S13)120 1D9j9S5
dmas Jezdjeuy sia|ED

(fBuciyes | 185 aunbl

{Fuogtyungias aunf,

(II)Agas0i unfl

x (UOBADgIESa ANAIIPOpUN$E|PURHEE
(1510 O0S uNbigunun g Qs v

{1 u04t)1mu0d32s auanbiquobiog quuod e

Wom o oR R

(1o dppE 2dnBIJuobAog quiuoa s
+++abueynainbigs pabueyneunbly aanbigealy e | T IH' W3y guUuo
(Jeyepdn aunbiqaysodwos eydels quyuod s

1122 3527 1123 352| B40429 |I22 puooag 122 35404 A

WO OH K R oMK

3|0 SUDIEEY
SUGIIE|aY SUOIIS0-|BD 48] a40]ag-848]E D

SUDIE(EY SUORISOA||Ea1y210,9g-519e 0

suoLjE|ay =
fe
pafiEag 0958 .

_ dnjag sisARUY s8]0

dnyag sishjeuy ui-ue =

e e R T s)
s24nBy e e HD £
g0z’ QUL MEAR BY'HD @
M3 GUALe MEIR BN HD E
PUP*gLu0D e B HD -
QO MEIR BIHD F-
uonedde medpreg HD £
1B|dde meap et Ho mm 4
MR HD
erHD B
WY
(sbepoed yneyap; £H-
s @ B =
TRRSMRITIOHE 31 B
0°g-wgpl I
1d5'@' 2 ess0g0 [T

VISPTTEAUTH 29858 4

7 eae{aunbly S __

| .H..._...F_Em._o_L.. &g rdg abeyaeg ﬂ |

- BEFH -D-H-0 -~

's body.

the calheethod

in

fthe calls i

ition o

the pos

ing

Analyzi

Figure A.10

Appendix A.FINT

194

SUIOIYE|EU S9]|/B3-543(18D My

SUOfE[EH SEREDjly-SiaED

suoe|ad uonisad |22 4838{24043q-5pauiaw Moys [

SUOIE|S UOIS0ETaT Y fad0jag-SpoyEl

suone(ad uogisod |[23-spayzau mays]

b s

SUBREIEY UOISO|ED-SpOY3El

sUONE|ad 58(04 5 adA] BulepEp-spoLpau Moys [®

SUOIE|EY S9|0ys adA | Dule|Ia-spoLgyal)

suaije|ad sadAy BULEpap-spoyIaWw MaUs]

»

suaijefay sada | Bune|aag-spoLgyagy %

Ayziedaiy swes a3 03 Duojag sig|ed) Hays] ®

AUIRIRI AWES

=

ula RN E=TITR=TIT 3=
SIazARUY 518D 12925
dnjag JazdAeuy S1a|ED

_ dryas sisA|RUY 19|80

MR R R

dnyag siskjeuy ul-ueq —

E
HoE oA R OH K K H H MK K H KK MK KKHKKHHKRHHRH§F

x

b

| | UDIMEIDIEMHD | UMEIpENTHD | OeBueL D anDig omae) METT B {Ipabueyaainbld omalue.] MElp R HD

*oDEgnguIgaInbi-g S einguyYIes aanbigaurAjog saaniiy wme.

*+oDEInquIIYaInbidtagnquyyies aunbidangLyyy saanbiy: me.
*Ej0YIasa) A opurde|puRHUOIE O YS|BURLIL " qUIUaD e,

(juobio4iasal Ao pundapueHe|esuobai|og qujuod me.

**dinfuabijogh uogtaieoyeeas sunfiguobi)og guguod: me.

RIS Ipabuey saanbily sunbldeayyxE LW LH U3 QUIUnD e,

([Emm— >

UL U S LA] 3o I e
(IDAgasow aunbidixa] saanbiy wme.

(I1)2up3as aunbiga)fuetaypunoy saunbiy: me.
(I uogi) giungies aunbigaundjog sainbiy me.

(T3 uIodaA0wad N0 A/0d saunbly me.
(T4t) U duasu sanbigaurAjod sauntiy wme.
(I uodppe sunbidauridjod saanbiy: me.
{I[UI0414e]5 Uoaauu0 Jaur saunby me.
(IIUIodpua* uorpauuosaur saunbiy me.
53UI0dE0E pdn UoIEUUn Do) sadnily me.

pd q by

{Qjayeyo. aunbiga)fuel | quiuod me.
(juoijea0agepdn 2nNbIJealy)Xa | "quUIuoD” e,
(IBULSt3=a 1325 2nbIJealgxa] LU0 me.
{fqun-uo 4385 sunbidealyyxa L ' quIun me.
(I1)AgaaowaunbigealypoE | quIund me,

{15310 4U300Ws " 2NDIJUODA 04 quUIU0D e,
TiUIod® 1 IUInd 8 sanbiguobidod quitad me.
U4 BlJUOBA|0d '

(irguogasowal sunbiguobsiog quiuod: me.
(Tuogiguiodyiasur aunbijuobijog qujuod me.
(IIUIOdPPE 24nDIJuUoDA|0g quUIuoD e,

{ya1epdn-aunbigaysodwosenydeas quiuad me.
alewl

3|ge3 SUoERY
sUOIE|Y sas|eT-sa|ED

pehueyay aass 4
WIEDITBAUTH 2950 4

i o
=l | T | e e

57 eael*aanbld (1] __ﬂ_ — _EEEm_L

- BF W -D -G -0 -5 - b

N

~bd

lay all theexadl for all the callers of the

Disp

IS

Callers-callees analys

Figure A.11

method with the a high fan-in value.

A.2. User manual 195

Seed option from the context menu of the candidate (righk¢he candidate in the
view). The method will be marked distinctively and displdye the Seeds view, as in
Figure A.12.

A.2.2 Grouped calls analysis

Grouped calls analysis requires the model previosuly byifan-in analysis. This new
analysis can be run from the Grouped calls view, as showngarEiA.13.

The candidate-seeds consist of groups of methods that #ieirecallers. The
candidates are displyed in the view as a tree hierarchy, eetih group of methods at
the root of the list of their common callers, as illustratedrigure A.14.

The results of Grouped calls analysis can be sorted ancefilteimilarly to Fan-
in analysis. These filters include checking for settergéget checking for libraries
methods, as well as for “utilities”.

Besides the threshold for the minimum number of callers ofralickate, we can
also set the minimum number of grouped methods that shairectiéers. All these
filters are shown in Figure A.15.

The filters for the callers are again similar to Fan-in analgsd allow the user to
ignore certain calls in the analysis, such as, for examptese from unit tests.

Marking a seed for this analysis proceeds again as desdob#uke previous tech-
nique. Each of the methods grouped by this analysis is shawtha Seeds view,
together with the other methods in the same group, as #itestrin Figure A.16.

A.2.3 Redirections finder

Redirections finder requires too the model built by Fan-inyami® To run the search
for redirections in the code, the user needs to select the&ebutton in the Redirec-
tions finder view, which is marked with a circle in Figure A.17

The same figure shows the results of the analysis: the reglirelass and the re-
ceiver of the redirection are shown as the root of the set adhaus from each class
related by an exclusive one-to-one relationship. Sucheatieinship means that a redi-
rector method calls only one method in the class receiviagedirection, and that the
receiver method is not called by any other method in the eethr class.

The filters that can be applied to this analysis are showngargiA.18. In this di-
alog, we can select the minimum number of redirector method<lass, according to
the previosuly defined rule, as well as the minimum percentdgedirector-methods.
In our example, a candidate-redirector class has to haeastt 8 methods implement-
ing a redirection and then these methods count for at le&t&Qall the methods in
that class.

The utility filter is based on the same considerations asdbeniques described
earlier.

Appendix A.FINT

uoreyiou pabueys aanbiy

uodisIsap Wisauon

1apuy Jopiadpay

oL 0% <5 |

e 1 153NSEd Uk0US Or
@ = e paUoD @8
= ol
7Y o 2 5

U eaprepd B @

+ [FPOW =20 3 wlipegrn 2 m

[EPOI Ysauget o eapreHD 8 &

LARN R sisAIRUR J0) SEURTES abuey) o RPEIHD & @

_ g .m

e 2w

pabuey>'a.nbiyyJomaue iy mep ey Ho e

— |324nbiyf)ipuajsiabueyjaunbipperanbijomMawerMelpery] & @

91 ¢ (UNODUOIS[ES Al BUIMEI] AomEWE MR e D §]

£1 & {juonpaEs: matBulve g sy ona el meap ey D & @

1E | (JUOEECIEa] MalADUME I AoMaWE) MEIp D & @

- 62 ¢ (ebEUETIaYa mEp B UIME I] A0MBWEL) MEIP RN HD £
ol kg LR = e = A

i POE'S ipaUag) £2T 5)NSaU UMaLs f0

| _.M_ —_
....... ™ 3
| oret %8| ety - 3

196

5|IE3 padnouse

sx/f

) FEEEEEE pToa orTgnd

SEUEyITITHg aash
SOERTTEAUTH

rEIIAdSSd0 pRImgsThaa

e =330AT1I0 0STe poyal=ul STUL
1 gy 2InATI B 3Byl S3MIOIUT

aasa

f{ja0ueyaTIIA PTIOL OTT

pafusyag aasn
SAEPTTEAUTH S350

e

£k k E ok &

ol
fu
&

®

~ ||

57 eael'ainbid _H_ _ . _}_._Em,_m._L.]

- -

diay wmopulgy uny

B -0 -5 -

polold yueas ajebisep)

(ipabueyaaunbid HA0MSWEL) MEIP B HD

B350 186UE DanGIJppPE SNG4 S 0MBWEL MEID' B HD

paag
r.ﬂsm___,_ 18de| UojTapay 57 MBI SPESS @ |

< | |
AL UL

eapl ainbiquoaauun s _H_ |
SAOMSILE L B IR BN HD
saUnby wEdp el HD
W02 QUIU00 MEIR B HD
3L GlAIe0 eI BY T HD
PUP* QLU MEIp RJ"HD
QU0 MEIP RYI'HD)
uopEddde melp ey HD

_|
-~

Ja|dde mep el HD

WEIP R HD mm

BY'HD B

HD B

(abeoed yneyep) £
M E
TARSMBIGIOHE £
0 -wgpl -
1458 2 ess0a0 [0

<

tdxg abesoed H |

10 e
| * va

wopejEy aunos p3 a)d

Was asdi2] - eael-2in8L - eAer —

d.

Ingeaoneee

lected method as a crosscultti

Marking se

Figure A.12

A.2. User manual

3-0-Q- I BEHE- G-
= [J] Figure.java bl

P4l prer

ee H#invalidate

¢ gsee fohanged

it

blic woid willChange (] :

|

197

e = & i o T | & 1ava |
= O || W Far-in Anahsis Yiew 52 . =m
A~ ‘Mo, shown results: 108 (filtered: 5,979), Creation time! 1,002 ms, =

PSRE BEH(I D |
I Tg EH.ifa.dll'at;.fralme-lluo.r.i.(..i:ig.ure.a&dFigurel:hangeListener(QFigureEhangl/__
=2 Tg CH.ifa.draw.framework. Figure.changed(} : 36
- <5 CH.ifa, draw.contrib. GraphicalCompositeFigure, update()
-|€5 CH.ifa.draw,contrib. el HTML TextAreaFigure. figureChanged(QFigureChangel
|2 CH.ifa, draw.contrib, PalygonFigure, addPoint(11

Informes that a figure has chs
* This method also triggers an 1 (’ 52 CH.ifa. draw. contrib PolvaonFiaure insertPoint AL(OPaint: I i % G
= i registered ohservers. == = = =
¢ gzes finvalidate =kim|
@see fiwillChange 0. shown results: O (Filkered: 0}, Creation time: O ms. s
=+, =y = 9
= x =) T 4—_‘!
Refresh the model
—i %
oEhecks i shis o f igure: ot e
7
thlic boolean canConnect ()
— % =
P ozets & connector for this fig
reh o figure gan chave different ot
4
thlic Connector cohhectorltiint
-
L4 7 dets whether the CONNectors St
s == >
1 Ll Bes™ 70
Fan-in Grouped calls Redirector finder Concern description
1angeListener{QFigureChangelistensr;) % Figure change listener registration
% Figure changed notification

Figure A.13: Running grouped calls analysis.

Appendix A.FINT

198

JRUCIEIOHIFSAL AYAIROPUNES|PURHUONEI0I(BURI L QUILO MR B HD] -

(uobajodiasal Apaogopunda|pueHaeasucbisog QuUIUoD MEID BT HD -

02V E9T | J3SUT JewS S|QEIA,

uoiEdyou pabueya aunbiy
uoiyeagsifiad sauays) abueys anbiy
uoyduasap Wisaun

Bl =l

Japuy JogrEdpey 5|2 padnos

4 (ipabueya aunbig yiomaluely medpe e HD
W (faauagsiyabuey Haunbigiyiiausgsiatueyaunbidppe aunbl] s iomale) meJp el HD
ul-Ueg pass

| wiay, Jae| uompaapay 57 M3, 5P @

TS
11 4 fmala faqnoaxa labewegpaya} Nw |
Qn_}mmzuc.__E:m_u_uum:mn_.q__uLm_ucmu_m_sz_u_E_.Iu _n..v_ .

i e) e

|

{uoneacaiepdn aunbigyxal saunbiy smedp el HD ot I8
(IBuLSt)I=e 1325 adnbidyxa] s2unby Mep B HD st [
(fuodih)juodyas a4nbidya] s2unby smep e HD et B
(II)Ag2 A0 2AN0Ida] s2unbly MEp B HD S
(1[5 2unbiIdabue e ypUnoy s2unby MEp B HD o] B
(U0 dDn gIUI0d39s aunBidauAog saunbly Mep eIt i 5]
[T U0 4oA0wal 2unbiIdau4og saunby smedp et Ho b |
{I1)3I0 4335 U0IIBUU0 BN S2UNGL MR B HD =] -
{II)3Uadpua uoi32una 02U s2unby Medp ey i =) -
()s3u0gagepdn uonasuuomog) saunty Melp eyt HD =) -

4

4

{uadt uindh)xogae|dsip auntigioensgy pIEpUE)S MEPBI'HD st | 7 S Mo

JUT) A IUTOJ2A0MST PTIOA ITTYRd =

0 MU UCBATEJTEUISIUT IS

MIAIIUT I
MWIIIQUT
pyutods> [@1 = [jur) aox

< 5|

~ ErEluopaEcaunby
Q=TT =N =101 [e =W a1 |
auaysabueysainby |
Bl quangabueysainty
JegsunDEngUayeantiy
eael aunbiyg

earl malpbumeg
eagl Joypabumeig
auajsabueysbumelg
[juasgabueysbumeg
eAR[BUIMEI]
EAR(*I0]38UU0T

(=2 =T A= ol W W (TR =N 0 [a
SAOMAEY AP BY'HD £ -2
S2UNBY MEp eI HD £ -

[u]gur sou = =4 []aur
[u]lgur mau = =x []laur
[13unosiurod = U JuT

{0 ahuByaTTTA

) pehbueya

= [1 + []s4
= [1 + [lsx

AEEaAaaaaaEEaE

. . " - tA-d = [T]s4
{Q)ay=30. aunbigabuel | QUILOD MEID BT HD - Sy - e WO02 QU M B mm "
(oeloiaiepdn aunbigealga] quIuod mElp B HD ! 8 = LG ; U AL MBI) mm
fquo. uodias sunbigesuyyxa | quILoD mEJp B HD ¢
{fuodt)uody 4= igyaa L gLy PEJTHD o] f - gl = Eed PUP QUG ME B HD [
(T14g2A0U" 3NBIJEa g% a] "QUIL0Y MEIP BYHD] 7047 auIa = Lk I ¥
-ogreuisaurasb = [[]sx gL PEJHD -

B#IwiaE % A

uoedde: medpeitHo mm

(JSII0dYIn0Wws SANBIHUOB A0’ QUILDD MEP BY'HD] - ++ i1t > [fo = [jur) aox 3 pdde e e £
(TWOdD IO 4185 INBIIUOEAO S JHILY MEAR BYIHD) 5] - {fulaut meu = =4 [laur weipR Y
£ 13U BB A0 LI J81BI0E(E3S SUNBIUOE A0 JLALOY MEAR BYIHD) =fs] - {lulgut meu = sx [laur EL.IU mm
(I IUI0GE A0S INBIIUOR A0 QUILOY MR BIHD)] - T+ (launopiurod = wojuT .Iu e
(T AIVIOd 250 INBIJUOB A0d GULOD MEIP BI'HD 5] - d) abPuEysTTTA (sbeped esep) £
BARNEI 42 PR BURL AN 2 NEIE 849148 L T LH' 34 GHINOD MEID B H | é BIOA OTTHnd : s @ E
(j=3epdn 2anbidagisoduo D ediyde s QuUIuoD MEep eI H ol e EEBEQDIm ﬁu._q.ﬂ_
52 ¢ { 1auBL)T aEUS) ww uzATh Y3 18 IPOU B IAISUT 4 a.TEn__u:-...U

wxf

Tds'g 2 ess0a0 -

‘sl ZZG T el uoieadD ({095°s ipaUagy) 22 isynsad umays top)| | 0 v
; S0 WSl S|IED PALDID R | MEl SISARLUY U-URS |]

5 t'dxg abeyaed =

RN O = i
diay mopuipy uny palold yeas ejebiaBp A0J0RJEY AN0S Jp3 8|y

>§>mm»c »u.% o Ol

Mas 25d1]23 - vae(aunBijuoskjod - AR

Its.

IS resu

Grouped calls analysi

Figure A.14

199

A.2. User manual

uareaynou pabueya antig
uoiyE3siba. Jauays) abueyy aunbiy
unfydiasap WEIuns

Do o ™%

Japul JojIadpay

|22 padnous

i {IpabueLa 2unbid HoMaUEL MEAR B HD
¥ {{sauagsabueyainbigt)ieualsjabueyoainbigppe aunbig iomalue. medp e HD
u-ue4 pass

| g, JaAE| uorEpaY

57 WSl SPIRC @ |

e 7
e 071 ¢ 4 faunbidyxau fainbidyxepsey-

jgauen _ H O

171+ { fopun-fuopaajas eaak

17 4 fmans fagnoaca fabewempayal
21 ¢ fmala funosuooagEsh

Z1 ¢ 4 feunBigyxapsey luonoejacieaat
21 f fwa fagnaaxa abeweqyaayal
£1 ¢ { {ppe fnuappusLIwas-

o fmals faqnoava fabewemypayat
57 ¢ 4 fmals fagnoaxal

ST ¢ 4 f1sn@3eedn ojeaaunuge|pusH}

51+ 4 feunbidyxau faunbidyxepsey fxogaedsipl

61+ 4 funbidypau faunbigyapsey-

22 ¢4 fsaunfly faunbigpoau faunbiyycapsey-

52 ¢ 4 fabueys)m ipabueyal

2214 faunbigpau faunbigyapseyr

| 56 ¢ 4 faunbigpau faunbigyansey;

EEE T

QL7 IS)NSaL UMOYS 'O

H

£

3RS

<

H

L AL AL AL AL AL B LA L ALALALALA LA L]

'BS{BF

o 'S TAG AW UOREaLD {OpC T tpasa)

(TodD g Hod4asU 2nBISU00AID g UIUCD MBI B HD 5] -
(IDuogppe anBIGUoBA|0d! GUIL0I MEIP RS HD |

ypabueypaaniy aunbiJeaug o | T L H WY gUIuo0 mEIp B HD |-

= (yeqepdn aunbigaysodiuo ey dels: guuoT wmelp e HD o]

gg : (ypabueyrainbiy omaesmelpery] &u.

| JRuagsijabueyJaunbiyppe-aunbig iomawely melp e 4l Nw

[EE ok = 69 K

LS = AL -

C
&
s

i3

uoigejuaws|du Ag spouyjaw

SIE AQ SPOLEL JossadE N0 425)

S| WO SPOL3SUL I eg)ld

|

= .nﬂb_._ou.ummu.aﬂ_u.ﬂ_.:u
QUL 58] MEIP B HD
QUL 58] MEAP B HD
'QLU0T 58] MEAD B HD
'QLJUOD 58] MEUP B HD
QU2 J5E WP Y HD
QUL 5] MEIP R HD

' QLIUOD 53] MEAPT B HD)

SEEEEGEEEE -

'QLIJUOD 53] MEIPT B HD

*QLIJUOD 58] MEP B HD

*QUILOD 3587 MEIR B HD
*QUILOD 3587 MR EJ HD
T QUINOT ISETMEIP BN HD]
Z OHC - quauco ysaymelpred'HD £
Ploysay] 821c auojT SGMBATIOHE - 158 MR BI'HD E
ICIEHE - piepuess'MedpredrHD R [
e pad sajdwes mesp iy 1[0
HI - yad sajdwes mespey'HD £R [l
- Buiyoussajdwes medp eg'HD - £ [l
eLIET L - 3w sadwes meaprerHD B[]
dewuny sajdues: melp e HD m.m _H_
Aepesel sajdwes mespreirHs T3]
ARJpeAR(sajdues MESp EIHD B [
| HITI0HE - s3|dwes MEIp BN HD ﬂu _H_ ?
(sIsAEUE A paddrs 8 0 SJUSWEE AUT HAER) UOIRI3IRS AN

SEAEE

L

£
ploysayL Li-ued

e R -

+

t=mnl =3y a =]

@

L

e

siag)ld 580 pal
dnjag sisAEUY S||ED paU0)D

- "SULZ00T f9UI UORERID (64675 1pRUSI) 20T SINSaU UMoys *O
i 1. i 57 alh SISAEUY UUE] 4

| dnijag sia)d si8)e0 _ dngas s1ay)4 23|ed - S[|ed pauo)D

dnyag sisfjeuy spe) pauojy —

The filters for Grouped calls analysis.

Figure A.15

Appendix A.FINT

(fuodih)juodyas a4nbidya] s2unby smep e HD et B
(II)Ag2 A0 2AN0Ida] s2unbly MEp B HD S

(1[5 2unbiIdabue e ypUnoy s2unby MEp B HD o] B
(TUI0dEn 0195 aanBidaun Aog saunbyy Medp e HD =]
[T U0 4oA0wal 2unbiIdau4og saunby smedp et Ho ey B
{I1)3I0 4335 U0IIBUU0 BN S2UNGL MR B HD =] -

by { pabueyal + (abueyo)ir Sunbidoe sy PAEPURTS ME PR,
_r_n__.._m. Jou sbueyn 2unby -3s0d pue -a4d b4 4 mbueyniral + (pabueya aunbidyoeasqy pAEPUETS MEIRE
uolyEaloy pabueys sinbiy S (Ipabues anbid omaLIEL eI e
uoijeysibad sauads) abueyn aunbiy] {Laausqsiabuey Haunbigiy eusgsrabuey Saunbigppe sunbid omale meIp Bl HD
uodiuasap Wiaauo s JBpULY 0yEpE Y 5|2 padnois Ul-Le pass
Nma Tal | wiElh, J3AR| UDIaEIpEY
.. .) | < [¥ || =
B : : o e — a e EUL_ e T
{BULIST)IE 1395 2InEI3%a | S2UnBY MBI HD =] - A QUT) 1Y INTOJSAONST PTIOA ITTHD - ~

eael aunbiyg
earl malpbumeg

{ [} pobueya eagl Joypabumeig

0 #eU)UoBATO4JTREUISIUT IS SuaIsR0UEI0UME.]

[juasgabueysbumeg
eAR[BUIMEI]
EAE[40735000

AEEaaaaaE

x 3 3 T ma=luIad=h = [T + []sA
(I ungpua uoij 8000 au saunibiy melp el HD i et o R e ARl BIMBIUORDALES
{1sjuogaepdn unigpaunokog)3 sauntiy medp ey HD i I8 : - | : L R e mm e
IPU0IEI0IEsAL AJARYOPUNEE|pURHUORE YR UL QLU0 MEUP BT HD <] yautod > O ¢1 = [qur) aox SanB MBI
. ' . = A-d = [T]s4 s i £
{Q)ay=30. aunbigabuel | QUILOD MEID BT HD - Sy - e WO02 QU M B mm "
(oeloiaiepdn aunbigealga] quIuod mElp B HD ! 8 = LG U AL MBI) mm
{uogijuodias aunbidesygxa] quUIuon MEIp BT HD iy B | i PP IO MBI L) mm
| {I14 92401 2NEIJES 13X] "QLILOY MEID B HD =] - JodTeuasauIlab = [[]s4 . e i
_ ; _ T | £ - [[]=x Quuo MR B HD £ -
(MU0BA|0d1855. AR OPUN$|PUEHE|EISU0BAI0g QUILOD MEID B HD =] - ...um.?wﬁuwuHMH.ww . : ueneoIde MR £
(ISIU0QIo0Ws aunBIJUoBAIn qUILOD MEIP BYTHD =] - e -++ “..n > [i0 = € qur} xog e wep ey £
(TUOGE I dI8S AINEILUABA|ad QUILET ME BN HD =] - {[ulqur mau = =24 [Jaut %
" MEDEYTHD T
(3L IUaB Aot UIndD j2IEI0 3|35 SUNBIUEEAIN UGN MEIP BI'HD <) - {[ulqur mau = sx [Jautr eirHD H-
(T IUIOdEAaWEI BANBISUCEA|0d GLILED WA BJIHD] {T + [(launediurod = u jur g &
! . EApE { () APuEYOTTT i
(T3040)R UInd 495U aNBIJUDB A0 QLU MEIR BYI'HD =] - {abeyped reyep) F3-
BUDaNGIE) PEEURL Nl S NBIIE A4S L T LH' U3 JHILEY MEAR B HD o] 8d pTOA OTTHM - 25)
' 4 . S - lu = g |
i (j23epdn 2anbidagisoduo D ediyde s guIuoD MEp BYI'HD o | 2 T hSMEAIOHE _-ﬂ.q;\u._
w §2 : { }bueydjpm Jpabueya} uIATH Y3 e IPoU v IAISUT 4 0" wgpl [0
. = it ip
Ay L 4 1ds'2'z'gss0a0 [T
o {095 ipauagy) ZZ s)nsad Umolys “opy mﬂ\ i s AN_V "H. L
Wﬂ K3l S|[B2 pAUOD @;@.“ MAZI SISARUY U-UB] | [, Wﬂ eae(aInbiJuobAjog _H_ O o .Eu.@m__._ 5 t'dxg abeyaed E |
e : & o . - - BTN - - -0 -5 -0 ~hd
day mopulan uny jaslodg youeag =eblaRp J0joRjeY AN P3S4

200

Mas 25d1]23 - vae(aunBijuoskjod - AR

is.

Seeds for Grouped calls analys

Figure A.16

201

A.2. User manual

| B)|

AR g PR S e
uoledsibiadg sauads) abueyn aunbiy
Uoidlasap Wisauo D

. .RBE| Y

3Py J0yadpey

Ta TP TR G Tal S A EaE Ay S AR = HL

E {aauagsabuey Saunbidiy auagsrabueySeunbidppe Sunbld s omalued MEIp B HD

5||e2 pednos ul-Uey paas

57 Ml SPESs @

< |) ; > < [_ ¥ || =]
e - S o t . - - B [G | e 5 =
JAORBLLE L) MR BJI'HD) < - S|PUBHpUZU0RISUU0 Ja6UED PIEPUE)S MEID B HIk ww & = | -
_IDMBIIEL MBI BJI'H D < - S[pURHIEISU0RIauUn SabURy S PUEPUES MEID B HDF uw + I :
AOMSLIE) AER B HD - 48 agedsiqiuasg$ioo L19es0y PAEPUEIS MEID B HO}H & [
A IpTo)2Inbt ypuspuadagaaomax- () 21nbT Jpasteaonagli=h |
J'PUEPUEYS MR B HD < - J0JEI0daUDEUILY MEREARL Sa|dUIe S MR B H D} & : o + o _
& ¢ {AQE0pUT 1IN MEIR BN HD < - AJAIIWOpSHOpUN |30 MEID B HO uw I ART 4] 2anhT Jpuspusdafaso=l PIOA PIZTUOIYOUAS OTTH- = _
0T | {3PUEH" S 0MEUEL MEIREJI'HDY < - S|PURHS|JE0pUN |30 MEIR Y HO WP . E
{EanguaIIas <- JNquYIRsE o) |
sdagqnau) 2anbT ipuspuada 2 () aanbTpaieaoaagi=0 17
BANQUAAIES <~ FINGURGIES) 5| 2 “- el e % e o |-
{Amaaow <- Agasoul o =anbT 0) gEataRdriaieysifClEETifalsis pTIoA PAZTUOIYIUAS OTTH- I
{sapnjaul <- ssprppul} =) - |-
e
{safpURY <- spuEy) = saanbTJpuspuadagish: ()b fpeieIooasd31sb waniax |8
{13PI0Hya 1380 <- JapoHxa 396} o) 3 A i 2 VBB
dsaunbijpuspuadagyab £ - saunbijpuspuadagyab} [IPRSPISLIII8N ROTARISIMRIINN TL. PAZTUODIMIAS. DTS > ; mm I
{aanquiiniat <- 23ngIwsb} o ' -
{ainquiiwaat <- s3nguiiwat} o ., . 4L 4 '
{3pISUTBNBIpPUY <- SpISUTBNBILPUL} =) f{)aepTogaxaLa=n ()2anbT peteaonaqi=b waniaax g
{saunbyy <- saunfiyt = 1O IIPTOHAXSLI=0 ISPTOHAX3L OTTH- = H mm
JMEIp < - MEIPE] @
{x0gde|dsip <- xogAedsipk |)
s S{I0JTETAIITSTA () 2anbT Jpaielaoa=ag3=6 i mm
{asodwodap < - asodwooap} o T
! {303IsTA)dTET A I3d0E .mﬁ
{IU045UIEYI0] <2~ JUOSSUIEIUOD}:] - : =
{AqsiadoinauULnd <- ANqisiadoiteuuna} o) b (I03TSTA I0ITETARANETL) ATSTA PTIOA DTTC g
{3rI035aUUaT <- Jployaauuat = | +) mm
{5195UIU0I338UL0T <2~ SBSUTLONISULOI} 5 Ry
E: {sTYy) I”UTEIUOOLPEE " () 2aInbT Jpa1eio0aaga=h &) i
{409E207)%8 L Pa18LU0T < - JOJEI0TIHKEL PAYISULEI}) BATIOHE <2
poesd
{378UUOTMED < - PEUNCDUEI}] - yang
{%084R|d5102158] < - X0gAR|dsIgNsE T.J_ ?(13a3toopesgaTnessp s = Sy :
QAR|51T2152] FARSITNSE) | w 2'essogr [
g =
b} uoTideaxiol ‘UoTidadxIPUunofioNSSETD SM0IUY e =
(=2 meazlginduriosaloo) a0algqopesa PIOA 31BAT-
S o . - — -
{51 M SISARUY U-Ued || mﬁ. 7 EaRlaunbduogednnaq (7] | trAgARIgopEdopUn 1] || o o HA.A o
) 5 A P - BRER DA -0 -5 k]

day mopulan uny Jaslodd youeag =eblaRp J0joRjeY AN P3S4
W{s 2s5di]a] - eael-aindi ji0jRi033(] - RAR[—3

IS.

finder analys

ions

t

irec

for the Redi

ew

The vi

Figure A.17

Appendix A.FINT

202

(R = _ HO

_Em___sﬁ QbSHELTIOHE - qtn_zm.Emc_u_mm.u__,,.._E_u.E_.Iu_ L
S TORSMENTIOHL - SEUNGL 1580 MEUD B HD
S TORSMENTIOHE - QUIUDD 1580 MEUD B HD
2US{ TOPSMENTIOHL - 1583 MEP"EJ"HD
IS/ TOESMENIIOHE - PUEPUBYS MEP B HD
GMETIOHE - sabewrrpad: sajdwes Medp eyt HD
245/ TOpSMEITIOHE - Mad sajdes melp el HD
J19PSMEITIOHE - Buijiou sajdues melp e Ho
LIS TQRSMEIJIOHL - 18U 53|dWES MEID'BJI'HD
"TQPSMEITIOHE - dewu sa|dwes Medp ey HD
- sabewnadiues mepeAsl sa|dwes Medp el HD
: QbSEATI0HE - MEIPEAE] 53|dIES MEID'EJ'HD
LIS TOQESMENTIOHE - 53|dWES MEIP'EJI'HD
IS/ TOQPSMENIIOHL - sa0EW MEUREJITHD
LIS TOQRGMESJIOHE - HOMESWEL MEJD B HD
2US]TQRSMENIIOHL - SeUnbil wMEIp e H
IS/ TOESMENIIOHE - WO02 Q0D MEIP B HD
LIS OESMELTIOHE - (WY qQUIU0D MEIR BT HD
LIS/ TQRSMESJIOHE - PUR QUIUC0D MEIP B HD
IS/ TOQPSMENIIOHE - QUIU0D MEUREJTHD
LS TAPSMEIQIOHE - UonEdde melp EJ' HD
245/ TQP5MENTI0HL - J3]dde MEp B HD
US| TORSMEITIOHT - MEJRBJ'HD
s 2SI TORSMEATIOHL - BJI'HD
25/ TORSMEITIOHE - HD
s TQpSHENTIOHL - (3EEs{IRd JnE 5
5 i g
PloysaL] - 5407284Ipad JO 10U Sqn[osgy - aa

M

O O R O o e S S S e 3 SR S R Sl S o1

L (=) ssepp ey w spoyiaw Bugaaapad Jo abejuatiad ay|

R EegE s RaaRsUhecRecpecBecRecges Recges gl BeURecRege s BezRecpecpelgeches R g
- 0000000000000000000000

O

s12]|d sdoppadpay - L (s1sAEuUE AQ paddys ag 0] sjUaIS[2 U] YEl) UMID3[RS AJIN
dnjas sisA|euy JaART UoR2IpaY

dn3as siad)d S403084pay - 43487 UDasupeY

dnjas sisfjeuy JakeT] uoldsNpIY —

Redirections finder filters.

Figure A.18

A.2. User manual 203

A.2.4 Combination of techniques

FINT also allows the user to combine techniques, namelyetbeshniques that target
concerns following similar implementation idioms. Two Buechniques are Fan-in
and Grouped calls analysis, which both analyze methodrekdtions for crosscut-
ting concerns. The combination consists of searching #résults of one technique
among the results of the other one. As Grouped calls anaha®s a stricter selection
of the methods with a large number of callers, we can selemivarlfan-in threshold
for this technique and then look for the grouped methods gntloa results of Fan-in
analysis. For each of these methods, we might find a largebauof callers in Fan-in
analysis and hence a better coverage of the concern of thhbothe

The combination can be launched as illustrated in Figur® A.1

The intersection of results of the two techniques is hidtigd in the view of Fan-in
analysis, as shown in Figure A.20.

A.2.5 Seeds management

All the seeds marked by the user are collected and displaytdetiSeeds view next to
the technique that identified them, as shown in Figure A.21e View also allows the

user to add a short description of the concern implementezhbi of the seeds, next
to each seed. The list of seeds can be saved to or re-loadedileo

— i 0
W = {}2ynoaa’ pUBMIWODIND PARPURIS MEJRUBIHD]
LL {ymynoaxa puelwoDEINgUIYyaiueY D PUBPURIS MEAD BY HD < -
d SNDExa" PURLILO D U040 | BULG PIEpUES MEJR B HD -
A p paep PrEd (=]
< (}inaaxa’ pustwo Uy pAEpUEIS MEIp B HD |
rm {Jajnaexe puswwosdnosbun saunby melpr e HD =1
c = {eqnoecca pueluloDdno.g saunby melpr e HD [p] S
[} 11 4 fmaa faqnaaxa fabewempaya} N.H. =
W v §Z : { 'abueyjjpm jpabueyd} uw..m_
A H{0as’s pala|y) 22 153 Nsad UMOUS fop
b oo ﬁ& = A S waly S|1E3 pAuaD ®,®.“ WSl 19AR] LoRIaapay | maly, spasg |
< B > < _ > [= >
~ 65 ¢ (xogdeidsipraanbigapon: 130 sejdues medp el ' HD & @ a WUIT| I¥IUTOJSACMST PTOA ITTHOH = = = P@..E:mm ﬂ ;
ST ¢ (IDauodsueiuon sinbiapon) a0 sejdues medpr el ' H 2l @ | m..,mﬁ_zmsmc_a_mg.o GE
FT ¢ (I9U0QI007 dHMSIAMEIIRART MEIpRAR sojdues e e ' HD 2l @ i m.>ﬂ_.6u__u_umc_3m5 GE
1T ¢ (faunbidEppe Guve s gEUDUnOg MEUpRAel sadues medp e’ HD & @ ‘ [pehucys mcmﬁ_._m..mcm.r_Umc?m;D [r]
i i , ; ; Ve - ‘04 #IU)UCBATO4TEUIZIUT =S ; ; &
55 ¢ 0gAR[dSIpT I0e 008 JUOIRWILY MEIpRAR] SO dues melp el HD & [JUBAZEBUESEUMEL] qn_ i
0F ¢ (0Pt |00 | 40mMEWEL MEJp R HD & EABE ez _H_
33HAX UMM OH [UORda G aUIUN Y MEAIOHE HOMELIEY MEIP B HY 2] i m.>mE.o umc_._o
F 2 i F e - muaa3url=ab = [T + []sA H40) o _H_ i
£E ¢ (MR S|PUEH H0maLIEL MEJp B HD B - nel ainBLUEEUoS [f]
21 (ogiedsiprajpuey yiomalely meip e iy 8@ HAoaHTash & dr & Elsx L._o_,.,ma._m,c“zm,ﬁ_ﬂ_._.._u mm
55 ¢ (Jaunbigyrou uogesewnU Nt Homaey medp e HD S @ aqurod L i1 = C jur) xog mm;:u_u__zm;_u_mu_r.zu &
’ ’ ; A = o T]s& s i £
A g6 (Runbigpoapsey uogesswnuIsanbig omawel melp e HD 2 s _ _. e _ WO0Z QLG M B L mm "
52 ¢ (JabuBLppew iDL {ioNALEL e L LD M= L3y GLALDD MEAp R HD F -
01 ¢ (Jaz)s aunbig yomauely medp e HD £ { _uc_u_n_rbcou_zmc_u_ﬂr.zu mm ..
nabueyseunbigtuausgsjabuey saanbigaaous. sunbid yomaley mep e HY 2] n_Er_ou.__sm.‘__u.Er.Iu mm
61 ¢ (IIAgaA0W Snbiy S omalEL MEIp e HY 2] co_um.. n_m..__sm;_u.mcr._._u mm
$1 ¢ {faunbigt)sapriau sanbiy somawely medpreg | & v|A|L YW UL-UR] BULGLUIOTY) — oy H Hm.._n_n_m..gm;_u.ﬂ_.zu mm _wr
$Z t (1594n61 SnBI4 S AOMBWEL WMEIP BN HD 8] = Taut weipR Y ﬂ.
BT ¢ IO U050 GAR|dSIE SUnBld oMaWEL MEJp e HD S om {[ulaur mau = sx []ut EL.IU - ..
06 ¢ (xogiedsip anbig yomewel) mesp e 8 EeT| ‘T o+ (launopiurtod = U juT .Iu g
ST ¢ (TIHUIOGSUIRIUOD" SREI Spoma el e dp e H -8 d) EPweyLTTTL (sbeped o) B
g¢ 1 {)pabueyrainbiyomawely nespelirtHl 2 F irod) peElsieRERLl] pTon oTTAnd ; s g _n
Ayanbgh)auagsnabueyjaanbidppe2an b iomIWe MEIpEItH] 2 e EEBEQDI._.“ _hlu_\u J
. gl i
v 97 ¢ (UNOTUORIS|ES MMElABUIMEI] SR e e 1D UIATH Y3 e IPOU B AISUT 4 Gt mu_]
= T F 7 E a wxf = i i
@ =R A Gt 1ds'g'z'gss09r0 [
Bv “ NEIE

204

D -PEPD -D-B-0 -5 -

m.. 57 eAR(aunbi4uobdod _H_ __ O o “Eu._m;m_L. 5 t'dxg abeyaed W_ |

bl

i)

IS.

d Grouped calls analys

Fan-in an

ining

Comb

Figure A.19

205

{}2ynoaxa’ pUBWIWODIND PARPURIS MERU B HD)

{ymynoaxa puelwoDEINgUIYyaiueY D PUBPURIS MEAD BY HD < -
{}eynaaa’ pUBLIWO U040 | BUlg PIEpUETS MEIP B HD <]
(}inaaxa’ pustwoUb) Y PARPURIS MR B HD -

{Jajnaexe puswwosdnosbun saunby melpr e HD =S
(Janaaxa’ purLIoD OIS Sanby MEp B HD =

11 4 fmaa faqnaaxa fabewempaya} Nw -

5z : { \abueyjjm ‘pabueys} uw |

i 22 +5N524 UsaLs 0|

By

b4
1]
:1??

L e & =
2 7

a1 (raunBigt ogpaBuse g 00 LUOIESUD |00 L UDIERIT PARPUEIS MEIP B HD
+1 ¢ (fainbigi)sapnjaur 24nb4as0duos PIEPURIS MEIR B HD

+2 ¢ (saunby aunbigeysodu s PAEpUEIS MEJP B HD

ST ¢ (111384 3esnoLE)UmModasnow |00 | 108050 PIRpUETS MEIR B HD

A1 ¢ (JBUREIR'|00 | DRSO PABPURIS MR B HD

+1 ¢ (J99RANIR90 |00 | 224350 PASPUETS MR BJ HD

- 0T ¢ (J938A0e |00 | PR35y PARPUES MEp B HD)
51 ¢ {Vioypabuimelgind|on [184350y |00 | JIRASqy PABPUE]S MELP B HD

Z1 ¢ (xogAe|dsip a|pueHynE sy PIEpURIS MEIP BT HD

5z ¢ (Jabuey|im aunbi4e.qsgy pIepURIS: MEIp B HD)

07 : (@@ aunbigyoesqy pIEpUEls mMElp B HD

6T ¢ (II)Agaaou aunbigyaelsqy pIEpUR]S MEp 2 HD

+1 ¢ {faunbidinisapn)pur aunbigyoe.qsgy paepuUEds mEIp B HD

+2 1 (saunby sunbidyoe.nsqy paepuUEls mMEIp BYHD

+1 ¢ (Iuogbhiuogsixogiedsip sunfbidyoe.qsgqy piepueds melp B HD

06 ¢ (xogiedsipr anbidioessgy pAEPUEIS MEIp BN HD

aT ! (I0ungsueiuad aunbidyoesqy pUEpURIS MEIp B HD

A2 (pabuey aunbldioeasqy PABRUEIS MEID B HD

S 1 {iaEls PUELLLIOTIEAI50 ! PUEPUE]S MEIR BN HD

Z1 1 (18|qeina2x3s! PUBLIOTYIE350Y PAEPUEIS MBI B HD

S7 | (EINIExa’ PUBLIO IS5y PABRUEIS MEIP B HD

Ui IDULISH PURIILO T JDE)50y PUBLILOD]IR.]S0 Y PARPURIS 'MEIP B HD
v #5 (Jxogaedsipraunbigiiad ad sadues melp e HD

sl =

=y = S B - i

A.2. User manual

GQ P30 00 00 00 PR PO 00 00 PP RR 0P R 00 00 09 90 90 00 00 00 00 09

-

2 ‘SULTAR AW UONESUD ‘(626G [PaUBly) 0T {SINSad Umays ‘op
. . 57 AR SISARUG U-UEY 4y

Y

< _ > <
& TUT] 17IUTOJ2A0MST PTIOA ITTURA o z

eael aunbiyg
earl malpbumeg

£ 1) pabueya eagl Joypabumeig

0 #eU)UoBATO4JTREUISIUT IS auasnabueLDBumE.]

[juasgabueysbumeg
eAR[BUIMEI]

ma=3ur3l=2b = [T + C]sA EAR[I0728UU0T
ma=aural=h = [1 + [lsx earl aunbiIJuolzauas
yjaqutod > [41 = [jur) aox HAOASINE A MEJD B
:hi-d = [T]s4 saunby relpe g

sx-d = [1]ex WO0Z ' QUILo MELp B

{ [R e [EW A =N R =T

cogTeuasdulad=b = [[]=4 PUP QLU0 MR R
codreui=sauliab = [[]=x Quuod rEdpR
4+ 1T > C o = €L qur) aox uoedde: melpre i
= :[u]aut mau = =4 []aut 15|dde medpe g
![ulqur meau = sx [laut MEIP R

(T + (Jamnmopautod = U JuT g By

¢ aBuEyaTTTL
ITOJ) phgeiedalfatei=t=ge pTOA OTTHNA 2

(abejoed yneyap) £3-

W3l A9AR| LORISIPaY | walh Spaag

1 E >

¢

SAEaaaa

=

[f]
HD £
HD /-
HD 8@
HD £/
HD £/
HD £3-
HD £8/
HD £/
HD =1
HD H5-
HD £/~

215
e i
UIATHD 213 98 IPOU B JIAISUT E¢m3m5uornm;u_
e 0 f-wgpl [
| Tds'g 2 ess0a0 -
ol¥ { ~5 0| R
- 2, 57 eAR(aunbi4uobdod _H_ O o Eu.@m_L 5 t'dxg abeyaed B

diay mopuipy uny pPaiodd youeac ejeflaep A0jDRjEY

-2 O BF R - R -0 % - O

aunos Jp3 Ay

Mas 25d1]23 - vae(aunBijuoskjod - AR

ion results.

t

Ina

Combi

Figure A.20

206 Appendix A.FINT

o (& [bug ¥ &
e (Hjs T~ 0
Seed Fan-in Grouped calls Redirector finder Concern description

5. Segds List
CH.ifa.draw.framework.Figure, addFigureChangeListener{QFigureChangeListenar;) 4 Figure change listener ragistrati
CH.ifa.draw.framework.Figure, changed() %
CH.ifa.draw.standard, DecoratorFigure

Figure changed notification
Figure decorator
Hand| For und

[il LJ

IER Sort-ConcemDascripémn
12, Sort-Name

(5], saveseedsList
23 ReadSeedsList

Figure A.21: The Seeds view.

Appendix B

SOrts QUEry Tool (SOQUET)

This appendix contains thed®UET user manual. The underlying ideas are described
in Chapters 4 and (partially) 6 of this thesis.

SOQUET is a query-based (crosscutting) concern modeling andrdeatation tool
distributed as an Eclipse IDE (v.3.2.x — v.3.3) plugtiithe source code of QQUET
consists of 35,453 NCLOEIn order to improve independence on the Eclipse releases,
SOQUET code also includes internal packages of Eclipse, whoséemmgntation and
interface is documented to be subject of change betweepdeaieleases. This re-used
code serves, for instance, to preserve Eclipse’s defanit-émd-feel for some of the
tool’s views.

B.1 Installation

To install the tool, the user needs to download and save #rédjstribution into the
“plugins” directory of Eclipse and then (re-)start the IDE.

B.2 User manual

The documentation and modeling of concerns IOQBET is based on a cate-
gorization of crosscutting concerns in so-calleoits A concern sort describes
elementary (atomic) crosscutting concerns that sharer ttygiical implemen-

tation idiom in an object-oriented language, like Java. Emample, logging,
authentication and authorization mechanisms, notifioatth changes in observ-
able objects, etc., are typically implemented in Java bynseaf scattered calls
to dedicated methods, such as g.apache. |l og4j.Logger.debug(nessage),

1Some of the figures may be more difficult to read on paper. W tae reader to the SQUET
web site for the on-line version of this manual, in which tlgaifes are available in high resolution.

2Metrics plug-in, v.1.3.6 — http:/metrics.sourceforgg/nNote that the Metrics tool does not count
lines of code in interfaces.

207

208 Appendix B. SOrts QUEry TooBOQUET)

j ava. security. AccessControl | er.checkPerm ssion(perm ssion), or
Subj ect. notifyCoservers() (see the Observer pattern [Gamma et al., 1994]).
We call the sort that describes these concerns and their conaiiom, Consistent
Behavior (CB) and we call each of the concerns aboveretanceof this sort.

SOQUET provides the user with a set of (6) query templates. Eachygeenplate
describes the relation specific to the sort of concerns &gsdcto it, such as method
call relations or inheritance relations. The sort-quedas be parameterized by the
user in a YQUET dialog window, to define concrete queries. The concreteiggie
are defined by the user so that their results map onto the s@ode elements that
implement a particular, (atomic) crosscutting concern.

The parameterized sort-queries can be saved by the useradieated ®QUET
view to document crosscutting concerns by showing the Uyidgrrelations of these
concerns as well as the program elements that implement tieneover, the queries
can be grouped in composite, hierarchical models to shaatioaels and associations
between different concerns. Such models are aimed atiagsivelopers in under-
standing what concerns exist in a system and how these ctnaes implemented.

This user-manual presents two use-case scenarios: in gheséenario, we use
SOQUET to document crosscutting concerns in theddl®RAW drawing application,
particularly in the Observer pattern for figure changesioed in Figure B.1.

In the second use-case scenario, we should use an existiegroomodel docu-
menting various concerns in IHDRAW to assist us with a software change task.

B.2.1 Modeling and documenting concerns in SQUET

Our first use-case scenario assumes the perspective of lagevehat is familiar with

a particular system, namely &##fDRAw, and with the crosscutting concerns in this
system. These concerns are not visible in the class decatiopasf our system due to
their crosscutting nature, and hence they are harder toenatid understand. Our goal
here is to use SQUET to document these concerns and make them explicit.

The main elements of the user interface M@ET consist of two Eclipse views
and a dialog window for the sort-queries templates. One@ftbws is a customized
extension of the defauearchview in Eclipse. The results of our sort-queries will be
displayed in this view.

The second view is th€oncern Modeliew, which can be opened as shown in
Figure B.2. This view can be used to save the queries docungeadincerns and to
organize them in hierarchical, composite structures,lamto the ones in Eclipse’s
Package Exploreview, shown on the left-side of Figure B.2.

3This manual uses for exemplification JHotDraw 5.4b1, whiah be downloaded fromt t p: //
sour cef orge. net/ proj ects/jhotdraw orfrom the web-site of SQUET. To use the concern model
built for this application, the project has to be importe&alipse and named JHotDraw54b1. The source
packages (CH.ifa.draw..) need to be placed in a 'src’ foldsee the Package Explorer view in Figures
B.2 and B.3.

B.2. User manual

Figure

209

moveBy(int, int)
public void draw({Graphics)

addFigureChangelistener(FigureChangedListener)
removeFigureChangelListener(FigureChangedListener)
changed()

{willChange())

listener()
[45 "
AbstractFigure
fListener
TextFigure PolygonFigure
setText(String)--_._ | smoothPoints() -

willChange();
.../l change figure

changed();

FigureChangelListener

cbservers

figureChanged{FigureChangedEvent)

figurelnvalidated(FigureChangedEvent)

AN

‘ ConnectionFigure ‘

JAN

LineConnection

connectStart{Connector)
connectEnd{Connector)
disconnectStart()
disconnectEnd()

I-“'l.g-;ureChanged(..)

Subject (fObservable) role
Observer (/Listener) role
Consistent notification of

changes

Figure B.1: Observer solution for figure changes in th@JBIRAW drawing applica-

tion.

Appendix B. SOrts QUEry ToaBOQUET)

210

— jPouesy :

o |

el

ABSIENSIA, <)
WES] <=7

”_ o
Landos =
apooauues =)
AUy 30d <=1
30d <71
Buish0ag BARE <=7
BABL)
diay <=
NI =)
Bngaqg <
sauoysaday 50 (-
siqgpa S)
320U CAD (T

a7 ayy m.nrﬂ

MALA MOYS —

S DS+

d DHUsHY

[DS+
L Dy

Q DSy
I DS

FseL 5
Yueag 0
ssadbioid .@
sE|gad IM_ *sanlalagedd
Jaunjdx3 sbepey B A P rn._
aung =0 | :
angebineny oy, (4 Unefisen]
IOREARL) [mm.}ﬁumn_.ﬂmn_ it 250
AlTIEEIH Mw anljaadsiad aso[D
607 Jouag _.|® aapadsiad jasay
uanEsEpag Awm_ sy asiadsiag SAES

*ranyaadsiad 22030

a|0sUaT m

fi i e PAOPILLA, WD
e

T4 SMEIIIOHE

E

<l

| IE
A %

uny ppalond yoaeas ajebisepy

A UDRda0XIIUUNHMEATIOHE

< [

ARl um3da0x IMELTI0HT
AR U ISLNUI|pUEH
eAplajpuey
eaplJoqsip2un0H

EL= R E=TTEN e (W T === g TR |
eapl uaipaEgaInby
eapl*uoesELnu3aanty
eag{ Jaualsabueyainby
eall Juangabueyainby
we{* JuEgsunEIngUI YAty
eael aunbiyg

earl malpbumeg

eagl Joypabumeig

el Jauaysnabueysbumelg
eall' juaszabueyobumeI]
eAR[BUIMEI]
EAR(*I0]38UU0T

(=20 =T A= ol W W (TR =N 0 [aly

HOMBUE MEIR BYITHD mm B
SN0 MEIP R HD mM_J i)
W00z ' quAue Mep B HD BT &
LAY qUaLea e B HD -
pupquyucs mespeyHD HE@
quyuox e eyrHD B

|dde medp et ﬁ, &
yeidde wieapreyrHD HT

uope

MEAP BT HD T
B'HD

HD £/

(abeoed yneyep) £

S89588885538588

AEEE

=R e

+

l'

=]

-
Tds' gz ess0ar [0

=1

§-0-%:®

| Aze x

i

Cetgs]
wopl 1.

whd
lopejsy =n05 WPI 9|

Nas asdiog - eaer

1ew.

the Concern Model vi

ing

Openi

Figure B.2

B.2. User manual 211

The sort-search dialog can be accessed from Eclipse’sse®nu, as shown in
Figure B.3. The dialog window presents the user with six quenyplates for the six
most commonly encountered sorts of concerns. (If the opsiorot available in the
Search menu, check that you are in the Java perspective i@ctis@me element in the
Package Explorer view.)

& Java - Eclipse SDK

File Edit Source Refackor Mavigate BEEREsgd Project Rum Window Help

9 I R R U G-l F®S S e [v |
- ¥ s

=7 File...

.
|7 dava..

Hierarchy = O | [# ConcernModel 52 =H|

Text 4 A =

MIEH- + %% B Hx"

107 JBoss3.2.8.5P1 | References » : .
1 jdbm-1.0 Declarations 3
JHotDraws4hl Implementors 3
S5 src Read Access 4
- (default package) Wrike focess »
; g E:.ifa Occurrences in File Cteshift+l #

LB CH.fa.draw

)i CH.ifa.draw,applet
8 CH.ifa.draw.application B
CH.ifa.draw.contrib

3 cH.ifa.draw.contrib.dnd
CH.ifa.draw.contrib. html

CH.ifa.draw.contrib,zoom

B cH.ifa.draw. Figures

B CH.ifa.draw. framework

o El ConnectionFigure, java

Iﬂ Connector.java

E= |3J Drawing.java

| }_ﬂ DrawingChangeEvent. java
EN rﬂ DrawingChangelistener . jav.
I¥] DrawingEditor.java

Iﬂ DrawingWiew java

[Y~ TR P

1 1k JHotDrawS4b1

Figure B.3: Opening the sort-search dialog.

Documenting Consistent Behavior (CB)

A first step in documenting our Observer design for figure geans to recognize those
(atomic) crosscutting concerns that occur in this desigrkigure B.1, we notice that
each action (method) changing the state of a figure (formegtamoving or resizing a
figure), consistently invokes tiveé | | Change method at the beginning of the execution
and thechanged method after the change is completed. The concerns to r{ptiéy)
changes in a figure follow the idiom described by @ensistent Behavior (CBjort
above, hence we will use the template for the CB query to dontithese concerns as
CB instances.

The template folConsistent Behavigishown in Figure B.4, requires two param-
eters: the first is the method invoked consistently as pathefcrosscutting con-

212 Appendix B. SOrts QUEry ToaBOQUET)

cern to be documented (the target context). For our notificatoncern, this is the
Fi gure. changed() method.

& Sort Search |Z|@E]

Cansistent Behavior Consistent Behavior
Context Passing

Exception Propagation
Redirection Laver

Role SuperImposition
Support Classes Figure.changed{) |

Target conkext
Search sktring (* = any skring, ¥ = any character):

Search For
(%) Method () Construckor

Scope - Source Conkexk
(&) workspace () Context definition

7 [Search l[Cancel]

Figure B.4: The dialog to parameterize the Consistent Behguery.

The second parameter allows us to select from all the calldrsthe
Fi gure. changed() method only those methods that are part of the concern that we
want to document. In our case, all the calls to¢chenged() method from elements in
the JHotDraw project are crosscutting and part of our natifie concern. Therefore,
we define our source context by selecting the whole JHotDmajegt. Figures B.5
and B.6 illustrate how to do this.

After defining the the two contexts and selecting the Seauttob in the dialog,
the query will run and analyze all the elements of the JHatDpaoject to identify
calls to theFi gur e. changed method. The results of the search give us the participants
in the notification concern. These are displayed in the $edsw (see Figure B.7),
from where the user can navigate to the source code of thesests, organize them
by various layouts, apply different filters, etc.

Saving the query documenting the concern

To save our query capturing the notification concern, we tiee@oncern Modeview.
A concern model in this view can include (1) atomic concewtsich are associated a
concern sort query, as well as (2) composite concerns, wgralp together multiple
sort instances (i.e., atomic concerns) and/or other coitgposncerns.

We start by creating a composite concern that will groupttogyeall the concerns in
the JHotDraw project. Figure B.8 shows how to create a new ositgopconcern in the

213

B.2. User manual

b SMEITIOHE sl i

___ € | i %
~ Ui a0 JHUUMHMEATIOHT _M_a. -

(oo [wm J[<wenw | cpes> @ BAel UORTEIX IMRITICHT (]
BAR(UOEISWNUISPUEY (] &
eAplajpuey SB
eaplJoqsip2un0H @ E
2heliauagsuoRIBEEaNblY (1] -
eapl uaipaEgaInby ﬂ_)
eapluoneaunu3aunty _H_ &)
ear(sauaysiabueyanby _H_ ;
eall Juangabueyainby ﬂ.@

sjuaLE|g Ja5 O

AR SR O we{* JuEgsunEIngUI YAty _mv)
sieped) el ainbig H_ ;)
..uum_nrn_@ eagl maibuime [f] B

adiy Ppraquas eagl Joypabumeig @a_w._

_ el Jauaysnabueysbumelg E -
eall' juaszabueyobumeI] ﬂ.

m>m.ﬁ_mc__<_m5 _M_

JEEqUOD Yueas oS Sy Jo ad4) AUy as00yD ARl su0y _M_@

v (=20 =T A= ol W W (TR =N 0 [aly _M_m_
adA] jxejuog yaleas 1105 z

HHomBmely MEp BHD FT 2
saunbiy mep eyrHD BT @
WONZ O e 0 e s, DT o

[XaJU0]) Y2Ieag 1108 MaN —3

— jeaues) _ﬂ [ELES u @

tasnay

_ uogiugap uxm;co.uo m..u.m.n_meo..(_,_ @
JXEIUOD A1N0S - adods

A03an43sUaTy O POL3SLY @

o4 mieas

_ _ _ ()pabuea*ainbiy _ £2550|0 J0ddng
o mﬂm @ _M__._ r%u ® HaEgaeIEyD Aue = 'BUgs Aue =) Bulgs youess uonsadurpadns Sjoy
=5 e 13ABT Unjaaupay
H = Ew@ [FRebivieadon o e i) unyebedoig uondaixg
T, 5 : = . Bujssed Jxajuos
_ i nw_ H -0 &Y U A0IABEL3E Juajsisung ioelag Jua3sisunD

yareag 10§

PR Rl B e |

the source context for the CB query.

Defining

Figure B.5

Appendix B. SOrts QUEry TooBOQUET)

214

b SMEITIOHE sl

_. [pIues .: o] @ i 73 | = =
syaloud Jay] ﬁ 22552 .: by J | <N E © 1

uie) sananbiangs suibngd: ees priy
UDIIE43xa LB |dews prg
LIBn|gYE2Es05

. 2'er1ad0gsgad

1d5'8'2 ' £s50d0
=5
‘jpalond auy pajas

uoijas]as jaalold —

MEIIOHCY

ADDDDDD

S)UBLIEE JXE3U0T

peauoD g buiyap sjuama)a ey pajas

g SJUALIS|a 1XaU0]
(=Rl _ ﬁ yeas |)]
ey areas 1o mal —

T Es0oyTy

LR 1xEu03) =medsyiom (E)
Jrajuos amnas - adaas

J032N43SU0T O lalNar=1H] @

_ _ 04 yERs

i T @ _M__._ %u X _ o_um.ucm._._u_m._:u_u__ sa55e(0 Joddng
= LI i | -
_ EARD nw_ Pl S co_ummmm_omMn_m“_ouuw_umcuww

A0IAELag JUa]SISUD] A0lAEaE JUasIsUDT

yaieas jlog —

Figure B.6: Select the whole JHotDraw project as the elentaitdcomprises all the

callers of interest for our notification concern.

B.2. User manual

Froject HUn wWindow Hep
Q- I BEH G-

|| 4] TextFigure java 53

a2 g
e

f3izelshirty = true: AE

public void moveBy(int x,
willChange () :
hasicMoveBvix,
if

int ¥ {
¥l

[getlocator () !'= null)
getLocator () .movelByi(x,

{
¥l:

e

protected wvoid basicMoveBy(int =x,
fOrigin¥ += x:

int y)

iy

#

4

215

- (&7 gavs |

[$ concern Model 2

= ®

CHE;
a

B, Bl ea ¥
]

‘CH.ifa.draw. framevork. Figure changed(y' - 39 references in project JHotDrawS4b1' {no JRE).
i? abringToFrontiFigure) - CH.ifa.draw, standard, CompositeFigure

@ . displayBox{Point, Point - CH.ifa.draw. standard. AbstractFigure

i@ sendPoint(int, int) - CH.ifa draw figures. LineConnection

@ afigureChanged(FigureChangeEvent) - CH.ifa. draw. contrib.hkml HTMLTextAre aFigure

@ insertPointAkiPoint, int) - CH.ifa.draw.contrib, PolygorFigure

£® insertPointAE{Point, int) - CH.ifa.draw figures. PolyLineFigure

@ amoveBy(int, int) - CH.ifa.draw.contrib, TextareaFigure
H,
@ amoveBy(int, ink) - CHLIF

a.draw.standard. AbstractFigure

@ removePointA(nt) - CH.ifa.draw . contrib, PolygonFigure

@ removePointAklnt) - CH.ifa.draw.figures. PolyLineFigure

£® areplace(Figure, Figure) - CH.ifa.draw, standard, CompositeFigure (2 matches)
< resetPolygon() - CH.ifa.draw,contrib. PolygonScaleHandle , Undodctivity
resetRotationangle) - CH.ifa.draw. contrib. TriangleRotationHandle, UndoActivity
@ rotate{double) - CH.ifa. draw. contrib. TriangleFigure

@ scaleRotate(Paint, Polygon, Paint) - CH.ifa, draw, contrib. PolygonFigure

i? @sendToBackiFigure) - CH.ifa.draw,standard, CompositeFigure

i® sendTolLayeriFigure, int) - CH.ifa, draw, standard. CompositeFigure

@ setArciint, int) - CH.ifa. draw.figures.RoundRectangleFigure

o kbbb b

&

Ci Ehuib k. ek 3 (R Fi EkgibakaCi

- Show as Tree

® Show as Relations

Filket Potential
Filker Javadoc
—+], o
e Filkers...

Preferences...

Figure B.7: The results of the CB query that describes the fighasge notification

concern as an instance of CB.

216 Appendix B. SOrts QUEry ToaBOQUET)

Concern Modeliew: Right click in the view, selecAdd New Concerrand introduce
a name for the new concern. In our case, our top compositeccome named by the
same name as the JHotDraw project.

We continue with a new composite concern for our Observeaepgtin order to
group together all the sort instances in this pattern’s @m@ntation. This concern is a
child of the composite for the JHotDraw project. The stepadd this new composite
concern to the model are shown in Figure B.9.

Now, we can add to our concern model thensistent behaviasort instance doc-
umenting the notification concern, and its associated quEoflowing the steps in
Figure B.10, we start in the Search view, which displays tiselts of our sort query,
and select “Add Sort Instance to Concern Model”. We then chdlos parent concern
of our sort instance: FigureChangeObserver.

The new concern shows up now in t@®ncern Modelview, together with the
description of its associated query (see Figure B.11).

In case we added our sort instance to the wrong parent, weetect she Move
option in the context menu of the instance (right click), aeéhssign the parent. The
Expand option in the same menu allows the user to re-run theyqassociated with
the documented sort instance.

Documenting Role Superimposition (RSI)

A second (atomic) crosscutting concern in our Observer scouFigure classes,
which declare a number of members (on top of their main fonetity) to allow lis-
teners to register and receive notifications every time agdaccurs in a figure’s
state. These members define a secondary, crosscuttingnplennented by Figures,
namely the Subject (or Observable) role. Similarly, theeher elements, such as line
connections between figures, have to implementRigareChangeListenerole that
defines the methods for handling notifications from figuresthBbese crosscutting
roles follow a similar idiom, namely members declarationdamplementation) to
support additional responsibilities. Same idiom can beeplesl in other well-known
concerns as well, such as persistence and (special hara)irsgrialization in Java
(java.io.Serialziablg

All these concerns are instances of a different sort, nafRelg Superimposition

The Listener role is already defined by a distinct interfdaégureChangeListener
To document this crosscutting role, we select Rae Superimpositioquery in the
Sort Searchdialog, and pass as parameter the listener interface dgfinenrole, as
illustrated in Figure B.12. The source context allows the tsespecify what imple-
mentations of this interface are part of the concern to beaishented by the query.
Once again, we select the whole JHotDraw project, as allrtipgeimentations of the
Listener interface are of interest.

The results of the query are displayed in the Search view@srsin Figure B.13.
The view shows the FigureChangeListener hierarchy and igigisl the members of
the crosscutting role for each element in the hierarchycsstiein the view.

Wl
e

217

' SanBy MER B HD - (Uiodeone) o |[EE ¢ T |
aunBiJuobAogd’ QUMDY MEIR B HD - (UIgIUIDdSAoWa) & || A Lodaax AU HMEATIHD @.
2InEI4308 4350 PAEPUEIS MEUP BN HD - (U1 JUAZIA0WT & ARl UGRHeIX METIOHE _.lml
=g =Tl =N _H_
ﬁ |aoues _ ﬂ S0 ._ @ | =eetapuen [F
Jopsipaanbiy _H_
*3|qe|iBAe SSLAUS O @) R33RcanGEd (1]
1j3ajacaInty _H_ ..
B aunu3aanty H_ 2y
|eiqane - pOUEYDRnEY [F]
: s sy Usalon POUEYDENGY [T7
(3E O1) 1R SMBAIEHL, | nqupwentd 77
umm G g b 4 A.v ¢ eael aunbiyg _H_ 4
- = BRI]
ogip36uIrEI] ﬂ,
ueobuimeg @ -
e ELIMEI] E,
ARl BUIMEI] _H_ o
Bl 07380007 _H_
N Ta e E=TN N iy _H_ i
ey Mep RIHD BT 2
oy wedperHD G
e meperHD BT @
U0 MARAP R YITHD mm___,..E
o mesprerHd JFm
]_q TeEsad o mespreyrHD B
|dde weap eyHD BT
= SUJ9IU0T 3004 404 UOIR9S OU - Wia0uod Jussed (sua) jpajag jdde meapreyHD BT i
——— " MEAD RYHD T
M@I UI3IU0) MIN — oHD -
=i I[)aoaeaoo7ash) IT i . Iumm.:
A fR)Agsacatsed (afieyped Jneap) mmﬂ
- ¢ () aBwBysTTTA M ml..w_ﬁ ”
JUL) AF=A0N PTOA OTTynd = Evm_sEn_uoI_m = B8
0" p-wopl FEl-4
([Tds@'Z'essoal £®

| v ena3 = Aaarqerszics B | R
= :

e == @ u_w\u x & E O w@ sl anbiyzal (77| o _ ._Eu,_m;m.__._ ﬂ.w@ J12.40)dxg sbeyaed W_

(oot 8| e RS EF SOP DO BPR -D-B-0-% T E-L]

diay mopuipy uny palold yeas ejebiaBp A0J0RJEY AN0S Jp3 8|y

3|

-+

aunbijeagyxa W'

B EE R EE

#

B

H

WS 3sdija] - eapl-ainBLyxa] - eARf —

B.2. User manual

Figure B.8: Create a composite concern for the whole JHotDrayegt.

218 Appendix B. SOrts QUEry ToaBOQUET)

TR T SR W T T RS A G T o 2 T 1| @y Java |
}—_Iierarc_h.y Al _le O .I.J.rlj TextFigure.java 3@. - = El | o B c%::. =]
SR B s = | f8izelslirty = true :E IHotDraw

public void moveBy(int

s & New Concern

Select {one) parent concern - no selection For rook concerns

N G @ JHotDraw Deselect all

M.applel
.applic]
ALcontri

ALcontr
ALcantr
ALcontri
1 figurey
. frame
kionFig
ckar.jaw
g.java

gChang|
gChang|
gEditor |
g¥iew jg Concern Mame

java Fi_gureChangeObserver 'D' fl’ # 5& % g%.—. >

Attribute Tk HotDrawS4b1’ (no JRE) S
“hangeq A
“hangel} E
Znumerg

Selection @ | Ok Cancel HTMLTextAreaFigure .,
selection

fisikor. java | @ insertPointAt(Point, int) - CH.ifa.draw, figures, PalyLineFigure

Java @ amoveBy(int, int) - CH.iFa.draw,contrib, TextareaFigure

Enumneration. java @ amoveBy(nt, int) - CH.Fa.draw figures. TextFigure

Figure B.9: Create a composite concern for the Observer fordfiganges.

219

B.2. User manual

5|

J_m_uo_..,__ U420y 0 20UelsUl 3405 _u_u.o._

BANBIBUITA R’ SNBI ME P B D - (U)IILOdasoWa) &
InBiuobA|od’ QUIMoD MEIR B HD - (UDIPIUIOdas0ua) &
2InEI4308 4350 PAEPUEIS MEUP BN HD - (U1 JUAZIA0WT &

2Unbid3xa] saunbl) Medp e HD - (341 UDASSAD T &
UNDIJE2y 3 | ' QUIL0D MEUP R HD - (341 JUiAe A ™ &
2unBidaUA|ad saanbly MeJp BJUHD - (34 uodigauiaduesy &F
2unBiJuoBAng QUILODT MEUpeEJHD - (U uindggiuindesa &

aunBi4ealg e [T LH' WY qUId0a mEdp 2 HD - (juaadabueymaunbigipabueyoainby = e
UOI3aUU0DEUT* S2UnGL MEUP B HD - (U uijuiodpus = &F
24nfi4322.q50 PUEPUEYS MR BY HD) - (JUInd “JUI0d)x0gAR|dsIp T @
aunbigaysodiuoy’ pAepUEgSs Mep BJ'HD - (aunbigiquoigo] Buug© ¢

- _

_ ~ Unjdaox ISIunygmesJIoHD
ARl um3da0x IMELTI0HT

AR U ISLNUI|pUEH
eAplajpuey
eaplJoqsip2un0H

EL= R E=TTEN e (W T === g TR |
eapl uaipaEgaInby
eapl*uoesELnu3aanty
eag{ Jaualsabueyainby

IXIEE

{0 Ou) , TqEmeAgInHE, Paload v sa0

| ===

uaieopEbusyDaInbiy
SRR LLIBIUOD

I 32813520

Jansasqoabueyseanbly @

Mo @[] =

HEATIOHE @ B

1aaasqoabueeanbig

“D_H_Dn.ﬂu_u..._w_,m_.._ ...u_w.w ®

SUJBIU0D 3004 A0 UORIEES 0U - Wieauod jusied (suo) 8E@g

UJ3DU0T) MAN —

diay mopuipy uny pPaiodd youeac ejeblaep A0jDRjEY

CEEE e

CAEEE

[

0°7-wapl P
gziossoar £ ®

Eﬂ_ - i 57 ARl adnbigyEa] _lD1 O .Eu,_m;m._r. 527 dedo)dxg sbeyIed W_ |

- PBERR-D D-0-% T

whd

aunog yp3 8y

WS 3sdija] - eapl-ainBLyxa] - eARf —

tance to the concern model for thee@ler pattern.

INs

Add a sort

Figure B.10

220

Appendix B. SOrts QUEry TooBOQUET)

oncern Madel X

+ %P/ B Hev=0
FigureChangeMotification[CE: {project 'JHotDrawS4b1' (no JRED invoke {'changed' {no JRE)]
= @ JHotDraw

= @ FigureChangeChserver

Changemaotific ‘project 'IHotDrawS4b1' (no JRE)] i
s Add Mew Concern
¥ Delete

Renarme ...
Maove ...

E! Hide elements

Figure B.11:Consistent Behavidnstance in Concern Model and its context menu.

':5 Package Explorer 23‘\-. Hierarch 0l(TextFigure.java &2
L gl

2| B8
B2 1Anss3.2.8.5P1 ~

fSizelsDirty = true;

:

& Role's (enclosing) Type

-7 jdbm-1.0 Select Role's {enclosing) Tvpe -
=72 JHotDrawsah1 public void moveBy(int x, int y) 7\
w willChange [2 | Figurech| ‘
B e ; ge ()2
L HB (default packags) bazicloveBy (X, ¥): Matching bypes:
— Coala [1] FigureChangeListener - CH.ifa.dravw.framework
Consistent Behavior | Role Superimpaosition ® FigureChangeadapter
Context Passing @ FigureChangeadapter Test
xception Propagation e G F?gureChangeEvEnt]
Redirection Layer = it o+ 3 . h ter) @ FigureChangeEventMulticaster
i earch string (* = any string, ? = any character):
Rele SuperImposiion oo S L (@ FigureChangeEventMulicaster Test
" Support Classes | ‘ [Choose.., J @ FigureChangeEvent Tesk
Search For
@) Type role ‘irtuaktype role

| B} CH.ifa.draw.framework - THotDraws4b1 fsrc ‘

Scope - Source Context

) Workspace (%) Context definition |

40

= L4 | %%+ | %
Search Cancel
HbL' (no JRE}
= T aOIP I, THCT = CET ot s CIF s GO T T sy e T Cr e

Figure B.12: Selecting the type that defines the crosscuttiteg

B.2. User manual 221

R iEEE T B @y AE G e | & Java |
il |m TextFiQure.java |m FigureChangeListener, java 52) = O B Concern Model EX = |m;
I - +% % EHEe”
* Listener interested in Figure changes.
% | FigureChangeMotification[CE: {project 'JHotDrawS4b1' (no JREY) invoks |

* @version <$CURRENT VERSIONS» = @ JHotDraw
* =k ' FigureChangeObserwer
public interface |3 1= FigureChangeMotification[CB: {project 'JHotDraws4b1* |

l,."ﬂ'ff
* Sent when an area is invalid
F4
public void figurelnvalidated (FigureC]

II."'K‘K

* Gent when & figure changed

b
public void figureChanged(FigureChangsv

| Ll
W

< | 3

o - ¥ 50
FigureChangeListen!ar
"E‘ 5 N (8" CompositeFigure 2 La By e
I @ Figure_hangeListenar i o bringToFront{Figure) _ﬁ
E----@A ompositeFigure @ containsFigurelFigure)
! c aGraphicalZompositeFigure @ . drawiar aphics)
1t 9 GroupFigure @ drawiGraphics, FigureEnumeration)
i PertFigure @ figureAt(ink)
JE3] 9 StandardDrawing @ - figureChanged{FigureChangeEvent) | Role member)
E8 --9"" DecoratorFigure @ figureCount(} g
@ FigureChangeadapter @ . figurelrvalidatediFigureChangeEvent) { Rale member) 7
[C] FigureChangeEventMulticaster @ o figureRemaoved{FigureChangeEvent) | Role member) =
L] HTMLTextAreaFigure @ . figureRequestRemove(FigureChangeEvent) { Role member)
=8 9 TextAraaFigure @ . figureRequestUpdatelFigureChangeEvent) { Fole member)
5‘9 TextFigure @ . figures()
-0 ConnectionFigure i@ figuresiRectangle)
-0 Dirawing e figuresReverse()
& @ findFiguredint, ink)
= @ FfindFigurelRectangle) ar,

igure - HotDraws4h1 sk

Figure B.13: Results of the query for tRle Superimpositioof listeners for figure

changes.

222 Appendix B. SOrts QUEry ToaBOQUET)

We can add our sort instance for the listener role to the conoedel for the Fig-
ureChange Observer following the same steps as for the atititcconcern discussed
earlier.

Role Superimposition (RSI) — virtual roles

The second crosscutting role we would like to document islemgnted by Figure
elements to allow listeners to register for and receivefigation of changes. This is
the Observable or Subject role in the Observer pattern [Gaetral., 1994].

Unlike the listener role above, the Subject role in our Obsepattern implemen-
tation is not defined by a distinct interface. To documerd tole in SSQUET, we
choose theFigure interface for the target context, and then select in theodidbr
the Role Superimpositiogquery the Virtual-type role option. The selection opens a
window, as shown in Figure B.14, that allows us to select thenbees of theigure
classes that belong to the crosscutting role. The rest pssiee then similar to the
documentation of the listener concern previously disalisse

I
Sl .

- [5]X]

L=l B ,3‘3‘] Java |

. Consistent Behavior Role SuperImposition
- Context Passing

-~ Exception Propagation

7 = Target conbext
Redirection Layer b string (* 2 h
L Search string {* = any string, 7 = any character):

Support Classes g Choose...

Search For

% |% HHem~™ =0
{[CE: {project ;JHotDraw54b1‘i(no JRE)) invoke ('changed' {na JRE)}j
BOhserver

fangeListener[RSI: {project 'JHotDrawS4bl' {no JRE)) implement ('Fu;ursc:

(O Type role (&1 Wirtual-type role e i i - 3
fsngeMotification[CE: (project 'JHotDrawsS4bi' {no JRE)) invoke {'changec|

= Select members

Srope - Source Context =
) workspace () Context definition (project ‘HotDrawS4b1' (no JREN) Select members: [4&“‘ Select Al
=Ee F\gﬂre 2 | peselect all
[[] @" addbependendFigure(Figure)
et addFigureChangeListeneriFigureCh
-0 e & addToContainer{FigureChangeListe
Oe & basicDisplayBox(Point, Point)
b) # canConnect()
[e" certersy
R e |
A
[@" clonel) =
= ul
@ = e * connectedTextlacaton(Figure)
H i ‘
“[] ®" connectionnsets(}
)] DrawingChangeEvent. java | HY 1k AR 2" Composited -[] ®" connectorAtfint, int)
(¥ [J] DrawingChangelistener.jav ; 1] F\éuraChangsListBnBr ® o bringTaFr : Oe * connectarvisibilty(boolean, Connec | -
4] DrawingEditor java = 49" CompositeFigure @ containsFi [0 @ " containsPaintiint, int)
i 3] Drawingvien.java @ GraphicalCompusiteFigure @ . drawiGrap) O ‘3‘2 decompose()
Figure java @ GroupFigure @ draw(Grap| [®" displayBax()
J| FigureattributeCanstant. javw -9 PertFigure @ figureAtlin H Oe N displayBox(Paint, Point)
1] FigursChangeEvent.java (P standardDrawing @ afigureChar] : [@ * displayBox(Rectange)
| FigureChangelistener.java - {9 DecoratorFiqure @ figureCour] -] @" draw(Graphics)
4] FigureEnumeration java # & FigureChangeadapter @ . figurelral | ’32 figures()
B [J] FigureSelection.java ®@ FigurechangeEventMulticaster @ afigureRem [[] @ " findFigureInsideint, int)
G- || FigureSelectionListener jave {3 HIMLTextAreaFigure @ . figursReq [@" getattributeiFigureatiributeronsta
. o : ;
o Sgu:\n.s\tor.]ava w49 TextareaFigure @ o figureReq E - & getattributedtring) 5
andle java . N) P S P
il E] g + P TeFigure @ wfigures(y &] >
B e e Ll +- @ ConnectionFigure i Figures(Re =
1 JHﬂtDrawExtethn‘]avaI - O Drawing @ FﬁgurssRs i 2 of 45 selected,
44| JHotDrawRuntimeException s @ FfindFigure
< > o _fingFi = b
3 = @ _findFigures @
= CH.ifa.draw, standard.CompositeFigure - JHotDrawS4b1 /src

Figure B.14: Virtual roles in SQUET.

The results of the search and all the concerns we documeatét sire shown
in Figure B.15. We can now save our model by selecting the Senemand in the

B.2. User manual 223

Concern Model view.

Q- WEEE B IE@Y AT o 1§ 3ava |

j_ [¥] FigureChangeListe... 5% 1 = E [$ Concern Madal 53 ® | B Hey ™~ =08
i S :F|gureChangeNotlﬁcatlon[CB (pro]ect JHotDraw54b1 (no JRE)) |nvc.|i<e_(.chan.g.ed (ljo JRE)-)] .

* Listener interested in = ' IHokDraw

= @ FigureChangetbserver
E;-|OhservableFlgureForChanges[RSI {project 'HotDrawS4h1' {no JREY) implement ('
e FigureChangeListenetr[RAT: (project 'HotDrawS4abl' fno JRE)) implerent (Figured|
~1a# FigureChangeMotification[CE: (project 'JHotDraws4h1' (no JREY) invoke ('changec:

* @Brersion <$CURRENT VERZ

A

¥ Jent when an area i
il

public void figurelnwvs

S

* Sent when a figure

b
public void figureChar.v
< > [£ | 3|
Figure :
8 T O Figure 5 R 2 W e
ENL] m A < popUR_ MENU ~
= _ﬂ AbstractFigure @ addbependendFigurelFigure)
=R “3' AttribukeFigure @ addFigureChangelistener{FigureChangelistener) { Role member)
; ’9 ComponentFigure @ addToContainer(FigureChangeListener)
[E= ‘3 EllipseFigure @ basichisplayBox({Point, Point)
: 'ﬁ? ImageFigure @ canConneck)
[E=) 9 PolygonFigure @ center)
9 RectangleFigure @ changed() { Role member)
[+ 9 RoundRectangleFigure @ clonel)
i3:5 {9 TextAreaFigure © connectedTextlocator(Figure)
{9 TextFigure @ connectionInsets()
) f-) CompasiteFigure @ connectarAk(ink, int)
&~ ‘_'9‘ DecoratarFigure @ connectaorVisibility(boolean, ConnectionFigure)
. ‘,9 MullFigure @ containsPoink{ink, int)
v © ®-f9 PalyLineFiqure ¥ @ decomposed)
=4 b @ displayBoxi) M
dotDraws4abl fsrc

Figure B.15: The concerns documented in the FigureChanger@se

B.2.2 Using QUET to aid program comprehension and software
change tasks

A second use-case scenario we shall look at consists of @&QWET and an exist-
ing concern model to support us in a software change taskhisrcase, we assume
that JHOTDRAW is a new system into which we have little or no insight. We wioul
like to use a provided concern model iI®QUET to be able to extend JbirDRAW
consistently with concerns already present in this system.

The change we would like to make consists of an extensioneo€Cttmmand sup-
port in JHOTDRAW, namely adding a Command for mirroring a selected figure in the
drawing view.

224 Appendix B. SOrts QUEry ToaBOQUET)

Command classes in IHDRAW implement actions to be run from the applica-
tion’'s menus, such as copying and pasting figures in a drawieg, changing the
color of a geometrical figure, etc. Each command implemém@€bmmandnterface
and implements the core logic of its action in #eecut e method. As an example,
Figure B.16 shows the command for deleting selected figuoas & drawing (view).

(Most of the) Commands can also be undone. The logic of undoc@mmand is
implemented by a nestddndoActivityclass, for each command class. The UndoAc-
tivity for DeleteCommand is also partially visible in FiguBel6.

zCommand java X

T Comwand to delete the selection.
*
public class DeleteConmmand extends FigureTransferConmand {

e
T Constructs a delete command.

* name the command name
* newbrawingEditor the DrawingEditor which manages the wiews
"

public DeleteCommand (String name, DrawingEditor newDrawingEditor) {

super (nawe, hewvDrawingEditor);
H

public woid execute() {
sSuper.execute (] ;
setUndolctivity(createlUndodctivity ()]
getUndolctivity () .sechffectedFigures (view() .selectioni))
deleteFigures (getUndolotivicy () oetiffectedFicures ()) ;
wview() .checkDamage () ;

}

[protected boolean isExecutableWithView() {
return view().selectionCount()] > 0O;:

}

ez
* Factory method for undo activitcy
=/
protected Tndoable createUndoletivityi() |
return new DeleteCommand. Thdoletivity (this)
}

public static class Undolctivity extends Undoableldspter {
private FigureTransferCommand myCormand;

public Undolctivity (FigureTransferComuvand newComand)
ammAr (hemlnwmmAnd Tiewii

|
<

‘wiritable Smart Insert 32:28

Figure B.16: DeleteCommand in JHotDraw.

We start our change task by loading i@QUET an existing concern model that
documents various concerns in JHotDraw, including coreérithe Command sup-
port. Figure B.17 shows how to load a concern model in the tool.

For a first insight into our drawing system, we can simply expkhe concern hier-
archy in theConcern ModevView and use the Expand option to run some of the queries
documenting atomic concerns, and navigate the resultsioaesin Figure B.18.

For significantly large systems and concern modetsQSeT provides (partial)
support to search the concern model for queries documentingerns that cover a
specific program element. Following the example in FigureOBvie select from the
concern model only those concerns whose queries have asfdheiroend points
(context elements) a Command element.

B.2. User manual 225

ath AT Wi B E e e T EE A A ¥ i B | & Java
=

Explorer &0 Hierarchy = B || [FigureChangeListe... 5% 2 O | =t 5:-}' ® O:E Im Hpg ¥ =0

Load Concern Model from

Lookie | () tmp v| @ = E- s
Y ‘@ JHotDraw-Concerniodel xml
e
by Fecent
Documents
F'i}
Deskiop
My Documents
- wn 5. o T =
L b i
58 |
by Computer = =
MLl R e
e) — ”~
‘r) File name: JHotDraw-Concernt odel xml M | Open g .
. 3 . by = < Figure(Figure)
by Metwark Files of lype: ol v b=Listener(FigureChangeListener) { Role member)
. {FigureChangelistener)
R n
-y l] FigursAttributeConstant jav ! B-P ElipseFigure ® hasicDisplayBox{Point, Poirt)

=] J_J'J FigureChangeEvent. java e ImageFigure @ canConnect()

Figure B.17: Loading an existing concern model into(RET.

After selecting the Command interface (CH.ifa.draw.util. @eamd) from all pos-
sible name matches, the view will show us only the sort irtarof interest (see
Figure B.20).

By examining the concern in the root of the JHotDraw concerdehand expand-
ing its query (Figure B.21), we learn that our commands arapgd in theCommand
hierarchy. This hierarchy is rooted in tl@mmandnterface and a default abstract
command implementatiodbstractCommand

The other sort instances in the view, shown in Figure B.22udwnt a command
as a multi-role element, which implements members to su@pbistener role as well
as Undoable functionality.

Based on the knowledge gained from exploring the concern lmaadecan cre-
ate a stub class for owlirrorCommandby extendingAbstractCommandand then
distinguishing in this class between the different roledie hew class is shown in
Figure B.23.

After creating the stub, we can return to the full concern et@hd show all the
concerns, as illustrated in Figure B.24.

We continue with examining some other of the documentedermsan the root of
the JHotDraw model to learn more about the implementatiddashmands. One such
concern is shown in Figure B.25 — its description indicatesraraon pre-condition
check for commands. We see by running the query for this canmed examining
the results in the Search view that the concern’s implentientzonsists of method
calls fromexecut e methods in variou€ommandclasses. The documented call is
the invocation of the super’s method, as shown in Figures BrizbB.26. This call is
aimed at checking a common condition in all commands, so wetdd theexecut e

Appendix B. SOrts QUEry TooBOQUET)

226

5|

PURILIO 0 PAEPUE]S MEUR B HD - (J8inisxa ™ @
pUELIWODEEINdNg PAEpUEYS MEIRTE T HD - (J8inoaxa ™ &
PUELIIODEYE[E PEPUE]S MEUR BT HD - (Jainisxa ™ @
PURLILIOTND PUEPUES MEUP BT HD - (J8iniaxa ™ @
pUELIWEDADOD PARPUE]S MEID BN HD - (JBniexa ™ @
PURIILIODEINGU wabUE] D PUEPUE]S MEID B HD - (JaIniexa ™ @
PUEILIODIU040] B PUBPUE]S MEIRE I HD - (J8IN08Xa ™ &
PUEWILO UGN PASPUE]S MEIR B HD - (J8IN0exa ™ &
puewwasdnobun - saunby Medpr et HD - (eniaxa T &
puewwonRbeTEsU SN0y MEIR BN HD - (J3In38Ka T &
puewwoTdnoie saUN0y Medp e HD - (JRInaxa ™ @
PUSLILIO JUI00F 002 QUILDD MEIR BT HD - (J2IN28xa ¥ &
PURLIWOD, JO AJDARIRIg Ul 590URda4ad 6T - (1eanaaxa’ PUBNOD 1R A35 0y PR PURIS MEJR B HD,

£ ymeag d

J pURWLIOS,) U
JURLILIOD,) JUa
" OU) pUBLIWLO T,

1) oA :#L :
addns Aq juswa)

anll { pURLILD,

(3w ou) pu

U} pueLILOD),) Juawaidu §

ou} 83N 20 =

LELULIOD, O ALJJE,

= % = 5
s

pusmgosdnoIn AU WIANGaI

ufaye=In ITMEopU pajosjoxd =

L, PP3i0ad) TSH]SOy UI-pURLIWO D, #2] i T e Eouuﬁx H
__u_um._En_u_ ISy]4auUaispURILLIO = H
w:m._r_u [ISH]pURWWODgEAIRSqD) saf =
DjuOREIyRONpEINIaX IpUEIILO Y 7] ;
R 15 jnddnc sy ayedsiguanyeanyqay = R R
S ABMBSROPLELILCD @B aT ﬂwuﬁuwxmm._” ..—..mm._”a.un o TEynd o

EEETET S 201 838 PdM-U0ReIoNUONNIax 3]s £
.Eou_ Jo Ayauedaiy) g]puUsLILc U] &=

484} IS H]R|0 WS gROpUrpUBLILOD :
THC OU) AJAIIROPUNTES,) axoaUl { pURIIWOD, Jo Ayuessiy) (go]poddncopunpug =
14385, ExaUl { PUBLILOD, JO AYDUesRIy) ig0]ungniax a0 agaeissainbidases =
58| Joddns A Juals|dul { pURLIGD, Jo ARSI DE]0ddnsopUnpUBLILDD 5.

AL Jeid Fa

) abeaeqyasyo- [Jnata

_ Taavopun tpusmmoodnoIa))
Ivaas (1AATATIAYORUL S0
N=318sI2) ATATIOTORUNISE

yoddnsopur @ -
Aaddey, i@ &
SPUBLILICT
MENTIOHE @@ =

Foll2anosXs PIOA OTTHmdd =

FhuTneIqa=au ‘aueu) aados

Olw Butaag)pusumosdnoin orpgnd &

57 eAR[PURIILDSANCIS _|:ﬁ

-0

Jpalold yueasg

lo o T
e - -8 B i

diay mopuly Uiy

<
-~ AUMTHMESTIOHD
13d20% JrEAJI0HE
13EIsLINUIS|pUEH
eApl'ajpuey
ol aoqpsipauntiy
I (U T ===y TR
AruonaEsaintiyg
e aunugaantg
1sabueysauntiy
angabueyoauntiyg
1agnguyEntiy
eael aunbig
1Al s Bumeag
el ioypaturmeg
rabueysbureg
Fabueynbumes]
AR BUIME]
EAE(* 0380007
EXyaTE N o =T Lo

AR MEIRBYHD BT

=2

Sa8888S

S

=

Sagaaa

=

saundy mesp eyrHD J-m

2' QLU0 MEIR BYI'HD m.h.
{'quuo el et HD B
QULIOD MESR B HD mm
quio mesperHD BT
eydde wepeyrH) F
j2|dde medp By HD mmnj
MEAD BYHD T

BJHD -

HD £/

{abeoed yneyep) £

U G E

ToFSMENTIOHD .q\.h:. =

[Tds'8 2 £S50g0 <=

Fary

O — }_._Em.._m..__._ ?

H -0 % @

ajEbisey J0j0ejay

0° f-wgpl [

=

57 rbeaRd]

aunog yp3 8y

¥ds 2sd1]57 - eanl*pueiiuogdnois - eaer —

the con-

iesin

lementations of concerns gisie quer

ing the imp

Explor

Figure B.18

cern model.

B.2. User manual 227

mrand.java 2 1 =0 X 2 HHe~ o0
jublic GroupCommand (String A0 | pefverutionCheck-viewotHOl[CR: (hisrarchy of 'mﬂexecute' {no JREN] |
super (nsme, newlrawvingE | —

| 2 @ JHotDraw
= @ Commands

jublic void execute(] { Lindasuppert

Ta# CommandUndoSupport[3C: (hisrarchy of 'Command') implement by support clas:
~Ta# SaveFiguresStateBeforeExecution[CE: (hierarchy of 'Command') irvoke ('setaff

e i f

& Search in Concern Model

1&# InitUndoSupport[CE: (hierarchy of ‘Command’) invoke ('setUndodctivicy' (no JRE
1= CommandUndoableRole[RST: (hierarchy of 'Command’) implement {'Command' {n
Search skring 1 PreExecutionCheck-YiewMotMull/CB: (hisrarchy of ‘Command’) invoke ('esecute’ (no
i"’-"-Command*| | - 1a InitCommand[CE: {hierarchy of '‘Command’) invoke {"abstractCommand' (no JRET)]
T PostExecutionMotfication-UpdateToCmdChanges[CB: (hierarchy of 'Command?) invo
N search For = @ CommandObserver
i &) Tvpe) Method . -1a$ NotificationDispatcherSupport[SC: (hisrarchy of ‘Command') implement by suppc
Oy constructar) Field 1= CommandExecutediotification[CB! (project 'THotDrawS4h1' (no JREY) invoke (i
4 1&# ObservableCommand[RSI: (hierarchy of '‘Command'y implement #Command' (no |
1= CommandListener[RST: (project MHotDrawS4bi' (no JREY implement {'Commanc
-1 Command-Mainfiole[RSI: (project 'THotDraws4b1' (no JREY) implement (Command' {
5 'fi.' [Search] [Cancel]
SR R P W o8 | N 0) a4 L N R
. |
| | £ - - 2
e e e e e
Figure B.19: Searching concerns for a program element indheern model.
[[ULU B ~ =)] R T W - e e P L H e (=N} \:

= @ JHotDraw
=@ Commands

= i@ ‘Wrapper
& Undoabletrapper[RL: {'UndoableCommand' {no JRE)) redirectsTo ('Command' (no JRE)]]

= @ UndaSuppart
1a# CommandindoableRale[RSI: (hierarchy of ‘Command’) implement {'Command fno JREX virkual: getUndoAckivity ; setUndodctivity ; 1]

= @ CommandCbserver
1 ObservableCommand[RSI: (hisrarchy of ‘Command') implement ('Command' (no IRE)[virtual: addCommandListener ; removeCommandListener ; 17]

1 Command-MainRole[RST: (project 'JHotDraws4b1' ino JREY) implement ("Command’ fno JRE)[virtual: execute ; getDrawingEditar ; isExecutable ; name ; 73]

Figure B.20: Filtered concern model.

Appendix B. SOrts QUEry ToaBOQUET)

228

m
e

% |
|~ daXxIauundmse1I0H0 @,
AR UDde0x JMEATI0HD E.
EEt= QT = =111 g W = =TTl =N _H_
eapl'ajpuey _H_
eaploqsip24n0y ﬂ_

=10 =y (BTalw =TTt gl _H_
eall uaipaaEcaIntby H_

eal uoeEwnugaInty [F
pueLOD B mW 4 i .V.H.Lm.r_m;m_._m.mcm.r_um.‘_:m_u_ﬁ
PUELILG T3R5 T qm.w B bR e B 51
_ucmEEoullﬁw..w JUEsunDEINgUI gaan by _I_I_.1
2= 87 HW_JI_ eag('aunbiy (7]
=) enel wmabuimed [f]
.wm_a 52 Yoaeag _.hﬂf I eael I0pI6UIMEI] ﬂ,
o S deusysrebuenbumedq [§]

[quasgabueynbumeq S,
ARl BUIMEI] @ 7
EAR[4072800 E .
(=2 =TS W TR =N 0 [aly _H_rﬂ._ :
AawER e B HD TS
SN0 MEIPRTHD m.__J.._.m
Wo0z'quauer MR B HD BT @
3y qUaLea e e HD -
| pUpgquyueT melpeyHD HE @
e aAn | quyuo mespeyrHD B
uoljedde: melpe ity m“, el
— J2|dde medap By HD mmﬂ =2
WP BT HD S
BYHD FR
HD £5--
(abeeed yneyap) £
yoddneopur i - us ghoE
Aaddedp, - TOFSMEITITHD ._._h:“]
SPUBLILICS @ -E o r-wgpl 71
MEIROHE @ B Tds'@'z'gss090 [T

|

= | PUBLILIODE]SEY
pueLILoTEiENdng
PUELILIODE]ES]
PUELILIO N
pueLcJAdaD

A
e
L[|

]

{319 0punAYARIYOPUNIRS
{JBUaISIPURILLIOD MEUS]S JPURIILIO DS AOUIR]

©o000

{Jaquisw sjoy) {aweu

{Jaquswr ajoy) {a)gendaxgs!

O papagopungiet

{aaquiaw ajoy) JuoypIbumedie6
(Jaquisu ajoy § Eqnaaxa

{42135 PUE LG) USISPURILLIOTRRE

PURWLIOT R SUE S B4nb14 OB
PUELILIO JEnquy wabuey m.w :
pUELOT U0 BUG e

R e

=)
@@

Qleecesoooee

8= PUELILIGT

v||

e B B

#

SjUBLE[E SpIH

ttalleusy

mgpea §¢

ABAIESqOPURLINGD i -

[

(=

3b [agnaaxa [Engal{3We ou) puewwo D) juss dun {{3yc ou) | T9ESMELTII0HE, 0aload) TS y]e| 0 IR) -pUBILIG T

G- .REBE&TX* T - - [CTIINN e ki)

| eser | .o SN [..mm.m_...\@m_@m».m_...m}@mm%_ﬁw-_@. m.»g-ﬁwm-@ labd

day mMoOpulyy Uy Joslold yueas ajebisep J0jdRjay aunog Jp3 a)y

EEE Nas 2sd1ja] - eaer

Figure B.21: Exploring the concern model by running the ggedocumenting con-

cerns/sort instances.

{

pueLnaaabeEesUL m.uw - ! eaglpusuosub)y
pueLIO A0S m._- f i EnElt |00 | Uoiyay
pUELNLODRISEH EAR[" |00 JIR450Y
puswona3Edng EaR(*I0JE00T0RA35 Y
PUBLILIODE]ES] eAE[3|PUEHIIEAIS O
PUBLWODIND ear(ainbiJyoesgy
pUELNLGTATD D i EEN=I R la W=l o T =¥ et
PURIIWG D3 JSU.] | 2Dl {o. : m.}m._._u_._mEEauuumbmnE m o
pueLoEingLy gl m_v_, ; _Em_u_._mu_m.im__u.mu___xu g2
_ur_m_EE_uUu_r__u._u_n_._._wr__._m @ o : h__u,__.mn_ mm_n__._._m_m.}.__m.,__u BJI'HD ﬂmm_
= v allf] mw = : Jad sadues wmedpre g H mm_
4 PUBLILOT]2R 5] xmy = uiyon sa|dies medp e HD mm
2l _ur_m.EE_uu_ @_ (= Jaursajdiles e o e I H mmm
He pLBLILIOD ok uf. .-W _“wﬂ_ U S| AWES MR BN HD m_ i
i = PUELIED IpEsel sa|des melp e HD £-F
JpeaRl sa|diues mEJp B HD mu
| sa|dES MEJP BN HD mmm_
sabew mep e v - F
HAOiELUE) MR B HD mm.“ @
SEINGI WEIR B HD mﬂ £
WOaE GLIUOD rEAR B HD mm [
U3 QIO MEIR B HD m,_q
PUp QUILO0 MEJp B HD mm
quauoa seap e HD B
uaed|dde medp e mh_ i3]
18|dde mEp e HD m.._:w._
U} pUELLLGD,) U3 Jpaload) (1S Y]E| 0 yUIR)-PURLILG D £ . WEAP 'R HDY SR
40 OU) PUEWILIOD,) 3 azjaa 3 Ay} ISylpuRwwons|gealasq) 9. 3 BJHD £7-
LIEIU0T M3p] PRy e 13AISSO0PURILED - H> B3
= : (abesed ynejap) £ !
us ghE
taddedsy ' = TQESMELJI0HE <= = .1
SpURLILDT = 0t T-wgpl F -
MEIIIOHT Q = w TdS'2'Z'ess09r [T

229
SAEEEE
E

=

{4=guiaw 3j0y) (3|geapun)AAlI Iy opUrAEs
{IaUE)SMPURILLOD JAUS]S TPUEUII0 D S A0S
{auey

(ia)qeniaxgs)

(ABquIsl S1oy) (AgARRRopUnED
Cuoypgbume JJyab

{yagnoama
{4aUa)sMpUBIILIOD AU]S PUB L0 D PR

coo0d
.-—.||_-—.|

= -
*

ﬂ

Qe

:@."._ 3z yeEs A

el

sjualLaja apiH

T aAdp
' alelay

L
o
._M_ = . ww Azua)dx3 abeyaey

- O BHH-D -0 -5

A immens e mmele b bm e mneBa e mmme e mm e mae

-

)

B.2. User manual

the Command classes.

In

The Undoable role

Figure B.22

TigE | desupeus | SlqEa | =il

>

qmis poyasu paielsu=0-0Iny ogol S/
Yol aoatpgbutneagai=b Joatpgbutnedg orrgnd =

4 43

oqnis poya=u pajiedsu=b-oiny gdol S/
1ol 2anosxs proa OTTHmE =

aT03 aioa;;

ITINU UIn}ad
onas poyl=w pajelazusb-o0any odol /7
bo(lAaTAaTIoVORPUnSRD STdeopun oTTond

gqnas poyi=au pajeiasusf-oany gaol S/
bO(A3TATIOVITOEOPUNaT STCe0pU) A3 TATIOTOPULI2E PTOA oTTqnd =]

BT01 BTCEOpUN

Appendix B. SOrts QUEry ToaBOQUET)

Cnas poyaswm palelsush-0any ogol S/
b (I3USISTIPUBMMOSPTO IIUSISTTRPUENIN0S) I3USIST TPUBIIMONSAONST PToA T Tynd S

gqnas poyasw paiedasuab-oiny odol S/
1 [ISUSIST TOUEMIOHHST ISUSIST TRUEMNCS | ISUSIST TRUEMIC NS BToAe OTTHnd -
STOI STCEAISSCO//

ornas I0IonI1SUcD peielsulf-oany ool S

f{IoaTpgPuUTAL QoA oumepnau) aadns
Yo (Io3TRIAUTARIASU IO TRIOUTAR] hwﬁwzswﬁ AUTIIg) puUenmonIoIITH T Tond -

L]

ez } PUBMMOS IR IS0y SPUIFIHI PULIIMONIOIIATH sSsero orrgnd

X EAR[pPUBIIEETA0

| e | & Poae k-l &1

i

Fli¢ @@ -2 -DBER: - 6-0-%;: T BFE-L
diay mMOpuUly, Uy joslodd ynieas ajebisep J0jdRjay aunog Jp3 a)y

(S 25d1]07 - PAR["pUBLULIOTY IO LY - BABF —

230

Figure B.23: The MirrorCommand stub distinguishes the migitiples based on the

documentation of concerns iIro®UET.

231

B.2. User manual

(2]920pUNANARIPOPUIRS ™ @ puEwWoDpUD=EE0 L
{JaUE]SIPURLLLIOD MAUE]S TPUR IO EADWLE] 7 @ PUBLILIOTIEGO | pUAS
(Jaweur @ PUBWILOD|732225

()a|geImax3s ¥ @& pUBLLLOOpEY

{Odaagopun st & PUBLILIO DO

(aoppaturesgiat= & E puetnwoabewasUT

(Janiaxaw & pueLoSdnos

{48083 PUE WO AU]S TPUELILIO IPPE ™ &
{40q1p36uke 4] “BULS)PUB IO LI 2 8 W

pUELMODEISEd @)
pUEWWOS2IRENg @ i

Ha PUBLILIOTAOL &)
PUBLILIGS
h,.m_.u) Mm yeag :@...
e 3 < _ >
A 270X 2Tgegpun/ /
f
12 poyIsw pIieIsusb-ooany 0ol /)
00 AITUIISTTPUEMNOSSA0MS T PIoA OTTYnd =
{
18 poyisw pEaeIsusb-cany odol /S
BUMIOS] ISUSGST TRUEIINOSEEE PTIOA O TTHnd =

3701 aTgeAlssqo/ /)

Ut ({360 0U) T3P GUEITICHE, P8(0A) ISHJSIOHUBIEPUELILED £ — janIjsucs pajeisusb-oiny Odol /[A
S { puRIwoD, 4o ADURISI) (I]pURILODEgRAIRS00 #2]. C : AT - am_E.m-ZEm:.S u.m...m—.:w L
ASAdasqopLELIIOD - _ml_ famepnsn BUT IS pUBIMIOSIOIITH O TTHnd
o { pUBILOD, 0 AUJUEASIL) (TSH]S|0HS|qE0pUnpURLILOD 2.
yoddnsopun @ =
Aaddedry, @ #
spueweD @D
i@ =

5 Ll i ==

soEiA s e PR

T 57 PO wIsau0D Hiloo
,nvnvi,m,.mmmw

IS0y SPUIIRS PUBIMIOSIOIIATH SSeTd aTTond

ATRIOUTAE] " IOoNaEIT ' aeIp eIT "Iy JI0duT g

v paepueqS neIp eIT "Ho abeyoed

sl
®
#
9
1]
o

-OBFWwi -

digH mopUsy, Ry

j9al0ad Yueas ajebiaep

™ BARL [HAPURHX0g
eap{ puewwosubi)y

=2 =R TaTa N W Tl

EAR("|00] RISy

eAR(J0JEI0TRRGSY

eAR[B|pURHIRSY

eap(unbidyoeagsgy |

2AR(* I0DEUL0T RSO
EAR(PUBIOD B ST Y

It

i
|

=

3
)

._I.f..

=

=

E=)

i

_uLm_ucmum.sz_u_mL__Im“_ g2
JryRdrsadues medp B HD £
Jad sadues wmelp ey HD mm._ =
UI30u s3duies mep el HD mm B

JaU'sa|dues mEdp BY' HD mm_
PN S3dUIES EP B HD m\.
ipeAR(sadues MEdp B HD T
Ipeag(*sapdues mMeIp B HD mm

sa|des" MEdp By HD T
sabewrwmelp e HD ﬂu.. F
HADMELIEA] MARAP B HD mm._
saUnbly medp B HD mm

W00Z " QIO MEP B HD mm_

UL QLU AR R B H m.

PUP guIUo mEp e HD

QUL B IR B HD mm__ @
= uojjeddde melp ey HD mm:m_
Je|dde mep e HD mm.“ 23]
MR R HD T
BHD B
Ho (-
(abesed Jnejap) £
U 5E
TGPGHEITIOHE 27|
0°7-wapl 71
w Tds 2 2 ess0q0 7]

57 J2u0jdx3 26eyred

H-0-% 8 @E-.L

i0pejed snos 3P

(@S asd[]27 - PAR[pUPLLLIO)I0LIIY - PAD

for the concerns to be displapethe Concern Model

Filters settings

Figure B.24

VIEW.

Appendix B. SOrts QUEry TooBOQUET)

method of our neviMirrorCommandas well.

232

PURLILIOTIEG0 | PUSS PABPUE]S MEAR B HD - (J8qnaxa ™ @
PUBLILIOD| I[85 PEPUE]S MEJD BN HD - ()ainiaxa ™ @
PURLILODESE 4 PARPURIS MEUR BN HD - (Jaqndaxa ™ @
PURLILOZ IR AN PARPURS MEUP BT HD - (Jaqniaxa ™ @
PURIWODE32[3]" PAEPUER]S MEAR BYI'HD - (J8qnaaxa ™ @
UMD ARPURYS MEUR BT HD - {Jajnoaxa ™ @
PUBIILODADOD PEPUR)S MEID Y HD - (Jajmaxa ™ @
PUEIIIG ZE R g eBUE T PUERUEYS MEUR BT H - (Jajnoea ™ @
puUELIODUDA40) Bung” piepUEls mEAp EJTHD - (JaIndaxa ™ @
PUELIWCSUDIY PR PUEIS MEJR BN HD - (Jaindaxa ™ @
pueuosdnoubun sanbl Melp e HD - ajniaxa = @
pueuLoSREeWT LIRS S2UND) MEp B HD - (Jagndaxna T @
pueosdnoas saanbil) Melp e HD - (ajniaxa ™ @
PURLILOTUIO0F WO0Z UIUOD MEIP BN HD - ()2Indaxa ™ @
PUBLILIOT, J0 AUpIB sl Un s80USie a1 g - (J83n38xs’ PUBUIICDIIE RS0y PAEPUEIS' MEIP B), |

H-H

=

P
I
1]
I
1

0 5 0 o L) 6

g
=i
-8
- bz
R R 52 peas 4| i
_ S1 = | el g !
— e R i =) -8 |
fE? o
L9TATIOE OpuUn I0J POYI0 ATOJoe] . mu. 1
= i)
wad - ; g
1 BB
SJUBE|2 SPIH i) 7
(1aunosuoTaoaT=s" (J43TA UWINYSI "B
1
1ATAYITASTCEINDIXIST UuraToog JTLognd = | M
3 2
AL =
— 0U) | THHSMEAQI0HL, 338(0ud) 115y Jajoduely-puswwo s £, .. (-
JahlasqopUBLILIDD @ T —— 18 1
3 s EFE

g0]saBUBYSPUID0 | B3P Pdr-UONEIOKUOINIEX S0 2]
HERHED MEE PP =) spmal {pUEWWET, JO AYDJEISI) D JpURIWo T £
[pLUEWWOT, i)

2]

1=b (AdTaTiovopup ~puenniosdnoIn) |
T [JPSa03IIVIest (lAdTATIATORULARG

BIIOHE 75

1 1-wgpl -

S ATAATORUQa3e3I0] A TATIOVORULY=2E A '

Jaddnzopun @ = e ——— wipssogr Al |
o " R RERE] - xadns L =

o B y [lainoaxa proa orpgnd = A.Wv =
spuelwoD @ = =

{ : “

Ol ¢iioaTpIgbutaeiguau ‘oueu) zadons 5
WE - - 57 eARlpueWoDdnaIn ﬂ... m>m.“.ﬁ.__ur_mEEn_u__ut_E _ﬂ_ O .H_ 52 d W._ 1
£ -Ti-OBPFH: -0 B-0-%:T 5

disd wopU, und 308l0d Yaueas =iEbiAen Jopdejad =0nos Jpa S)d |

¥as asdio7 - eae[-puplnoydnols - eARr —

Figure B.25: The concern for pre-condition check before Conmarexecutions.
Similarly, we can investigate all the other concerns in tredet and ensure that

B.2. User manual 233

MirrarCommand. java _@ GroupCommand. java .n AbstrackCommand.java X

i
¥

L]
* Executes the commwand.
i
public void ERGERES) |
if (view() == null) {
throw new JHotDrawBuntimeException|"execute should MOT be getting called when wiew() == null™);

Y
i

L]
* Tests if the comwand can be executed. The view must be walid wvhen this is
* called. Per default, a comvand is executsables if at
* least one figure is selected in the current activated
* owiew.
=/
= public hoolean isExecutable() {
/¢ test whether there iz a wview reguired and whether an existing view
P [

Figure B.26: The execute() method in AbstractCommand.

the implementation of ouvlirrorCommandis consistent with all existing policies and
rules for Command classes. This exploration of concernssleado the stub imple-
mentation of theexecut e() method for theMirrorCommandshown in Figure B.27.
The stub shows the crosscutting concerns in this method ake st consistent with
the other existing Command implementations. Now, we can gackwvith implement-
ing the core logic of our class. This is not a crosscuttingceons so it is up to the user
of this manual to do it.

Appendix B. SOrts QUEry ToaBOQUET)

234

QbSeRI0I0HE, 129(04d) IS H]R |0y -PUBIILIO D i

ABAIaSqOpURLILIDD i@

y]sabueyDpuwo0 Hmum_un__._-_._o_u_m.u_u_u_ozg_u_:umxm_u_m_un__mu
T|oAU (pUEILIGD, JO AY2JEISI) 90 JPUEIIIOD UL i 8
3 AUURARIY) D] INRASNMEIA-HIBUDUOINDEx 5] 4]

yoddnsopury @ -

Aadde iy, @ -

SPUBLILDD ’

Ex)

MEAJIOHD

=l

PUELIIODEIS[E] PIEPURIS MEIR BJI HD - (Janiaxe = &
PUBLIODINTY PARPUEYS MU B HD - (JBjniaxa ™ @
pUELIOSSINGLIYabURY S PEpURIS MER B HD - (JaN08xa ™ &
pUELILOTUCdo | BUG PIBpURIS MER BJ HD - (J2NI8%a ™ &
puUELILOT LBy PIEPUEIS MEIR BJI'HD - (J8niaxe T @

puewwodnoabun se4nbl Melp e HD - (Rniaxa ™ @ m“.__
puEius Jabe] esUT saunbl medp ey HD - (Egnasxne ™ @ 1 ﬂm
pueunuaDdnois saunbly melp e HD - (Rnaxa Y @ | 1 m“_
PEUILIGT, JO ALDAEIEI U] Se008 5] 6T - (JabRPWE a0 MalADuMEI] Somale wep el D, | 1 BT
. B oEag b ' -
- = y m._ﬁ
> u@m
1 @Y
i uﬂm..
{TIOU WIn}ax . v}
qnas poyism pajeisusb-oiny pdaol f/ .N umm_
bl aoatpgfutacagash IodtpIfuTtasag oTTTmd = | um.m
1 g
) abeumegyaayat (JaaTe 3 mﬂ
_:n.ﬂp.pn_m.xm. S puBamIcs STl 04 Snp Ssbusys Io MSTA Sl AIToou/) umm.
1 |
=3=1 S=m00 ATHOT =I0a// Iumm
uﬂm..
AL TATIOYORUNSAESID) AaTAaTanvopUuga=s VB
{1 =aano=xe - aadns) mm)
b {l@3noaxa proa orpyqnd - ==
25 4
= == =T Ll 1430
RE
{ | 7'EssC
ITIOU UWIn}al lili
qnas poyism paieasusab-oiny odqol S/

yoll&ataraoyopuna=0 atceopu) oTTygnd = |

A | &

2z T *rpuewoDaieddng [

| <l

S EF ISR -T

EAR[* pUEIILO D AD D _ﬂ_ 57 BARL PUBLILIOZOU Ay _H_ e

OBPR-D B-0-%: @ F[

diaH mopug, uny o Jaalodd odeac ajpbisep A0jIRjaY 21nog

Figure B.27: The crosscutting concerns in the MirrorCommexetute() method.

Samenvatting

Het onderwerp van dit proefschrift is het omgaan oresscutting concerns bronco-
de. De evolutie van softwaresystemen beslaat het groatstieven hun levenscyclus
en dus ook van hun kosten. Daarom komt het ook veel vaker \aetosaftware engi-
neers moeten werken aan complexe, reeds bestaande sapwtamen in plaats van
nieuwe systemen te ontwikkelen. Deze reeds bestaandengystaoeten echter eerst
goed doorgrond worden, alvorens wijzigingen kunnen wordi@orgevoerd. Het be-
grijpen van deze bestaande systemen vergt inzicht in dehitemdeconcerngdenk
aan functionaliteit of ontwerpbeslissingen) die de systeimplementeren. De meeste
van deze concerns moeten worden afgeleid uit de broncodebizendere uitdaging
voor de doorgronding van een systeem — en bijgevolg voowaodt-evolutie — vormen
de concerns die doorsnijdendrgsscutting worden genoemd: de implemenatie van
deze concerns doorsnijden de opsplitsing in modules. [&ftlads gevolg dat code
verspreid §cattered en verweventangled wordt.

Het onderzoek dat binnen dit proefschrift wordt gepresandtebiedt een gate-
greerde aanpak die consistente doorgronding, ident#icdtcumentatie en migratie
van crosscutting concerns in bestaande systemen mogelakinDit werk heeft als
doel dat deze crosscutting concerns makkelijker begrgplea beheersbaar worden
voor software engineers. Een laatste stap van de aanpakedreavstellen is een ex-
periment dat crosscutting concerns herfactoriseert reraaspect-gaienteerde aan-
pak van programmeren. Hierbij reflecteren we op de onderstgudie deze nieuwe
programmeertechniek biedt voor het verbeteren van de randeting van concerns.

Inleiding

Moderne software systemen worden steeds complexer, eabasit miljoenen regels
broncode die meerdere verantwoordelijkheden implementelie ookconcernswor-

den genoemd. Een reenvoudig tekenprogramma, bijvoorbstd de gebruiker in
staat om geometrische figuren te tekenen, te manipulerearetegpassen; om ver-
anderingen terug te draaien, tekeningen op te slaan in exariok of ze in te laden;

235

236 Samenvatting

om te interacteren met de applicatie door middel van eersregku’s in een grafi-

sche interface, enzovoorts. Om de complexititeit van dgkgesystemen te beheersen
maken software engineers in de ontwerpfase gebruik vamielkgrogrammeerwerk-
wijzen, zoals het toekennen van verantwoordelijkhedereiamplicatie aan specifie-
ke programmamodules zoditassenof methoden Deze werkwijze wordt ook wel

de scheiding van verantwoordelijkhedehseparation of concerngenoemd [Parnas,

1972; Dijkstra, 1997; Baldwin and Clark, 1999].

Voor niet-triviale software systemen is er echter geen sraaom een volledige
opdeling van concerns te bewerkstelligen. Het resultadaisle implementatie van
bepaalde concerns is verspreid over verscheidene moduiedys wordt vermengd
met de voornaamste functionaliteiten van deze moduleskeZalomtegenwoordige
concerns hebben een doornsijdend karakter, en woresscuttingg genoemd. Hun
karakteristieke implementatie maakt dat ze in de broncodeizaam zijn te herken-
nen en te begrijpen, wat ze tot een belangrijke uitdagingkimaiphet aanpassen en
evolueren van bestaande software-systemen. Dit proétsghat deze uitdaging aan
door een gmtegreerd systeem te introduceren voor het werken metteg@nwoordi-
ge concerns in broncode.

De onderzoeksmethode die in dit proefschrift wordt gehendtes gebaseerd op de
volgende pijlers:

e Het gebruik van casussen om een beter begrip te verkrijgehetgprobleemdo-
mein.

e De ontwikkeling van nieuwe theok®a, concepten, en technieken, zoals een nieu-
we techniek voor de identificatie van concerns, een benagleoor het modelle-
ren van concerns, of een nieuwe beschrijving van het fenoraleentegenwoor-
dige concerns.

e De ontwikkeling van gereedschap dat de toepassing van deodet en tech-
nieken op bestaande software systemen mogelijk maakt.

¢ De validatie van de nieuwe methoden en technieken door middeserkennen-
de casussen waarin het ontwikkelde gereedschap wordeastoep een reeks
“‘open source” Java systemen.

e Een analytische generalisatie van de casusresultatendamaen een kritische
discussie van de bevindingen.

Probleemdefinitie

Het omgaan met alomtegenwoordige concerns in broncodetanmeerdere activitei-
ten, zoals de identificatie, modellering, en documentdteoconstructie van concerns
naar aspect-ge@mnteerd programmeren. Dit laatste is een nieuwe maniermegngm-
meren waarin crosscutting concerns tocheép lokatie gedefinieerd kunnen worden,

Samenvatting 237

waarna ze met behulp van programma-transformaties in d@apsle code geweven
kunnen worden.
Hieronder bespreken we in het kort elk van deze activiteiten

Aspect-opsporing Aspect-opsporingaspect mininyyis een relatief recent onder-
zoeksgebied waarin de ontwikkeling van (broncode analtgs#nieken en ondersteu-
ning voor de (semi-)automatische identificatie van alomt@gpordige concerns in be-
staande systemen centraal staat.

De identificatie van alomtegenwoordige implementatiesis moodzakelijke eer-
ste stap om bewustzijn bij ontwikkelaars te@men dat het systeem dergelijke concerns
implementeert. Dit bewustzijn is nodig bij elke functioeeVijziging die een ontwik-
kelaar doorvoert, daar deze wijziging immers altijd kareifareren meéen of meer
alomtegenwoordige eigenschappen.

Bovendien is deze stap belangrijk om de aard te doorgrondemo@komens van
alomtegenwoordige concerns in “echte” applicaties, vantiipische implementaties,
en van de specifieke eigenschappen die hen onderscheidandare concerns.

Het Modelleren van Concerns De volgende opgave is de representatie van thiege
tificeerde alomtegenwoordige concerns in broncode, om kedwdg en systema-
tisch te beschrijven, te modelleren, en te documentereme 8mcern modelingtap
stelt ons onder meer in staat om beschrijvingen van ontdekteerns op te slaan,
Bovendien helpt dergelijke documentatie de alomtegenwgerietrekkingen tussen
programma-elementen expliciet te maken, en daarmee Hetjgen van softwarebe-
grip en het uitvoeren van evolutietaken te vergemakkaidijke

Aspect-georénteerd Programmeren en Herconstructie naar Aspecten Aspect-
georiénteerd programmeren omvat verscheidene programmeigkeh die zijn ont-
worpen om modularisatie van alomtegenwoordige concerhsincode te ondersteu-
nen door gebruik te maken van nieuwe taalconstructies erpasittemechanismen.
De populairste van deze benaderingen is vooralsnog AdpéGttales et al., 1997],
een Java taaluitbreiding die is gebaseerd opdiapoint model. Dit model stelt de
programmeur in staat om bijvoorbeeld reeksen executiepunteen programma aan
te duiden waar bepaalde code wordt uitgevoerd, zoals edroneiaanroep.

Om de modulariteit van concerns in bestaande systementeteeen d.m.v. aspect-
georénteerde technieken, moeten we deze conagaigserendoor hun implementatie
te herstructureren naar een aspect-geaeerde oplossing.

Uitdagingen en Probleemdefinitie Ondanks een behoorlijke dosis bestaand onder-
zoek is een aantal belangrijke problemen die betrekkingpé&elop het beheren van al-
omtegenwoordige concerns in broncode nog niet voldoengelost. De verscheidene

4ecl i pse. org/ aspectj/

238 Samenvatting

oplossingen die vooralsnog beschikbaar zijn, zijn doargaaoeizaam met elkaar te
integreren. Ook is het moeilijk onderlinge resulaten teyeéjken, omdat criteria voor
een uniforme evaluatie ontbreken. Zelfs bingén en dezelfde benadering, bijvoor-
beeld voor de opsporing van concerns of herstructureriogi&n alomtegenwoordige
concerns behandeld op verschillende niveaus van gratailabit bemoeilijkt het ver-
gelijken en combineren van deze oplossingen. Hier komt fijatabondersteuning in
de vorm van vrij beschikbaar gereedschap en gedetaill@easlessen schaars zijn.

Dit proefschrift richt zich op alomtegenwoordige conceimgestaande systemen
en streeft ernaar de volgende onderzoeksvraag te beauigvoor

Hoe kunnen we op consistente wijze alomtegenwoordige conicerns
bestaande systemen beheren, dat wil zeggen, identificeoele]leren, do-
cumenteren, en wellicht migreren, om zodoende het verkrijga softwa-
rebegrip te ondersteunen en softwarevolutie te verbeteren?

Aanpak en Resultaten
We gebruiken de volgende aanpak om onze onderzoeksvragearievoorden:

1. We beginnen met een studie van crosscutting concernsstadele systemen.
Om deze studie te ondersteunen gebruiken we een nieuwet asipgtg tech-
niek.

2. Met het begrip van crosscutting concerns dat we hebbeedaaa door bestaan-
de systemen te bestuderen, stellen we een categorisatievanaoncerns in
soortendie gebaseerd is op typische implementatie idiomen en figexirela-
ties.

3. Vervolgens gebruiken we deze soorten van crosscuttingszas om een (jete-
greerd systeem te bouwen dat ondersteuning biedt bij hehamignet crosscut-
ting concerns in broncode. Dit systeem bestaat uit drie co@pten, respectie-
velijk een component voor aspect mining, voor het docuntenten modeleren
van concerns en voor het refactoren van concerns naar agpaeinteerde op-
lossingen.

De belangrijkste contributies van dit proefschrift kunaésmvolgt samengevat worden:

e Het tot op heden meest uitvoerige rapport over aspect mmesigtaten en cross-
cutting concerns in broncode. We analyseren en rapportereresultaten van
drie relevante open-source software case studies in del$tosken 2, 3 en 5.

e Eenverzameling van drie aspect mining technieken methgiende programma-
ondersteuning, inclusief combinaties van deze techniaekemnvorden besproken
in de hoofdstukken 2 en 5.

Samenvatting 239

e Een nieuwe classificatie van crosscutting concerns op Basisnderscheidende
eigenschappen en een programma-ondersteunde, vraagpgatmaanpak voor
het documenteren en modelleren van concerns, zoals wachiayen in hoofd-
stuk 4.

e Een nieuwe aanpak voor het herfactoriseren van concermspaaaspect-ge-
orienteerde oplossing gebaseerd op elementaire crosscotimogrns. Voorts
stellen we een showcase voor het refactoren naar aspeagrdimbeschikbaar
is als een open-source project, genaamd AJBIRAW. Dit open-source project
is momenteel het grootste publiek beschikbare softwatesgsdat het resultaat
is van een herfactorisering naar een aspect-georienteptdssing. De aanpak
en zijn toepassingen worden besproken in hoofdstuk 6.

e Een géntegreerde migratie-strategie die volgende stappen braspect mining,
concern documentatie en modellering en aspect herfagtons wordt voorge-
steld in hoofdstuk 6.

Conclusie

Met dit proefschrift hebben we beoogd de stand der techmaeketsterken op het
gebied van het management van crosscutting concerns irtden Dit heeft ge-
leid tot een uitgebreide verzameling van technieken, hipiobend software-greedschap,
en gedetailleerde rapporten van uitgevoerde case stuB@gendien stellen we een
geintegreerde aanpak voor die toelaat concerns the managamtermigreren. Deze
contributies zijn bedoeld om softare engineers beter émlaingaan met de complexi-
teit van bestaande software systemen en met de taken dig mgrdiom dergelijke
systemen te laten evolueren.

In het laatste hoofdstuk van deze thesis identificeren weaetal onderzoeksvra-
gen die in het verlengde van het onderzoek van dit proefstiggen, in het bijzonder
op het vlak van concern management.

Curriculum Vitae

Marius Marin was born on September 30th, 1976 in BucharesmA©Q95 to 1996 he
studied at the Police Academy in Bucharest, after which hmestesred to the Technical
University of Civil Engineering, Bucharest. He graduated @®@ with a Diplomat
Engineer degree in Civil Engineering — Buildings Servicesonfr1997 to 2002, he
studied at the Academy of Economic Studies, Bucharest, wiegraduated with a
Licentiate degree in Economics — Economic Informatics.(B@tween 2001 and 2003
he worked as an IT specialist with Nergal, an IT solutions emsultancy company
based in Rome.

He started his PhD research in 2003, at Delft University athfmlogy. Until
2007 he was a member of the Software Engineering group, tihe&e Evolution and
Research Laboratory.

241

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel Neural Networks for
Intelligent Data Analysis: theoretical
and experimental aspectsFaculty of
Mathematics and Natural Sciences, UL.
2002-01

V. Bos and J.J.T. Kleijn. Formal Spec-
ification and Analysis of Industrial Sys-
tems Faculty of Mathematics and Com-
puter Science and Faculty of Mechanical
Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understand-
ing Legacy Software Systemdg-aculty
of Natural Sciences, Mathematics and
Computer Science, UVA. 2002-03

S.P. Luttik. Choice Quantification in
Process AlgebraFaculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UVA. 2002-04

R.J. Willemen. School Timetable Con-

struction: Algorithms and Complexity

Faculty of Mathematics and Computer
Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est. Ver-
ification of Probabilistic, Real-time and
Parametric Systems Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2002-06

N. van Vugt. Models of Molecular Com-
puting Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Systems
Faculty of Science, Mathematics and
Computer Science, KUN. 2002-08

R. van Stee On-line Scheduling and Bin
Packing Faculty of Mathematics and
Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Filter-
ing: Concepts and AlgorithmsFaculty
of Mathematics and Natural Sciences,
UL. 2002-10

M.B. van der Zwaag. Models and Log-
ics for Process AlgebraFaculty of Nat-
ural Sciences, Mathematics, and Com-
puter Science, UVA. 2002-11

J.I. den Hartog. Probabilistic Exten-
sions of Semantical Modeld=aculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Sys-
tems Faculty of Natural Sciences, Math-
ematics, and Computer Science, UVA.
2002-13

J.I. van Hemert. Applying Evolutionary
Computation to Constraint Satisfaction
and Data Mining Faculty of Mathemat-
ics and Natural Sciences, UL. 2002-14

S. Andova Probabilistic Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-15

Y.S. Usenko Linearization in pCRL
Faculty of Mathematics and Computer
Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Stor-
age for Video on Demand Faculty
of Mathematics and Computer Science,
TU/e. 2003-01

M. de Jonge To Reuse or To Be Reused:
Techniques for component composition
and construction Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations

Faculty of Natural Sciences, Mathemat-
ics, and Computer Science, UvA. 2003-
03

S.M. Bohte Spiking Neural Networks
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Veri-
fication in Process Algebras with Data
and Timing Faculty of Mathematics and
Computer Science, TU/e. 2003-05

S.V. Nedea Analysis and Simulations of
Catalytic Reactions Faculty of Math-

ematics and Computer Science, TU/e.

2003-06

M.E.M. Lijding . Real-time Scheduling
of Tertiary StorageFaculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-07

H.P. Benz Casual Multimedia Process
Annotation — CoMPAsFaculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-08

D. Distefana On Modelchecking the
Dynamics of Object-based Software: a
Foundational Approach Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata — A For-
mal Approach to the Modeling of Col-

G.l. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive The-
orem Proving Faculty of Mathematics
and Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Comput-
ing — Splicing and Membrane systems
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-03

S. Maneth. Models of Tree Translation
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environment$-ac-
ulty of Mathematics and Computer Sci-
ence and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduction

and Probabilistic Specification Formats

Faculty of Sciences, Division of Math-

ematics and Computer Science, VUA.
2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical Formaliza-
tion and Applications Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2004-07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary In-
vestigation of Fundamentals, Strategies,

laboration Between System Components and Business ApplicationsFaculty of

Faculty of Mathematics and Natural Sci-
ences, UL. 2003-10

D.J.P. Leijen. TheA Abroad — A Func-
tional Approach to Software Compo-
nents Faculty of Mathematics and Com-
puter Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios
for the Differencing Methad Faculty
of Mathematics and Computer Science,
TU/e. 2004-01

Technology Management, TU/e. 2004-
08

N. Goga Control and Selection Tech-
nigues for the Automated Testing of Re-
active SystemsFaculty of Mathematics
and Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arith-
metic: Representations, Algorithms and
Proofs Faculty of Science, Mathematics
and Computer Science, RU. 2004-10

A. Loh. Exploring Generic Haskell
Faculty of Mathematics and Computer
Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Al-
gorithms for Car Navigation Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Conditionally
Guaranteed BudgetsFaculty of Math-
ematics and Computer Science, TU/e.
2004-13

J. Pang Formal Verification of Dis-
tributed Systems Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-
Based EconomicsFaculty of Technol-
ogy Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position
Estimation Using a Single Base Station
Faculty of Mathematics and Computer
Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verifica-
tion and Verified DistributionFaculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for Struc-
tured DocumentsFaculty of Mathemat-
ics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov Quan-
titative Prediction of Quality Attributes
for Component-Based Software Archi-
tectures Faculty of Mathematics and
Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar Super-
visory Machine Control by Predictive-
Reactive Scheduling Faculty of Me-
chanical Engineering, TU/e. 2004-21

E. Abraham. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support- Faculty of Mathematics

and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remod-
eling in Bone TissueFaculty of Biomed-
ical Engineering, TU/e. 2005-02

C.N. Chong Experiments in Rights

Control - Expression and Enforcement
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-
03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms Fac-
ulty of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek Specification and
Analysis of Internet ApplicationsFac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. lonita . Scenario-Based System Ar-
chitecting - A Systematic Approach to
Developing Future-Proof System Archi-
tectures Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-07

l. Kurtev . Adaptability of Model Trans-
formations Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network

Reliability. Faculty of Science, UU.
2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont Data Mining using Ge-
netic Programming: Classification and
Symbolic Regressiorraculty of Mathe-
matics and Natural Sciences, UL. 2005-
12

B.J. Heeren Top Quality Type Er-
ror Messages Faculty of Science, UU.
2005-13

G.F. Frehse Compositional Verification
of Hybrid Systems using Simulation Re-
lations. Faculty of Science, Mathematics
and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics Faculty
of Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova Coalgebraic Analysis of
Probabilistic SystemsFaculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema Effective Models for the

Structure of pi-Calculus Processes with
Replication Faculty of Mathematics and

Natural Sciences, UL. 2005-17

P. Zoeteweij Composing Constraint

Solvers Faculty of Natural Sciences,

Mathematics, and Computer Science,
UVA. 2005-18

J.J. Vinju. Analysis and Transformation

of Source Code by Parsing and Rewrit-
ing. Faculty of Natural Sciences, Math-
ematics, and Computer Science, UVA.
2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra. Stepping through Haskell
Faculty of Science, UU. 2005-21

Y.W. Law. Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment ModeFaculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systentsaculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-
mal Specification and Analysis of Hybrid
Systems Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applica-

tions Faculty of Science, Mathematics
and Computer Science, RU. 2006-06

J. Ketema. Bohm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse On JML: topics in
tool-assisted verification of JML pro-
grams Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort . Towards Hybrid Molec-
ular Simulations Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen Mining Structured
Data. Faculty of Mathematics and Natu-
ral Sciences, UL. 2006-10

G. Russello Separation and Adaptation
of Concerns in a Shared Data Space
Faculty of Mathematics and Computer
Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic ChoicesFaculty

of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logid-aculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardizationFac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-14

T. Krilavicius . Hybrid Techniques for
Hybrid Systems Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier. Language Based Secu-
rity for Java and JML Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Service
Discovery Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2006-17

B. Gebremichael Expressivity of Timed
Automata Models Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-18

L.C.M. van Gool. Formalising Inter-
face Specifications Faculty of Math-
ematics and Computer Science, TU/e.
2006-19

C.J.F. Cremers Scyther - Semantics
and Verification of Security Protocols
Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implemen-
tation and Composition Faculty of
Mathematics and Natural Sciences, UL.
2006-21

H.A. de Jong Flexible Heterogeneous
Software Systems Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig-
urable Network-on-Chip for streaming
DSP applications Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen Considerations on Mod-
eling for Early Detection of Abnormali-
ties in Locally Autonomous Distributed
Systems Faculty of Mathematics and
Computing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program AlgebraFaculty

of Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brandan Briones Theories for
Model-based Testing: Real-time and
Coverage Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2007-05

|. Loeb. Natural Deduction: Shar-
ing by Presentation Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2007-06

M.W.A. Streppel. Multifunctional Geo-
metric Data StructuresFaculty of Math-
ematics and Computer Science, TU/e.
2007-07

N. Trcka. Silent Steps in Transition
Systems and Markov ChainsFaculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman. Searching in encrypted
data Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden Putting types to good
use Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen Imperfect Informa-
tion in Software Development Processes
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2007-
11

R. Boumen Integration and Test

plans for Complex Manufacturing Sys-
tems Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing
and Optimising System Behaviour in
Time Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange Assessing and Improving
the Quality of Modeling: A Series of Em-
pirical Studies about the UMLFaculty

of Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science,UvA. 2007-
15

B.S. Graaf. Model-Driven Evolution of
Software ArchitecturesFaculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J.Mathijssen. Logical Calculi
for Reasoning with Binding Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home NetworksFaculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures and
Algorithms for Mobile Data Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W.Pieters. La Volong Machinale: Un-

derstanding the Electronic Voting Con-
troversy Faculty of Science, Mathemat-
ics and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVSFaculty of Science, Math-
ematics and Computer Science, RU.
2008-02

M. Bruntink . Renovation of Idiomatic
Crosscutting Concerns in Embedded
SystemsFaculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2008-04

