
An Integrated System to

Manage Crosscutting Concerns in

Source Code

The work in this thesis has been carried out under the auspices of the research
school IPA (Institute for Programming research and Algorithmics).

An Integrated System to

Manage Crosscutting Concerns in

Source Code

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. dr. ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op vrijdag 25 januari 2008 om 10.00 uur
door

Marius Adrian MARIN

Diplomat Engineer in Civil Engineering – Buildings Services
Licentiate in Economics – Economic Cybernetics, Statistics and

Informatics
geboren te Boekarest, Roemenië

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. Arie van Deursen

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. A. van Deursen Technische Universiteit Delft &

Centrum voor Wiskunde en Informatica
promotor

Dr. ing. L.M.F. Moonen Technische Universiteit Delft
Prof. dr. P. Tonella ICT-irst & Universitá degli Studi di Trento
Prof. dr. S. Demeyer Universiteit van Antwerpen
Prof. dr. P. Klint Centrum voor Wiskunde en Informatica &

Universiteit van Amsterdam
Prof. dr. C. M. Jonker Technische Universiteit Delft
Prof. dr. ir. H.J. Sips Technische Universiteit Delft

Copyright c© 2007 by A.M. Marin

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and retrieval system,
without the prior permission of the author.

ISBN 978-90-9022675-0

Author email:a.m.marin@tudelft.nl

ii

To my parents,

Dan and Doina

Contents

Acknowledgments xi

1 Introduction 1
1.1 Software Evolution in the Presence of Crosscutting Concerns 1
1.2 Problem Statement . 4

1.2.1 Aspect Mining . 5
1.2.2 Concern Modeling . 5
1.2.3 Aspect-Oriented Programming and Refactoring TowardsAspects 5
1.2.4 Challenges and Problem Statement 6

1.3 Objectives . 6
1.4 Research Method and Evaluation . 7
1.5 Overview . 8

1.5.1 A Study of Crosscutting Concerns 8
1.5.2 Crosscutting Concern Sorts 9
1.5.3 Crosscutting Concern Mining, Modeling and Refactoring us-

ing Sorts . 10
1.6 Contributions . 13
1.7 Road map . 14

2 Identifying Crosscutting Concerns using Fan-in Analysis 17
2.1 Introduction . 17
2.2 Aspect Mining: Background and Related Work 19

2.2.1 Terminology . 19
2.2.2 Query-Based Approaches 22
2.2.3 Generative Approaches . 23
2.2.4 Aspect Identification Case Studies 24

2.3 Aspect Mining Using Fan-in Analysis25
2.3.1 A Fan-in Metric for Aspect Mining 25
2.3.2 Method Filtering . 27

v

2.3.3 Seed Analysis . 28
2.3.4 The Fan-in Tool FINT . 29

2.4 The Case Studies . 30
2.4.1 First Findings . 31
2.4.2 Case Study Presentation . 33

2.5 PETSTORE . 34
2.6 JHOTDRAW . 37

2.6.1 The Undo Concern . 37
2.6.2 Persistence . 39
2.6.3 Observers in JHOTDRAW 40
2.6.4 Other Concerns . 41

2.7 TOMCAT . 44
2.7.1 Lifecycle . 45
2.7.2 Valves / Chain of Responsibility 46
2.7.3 Other Concerns . 46

2.8 Discussion . 48
2.9 Concluding Remarks . 52

2.9.1 Contributions . 52
2.9.2 Future Work . 53

3 Applying and Combining Three Different Aspect Mining Techniques 55
3.1 Introduction . 55
3.2 Background concepts . 57

3.2.1 Fan-in . 57
3.2.2 Concept Analysis . 58
3.2.3 Terminology . 60

3.3 The three aspect mining techniques 61
3.3.1 Fan-in Analysis . 61
3.3.2 Identifier Analysis . 62
3.3.3 Dynamic Analysis . 63

3.4 Results of the Aspect Mining . 64
3.4.1 The Fan-in Analysis Experiment 64
3.4.2 The Identifier Analysis Experiment 66
3.4.3 The Dynamic Analysis Experiment 68

3.5 Comparing the Results . 69
3.5.1 Selected Concerns . 69
3.5.2 Limitations . 72
3.5.3 Complementarity . 73

3.6 Toward Interesting Combinations .74
3.6.1 Motivation . 74
3.6.2 Definition of the Combined Techniques 75
3.6.3 Analysis Indicators . 75
3.6.4 Experimental Results . 76

vi

3.7 Summary and Future Work . 78

4 Crosscutting Concern Sorts 81
4.1 Introduction . 81
4.2 Crosscutting Concern Sorts . 83

4.2.1 The Query Model . 84
4.2.2 Description and Formalization of Sorts84

4.3 Sort-Based Concern Modeling . 89
4.3.1 SOQUET . 91
4.3.2 Documentation of FigureChanged Observer 92
4.3.3 SOQUET Support for Software Evolution 93

4.4 Sorts in Practice . 93
4.4.1 JHOTDRAW . 94
4.4.2 Enterprise Applications . 97

4.5 Sorts in Design Patterns . 99
4.5.1 Interfacing Commands andAdding variability to Commands

and Visitors . 101
4.5.2 Design enforcementin Singleton and Prototype 102
4.5.3 Other Patterns . 102

4.6 Discussion . 104
4.6.1 Coverage of the Crosscutting Concerns by Sorts 104
4.6.2 Using Sorts in Aspect Mining and Refactoring 106

4.7 Related Work . 107
4.8 Conclusions . 108

5 A Framework for Evaluating and Combining Aspect Mining Techniques 109
5.1 Introduction . 109
5.2 A Common Framework for Aspect Mining 111

5.2.1 Crosscutting Concern Sorts 113
5.2.2 Defining the Common Framework 113

5.3 Three Aspect Mining Techniques . 115
5.3.1 Fan-in Analysis . 115
5.3.2 Grouped calls Analysis . 117
5.3.3 Redirections finder . 118

5.4 Combining Techniques . 119
5.4.1 Improving Precision . 119
5.4.2 Improving Absolute Recall 120
5.4.3 Improving the Seed-Quality 120

5.5 Tool Support . 123
5.6 Experiment . 123

5.6.1 Applied Filters . 124
5.6.2 Results . 125

5.7 Retrofitting Existing Techniques .129

vii

5.7.1 Role Superimposition . 129
5.7.2 Consistent Behavior . 131
5.7.3 Context Passing . 132
5.7.4 Name-Based Approaches . 133

5.8 Discussion . 133
5.9 Related Work . 136
5.10 Conclusions . 136

6 An Integrated Strategy for Migrating Crosscutting Concerns 139
6.1 Introduction . 139
6.2 Crosscutting Concern Sorts . 140
6.3 An Integrated Migration Strategy 141

6.3.1 Aspect Mining . 143
6.3.2 Concern Exploration . 144
6.3.3 Concern Modeling and Documentation 144

6.4 Aspect Refactoring . 145
6.5 Aspect Refactoring of JHOTDRAW 147

6.5.1 AJHOTDRAW . 147
6.5.2 Consistent Behavior in Command 148
6.5.3 Undo Functionality . 149

6.6 Discussion . 154
6.6.1 Applicability in Practice . 154
6.6.2 Benefits and Risks . 155
6.6.3 Automation . 156
6.6.4 Separation of Concerns . 156

6.7 Related Work . 157
6.8 Concluding Remarks . 158

7 Conclusions 161
7.1 Summary of Contributions . 161
7.2 Discussion and Evaluation . 163

7.2.1 Revisiting Thesis Objectives 163
7.2.2 Independent and Integrated Migration Steps 163
7.2.3 Queries versus Aspects . 164

7.3 Opportunities for Future Research166
7.3.1 Aspect Mining . 166
7.3.2 Crosscutting Concern Documentation and Modeling167
7.3.3 Refactoring to Aspect-Oriented Programming 167
7.3.4 Integration of Migration Steps 169

7.4 Closing Remarks . 169

viii

A FINT 181
A.1 Installation . 181
A.2 User manual . 181

A.2.1 Fan-in analysis . 182
A.2.2 Grouped calls analysis . 195
A.2.3 Redirections finder . 195
A.2.4 Combination of techniques 203
A.2.5 Seeds management . 203

B SOrts QUEry Tool (SOQUET) 207
B.1 Installation . 207
B.2 User manual . 207

B.2.1 Modeling and documenting concerns in SOQUET 208
B.2.2 Using SOQUET to aid program comprehension and software

change tasks . 223

Samenvatting 235

Curriculum Vitae 241

ix

Acknowledgments

It does not happen often that you get the chance to acknowledge the people that make
a difference for you, and, as I am getting to learn, people deserve to know that you
appreciate them. I would start by saying that these 4 years I spent in Delft working
on my PhD research have been particularly special for me, andnot only because I got
paid for doing what I like, but also because the people I met.

It was an honour and a privilege to meet and work with Arie (prof. van Deursen),
and just as much of a pleasure. If it is true that meeting a great mentor is (mainly) a
matter of chance, then I can surely call myself lucky.

During these years I collaborated, in various degrees, witha number of fellow
researchers, and I had the opportunity to co-author papers with some of them: first of
all Leon Moonen, then Paolo Tonella, Tom Tourwé, Kim Mens and Mariano Ceccato.
I would like to thank them as well as the members of the committee for their valuable
comments on this thesis: prof. dr. P. Tonella, prof. dr. S. Demeyer, prof. dr. P. Klint,
prof. dr. C. M. Jonker, prof. dr. ir. H.J. Sips.

A number of people who experimented with the tools I developed, FINT and SO-
QUET, kindly provided me with their feedback, which I very much appreciate.

I would also like to thank dr. Carlos Infante Ferreira, who supervised my Master’s
thesis in Delft, and who encouraged me to take on a PhD challenge. From the same
group, I need to mention Dong-Seon Kim who was always available with a friendly
advice.

Eamonn McDonagh willingly went over some of my first paper drafts, and it was
always fun and good lessons to have his comments.

Coming back to SWERL, thanks to my ”warriors”, football and ”borrel” teams (i.e.,
{{{Bas Cornelissen, Cathal Boogerd, Rui (...) Abreu}, Bas Graaf, Marco Lormans
(also a very enjoyable tennis partner)}, Ali Mesbah (yes, we still need to write “that”
paper together), Leon Moonen (WCRE in Delft was the most pleasant conference to
me!), Gerd Gross, Peter Zoeteweij}), all of which I so gladly joined. You guys keep
up the good work!

Special thanks go to my room mates, Bas (alias sebas) and Andy Zaidman, who,

xi

besides accepting the shades to be raised, helped me so kindly with the Dutch summary.
All the other colleagues in the group, particularly Frans Ververs, contributed to a

special atmosphere.
I shall conclude this part with two friends from completely different parts of the

world: Giorgio Alfarano and Ulysses Locadia. It is always great, and so comforting,
spending time with you.

Last word is for my wife, Ioana: you know, all the good things are so because of
you.

Delft Marius Marin
December, 2007

xii

Chapter 1

Introduction

Evolution of software systems accounts for the largest part of their lifecycle and
costs. Software engineers therefore, more often than developing new systems, work on
complex, existing ones that they have to understand in orderto modify them. Under-
standing such systems requires insight into the various concerns the systems imple-
ment, many of which have to be inferred from source code. Particularly challenging
for software comprehension, and consequently, software evolution, are those concerns
said to becrosscutting: implementation of such concerns lacks modularity and results
in scatteredand tangledcode.

The research presented in this thesis proposes an integrated approach to consistent
comprehension, identification, documentation, and migration of crosscutting concerns
in existing systems. This work is aimed at helping software engineers to more easily
understand and manage such concerns in source code. As a finalstep of our approach,
we also experiment with the refactoring of crosscutting concerns to aspect-oriented
programming and reflect on the support provided by this new programming technique
for improving modularization of concerns.

1.1 Software Evolution in the Presence of Crosscutting
Concerns

Software engineers are often confronted with the daunting task of analyzing and un-
derstanding complex software systems into which they have little or no a priori insight.
Many of these systems consists of millions of lines of code and interdependent projects
developed by large teams. For example, the 2007 coordinatedproject release of the
popular Eclipse1 open development platform consists of 21 projects and over 17 mil-
lion lines of code contributed by more than 310 developers. Compared to the previous
year’s release, these figures show that the code size has increased by around 100%.

1http://www.eclipse.org/

1

2 Chapter 1. Introduction

Analyzing such systems is inherent in operation and maintenance of software,
which is estimated to account for as much as 50 to 90% of the software’s total costs
[Sommerville, 2004; Erlikh, 2000; Pigoski, 1996].

In order to deal with this complexity and support the engineers in their compre-
hension tasks, techniques for modularization and separation of concerns have been
proposed [Parnas, 1972; Dijkstra, 1997; Baldwin and Clark, 1999]. Nevertheless, com-
plete separation of concerns is difficult or even impossibleto achieve using modular-
ization mechanisms available in today’s most popular programming paradigms, such
as object-oriented programming [Tarr et al., 1999]. In these paradigms, concerns like
monitoring of objects’ events or state, persistence, exception handling, security, au-
diting, and other various policies to be implemented consistently are typically non-
modular, spanning multiple modules in a software system.

Unmodularized concerns are said to becrosscuttingand exhibit symptoms like
scattering– the implementation of a concern is spread over several program modules
–, andtangling– a program module implements multiple concerns –. These symptoms
are illustrated in Figure 1.1 for a a crosscutting concern inJHOTDRAW, a framework
for drawing applications which we shall analyze in detail inthis thesis. The concern is
part of an Observer pattern solution, which allows for automatic notification and update
of a set of objects (i.e., the Observers) with the state changes of an object they depend
upon (i.e., the Subject) [Gamma et al., 1994]. In our case, the notification is realized
by invocations of a dedicated (changed) method by all the actions whose execution
alters the state of the observed object. These invocations are shown as horizontal blue
lines in Figure 1.1, and cut across multiple modules represented as rectangles for each
class of a caller-method.

The scattering of the observers-notification concern is dueto the multiple places
where the invocation of thechanged method needs to be inserted. Consequently, a
modification in the requirements for the notification strategy implies changes to all
the call sites of this method. Furthermore, a caller-method, like the one shown at the
bottom of Figure 1.1, needs to address multiple, tangled concerns: besides its pri-
mary concern of modifying thefont attribute of a text display, the method also notifies
observers of this modification. Similarly, any new method added to the system that
changes the state of a Subject object needs to be aware of and consistent with the
notification concern, and implement the concern accordingly.

The challenges posed by crosscutting concerns are further apparent from the sim-
plified implementation of the Observer design in JHOTDRAW, summarized in Fig-
ure 1.2: elements such as connections between figures or drawing views observe Figure
objects for state changes. To comply with the design, a Figure not only needs to im-
plement its core functionality, like drawing operations, but also a number of operations
that allow observer-objects to be updated with any change inits state. These opera-
tions include thewillChange andchanged method to be invoked before and after a
modification to a Figure respectively. In a real-life application, Figures might imple-
ment even more additional roles, likepersistence, which requires that each Figure type
defines operations to read and write itself from/to a storingdevice, or support for self-

1.1. Software Evolution in the Presence of Crosscutting Concerns 3

Figure 1.1: Scattering and tangling of the notification concern for figure changes in the
JHOTDRAW drawing application.

4 Chapter 1. Introduction

Figure 1.2: FigureChanged Observer.

cloning. Each of these different roles shows a distinct concern whose implementation
is tangled with the other concerns in a sole module, namely the Figure type.

Lack of modularization of concerns hinders software comprehension: crosscutting,
scattered concerns are difficult to recognize and reverse engineer from source code,
and tangled code is hard to understand. Moreover, software evolution tasks might
easily overlook crosscutting concerns as their underlyingrelations remain “hidden” in
source code. This results in modifications or extensions to existing systems that are
inconsistent with (crosscutting) policies and rules already present in those systems.
Consequently, the new code breaks compliance with existing concerns, or duplicates
their definition and implementation.

1.2 Problem Statement

The problem of crosscutting concerns has been investigatedat various stages of the
software lifecycle. Researchers have proposed solutions that include new program-
ming techniques for software development, such as aspect-oriented programming
(AOP) [Kiczales et al., 1997; Filman et al., 2005], softwareanalysis techniques for

1.2. Problem Statement 5

identification of concerns in source code (also known asaspect mining) [Marin et al.,
2007a; Ceccato et al., 2006], or concern browsing and modeling approaches [Robil-
lard and Murphy, 2002; Janzen and Volder, 2003; Harrison et al., 2004; Hajiyev et al.,
2006]. Below, we take a brief look at these approaches and thenformulate our problem
statement.

1.2.1 Aspect Mining

Aspect mining is a relatively recent research area aimed at developing (source code
analysis) techniques and tool support for (semi-)automatic identification of crosscut-
ting concerns in existing systems.

Identification of crosscutting implementation is a necessary first step to consider in
order to ensure awareness of various concerns implemented by a system. As for the
Observer example above, new elements added to a system need to know what function-
ality, other than their main concern, they have to implementin order to comply with
existing design and requirements. Moreover, this step is important for understanding
how crosscutting concerns occur in real life applications,how they are typically imple-
mented, and what specific properties distinguish them from other concerns.

1.2.2 Concern Modeling

A next issue to consider is the representation of the identified crosscutting concerns
in source code, to consistently describe, model and document them. A number of ap-
proaches to concern exploration, representation and source-code querying, like Con-
cern Graphs [Robillard and Murphy, 2002] and the Concern Manipulation Environ-
ment [Harrison et al., 2004], have been proposed so far.

Concern modeling allows us to persistently document discovered concerns and em-
phasize those program elements that pertain to the implementation of these concerns.
Moreover, such documentation can make explicit crosscutting relations between pro-
gram elements, and hence help in conducting software comprehension and evolution
tasks.

1.2.3 Aspect-Oriented Programming and Refactoring Towards As-
pects

Aspect-oriented programming subsumes various programming techniques designed to
support modularization of crosscutting concerns in sourcecode by using new language
constructs and composition mechanisms. The most popular ofthese approaches to
date is AspectJ2 [Kiczales et al., 1997], a Java language extension based on ajoinpoint
model. This model allows a programmer, for instance, to specify (in a declarative

2eclipse.org/aspectj/

6 Chapter 1. Introduction

way) sets of execution points in a program where a certain code, like the observers-
notification invocation discussed earlier, to be executed.3

To improve modularity of concerns in existing systems by means of aspect-oriented
techniques, we need tomigratethese concerns by refactoring their implementation to
aspect-oriented solutions.

Most of the available refactoring solutions are examples-oriented [Laddad, 2003b].
Preliminary steps towards systematic, reusable solutionsfor refactoring to aspects have
been taken by Hannemann et al. [2005], who proposed a role-based approach to refac-
toring design patterns, and Monteiro and Fernandes [2005],who initiated a catalog of
fine-grained refactorings.

1.2.4 Challenges and Problem Statement

Despite this considerable research, a number of important challenges to enhancing
the management of crosscutting concerns in source code remain open. The various
solutions available to date are typically hard to integratewith each other and do not
define uniform criteria for assessment. Even within the sameapproach, like for con-
cern mining or refactoring, crosscutting concerns are addressed at different levels of
granularity, which makes it difficult to compare and combinesolutions. Furthermore,
open tool support and detailed case-studies are rather scarce.

Similarly, the solutions to concern modeling do not distinguish specific character-
istics of crosscutting concerns, and typically have a broader scope than these concerns,
such as code browsing.

This thesis focuses on crosscutting concerns in existing systems and proposes to
answer the research question of:

How can we consistently manage, i.e. identify, model, document and
possibly migrate, crosscutting concerns in existing systems in order to bet-
ter support program comprehension and effective software evolution?

1.3 Objectives

In answering our research question, we set the following objectives for our solution:

Objective 1 The solution should provide a coherent and consistent way toaddress
crosscutting concerns in source code. Currently, the fairlycomprehensive, yet vague,
definitions of concerns in general, regarded as “any matter of interest in a software sys-
tem” [Sutton and Rouvellou, 2005], or of crosscutting concerns in particular, (“proper-
ties” that “cannot be cleanly encapsulated in a generalizedprocedure” [Kiczales et al.,
1997]) do not ensure such consistency. As a consequence, theaspect mining and

3We will give a more detailed introdution into AspectJ in Chapter 2, and report on our experience
with applying it in the last chapter of this thesis.

1.4. Research Method and Evaluation 7

refactoring approaches address concerns at various levelsof granularity and complex-
ity. The examples of concerns range from simple logging functions or authorization
mechanisms, to complex designs, transactions management or business rules [Laddad,
2003b; Hannemann et al., 2005]. Such approaches are therefore difficult to integrate,
to consistently assess, compare or combine.

Objective 2 Our solution should result in common benchmark(s) that allow others
to experiment with new techniques for identification of concerns, and compare with
our own results. Such benchmarks ask for detailed reports ofthe aspect mining results
and a consistent system to present and document these results. Moreover, we aim
at providing tool support to enable assessment of the proposed techniques on new
benchmarks, as well as reproducible results.

Objective 3 At the time of writing, a multitude of aspect mining techniques exist.
Unfortunately, their results are often hard to compare, andintegrating multiple tech-
niques into one tool has proved difficult, as argued before. Our solution should provide
criteria and make it possible to integrate, compare, and evaluate different aspect mining
techniques in a reproducible manner.

Objective 4 Managing crosscutting concerns consists of different steps, including
identification, documentation and modeling, and refactoring to aspect-oriented pro-
gramming. We aim at a well-integrated system allowing one, for example, to directly
use aspect mining results in a concern modeling tool, which then can be used to come
up with a suitable solution to refactor to aspects.

Objective 5 The concern documentation and refactoring solutions should ensure
flexibility and re-usability so that they support (future) integration in development en-
vironments. This requires that the solutions aim at abstracting from particular concerns
and are applicable to all concerns that share the same properties.

1.4 Research Method and Evaluation

The research methodology adopted in this thesis rests upon the following pillars:

• Use of descriptive case studies for obtaining a better understanding of the prob-
lem domain. This includes, for example, a detailed account of actual occurrences
of crosscutting concerns in existing systems.

• Development of new theory, concepts, and techniques, such as novel aspect min-
ing techniques, concern modeling approaches, or a new characterization of the
notion of crosscutting concerns.

8 Chapter 1. Introduction

• Development of tools to permit application of the methods and techniques to
existing software systems.

• Validation of the new methods and techniques through explorative case studies,
in which the software tools developed are applied to a range of (open source,
Java) systems.

• Analytical generalization of the case study results including a critical discussion
of the case study findings. This evaluation is done per chapter, as well for the
full thesis in the conclusions, based on the objectives proposed in the previous
section.

Thus, in this thesis, tool development and case studies forman important part of
the research methodology and evaluation approach, in line with observations from
Kitchenham et al. [1995] and Yin [2003].

1.5 Overview

In order to address our research question and meet our objectives, we adopt the follow-
ing approach:

1. We start by conducting a study of crosscutting concerns inactual systems. To
support this study, we propose a new aspect mining technique.

2. Given our understanding of crosscutting concerns in actual systems, we propose
a categorization of concerns insortsby typical implementation idioms and spe-
cific relations.

3. Next, we use the crosscutting concern sorts to build an integrated system to man-
age crosscutting concerns in source code. The system consists of three main
components, for aspect mining, for documentation and modeling of concerns,
and for refactoring of concerns to aspect-oriented solutions, respectively.

Each of these steps will be discussed next.

1.5.1 A Study of Crosscutting Concerns

Our first step consists of acquiring a better understanding of what crosscutting concerns
are, how they occur in practice, and how they are typically implemented in software
systems. To this end, we conduct aspect mining tasks on a number of open source,
object-oriented (Java) systems, from several applicationdomains, that comprise over
500,000 non-comment lines of code. These systems include a framework for draw-
ing applications (JHOTDRAW4), a J2EE enterprise application (Sun’s Java PETSTORE

4http://jhotdraw.org

1.5. Overview 9

application5), and a servlet engine (TOMCAT6), as well as a J2EE-based application
server (JBOSS7), and the Java Development Tools component of the Eclipse integrated
development environment (JDT plug-in8).

In a first experiment described in Chapter 2, we proposefan-in analysisas a general-
purpose aspect mining technique. The technique searches for methods with large num-
bers of scattered callers, which are likely to implement concerns like logging, listeners
updates, exception handling, etc. In our experiment, we apply fan-in analysis to three
of the open-source systems just mentioned. The results of the experiments are cov-
ered in detail and show a significant variety of examples of crosscutting functionality,
including concerns not previously discussed in literature.

We extend this experiment in Chapter 3 with a comparative study of fan-in analysis
with two different aspect mining techniques developed by other research groups. This
joint study uses JHOTDRAW as a common benchmark. This makes it possible to see
what sort of crosscutting concerns are discovered by each technique, and whether these
techniques yield overlapping results.

The joint study also revealed the inherent complexity of actually comparing aspect
mining results. A major difficulty consists of the tedious effort of correlating mining
results of different techniques due to the lack of a system toconsistently describe these
results and the identified crosscutting concerns. For instance, if we assume that one
technique is able to identify the crosscutting roles in the Observer design, and another
technique recognizes the crosscutting implementation of the notification mechanism,
a question here is how to report these two valid results. The challenge lies in the
fact that a common practice in aspect mining (and refactoring to aspects) is to report
and describe results by referring to well-known examples from literature that discuss
crosscuttingness. The Observer design is one such example [The AspectJ Team, 2003].
However, the two techniques in our case find distinct crosscuttingness in the design’s
implementation that can not be reported as the same result.

While Chapter 3 focuses on the various mining results obtainedfrom the three
techniques, Chapter 5 will address the comparison challenge, and propose a framework
for consistently comparing and assessing the quality of aspect mining techniques.

1.5.2 Crosscutting Concern Sorts

The experience gained from our aspect mining experiments and case studies allows us
to recognize and categorizeatomiccrosscutting concerns, i.e., concerns that cannot be
decomposed into smaller, yet meaningful, concerns. We do soby distinguishing atomic
concerns based on properties like their specific underlyingrelations and implementa-
tion idioms in object-oriented (Java) systems. For instance, concerns like logging,
authorization and authentication checks, events notification, etc, follow a same idiom,

5http://java.sun.com/blueprints PETSTORE
6http://tomcat.apache.org/
7http://www.jboss.org/products/jbossas
8http://www.eclipse.org/jdt/

10 Chapter 1. Introduction

namely scattered invocations to the method implementing the crosscutting concern.
These concerns can be grouped based on their shared idiom in adistinct category of
concerns, which we can callConsistent behavior.

Similarly, the idiom to assign multiple roles to a class, like persistence or observ-
ability for changes, consists ofimplementrelations for the members of each of the
various roles. The concerns associated to these roles couldbe grouped together in a
different category, such asRole superimposition.

The resulting categories are called concernsorts, which are discussed in Chapter 4.
This chapter not only proposes sorts, but also presents a catalog of the most commonly
encountered sorts.

We also observe that complex designs and mechanisms commonly acknowledged
for their crosscutting properties can be described as compositions of the atomic con-
cerns that we recognize. For example, the crosscuttingnessin the Observer pattern
discussed earlier consists of the composition of the two super-imposed roles, the Sub-
ject and the Observer roles to be implemented by observable and listener elements
respectively, and the mechanism to consistently notify observers of changes in the sub-
ject’s state. Each of these atomic concerns is aninstanceof one of the two different
sorts introduced above.

1.5.3 Crosscutting Concern Mining, Modeling and Refactoring us-
ing Sorts

We use the classification of crosscutting concerns into sorts to address three important
issues in managing crosscutting concerns in source code. First, we propose an evalua-
tion framework for aspect mining. Second, we offer an innovative way of conducting
concern modeling. Last but not least, we provide a systematic approach to refactoring
object-oriented code towards aspect-oriented programming.

A common framework for aspect mining We use the classification of crosscutting
concerns in sorts to define a common framework for consistent, idiom-driven aspect
mining and assessment of mining techniques. The framework and its applications are
described in Chapter 5.

The framework requires that a mining technique:

1. Defines its search-goal as instances of a specific sort. Forexample, Fan-in anal-
ysis aims at theConsistent behaviorsort.

2. Describes the representation of its mining results. Fan-in analysis, for instance,
reports results as method-call relations.

3. Defines a mapping between the representation of its results and the idiom typi-
cally used for the targeted sort. Fan-in analysis results, for example, can directly
map its results onto the representation of theConsistent behaviorsort, provided

1.5. Overview 11

Figure 1.3: FINT views for source code analysis and management of the aspect mining
results.

that they preserve the mapping of the endpoints of the relation: the crosscutting
element is on the callee side, and the crosscut element is on the callers side.
Mining results that do not map count as false positives.

4. Defines a set of metrics to assess its performance. For instance, a metric like
precisioncan be used to indicate the percentage of valid results in thetotal set
of reported results of a technique. A new metric that we propose isseed qual-
ity, which measures the mapping between a mining result and the crosscutting
concern it identifies.

We use the framework to design two new aspect mining techniques that target dif-
ferent concern sorts. These, together with Fan-in analysis, are implemented in our
aspect mining tool FINT, which is openly available as an Eclipse plug-in.9 Figure 1.3
shows results of two of the techniques in FINT, which are aimed at theConsistent be-
havior sort. TheSeeds view, at the bottom of Figure 1.3, assists the user in managing
the aspect mining results of the various techniques.

9http://swerl.tudelft.nl/view/AMR/FINT

12 Chapter 1. Introduction

Sort Short description

(Method) Consistent behav-
ior

A set of method-elements consistently invoke a specific action as a step
in their execution.

Redirection layer A type-element acts as a front-end interface having its methods respon-
sible for receiving calls and redirecting them to dedicatedmethods of a
specific reference, optionally executing additional functionality.

Expose context (Context
passing)

Method-elements part of a call chain declare additional parameter(s)
and pass it as argument to their callees for propagating context informa-
tion along the chain.

Role superimposition Type-elements extend their core functionality through theimplementa-
tion of a secondary role.

Table 1.1: Sorts of crosscuttingness.

Moreover, in Chapter 5, we give an overview of the most important aspect mining
techniques at the moment and position them into our framework.

Query-based documentation and modeling of concernsTo document the identi-
fied concerns, we use sorts and formalize each sort by means ofa query over a source
code model, which we cover in detail in Chapter 4. The sort-query captures the sort’s
relation and describes its idiom.

As an example, the intent of theConsistent behaviorsort is to extend the core
concern of a set of methods by means of a systematic call to some specific functionality,
such as notification of observers. Thus, the query forConsistent behaviorreports all
the call relations between two (user-)defined sets of program elements: one set consists
of the crosscutting element, i.e., the callee, while the other set comprises the crosscut
elements, i.e., the callers that are part of the concern of interest.

Similarly, the query forRole superimpositiondescribes animplementrelation be-
tween a set of program types, on the one side, and members thatbelong to a crosscut-
ting role implemented by these types, on the other side. Other sorts, some of which
are shown in Table 1.1, are formalized by similar, albeit sometimes more complex,
queries, as we shall see in Chapter 4.

The queries form the basis for theSort Query Tool(SOQUET10), our concern mod-
eling and documentation tool, described in Chapter 4. Figure1.4 shows how SOQUET
can be used to document an instance of theConsistent behaviorsort: the query receives
a parameter to indicate the method whose calls are crosscutting, such as the notification
method for Figure changes, and another parameter to define the collection of crosscut
callers, which, in this case, includes only the set of those callers that are declared in
theFigure type hierarchy.

The parameterized sort queries document concrete, atomic concerns in the code.
These can be grouped together in composite, hierarchical concern models to further
document complex features or designs, such as an Observer pattern. An example of
concern model is shown in the same Figure 1.4.

10http://swerl.tudelft.nl/view/AMR/SoQueT

1.6. Contributions 13

Figure 1.4: SOQUET views and dialogs.

Refactoring to aspect-oriented programming Last but not least, crosscutting con-
cern sorts offer a way of conducting systematic refactoringof object-oriented systems
towards aspects. For each sort, a specific refactoring can bedefined. To actually refac-
tor a sort instance, the corresponding sort query can be usedas a starting point.

Sort-based refactoring ensures an optimal trade-off between the complexity of the
refactoring and comprehensibility of the refactored concern: while addressing mean-
ingful concerns, the refactoring (mainly) consists of one aspect language mechanism,
which allows for a high degree of flexibility of the aspect solution for the various in-
stances of a sort.

Furthermore, sorts form the glue for an integrated concern migration strategy, in
which results from aspect mining can be directly used (via the corresponding sort-
based documentation) as starting point for a subsequent refactoring. This integrated
strategy is the topic of Chapter 6.

1.6 Contributions

The main contributions of the thesis can be summarized as follows:

• The most comprehensive report on aspect mining results and crosscutting con-
cerns in source code available to date. We analyze and reportin detail, in Chap-

14 Chapter 1. Introduction

ters 2, 3 and 5 on three relevant open-source systems.

• A set of three aspect mining techniques and tool support for these techniques and
their combination, discussed in Chapters 2 and 5.

• A novel classification of crosscutting concerns on distinctive properties, and a
tool-supported, query-based approach to documenting and modeling concerns,
described in Chapter 4.

• A new approach to refactoring of concerns to aspect-oriented programming based
on atomic crosscutting concerns, and a show-case for refactoring to aspects that
is available as an open-source project, AJHOTDRAW. This is also the largest
system publicly available to date that is the result of a refactoring towards as-
pects. The approach and its application are discussed in Chapter 6.

• An integrated migration strategy including steps for aspect mining, concern doc-
umentation and modeling, and aspect refactoring. This is presented in Chapter 6.

1.7 Road map

The chapters of this thesis cover three main research topics:

• The identification of crosscutting concerns in source code,also known as aspect
mining, which is covered in Chapters 2, 3, 5;

• The systematic documentation and modeling of crosscuttingconcerns, which is
described in Chapter 4;

• The refactoring of crosscutting concerns to aspect-oriented programming, which
is covered in Chapter 6.

Each of the chapters in this thesis is directly based on at least one peer reviewed
publication. While this results in some duplication, it alsoensures that the various
chapters can be read independently.

Most of the publications have been co-authored with Arie vanDeursen and Leon
Moonen; The publications of Chapter 3 have been co-authored with Mariano Ceccato,
Kim Mens, Leon Moonen, Paolo Tonella, and Tom Tourwé. The following list gives
an overview of these publications:

Chapter 2 This chapter has been accepted for publication in the Transactions on Soft-
ware Engineering and Methodology (TOSEM) in January, 2007 [Marin et al.,
2007a]. An earlier version of the chapter appeared in proceedings of the 11th
IEEE Working Conference on Reverse Engineering (WCRE), 2004 [Marin et al.,
2004].

1.7. Road map 15

Chapter 3 This chapter is published in the Software Quality Journal (SQJ), 2006 [Cec-
cato et al., 2006]. An earlier version of the chapter appeared in proceedings of the
13th IEEE International Workshop on Program Comprehension (IWPC/ICPC),
2005 [Ceccato et al., 2005].

Chapter 4 This chapter integrates several publications from ACM Software Engineer-
ing Notes (proceedings of the International Workshop on theModeling and Anal-
ysis of Concerns in Software), 2005 [Marin et al., 2005c], theproceedings of
the 21st IEEE International Conference on Software Maintenance (ICSM), 2005
[Marin et al., 2005a], the proceedings of the 14th IEEE Working Conference
on Reverse Engineering (WCRE), 2007 [Marin et al., 2007b], and the proceed-
ings of the 29th International Conference on Software Engineering (ICSE), 2007
[Marin et al., 2007d].

Chapter 5 The chapter is an extension and integration of two publications in the pro-
ceedings of the 13th IEEE Working Conference on Reverse Engineering (WCRE),
2006 [Marin et al., 2006a,b].

Chapter 6 This chapter will appear in the proceedings of the 7th IEEE International
Conference on Source Code Analysis and Manipulation (SCAM), 2007 [Marin
et al., 2007c].

Chapter 2

Identifying Crosscutting Concerns using
Fan-in Analysis

Aspect mining is a reverse engineering process that aims at finding crosscutting con-
cerns in existing systems. This chapter proposes an aspect mining approach based on
determining methods that are called from many different places, and hence have a high
fan-in, which can be seen as a symptom of crosscutting functionality. The approach is
semi-automatic, and consists of three steps: metric calculation, method filtering, and
call site analysis. Carrying out these steps is an interactive process supported by an
Eclipse plug-in calledFINT. Fan-in analysis has been applied to three open source
Java systems, totaling around 200,000 lines of code. The most interesting concerns
identified are discussed in detail, which includes several concerns not previously dis-
cussed in the literature on crosscutting concerns. The results show that a significant
number of crosscutting concerns can be recognized using fan-in analysis, and each of
the three steps can be supported by tools.

2.1 Introduction

Aspect-oriented software development (AOSD) is a programming paradigm that ad-
dressescrosscutting concerns: features of a software system that are hard to isolate,
and whose implementation is spread across many different modules. Well-known ex-
amples include logging, persistence, and error handling. Aspect-oriented programming
captures such crosscutting behavior in a new modularization unit, theaspect, and of-
fers code generation facilities toweaveaspect code into the rest of the system at the
appropriate places.

Aspect miningis an upcoming research direction aimed at finding crosscutting con-
cerns in existing, non-aspect-oriented code. Once these concerns have been identi-
fied, they can be used for program understanding or refactoring purposes, for example
by integrating aspect mining techniques into the software development tool suite. In
addition to that, aspect mining research increases our understanding of crosscutting

17

18 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

concerns: it forces us to think about under what circumstances a concern should be
implemented as an aspect, it helps us find crosscutting concerns that are beyond the
canonical ones such as logging and error handling, and it maylead to concerns that are
crosscutting, yet not easily modularized with current aspect technology (such as, e.g.,
ASPECTJ).

In this chapter we proposefan-in analysis, an aspect mining approach that involves
looking for methods that are called from many different callsites and whose func-
tionality is needed across different methods, potentiallyspread over many classes and
packages. Our approach aims at finding such methods by computing the fan-in met-
ric for each method using the system’s static call graph. It relies on the observation
that scattered, crosscutting functionality is likely to generate high fan-in values for key
methods implementing this functionality. Furthermore, itis consistent with the guide-
lines of applying aspect solutions when the same functionality is required in many
places throughout the code [Colyer et al., 2005].

Fan-in analysis is a semi-automated process consisting of three steps. First, we
identify the methods with the highest fan-in values. Second, we filter out methods that
may have a high fan-in but for which it is unlikely that there is a systematic pattern in
their usage that could be exploited in an aspect solution. Typical examples are getters
and setters, as well as utility methods. Third, we inspect the call sites of the high fan-
in methods, in order to determine if the method in question does indeed implement
crosscutting functionality. This step is the most labor intensive, and it is based on an
analysis of recurring patterns in, for example, the call sites of the high fan-in method.
All steps are supported by an Eclipse1 plug-in called FINT, which is also discussed in
the chapter.

We discuss the application of fan-in analysis to three existing open source systems
(the web shop PETSTORE, the drawing application JHOTDRAW, and the servlet con-
tainer TOMCAT) implemented in Java. For all systems our approach found a number of
interesting crosscutting concerns that could benefit from an aspect-oriented redesign.

When evaluating the quality of an aspect mining technique, two challenges have
to be faced. The first is that a benchmark system must exist in which the crosscutting
concerns are known already, for example because they have been identified by an ex-
pert. At the moment, such a benchmark does not exist. A growing number of aspect
mining researchers, however, are using JHOTDRAW as their case study, which is thus
evolving into such a benchmark system.

The second evaluation challenge is that the decision that a concern is crosscut-
ting and amenable to an aspect-oriented implementation is adesign choice, which is
a trade-off between alternatives. Thus, there is not a yes/no answer to the question
whether a concern identified is suitable for an aspect implementation. As a conse-
quence, quantitative data on the number of false negatives (how many crosscutting
concerns are missed) or false positives (how many of the concerns we identified are in
fact not crosscutting) has a subjective element to it. This means that an evaluation of

1 www.eclipse.org

2.2. Aspect Mining: Background and Related Work 19

an aspect mining technique just in terms of, for example percentages of false positives
and negatives, or in terms of precision and recall, is an oversimplification.

To deal with these issues, we decided to discuss a substantial number of concerns
found in considerable detail, explaining for what reasons they should be considered as
crosscutting concerns. In order to encourage a debate on ourresults, we selected open
source systems on purpose, allowing others to see all code details when desired.

As a result, the chapter can be read in two ways. First of all, it is the presentation
of the fan-in aspect mining technique. Second, it is a discussion of those crosscutting
concerns that were found in three open source systems by means of fan-in analysis –
thus establishing a first step towards a common benchmark that can be used in further
aspect mining research.

The scope of the present chapter is aspect mining itself. Using the aspect mining
results, for example for refactoring to ASPECTJ, is a separate topic, for which we refer
to, e.g., Binkley et al. [2005], as well as to our own work on reimplementing concerns
discussed in this chapter, described in Chapter 6 of the thesis.

This chapter is organized as follows. We start out by surveying existing work in
the area of aspect mining. Then, in Section 2.3, we present the fan-in metric, the anal-
ysis steps, as well as the Eclipse plug-in supporting fan-inanalysis. In Section 2.4
we present an overview of the case studies. In Sections 2.5–2.7 we cover the results
obtained from applying fan-in analysis to three open sourcecase-studies presenting
several of the concerns found in considerable detail. We reflect on these case stud-
ies, on the reasons for success, and on the limitations of ourapproach in Section 2.8.
We conclude with a summary of the chapter’s key contributions and opportunities for
future work.

We assume the reader has basic knowledge of aspect-orientedprogramming, and
we refer to Gradecki and Lesiecki [2003], The AspectJ Team [2003], and Laddad
[2003b] for more information.

2.2 Aspect Mining: Background and Related Work

Since aspect mining is a relatively recent research area, westart out by providing some
uniform terminology. We then discuss the most important aspect mining approaches
published to date.

2.2.1 Terminology

Sutton and Rouvellou [2005] provide a discussion on what constitutes a “concern”.
Following them, we take concern generally to be “any matter of interest in a software
system.” Concerns can live at any level, ranging from requirements, to use cases, to
patterns and contracts. In this chapter we will focus on concerns that play a role at the
source code level.

We distinguish between a concern’sintentandextent:

20 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

• A concern’sintent is defined as the objective of the concern. For example, the
intent of a tracing concern is that all relevant input and output parameters of
public methods are appropriately traced.

• A concern’sextentis the concrete representation of that concern in the system’s
source code. For example, the extent of the tracing concern consists of the col-
lection of all statements actually generating traces for a given method parameter.

In aspect mining, we search for source code elements that belong to the extent of
concerns thatcrosscutthe software system’s modularization structure. Suchcrosscut-
ting concernsare not dedicated to a modularization unit like a single package, class
hierarchy, class, method, but arescatteredover all these units. As an example, the
tracing concern will affect many different methods distributed over different packages
or classes. A consequence of this scattering istangling: modular units cannot deal
exclusively with their core concern, but have to take into account the implementation
of other concerns that crosscut their modularization as well.

Aspect-oriented software development aims at avoiding themaintenance problems
caused by scattering and tangling by making use of the new aspect modularization
construct. As a simple example, consider an implementationof the tracing concern
in ASPECTJ2, as shown in Figure 2.1. Thedeclarestatement at the top of the aspect
body ensures that all classes contained in a particular package extend theTraceable
interface, using a so-called inter-type declaration. TheTraceableinterface itself is pro-
vided in the subsequent lines, including a default implementation of the interface. In
this way, the aspect extends multiple classes, thereby capturing the statically crosscut-
ting nature of tracing. The remainder of the aspect capturesthe dynamic crosscutting,
using a “pointcut” which intercepts all calls to public methods, and “around advice”
that emits a string with the signature of the executing method just before and just after
its execution. The aspect can be woven into the base code, keeping the latteroblivious
to the tracing concern. This helps to reduce the tangling in the base code and provides
a non-scattered implementation of the crosscutting concern. Furthermore, a (small)
reduction in code size can be achieved if the crosscutting issufficiently regular (as is
the case with the tracing concern: the pointcut expression can quantify over all public
methods).

Aspect mining aims at finding crosscutting concerns in existing, non-aspect-
oriented code. Such concerns could possibly be improved by applying aspect-oriented
solutions or can be documented for program comprehension purposes. The mining
involves the search for source code elements belonging to the implementation of a
crosscutting concern, i.e., which are part of the concern’sextent. We will refer to such
code elements asseeds. Once we have found a single seed for a concern, we can try
to expand the seed to the full extent of the concern, for example by following data or
control flow dependencies.

2www.aspectj.org

2.2. Aspect Mining: Background and Related Work 21

package myaspects;
public aspect Tracing {

declare parents: mypackage.* implements Traceable ;

public interface Traceable {
public void traceEntry(String methodSig);
public void traceExit(String methodSig);

}

public void Traceable.traceEntry(String methodSig) {
System.out.println("Entering " + methodSig);

}

public void Traceable.traceExit(String methodSig) {
System.out.println("Exiting " + methodSig);

}

pointcut thePublicMethods(Traceable t) :
target(t) &&
execution(public * mypackage ..*(..)) &&
!within(Tracing);

Object around(Traceable t): thePublicMethods(t) {
t.traceEntry(thisJoinPoint.getSignature().toString());
Object result = proceed(t);
t.traceExit(thisJoinPoint.getSignature().toString());
return result;

}
}

Figure 2.1: ASPECTJ definition for the tracing concern

Aspect mining generally requires human involvement. Therefore, we will say that
aspect mining tools yieldcandidate seeds, which can be turned intoconfirmed seeds
(or simply “seeds”) if accepted by a human expert, ornon-seedsif rejected. Sometimes
a non-seed is also referred to as afalse positive– a false negativethen is a part of a
known crosscutting concern, potentially detectable by thetechnique, but missed due to
inherent limitations of the approach or due to the specific filters applied in it. The key
aspect mining challenge is to keep the percentage of confirmed seeds in the total set of
candidate seeds as high as possible, without increasing thenumber of false negatives
too much. As we will see, with fan-in analysis this percentage is above 50%.

The origins of aspect mining can be traced back to the conceptassignment prob-
lem, i.e., the problem of discovering domain concepts and assigning them to their
realizations within a specific program [Biggerstaff et al., 1994]. Work on this prob-
lem has resulted in such research areas as feature location [Koschke and Quante, 2005;

22 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

Wilde and Scully, 1995; Xie et al., 2006], design pattern mining [Ferenc et al., 2005],
and program plan recognition [Rich and Wills, 1990; Wills, 1990; van Deursen et al.,
2000].

In aspect mining we specifically search for concerns (concepts) whose realization
in a given program cuts across modular units. Several aspectmining approaches have
been published, for which we propose a distinction betweenquery-basedandgener-
ative approaches.Query-basedapproaches start from manual input such as a textual
pattern. Generativeapproaches, including fan-in analysis, aim at generating seeds
automatically making use of, for example, structural information obtained from the
source code. Below we discuss these two categories of aspect mining approaches.
Moreover, we discuss techniques that are most closely related to our fan-in analysis.

2.2.2 Query-Based Approaches

Query-based, explorative techniques rely on search patterns provided by the user.
Source code locations that match the pattern correspond to crosscutting concern seeds,
which can subsequently be expanded to more complete concerns using a tool.

One of the first query-based tools, the Aspect Browser, uses lexical pattern match-
ing for querying the code, and a map metaphor for visualizingthe results [Griswold
et al., 2001]. The Aspect Mining Tool AMT extends the lexicalsearch from the Aspect
Browser with structural search for usage of types within a given piece of code [Hanne-
mann and Kiczales, 2001]. Both tools display the query results in a Seesoft-type view
as highlighted strips in enclosed regions representing modules (e.g., compilation units)
of the system [Eick et al., 1992].

AMTEX is an AMT extension that provides support for quantifying the characteri-
zation of particular aspects [Zhang and Jacobsen, 2003]. AMTEX, in turn, has evolved
into PRISM, a tool supporting identification activities by means of lexical and type-
based patterns calledfingerprints[Zhang and Jacobsen, 2004]. A fingerprint can be
defined, for example, as any method in a given class of which the name starts with a
given word. A software engineer defining fingerprints is assisted by so-calledadvi-
sors. PRISM currently provides a ranking advisor which reports the most frequently-
used types across methods. This idea is akin to fan-in analysis, which reports the most
frequently used methods across a system. There are, however, no reports about the
successfulness of applying the approach implemented in PRISM to the identification
of crosscutting concerns.

The Feature Exploration and Analysis Tool FEAT is an Eclipseplug-in aimed at
locating, describing, and analyzing concerns in source code [Robillard and Murphy,
2007]. It is based onconcern graphswhich represent the elements of a concern and
their relationships. A FEAT session starts with an element known to be a concern seed,
and FEAT allows the user to query relations, such as direct call relations, between the
seed and other elements in the program. The results of the query that are considered
relevant by the user to the implementation of a (crosscutting) concern can be added to
the graph-based representation of the concern.

2.2. Aspect Mining: Background and Related Work 23

The Concern Manipulation Environment CME aims at providing support across
the whole lifecycle of an aspect-oriented development project [Harrison et al., 2004].
This support also includes aspect identification facilities through an integrated search
component (Puma) that uses an extensible query language (Panther) [Tarr et al., 2004].
The Panther language includes the static part of the AspectJpointcut language. CME
also allows for concern management similar to FEAT. Most importantly, CME provides
a possible infrastructure for the integration of differentapproaches to aspect mining,
including seed identification and concern exploration and management.

Various query-based tools (the Aspect Browser, AMT, and FEAT) have been com-
pared in a recent study [Murphy et al., 2005]. This study shows that the queries and
patterns are mostly derived from application knowledge, code reading, words from task
descriptions, or names of files. As the study shows, prior knowledge of the system or
known starting points strongly affect the usefulness of theoutcomes of the analysis.

2.2.3 Generative Approaches

The second group of aspect mining approaches aim at automatically generating cross-
cutting concern seeds with a good quality: seeds that will reduce the effort of further
understanding and exploring the concern. The approaches inthis category can be de-
scribed asgenerativetechniques and will typically provide the input for the explorative
approaches.

Many generative approaches use program analysis techniques to look for symptoms
of code scattering and tangling and identify code elements exhibiting these symptoms
that can act as candidate aspect seeds.

Shepherd et al. [2004] use clone detection based on program dependence graphs
and the comparison of individual statement’s abstract syntax trees for mining aspects
in Java source code.

Three clone detection tools, implementing matching on tokens, abstract syntax
trees, and on program dependence graphs, respectively, areevaluated by Bruntink et al.
[2005] on an industrial C component. The starting point werefour dedicated crosscut-
ting concerns that were manually identified and annotated inthe code beforehand. The
evaluation assesses the suitability of clone detection foridentifying these concerns au-
tomatically by measuring the coverage of the annotated concerns by detected clones.

Code clones in object-oriented systems would typically be refactored through
method extraction [Fowler et al., 1999] which results in scattered calls to the extracted
method [Laddad, 2003a]. Fan-in analysis looks for the concerns implemented by these
scattered calls, which could be further refactored into aspect advice.

Dynamic analysis has been considered for aspect identification by examining ex-
ecution traces for recurring execution patterns [Breu and Krinke, 2004] and by ap-
plying formal concept analysis to associate method executions to traces specific to
documentation-derived use-case scenarios [Tonella and Ceccato, 2004a]. Particularly
challenging for dynamic analysis techniques is to exerciseall functionality in the sys-
tem that could lead to aspect candidates. This implies that apreliminary activity is

24 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

needed in which use-case scenarios are defined for the systemunder investigation.
Fan-in analysis does not require such a preliminary activity.

The first of the two dynamic techniques has been adapted recently to static analysis
to search for recurring execution patterns in control flow graphs [Krinke, 2006]. The
technique is similar in some respect to fan-in analysis, which searches for recurrent call
relations. The experimental results of the technique are discussed by comparison with
our own results reported for one of the analyzed systems, andshow many common
findings.

Formal concept analysis has also been applied in an identifier analysis that groups
programming elements based on their names [Tourwé and Mens, 2004]. This analysis
starts from the assumption that naming conventions can be used to relate the scattered
elements of a concern. Although fan-in analysis could use naming conventions for the
investigation of the automatically generated results, itsprimary functionality relies on
structural relationships.

The suitability of refactoring certain interfaces implemented by a class has been
investigated through a number of indicators like the namingpattern used by the inter-
face definition, the coupling between the methods of the implementing class and the
methods declared by the interface, or the package location of the interface and its im-
plementing class [Tonella and Ceccato, 2004b]. By comparisonwith fan-in analysis
which focuses on method seeds, this technique is directly targeting interface definitions
for seed identification.

Besides our own experiments, assessments of fan-in analysisthat we propose have
been provided by Gybels and Kellens [2005] who used the metric as an approximate
heuristic for measuring scattering. Another assessment ofthis analysis has been made
available through the Timna framework [Shepherd et al., 2005a] which uses machine
learning techniques to combine the results of several aspect mining techniques.

In their more recent work, Breu and Zimmermann [2006] search for concerns by
analyzing the changes in the values of the fan-in metric between different versions of
the system under investigation. The technique they proposeexamines the version his-
tory for insertions of method calls. Similar to fan-in analysis, a reported seed consists
of a set of one or more methods with same call site locations. This technique could
complement fan-in analysis by giving insight into the evolution of the metric’s values
in a system, and hence into the evolution of the concern of a method.

2.2.4 Aspect Identification Case Studies

The subject systems that we have analyzed in the previous [Marin et al., 2004] and
present work have also been used by related research [Shepherd et al., 2005a, 2004;
Janzen and Volder, 2003; Binkley et al., 2005] or in tool demonstrations (e.g., FEAT
[Robillard and Murphy, 2007]). However, our work on fan-in analysis is the first at-
tempt to establish a common benchmark for the development ofaspect mining tech-
niques, by explicitly reporting the results obtained for a number of case-studies and
discussing them in significant detail. This work has been continued in a comparative

2.3. Aspect Mining Using Fan-in Analysis 25

study [Ceccato et al., 2006] of the fan-in technique with the dynamic [Tonella and
Ceccato, 2004a] and identifier analysis [Tourwé and Mens, 2004] approaches. The
JHOTDRAW case-study targeted by the comparison experiment is intended to become
the de-facto benchmark for aspect mining.

2.3 Aspect Mining Using Fan-in Analysis

Fan-in analysis fits in the category of generative aspect mining approaches. The main
symptom of crosscuttingness it tries to capture isscattering: the code for one concern is
spread across the system. If the scattered pieces of code have functionality in common,
it is likely that this will have been factored out in helper methods. These methods are
then called from many places, giving them a high fan-in value. In an aspect-oriented
re-implementation of such concerns, the method would constitute (part of) the advice,
and the call site would correspond to the context that needs to be captured using a
pointcut.

Fan-in analysis consists of three steps:

1. Computation of the fan-in metric for all methods;

2. Filtering of the set of methods to obtain the methods that are most likely to
implement crosscutting behavior;

3. Analysis of the remaining methods to determine which of them are part of the
implementation of a crosscutting concern.

The next subsections describe each of these steps, as well asthe tool FINT supporting
these steps.

2.3.1 A Fan-in Metric for Aspect Mining

The metric we will use for aspect mining is based on method fan-in, which is a “mea-
sure of the number of methods that call some other method” [Sommerville, 2004].
Thus, we will collect the set of (potential) callers for eachmethod — and the cardi-
nality of this set gives the required fan-in value. The actual value, however, of method
fan-in depends on the way we take polymorphic methods (callers as well as callees)
into account.

Therefore, our first refinement is that we count the number ofdifferent method
bodiesthat call some other method. Thus, if a single abstract method is implemented
in two concrete subclasses, we treat these two implementations as separate callers.

Our second refinement deals with calls to polymorphic methods. Recall that we
are interested in methods that are called from many different places, since these are
potentially part of a crosscutting concern. If we find that a particular methodmbelongs
to such a concern, it is very likely that superclass declarations or subclass overrides of

26 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

A1

void m()

A2

void m()

C1

void m()

B

void m()

C2

void m()

(a) Example Class Hierarchy

Fan-in contribution
Call site A1.m A2.m B.m C1.m C2.m
f1(A1 a1){ a1.m();} 1 0 1 1 1
f2(A2 a2){ a2.m();} 0 1 1 1 1
f3(B b) { b.m(); } 1 1 1 1 1
f4(C1 c1){ c1.m();} 1 1 1 1 0
f5(C2 c2){ c2.m();} 1 1 1 0 1

Total fan-in 4 4 5 4 4
(b) Corresponding Fan-in Values

Figure 2.2: Example class hierarchy and corresponding fan-in values

m belong to that same concern. For that reason, if we see that method m′ applies
methodm to an object of static typeC, we addm′ to the set of (potential) callers for
eachmdeclared in any sub- or superclass ofC.

With this definition, (abstract) method declarations high in the inheritance hierar-
chy act as fan-in accumulators: whenever a specific subclassimplementation is ex-
plicitly invoked, the fan-in of not only the specific but alsoof the abstract method is
increased. In this way, if there are many calls to different specific implementations,
we get a high fan-in value for the superclass method. An aspect-oriented reimplemen-
tation would aim at capturing the many specific call sites into a pointcut, and invoke
the abstract method in the advice, relying on polymorphism to dispatch to the proper
specific implementation.

An example hierarchy is shown in Figure 2.2. The example illustrates the effects
of various calls to a polymorphic methodm in different positions in the class hierarchy.
Note that, given our definition, the fan-in for method m in class C1 is not affected by
calls to m defined in C2 and vice versa: the same holds for sibling classes A1 and A2.

2.3. Aspect Mining Using Fan-in Analysis 27

Our last refinement is concerned with super calls. For super calls, we explicitly
know which method is targeted, which therefore is the only method whose call set is
extended.

Observe that there are multiple ways in which a fan-in metriccan be defined. His-
torically, the notion of fan-in was introduced by Henry and Kafura [1981] as an indi-
cator for coupling in procedural software. They include data access in fan-in as well,
which we do not. An overview of coupling indicators for object-oriented systems is
discussed by Briand et al. [1999]. In some cases these metricsare based on a derivative
of the fan-in metric, which then often is taken at the class level (instead of the method
fan-in we use) – see, e.g., Henderson-Sellers et al. [1996].In other cases calls from
private methods are excluded from the fan-in count.

2.3.2 Method Filtering

After having computed the fan-in values of all methods, we apply the following filters,
in order to obtain a smaller set of methods with a higher chance of implementing
crosscutting behavior.

First, we restrict the set of methods to those having a fan-inabove a certain thresh-
old. This can be an absolute fan-in value (say, 10) or a relative percentage (say, the
top 5% of all methods ordered by their fan-in values). Note that an absolute value
threshold not only acts as a filter, but also an indicator for the severity of the scattering.

In our case studies, we experimented with several values, and found 10 to be a
useful trade-off between the number of concerns that one canfind and the number of
methods that need to be inspected.

Second, we filter getters and setters from the list of methods. This is either based on
naming conventions (methods matching the “get*” or “set*” pattern) or on an analysis
of the method’s implementation.

Last but not least, we filter utility methods, liketoString(), classes such asXML-
DocumentUtilscontaining “util” in their name, collection manipulation methods, and
so on, from the remaining set. This is a manual step that may require some familiar-
ity with the subject system. This familiarity can be improved after each iteration by
looking at the results and analyzing apparent indicators like names or easily accessible
documentation, such as descriptive comments in the code. The heuristics we used for
identifying utility methods in our case studies are based onthe following categories:

• Methods that belong to collection classes and/or packages.The JHOTDRAW

case study, for example, comes with its own library for collection classes. We
typically recognized these based on class or package names,such asFigureEnu-
merator, HandleEnumerator, ListWrapper, and so on.

• Documented utilities, based on naming and easily availabledocumentation cri-
teria. For example, for PETSTORE, the utility methods belong to two classes:
XMLDocumentUtilsandPopulateUtils, which creates and prints SQL statements

28 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

used to populate the sample database for the application. InTOMCAT, we marked
classes from theutil.buf package as utility, which deals with encoding and de-
coding buffers. We also marked theutil.digester.Digesterclass as utility - the
class is described as an XML parser in Tomcat’s documentation.

2.3.3 Seed Analysis

Our final step is to conduct a manual analysis of the remainingset of methods. This
analysis follows a number of guidelines, part of which benefit from automatic support.
Reasoning about the reported candidates can take a top-down or bottom-up approach.

In the bottom-up approach we look for consistent invocations of the method with
a high fan-in value from call sites that could be captured by apointcut definition.
Examples of such consistent invocations include:

• The calls always occur at the beginning or the end of a method;

• The calls occur in methods that are all refinements of a singleabstract method,
as, for instance, for contracts exercised across class hierarchies;

• The calls occur in methods with similar names, like handlersfor mouse or key
events;

• All calls occur in methods implementing a certain role, as, for example, listener-
objects that register themselves as observers of a subject-object state.

The regularity of these call sites typically will make it possible to capture the calls in
a pointcut mechanism, and the high fan-in method into advice. The main challenge of
the bottom-up approach is to recognize these patterns leading to pointcuts. As we will
see in the next section, it is possible to offer tool support here that helps the human
engineer in conducting this analysis.

In the top-down approach, we take domain knowledge or knowledge of typical
crosscutting concerns into account, as described by, e.g.,Hannemann and Kiczales
[2002] or Laddad [2003b]. For example, a number of design patterns define (crosscut-
ting) roles and methods specific to these roles that can appear in the list of seeds. The
human engineer can take advantage of such knowledge when analyzing the candidate
seeds to recognize the pattern-specific roles. The Compositepattern, for example, de-
fines roles and methods to allow parent-objects to refer and manipulate child-elements.
Similarly, the methods in a decorator class are characterized by the consistent redirec-
tion functionality they implement.

2.3. Aspect Mining Using Fan-in Analysis 29

Figure 2.3: FINT in action, showing theFan-in Analysis View(top right) and theSeeds
View(bottom right).

2.3.4 The Fan-in Tool FINT

The Fan-in Tool FINT3 is an Eclipse plug-in that provides automatic support for the
metric computation, method filtering, and candidate analysis steps of fan-in analysis.

To compute the fan-in metric, the tool first builds the abstract syntax tree for the
user-selected sources, and then creates a call graph with the methods declared in the
selected sources and their callees. The fan-in metric is derived from this graph, as
described in Section 2.3.1. The results are displayed in theFan-in Analysis view, shown
in Figure 2.3, together with the list of callers for each method. The results can be
ordered alphabetically or by their fan-in value. Optionally, the results can also be
stored on file.

The same view is used for the filtering step of fan-in analysis. Thus, the user can
indicate an absolute threshold for the fan-in value. Furthermore, the user can choose
to filter out accessor methods by their signature based on the“get*” or “set*” naming
convention, or based on their implementation.

3 http://swerl.tudelft.nl/bin/view/AMR/FINT. The features discussed in this chapter are
part of FINT 0.6.

30 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

In addition to that, the user can indicate groups of elementswhose methods are to
be excluded from the callee or caller sets. Excluded calleesare indicated as utility-
methods and represent methods considered irrelevant for analysis. Similarly, the user-
selected callers will not contribute to the fan-in metric ofthe analyzed methods. Both
filters can be applied, for instance, to (JUnit) tests, whichare neither relevant as
candidate-seeds nor as callers. The user marks these elements in a browser window,
which displays the Java elements in the hierarchy of the analyzed elements, similar to
Eclipse’sPackage Explorerview. The user can select a check-box for the enclosing
package, file, or declaring class of the method to be filtered.

Methods not declared in the analyzed sources, but called by analyzed methods are
consideredlibraries and can optionally be included in the analysis. These methods
cannot contribute to the fan-in metric of a method.

TheFan-in Analysis Viewis also the starting point for the last analysis step. From
this view, the engineer can inspect the reported methods andtheir callers. Methods can
be marked as seeds and added to theSeeds View, shown at the bottom of Figure 2.3. In
this view, the seeds can be documented with a concern description, saved to a file or
loaded from a previous analysis.

The analysis and seed views from FINT support the user in recognizing recurring
patterns and similarities as discussed in the previous section, helping him or her in
deciding whether one or more high fan-in methods belong to a crosscutting concern.

The various ways in which methods and call sites can be sortedand inspected in
FINT help to discover such patterns. Furthermore, the tool provides automatic support
for detecting some of the possible relations between the callers of an analyzed method,
like grouping of the callers by common hierarchies or their declaring interfaces, by the
position of the analyzed call, or by other callees shared by the callers.

As an example, Figure 2.4 shows the view for analyzing the callers of a method
with a high fan-in value by investigating their declaring interfaces. The callers declared
by the same interface are shown in a same, distinctive color.Such analysis is helpful,
for example, in identification of (crosscutting) responsibilities that are to be fulfilled
by a number of classes.

The same figure also shows a relational table for the callers of the method with
the high fan-in value and the relative position of the call inthe body of the caller. This
analysis investigates whether the call occurs on the first, second, first before last, or last
position. These positions would typically indicate a before or after advice as a natural
aspect-refactoring solution for the candidate seed and itsset of callers.

2.4 The Case Studies

We have applied fan-in analysis to several case studies, three of which we describe
in detail in this chapter. All cases are open source systems,allowing validation of
our results by others. The PETSTORE and JHOTDRAW systems are demonstration
applications of J2EE technologies and design patterns, respectively. TOMCAT is the

2.4. The Case Studies 31

Figure 2.4: Seed inspection using FINT. The color codings inthe right window indi-
cate inheritance from common interfaces; the table at the left marks the positions of
calls to a high fan-in method.

largest system, and one that is widely used in web servers allover the world.
Before going into detail in the case studies, we first discuss anumber of general

observations, and explain in what format we will present thethree case studies.

2.4.1 First Findings

Key statistics for our case studies are provided in Table 2.1. A first observation that can
be made from this table is that filtering methods above the threshold of 10 reduces the
number of methods to be inspected to 1, 6, and 3 percent for PETSTORE, JHOTDRAW

and TOMCAT, respectively. Figure 2.5 shows the fan-in distribution for the three case-
studies. As can be seen, the vast majority of methods have a very low fan-in. The large
percentage of methods with a fan-in value of 0 can be explained by the nature of the
applications. PetStore, for instance, is a J2EE application and a number of calls are not
explicit in the code but made by the container (EJB-specific methods).

A second observation that can be made from Table 2.1 is that the accessor and
utility filters eliminate about half of the high fan-in methods. Note that the utility

32 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

PETSTORE JHOTDRAW TOMCAT

size in non-comment lines of code 17,032 20,594 149,219
number of methods 1,917 3,230 13,489
methods with fan-in≥ 10 16 (1%) 205 (6%) 424 (3%)

Statistics for methods with fan-in≥ 10
utility methods 3 20 16
accessors 5 71 181
confirmed seeds 7 (87%) 58 (51%) 164 (73%)
non-seeds 1 (13%) 56 (49%) 63 (27%)
concerns 5 10 10

Table 2.1: Key statistics of our case studies

Figure 2.5: Fan-in distribution for the three case studies.

2.4. The Case Studies 33

methods filtered out here are the ones that are part of the system under study. Utility
methods in external libraries are not taken into account in the first place, and do not
occur in the table. If necessary, the scope of the system under study can be extended
to include certain libraries as well. This is a decision thatrequires a certain amount of
domain knowledge, for example that a particular library is used for addressing a known
crosscutting concern (we will encounter such a situation for the loggingconcern in the
TOMCAT case study in Section 2.7).

The methods of the system under study that are not filtered outwill give the set to
be analyzed in a last, tool-assisted step. This should result in a classification as either a
seed for a crosscutting concern, or as a non-seed. Our third observation from Table 2.1
is that for all cases, a significant percentage (87%, 51%, and73% for the three cases) of
the methods that need to be inspected manually turn out to be confirmed seeds. Thus,
while this step may be more labor-intensive, it does give a good chance of finding
crosscutting concern seeds.

A final observation is that there are many more seeds than concerns. This is due
to two reasons. First, there may be multiple concern instances for one sort of concern.
For example, JHOTDRAW makes use of more than one Observer. Second, a single
concern is often identified through multiple seeds. For example, for the Observer de-
sign pattern, we may not only find a high fan-in for the notification method, but also
for the methods for attaching different observers to a subject.

2.4.2 Case Study Presentation

In the next sections we discuss the PETSTORE, JHOTDRAW, and TOMCAT case stud-
ies. We particularly focus on the third step, in which seeds are either confirmed or
rejected as belonging to a crosscutting concern, since thisstep implies various consid-
erations, inherent in the mining process, about the classification of a candidate seed.
For each case study, we discuss several of the concerns foundin considerable detail,
explaining why we think that they are crosscutting, and analyzing to what extent these
concerns are amenable to an aspect-oriented re-implementation. A full list of all high
fan-in methods and the concerns they belong to are publicly available on our web site4.
The site furthermore describes which methods exactly were marked as utilities, thus
making our experiments fully reproducible.

In order to give an impression of the limitations (and hence opportunities for im-
provement) of fan-in analysis, the next sections also discuss some of the false positives
(rejected candidate seeds) and some of the concerns that areknown from the litera-
ture or from related studies that our analysis missed (falsenegatives). Note that while
we can compute the percentage of false positives (the numberof non-seeds divided
by the total number of seeds), we cannot determine the percentage of false negatives.
This would require a common benchmark that documents all thecrosscutting concerns
exhibiting the symptoms (code scattering) targeted by fan-in analysis. At the time of

4 http://swerl.tudelft.nl/bin/view/AMR/FanInAnalysisResults

34 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

Method Fan-in Concern
XMLDocumentException(String) 27 Contract enforcement
ServiceLocatorException(Exception) 22 Exception wrapping
CatalogDAOSysException(String) 19 Exception wrapping
PopulateException(String, Exception) 11 Exception wrapping
TransitionException(Exception) 15 Exception wrapping
XMLDocumentException(Exception) 23 Exception wrapping and tracing

for debugging
ejb.ServiceLocator() 30 Service locator
XMLDBHandler() 10 False positive

Table 2.2: PETSTORE high fan-in methods and concerns

writing, no such benchmark exists.

2.5 PETSTORE

The first case study we discuss is PETSTORE. This is a sample J2EE e-business ap-
plication developed by SUN.5 It is a demonstration of a Web application allowing
customers to purchase via a web browser. In addition, it includes modules to perform
administration tasks like sales statistics, orders and shipping management, etc. PET-
STORE is an application demonstrating the proper use of most of theJ2EE concepts,
and can be considered a well-designed system.

An overview of the methods with a fan-in of 10 and higher, their fan-in value, and
the concerns they represent is given in Table 2.2. In this chapter we explain why these
concerns are indeed crosscutting. Details on their refactoring towards ASPECTJ are
presented by Mesbah and van Deursen [2005].

Service Locators The method with the highest fan-in value (30) belongs to theSer-
viceLocatorclass from theejb package, which implements the J2EE pattern of the
same name [Alur et al., 2003]. The intent of the pattern is to provide a single point of
control to clients that need to locate and access a componentor service in the business
or integration tier. The common solution is to have a single instance of the service
locator class for an application or, at least, for a tier and thus to have it implemented
as a singleton. The advantages of this solution, however, are not always clear for the
EJB-tier and thus the adopted solution can vary [Johnson, 2003].

PETSTORE contains two different service locators: the web-tier one is imple-
mented as a singleton but the fan-in of the method returning the unique instance is
only 7; the identified EJB-tier locator is not a singleton and the method reported is the
constructor of the class.

5 http://java.sun.com/blueprints/, PETSTORE version 1.3.2.

2.5. PETSTORE 35

public class InvoiceTD implements TransitionDelegate {

/** sets up all the resources that will be needed to do

* a transition

*/
public void setup() throws TransitionException {
try {

ServiceLocator sl = new ServiceLocator();
qFactory = sl.getQueueConnectionFactory(JNDINames. ...);
q = sl.getQueue(JNDINames. ...);
queueHelper = new QueueHelper(qFactory , q);

} catch(ServiceLocatorException se) {
throw new TransitionException(se);

}
}

/** Send an order approval to the OrderApproval Queue...

*/
public void doTransition(TransitionInfo info)

throws TransitionException {
String xmlCompletedOrder = info.getXMLMessage();
try {

queueHelper.sendMessage(xmlCompletedOrder);
} catch (JMSException je) {
throw new TransitionException(je);

}
}

}

Figure 2.6: Error handling in PETSTORE

The service locator defines a consistent lookup mechanism for the dependencies of
the various application components, which couples these components to the infrastruc-
ture framework and tangles them with the lookup logic.

A possible refactoring for the service locator is theDependency Injectionpattern
(also calledInversion of Control) used in lightweight containers to avoid directly ref-
erencing a service locator [Fowler, 2004], a mechanism thatresembles the aspect-
oriented mechanisms for injection. For Singleton implementations, the aspect refac-
toring of the pattern [Murali et al., 2004] and the optional caching mechanism [Laddad,
2003b] are in place. The exception wrapping discussed next is also applicable to the
Service Locator identified.

Exception Wrapping The majority of the seeds are constructors for PETSTORE ex-
ceptions. As an example, Figure 2.6 shows theTransitionExceptioncase, which is
thrown from 15catch blocks in different classes and packages.

As in theInvoiceTDclass in the figure, most of the methods throwing the excep-
tion implementdoTransition(..) andsetup() declared by theTransitionDelegate

36 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

interface. All the transition delegates handle exceptionsrelated to the particular func-
tionality and re-throwTransitionException. This mechanism is common to many J2EE
design patterns [Alur et al., 2003], such asBusiness Delegatediscussed by Laddad
[2003a]. The exception wrapping inBusiness Delegateaims at hiding the implementa-
tion details of a business service. The issue hidden in this case is the sort of exception
that can be thrown by the actual implementation.

This consistent mechanism is spread over many places, and a refactoring solution
is discussed by Laddad [2003a]. Aspects can be used to isolate the exception handling
and to wrap the original exception thrown by the underlying implementation in the
new exception. This will result in improvements in code size, localization and clarity.
Studies of exception handling refactoring [Lippert and Lopes, 2000] show a reduction
of catch statements when using AOP of up to 95%. For the case at hand, wefound
that the classes affected were reduced by 20% [Mesbah and vanDeursen, 2005].

Contract Enforcement A method with a fan-in value of 27 is a constructor for the
XMLDocumentExceptionclass. This exception is raised if the structure of the XML
document does not comply with the expected structure. By examining the call sites,
we were able to observe that 9 of them arefromDOM(Node) methods, all throwing the
exception if a certain compound condition fails. It turns out that all complex conditions
share a common check, which can be easily factored out as an aspect by means of
before advice – giving rise to the concerns similar to the pre- and post-condition (design
by contract) examples discussed by The AspectJ Team [2003].

In this manner, the code will be better localized and new methods will be prevented
from omitting the required checks.

Moreover, a set of another 14 call sites are methods of the same class that throw
the reported exception if certain conditions do not hold. A sub-set of 11 methods
from these callers check the same condition, namely the Boolean value of an input
parameter.

Debug Information TheXMLDocumentExceptionclass has a second constructor with
a high fan-in. This constructor is (like for the business delegates) used as an exception
wrapper. In addition to that, before being wrapped the exception at hand is written
on the error output stream. This additional behavior (on topof the wrapping) can be
added as another aspect, which indicates which exception should be printed before
being wrapped. Turning printing debug information into an aspect helps to ensure a
common debugging strategy, and to isolate the concern that is otherwise crosscutting.

False PositivesThe one case considered as non-aspect in the first set of candidates is
an XMLDBHandler constructor with a fan-in value of 10. The callers aresetup(..)
methods in classes that populate the associated database tables with data from XML
files. Thesetup(..) implementations are only slightly different: they return an in-
stance of an anonymous inner class extendingXMLDBHandlerthat is an XML filter.
Because all the callers are well localized in a single packageand there is only one
populate(..) method that triggers the whole process at a client’s request, we de-
cided to label this candidate as non-crosscutting.

2.6. JHOTDRAW 37

False Negatives As briefly mentioned at the beginning of this section, one of the
missed concerns is the service locator in the web-tier, implemented as a singleton, but
whose method for accessing the unique instance has a fan-in value of only 7.

A second concern potentially identifiable by fan-in analysis is transaction manage-
ment. If J2EE’s built-in transaction mechanism is used, theconcern is well-isolated.
PETSTORE, however, also includes explicitly encoded transaction management, which
consists of calls to the Java Transaction API (JTA). In principle these can be detected
by fan-in analysis, but since they belong to an external library, we normally would not
include them in our analysis. Furthermore, the fan-in values for the two methods in the
JTA API (thejavax.transaction.*package) used by PETSTORE code have a value (of
just 2) well below our threshold.

2.6 JHOTDRAW

JHOTDRAW6 is an application framework for two-dimensional graphics.It is an exer-
cise in developing software making use of design patterns [Gamma et al., 1994].

Our filters eliminated around half of the methods with top fan-in values. We
were rather cautious not to eliminate too many methods. The only methods desig-
nated as “utility” are enumeration manipulators (e.g.,FigureEnumerator.hasNext-
Figure()/nextFigure()).

An overview of the concerns found is given in Table 2.3. For each concern, it
lists the number of different high fan-in methods that pointed to the concern, and the
maximum fan-in value for this concern. In the next sections we discuss these concerns
in more detail. Aspect solutions for some of these concerns are available through the
open source AJHOTDRAW7 project, an ongoing activity to refactor JHOTDRAW to
ASPECTJ starting from the results reported in the present chapter.

2.6.1 The Undo Concern

In the top of the list of methods sorted by fan-in, a number of methods point to the
undo functionality, such as theundo method inUndoableAdapter. An undo in a graph-
ical editor is clearly a concern that cuts across many features and activities, although
textbooks on aspect-oriented programming, such as Gradecki and Lesiecki [2003], The
AspectJ Team [2003], Laddad [2003b], do not discuss using aspects for undo function-
ality .

A (somewhat simplified) representation of the participating classes in the JHOT-
DRAW undo implementation is given in Figure 2.7. JHOTDRAW offers various sorts
of activities, which are contained in a class hierarchy. Examples of concrete activities
include handling font sizes, triangle rotation, or image rotation.

6 http://jhotdraw.org/, version 5.4b1
7 http://ajhotdraw.sourceforge.net/. AJHOTDRAW is described in more detail in Chapter 6

of this thesis.

38 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

Concern No. of methods Max fan-in

Adapter 1 37
Command 2 24
Composite 12 24
Consistent behavior 20 31
Contract enforcement 3 31
Decorator 6 57
Exception handling 1 11
Observer 10 37
Persistence 6 22
Undo 3 25

Table 2.3: Concerns found for JHOTDRAW, together with the number of high-fan in
methods, and the highest fan-in among those methods.

The interfaceUndoableencapsulates the notion of undoing an action, for which it
provides theundo method. Each class implementing a concrete activity that can be
undone defines a static nested class conforming to thisUndoableinterface. The nested
class knows how to undo the given activity, and has access to all the details of the
activity that may be needed for this. Whenever the activity modifies its state, it also
updates fields in its associated undo-activity needed to actually perform the undo. In
addition to that, a list ofaffected figuresis maintained, whose state must be adjusted if
the activity is to be undone.

In JHOTDRAW, there are 22 activities that can be undone, causing the undoconcern
to be spread over these classes. This, in turn, leads to a highfan-in for the methods of,
for example,Undoable, which helped us to identify this crosscutting concern.

An aspect-oriented solution for the undo concern is presented by Marin [2004]. It
consists of a number of steps.

• First, the existing activities are extended with an association to their undoables
by means of an inter-type declaration.

• Second, existing operations are extended with functionality to keep track of the
old state so that the action can be undone. These existing operations can be
captured using a pointcut, and then the updates can be contained in advice code.

• Last but not least, the various nested classes containing the undoable activities
can be added by means of inter-type declarations.8

Thus, this refactoring captures the undo “protocol” in a pointcut and advice, ensuring
that undo functionality is properly invoked whenever commands are executed. Fur-

8 The present version of ASPECTJ does not support introducing inner and static nested classes.

2.6. JHOTDRAW 39

DrawingEditor

UndoManager

Undoable

void undo()

Activity

void execute()

undoActivity
Figure

affectedFigures *

*

Concrete

Undoable

Concrete

Activity

nested class

Figure 2.7: Participants forundoin JHOTDRAW.

thermore, the methods and (inner) classes devoted entirelyto undo functionality are
moved out of the command classes, and are remodularized intoan aspect.

2.6.2 Persistence

Another crosscutting concern that pops out clearly througha high fan-in is persistence.
The concern was easily spotted, as there are six different methods involved, each hav-
ing a name built from words like “read”, “write”, “storable”, “input”, and “output”.
Storing and restoring figures is performed by methods inherited from theStorablein-
terface. This interface offers methods to read one self froma StorableInputstream, or
write one self to aStorableOutputstream.

The implementation of the persistence concern is spread over 36 classes. Figures
implementing theStorableinterface invoke several methods from theStorableOutput
andStorableInputclasses. The two classes are specialized in writing/reading various
(primitive) types, (e.g., String, Color, int, etc.) to/froma storing device. This results
in a high fan-in for their methods, which allowed us to detectthe persistence concern
using fan-in analysis.

TheStorableinterface can be considered asecondaryinterface, i.e., one that does
not define the primary role of the implementing class but onlyadds supplementary
functionality to it. An aspect-oriented implementation for this concern can super-

40 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

Observer

update()

Subject

attach(Observer)

detach(Observer)

notify()

ConcreteSubject

getState()

setState()

subjectState

ConcreteObserver

update()

observerState

observers

1 *

subject

for each observer o {

o.update();

}

observerState =

subject.getState()

Figure 2.8: Class diagram illustrating the participants in the Observer design pattern.

impose such as secondary role onto relevant classes by meansof inter-type declarations
(as done in the AJHOTDRAW project). In this way, the persistence logic is isolated in
the aspect, and figure classes need not contain any persistence-related code.

Observe that this refactoring merely moves methods from classes to aspects, and
involves neither a pointcut nor advice. Thus, this refactoring does not have an effect on
any fan-in value, and the methods from theStorableOutputandStorableInputclasses
will continue to have a high fan-in. In the original implementation, however, these calls
came from many different classes or even different packages. In the aspect solution, all
calls are from the persistence aspect. This suggests that itmay be interesting to lift the
call relation to the class, aspect, or package level, and count, for example, the number
of other packages using a particular method. We have not yet explored this direction.

2.6.3 Observers in JHOTDRAW

Several methods with high fan-in point to instances of theObserverdesign pattern.
Example methods includeFigure.addFigureChangeListener(..) (fan-in 11) and
Figure.changed() (fan-in 36).

The participants of the Observer design pattern are shown inFigure 2.8, taken from
[Gamma et al., 1994]. One method that we expect to have a high fan-in isnotify:
this method is called for every different kind of change event the observer wants to
hear about. Furthermore, we expect the fan-in for theattach anddetach methods
to be related to the number of observers involved. TheObserver.update() method

2.6. JHOTDRAW 41

public void execute() {
// perform check whether view() isn’t null.
super.execute();

// prepare for undo
setUndoActivity(createUndoActivity ());
getUndoActivity().setAffectedFigures(view().selection());

// key logic: cut == copy + delete.
copyFigures(view().selection(), view().selectionCount());
deleteFigures(view().selection());

// refresh view if necessary.
view().checkDamage();

}

Figure 2.9: (Simplified) execute method in JHOTDRAW exhibiting tangling.

is likely to have a low fan-in value, as it is only called from theSubject.notify()
method.

These expectations are met in JHOTDRAW: TheFigure.changed() method cor-
responds to theSubject.notify() and indeed has the highest fan-in, allowing us to
discover this concern. Observers are calledListenersin JHOTDRAW, and theadd-
FigureChangeListener corresponds to theattach method.

Matching on the naming conventions used in the first observerfound led us to an-
other instance of the pattern (with a somewhat lower fan-in). Thus, fan-in analysis
provides initial seeds and application understanding, which then can be used by com-
plementary techniques to identify further cross cutting concerns.

The Observer is a prototypical example of a design suitable for an aspect imple-
mentation: Inter-type declarations can be used to super-impose theObserveror Subject
roles onto classes of interest, and pointcuts and advice canbe used to weave in the ap-
propriate calls tonotify().

The notification protocol used in JHOTDRAW is somewhat more complicated than
a simple call tochanged(). Before the change is being made, the affected figures
should be invalidated, which should be done by means of a callto the methodwill-
Change() (fan-in value 25). Such apolicy enforcementconcern calls for an around
advice, which helps to ensure that the protocol is properly implemented.

2.6.4 Other Concerns

Command and Related ConcernsA method with high fan-in value (24) that is easy
to connect to a design pattern isAbstractCommand.execute(). The crosscutting
nature of the Command pattern is discussed by Hannemann and Kiczales [2002]. They
propose a (fairly complex) aspect-oriented representation in which different roles (such

42 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

as the commandinvokerandreceiver) are distinguished. Theprotocolbetween these
is based on a pointcut capturing all places where invocations are required (for example
when a GUI button is pressed). The advice then is to activate the receiver for the given
invoker. This corresponds to calling theexecutemethod, which in the aspect solution
has a low fan-in, and in the non-aspect implementation a highone. The applicability of
this solution to JHOTDRAW is not clear: isolating the Command concern in this way
is complicated by the interaction with theundoandredoconcerns.

The various implementations of the specificexecute() commands exhibit two
further concerns, as illustrated by theCutCommandexample in Figure 2.9:

• Eachexecute implementation starts with a super call responsible for checking
a common pre-condition, throwing an exception if it does nothold. This is a
Contract enforcementconcern as discussed for PETSTORE.

• Most execute implementations conclude with a check if the figure has been
changed in order to trigger a refresh of the view if necessary. This is aProviding
consistent behaviorconcern as discussed by The AspectJ Team [2003].

Factoring these (as well as the undo functionality) out of the code in Figure 2.9 would
leave theexecute method with just its core functionality, which is an implementation
of the cut operation by means of a copy and delete operation.

Consistent Behavior The seeds reported by fan-in analysis cover 11 different in-
stances of the “consistent behavior” concern. In other words, there are 11 different
contexts into which a set of method-callers invoke a method with a high fan-in value as
part of a consistent mechanism. Examples include the previously discussed notification
to conclude the execution of commands, consistent (de-)activation of tools, initializa-
tion of tools, etc. Each of these 11 instances is a suitable candidate for replacement by
an aspect solution by means of a pointcut and advice.

Composite High fan-in values are also obtained for the children manipulation methods
from the Composite pattern (e.g.,add(Figure), fan-in value 13). The high fan-in in
this case is largely due to the fact that these manipulation methods are widely used, but
there was no systematic pattern in this usage. The high fan-in is not directly related to
the crosscutting nature of the Composite pattern, and, consequently, not affected by a
refactoring to the aspect-oriented Composite implementation suggested by Hannemann
and Kiczales [2002] (which consists of one aspect containing inter-type declarations
for the various composite participants).

Decorator, Adapter Several of the high fan-in methods are related to the Deco-
rator or Adapter patterns. These patterns are different from, e.g., Command and
Observer, which have characteristic methods likely to havea high fan-in (execute
and notify, respectively). Instead, the Decorator and Adapter patterns make use of
consistent forwarding, which allows us to recognize the relation with the pattern
of the several methods with a high fan-in value reported for this concern (such as
DecoratorFigure.containsPoint, fan-in value 15).

2.6. JHOTDRAW 43

The aspect solution for these patterns as discussed by Hannemann and Kiczales
[2002] is to drop the decorator and adapter classes altogether, directly weaving in the
relevant decorations or adaptations in the appropriate classes. Whether this solution
is applicable to JHOTDRAW is not clear, since JHOTDRAW relies on enabling or dis-
abling decorations (which is less easy to do in the implicit aspect solution).

False Positives The group of false alarms for JHOTDRAW consists of 56 methods.
More than half of these methods are implementations of two methods: displayBox
andcontainsPoint. The first of the two returns the display box of a figure. The
method has a high fan-in value because it supports many of theactions associated with
a figure, like drawing or moving figures, etc. However, the callers could not be grouped
by a clear relationship, and no clear call idiom could be observed when investigating
the call sites.

Similar observations apply to thecontainsPoint method, which checks if a point
is inside a figure. Except one implementation, which together with other reported
methods in theDecoratorFigureclass implement the consistent logic of redirecting
incoming calls,containsPointhas been marked as a false positive.

Other false alarms include fivemoveBy methods fromFigure classes, which im-
plement actions for moving a figure, and a number of complex accessor methods that
could not be filtered using the name or implementation criteria.

False NegativesAs discussed for the identified Observer pattern instance, other in-
stances of this pattern can be discovered starting from the fan-in seeds. TheDraw-
ing classes, for example, are part of a different Observer implementation and define
role-specific methods with names that are similar to those intheFigureclasses:add/-
removeDrawingChangeListener(..). These role methods have lower fan-in values
because theDrawingObserver implementation has a smaller extent, with fewer classes
that register asDrawingobservers.

The comparison experiment using JHOTDRAW as common benchmark revealed a
few concerns missed by fan-in analysis [Ceccato et al., 2006]. One of these concerns
is a Visitor pattern instance. The pattern defines specific roles and methods, such as
the visit operations for theVisitor role, and theaccept method implemented by the
Visitable elements. Thevisit method in theVisitor role would collect calls from
all the Visitableclasses that pass self-objects as arguments to this method for being
visited. A large number ofVisitableelements would therefore increase the fan-in value
of the visitor method. However, in JHOTDRAW only two Figure classes implement
the methods to accept visitors. The large majority of figuresdo not override the default
implementation for this task, which also implements the tree traversal for composite
elements.

We have found implementation of the Visitor pattern throughthe role-specific
methods by applying FINT to its own source code, as well as in TOMCAT, as we
shall see in the next section.

44 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

Concern No. of methods Max fan-in

Chain of responsibility (pipeline) 24 18
Command 2 16
Composite 9 37
Consistent behavior 34 90
Contract enforcement 9 46
Lifecycle 73 34
Logging 1 10
Observer 6 56
Redirector 4 25
Visitor 1 28

Table 2.4: Concerns found for TOMCAT, together with the number of high-fan in meth-
ods, and the highest fan-in among those methods.

2.7 TOMCAT

Apache TOMCAT is the servlet container that is used in the reference implementa-
tion for Sun’s Java Servlet and JavaServer Pages technologies. TOMCAT is developed
within the open-source Jakarta project at the Apache Software Foundation.9 The main
elements of TOMCAT are the servlet container called Catalina, the JSP engine called
Jasper, and the TOMCAT connectors. We analyze and discuss the results for version
5.5(.17) of TOMCAT 10.

The main architectural components of TOMCAT are shown in Figure 2.10 [Moodie,
2005]. The outerServercomponent offers a number ofServicesthrough variousCon-
nectors. The default connector implements HTTP. TheEngine, HostandContextcom-
ponents are allcontainer components, representing the top-level container, the virtual
host, and the actual web application, respectively. Insidecontainers there can benested
componentswhich can provide various administrative services. Some components can
be contained more than once and are marked with a star in the figure. Particularly rel-
evant for our discussion are the nested components calledValves: these can intercept a
request and process it before it reaches its destination.

The crosscutting concerns found for TOMCAT are summarized in Table 2.4. Again,
some of the concerns are related to crosscutting behavior asencountered in design pat-
terns, but there are also some concerns not previously described. Below we elaborate
some of the concerns in more detail.

9 http://jakarta.apache.org/tomcat/
10 http://tomcat.apache.org/tomcat-5.5-doc

2.7. TOMCAT 45

Server

Service*

Engine

Host*

Context*

Servlet*

JSP*

Valve*

Valve*

Valve*

Coyote

Connector

AJP

Connector

SSL

Connector
Web

Browser

IIS

HTML*

Apache

Figure 2.10: Example TOMCAT configuration

2.7.1 Lifecycle

Lifecycleis a common interface for several Catalina components, providing a consis-
tent mechanism to start and stop the component. It is a secondary interface, adding
new, supplementary capabilities to the core logic of the implementing classes.Lifecy-
cle is implemented by more than 40 classes. Thestart andstop methods for these
classes have fan-in values varying between 25 and 34. The setof results of fan-in
analysis comprises 73 implementations of these two Lifecycle methods.

The start andstop methods are part of a particular type ofconsistent behav-
ior scheme: Thestart operation has to be called before any public method of the
component, whilestop terminates the object’s use and should be the last call for a
component’s instance. Furthermore, implementors of theLifecycleinterface have to
adopt theSubjectrole from theObserverpattern: listeners can be added which must
be notified of start or stop events. The key methods to supportthese operations have
fan-in values as high as 56.

The Lifecycle concern can be seen as a generalization of the use ofstop() meth-
ods to remedy Java’s expensive finalization mechanism [Vickers, 2002; Goetz, 2004].
Those methods take care of cleaning up the object’s resources inside the program code
to avoid the overhead of having finalizers but will result in crosscutting for the object’s
clients.

The Lifecycle concern is complex, comprising several crosscutting concerns. Al-

46 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

though aspect-oriented solutions have been presented for some parts of it, a complete
refactoring solution remains an open issue. One of the problems is that the type of con-
sistent behavior needed by the concern cannot be expressed in a pointcut-based aspect
language like ASPECTJ (because it requires specifying “before accessing any public
methods of class” and “after last use of class”).

2.7.2 Valves / Chain of Responsibility

A method occurring around 20 times in the seed list is theinvoke(..) method in the
Valvehierarchy. Valves are nested components that implement a pluggable request-
processing operation for an associated container. Valves are connected through a
pipeline structure, in which each valve passes the request to theinvoke method of
the next valve in the pipeline. Examples of valve classes includeAccessLog Valveto
create standard web servers log files,RemoteAddress Valveto filter the requests by the
IP address of the client that submitted them, orSingleSignOn Valveto grant user access
to the web applications associated with a virtual host.

The pipeline organization of the valves is implemented using theChain of respon-
sibility pattern [Gamma et al., 1994]. This implies that a valve’s core logic is crosscut
by the functionality of retaining the reference to the next valve in the pipeline and
consistently passing the invocation to it. Furthermore, the various implementations of
theinvoke method are tangled with other concerns. TheAuthenticatorBaseabstract
class, for instance, implements the basic functionality ofthe request authentication
valve. However, itsinvoke method also performs logging operations for debugging
activities. Similarly, the previously mentionedAccessLog Valveimplements atiming
operation for the request/response operation it has to log.An aspect-oriented solution
for theChain of responsibilitypattern is provided by Hannemann and Kiczales [2002].

2.7.3 Other Concerns

A number of architectural components of TOMCAT and Catalina are Container ele-
ments. TheContainerinterface defines these elements asCompositestructures. Stan-
dard implementations of the interface are abstractions of the TOMCAT container com-
ponents, likeStandardEngineor StandardContext. Fan-in analysis identifies the chil-
dren manipulation methods specific to theCompositestructure of these components
and reports them as concern seeds (fan-in values of up to 37).

In the same category of design patterns, a number of seeds correspond to the
Observer, like the notifier for Container events (ContainerBase.fireContainer-
Event(..)) (fan-in value 55) and theexecute method of theCommandpattern im-
plementation (fan-in value 16). Similar to the cases discussed for JHOTDRAW, the
Command seed methods reported for TOMCAT are also part of acontract enforcement
that consist of a pre-execution attribute validation. The contract is implemented as
a call to the method in the super class. Other seed results include methods that par-
ticipate in the implementation of consistentredirectionfunctionality (Wrappers); the

2.7. TOMCAT 47

methods implement non-trivial accessors that are invoked by a large number of meth-
ods that simply redirect their callers to dedicated methodsof the reference returned by
the reported seed. The fan-in values for these seeds are up to25.

Different pre-condition check enforcementsare also part of the various implemen-
tations for theLifecyclestart andstop methods. The reported seed method in this
case is the constructor of the exception thrown if the pre-condition does not hold (fan-in
value 32).

The loggingconcern is particularly interesting because of the new implementation
strategy in version 5.x of TOMCAT. This concern used to be implemented in the pre-
vious versions using Logger classes that were part of the Catalina API. However, the
current implementation uses logging functionality available through specialized, ex-
ternal libraries. Although we have been able to directly identify logging methods in
the analyzed code (e.g.,ModuleClassLoader), as well as logging functionality tangled
with the implementation of other seed methods, a number of direct loggingseeds are
missed. This is due to our choice not to include library components in the analysis, as
discussed in Section 2.4.

The remaining seeds include, besides other instances of theconcerns already dis-
cussed, a large number (up to 25) of different instances of the consistent behavior
concern, as well as seeds for the super-imposed role in theVisitor pattern.

False PositivesA group of 13 false alarms consists of methods in theJspReaderand
ServletWriterclasses. The first class is an input buffer for the JSP parser,and the
reported methods are utilities for parsing JSP files, like methods to match an input
String in a file or to skip space-characters. The callers are methods in the JSPParser
class.

The methods reported forServletWriterprint String elements in various formats to
an output stream. The callers of these methods belong to theGeneratorclass, which
outputs Java code from an internal, tree-based (XML) representation of JSP docu-
ments.

These classes could have been considered asutility, if we would have had more
detailed knowledge about the system prior to analysis.

Among the other false alarms there are 12 implementations ofthestore method
in the StoreFactoryBasehierarchy. The classes in this hierarchy are specialized in
storing configuration elements, such asServer, Service, Engine, or Contextto a XML
configuration file (server.xml). The callers of the reportedmethods are declared in
classes in the same hierarchy or are overloaded implementations of thestore method
in the classStoreConfig. This class is part of the same concern as the reported methods
and so no crosscutting element could be identified.

False Negatives The literature on TOMCAT discusses hardly any crosscutting con-
cerns, making it difficult for us to assess whether there are any interesting false neg-
atives we missed. The crosscutting concern that is discussed widely for TOMCAT is
logging, and often it is mentioned as an example of poor modularization. As already
discussed, fan-in analysis helps us to identify several seeds for the logging concern.

48 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

However, the analyzed version of TOMCAT is extensively using logging methods de-
clared by external libraries (theorg.apache.commons.logging.*package). By cancel-
ing the filter for library methods in FINT and looking for calls to externally declared
methods, we noticed that there are 19 methods from the logging package that are re-
ferred from the analyzed TOMCAT sources. From these ones, 13 methods belong to
theLog class and show a fan-in value higher than the considered threshold of 10. The
fan-in value for the logging method for debugging (Log.debug), for example, is as
high as 465.

2.8 Discussion

High Fan-in as Indicator As we have seen in the previous case studies, fan-in anal-
ysis identifies high fan-in methods, applies a series of filters to these methods, after
which more than half of the remaining methods turn out to be related to a crosscutting
concern.

We can distinguish three main situations in which a high fan-in value indicates the
presence of crosscutting concerns:

• The method has a high fan-in because it is part of adynamiccrosscutting mecha-
nism. The typical refactoring will be to capture the call sites through a pointcut,
and to move the method call to advice. Examples that we encountered include
exception wrapping, contract enforcement, observer notification, and life cycle.

• The method has a high fan-in because it is used by astaticcrosscutting mecha-
nism. A typical example is a secondary interface that must beimplemented by
a series of classes. The various implementations are likelyto make use of the
same helper methods, giving these a high fan-in. The refactoring is to collect all
these interface implementations into one or more inter-type declarations. This
we encountered for the persistence concern.

• The method has a high fan-in because it is part of a concern that plays a key role
in the design. The method happens to be part of a crosscuttingconcern, which
will benefit from an aspect-oriented refactoring. The refactoring, however, will
not affect any of the call sites of the high fan-in method. This we encountered
for the composite concern.

These situations are not mutually exclusive. In many cases,a concern involves
static as well as dynamic crosscutting, as we have seen for the undo concern. We
then are likely to see multiple seeds, which may either pointus to the static or to the
dynamic crosscutting behavior.

The Type of Concerns Identified The fact that we were able to find similar aspects
in various case studies suggests that their identification is not accidental. We identified
various crosscutting concerns that are discussed in the literature, including those that

2.8. Discussion 49

stood at the origins of aspect-oriented programming. In addition, we have identified a
number of new aspects, such asUndoandLifecycle. Given the different nature of the
three case studies, we feel that these results can also be achieved for other cases.

A notable source of crosscutting behavior is formed by various design patterns:
for both JHOTDRAW as well as TOMCAT they account for approximately half of the
concerns identified. This suggests that it may be worthwhileto investigate the use of
design pattern mining techniques (see, e.g., Ferenc et al. [2005]) for aspect mining
purposes.

Reasoning about Seeds and Non-seedsOne of the subjective elements of our aspect
mining approach is the third step in which the human engineerhas to distinguish seeds
from non-seeds. We adopted the following reasons for classifying a high fan-in method
as a seed:

• We were able to link the method to a concern that is known to be crosscutting.

• We considered the method’s concern to be conceptually separate from the key
functionality of the calling classes. Thus, it would be meaningful to make the
base implementation oblivious of method’s concern.

• We could discover an idiom, recurring patterns, or other similarities in for ex-
ample the call sites found, suggesting an implicit relationship between these call
sites that could be made explicit through a pointcut with advice.

• We were able to identify a refactoring to ASPECTJ that may be beneficial in
terms of modularization, flexibility, or evolution. Usually, these refactorings
were composed from basic refactorings as included in the catalogs provided by
Laddad [2003a] and Monteiro [2004].

When rejecting a high fan-in method as a seed, we were not able to achieve any of the
above.

Utility Filtering A step requiring some manual effort is the filtering of utility methods.
The intent of this is to remove groups of methods for which it is a priori obvious that
they do not belong to crosscutting concerns. It is not necessary to capture all utility
methods. Therefore, the amount of effort involved in this step is very limited: if it is
not immediately clear if something is a utility, it is simplysafe not to filter the method,
and analyze it in detail if it turns out to have a high fan-in.

Percentage of False PositivesThe percentage of false positives in the three case stud-
ies is 13%, 49% and 27% for PETSTORE, JHOTDRAW, and TOMCAT, respectively
(see Table 2.1). Based on these figures, and based on experiments we conducted with
other systems, we conjecture that 50-75% of the candidate seeds that we identify auto-
matically can be confirmed as belonging to a crosscutting concern.

Note that this percentage is conservative in two ways: First, we only discarded
classes or methods as utilities when this was immediately obvious. Second, we only

50 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

confirmed seeds when we clearly could see the crosscutting nature of the underlying
concern. In other words, it is possible that with a more involved analysis of some of
thenon seedsfrom Table 2.1 these could turn out to be crosscutting concerns as well.
For this reason, it is reasonable to expect that other systems will exhibit a similar (or
perhaps higher) success rate.

False NegativesWhile working on our case studies, analyzing their design andim-
plementation in considerable depth, we did encounter several crosscutting concerns
not found through fan-in analysis, some of which were discussed in the previous sec-
tions. As an example, for PETSTORE we found transaction management, scattered
implementations of the Serializable interface, and opportunities for making use of AS-
PECTJ’s approach to imitating multiple inheritance [Mesbah andvan Deursen, 2005].
As for the logging example discussed for TOMCAT, key methods implementing trans-
action management are likely to be missed as well, because they are part of imported
libraries that we do not include in our analysis. Crosscutting concerns found in JHOT-
DRAW through other aspect mining approaches are discussed and compared by Cec-
cato et al. [2006]. An example concern fan-in analysis did not find is bringing a figure
to the front or sending it to the back, simply because the methods involved were not
called sufficiently often.

Based on these observations, we can make the following more general claims about
the sort of crosscutting concerns that will not be found through fan-in analysis. First,
the “footprint” of the concern should be above the threshold. Thus, if the concern
involves dynamic crosscutting, the number of scattered calls should be higher than the
threshold. Furthermore, if the crosscutting is purely static, the concern will usually not
be found, unless the scattered implementation relies on shared functionality, and the
number of call sites is higher than the threshold.

Note that the effect of the threshold is twofold. First of all, it helps us reduce the
number of methods to be inspected. In addition to that, it allows us to find those aspects
that are likely to significantly influence the modularity of the source code. Thus, while
we certainly miss some crosscutting concerns, we are likelyto find the ones that are
most scattered, and hence good candidates for refactoring.

Percentage of False NegativesHow to arrive at a percentage for false negatives is
less clear. This would require a report of all the crosscutting concerns that could be
found in the case studies considered. Such reports have not been available prior to our
experiments. Furthermore, such a report would be affected by the difficulty of deciding
objectively what is and what is not a crosscutting concern.

The way to achieve progress in this direction is by establishing a common bench-
mark of known crosscutting concerns in existing systems. Such a benchmark would
not only be a simple list, but also a summary of the reasons whycertain concerns are
deemed crosscutting. Our coverage of the concerns we found through fan-in analysis
is aimed at establishing and promoting such a benchmark.

Seed Inspection Effort How much effort is involved in inspecting seeds by hand? An
important observation to make is that in many cases it is possible to decide for a group

2.8. Discussion 51

of methods together whether they constitute a seed. One reason for this is our treatment
of polymorphism. In our definition of the fan-in metric one call could increase the
metric value for several methods in the hierarchy of the invoked callee. Therefore,
method implementations in the same hierarchy, which most commonly implement the
same concern, also share many of their callers.

Such situations are very common in the cases analyzed. In TOMCAT, for instance,
the over 200 seed and non-seed methods are implementations or declarations of only
less than 100 distinct methods. As another example, the set of candidates for JHOT-
DRAW includes more than 20 implementations of thedisplayBox method, which we
marked as non-seed. Grouping methods by their declarationsas supported by FINT
considerably reduces the investigation effort required for each method.

FINT offers further ways to reduce the manual effort involved in seed inspection.
This includes various analyses to detect relations betweenthe callers of a reported
method with a high fan-in value, as discussed in Section 2.3.4. For example, by ex-
amining the callers (of any of the around 20 reported implementations) of theinvoke
method in TOMCAT’s Valves pipelineconcern, FINT shows that more than 80% of
these callers are alsoinvoke methods inValveclasses. The tool groups these callers as
shown in Figure 2.4. Such relations are present for a significant number of discovered
seeds, including crosscutting elements discussed for JHOTDRAW’s Undoconcern and
the concerns in theCommandhierarchy, as well asException wrappingconcerns in
PETSTORE.

Required Expertise Level How much domain knowledge or expertise is required for
conducting fan-in analysis? For the bottom-up approach, when we look for consistent
invocations of the method with a high fan-in value from call sites that could be cap-
tured by a pointcut definition, little specific knowledge is needed. For the top-down
approach more a priori knowledge is required. The top-down approach relies on easily
observable relations between tool-reported candidates and known examples of cross-
cutting functionality; design patterns are the most commonin our cases. The rules we
employed for associating patterns to candidates are simple: the methods are part of the
roles defining the design patterns and/or they execute actions specific to responsibilities
of participants in the pattern implementation (e.g., delegations of actions).

Note, however, that many crosscutting concerns described in the context of design
pattern implementations will typically be found by means ofthe bottom-up approach
as well. For instance, calls to notification methods in implementations of the Observer
pattern, or invocations to the action of the next element in apipeline (chain of respon-
sibility) are typical examples of crosscutting concerns targeted by fan-in analysis. In
this case, the discussion of the patterns serves to describethe larger context into which
the crosscutting concern occurs.

AspectJ Fan-in analysis is an aspect mining approach that is entirely independent
of ASPECTJ or any other aspect-oriented language. Fan-in analysis isa technique
for understanding a system’s modularization, helping developers to find crosscutting
concerns. Some of these can be candidates for a refactoring towards ASPECTJ (as

52 Chapter 2. Identifying Crosscutting Concerns using Fan-in Analysis

discussed for PETSTORE and JHOTDRAW by Mesbah and van Deursen [2005] and
Marin et al. [2005b]). For other concerns, alternative aspect-oriented solutions, such
as composition filters [Bergmans and Aksit, 2001] or the inversion of control pattern
[Fowler, 2004], while for still other concerns present aspect-oriented languages do not
offer a suitable modularization mechanism yet.

Thus, fan-in analysis is not only a possible first step in refactoring to aspects. It
also is a program comprehension technique that can help to understand crosscutting
concerns in existing applications.

The Fan-In Metric The variant of the fan-in metric we have used, has been optimized
for aspect mining purposes, and, as shown in this chapter, has brought us good results.
An open question is whether this metric can be further improved. One possible route
would be to lift the fan-in metric to the class, inheritance hierarchy, or package level,
as we briefly discussed for the persistence concern of JHOTDRAW in Section 2.6.2.
Fine tuning the metric such that it reflects, e.g., call site locations instead of the mere
number of methods containing call sites is an issue for further research.

2.9 Concluding Remarks

2.9.1 Contributions

We consider the following as our three key contributions.
First of all, we propose a new, metrics-based, aspect miningapproach. The ap-

proach aims at capturing crosscutting concerns by focusingon methods that are called
from many places, and hence have a high fan-in. Our case studies show that after ap-
propriate filtering more than 50% of these methods turn out tobelong to a crosscutting
concern.

Our second contribution is FINT, a tool that is freely downloadable that supports
fan-in analysis. FINT not only shows how the fan-in metric and the filters can be
implemented, but also offers support for the final manual step consisting of exploring
the high fan-in methods and their call sites, and managing the seed-methods.

The third contribution consists of the extensive case studies we conducted. We
argue in detail why we think that certain concerns are crosscutting in three existing
open source Java systems. Some of these concerns were not previously described in
the literature as crosscutting (such as undo or lifecycle).Moreover, in most cases we
discuss alternative aspect-oriented implementations of these concerns. The resulting
list of concerns and their manifestation in the three systems is relevant not only for
fan-in analysis: it is of value for the validation of any aspect mining approach.

In addition to that, we offer an explanation of our results byidentifying the factors
contributing to the success of fan-in analysis as an aspect mining approach, as well as
the limitations of the approach.

2.9. Concluding Remarks 53

2.9.2 Future Work

We are presently in the process of extending our results along the following lines.
First, we are considering various extensions to FINT. One route is to integrate

FINT with other concern elaboration tools, such as FEAT [Robillard and Murphy,
2007] or the Concern Manipulation Environment CME [Harrison et al., 2004]. We
could use such tools to explore and describe a concern or feature to its full extent,
starting from the (partial) set of elements and relations identified by FINT as part of
the crosscutting concern implementation.

Another option is to combine FINT with other automated aspect identification
techniques, such as, for example, techniques based on formal concept analysis, identi-
fier analysis, or clone detection. A prerequisite for combination is to be able to assess
and compare aspect mining techniques and their results.

In addition to that, we continue to elaborate our case studies. This will provide
further data on optimal threshold values, typical number ofconcerns that can be found
in existing applications, and figures for the percentages offalse positives and false
negatives.

The results presented in this chapter show that the recognized crosscutting concerns
follow various implementation idioms. Fan-in analysis is particularly suited for iden-
tifying method invocations that cut across a set of other methods. However, concerns
like those encountered in the Decorator pattern are typically less likely to occur among
the results of this technique. In Chapter 5 of this thesis, we shall take a number of steps
towards design of mining techniques that target specific implementation idioms, and
their implementation in FINT.

One of our activities directly related to one of the case studies presented in this
chapter is AJHOTDRAW, a sourceforge project in which we offer an aspect-orientedre-
implementation of JHOTDRAW, based on the concerns found in the present chapter.11

In this way, the case studies presented here form the starting point for a benchmark for
comparing aspect mining and refactoring approaches.

11http://sourceforge.net/projects/ajhotdraw/. Also discussed in Chapter 6.

Chapter 3

Applying and Combining Three Different
Aspect Mining Techniques

Understanding a software system at source-code level requires understanding the dif-
ferent concerns that it addresses, which in turn requires a wayto identify these con-
cerns in the source code. Whereas some concerns are explicitly represented by program
entities (like classes, methods and variables) and thus areeasy to identify,crosscutting
concerns are not captured by a single program entity but arescatteredover many pro-
gram entities and aretangledwith the other concerns. Because of their crosscutting
nature, such crosscutting concerns are difficult to identify, and reduce the understand-
ability of the system as a whole.

In this chapter, we report on a combined experiment in which we try to iden-
tify crosscutting concerns in the JHotDraw framework automatically. We first apply
three independently developed aspect mining techniques toJHotDraw and evaluate
and compare their results. Based on this analysis, we presentthree interesting com-
binations of these three techniques, and show how these combinations provide a more
complete coverage of the detected concerns as compared to the original techniques
individually. Our results are a first step towards improving the understandability of a
system that contains crosscutting concerns, and can be usedas a basis for refactoring
the identified crosscutting concerns into aspects.

3.1 Introduction

The increasing popularity of aspect-oriented software development (AOSD) is largely
due to the fact that it recognises that some concerns cannot be captured adequately us-
ing the abstraction mechanisms provided by traditional programming languages. Sev-
eral examples of suchcrosscuttingconcerns have been identified, ranging from simple
ones such as logging, to more complex ones such as transaction management [Fabry,
2005] and exception handling [Lippert and Lopes, 2000].

An important problem with such crosscutting concerns is that they affect the un-

55

56 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

derstandability of the software system, and as a result reduce its evolvability and main-
tainability. First of all, crosscutting concerns are difficult to understand, because their
implementation can be scattered over many different packages, classes and methods.
Second, in the presence of crosscutting concerns, ordinaryconcerns become harder
to understand as well, because they get tangled with the crosscutting ones: particular
classes and methods do not only deal with the primary concernthey address, but also
may need to take into account some secondary, crosscutting concerns.

Several authors have presented automated code mining techniques, generally re-
ferred to asaspect miningtechniques, that are able to identify crosscutting concerns in
the source code. The goal of these techniques is to provide anoverview of the source-
code entities that play a role in a particular crosscutting concern. This not only im-
proves the understandability of the concern in particular and of the software in general,
but also provides a first step in the migration towards applying aspect-oriented software
development techniques. However, since the research field is still in its infancy, very
few experiments have been conducted on real-world case studies, comparisons of dif-
ferent techniques are lacking, and no agreed-upon benchmark is available that allows
to evaluate the existing techniques.

This chapter reports on an experiment involving three independently developed as-
pect mining techniques: fan-in analysis [Marin et al., 2007a], identifier analysis [Mens
and Tourẃe, 2005; Tourẃe and Mens, 2004] and dynamic analysis [Tonella and Cec-
cato, 2004a]. In the experiment, each of these techniques isapplied to the same case
study: the JHotDraw graphical editor framework. The goal ofthe experiment is not to
identify the “best” aspect mining technique, but rather to mutually compare the indi-
vidual techniques and assess their major strengths and weaknesses. Additionally, by
identifying where the techniques overlap and where they arecomplementary, the exper-
iment allows us to propose interesting combinations and to apply these combinations
on the same benchmark to verify whether they actually perform better.

The JHotDraw framework which we selected as benchmark case was originally
developed to illustrate good use of object-oriented designpatterns [Gamma et al., 1994]
in Java programs. This implies that the case study has been well-designed and that care
has been taken to cleanly separate concerns and make it as understandable as possible.
Nevertheless, JHotDraw exposes some of the modularisationlimitations present even
in well-designed systems, and contains some quite interesting crosscutting concerns.

The contributions of this chapter can be summarised as follows:

• We provide an overview of the major strengths and weaknessesof three aspect
mining techniques. This information is valuable for developers using these tech-
niques, as it can help them choosing a technique that suits their needs. Other as-
pect mining researchers can take this information into account to compare their
techniques to ours, or to fine-tune our techniques;

• We discuss how the individual techniques can be combined in order to perform
better, and validate whether this is indeed the case by applying the combined
techniques on the same benchmark application and comparingthe results;

3.2. Background concepts 57

interface A {
public void m();

}
class B implements A {
public void m() {};

}
class C1 extends B {
public void m() {};

}
class C2 extends B {
public void m() { super.m();};

}
class D {
void f1(A a) { a.m(); }
void f2(B b) { b.m(); }
void f3(C1 c) { c.m(); }

}

Figure 3.1: Various (polymorphic) method calls.

• We present a list of all crosscutting concerns that the threetechniques identified
in the JHotDraw framework. Such information is valuable forother aspect min-
ing researchers who want to validate their techniques, and might lead to JHot-
Draw becoming a de-facto benchmark for aspect mining techniques;

The chapter is structured as follows. Section 3.2 introduces the necessary back-
ground concepts required to understand the three aspect mining techniques explained
in Section 3.3. Section 3.4 presents the results of applyingeach technique on the com-
mon benchmark, while Section 3.5 uses these results for discussing the benefits and
drawbacks of each technique with respect to the others. Basedon this discussion, Sec-
tion 3.6 presents useful combinations of the techniques, and reports on the experience
of applying such combinations on the benchmark application. Section 3.7 presents
our conclusions. For an overview of related work concerningaspect mining, we re-
fer to the previous chapter and the papers discussing the individual techniques [Marin
et al., 2007a; Mens and Tourwé, 2005; Tourẃe and Mens, 2004; Tonella and Ceccato,
2004a].

3.2 Background concepts

3.2.1 Fan-in

Thefan-inmetric, as defined by Henderson-Sellers [1996], counts the number of loca-
tions from which control is passed into a module. In the context of object-orientation,
the module-type to which this metric is applied is the method. We define thefan-in of

58 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

a methodM as the number of distinct method bodies that can invokeM. Because of
polymorphism, one call site can affect the fan-in of severalmethods: a call to method
M contributes to the fan-in ofM, but alsoto all methods refined byM, as well asto all
methods that are refiningM (see the previous chapter).

Method Potential callers Fan-in
A.m D.f1, D.f2, D.f3 3
B.m D.f1, D.f2, D.f3, C2.m 4
C1.m D.f1, D.f2, D.f3 3
C2.m D.f1, D.f2 2

Figure 3.2: Fan-in values for program in Figure 3.1.

As an example, Figure 3.2 shows the calculated fan-in for themethods namedm
in the program of Figure 3.1. Note thatD. f 3 is reported among the potential callers
of B.m, even though this situation cannot actually occur at run-time. However, the
resulting effect of having higher fan-in values reported for methods in super-classes is
arguably positive for the purpose of the present analysis, as it emphasizes the concern
implemented by the super-class method, which generally is addressed by its overriding
methods as well.

3.2.2 Concept Analysis

Formal concept analysis (FCA) is a branch of lattice theory that can be used to identify
meaningful groupings ofelementsthat have commonproperties[Ganter and Wille,
1997].1

Programming object-oriented functional logic static typing dynamic typing
language

Java
√

- -
√

-
Smalltalk

√
- - -

√

C++
√

- -
√

-
Scheme -

√
- -

√

Prolog - -
√

-
√

Table 3.1: Programming languages and their supported programming paradigms.

FCA takes as input a so-calledcontext, which consists of a (potentially large, but
finite) set ofelements E, a set ofproperties Pon those elements, and a Booleaninci-
dence relation TbetweenE andP. An example of such a context is given in Table 3.1,

1We use the termselementandpropertyinstead ofobjectandattributeused in traditional FCA liter-
ature, because these latter terms have a very specific meaning in object-oriented software development.

3.2. Background concepts 59

which relates different programming languages and properties. A mark
√

in a table
cell means that the element (programming language) in the corresponding row has the
property of the corresponding column.

Starting from such a context, FCA determinesmaximalgroups of elements and
properties, calledconcepts, such that each element of the group shares the properties,
every property of the group holds for all of its elements, no other element outside the
group has those same properties, nor does any property outside the group hold for all
elements in the group. Intuitively, aconceptcorresponds to a maximal ‘rectangle’
containing only

√
marks in the table, modulo any permutation of the table’s rows and

columns.
Formally, the starting context is a triple(E,P,T), whereT ⊆ E×P is a binary rela-

tion between the set of all elementsE and the set of all considered element properties
P. A concept cis defined as a pair of sets(X,Y) such that:

X = {e∈ E | ∀p∈Y : (e, p) ∈ T} (3.1)

Y = {p∈ P | ∀e∈ X : (e, p) ∈ T} (3.2)

whereX is said to be theextentof the concept (Ext[c]) andY is said to be itsintent
(Int[c]). It should be noticed that the definition above is not “constructive”, being mu-
tually recursive betweenX andY. However, given a pair(X,Y), it allows deciding
whether it is a concept or not. FCA algorithms provide constructive methods to deter-
mine all pairs(X,Y) satisfying the constraints (1) and (2).

{}

{OO, funct., logic, static typing, dyn. typing}

{Scheme}

{dyn. typing, funct.}

{Prolog}

{dyn. typing, logic}

{Java, C++}

{static typing, OO}

{Smalltalk}

{dyn. typing, OO}

{Scheme, Prolog, Smalltalk}

{dynamic typing}

{Java, C++, Smalltalk}

{OO}

{Java, Smalltalk, C++, Scheme, Prolog}

{ }

Figure 3.3: The concept lattice for Table 3.1.

The containment relationship between concept extents (or,equivalently, intents)
defines a partial order over the set of all concepts, which canbe shown to be a lat-
tice [Ganter and Wille, 1997]. Figure 3.3 shows the concept lattice corresponding to
Table 3.1. The lattice’s bottom concept contains those elements that have all prop-
erties. Since there is no such programming language in our example, that concept
contains no elements (its extent is empty). Similarly, the top concept contains those
properties that hold for all elements. Again, there is no such property (the concept’s
intent is empty). Other concepts represent related groups of programming languages,

60 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

such as the concept({Java, C++}, {static typing, OO}), which groups all statically-
typed object-oriented languages, a sub-concept of all OO languages. Intuitively, the
sub-concept relationship can thus be interpreted as a specialization of more general no-
tions. Elements (resp. properties) in boldface are those that are most concept-specific,
being attached to the largest lower bound (resp. least upperbound) concept. When
using the so-calledsparse labelingof the concept lattice, only these boldface labels
are retained, without loss of information.

More precisely, when usingsparse labeling, a nodec is marked with an element
e∈ Ext[c] only if it is associated with the most specific (i.e., lowest)conceptc havinge
in the extent; a nodec is marked with a propertyp∈ Int[c] only if it is associated with
the most general (i.e., highest) conceptc havingp in its intent. The (unique) node of a
latticeL marked with a given elemente is thus:

γ(e) = inf{c∈ L | e∈ Ext[c]} (3.3)

whereinf gives the infimum (largest lower bound) of a set of concepts. Similarly, the
unique lattice node marked with a given propertyp is:

µ(p) = sup{c∈ L | p∈ Int[c]} (3.4)

wheresupgives the supremum (least upper bound) of a set of concepts. The set of
elements in the extent of a lattice nodec can then be computed as the set of all elements
at or belowc, while the set of properties in its intent are those markingc or any node
abovec.

The labeling introduced by the functionsµandγ give the most specific concept for a
given element (resp. property). Thus, with sparse labeling, the elements and properties
that label a given concept are those that characterize it most specifically. Sometimes it
is convenient to get the labels of a given concept through thefollowing functions:

α(c) = {p∈ P | µ(p) = c} (3.5)

β(c) = {e∈ E | γ(e) = c} (3.6)

α(c) gives the set of properties labeling a conceptc, while β(c) gives the concept’s
elements, according to thesparse labeling.

3.2.3 Terminology

We conclude this background section by introducing some terminology that will be
used throughout the remainder of this chapter.

A concern is a collection of related source-code entities, such as classes, methods,
statements or expressions, that implement a particular functionality or feature
of the application. Acrosscuttingconcern is a concern whose entities are not
captured into a single localised abstraction, but are scattered over many different
locations and tangled with other concerns.

3.3. The three aspect mining techniques 61

A (concern) seedis a single source-code entity, such as a method, or a collection of
such entities, that strongly connotes a crosscutting concern. It offers a starting
point for further exploration and understanding the whole extent of that concern’s
implementation.

A candidate seedis identified by an automated aspect mining technique as a potential
concern seed but is not yet confirmed to be an actual concern seed or rather a false
positive.

Seed expansionis the manual or automated process of completing the set of source-
code entities constituting a seed into the entire set of source-code entities of
which the crosscutting concern corresponding to that seed consists.

3.3 The three aspect mining techniques

In this section, we give a brief overview of three techniques, developed independently
by different research groups, that support the automated discovery of crosscutting con-
cerns in the source code of a software system that is written in a non aspect-oriented
way.

3.3.1 Fan-in Analysis

Crosscutting functionality can occur at different levels ofmodularity. Classes, for
instance, can assimilate new concerns by implementing multiple interfaces or by im-
plementing new methods specific to super-imposed roles. At the method level, cross-
cutting in many cases resides in calls to methods that address a different concern than
the core logic of the caller. Typical examples include logging, tracing, pre- and post-
condition checks, and exception handling. It is exactly this type of crosscutting that
fan-in analysis tries to capture.

When we study the mechanics of AOSD, we see that it employs the so-calledadvice
construct to eliminate crosscutting at method level. This construct is used to acquire
control of program execution and to add crosscutting functionality to methods without
an explicit invocation from those methods. Rather, the crosscutting functionality is
isolated in a separate module, called aspect, and woven withthe method implicitly
based on the advice specification.

Fan-in analysis reverses this line of reasoning and looks for crosscutting function-
ality that is explicitly invoked from many different methods scattered throughout the
code. The hypothesis is that thenumber ofof calls to a method implementing this
crosscutting functionality (fan-in) is a good measure for the importance and scattering
of the discovered concern.

To perform the fan-in analysis, a fan-in metric was implemented as a plug-in for

62 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

the Eclipse platform2, and integrated it into an iterative process that consists of three
steps:

1. Automatic computation of the fan-in metric for all methods in the investigated
system.

2. Filtering of the results from the previous step by

• eliminating all methods with fan-in values below a chosen threshold (in the
experiment, a threshold of 10 was used);

• eliminating the accessor methods (methods whose signaturematches a
get*/set* pattern and whose implementation only returns or sets a refer-
ence);

• eliminating utility methods, liketoString() and collection manipulation
methods, from the remaining subset.

3. (Partially automated) analysis of the methods in the resulting, filtered set by
exploring the callers, call sites, naming convention used,the implementation
and the comments in the source code.

Besides code exploration, the tool supports automatic recognition of a number
of relations between the callers of a method, such as common roles, consistent
call positions, etc.

The result of the fan-in analysis is a set of candidate seeds,represented as methods
with high fan-in.

3.3.2 Identifier Analysis

In the absence of designated language constructs for aspects, naming conventions are
the primary means for programmers to associate related but distant program entities.
This is especially the case for object-oriented programming, where polymorphism al-
lows methods belonging to different classes to have the samesignature, where it is
good practice to use intention-revealing names [Beck, 1997], and where design and
other programming patterns provide a common vocabulary known by many program-
mers.

Identifier analysisrelies on this assumption and identifies candidate seeds by group-
ing program entities with similar names. More specifically,it applies FCA with as ele-
ments all classes and methods in the analyzed program (except those that generate too
much noise in the results, like test classes and accessor methods), and as properties the
identifiers associated with those classes and methods.

The identifiers associated with a method or class are computed by splitting up
its name based on where capitals appear in it. For example, a method named

2 http://swerl.tudelft.nl/view/AMR/FINT

3.3. The three aspect mining techniques 63

createUndoActivity yields three identifierscreate, undo andactivity. In addition,
we apply the Porter stemming algorithm [Porter, 1980] to make sure that identifiers
with the same root form (likeundo andundoable) are mapped to one single represen-
tative identifier or ‘stem’. It is these stems that are used asproperties for the concept
analysis.

The FCA algorithm then groups entities with the same identifiers. When such a
group contains a certain minimum number of elements (in the experiment, a threshold
of 4 was used) and the entities contained in it cut across multiple class hierarchies, the
group is considered a candidate seed. The only remaining butmost difficult task is that
of deciding manually whether a candidate seed is a real seed or a false positive. To
help the developer in this last task, theDelfSTofsource-code mining tool presents the
concepts in such a way that they can be browsed easily by a software engineer and so
that he or she can readily access the code of the classes and methods belonging to a
discovered seed.

3.3.3 Dynamic Analysis

Formal concept analysis has been used to locate ‘features’ in procedural programs
[Eisenbarth et al., 2003]. In that work, the goal was to identify the computational
units (procedures) that specifically implement a feature (i.e., requirement) of interest.
Execution traces obtained by running the program under given scenarios provided the
input data (dynamic analysis).

In a similar way, dynamic analysis can be used to locate aspects in program code
[Tonella and Ceccato, 2004a] according to the following procedure. Execution traces
are obtained by running an instrumented version of the program under analysis, for a
set of scenarios (use-cases). The relationship between execution traces and executed
computational units (methods) is subjected to concept analysis. The execution traces
associated with the use-cases are the elements of the concept analysis context, while
the executed methods are the properties. In the resulting concept lattice (with sparse
labeling), theuse-case specificconcepts are those labeled by at least one trace for some
use-case (i.e.α contains at least one element), while the concepts with zeroor more
properties as labels (those with an emptyα) are regarded asgenericconcepts. Thus,
use-case specific concepts are a subset of the generic ones.

Both use-case specific concepts and generic concepts carry information potentially
useful for aspect mining, since they group specific methods that are always executed
under the same scenarios. When the methods that label one suchconcept (using the
sparse labeling) crosscut the principal decomposition, a candidate aspect is determined.

Formally, letC be the set of all the concepts and letCs be the set of use-case specific
concepts (|α(c)| > 0). A conceptc is considered a candidate seediff:

Scattering: ∃p, p′ ∈ β(c) | pre f(p) 6= pre f(p′)

Tangling: ∃p∈ β(c),∃c′ ∈ Ω,∃p′ ∈ β(c′) | c 6= c′∧ pre f(p) = pre f(p′)

64 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

whereΩ = Cs for the use-case specificseeds, whileΩ = C for the genericseeds.
The first condition (scattering) requires that more than one class contributes to the
functionality associated with the given concept (pref(p) is the fully scoped name of
the class containing the methodp). The second condition (tangling) requires that the
same class addresses more than one concern.

In summary, a concept is a candidate seed if: (1)scattering:more than one class
contributes to the functionality associated with the givenconcept; (2)tangling: the
class itself addresses more than one concern.

The first condition alone is typically not sufficient to identify crosscutting concerns,
since it is possible that a given functionality is allocatedto several modularized units
without being tangled with other functionalities. In fact,it might be decomposed into
sub-functionalities, each assigned to a distinct module. It is only when the modules
specifically involved in a functionality contribute to other functionalities as well (i.e.
the second condition) that crosscutting is detected, hinting for a candidate seed.

3.4 Results of the Aspect Mining

In this section, we present the results of applying each technique to version 5.4b1 of
JHotDraw, a Java program with approximately 18,000 non-commented lines of code
and around 2800 methods. We mutually compare the results of the techniques, and
discuss the limitations of each technique as well as their complementarity.

3.4.1 The Fan-in Analysis Experiment

As described in Subsection 3.3.1, fan-in analysis first performs a number of succes-
sive steps to filter the methods in the analyzed system. The threshold-based filtering,
which selects methods with high fan-in values, kept around 7% of the total number of
methods. The filters for accessors and utility methods eliminated around half of the
remaining methods. In the remaining subset, more than half of the methods (52%)
were categorized as seeds, based on manual analysis.

Table 3.2 gives an overview of the types of crosscutting concerns that were identi-
fied and the seeds that led to their identification. Several ofthese concern types, such
asconsistent behavioror contract enforcement[The AspectJ Team, 2003], have more
than one instance in JHotDraw; that is, multiple unrelated (crosscutting) concerns exist
that conform to the same general description. For example, one instance ofcontract en-
forcementchecks a priori conditions to a command’s execution, while another instance
verifies common requirements for activating drawing tools.The number of different
instances that were detected is indicated in the # column.

We distinguish three different ways in which the fan-in metric can be associated
with the crosscutting structure of a concern implementation (also indicated in Ta-
ble 3.2):

3.4. Results of the Aspect Mining 65

Concern type # Seed’s description

Consistent behavior 4 Methods implementing the consistent behav-
ior shared by different callers, such as check-
ing and refreshing figures/views that have
been affected by the execution of a com-
mand.

Contract enforcement 4 Method implementing a contract that needs
to be enforced, such as checking the refer-
ence to the editor’s active view before exe-
cuting a command.

Undo 1 Methods checking whether a command is
undoable/redoable and theundo method in
the super-class, which is invoked from the
overriding methods in subclasses.

Persistence and resurrection1 Methods implementing functionality com-
mon to persistent elements, such as read-
/write operations for primitive types wrap-
pers (e.g., Double, Integer, etc.) which are
referenced by the scattered implementations
of persistence/resurrection.

Command design pattern 1 Theexecutemethod in the command classes
and command constructors.

Observer design pattern 1 The observers’ manipulation methods and
notifymethods in classes acting as subject.

Composite design pattern 2 The composite’s methods for manipulating
child components, such as adding a new
child.

Decorator design pattern 1 Methods in the decorator that pass the calls
on to the decorated components.

Adapter design pattern 1 Methods that manipulate the reference from
the adapter (Handle) to the adaptee (Figure).

Table 3.2: Summary of the results of the fan-in analysis experiment.

66 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

1. The crosscutting functionality is implemented through amethod and the cross-
cutting behavior resides in the explicit calls to this method. Examples in this
category includeconsistent behaviorandcontract enforcement.

2. The implementation of the crosscutting concern is scattered throughout the sys-
tem, but makes use of a common functionality. The crosscutting resides in the
call sites, and can be detected by looking at the similarities between the calling
contexts and/or the callers. Examples of concerns in this category arepersistence
andundo(see Chapter 2).

3. The methods reported by the fan-in analysis are part of theroles superimposed
to classes that participate in the implementation of a design pattern. Many of
these roles have specific methods associated to them: thesubjectrole in an Ob-
server design pattern is responsible to notify and manage the observer objects,
while thecompositerole defines specific methods for manipulating child com-
ponents. In general, establishing a relation between theseseed-methods and the
complete concern to which they appertain might require a better familiarity of
the human analyzer with the code being explored, than for theprevious two cate-
gories. However, many of these patterns are well-known and have a clear defined
structure, which eases their recognition [Hannemann and Kiczales, 2002].

For more details regarding fan-in analysis and a complete discussion of the JHotDraw
results, we refer to Chapter 2.

3.4.2 The Identifier Analysis Experiment

Applying the identifier analysis technique of Subsection 3.3.2 on JHotDraw yielded
230 concepts and took about 31 seconds when using a thresholdof 4 for the minimum
number of elements in a concept. With a threshold of 10, the number of concepts pro-
duced was significantly less: only 100 concepts remained after filtering, for a similar
execution time.3 In both cases, 2193 elements and 507 properties were considered. It is
a good sign that the number of properties is significantly smaller than the total number
of elements considered, as it implies that there is quite some overlap in the identifiers
of the different source-code entities, which was one of the premisses of the identifier
analysis technique.

The manual part of the experiment, i.e. deciding which concepts were real seeds,
was much more time-consuming. Overall, this took about three days for the experiment
with threshold 4, where 230 seed candidates needed to be investigated. For each of the
discovered concepts, the code of the entities in its extent had to be inspected to decide
whether (most of) these entities addressed a similar concern. Other than allowing to

3Whereas the threshold of 4 was chosen arbitrarily, the threshold of 10 was determined experimen-
tally: below that threshold the amount of concepts that wereregarded as noise was significantly higher
than above the threshold.

3.4. Results of the Aspect Mining 67

Crosscutting concern Concept(s) #elements Some elements

Observer change(d) 67 figureChanged(e)
check 14 checkDamage()
listener 65 createDesktopListener()
release 12 . . .

Command execution command executed 4 commandExecuted(...)
execut(abl)e 51 commandExecutable(...)

Undo undo(able) 53 createUndoActivity()
redo(able) 14 redo()

Visitor visit 12 visit(FigureVisitor)
Persistence file 15 registerFileFilters(c)

storable 5 readStorable()
load 8 loadRegisteredImages
register 7 loadRegisteredImages

Drawing figures draw 112 draw(g)
Moving figures move 36 moveBy(x,y)

moveSelection(dx,dy)

Iterating over collections iterator 5 iterator(), listIterator(),
. . .

Table 3.3: Selection of results of the identifier analysis experiment.

browse the source code of the elements in the extent of a concept, the DelfSTof code
mining tool provided no direct support for this.

Table 3.3 presents some of the seeds discovered by manually analyzing the classes
and methods belonging to the extent of the concepts producedby the FCA algorithm.
The first column names the concern, the second column shows the identifiers shared by
the elements belonging to the concept(s) corresponding to that concern. The third col-
umn shows the size of the extent for each concept. Finally, for illustration purposes, the
fourth column shows some program entities appearing in the extent of the discovered
concepts.

Out of 230 candidate seeds, 41 seeds were retained, when using a threshold of 4
for the minimum number of elements in a concept. These discovered concerns were
classified in three different categories:

1. Some of these concerns looked like aspects in the more traditional sense (e.g.,
observer, undoandpersistence).

2. Many other concerns seemed to represent a crosscutting functionality that was
part of the business logic (e.g.,drawing figures, moving figures). The distinction
between these two first categories was somewhat subjective,however.

68 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

Crosscutting concern Concepts Methods

Undo 2 36
Bring to front 1 3
Send to back 1 3
Connect text 1 18

Persistence 1 30
Manage handles 4 60
Manage figure change event 3 8
Move figure 1 7
Command executability 1 25
Connect figures 1 55
Figure observer 4 11
Add text 1 26
Add URL to figure 1 10
Manage figures outside drawing 1 2
Get attribute 1 2
Set attribute 1 2
Manage view rectangle 1 2
Visitor 1 6

Table 3.4: Summary of the results of the dynamic analysis experiment.

3. Three Java-specific concerns were discovered (e.g.,iterating over collections)
that are difficult to factor out into an aspect because they rely on or extend spe-
cific Java code libraries.

3.4.3 The Dynamic Analysis Experiment

The dynamic analysis technique of Subsection 3.3.3 is supported by theDynamoaspect
mining tool4. The first step required byDynamois the definition of a set of use-cases.
To accomplish this task, the documentation associated withthe main functionalities of
JHotDraw was used to define a use-case for each functionalitydescribed in the docu-
mentation. Amongst others, a use-case was created to draw a rectangle, one to draw a
line using the scribble tool, one to create a connector between two existing figures, one
to attach a URL to a graphical element, and so on. In total, 27 use-cases were obtained.
When executed they exercised 1262 methods belonging to JHotDraw classes, so that
the initial context for the concept analysis algorithm contained 27 elements and 1262
properties. The resulting concept lattice contained 1514 nodes.

Among the concepts in the lattice, 11 satisfied the crosscutting conditions (scatter-

4Available fromhttp://star.itc.it/dynamo/ under GNU General Public License (GPL).

3.5. Comparing the Results 69

ing and tangling), described in Section 3.3, for the use-case specific concepts, while
56 (including the 11 above) satisfied the conditions for the generic concepts. Next,
both the use-case specific and generic concepts were revisited manually, to determine
which ones could be regarded as plausible seeds and which ones should be considered
false positives. The criterion followed in this assessmentwas the following: a concept
satisfying the crosscutting conditions is considered a seed if

• it can be associated to a single, well-identified functionality (this usually ac-
counts for the possibility to give it a short description that labels it), and

• some of the classes involved in such a functionality have a different primary
responsibility (indicating crosscutting with respect to the principal decomposi-
tion).

Of course, due to the nature of crosscutting concerns and therelated design decisions,
some level of subjectivity still remains (as is the case for the other techniques).

In the end, the list of candidate seeds shown in Table 3.4 was obtained. The four
topmost concerns are use-case specific. As apparent from thesecond column of the
table, and as was the case for the identifier analysis experiment, some crosscutting
concerns were detected by multiple concepts. In total, among the 56 generic concepts
satisfying the crosscutting conditions, 24 concepts were judged to be associated with
18 crosscutting concerns.

The methods associated with each candidate seed (counted inthe last column of
Table 3.4) are indicative of the “aspectizable” functionality. Although they may be not
the complete list (dynamic analysis is partial) and may contain false positives, they
represent a good starting point for a refactoring intervention aimed at migrating the
application to AOSD.

3.5 Comparing the Results

In this section we discuss some selected concerns that were identified by the different
techniques. We selected some concerns that were detected byall three techniques, as
well as a representative set of concerns that were detected by some techniques but not
by others. This allows us to clearly pinpoint the strengths and weaknesses of each
individual technique.

3.5.1 Selected Concerns

Table 3.5 summarises the concerns we selected. The first column names the concern.
The other columns show by what technique(s) the concern was discovered: if a tech-
nique discovered the concern, we put a + sign in the corresponding column, otherwise
a - sign is in the table.

70 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

Concern Fan-In Identifier Dynamic
Analysis Analysis Analysis

Observer + + +
Undo + + +
Persistence + + +
Consistent behavior / + - -
Contract enforcement
Command execution + + +
Bring to front / Send to back - - +
Manage handles - + +
Move Figures + (discarded) + +

Table 3.5: A selection of detected concerns in JHotDraw.

Observer

The Observer design pattern is an example of a concern reported by all techniques.
Other examples includeCommand execution, Undofunctionality andPersistence, whose
implementation in JHotDraw is described in detail in Chapter6. Their identification
should come as no surprise, because they correspond to well-known aspects, frequently
mentioned in AOSD literature, or to functionalities for which an AOSD implementa-
tion looks quite natural.

Concerns identified by all three techniques are probably the best starting point for
migrating a given application to AOSD, because developers can be quite confident
that the concern is very likely to be an aspect. However, the fact that only four of
such concerns were discovered, stresses the need for an approach that combines the
strengths of different techniques.

Contract enforcement / Consistent behavior

Thecontract enforcementandconsistent behaviorconcerns [The AspectJ Team, 2003]
generally describe common functionality required from, orimposed on, the partici-
pants in a given context, such as a specific pre-condition check on certain methods
in a class hierarchy. An example from the JHotDraw case is theCommandhierarchy
for which theexecutemethods contain code to ensure the pre-condition that an ‘active
view’ reference exists (is not null).

We classify these concerns as a combination of contract enforcement and consistent
behavior since these types often have very similar implementations, and choosing a
particular type depends mainly on the context and on (personal) interpretation.

Fan-in analysis is particularly suited to address this kindof scattered, crosscutting
functionalities, which involve a large number of calls to the same method, while the
other two techniques potentially miss it. In fact, contractenforcement and consistent

3.5. Comparing the Results 71

behavior are usually associated with method calls that occur in everyexecution sce-
nario, so that they cannot be discriminated by any specific use-case. On the other
hand, identifier analysis will miss those cases where the methods that enforce a given
contract or ensure consistent behavior do not share a commonnaming scheme.

Command execution

This concern deals with the executability and the actual execution of objects whose
class belongs to theCommandhierarchy. Identifier analysis identified a concept which
contains exactly theexecutemethods in theCommandhierarchy. Dynamic analysis
identified the classes containingisExecutablemethods. Indeed, theexecutemethods all
have the same name and manual inspection showed they exhibitsimilar behavior: they
nearly all make a super call to anexecutemethod, invoke acheckDamagemethod and
(though not always) invoke asetUndoAcivityandgetUndoActivitymethod. A similar
argument can be made forisExecutable.

Hence, whereas identifier and dynamic analysis may not detect the more generic
Contract enforcement / Consistent behavior aspect directly,they can identify some
locations (pointcuts) where potentially such an aspect could be introduced.

Bring to front / Send to back

The functionality associated with this concern consists ofthe possibility to bring fig-
ures to the front or send them to the back of an image. When exercised, it executes
specific methods that have a low fan-in, hence they were not detected by fan-in analy-
sis. Identifier analysis also missed them, because there were not enough methods with
a sufficiently similar name to surpass the threshold. Hence,dynamic analysis is the
only technique that identified this concern. This example isa good representative of
crosscutting concerns that are reported only by dynamic analysis: whenever the meth-
ods involved in a functionality are not characterized by a unifying naming scheme (or
there are not enough of them), neither do they have high fan-in, the other two tech-
niques are likely to fail.

Manage Handles

A crosscutting functionality is responsible for managing the handles associated with
the graphical elements. Such handles support interactive operations, such as resizing
of an element, conducted by clicking on the handle and dragging the mouse. This
seed is interesting because it is detected by dynamic analysis and by identifier anal-
ysis, but in different ways. Identifier analysis detects this concern based on the pres-
ence of the word ‘handle’ in identifiers. Consequently, it misses methods such as
north(), south(), east(), west(), which are clearly related to this concern, but
do not share the lexicon with the others. On the other hand, dynamic analysis reports
both the latter methods and (some of) those containing the word ‘handle’. However,

72 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

since not all possible handle interactions have been exercised, the output of dynamic
analysis is partial and does not include all the methods reported by identifier analysis.

Themanage handlesconcern was missed by the fan-in analysis because the calls
are too specific: they are similar but different calls instead of one single called method
with a high fan-in.

Moving figures

The three techniques discard concerns on different bases: some of the concerns are
filtered automatically while others are excluded manually.Themove figuresconcern,
seeded by themoveBymethod in theFigure classes, is one example where different,
subjective decisions can be made depending on whether the concept is classified either
as a candidate aspect or as part of the principal decomposition. ThemoveBymethods
allow to move a figure with a given offset. The team which used fan-in analysis argued
that the original design seems to consider this functionality as part of aFigure’s core
logic. The other two teams considered it as part of a crosscutting functionality and
included it in the list of reported seeds.

This example highlights the difficulty of deciding objectively on what is and what
is not an aspect and corroborates our choice to conduct a qualitative, instead of a quan-
titative, comparison.

3.5.2 Limitations

As a consequence of applying each technique to the same case,some of the limitations
of the respective techniques have become obvious. For example, we obtained a better
idea of potential ‘false negatives’, i.e. concerns that were not identified by a particular
technique but that were identified by another. Below, we summarise some of the dis-
covered limitations. In the next section we then describe how to partly overcome these
limitations by combining different techniques.

Fan-in analysis mainly addresses crosscutting concerns that are largely scattered and
that have a significant impact on the modularity of the system. The downside of this
characteristic is that concerns with a small code footprintand thus with low fan-in
values associated, will be missed. For example, the identification ofObserverdesign
pattern instances is dependent on the number of classes implementing the observer
role. These classes contain calls to specific methods in thesubjectclass for registering
as listeners to the subject’s changes. The number of observer classes will determine
to a large extent the number of calls to the registration method in the subject role. A
collateral effect is the anticipated unsuitability of the technique for analysing small
case studies.

Identifier analysis tends to produce a lot of detailed results. However, these results
typically contain too much noise (false positives), so a more effective filtering of the
discovered concepts, as well as of the elements inside thoseconcepts, is needed. In

3.5. Comparing the Results 73

Technique Concerns
Dynamic analysis 18
Fan-in analysis 16
Dynamic analysis

S

Fan-in analysis 30
Dynamic analysis

T

Fan-in analysis 4

Table 3.6: Concerns identified by either dynamic or fan-in analysis.

addition, the discovered concepts are often incomplete, inthe sense that they do not
completely “cover” an aspect or crosscutting concern. Often, more than one concept is
needed to describe a single concern, as was the case for theObserveraspect. The in-
dividual concepts themselves may also need to be completed with additional elements
that are not contained in those concepts. This was the case for the Undo aspect: in
addition to the methods with ‘undo’ or ‘undoable’ in their name, some of the methods
calling these undo methods need to be considered as part of the coreaspectas well.

Dynamic analysis is partial (i.e., not all methods involved in an aspect are retrieved),
being based on specific executions, and it can determine onlyaspects that can be dis-
criminated by different execution scenarios (e.g., aspects that are exercised in every
program execution cannot be detected). Additionally, it does not deal with code that
cannot be executed (e.g., code that is part of a larger framework, but that is not used in
a specific application).

3.5.3 Complementarity

The three proposed techniques address symptoms of crosscutting functionality, such as
scattering and tangling, in quite different ways. As shown in Table 3.6, fan-in analysis
and dynamic analysis show largely complementary result sets: among the 30 concerns
identified by either dynamic or fan-in analysis, only 4 are identified by both techniques.
This is an expected result. Fan-in analysis focuses on identifying those methods that
are called at multiple places. However, when a method is called many times, it is likely
to occur in most (if not all) execution traces. Hence, no specific use-case can be defined
to isolate the associated functionality, and dynamic analysis will fail to identify it as a
seed.

Identifier analysis is the least discriminating of the threetechniques and has a large
overlap with the other two techniques. When a concern can be identified through fan-
in analysis and/or dynamic analysis, identifier analysis can often isolate it too, since a
common lexicon is often used in the names of the involved methods.

In the next section, we will use these observations to propose a new aspect mining
technique that is a clever combination of the three individual techniques.

74 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

3.6 Toward Interesting Combinations

Based on the discussion in the previous section, this sectionpresents three combined
aspect mining techniques and reports on the results of applying these combined tech-
niques on the JHotDraw application. Based on the analysis indicators ofrecalled meth-
odsandseed qualitywe compare whether these combined techniques provide a more
complete coverage of the detected concerns than each of the original techniques indi-
vidually.

3.6.1 Motivation

As has been explained in the previous sections, the fan-in analysis and dynamic anal-
ysis techniques are largely complementary, and address different symptoms of cross-
cutting. An obvious and interesting combination of these techniques thus consists of
simply applying each technique individually and taking theunion of the results. Ad-
ditionally, the seeds in the intersection of the results (ifany) are likely to represent the
best aspect candidates, because both techniques identify them. This was illustrated in
our experiment, in which both techniques identified theObserver, Undo, Persistence
andCommand executioncandidates.

As for other combinations of the techniques, two interesting observations were
considered. First, the manual intervention required by identifier analysis is very time-
consuming and is not justified by the fact that it produces more interesting results. This
makes the technique less suited than the others for large(r)cases. Second, both fan-in
analysis and dynamic analysis identify only candidate seeds that serve as a starting
point for seed expansion. Dynamic analysis in particular suffers from this problem
as it is based on a (necessarily partial) list of execution scenarios. Similarly, fan-in
analysis is only focused on invocations of high fan-in methods, which represent just
a portion of the whole concern. Interestingly, while performing fan-in analysis and
dynamic analysis, we observed that the classes and methods in the seed expansion
often exhibited similar identifiers.

Consequently, we believe better results can be obtained if weuse identifier anal-
ysis as a seed expansion technique for the seeds identified byeither fan-in analysis
or dynamic analysis, or by the seeds identified by both these techniques. In this way,
the search space for identifier analysis is reduced significantly, and more automation is
provided for the manual seed expansion needed by both fan-inanalysis and dynamic
analysis. A final manual refinement step is anyway necessary,since the expanded seeds
may contain false positives and negatives.

In the remainder of this section, we will present three different techniques: a com-
bination of fan-in analysis with identifier analysis, of dynamic analysis with identifier
analysis, and of the union of fan-in analysis and dynamic analysis with identifier anal-
ysis.

3.6. Toward Interesting Combinations 75

3.6.2 Definition of the Combined Techniques

The combined techniques work as follows:

1. Identify interesting candidate seeds by applying fan-inanalysis, dynamic analy-
sis or both to the application;

• For candidate seeds identified by dynamic analysis, (manually) filter out
those methods that do not pertain to the concern;

2. For each method in the candidate seed, find its enclosing class, and compute the
identifiers occurring in the method and the class name, according to the algo-
rithm used by identifier analysis;

3. Apply identifier analysis to the application, and search for a concept, among the
concepts it reports, that is “nearest”. The nearest conceptis the concept that
contains most of the identifiers generated in the previous step. If more than one
nearest concept exists, take the union of all their elements.

4. Add the methods contained in the nearest concept(s) to thecandidate seed.

5. Revise the expanded list of candidate seeds manually to remove false positives
and add missing seeds (false negatives).

In what follows, we experimentally validate these techniques on the JHotDraw
case.

3.6.3 Analysis Indicators

Before applying the combined techniques, we define two measures to validate the re-
sults. A common way to measure classification techniques is to useprecisionandrecall
as performance indicators. Unfortunately, this requires information about all crosscut-
ting concerns present in the application, and this is not available. Therefore, we have
chosen alternative metrics, which we use for measuring the quality of the individual
seedsobtained using the various techniques. We call these mericsrecalled methods
andseed quality.

Recalled methodsis the number of methods reported in a seed that actually belong to
the crosscutting concern.

Seed quality is the percentage of a seed’s recalled methods with respect to the total
number of methods in the seed. This indicator estimates how difficult it is to spot
a concern in the methods provided by the seed.

76 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

With respect to the definitions above, it is important to remark that for fan-in, two
interpretations of seeds are possible: the first takes only the callees with high fan-in
into account; the second interpretation includes, besidesthe callees with high fan-in,
also all callers to these methods. These differences stem from the fact that the fan-
in technique is actually based on the call-relation and the interpretations use either
one or both sides of the relation in seed representations. During exploration these
differences are not that important because we can easily navigate from caller to callee
and vice versa. However, when we start assessments based on counting elements, these
interpretations do have considerable impact.

In the first case, the number of recalled methods will be low (since call-sites are
not considered in the seeds), and the seed quality will always be 100% since the high
fan-in callees belong to the concern by definition. The second interpretation will result
in higher values of recall and yields a more complete pictureof the concern. How-
ever, lower values for seed quality are possible since not all calls may be caused by a
crosscutting concern.

The next section describes the results of applying combinedtechniques on the JHot-
Draw appication, and evaluates the above indicators beforeand after the experiment.
We include results for both interpretations of fan-in seedsdiscussed above.

3.6.4 Experimental Results

Table 3.7 shows the values of the indicators before and afterthe completion experi-
ment (based on the first interpretation of seeds for fan-in).Although the completion
technique can be applied to all concerns identified by eitherfan-in analysis or dynamic
analysis, we performed the experiment only on the concerns identified by all three
techniques. The sole reason is that we need to assess how the completion technique
influences the recalled methods and seed quality indicatorsas compared to their initial
values, which can only be done for theUndo, Command execution, Persistenceand
Observerconcerns.

When looking at the common results, it is important to note that fan-in seeds point
to distinct crosscutting concernssortsthat can occur as parts of more complex struc-
tures like implementations of theObserverpattern [Marin et al., 2005c,a], a topic we
will explore in depth in the next chapter . In the experiments, these are grouped to
obtain the same level of granularity obtained by the other techniques.

A deeper look into the results of the completion with identifier analysis reveals in-
teresting information: For theUndo concern, the results of both fan-in analysis and
dynamic analysis improve a lot in terms of recalled methods (from 23 and 3 up to 183
and 94). There is a negative impact on the seed quality for (completed) dynamic anal-
ysis (from 64% down to 55%), but the seed quality for fan-in plus identifier analysis
remains at 100%. For theCommand executionandPersistenceconcerns, the number
of recalled methods increases significantly for the completion technique (from 20 and
3 up to 132 and from 29 and 6 up to 104), while the seed quality remains at the same
level.

3.6. Toward Interesting Combinations 77

Concerns Undo Command execution
Technique Recalled Seed Recalled Seed

Methods⋆ Quality⋆ Methods⋆ Quality⋆

Dynamic analysis 23 64% 20 80%
Fan-in analysis 3 100% 3 100%
Dyn

S

Fan-in 24 63% 22 81%
Dyn + Identifier 183 55% 132 80%
Fan-in + Identifier 94 100% 132 80%
(Dyn

S

Fan-in) + Identifier 183 55% 132 80%

Concerns Persistence Observer
Technique Recalled Seed Recalled Seed

Methods⋆ Quality⋆ Methods⋆ Quality⋆

Dynamic analysis 29 97% 3 100%
Fan-in analysis 6 100% 10 100%
Dyn

S

Fan-in 32 97% 13 100%
Dyn + Identifier 104 100% 121 14%
Fan-in + Identifier 104 100% 146 15%
(Dyn

S

Fan-in) + Identifier 104 100% 146 15%

Table 3.7: Recalled methods and seed quality before and aftercompletion (⋆based on
the first interpretation of seeds for fan-in)

For theObserverconcern, the results are less encouraging than for the othercon-
cerns. Even though the number of recalled methods increasesfor the completion tech-
nique, the quality of the seeds drops to an unacceptable level (from 100% down to
14% and 15%). Clearly, the completion does not provide a good expansion of the
original seeds. Closer inspection reveals that no clearly distinctive naming conven-
tion has been used to implement theObserverconcern. TheUndo, Command execu-
tion andPersistenceconcerns employ distinctive identifiers such asundo/undoable,
execute/command andstore/storable, which are used extensively only within the
concern implementation. Consequently, the completion provided by identifier analysis
gives good seed expansions. However, the identifiers used for the Observerconcern
are the more generalfigure/update/... that are used extensively throughout the ap-
plication, and not only in the concern implementation. Therefore, identifier analysis is
not able to provide a good expansion for the seeds found by theother techniques.

An overview of results based on the second interpretation ofseeds for fan-in, i.e.
taking also the call-sites into account, is shown in Table 3.8. For theUndo concern,
we show both the individual values for each of the three high fan-in callees reported
as seeds earlier and the recall and seed quality of the combination of these three. The
seed quality is lower than 100% in these cases since some of the calls found were not
considered to be part of the actual crosscutting concern. For theObserverconcern we

78 Chapter 3. Applying and Combining Three Different Aspect Mining Techniques

Seed Recalled Seed
Methods Quality

Undo (callee #1) 24 92%
Undo (callee #2) 25 88%
Undo (callee #3) 24 83%

Undo (combined) 73 88%

Observer (combined) 83 100%

Table 3.8: Recalled methods and seed quality for fan-in analysis based on the second
interpretation of seeds for fan-in

only show the value for the combined high fan-in callees since it would go too far to
go over all individual values here. The seed quality is 100% in these cases since there
are no calls from outside this concern to the reported callees.

The seeds identified by fan-in analysis and their qulity measures, for the aforemen-
tioned as well as for the other concerns, are available online5.

3.7 Summary and Future Work

The purpose of the chapter was to compare three different aspect mining techniques,
discuss their respective strengths and weaknesses by applying them to a common
benchmark application, and develop combined techniques based on this discussion.

We observed that all three techniques were able to identify seeds for well-known
crosscutting concerns, but that interesting differences arose for other concerns. These
differences are largely due to the different ways in which the techniques work. Fan-in
analysis is good at identifying seeds that are largely scattered throughout the system
and that involve a lot of invocations of the same method, but it cannot be used to analyse
smaller applications. Identifier analysis is able to identify seeds when the associated
methods have low fan-in, but only if these methods share a common lexicon. The
main drawback of this technique is the large number of reported seeds that had to be
inspected manually. Finally, dynamic analysis is able to find seeds in the absence of
high fan-in values and common identifiers, but the techniqueis only partial because it
relies on execution traces.

We also observed that the three techniques are quite complementary: fan-in analy-
sis and dynamic analysis require a manual effort to expand the seeds into full concerns,
whereas identifier analysis covers a large part of a concern,but requires extensive fil-
tering of the reported seeds. Hence, to improve automation of both fan-in analysis and
dynamic analysis, and to reduce the search space for identifier analysis, we proposed
a combined technique in which seeds from either fan-in analysis or dynamic analysis

5http://swerl.tudelft.nl/view/AMR/CombinationResults

3.7. Summary and Future Work 79

are expanded automatically by applying identifier analysis. To verify the performance
of this combined technique, we applied it to JHotDraw and interpreted the results in
terms of two indicators:recalled methodsandseed quality. The measures show that
for three out of the four concerns we considered, the combined technique outperforms
the individual techniques. In only one case, the combined technique performed worse.

Future work mainly consists of extending our comparison with other aspect mining
techniques, and potentially proposing new interesting combinations with such tech-
niques. This will not only allow us to come up with better (combined) aspect mining
techniques, but will also allow us to evaluate the three considered techniques even bet-
ter, as new concerns will be identified that we were not aware of. Additionally, we
could come up with extra quality indicators that complementtherecalled methodsand
seed qualityindicators, and empirically establish their validity by considering other
benchmark applications as well.

Chapter 4

Crosscutting Concern Sorts

Our analysis of crosscutting concerns in real-life softwaresystems (totaling over
500,000 lines of code), and in reports from literature, showsthat many of these con-
cerns are compositions of primitive building blocks, which are atomic crosscutting
concerns. Moreover, our study indicated a number of properties that allow for the cat-
egorization of these blocks intocrosscutting concern sorts. We use the concern sorts to
describe the crosscutting structure of many (well-known) designs and common mecha-
nisms in software systems.

In this chapter, we formalize the notion of crosscutting concern sorts by means of
relational queries over (object-oriented) source models and describe a number of com-
monly encountered sorts. Based on these queries, we present aconcern management
tool calledSOQUET, which can be used to document the occurrences of crosscutting
concerns in object-oriented systems. We assess the sorts-based approach by using the
tool to cover various crosscutting concerns in two open-source systems:JHOTDRAW

and JavaPETSTORE.

4.1 Introduction

The typically ill-modularized, scattered and tangled implementation of crosscutting
concerns in existing software systems is known to be a challenge to understanding,
and hence to the maintenance and evolution of these systems.Despite significant re-
search efforts on the design and development of aspect-oriented languages, as well as
on concern identification techniques (i.e., aspect mining), there is still little consen-
sus on what exactly constitutes a crosscutting concern, andhow such concerns can be
recognized, understood, and clearly documented in source code.

The need for a coherent system to address and represent crosscutting concerns oc-
curs for many, different steps towards better management ofconcerns in source code.
For example, we need to be able to consistently document aspect mining results in

81

82 Chapter 4. Crosscutting Concern Sorts

order to ensure common benchmarks for comparison and combination of mining tech-
niques. Similarly, a consistent approach to modeling and documentation of concerns
helps in exploring existing systems and in becoming aware ofthe crosscutting con-
cerns that they implement. We believe that (enabling) consistent understanding and
documentation of crosscutting concerns in existing code isthe key to making such
systems easier to comprehend and maintain.

Over the last three years, we have analyzed crosscutting concerns in a range of Java
systems, including JBoss, TOMCAT, JHOTDRAW, and the J2EE PETSTORE, totaling
over 500,000 lines of code. A detailed description of the crosscutting concerns in the
latter three of these systems is provided in Chapters 2 and 3 ofthis thesis.

In our study, we found several “building blocks” for crosscutting concerns. These
show typical, idiomatic crosscutting implementations. Anexample is the superimpo-
sition of a new role on an existing class. An instance of such arole superimposition
can be found in the drawing application JHOTDRAW, in which all classes representing
figure types that are to be stored on file should implement the “Storable” interface.
In AspectJ, such a crosscutting concern would typically be implemented through an
“introduction” mechanism.

Another building block we noted involves “consistent behavior”. As an example,
again from JHOTDRAW, theexecute methods as occurring in theCommandhierarchy
consistently invoke their super method in order to check certain preconditions. Another
consistent behavior occurs at the end of theseexecute methods, which have to refresh
the drawing view upon completion. Here the AspectJ equivalent is a pointcut and
advice.

The building blocks we observed areatomicconcerns, i.e., concerns that cannot be
naturally decomposed into smaller, yet meaningful concerns. These atomic concerns
can be categorized by distinctive properties, such as theirspecific underlying relations
and implementation idioms in source code. For instance, typical implementations of
tracing [The AspectJ Team, 2003], authorization checks [Laddad, 2003b], or notifica-
tion of listener-objects as part of theObserverdesign solution [Kiczales and Mezini,
2005a,b] follow the same idiom that consists of method invocations. We distinguish
each category of concerns that share their implementation idiom as a concernsort. A
number of concern sorts, which we shall discuss in detail in this chapter, are briefly
described in Table 4.1.

The concern sorts can be used on their own, but can also be composed to construct
more complex designs or features. For example, the Observerpattern, often used as an
example of a design whose implementation is crosscutting, can be seen as consisting of
two role superimpositions (one for the Subject and one for the Observer role), and two
consistent behaviors (one for the notification and another for the observer registration).
Likewise, we have seen several well known complex crosscutting concerns that can be
composed from our sorts, like transaction management and undo support.

In this chapter, we introduce the notion of concern sorts anddiscuss in detail a
number of these sorts. Particularly, we set out to provide answers to a range of open
questions: What exactly is a “sort”? Is there a way to formalize this notion? Based on

4.2. Crosscutting Concern Sorts 83

such a formalization, would there be a way to unambiguously identify the occurrence
of a sort in source code? Can we offer tool support for documenting crosscutting
concerns based on sorts? And, last but not least, how “typical” are the sorts we have
proposed? Do these sorts indeed occur in practice? How often? How can certain well
known crosscutting concerns as occurring in existing systems be captured using sorts?

Subsequent chapters will focus on specific applications of concern sorts, partic-
ularly on consistent aspect mining and refactoring: we shall look at how the sorts’
distinctive properties can be used for identification of sort instances in source code,
and for design of re-usable solutions for migration to modular, aspect-based imple-
mentations of concerns.

The main contributions of this chapter are:

• We recognize and describe a number of commonly encountered sorts of cross-
cutting concerns, showing their specific implementation idioms and a significant
number of examples of the sorts instances.

• We formalize the notion of crosscutting concern sort by characterizing each sort
by a specific query over a model of the source code, and presentthese queries.

• We present SOQUET, an Eclipse plug-in that implements the queries for each
sort, which can be used to document crosscutting concerns inJava applications.

• We provide an in depth study of sorts occurring in existing Java systems. In
particular, we use SOQUET to document a variety of crosscutting concerns as
presently implemented in the drawing application JHOTDRAW, and the web ap-
plication PETSTORE. We also show how the sorts can describe the crosscutting
concerns in the design patterns solutions discussed by Gamma et al. [1994].

The next sections each cover one of these contributions, after which we conclude with
a discussion on these results, a survey of related work, and an outlook towards future
work.

4.2 Crosscutting Concern Sorts

Crosscutting concern sortsare generic descriptions of atomic crosscutting concerns
that share a specific relation and implementation idiom. Atomic concerns are therefore
instancesof a particular sort, which can serve as building blocks of more complex
concerns or designs.

In our analysis of crosscutting concerns in source code, we recognized several sorts
of crosscuttingness, which recur in many well known and lesser known crosscutting
concerns. In this chapter, we cover in detail six most commonly encountered sorts,
discussing their general intent and specific implementation idioms. For each concern
sort, we also show various instances, i.e., crosscutting concerns encountered in practice
or presented in literature. Moreover, we look at how we can formalize the notion of

84 Chapter 4. Crosscutting Concern Sorts

Sort Short description

(Method) Consistent
Behavior

A set of method-elements consistently invoke a specific action as a step in
their execution.

Redirection Layer A type-element acts as a front-end interface having its methods responsible
for receiving calls and redirecting them to dedicated methods of a specific
reference, optionally executing additional functionality.

Expose Context (Pass
Context)

Methods in a call chain consistently use parameter(s) to propagate context
information along the chain.

Role Superimposition Type-elements extend their core functionality through theimplementation
of a secondary role.

Support Classes for
Role Superimposition

Type-elements implement secondary roles by enclosing support classes.
The class nesting mechanism enforces (and defines) the relation between
the role of the enclosing class and that of the support class.

Exception Propaga-
tion
(Declare throws
Clause)

Method-elements in a call chain consistently (re-)throw exceptions from
their callees in the absence of an appropriate answer.

Table 4.1: Sorts of crosscuttingness.

concern sorts. To that end, we express the six sorts, shown inTable 4.1, as queries over
a meta-model describing object-oriented source code.

4.2.1 The Query Model

Our query model is aimed at providing a standard, formalizeddescription of the rela-
tions underlying each of the crosscutting concern sorts. The model consists of a generic
query definition and a set of query templates (sort queries) that capture the relations
specific to each of the sorts.

A sort query is a binary relation between elements of two sets, thesource context
and thetarget context. The elements in these contexts are program elements, such as
classes or methods. The relation between them is based on a combination of various
source code relations, such ascall or inheritancerelations, that can be extracted us-
ing static analysis. A query can limit each context by selection clauses that impose
restrictions to the elements that participate in the relation.

The elements and collaborations relevant to the sort queries are shown in Figure 4.1.
These relations are used to pose restrictions in queries, such as “any methodm that
is of type T”. The type of a method is considered to be its returned type.

4.2.2 Description and Formalization of Sorts

This section covers the set of six crosscutting concerns sorts shown in Table 4.1. Be-
sides these sorts, we discuss a number of additional concernsorts in Section 4.5, where
we show how new sorts can be contributed to our list.

4.2. Crosscutting Concern Sorts 85

Project

Package

Type

Name

Interface Method

Field

Exception

Class Constructor

Member

throws

implements

contains

contains

declares

has-argument

has-parameter

invokes

invokes

invokes

is_of_type

extends

Element

encloses

dataflow

Figure 4.1: Meta-model relevant to sort queries

(Method) Consistent Behavior The crosscutting relation specific to this sort occurs
between a set of methods in a defined (source) context and a given action implemented
by a method. The methods in the set consistently invoke the action to fulfill a require-
ment additional to their core functionality.

While the target context is defined through one method, namelythe invoked action,
the definition of the source context can cover various cases;for example, in the case
of a logging concern, we could define the source context as theset of all methods in a
Java project. In this example, the definition of the context requires aprojectelement.
In other cases, the context could cover a type hierarchy, or just the set of methods of a
class, etc. Each of these contexts requires a different (type of) element for definition.
Our helper functionContextCB extracts all methods from a given starting points, which
we shall call contextseed.

We formalize the concern sort and document its instances through a query that
takes as input the invoked method and the seed element to define the source context.

CB(Elements,Methodm) := { (m′,m) |
m′ ∈ Method∩ContextCB(s) ∧ m′ invokesm}

The common idiom to implement instances of this sort in an object-oriented language
(particularly Java) consist of scattered method calls (from a defined context) to the
method implementing the common action to be executed consistently.

Another example of consistent behavior is the notification mechanism in the Ob-
server pattern: actions that change the state of the Subjecthave to consistently call the
notification method to allow the observers to update their state.

86 Chapter 4. Crosscutting Concern Sorts

Yet another example, from transaction management, is aimedat maintaining data
integrity by ensuring that an operation is committed only when it is fully completed
and rolled-back otherwise (e.g., in bank transfers both thedebit and credit operations
have to succeed to keep the data in a consistent state). Transaction management in
Java is supported via JDBC transactions and the Java Transaction API (JTA).1 A JTA
transaction requires that methods implementing the transaction logic consistently in-
voke dedicated methods of thejavax.transaction.UserTransactioninterface: thebegin
method at the beginning and thecommit (or rollback) at the end to demarcate a JTA
transaction. These invocations are instances of theConsistent behaviorsort.

Other instances of this sort include: logging of exceptionsthrown in a system,
wrapping service level exceptions of business services into application level excep-
tions [Marin et al., 2007a], checking credentials as part ofauthorization mecha-
nisms [Laddad, 2003b], etc.

Redirection layer A redirection layer defines an interfacing layer to an existing ob-
ject, and acts as a front-end that accepts calls and redirects them to dedicated meth-
ods of that object, optionally executing additional functionality. The consistent (yet,
method specific) redirection logic crosscuts this layer’s methods.

The relation for this sort is between the redirecting layer and the target object,
and resides in the consistent redirection of calls between method pairs. The source
context is defined by the class acting as a redirector, the target context is the type whose
methods receive the redirection. The implementation idiomconsists of the identical
logic in the methods (of a given class) that redirect their calls to partner methods of a
given type.

The query to document instances of this sort is parameterized with the redirecting
type and a reference to the object receiving the redirection:

RL(Classc,Member f) := { (m,m′) | m,m′ ∈ Method∧
c declaresm ∧ f is of typec′ ∧ c′ declaresm′ ∧
invokes(m) ∩ methods(c′) = {m′} ∧
invokes−1(m′) ∩ methods(c) = {m} }

where invokes(m) = {m′ | m invokesm′}, invokes−1(m) = {m′ | m′ invokesm}, and
methods(c) = {m | c declaresm}.

Implementations of theDecorator pattern are common examples of instances of
this sort. For example, decorators are used in JHOTDRAW to allow to attach elements
like borders toFigure objects. The decorators for figures extendDecoratorFigure,
which defines the set of methods to consistently forward their calls to the stored ref-
erence of the decorated object. Subclasses ofDecoratorFigure, like Borderor Anima-
tionDecorator, override its methods to dynamically extend its functionality. Consistent
redirection is also common in implementation of patterns like AdapterandFacade, as
well as in wrapper classes [Marin et al., 2007a].

1http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

4.2. Crosscutting Concern Sorts 87

Expose context (Context passing) Instances of this sort are characterized by meth-
ods that are part of a call chain which use an (additional) parameter to pass context
along the chain. The caller exposes its context to a callee bypassing information to
each method in the call stack of that callee. The idiom specific to this sort is the cross-
cutting declaration of additional parameters that are usedto pass context.

The elements related by this sort are the caller that wishes to propagate the context
info and the callees to which the caller passes the argument.We use transitive closure
to get a complete description of context passing along the chain.

EC(Methodm) := { (m1,n) | (m1,n) ∈ Method×Name∧
m has-parametern ∧ m1 = endpoint(invokes+(m)) ∧
∀m2 ∈ invokes+(m,m1) . ∃n2 ∈ Name.

m2 has-argumentn2 ∧ n dataflown2 ∧
m1 6= m2 ↔¬ uses(m2,n2) }

whereendpoint(invokes+(m))returns last element of the call-chain started fromm, and
uses(m2,n2) indicates thatm2 uses the value ofn2 for something else than propagation
to its callees (i.e.n2 occurs in another statement than a call to the next methods onthe
call-chain towardsm1).

An example instance of this sort is the monitoring of progress for long-running op-
erations, such as in Eclipse applications that employIProgressMonitorobjects for this
task. These operations are passed a reference to the monitorclass through a parame-
ter. They invoke methods of this monitor to indicate progress, like theworked(int)
method to indicate that a given number of work units of the executing task have been
completed. Any sub-operations receive a reference to the same monitor and use it to
report their contribution to general progress.

Laddad discusses several other examples of concerns of thissort, as part of trans-
action management or authorization mechanisms, and proposes an AspectJ solution to
improve modularization (the Wormhole pattern) [Laddad, 2003b].

Role superimposition This sort describes the relation between a type, such as a
class, and the secondary role(s) implemented by this type. The sort’s specific idiom
is, therefore, animplementsrelation. Each of the secondary roles corresponds to an
additional responsibility attached to the type, for example, due to its participation in
multiple collaborations [Riehle and Gross, 1998]. The rolescan be defined as distinct
interfaces, or just consist of a set of members implemented by the multi-role type.

In order to get those classes that implement an extra role, other than their main
one, we specify a seed element for the source context, as wellas the role-element. The
definition of the context is done similarly to that of theConsistent behaviorsort. The
role-element is specified as an interface or class, or, as we shall see in Section 4.3, as a
virtual interfaceif the role does not have a dedicated type.

RSI(Elements,Typerole) := { (t, role) |
t ∈ Type∩ContextRSI(s) ∧ ((role∈ Interface∧
t implementsrole)∨ (role∈ Class∧ t extendsrole)) }

88 Chapter 4. Crosscutting Concern Sorts

Common examples ofRole superimpositionoccur as part of implementations of de-
sign patterns defining specific roles, like the Visitor pattern, or the Observer pattern
discussed before.

The implementation of persistence is also possible throughrole superimposition:
theFigure elements in JHOTDRAW implement aStorableinterface which defines the
methods for a (figure) object to write and read itself to and from a file. Each figure
implements these methods in a specific way to provide persistence and recovery of
drawings over work sessions.

Other examples of this sort are based on implementations of multiple interfaces
with dedicated, specific roles, e.g.,Serializable, Cloneable, Undoable, etc.

Support classes for role superimposition The (object-oriented) mechanism of nest-
ing classes both defines and enforces a relation between the enclosing and the nested
class. This allows for superimposition of roles, as a numberof elements can share a
common role by enclosing support classes of a specific type.

Role superimposition through nested, support classes typically occurs for com-
plex roles and as an alternative to implementation of multiple interfaces: two type
hierarchies interact by having elements from one hierarchyas support classes for the
elements in the second hierarchy.

The relation between the enclosing and the support class (and their respective roles)
can be formalized as:

SC(Typec,Typerole) := { (c1,c2) | c1,c2 ∈ Type∧
c1 implementsc ∧ c1 enclosesc2 ∧ c2 implementsrole }

An idiomatic implementation of the sort exhibits interaction of hierarchies through
containment of nested classes.

An instance of this sort is present in JHOTDRAW as part of the support for undo
functionality. Two type-hierarchies interact through support classes by having the
members of one hierarchy enclosing members of the second one. The main hierar-
chy, Command, defines command elements for executing various application-specific
activities like, copy and paste, or operations for setting the attributes of a figure, e.g.
color or font size. The second hierarchy,Undoable, defines operations for undo-ing
and redo-ing the results of executing a command. Typically,each Command class
encloses its associated Undo class.

Other examples of instances of the sort include implementations of specialized
iterators for various Collection types and event dispatcherclasses for managing notifi-
cations of listeners.

Exception propagation The intent of the sort is described by the consistent propa-
gation of exceptions in a call chain when no appropriate response is available in the
callers. Similar to context passing, the relation of the sort applies to a call chain. The
callers implement the consistent (enforced) logic of declaring (and re-throwing) excep-
tions if they are not able to handle them.

4.3. Sort-Based Concern Modeling 89

To document such a concern, the query needs the method in which the exception
originates and the type of exception. Optionally, a contextseed can be provided to
restrict the set of methods considered for (re-)throwing the exception:

EP(Elements,Methodm,Exceptione) := { (m′,e) |
m,m′ ∈ Method∩ContextEP(s) ∧ m′ invokes+m∧
m throwse ∧ m′ throwse}

The query then returns call relations in a call chain, where each caller re-throws, i.e.
declares athrowsclause for, the exception of its callee.

Common examples of this sort comprise checked exception in Java, such asIOEx-
ception that we shall discuss later in Section 4.4.1. Unhandled checked exceptions
need to be declared in athrowsclause by the users of the method that throws these
exceptions.

4.3 Sort-Based Concern Modeling

The queries discussed in the previous section represent atomic concerns. To further
describe complex relations and designs in source code, we also need to allow for mean-
ingful compositions of such concerns.

Concern modeling tools support software engineers in modeling their software sys-
tems in terms of concerns. Examples of such tools include theConcern Manipulation
Environment CME [Harrison et al., 2004], and the Feature Exploration and Analysis
Tool FEAT [Robillard and Murphy, 2002]. An empirical study conducted by Robil-
lard and Murphy [2002] suggests that concern models are helpful when performing
software change tasks.

Currently, concern modeling tools create rather low level models that are built from
concrete source elements from the system that is documented. Some allow for user-
defined queries to be attached to these models, although these are rather simple and
unstructured queries. We propose the use ofcrosscutting concern sortsto raise the
level of abstraction in concern modeling. We integrate sorts into concern models by
permitting queries as elements in the concern hierarchy.

As an example, consider Figure 4.2 that illustrates the Observer pattern solution
for figure changes in the JHOTDRAW drawing application. TheFigure elements play
the Subject role in the pattern and declare a number of role-specific members, such
as thechanged() method that notifies observers of each change in the Figure’sstate,
the methods to add or remove observer-objects, and the fieldsin concrete classes to
store the reference to the list of observers. Similarly, theobservers implement the
FigureChangeListenerinterface as an additional, super-imposed role.

The concern model for this design is shown at the bottom of Figure 4.2. The com-
positeFigureChangeObservermodel groups instances of sorts likeRole superimposi-
tion andConsistent behaviorto describe the crosscutting concerns in the implementa-

90 Chapter 4. Crosscutting Concern Sorts

Figure 4.2: Observer for Figure changes and its (partial) sort-based concern model in
SOQUET

4.3. Sort-Based Concern Modeling 91

Figure 4.3: SOQUET views and dialogs

tion of the Observer design above. A sort instance is described by a user-defined name
and an associated query. A concern model is also described bya given name.

The FigureChanged relation is part of parent, custom-definedrelations, like the
one grouping all the concerns and design considerations forFigure elements in the
JHOTDRAW project. In this case, the project corresponds to the top-level concern
model.

4.3.1 SOQUET

To support sort-based concern modeling, we have built an Eclipse plug-in called SO-
QUET (SOrts QUEry Tool) that is freely available for download.2 This tool allows one
to describe crosscutting relations in a system based on querying the system’s source
code for instances of crosscutting concern sorts. These queries can be composed and
stored to create persistent, sort-based documentation of concerns in existing code. The
tool’s main user interfaces are shown in Figure 4.3.

SOQUET assists the user in documenting and/or understanding crosscutting con-
cerns in a system in the following way: First, the user definesa query for a specific
sort based on its predefined template. The template guides the user in querying for ele-
ments that pertain to concrete sort instances and the user can restrict the query context,

2http://swerl.tudelft.nl/view/AMR/SoQueT

92 Chapter 4. Crosscutting Concern Sorts

for example, by limiting it to a certain inheritance hierarchy.

Next, the results of the query are displayed in theSort-search resultsview. This
view provides a number of options for navigating and investigating the results, like
display and organization layouts, sorting and filtering options, links from the query
results for source code inspection, etc.

Finally, aConcern modelview allows one to organize sort instances in composite
concerns and describe them by user defined names. The concernmodel is a tree that
defines a view over the system that is complementary to Eclipse’s standardPackage
Explorer. The system’s sort instances are leaves in this tree and intermediate nodes
describe composite concerns. The context menu of an elementrepresenting a sort
instance includes options to re-run the query documenting that instance and display its
updated results. Note that queries can be associated only with sort instances and not to
a composite concern. A model can exist at various levels of abstraction and describe
complex concerns, system features, or whole projects.

SOQUET introduces the concept of avirtual interfaceto define and describe a role
whose definition is tangled within another type and cannot beidentified by means of a
standard (Java) interface. This mechanism allows the user to create a virtual interface
by selecting in a graphical interface those members of the multi-role type, such as
methods or fields, that are part of the role of interest.

4.3.2 Documentation of FigureChanged Observer

To build the concern model in SOQUET for the Observer solution summarized in Fig-
ure 4.2, we first create a composite concern (FigureChangedObserver) to group the
crosscutting concerns in the pattern that we like to document. The Subject role for
figures changes is defined by a set of methods in theFigure interface. The concern
is already tangled with the Figure’s core functionality andrequires the definition of
a virtual interface in SOQUET. The interface comprises the set of methods part of
the Subject role, likeaddFigureChangeListener, removeFigureChangeListener,
willChange, andchanged. The seed for the source context is simply the whole JHOT-
DRAW project, since all theFigure implementations inherit the tangled role. Each sort
instance, i.e. atomic concern, is represented by a a symbolic name explaining the intent
of that concern, as well as a summary of its associated query,in square brackets. The
summary of the query consists of a two- or three-letter identifier for the concern’s sort,
the elements used to define the source and target contexts, and a short description of
the sort’s specific relation.

Other sort instances document the consistent behavior of notifying listeners of
changes occurred in the observed figure and the Observer roledefined by the
FigureChangeListenerinterface respectively. Furthermore we can include in our
documentation the pre-change notification implemented by consistent calls to the
willChange method, as well as the consistent registration or deregistration of listeners.

4.4. Sorts in Practice 93

4.3.3 SOQUET Support for Software Evolution

The support in SOQUET for persistent documentation of crosscutting concerns, based
on systematic queries over the source code, is also aimed at helping the users with
software evolution tasks. We can initiate a software changeby loading in SOQUET
a concern model for the system under investigation and examining the queries in the
model. The tool also allows for searching a concern model anddisplaying only those
queries that document concerns associated to a specific element, such as aFigure.
These queries show that, for instance, Figures are observable elements, and that any
modification in their state should be notified by a call to thechanged method. There-
fore, our changes in the implementation of aFigureclass, such as adding a method for
resizing Figures, need to be consistent with this concern and implement the notification
call. While not enforcing the notification call, the documentation in SOQUET allows
us to become aware of the notification concern and to understand its implementation
by examining the results of the associated query.

4.4 Sorts in Practice

In this section, we look at how sort instances occur in real systems. We describe two
cases, totaling around 40,000 non-comment lines of code, from different application
domains: JHOTDRAW3 is an open-source drawing application and framework, and
PETSTORE4 is a sample J2EE e-business application (an on-line shop) developed by
SUN. These applications have been regularly used as benchmarks in (collaborative)
aspect mining studies, and detailed reports of our findings have been discussed in the
previous chapters of this thesis.

The discussion of the first case is structured by the main sorts of concerns en-
countered in the analyzed system. We discuss a significant number of sort instances
to show how “typical” the proposed sorts are and how they occur in practice.5 The
concern model created for this case can be downloaded from the same web-site as the
tool.

The organization of the second case is aimed at showing how well-known crosscut-
ting features and mechanisms can be decomposed and capturedusing concern sorts.

Table 4.3 on page 106 shows the number of identified and documented sort in-
stances in the two systems.

3 http://jhotdraw.org/, version 5.4b1
4 http://java.sun.com/blueprints/, Java PetStore v. 1.3.2.
5An additional discussion of the occurrences of concern sorts in JHOTDRAW, structured by the

various design patterns implementations in this system, isavailable in Marin [2006a].

94 Chapter 4. Crosscutting Concern Sorts

Figure 4.4: Collaborations in JHotDraw

4.4.1 JHOTDRAW

Figure 4.4 shows the core components of JHOTDRAW’s architecture and their collab-
orations. TheFigure type generalizes the notion of geometrical and text figures in the
application. Figure elements support core operations likedrawing and management of
their display box. On top of these responsibilities, Figures participate in collaborations
that require implementation of multiple roles, such asobservabilityfor changes,com-
posability, andvisitability for insertion or deletion of figures in composites. Moreover,
figures and their enclosing drawings arepersistentand implement specialized (read
andwrite) methods defined by theStorableinterface.

JHOTDRAW’s user interface contains menus to execute operations likestoring
drawings and manipulating figures. It uses a dedicatedCommandhierarchy of around
40 elements to implement these operations. Figures can alsobe manipulated usingTool
elements, such as a selection or copy tool. Tools access figures via a common interface
realized byHandleelements, which act as Figure adapters.

Operations on figures notify listeners, such as drawing views, of changes and sup-
portundofunctionality of such changes. Below we give an overview of the crosscutting
concern sorts encountered in JHOTDRAW together with their concrete instances.

4.4. Sorts in Practice 95

Role superimposition We document the multiple responsibilities in theFigure ele-
ments as distinct instances of theRole superimpositionsort. Roles like observing or
manipulating parts of a composite figure require the use of virtual interfaces since their
elements are tangled within the mainFigure interface. Concerns such as persistence
simply require to pass theStorableinterface as a parameter to instantiate the sort-query.
A similar case holds for drawing persistence.

Other instances ofRole superimpositiondescribe listeners (i.e., observers) for Com-
mand and Tool events. These listeners typically implement adedicated, secondary
interface. However, theObservablerole is tangled with the definition of the core con-
cerns in the top interfaces for the Command and Tool hierarchies respectively. These
interfaces also include elements to support such roles as Undo functionality, thus in-
creasing the challenge of distinguishing between the various roles. To document these
secondary roles, we define a virtual interface in SOQUET for each of them.

The Command, Tool and Handle elements participate in variousdesign patterns,
like Command, State, and Adapter, respectively. We use sort instances to distinctively
document each of the roles associated with these patterns inthe three elements.

Other elements of our documentation are drawing views and editors that are com-
mon event and change listeners.

Consistent behavior and Contract enforcement A large number of concern in-
stances documented for JHOTDRAW belong to theConsistent behaviorsort. Some of
these implement notification mechanisms for the various Observer designs, like draw-
ing and figure changes, tool state changes, etc. Others crosscut theCommandhierar-
chy, such as consistently checking that a view is active before command execution, or
refreshing that view after execution. The same (named) commands initialize the refer-
ence to the associated undo activity prior to their execution, and save the set of figures
to be affected by the execution of the command. Similar instances are present in the
Tool and Handle implementations.

Several other concerns cut across the Undo activities that consistently conduct a
number of checks before execution, like checking the state of the action to be undone.

Consistent behavioris also present in several constructors, for example, thoseof
Commands andTools, and in mouse or key handling actions, that implement a shared
functionality by means ofsupercalls. Each of these concerns crosscuts specific type
hierarchies.

Exception propagation The operations to implement persistence, like reading Fig-
ure objects from input streams, are designed to throwIOExceptions if not success-
ful. This exception is propagated upward in the call chain tothe method handling the
drawing-recovery command triggered by the user actions, which catches the exception
and prints an error message. We document the mechanism in SOQUET through an in-
stance of theException propagationsort: The query starts from the method generating
the exception of the given type, and displays recursively those callers re-throwing the

96 Chapter 4. Crosscutting Concern Sorts

Figure 4.5: SoQueT view for Exception Propagation

exception (by declaring athrowsclause).

Figure 4.5 shows the results of the query in the SOQUET view; The nodes for
the callers re-throwing the exception can be expanded to display their own callers that
propagate the same exception further in the call chain.

Redirection layer Besides the figure decorators that were previously discussed, JHOT-
DRAW contains a number of redirector instances for event handling and action delega-
tion.

Command invokers implement theActionListenerinterface whose only method,
actionPerformed, consistently invokes theexecute method of the associated com-
mand. We document this action delegation for command execution as an instance of
the Redirection layer sort. Similar Redirection instances occur in key and mouse lis-
teners which forward the handling of the captured events to associated tools.

Finally, commands that can be undone are wrapped by anUndoableCommand,
which redirects requests to the wrapped command. We document this concern using a
sort query that reports those methods that consistently redirect from the wrapper to the
Commandreference. A similar wrapper is used forTool elements. Redirection layers
are also used to reverse undo/redo activities, as in theUndoRedoActivityclass.

4.4. Sorts in Practice 97

Support classes Commands use instances of theSupport classessort to implement
undo functionality. Similarly, instances of the same sort are present in the undo support
for Tools as well as for Handles.

Other instances of this sort documentEventDispatchers nested classes that imple-
ment more complex notification mechanisms for various Observers, like forAbstract-
Tool. The support class stores the association between a tool andits list of observers,
and notifies the observers of various events.

We use the query forSupport classesto document these instances, by passing as
arguments the defining types of the hierarchies for the nested and the enclosing classes
respectively. For the last of our examples of concerns above, these are theEventDis-
patcherand theTool types respectively.

4.4.2 Enterprise Applications

Several mechanisms commonly encountered in enterprise (J2EE) application devel-
opment, such as transaction management, persistence or component lookup are well-
known to be crosscutting and amenable to aspect-oriented solutions [Laddad, 2003b;
Colyer et al., 2005]. To elaborate on the coverage of real-life crosscutting concerns by
crosscutting concernsorts, we discuss a number of these mechanisms as encountered
in our second case, PETSTORE. The case is a reference Java web application.

Resource lookup: Service locator and caching, Business delegate, and exception
wrapping and handling PETSTORE usesservice locators[Alur et al., 2003] to pro-
vide single access points for resource lookup. The (singleton) implementation of the
service locator in the web tier includes a caching mechanismto hold references to en-
terprise bean home objects or Java Message Service (JMS) resources for re-use. The
locator is used by a business delegate (AdminRequestBD) to lookup business compo-
nents. The delegate handles the distributed component lookup, decoupling the busi-
ness services from their (presentation-tier) clients, andis responsible for catching ex-
ceptions thrown by the underlying implementation and converting them to application
exceptions. We refer to this mechanism as exception wrapping [Marin et al., 2007a].

The documentation of the caching mechanism is based on two crosscutting con-
cern sorts: First, the caching support in the service locator is a secondary role and an
instance ofRole superimposition. The role elements comprise the map structure used
for caching. Second, the component lookup usesConsistent behaviorto first check the
cache for the searched component, and then insert the key in the cache if not present.

The exception wrapping mechanisms, present in both the locator and the business
delegate, are instances ofConsistent behavior, very common in enterprise applications.
The concern implementation consists of invoking the constructor of a specific excep-
tion type to wrap a caught exception. The delegate class alsoimplementsConsistent
behaviorfor logging the caught (and wrapped) exceptions.

98 Chapter 4. Crosscutting Concern Sorts

Persistence strategy PETSTORE allows online purchases from a list of items whose
details are stored in an external catalog that is accessed only for creating these lists.
The application uses Data Access Objects (DAOs) to read the catalog and keep the
data access mechanism hidden.

Client access to the catalog is done through a stateless session bean (CatalogEJB),
which gets the data (Item, Product, or Category) from its wrapped DAO object (Cat-
alogDAO): The data-access methods of the bean forward their invocations to the busi-
ness methods of the DAO object. The DAO object manages persistence of the (Serial-
izable) catalog entries by accessing the Enterprise Information System (EIS).

The serialization of the catalog entries is an instance ofRole superimposition. To
further document the wrapping of the DAO object in the stateless session bean, we
need the query for theRedirection layersort. Both the DAO and the session bean
elements implement exception wrapping, by catching specific type of exception thrown
by their business methods, and re-throwing a different exception type; these concerns
are instances of theConsistent behaviorsort.

The DAO objects managing access to the persistent storage exhibit several other
instances ofConsistent behavior: the business methods consistently require a (JDBC)
connection before executing the specific query, and after execution, the connection is
closed using a specific method invocation.

Similar mechanisms and concerns are present in other J2EE persistence examples
described in literature, such as the use of Hibernate6 for persistence by Colyer et al.
[2005].

Transaction management Programmatic transaction management is often acknowl-
edged as crosscutting due to the consistent calls to Java Transaction API (JTA) for de-
marcation of the transaction, which has to execute completely or not at all [Laddad,
2003b]. The transaction mechanism in PETSTORE is similar to the one discussed by
[Laddad, 2003b]: by design, the application’s web-tier does not benefit from automatic
(declarative) transaction management and hence implements it through JTA calls (e.g.,
theTemplateServletservlet).

Transaction control implies several instances ofConsistent behavior: first, a lookup
action provides aUserTransactionobject that can be used to begin the transaction by
invoking the object’sbegin method. Next, the execution of the operation is followed
by a commit if no exception occurred, or by a rollback otherwise. These actions invoke
specialized methods on the transaction object.

PETSTORE also uses instances ofConsistent behaviorfor (simple) exception log-
ging. Laddad’s example exhibits an instance of the same sortto wrap the exception
when the lookup operation for the transaction object fails.

TheServletTemplateclass, which implements a templating service for composing
multiple views in one page, dispatches specific requests to an appropriate template

6hibernate.org

4.5. Sorts in Design Patterns 99

component by passing itsrequest andresponse parameters as arguments. We docu-
ment this mechanism as an instance of theExpose contextsort.

Order processing center: Transition delegates Transition delegates are part of an
asynchronous messaging system implemented by the application for processing cus-
tomer orders. After an order is received, a number of activities execute specific opera-
tions in a predefined sequence; these include sending emailsto customers to acknowl-
edge orders, sending order documents to suppliers, or updating orders based on invoice
information. At the end of its execution, an activity asynchronously passes a message
to the next activity by using a dedicated transition delegate. The delegate knows the
successive activity in the workflow to be notified.

The activities are implemented as message-driven beans andtrigger the notification
by first setting-up their related transition delegate and then invoking the delegate’s
doTransition method at the end of their work. This notification occurs as a distinct
concern from the main logic of the activity sending it, and hence we document it as a
sort instance, in this case asConsistent behavior.

4.5 Sorts in Design Patterns

Crosscuttingness in design patterns has been commonly acknowledged and discussed
by various authors, such as Hannemann and Kiczales [2002] who compared Java and
AspectJ implementations for the design patterns describedby Gamma et al. [1994].
The report on this comparison shows that AspectJ can improvemodularity for the
implementation of a number of patterns, which we summarize in Table 4.2. The sum-
marized patterns are also covered in this section.

Our analysis of crosscuttingness in design patterns investigates the use of sorts for
describing each pattern as a composition of those elements and relations that make
the pattern’s structure crosscutting, and hence make it more difficult to understand and
recognize in source code. We show that instances of the same concern sorts occur in
various patterns. This motivates a clear distinction between patterns and concern sorts,
where the latter ones describe idiomatic implementations of concerns at a consistent
level of granularity that can be shared, among others, by patterns.

Furthermore, we investigate in this section how new sorts can be added to our list,
provided that they describe a common implementation idiom,which is distinct from
those of the other sorts in the list. While most of the concern models for the discussed
patterns can be described by compositions of the sorts shownin Table 4.1, a few of
them point us to new sorts that we shall discuss next.

100 Chapter 4. Crosscutting Concern Sorts

Design pat-
tern

Composition of sort instances

Adapter Adapter = RSI(contextElem, Adaptee) + RL(Adapter, adapteeReference);

State State = RSI(contextElem, Context) +
CB(contextElemStateChanger, Context.changeState(State)) +
RL(Context, stateReference));

Decorator Decorator = RL(Decorator, componentReference);

Proxy Proxy = RL(Proxy, fieldRefRealSubject);
Protection proxies:
document the consistent behavior of checking credentials:

CB(contextElem, checkAccessPermission());
Visitor Visitor = RSI(contextElem, VisitableElement);

Specific implementations:
Visitor = AV(VisitableElement);

Command Command = RSI(contextElem1, Receiver) +
RSI(contextElem2, Invoker) +
IL(Invoker, commandReference);

Particular implementations using Command for method objects:
AV(Command);

Composite Composite = RSI(contextElem, Composite);
RSI(contextElem2, Leaf)) - not crosscutting

Iterator Iterator = RSI(contextElem, Aggregate);

Flyweight Flyweight = RSI(contextElem1, Flyweight) +
CB(contextElem2, FlyweightFactory.getFlyweight));

Memento Memento = RSI(contextElem1, Originator) +
CB(careTakerContextElem1, Originator.createMemento));

Strategy Strategy = RSI(contextElem, Context);
sometimes, we could also have:

RSI(contextElem1, Strategy);

Mediator Mediator = RSI(contextElem, Colleague) +
CB(contextElem, notifyMediator));

Chain of
Responsibility

ChainOfResponsibility = RSI(contextElem1, Handler) +
CB(Handler+, Handler.next()));

Prototype Prototype = RSI(contextElem, Prototype);
In some languages, like C++, copy constructors are required:

DE(contextCloneableObjs,
CloneableType.new(const CloneableType&));

A similar instance can be used for requiring implementation
of the Object.clone method in Java

Singleton Singleton = RSI(contextElem1, Singleton) +
DE(contextElemSingleton, private Singleton.new(..)) +
CB(contextElem2, Singleton.instance());

Observer Observer = RSI(contextElem1, Observer) + RSI(contextElem2, Subject) +
CB(contextElem3, notify)+
CB(contextElem1, attachObserver)+
CB(contextElem1, dettachObserver);

Table 4.2: Design patterns as composition of sort-instances.

4.5. Sorts in Design Patterns 101

4.5.1 Interfacing Commands andAdding variability to Commands
and Visitors

One of the patterns that points to new concern sorts is theCommandpattern. A number
of atomic concerns in this design pattern, can be documentedas instances ofRole
Superimposition, like the roles to define the participants in the pattern. These roles
include Invokers of the command’s action and Receivers that carry out the request,
although, for particular implementations, these roles might not be superimposed, nor
declare specific members.

Another concern, however, occurs in common implementations of command invok-
ers, like (Java Swing) graphical user interface elements, which store a reference to their
associated command and delegate requests to this reference. These invokers “mirror”
the state of the command object through their own state, for example, a button element
in the user interface that is enabled only if its corresponding command can be executed
with the current configuration of the application. This particular wrapping and mir-
roring of the command’s state shows a high (logical) coupling between the graphical
button element and the command object, which is due to designconsiderations.

The relation described above resembles theRedirection layersort by having the
graphical element passing requests to its command; however, the discussed concern
exhibits a different general intent than that ofRedirection layer, which is aimed at
enhancing functionality dynamically. In this case, the invoker turns into a visual rep-
resentation of the command’s state, in addition to dealing with concerns like graphical
display or user action handling. To describe the relation between invoker and com-
mand, we introduce a new sort, namely theInterfacing layersort. The sort’s query
reports all references from the interfacing layer, such as the command invoker, to the
object to which it is coupled, such as the command object:

IL(Typet,Memberm) := { (m′, t ′) |
m′ ∈ Member∧ t declaresm′ ∧ m is of typet ′ ∧ m′ referst ′ }

Another interesting set of implementations of Commands, particularly those that
do not require a persistent state, show a new kind of concernsthat cannot be mapped
onto any sort in our initial list:Adding Variabilitydescribes a contract between client-
callers and server-callees that make use of method-objectsas a substitute for passing
references to methods. Instances of the sort implement a consistent mechanism of
building and passing method-objects as method arguments. Method-objects are (typ-
ically) objects of a type declaring one method. The methods expecting arguments of
this type only need and invoke the specific method for the passed object. Languages
like Java use this mechanism, which is also referred asclosuresor functorsor function
objects, to achieve a behavior similar to the use of callback functions [Bloch, 2001].

Instances of this sort occur in other contexts as well:Componentelements (like
Swing objects), for example, need to execute in a specific thread, i.e. the event dis-
patching thread, to avoid deadlocks during painting the graphical components. Two

102 Chapter 4. Crosscutting Concern Sorts

Java dedicated methods,invokeLater andinvokeAndWait, ensure that these com-
ponents execute in the special thread. The two methods expect an argument of type
Runnablewhose (only)run method contains the code accessing functionality of the
graphical (Swing) component to be executed. Other examplesof instances are dis-
cussed in Marin [2006a] as well as in Laddad [2003b]. The latter one proposes an
worker objectsolution in AspectJ to address asynchronous method execution or autho-
rization using Java Authentication and Authorization Service (JAAS) API.

In the list of design patterns in Table 4.1, we can recognize instances of this sort
among implementations of theVisitor pattern, namely for theVisitableparticipants.

4.5.2 Design enforcement in Singleton and Prototype

One crosscutting element that occurs in typical implementations of thePrototypepat-
tern is due to the super-imposition of thePrototyperole. The role declares a specific
clonemethod that enables objects to copy themselves. In some languages, like C++,
the Prototype must declare a copy constructor for cloning.7

In Java, the cloning is realized through theclonemethod in theObjectclass, which
is a superclass for all the other classes. The class overriding the defaultclone method
has to implement theCloneableinterface to indicate to theclonemethod that it is legal
to make copies of the fields of the Cloneable class.

This sort ofDesign enforcementalso occurs inSingletonclasses that have special
requirements, most notably, they have to declare the constructor asprivate for not
allowing constructor calls from outside the class.

TheDesign enforcementsort discussed above targets declaration of type members
required for compliance with design considerations. Its instances can be documented
using a query that searches for and emphasizes those declarations of interest, such as
private or copy constructors. Note that neither Java nor AspectJ can specifyDesign
enforcementin other way than by comments.

More examples of instances of this sort include the design of(Java)beanobjects
that are required to declare no-arguments constructors.

In addition to theDesign enforcementconcern, the access to singletons implies
an instance ofConsistent behavior: singletons define an access method to the sole
instance of the singleton class, which has to be used by clients instead of calling the
constructor.

4.5.3 Other Patterns

The discussion of the rest of the patterns is aimed at investigating how our sorts are
able to capture the crosscutting relations that occur in these various designs.

Implementations of theAdapterpattern could use either multiple roles or object
composition to adapt a class to an interface expected by clients. In the first case, the

7A copy constructor receives as (single) parameter a constant reference to the object to be cloned.

4.5. Sorts in Design Patterns 103

Adapteerole is super-imposed to the class implementing the Adapterfunctionality. The
Adapter class implements both a Target interface and (extends) the Adaptee, which is
an instance of theRole superimpositionsort.

The solution relying on object composition would typicallyuse delegation from
the Adapter to a stored reference of the Adaptee object. Thisis an instance of the
Redirection layersort.

TheStatepattern comprises a number of crosscutting elements: TheContextrole
is super-imposed and has specific members for maintaining a reference to the object
defining the current state; second, the notification of changes of the current state to
be stored in the Context object is an instance of theConsistent behaviorsort. The
third element is an instance of theRedirection layer: the Context object forwards the
received calls to the methods of the object storing the current state.

The crosscuttingness occurring in the implementation of the Decoratorpattern is
described by theRedirection layersort. The methods in the decorator class consis-
tently redirect their calls to dedicated methods in the decorated class via a reference
stored in the decorator object. A simple decorator is a typical example of aRedirec-
tion layer instance, and also of a pattern mapping into a single sort. More complex
implementations of the pattern, however, require multiplesorts, and hence a composite
concern model to document them.

The crosscutting element of theProxypattern resides in the consistent forwarding
of the calls to the reference of the real subject class, stored by the Proxy object. Another
crosscutting concern occurs inprotection proxiesas an instance ofConsistent behavior:
this consists of a method call that checks the access permissions before executing the
forwarding operation. Some implementations also consistently check if the proxy’s
subject has been initialized. This check is part of the method for accessing the reference
to the subject, which is invoked by the actions in the proxy that forward their calls.

TheVisitor andCompositepatterns are often used in combination [Gamma et al.,
1994; Hannemann and Kiczales, 2002]. Both patterns define roles that in various im-
plementations are super-imposed, like theVisitableandCompositeroles. The roles,
which we document by sort instances, typically define role-specific members.

Certain implementations idioms make use of method objects toallow the methods
of the visitor to access theVisitableobject, and hence itsaccept method. Such imple-
mentations exhibit instances of theAdd variability sort, as discussed in the previous
sections.

A crosscutting element occurring in the implementation of the Iterator pattern is
the super-imposedAggregaterole. The role defines theCreateIterator() method to
create an iterator object for traversing the elements of theaggregate (structure).

The concerns documented for theFlyweightpattern comprise aRole superimposi-
tion instance for theFlyweightrole, and aConsistent behaviorfor obtaining references
to a (new) flyweight object. This behavior consists of calling the accessor method in
the factory class for the flyweight instances, instead of attempting to build new fly-
weight objects. This behavior is similar to accessingSingletonobjects via a dedicated
method, which we also documented asConsistent behavior.

104 Chapter 4. Crosscutting Concern Sorts

The refactoring ofMementopattern to AspectJ discussed by Hannemann and Kicza-
les [2002] uses the introduction mechanism for superimposing theOriginator role. In
addition to this, we document aConsistent behaviorinstance, namely acquiring a me-
mento object before performing the operation that changes the state.

TheStrategypattern defines two roles, namely the Strategy object and the(Strat-
egy)Context. Most commonly, the Context is a super-imposed role, maintaining a
reference to the Strategy object (and defining methods to access that reference). In
some cases, the Context object delegates the requests from its clients to the Strategy
reference.

TheMediatorpattern implies a super-imposed role (Colleague) to store and access
the reference to theMediator class. Moreover, each change in the colleague class
results in a consistent notification of the mediator for coordinating the other colleague-
classes. In some implementations, theMediator role could also be super-imposed.

The participation in the responsibility chain requires theimplementation of a Han-
dler role. This role defines the method for handling specific requests and the member
to store the reference to the next Handler in the chain. The handler-methods check
the request and consistently pass it to the next handler in the chain, according to the
Consistent behaviorconcern implemented by all handlers.

TheObserverpattern is documented as a composition ofConsistent behaviorand
Role superimpositioninstances. In addition to the consistent behavior of notifying
changes in the Subject’s state, we also document the mechanisms for registration and
deregistration of observers.

4.6 Discussion

4.6.1 Coverage of the Crosscutting Concerns by Sorts

The list of sorts is open-ended, i.e. new sorts can be added toit, following the rules
of the proposed catalog for formalizing concerns, if their relations cannot be covered
by the existing sorts. The present catalog covers all concerns that we are aware of in
real-life systems, like PETSTORE and JHOTDRAW, as discussed in this chapter. The
analysis carried out and the examples accompanying the description of sorts also show
that these sorts cover well many of the crosscutting concerns described in the literature
on aspect-oriented programming.

It is important to notice that the concerns described by sorts are meaningful on
their own, although they can also occur in more complex compositions, like a trans-
action management mechanism or an Observer design. In fact,common refactoring
solutions typically address concern sorts, like introduction of roles, or advice for con-
sistent behavior, which are only presented in a larger context of a specific feature or
design [Laddad, 2003b; Hannemann and Kiczales, 2002]. The classification in sorts
helps us to describe those crosscutting concerns at a consistent granularity level.

4.6. Discussion 105

Crosscutting concerns as relations The sort-based approach to crosscutting con-
cerns proposed in this chapter looks at such concerns as implicit relations between two
sets of elements (i.e., the source and the target contexts respectively). Each sort is
described by a distinctive relation captured by the sort’s specific query. While the rela-
tion is common to all instances of the sort, the definition of the context can vary from
instance to instance: for example, alog method (the target context) can be invoked by,
and hence be crosscutting for, all the methods in a system (the source context), while
a notification action (target) is invoked by the set of methods changing the state of an
Observable object (source). Each of these instances of theConsistent behaviorsort has
particular contexts.

The definition of contexts for describing a concern is a research topic on its own,
similar to the definition ofpointcutsin aspect-oriented languages. Current aspect lan-
guages cover definitions based on naming conventions or somestructural relations
(e.g., type hierarchies), but do not support specification of a context like “all elements
changing the state of a Figure object”. SOQUET allows for a number of context defi-
nitions, such as class, project, package, or hierarchy, as well as for simple collections
of elements. Although the last option is very flexible, permitting any selection of
elements, generally, a concise definition based on shared properties of the context’s
elements is more relevant for capturing the intent of the crosscutting concern.

Tool usage SOQUET can typically be used from two perspectives, namely, (1) as
a tool for consistentlycreatingcrosscutting concern documentation for a system, and
(2) as a tool forexploringquery-based crosscutting concern documentation that was
defined earlier for the system under investigation. In the first scenario, the user is
assumed to be acquainted with the concerns to be documented.An example is a devel-
oper that wants to explicitly document some relations that are otherwise “hidden” by
the object-based decomposition of a given system.

In the second scenario, the user explores a given system by loading (pre-existing)
sort-based documentation of application into SOQUET in order to locate and better
understand certain crosscutting concerns in the implementation. This documentation
highlights policies and contracts in the code that are relevant for software evolution
tasks and migration towards aspect solutions.

The main challenges with describing and documenting crosscutting concerns stem
from to the flexibility of the tool for defining contexts, as discussed above. SOQUET
could be improved by supporting set theoretic operations, such as the union of type
hierarchies. In addition, defining contexts using pattern matching on names (e.g., all
set* methods) is not implemented at the moment.

Adding new sort queries in the current version of the tool is fairly complex, as
it relies on the “extension points” mechanism in Eclipse. Weare exploring how we
can prototype our queries using tools that support more direct source code queries, as
discussed in the next section. However, this support is still limited at the moment.

106 Chapter 4. Crosscutting Concern Sorts

Sort JHotDraw PetStore

(Method) Consistent behavior 34 15
Contract enforcement 5 1
Redirection layer 15 2
Expose context(Context passing) 1 1
Role superimposition 32 2
Support classes for role superimposition 5 0
Exception propagation(Declarethrowsclause) 11 5
TOTAL 103 26

Table 4.3: Number of sort instances.

4.6.2 Using Sorts in Aspect Mining and Refactoring

In the next chapter we shall see how the crosscutting concernsorts are used to define a
common framework for aspect mining. The framework uses the sort specific idioms as
a starting point for the design of aspect mining techniques and as a reference for defin-
ing mining results representation that can ensure consistent comparison of techniques
and results. The definition and description of sorts allows us to conductidiom-driven
aspect mining, and to engineer techniques that target specific idioms and hence sort
instances.

Sort instances also allow us to group elements participating in relevant crosscutting
relations, which are not explicit in source code. In this respect, the concern sorts are
modular units comparable with aspects. Sorts are mainly aimed at supporting cross-
cutting concern comprehension by describing atomic elements in a standard, consistent
way. However, sorts can be associated with template refactorings and sort queries can
help instantiate such refactorings by selecting those program elements that participate
in a crosscutting implementation. This can help in refactoring concerns to aspect solu-
tions, as we shall discuss in Chapter 6.

The number of sort instances Table 4.3 shows the number of identified and doc-
umented sort instances for each of the two analyzed applications. One observation
about the data shown in the table regards the number of sort instances in JHOTDRAW

case compared to the PETSTORE one. A reason for this difference is the nature of the
two applications: PETSTORE is a J2EE application and a number of (potential) cross-
cutting concerns can be dealt with by the container, such as declarative transaction
management. Therefore, these concerns do not occur in the (Java) source code.

Another observation is that some sorts are (typically) morecommon than others;
examples includeConsistent behaviorandRole superimposition. This suggests that
aspect language mechanisms aimed at refactoring instancesof these sorts could address
most of the encountered crosscuttingness. However, as previously mentioned, a major
difficulty in dealing with these concerns resides in the ability to define contexts for
the sorts relations. This is similar to the challenge of having a flexible and expressive

4.7. Related Work 107

pointcut definition in an aspect-oriented language, as discussed earlier.

4.7 Related Work

Our approach differs from related work by identifying typical implementation idioms
of crosscutting concerns which we formalize as concern sorts. The sorts define a sys-
tem to consistently describe crosscutting implementationof concerns, which helps us
to recognize and document such concerns in source code. Furthermore, the approach
aims at emphasizing relations rather than program elementsas crosscutting, which, we
believe, is a more intuitive way of describing and understanding concerns.

A number of tools support source code querying and exploration for concern un-
derstanding. FEAT organizes program elements that implement a concern inconcern
graphs[Robillard and Murphy, 2002]. The user can add elements to a concern graph
by investigating the incoming and outgoing relations to andfrom an element that is part
of the concern implementation. The elements in a concern graph are classes, methods
or fields connected by acall, read, write, check, create, declare,or superclassrelation.

Although the tool allows one to add relations to the graph describing a concern,
the focus is on the elements participating in the implementation of the concern. The
navigation for understanding a concern and incrementally building its graph represen-
tation is from a root (class) element to other elements in therelation chain. That is,
a concern is described by its elements, and an element is connected to other elements
via relations. Unlike FEAT, the sorts-based approach uses relations as the main repre-
sentation of a concern and builds concern models based on these relations. Moreover,
FEAT has no built-in support for describing typical crosscutting relations, focusing on
code browsing and organization instead.

The Concern Manipulation Environment (CME) [Harrison et al.,2004] also allows
for code querying, and, furthermore, for restricting the query domain similar to context
definitions in SOQUET. The CME concern model is persistent and the queries, written
in its own (pattern-matching) language Panther [Tarr et al., 2004], can be saved over
work sessions. However, neither CME nor FEAT allow for complex queries like the
ones we used to describe redirections, (exception) propagations or support classes.

We analyzed the possibility to use CME’s query language and its internal code
representation for implementing our sort queries. As yet, the syntax of the language
is not completely defined and is not fully implemented. Informal communication with
CME developers revealed that they see queries as available inSOQUET, as a desired
extension for CME.

Alike CME, JQuery is a code browser developed as an Eclipse plugin [Janzen and
Volder, 2003]. JQuery uses a logic query language (TyRuBa) similar to Prolog [Der-
ansart et al., 1996]. The TyRuBa predicates supported by JQuery cover all relationships
defined by FEAT and include additional ones, such as checkingthe type of an argu-
ment. It also supports additional source relations with respect to FEAT and Panther,
such as thrown exceptions.

108 Chapter 4. Crosscutting Concern Sorts

Despite being more flexible than CME for querying code, JQuerydoes not allow
to save and then re-load a concern model of choice for a given project. The tool is also
not suitable for large systems due to performance issues.

Such performance improvements have motivated the work on CodeQuest, a soft-
ware query tool using Datalog as a query language, implemented on top of a relational
database system [Hajiyev et al., 2006]. CodeQuest has recently evolved in Semm-
leCode8, a tool that we plan to experiment with for expressing the relations of the
concern sorts presented in this chapter.

Sextant is another tool similar to JQuery, which allows querying different kinds of
system artifacts [Eichberg et al., 2005]. The tool represents these artifacts in XML and
uses the XQuery9 language to query this representation. Our focus so far has been on
describing crosscutting relations in source code.

Other approaches to documentation of source code includeintensional views, which
are queries based on logic meta-programming [Mens et al., 2003, 2006]. The work on
intensional views also identifies and abstracts a number of (five) use-cases, called “us-
age patterns”, for which definition of views could be helpfulin program development
and maintenance. These “patterns” are rather general, suchas defining views to verify
the use of coding conventions or the coverage of the unit tests. By comparison with
the concern sort, they do not denote categories of (crosscutting) concerns or typical
idiomatic implementations of concerns. Moreover, the granularity of the views is not
defined and lies with the user.

Concern sorts can also be conceptually (and by the level of abstraction) compared
to the Java micro patterns discussed by Gil and Maman [2005].The latter ones aim
at capturing traces of design, whereas our sorts aim at capturing traces of crosscutting
concerns. Gil and Maman show how many systems are made up of their micro patterns:
we show how the crosscutting concerns known to exist in, e.g., JHOTDRAW can be
composed from our catalog of sorts.

4.8 Conclusions

This chapter proposes a model for addressing crosscutting functionality in source code
based on crosscutting concern sorts. Such a model can provide consistency and coher-
ence for referring to, and describing crosscutting concerns. As a result, sorts are useful
in program comprehension and areas like aspect mining and refactoring.

We have described crosscutting concern sorts as relations between sets of program
elements and formalized these relations as queries over source representations. We
have discussed a selection of sorts in detail and presented the SOQUET tool for docu-
menting sort instances using queries. Last but not least, wehave used sorts to analyze
crosscutting relations present in systems from two different application domains.

8http://semmle.com/
9www.w3.org/TR/xquery

Chapter 5

A Framework for Evaluating and Combining
Aspect Mining Techniques

The increasing number of aspect mining techniques proposedin literature calls for a
methodological way of comparing and combining them in order to assess, and improve
on, their quality. This chapter addresses this challenge byproposing a common frame-
work based on crosscutting concern sorts which allows for consistent assessment, com-
parison and combination of aspect mining techniques. The framework identifies a set
of requirements that ensure homogeneity in formulating themining goals, presenting
the results and evaluating their quality.

We demonstrate feasibility of the approach by retrofitting an existing aspect mining
technique to the framework, and by using it to design and implement two new mining
techniques. We apply the three techniques to a known aspect mining benchmark and
show how they can be consistently assessed and combined to increase the quality of
the results. Furthermore, we position a range of existing aspect mining approaches
into our framework, allowing software engineers to interpret and compare the results
of these approaches.

5.1 Introduction

Aspect mining research aims at providing techniques and tools that support the iden-
tification of crosscutting concerns in existing code. Such concerns are of interest as
they are particularly difficult to manage and understand dueto their specific lack of
modularization and locality. The aspect mining results provide us with first insights
into policies and designs whose implementation is crosscutting, and hence challenging
for software evolution tasks that have to ensure compliancewith these policies.

With a growing number and variety of mining techniques proposed in literature, it
becomes increasingly important to aim at consistency and compatibility between these
techniques and their results. Such properties would allow for a systematic evaluation of
the techniques, an assessment of results and the combination of techniques to improve

109

110Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

quality.
However, most mining techniques rely on non-uniform descriptions of the cross-

cutting concerns they aim to identify and of the steps to be taken to map their results
onto potentially associated concerns. In some cases, the description of the discovered
concerns is specific to the context into which they were encountered, and explained
through other, better known, examples of crosscutting functionality (e.g., CORBA
Portable Interceptors1 are described as “observer style entities” [Zhang and Jacobsen,
2003]). Quite often, the mining techniques focus on genericsymptoms of crosscut-
tingness, like tangling or scattering, instead of exploiting specific characteristics of the
particular types of concerns they aim to identify. In addition, there is little consistency
in describing results and concerns, which makes it hard to compare or combine the
results.

Previous experiments aimed at comparing and combining aspect mining tech-
niques [Ceccato et al., 2006] show that a significant challenge rises from the lack of a
sound definition of crosscutting concerns. This leads to thefollowing (hypothetical but
likely) evaluation scenario: One technique describes its results through the participants
in an implementation of the Observer pattern that are crosscut by the super-imposed
roles of Subject and Observer [Gamma et al., 1994]. A second technique reports results
related to the same instance of the pattern, but identified through the elements imple-
menting the crosscutting mechanism of the observers-notification (that is, the methods
changing the state of the Subject object consistently invoke a notification method). Hu-
man analyzers interpret the results and agree on ad-hoc convergence rules of them: the
Observer pattern instance is counted as a common finding based on the valid results
from both techniques, and the argument that the pattern is a well known example of
crosscuttingness. Each technique can further explain how the implementation of the
Observer is related to its own identification mechanism.

The problems with the sketched scenario are apparent: the convergence relies on an
inconsistent level of granularity for the reported findings, as the Observer implementa-
tion comprises distinct (atomic) crosscutting concerns that the techniques identify. The
results require a tedious manual correlation effort as theydo not (always) overlap di-
rectly but are related by the design decisions they implement. Moreover, the approach
requires that, despite their inconsistency, detailed descriptions of results and associated
concerns are present. In practice, however, such descriptions are often not available.

To address these issues, we identify a set of requirements for systematic aspect
mining aimed at ensuring consistency and compatibility in identification of crosscut-
ting concerns and description of the mining results. These requirements form the basis
of a common framework for aspect mining. They comprise a clearly definedsearch-
goal for the mining technique, descriptions of the rules for mapping the mining results
onto the description of the concerns targeted by the technique, and objective metrics
for assessment.

Contributions of this chapter can be summarized as follows:

1 Object Management Group - CORBA v3.0.3 specification

5.2. A Common Framework for Aspect Mining 111

• We present a common framework that defines a systematic approach to aspect
mining (Section 5.2);

• We introduce two new aspect mining techniques and show how these and a pre-
viously proposed technique conform to the proposed framework (Section 5.3);

• We provide tool support for the techniques and their combination (Section 5.5
and 5.4).

• We apply the three techniques to a common benchmark, both individually and in
combination, and assess the results and the approach (Sections 5.6);

• We present a survey of existing aspect mining techniques anddiscuss their com-
pliance with the proposed framework (Section 5.7).

The next section introduces the proposed framework and its elements, such as the
metrics to assess aspect mining techniques. Then, we present a set of three techniques
that consists of a previous contribution and two new techniques, and show how the
framework is used to retrofit and, respectively, design aspect mining techniques. In
Section 5.4, we discuss a number of combinations of the mining techniques aimed
at improving the quality of their individual results. The tool support for each of the
three techniques as well as for their combination is discussed in Section 5.5. We use
the tool to conduct idiom-driven aspect mining on a common benchmark application
and report on the setup and results of our case study in Section 5.6. Section 5.8 gives
an overview of the existing aspect mining techniques and discusses their conformance
with the framework, followed by a discussion of the results and lessons learned. The
final sections of the chapter present related work, draw conclusions and discuss future
work.

5.2 A Common Framework for Aspect Mining

The focus of this work is on systematic aspect mining forgenerativetechniques: ap-
proaches that identify program elements which participatein a crosscutting concern
based on source code characteristics, without using domainknowledge about the sys-
tem that is analyzed. The identified elements are known as crosscutting concernseeds.

Most generative aspect mining techniques contain an automatic step in the analysis.
The results of this step arecandidate-seeds(or candidates): results which are proposed
as seeds by the tool, but still require human inspection and validation. Rejected candi-
dates arenon-seeds(false positives).

To ensure consistent and systematic aspect mining, we identify a number of re-
quirements for aspect mining techniques. One of these requirements is to define the
targeted categories of crosscutting concerns; that is, thesearch-goalof the technique.
We propose to define search-goals using the classification ofcrosscutting concerns in
sorts defined in Chapter 4.

112Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

Sort Intent Object-oriented Idiom Relation Instances

Consistent Be-
havior

Implement consistent be-
havior as a controlled step
in the execution of a number
of methods that can be cap-
tured by a natural pointcut

Method calls to the de-
sired functionality

Set of methods
invoke a spe-
cific action

Log exception throw-
ing events in a sys-
tem; Wrap/Translate
business service ex-
ceptions [Marin et al.,
2007a]; Notify and
register listeners; Autho-
rization;

Redirection
Layer

Define an interfacing layer
to an object (add function-
ality or change the context)
and forward the calls to the
object

Declare a routing
layer (wrapper/decora-
tor/adapter), and have
methods in this layer to
forward the calls

Set of methods
in class for-
ward calls to
pair methods in
a receiver type

Decorator (pattern),
Adapter (pattern) [Han-
nemann and Kiczales,
2002]; Local calls
redirection to remote
instances (RMI) [Soares
et al., 2002];

Role superim-
position

Implement a specific sec-
ondary role or responsibility

Interface implementa-
tion, or direct implemen-
tation of methods that
could be abstracted into
an interface definition

Set of types
implement
secondary role

Roles specific to de-
sign patterns: Observer,
Command, Visitor, etc.;
Persistence [Marin et al.,
2007a];

Expose context
(Context pass-
ing)

Expose the caller’s context
to a callee by passing infor-
mation to each method in the
call stack to that callee (aka
Wormhole [Laddad, 2003b])

Add arguments to each
method in the call stack

Method (de-
clares and)
passesparame-
ter as argument
(to callee)

Transaction manage-
ment, Authorization
[Laddad, 2003b].

Table 5.1: Sorts of crosscuttingness.

5.2. A Common Framework for Aspect Mining 113

5.2.1 Crosscutting Concern Sorts

An important limitation of aspect mining comes from the lackof a clear definition of
crosscutting concerns. For example, Filman et al. [2005] refer crosscutting concerns
as “systematic behavior” whose implementation is “scattered throughout the rest of
an implementation”, while Kiczales et al. [1997] defines such concerns as “proper-
ties” that “cannot be cleanly encapsulated in a generalizedprocedure”. Unfortunately,
these definitions do not allow to clearly specify the search-goals of a technique and
the mapping between these goals and the actual results. Without a clear definition, as-
pect mining techniques have to resort to ad-hoc descriptions of their goals and output
and sometimes even omit a detailed specification of their findings and the associated
crosscuttingness.

A first step towards overcoming this limitation is a consistent system for addressing
and describing crosscutting concerns. To this end, we propose the use ofcrosscutting
concerns sorts, a classification system for crosscutting functionality presented in the
previous chapter.

Crosscutting concern sorts are categories ofatomiccrosscutting concerns (i.e., con-
cerns that cannot be naturally decomposed into smaller, yetmeaningful concerns).
They are characterized by a number of properties common to all the instances of the
sort, such as a generic description of the sort (i.e., the sort’s intent), and a specific im-
plementation idiom of the sort’s instances in a non-aspect-oriented language (i.e., the
sort’s specificsymptom).

Table 5.1 shows a selection of four crosscutting concern sorts. They are described
by their defining properties and by a number of concrete instances. For example, the
roles super-imposed to participants in a typical implementation of the Observer pattern
(the concrete Subject and the Observer roles) are instancesof theRole superimposition
sort. Similarly, the mechanism of consistently notifying Observer objects of changes
in the Subject’s state by invoking a notification-method is an instance of theConsistent
behaviorsort.

The classification of crosscutting concerns based on sorts ensures a number of im-
portant properties for consistent aspect mining: first, theatomicity of the sorts ensures
a consistent granularity level for the mining results; second, sorts describe the relation
between concrete instances and the associated crosscutting functionality; third, sorts
provide a common language for referring to typical crosscuttingness, and hence for
defining the search-goals of an aspect mining technique.

5.2.2 Defining the Common Framework

We propose a common framework for aspect mining that defines asystematic approach
to identify crosscutting concerns. The framework is aimed at ensuring consistency of
the mining process and compatibility of results. This compatibility would further allow
for assessment and combination of mining techniques and results. The framework
insists on the following four steps to be taken by the developer of an aspect mining

114Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

technique:

Step 1. Define the search-goal of the mining technique.An aspect mining tech-
nique has to define its search-goal in terms of kinds of crosscutting concerns that the
technique aims to identify. Thus, we use the classification system based on crosscutting
concern sorts to define search-goals.

For example, we can define the search goal of our aspect miningtechniques as
instances of theConsistent behaviorsort. The underlying relation of the sort consists
of method invocations, as shown at the left of Figure 5.1. Thesame figure (in the
middle) also shows two techniques, based on identification of scattered calls and clone
detection respectively, targeting concerns of this sort, as we discuss next.

Step 2. Describe the representation of the mining results. An aspect mining tech-
nique has to define and describe the format for presenting theresults of the automatic
mining process (i.e., the source code elements that will constitute the candidate-seeds).
Such a common format would typically resemble the specific implementation of the
crosscutting concerns targeted by the mining technique (i.e., the sort’s implementation
idiom).

Step 3. Define a mapping between the mining results and the goal. The mining
technique has to define how the candidate-seeds map onto the targeted crosscutting
concerns (i.e., the implementation idiom of the targeted sort). This mapping forms the
relation between mining results and potentially associated concerns. Furthermore, it
describes how we should understand and reason about the candidate-seeds, and how
we can expand them into complete crosscutting concern implementations.

Candidate-seeds that cannot be mapped to actual crosscutting concerns are rejected.
Considering again the example in Figure 5.1, the first mining technique, which

searches for scattered calls and reports results as call relations, maps the callee in the
mining result onto the crosscutting element, and the callers onto the crosscut elements.
The second technique assumes that the identified cloned codeis extractable into a
method that crosscuts its call sites, i.e., the methods enclosing the detected clone.

Step 4. Define metrics to assess mining techniques and results. We distinguish
three metrics: (1)precision, (2) absolute recall, and (3)seed-qualitymetric. The first
metric evaluates the quality of the whole set of candidate-seeds generated by the mining
technique. The value of the metric is given by the percentageof correctly identified
seeds in the whole set of candidates reported by the technique.

The second metric counts the absolute number of identified concern seeds. We use
this metric instead of the standard recall because the totalnumber of concerns of a
certain sort in a reasonably large system is typically impossible to determine.

The last metric operates at the level of individual seeds rather than at the level of a
full technique. It characterizes each seed by a percentage,providing a measure of the

5.3. Three Aspect Mining Techniques 115

effort required for reasoning about the candidate. The metric was proposed by Marin
[2006b] and used by Ceccato et al. [2006] to compare three aspect mining techniques.
The quality metric shows what percentage of the (program) elements covered by a
mining result belong to the concern associated with that candidate. For example, in
Figure 5.1, we assume that our candidate-seed is reported asmethod call relations, and
only four of the six method invocations in our candidate turnout to implement the
same (crosscutting) concern (in this case, a condition check realized by an invocation
to thesupermethod that cuts across theCommandtype hierarchy). The quality of this
result is therefore 67%. Candidates with a low value of the quality metric will typically
be dismissed.

To generalize the seed-quality metric at the level of the mining technique, we can
consider anaverage seed-qualityfor all the seeds identified by the technique; the met-
ric indicates the level of confidence in the concern seeds identified by a particular
technique.

These three metrics form the core set that is used for assessment; however, this set
can be extended with other metrics provided that they are generally applicable.

Optionally (but recommended) the mining technique should provideguidelines for
improving the metric values. Such improvements can be made, for instance, through
combinations of techniques. For example, precision can be improved by combining
techniques with the same search-goal: same results reported by two or more differ-
ent techniques are more likely to correspond to valid seeds.Absolute recall can be
improved by combining techniques with different goals, which would produce com-
plementary sets of results of different sorts. Seed-quality would typically be improved
by generating results that better overlap with the implementation of their associated
crosscutting concerns, and hence have a higher confidence level.

5.3 Three Aspect Mining Techniques

In this section, we describe three techniques for identifying crosscutting concern seeds
and how they conform with our framework for systematic and consistent aspect min-
ing. One of these techniques, Fan-in analysis, is a previouscontribution, while the
other two techniques are new. This shows how an existing technique can be retrofitted
to the framework and how new techniques can be designed basedon the framework’s
structure. Furthermore, it shows how the framework allows us to reason about the
impact (be it positive or negative) that adjusting certain thresholds in any of these tech-
niques has. Experiments that apply these techniques to a common case are discussed
in Section 5.6.

5.3.1 Fan-in Analysis

Fan-in analysis is a mining technique aimed at identifying crosscutting concerns whose
implementation consists of a large number of scattered invocations of specific function-

116Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

Figure 5.1: Framework elements

ality implemented by a method, as described in Chapter 2 of this thesis. The number
of distinct call sites gives thefan-in metric of the method invoked. The analysis re-
ports methods with large values of their fan-in metric as candidate-seeds. The seeds
found using Fan-in analysis typically correspond to crosscutting concerns refactorable
by an aspect-orientedpointcut and advicemechanism that exists, for example, in As-
pectJ: the aspect solution captures the call sites in a pointcut definition and triggers the
automatic execution of the method with a high fan-in value atthese call sites.

Fan-in analysis can identify a number of crosscutting concern sorts. The typical
one isConsistent behavior, such as events notification in Observer pattern implemen-
tations, consistent logging or tracing operations, exception handling and wrapping,
credentials checks, etc. Another type of concern that can beidentified by Fan-in analy-
sis isRole superimposition: for example, the implementation of a secondary role, such
as persistence, across a set of classes might consist of methods that invoke a particular
helper method; The calls in the persistence methods lead to ahigh fan-in value for the
helper one, which can be recognized by our technique.

To improve assessability, we will differentiate between various Fan-in analyses
based on the concern sort(s) that are actually targeted by a particular analysis. This
will allow us to distinguish between intended and unintended discoveries.

In this chapter we will focus on Fan-in analysis aimed at identifying Consistent
behavior. When we describe properties particular to this analysis, wewill refer to it as
Fan-inCC.

Figure 5.2 describes Fan-inCC in terms of our framework. It lists the goals, and

5.3. Three Aspect Mining Techniques 117

Search goal Instances of theConsistent behaviorsort.

Presentation Results are call relations, described by a callee and a set of callers.

Mapping The method with a high fan-in value (the callee) maps onto themethod
implementing the crosscutting functionality, and the callers of the method corre-
spond to the crosscut elements.

Metrics We consider three metrics for assessment:

• precision: the percentage of seeds for instances of Consistent behavior in
the whole set of reported candidates;

• absolute recall: number of identified seeds (i.e., validated candidates);

• seed-quality: the percentage of callers in the reported call-relation that
match elements crosscut by the consistent invocation of themethod with
a high fan-in value. Callers that increase the metric value are those that are
validated as participants in the implementation of the associated crosscut-
ting concern.

Figure 5.2: Fan-in analysis represented in the aspect mining framework

provides metrics that can be used to assess the effectiveness of fan-in analysis.
In our previous work we discuss a number of properties that affect the seed-quality

for Fan-in analysis [Marin, 2006b]. These include, for instance, structural or call po-
sition relations between the callers of a method with a high fan-in value. High quality
candidates contain mostly elements that participate in theimplementation of a cross-
cutting concern, and hence are relevant for reasoning abouta candidate.

Recall is likely to improve for lower threshold values of the fan-in metric; however,
this is also likely to reduce precision.

5.3.2 Grouped calls Analysis

Our next aspect mining techniques is based on the observation that the implementation
of different crosscutting concerns can be closely related,or that a single concern can
be implemented by a number of related method calls. Examplesinclude pre- and post-
operation notifications, consistent initialization and clean-up of resources, and multi-
step set-up operations. Such concerns typically share their intent and crosscut the same
elements. We can identify them by looking for groups of methods that consistently
invoke a shared set of callees.

Thus, we propose a new aspect mining technique that we call Grouped calls Anal-
ysis. It works by applying formal concept analysis [Ganter and Wille, 1997; Lindig,

118Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

Search goal Instances of theConsistent behaviorsort.

Presentation The results are concepts, where the grouped callees are the attributes
and the callers are the objects in the concept.

Mapping The attributes in the concept (i.e., the callees) map onto methods im-
plementing crosscutting functionality, and the objects inthe concept (i.e., the
callers) match the crosscut elements.

Metrics We consider the same three metrics for assessment as for Fan-in analysis:

• precision: the percentage of seeds forConsistent behaviorinstances in the
whole set of reported candidates;

• absolute recall: number of identified seeds;

• seed-quality: is given by two partial measures: (1) the percentage of callers
that are indeed crosscut by a consistent call to a specific functionality and
(2) the percentage of callees that are part of the crosscutting concern im-
plementation as assessed by an human analyzer. The value of the metric is
obtained by multiplying the partial measures.

Figure 5.3: Grouped calls analysis represented in the aspect mining framework

2000] to all calls in the analyzed system in order to find maximal groups of callees that
are invoked by the same callers.

The positioning of this technique into our framework is shown in Figure 5.3.
Improving the seed-quality for this analysis can target theset of callers for a re-

ported group of callees, similar to Fan-in analysis, as wellas the set of grouped callees,
by selecting only those callees that are relevant for a potentially associated crosscutting
concern.

5.3.3 Redirections finder

Our third mining technique, Redirections finder, looks for classes whose methods con-
sistently redirect their callers to dedicated methods in another class. Typical examples
include implementations of wrapper types, such as in the Decorator pattern [Gamma
et al., 1994]: The Decorator class’ methods receive calls, optionally add extra func-
tionality, and then redirect the calls to specific methods inthe Decorated class.

To detect such a consistent, yet method-specific, redirection concern, the technique
looks for classes (C) whose methods (m) invoke specific methods from another class
D (D.n). The automatic selection rule is:

C.m calls D.n and only n from Dand

5.4. Combining Techniques 119

Search goal Instances ofRedirection layer.

Presentation Redirection relations described by a set of pair methods fromtwo dif-
ferent classes, related by one-to-one call relations.

Mapping The callers in the reported set match the methods executing the redirection,
while their pair callees receive the redirection.

Metrics We consider three metrics for assessment:

• precision: the percentage ofRedirection layerseeds in the set of reported
candidates;

• absolute recall: number of identified seeds;

• seed-quality: the percentage of redirectors in the reported candidate.

Figure 5.4: Redirections finder analysis represented in the aspect mining framework

D.n is called only by m from C.
Class C and its redirector methods are reported by the technique if the numberof
methods in C complying with these conditions is above a chosen threshold, and if the
percentageof methods in C complying with the conditions with respect tothe total set
of methods of C is higher than a second threshold.

To further improve the seed-quality, we can add a filter that checks for matching
names between the callers and callees. This is a common practice for implementing
redirectors, although it could also introduce false negatives, and hence reduce (abso-
lute) recall.

The representation of this technique in terms of our framework is shown in Fig-
ure 5.4.

5.4 Combining Techniques

Having used our framework to describe three techniques, we next can use the frame-
work to reason aboutcombinationof these techniques. In this section, we discuss
the three metrics in our framework, indicating how their values are affected through
different combinations of the three techniques just presented.

5.4.1 Improving Precision

Precision is measured by the percentage of crosscutting concern seeds in the complete
set of candidates reported by the (automatic) mining technique. A straightforward

120Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

combination of two aspect mining techniques that increasesprecision is achieved by
intersecting their results (i.e., the set of candidates). However, this can be done only
when the techniques target the same crosscutting concern sorts, with compatible rep-
resentations of the results.

Two techniques that satisfy this condition are, for example, Fan-in and Grouped
calls analyses. To combine them, we select those results of Fan-in analysis whose
callees occur as callees in at least one of the Grouped calls candidates.

5.4.2 Improving Absolute Recall

To improve absolute recall, we can simply consider the unionof the results of different
mining techniques. For techniques that target different concern sorts, this union will
not contain overlap in the individual results, and the number of seeds for the combina-
tion is the sum of the seeds for each technique.

As argued before, another way of improving the absolute recall is by being less
selective, i.e., by lowering the thresholds. However, thisis likely to reduce precision.
For Fan-in and Grouped calls analyses, precision can be restored by combining these
two techniques with the same search-goal, and taking the intersection of their results.
The lower thresholds allow for new candidates to be reportedand the intersection filters
the results so the precision does not drop significantly.

5.4.3 Improving the Seed-Quality

Like precision, the seed-quality metric can be improved by combining techniques tar-
geting the same sort. For example, we can consider the intersection of the results for
Fan-in and Grouped calls analyses, selecting the common callees and the common
callers of these callees. Thus, for the same value of the threshold for the number of
callers, we consider only callees reported by both techniques, and the callers reported
by Grouped calls analysis.

Because Grouped calls analysis is the most restrictive of both techniques, the num-
ber of callers for a callee is typically lower than for Fan-inanalysis. Moreover, the
quality of the combined results will be higher than for Grouped calls analysis alone
because the combination takes only one callee, and hence we have no false positives
grouped together with seeds.

It may be the case that one result of Fan-in analysis occurs inmultiple groups of
callees reported by Grouped calls analysis: in this case, weselect the Grouped calls
result for which the callers set has the largest overlap withthe set of callers for the
Fan-in candidate.

5.4. Combining Techniques 121

Figure 5.5: FINT views for Fan-in (at the right) and Grouped calls (in the middle, at
the bottom) analysis.

122Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

Figure 5.6: FINT view for Redirection finder and the Seeds view.

5.5. Tool Support 123

5.5 Tool Support

To experiment with the ideas laid out in this chapter, we haveextended our free aspect
mining tool FINT2 (see Chapter 2 and Marin et al. [2007a]) to include automatic sup-
port for the three techniques and their various combinations. FINT is available as an
Eclipse3 plug-in. Figures 5.5 and 5.6 show part of the functionality provided by the
tool. Figure 5.5 displays the views to inspect and manage theresults of Fan-in (on the
right side) and Grouped calls (at the bottom) analysis. The similar view for the results
of the Redirections finder technique is shown on the right sideof Figure 5.6.

The results for each technique are displayed by following the representation de-
scribed in Section 5.3. The views allow for various sorting operations and code in-
spection from the elements selected by the user in the view. The user can further open
and inspect each candidate in a new view, and run a number of analyses for improving
the quality of the candidate. These analyses include inspection of various structural
relationships between the elements describing a candidate.

Support for combining techniques is available, for example, through intersection
of the sets of results of two techniques: The views showing the results can be synchro-
nized so common findings are highlighted in the views. For example, the highlighted
elements in the Fan-in Analysis View of Figure 5.5 correspond to methods that are also
present in at least one group reported by the Grouped calls analysis. The bold colored
elements show candidates marked as seeds by the user. These elements are also shown
in the Seeds view.

Each technique allows for a number of specific, automatic filters, like filters forutil-
ity elements oraccessormethods. Utility elements are those that the user considersas
irrelevant for analysis. To filter them, the user is presented with the hierarchical struc-
ture of the top-level Java element selected for analysis (e.g., a Java project) in which
the elements to be ignored can be selected (e.g., all the elements in packages contain-
ing JUnit tests). The accessor methods, that is getter and setter methods, are filtered by
automatic inspection of either the signature of the methodsor their implementation.

5.6 Experiment

In this section, we apply the mining techniques described above to JHOTDRAW4,
which has been proposed and used as common benchmark for aspect mining [Marin
et al., 2007a; Ceccato et al., 2006] as discussed in Chapters 2 and 3. JHOTDRAW is
an open-source framework for bi-dimensional drawings editors. The distribution (v
5.4b1) comes with a default drawing application that we alsoanalyze. The system is
also a show-case for applying design pattern solutions in a Java implementation. Its

2 http://swerl.tudelft.nl/view/AMR/FINT (v0.6)
3 http://www.eclipse.org/
4 http://www.jhotdraw.org/

124Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

Fan-inCC Grouped calls Redirection

Targeted sorts Consistent behavior Consistent behavior Redirection layer
Utility filters Collection wrappers and

test classes
Collection wrappers and
test classes

Test classes

Accessor filters Accessors by name and
implementation

Accessors by name and
implementation

-

Threshold filters No. callers: 10 No. callers: (1:) 10 and
(2:) 7;
No. grouped callees: 2

No. redirectors: 3;
% redirectors: 50

Accepted Seed quality≥ 50% ≥ 50% ≥ 50%

Table 5.2: Selection conditions applied for the aspect mining experiment.

size is approximatively 20,000 non-comment, non-blank lines of code.5

One goal of this section is to conduct idiom-driven aspect mining and to report on
identified concerns in a relevant application. A second and more important goal of this
section is to show how the proposed framework allows for consistent assessment of the
results of the three aspect mining techniques, as well as of two proposed combinations.
To this end, we present and compare the quality measures for each technique and for
the results of their combinations.

Detailed results of the experiments discussed in this section and quality metric
values are available on-line.6 Next, we discuss the setup of the experiment.

5.6.1 Applied Filters

Table 5.2 shows the filters applied for conducting the miningexperiments on the se-
lected case-study. For all techniques, we filter out the (JUnit) test classes delivered
with the application; i.e., the methods from the test classes do not occur among the re-
ported candidates of any technique, and methods from these classes do not contribute
to the fan-in metric of a method.

Collection wrappers, likeIteratorWrapperor SetWrapper, are also marked as util-
ities to be filtered from the set of candidates. Similar to thetest classes, these wrappers
are typically part of dedicated packages (CH.ifa.draw.util.collections.*). Collection el-
ements tend to be frequently used in an application. In most cases, however, they are
not part of a consistent mechanism associated with crosscutting functionality. Filtering
these elements is likely to reduce the number of candidates without introducing false
negatives.

For Fan-in and Grouped calls analysis, we also filter accessor methods from the set
of candidates. The filters check both the signatures of methods (set* andget* names)
and their implementation (i.e., only set a field or return a reference).

A number of threshold values are specific to each case and can be varied by the
user to refine the results:

5 SLOCCount: http://www.dwheeler.com/sloccount/
6 http://swerl.tudelft.nl/view/AMR/CombinationResults

5.6. Experiment 125

• Fan-inCC: the threshold value for the number of callers of a candidateis set to
10, following considerations from previous experiments discussed in Chapter 2;

• Grouped calls: the first experiment uses a threshold of 10 forthe number of
callers, which is lowered to 7 for the second experiment; thethreshold for the
minimal number of callees to be grouped by a candidate is always set to 2;

• Redirections finder: the technique uses two threshold values, the first sets the
minimal number of redirector methods in a class to 3, and the second sets the
minimal percentage of methods in the class executing the redirection to 50%.
Thus candidates reported by this technique will have at least 3 redirector meth-
ods, and at least 50% of all their methods execute the required redirection.

Candidates are marked as seeds if they correspond to a crosscutting concern accord-
ing to the mapping rules of each technique, and if the seed-quality of the candidate is at
least 50%. This metric value shows that most elements in the make-up of a seed belong
to the (implementation of the) crosscutting concern identified by that seed; hence, we
estimate that concerns associated to such seeds are fairly recognizable by a simple in-
spection of the seed. We believe that in practice only seeds with a relevant high quality
value will be recognized by the user in the set of mining results produced by a tech-
nique. This is due to the fact that the goal of aspect mining isto provide a quick insight
into the (crosscutting) concerns of a system, and so it is a time-constrained activity,
aimed at minimizing the effort of understanding a system. Therefore, the precision of
a technique should be measured by a certain standard of the quality of its results. Note,
however, that lower values of the seed-quality metric are likely to increase the number
of concerns identified by a technique at the cost of increasedeffort required to analyze
each mining result (i.e., each reported candidate).

5.6.2 Results

This section shows a number of typical results and metric values for each of the three
techniques, as well as for their combination. The calculated metrics are summarized in
Table 5.3.

Fan-in analysis Before discussing the metric values for this technique, we first look
at an example of identified seeds and how we select them from the set of candidates. A
number of seeds recognized by Fan-inCC implement concerns that crosscut theCom-
mandhierarchy in JHOTDRAW. Commandclasses follow the design described by
the pattern with the same name; they implement anexecute method that carries out
specific activities in response to, for instance, user actions like menu-items selection.

Figure 5.7 shows the method for executing cut operations in adrawing editor. The
method starts with a precondition check implemented by the command’s super-class

126Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

//CutCommand.execute()
public void execute() {

// perform check whether view() isn’t null.
super.execute();

// prepare for undo
setUndoActivity(createUndoActivity ());
getUndoActivity().setAffectedFigures(view().selection());

// key logic: cut == copy + delete.
copyFigures(view().selection(), view().selectionCount());
deleteFigures(view().selection());

// refresh view if necessary.
view().checkDamage();

}

Figure 5.7: (Simplified) execute method in JHOTDRAW’s Command hierarchy.

(AbstractCommand). Similarly, the (around 20) methods overriding theAbstractCom-
mand’s execute method in non-anonymous classes check this condition. The com-
mands then conclude with a notification of the editor’s view.

The check- and notification-actions implement two crosscutting concerns scattered
over a large number of methods that invoke these actions, andhence increase the value
of their fan-in metric. These invocations are typical seedsfor instances of theConsis-
tent behaviorsort.

To calculate the quality of these results, we have to consider all the callers reported
by Fan-inCC for each of the invoked actions. Not all the callers, however, belong to the
context of theCommandhierarchy crosscut by the concerns of the two candidate-seeds.
For instance, one of the calls to theexecute method originates from an action-event
handler in aMenuItemclass. The quality of the candidate for theexecute method is
given by the proportion of the 18 methods crosscut by the reported call, to the whole
set of 24 callers. This value is 75%, above the set threshold of 50% for selecting a
candidate as a seed.

Returning to Table 5.3, theConsistent behaviorseeds identified through Fan-inCC

analysis count 33 methods in the total set of 109 candidates reported. This indicates a
precision of around 30% for the targeted sorts, as shown in Table 5.3. Despite a lower
precision value when compared to the other techniques that we discuss next, we notice
that Fan-inCC analysis identifies the largest number of seeds, and hence, of concerns.

Grouped calls analysis As can be seen from Table 5.3, Grouped calls analysis (GC1)
yields fewer candidates and seeds than Fan-inCC, but with a higher precision and qual-

7 Results for Fan-inCC in this work are exclusively for the targeted sorts. They differ from results
reported in Chapter 2 (and in Marin et al. [2007a]) because inthat case more concern sorts were targeted.
All results are documented on the experiment’s web-page mentioned earlier (footnote 6).

5.6. Experiment 127

Technique # Candidates Absolute recall Precision Average
(# Seeds) Seed-quality

Fan-inCC (FI)7 109 33 30% (33/109) 77.4%
Grouped calls (GC1) 11 6 55% (6/11) 91.6%
Grouped calls (GC2) 22 12 55% (12/22) 87%

Redirection finder (RF) 13 12 92% (12/13) 93.5%
FI + GC1 17 7 41% (7/17) 97.6%

FI + GC2 + RF - 51 -

Table 5.3: Metric values for individual and combined techniques.

ity. To understand this, consider the precondition checking and notification concerns
just discussed. These two candidates share the largest partof their callers, and hence
are also among the results reported by the Grouped calls analysis. Although the two
concerns are distinct, they are related by the set of elements they crosscut (i.e., the
Commandhierarchy). The Grouped calls analysis does not separate the two concerns,
but instead allows to put them in a single, shared context.

One of the candidates reported by this technique groups theview andexecute
methods in the set of callees, together with 14 common callers. Another candidate
groups the same two methods, but also thecheckDamage method, together with 12
common callers. In the first case, theexecute method is the relevant element for the
crosscutting concern associated with the reported candidate. Theviewmethod has no
relevance to this concern, and hence it decreases the quality of the candidate. However,
we can still select this candidate as all the callers participate in the associated concern
and hence the overall quality (for the callees and callers groups) is 50%.

On the second case, each invocation of theview method occurs together with a
call to thecheckDamage method, which is a seed for the previously discussed instance
of theConsistent behaviorsort. In this case, the reportedview method is relevant for
the crosscutting concern associated with the reported candidate and contributes to the
quality metric. For this candidate, the quality metric is 100% as all the grouped callees
and callers belong to the implementation of the related crosscutting concern.

In comparison with Fan-in analysis, the number of results and seeds for this tech-
nique is lower for the same threshold for the number of callers. This is to be expected,
as this technique has more restrictive selection rules for the candidates: a callee should
not only have a large number of callers, but it also has to be called together with at
least one other same method.

For a lower threshold, namely 7, the number of seeds is almostdouble, but is still
lower than the one reported for Fan-in analysis. The resultsof this experiment are
labeled with GC2 in Table 5.3. This experiment allows to consider callees that are
potentially missed by fan-in analysis due to its higher threshold filter. Most of the
results and seeds of the Grouped calls analysis with a lower threshold overlap with the
results of Fan-in analysis, although, we also observe a number of new seeds.

128Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

public abstract class DecoratorFigure {
// ...
private Figure myDecoratedFigure;

public TextHolder getTextHolder() {
return getDecoratedFigure().getTextHolder();

}

public Rectangle displayBox() {
return getDecoratedFigure().displayBox();

}

// Forwards draw to its contained figure.
public void draw(Graphics g) {

getDecoratedFigure().draw(g);
}

// ...
}

Figure 5.8: (Part of) DecoratorFigure - super-class for Figure objects decorators.

Redirections finder analysis We observe in Table 5.3 that this technique has the
highest precision of all the techniques employed by our experiment. The particular
high precision has also been confirmed by experiments on other case-studies, such as
Tomcat8 and JBoss9.

A typical example of concerns found through Redirections finder is the Decorator.
A number of classes in JHOTDRAW, like Border-or Animation-Decorator, extend the
DecoratorFigureclass shown in Figure 5.8, which provides the basic functionality to
forward calls to a decoratedFigure object. This example is a typical instance of the
Decoratorpattern: Methods in the Decorator classes consistently redirect their callers
to dedicated methods of a target object, before or after (optionally) providing additional
functionality.

The Redirections finder candidate for this concern consists of 22 call relations, 3
of which correspond to the methods shown in the figure. Since all reported results
implement the redirection concern, the seed-quality of this candidate is 100%.

Combination of Fan-in and Grouped calls analysis Table 5.3 also shows that the
combination of the two techniques (FI and GC1) targeting instances of the same (Con-
sistent behavior) sort leads to improved precision when compared with the results of
the individual technique (Fan-inCC). However, this comes at the cost of a significantly
lower absolute recall, of only 7 for the combination.

The quality for each of these 7 seeds is listed in Table 5.4. Asexpected due to

8 http://tomcat.apache.org/
9 http://jboss.org/

5.7. Retrofitting Existing Techniques 129

Candidate FI quality GC1 quality FI+GC1 quality

framework.DrawingView.checkDamage 64% 100% 100%
framework.DrawingView.clearSelection 55% 100% 100%
framework.DrawingView.selectionCount 63% 83% 83%

standard.AbstractCommand.execute 71% 100% 100%
standard.AbstractFigure.changed 100% 100% 100%

standard.AbstractFigure.willChange 100% 100% 100%
util.UndoableAdapter.undo 92% 100% 100%

Table 5.4: Values of the quality metric for individual and combined techniques.

the more restrictive selection rule of the candidates, Grouped calls analysis achieves
a better seed-quality, which is also reflected in the resultsof the combination. These
results show improved values of the quality metric, typically by retaining the higher
value of the Grouped calls analysis results.

All three techniques The combination of all the three techniques is aimed at getting
the largest possible set of seeds. Therefore, we select for combination the results of
Grouped calls analysis obtained by applying the lower valueof the threshold for the
number of shared callers, i.e., 7. The result of the combination is given by the union of
the sets of seeds identified by the three techniques. This union consists of 51 distinct
seeds for various concerns in the analyzed system. The othermetric values are not
relevant for such combinations of techniques that target different concern sorts, as the
combination is applied after selection of concern seeds foreach targeted sort.

5.7 Retrofitting Existing Techniques

In this section we investigate how existing aspect mining techniques can be retrofitted
to the proposed framework. This survey helps in:

(1) the interpretation of the results of an aspect mining technique;

(2) clarifying how seeds are translated to crosscutting concerns;

(3) investigating new combinations of aspect mining techniques.

Below, we discuss for each sort the most important aspect mining techniques that tar-
get crosscutting concerns of that sort. The techniques we discuss are summarized in
Table 5.5.

5.7.1 Role Superimposition

For detecting role superimposition, two techniques have been proposed: one employs
static analysis, while the other one is based on dynamic analysis. The technique using

130Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

Technique Sort search goal Presentation Mapping

Aspectizable inter-
faces [Tonella and
Ceccato, 2004b]

Role superimpo-
sition

Inheritance relations de-
scribed by groups of methods
that belong to or can be
abstracted into an inter-
face definition, and their
implementing types.

The reported interface and its
members map onto elements
that crosscut the types imple-
menting them.

Concepts in
traces [Tonella and
Ceccato, 2004a; Ceccato
et al., 2006]

Role superimpo-
sition

Set of methods in a type hi-
erarchy defining the superim-
posed role, and their imple-
menting, crosscut classes.

The methods map onto the
members of the superimposed
type and cut across their im-
plementing classes.

Clone detection [Shep-
herd et al., 2005a;
Bruntink et al., 2004]

Consistent be-
havior

Set of relations (and state-
ments) grouped by a code
fragment that is duplicated
in multiple method bodies
(and that is refactorable by a
method extraction).

The method to extract the
cloned fragment maps onto
the crosscutting element;
the methods containing the
cloned code fragment map
onto the elements being
crosscut.

Execution patterns (dy-
namic [Breu and Krinke,
2004] and static [Krinke,
2006])

Consistent be-
havior

Call relations between a set
of methods (i.e. callers)
and identical(ly positioned)
sequence of other methods.

The recurrent sequence of
method invocations maps
onto the elements cross-
cutting the callers in the
relation.

Fan-in analysis [Marin
et al., 2007a; Gybels and
Kellens, 2005]

Consistent be-
havior

See Section 5.3.1 See Section 5.3.1

Grouped calls Consistent be-
havior

See Section 5.3.2 See Section 5.3.2

History-based min-
ing [Breu and Zimmer-
mann, 2006]

Consistent be-
havior

Call relations between two
sets of methods, where each
method in the callers set calls
all methods in the callees set
(i.e., similar to Grouped calls
analysis).

The invoked methods map
onto the elements crosscut-
ting their reported callers.

Context flow min-
ing [Seiter, 2006]

Context passing Call chain sequence anno-
tated with the position of
the parameter passed by each
caller to its callee in the chain.

The caller in each invocation
in the chain maps onto the
method passing the context
through the mapping parame-
ter.

Redirection finder Redirection layer See Section 5.3.3 See Section 5.3.3

Name-based min-
ing (Identifier anal-
ysis [Tourẃe and
Mens, 2004], Language
clues [Shepherd et al.,
2005b])

(Role Superimpo-
sition)

- -

Table 5.5: Retrofitting existing techniques to the framework.

5.7. Retrofitting Existing Techniques 131

static analysis aims at the detection of interfaces, or typemembers that can be ab-
stracted into an interface definition, that crosscut their implementing classes [Tonella
and Ceccato, 2004b]. The analyses employed by this techniquecheck the names of
interfaces to recognize common naming conventions like a “-ble” suffix, or attempt to
use clustering for grouping the members of a type that might belong to a secondary
role. The technique fits naturally into our framework and we can define its search goal
as instances ofRole superimposition.

The technique for recognizing role superimposition based on dynamic analysis was
proposed Tonella and Ceccato [2004a]; Ceccato et al. [2006]. This technique uses for-
mal concept analysis to group execution traces obtained under certain use-case scenar-
ios, with methods executed in these traces. The resulting concepts are selected by two
rules, namely, (1) the methods grouped by a use-case specificconcept (i.e., containing
traces of only that use-case scenario) belong to more than one class, and (2) the meth-
ods in that concept occur in more than one use-case specific concept. The technique,
and the second rule in particular, is aimed at finding classesthat implement more than
one functionality, i.e., more than one role. The concepts filtered by the above rules
are reported by the technique as seed candidates. However, one more (manual) step is
required to actually mine the potentially secondary role from the set of methods in the
concept, a step that is not explicitly described by Tonella and Ceccato [2004a]. From
the reports of the experiments with the technique [Tonella and Ceccato, 2004a], we
derive the following additional step, consisting of a rule for turning mining results into
(meaningful) concerns: methods in the same type hierarchy whose implementations
occur multiple times among the methods grouped by a selectedconcept are considered
to be part of a superimposed role.

We therefore propose that the last step is integrated with the technique and the pre-
sentation of the results is a set of methods of the same type. These methods map onto
the methods of the secondary role, and the percentage of methods mapping correctly
gives us the quality of the seed. All the implementations of the role correspond to the
crosscut elements.

5.7.2 Consistent Behavior

In order to identify instances ofConsistent behaviorsort, we can consider employing
techniques based on clone detection. A number of aspect mining experiments have
been carried out using clone detection [Bruntink et al., 2005; Shepherd et al., 2005a].
Shepherd et al. [2005a], for example, propose to examine clones for same method
invocations. Related research has explored how well clone detection can detect several
specific idiomatic implementations of crosscutting concerns, with best results reported
for such concerns as tracing and checking against NULL values [Bruntink et al., 2005].
Both concerns are clear instances of theConsistent behaviorsort. There is, however,
no report to our knowledge of a complete analysis of all the results produced by clone
detection-based techniques, and of their total precision and absolute recall.

The Grouped calls technique resembles mining based on clonedetection but only

132Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

in some respects: by not considering the position of the calls in the body of the callers,
the technique allows to identify related calls that would typically be missed by classical
clone detection tools. On the other hand, it can introduce false positives that probably
will not be present in standard clone detection.

The mining for recurring execution patterns in program traces [Breu and Krinke,
2004] and control flow graphs [Krinke, 2006] is particularlysuited for identification
of instances of theConsistent behaviorsort. The techniques search dynamically and
statically respectively for patterns such as methods whoseexecution always follows the
completion of another, specific method, or methods that are always executed first/last
in the body of their callers. In terms of our framework, the technique results in a
specific call relation. The callee is mapped to the crosscutting functionality, and the
callees are mapped to crosscut elements.

The results of the latter technique, based on static analysis, are compared by its
author to our own results reported for Fan-in analysis on theJHOTDRAW case [Marin
et al., 2007a]. The comparison and the overlapping results confirm the compatibility of
the two techniques, as they share the search goal, and provide a clear, intuitive mapping
of their results representation into the targeted sort’s description.

HAM (history-based aspect mining) is a technique that resembles our own Fan-in
and Grouped calls analysis [Breu and Zimmermann, 2006]. The technique searches
(CVS) version archives for addition of method calls, and selects those groups of meth-
ods with a large (threshold-based) number of common callers. Additional filters of the
results consider the number of transactions in which the calls were added, the time and
the authorship of the transactions. The presentation of HAM’s results is the same as
for Grouped calls analysis, and hence fits naturally in our framework.

A few other techniques apply similar recognition criteria of crosscutting concerns
as the ones already discussed. For example, the Unique methods by Gybels and Kellens
propose several selection conditions for methods with highfan-in values, such as a
void return type [Gybels and Kellens, 2005]. Other similar filters include selection of
methods with no parameters [Shepherd et al., 2005a].

5.7.3 Context Passing

TheContext passingsort describes concerns that cut across a call chain, and that are
implemented by adding new parameters to the methods in the chain in order to pass
specific context information along the call chain. This sortis targeted by the control
flow mining technique proposed by Seiter [2006]. The technique looks for sequences
of method invocations in a call chain, where each method in the chain passes a specific
parameter (identified by its position) as an argument to its callee in the chain. The
results are reported as a sequence of methods annotated by the position of the passed
parameter.

In terms of our framework, the results are mapped to crosscutting concerns in the
following way: for each invocation in the chain, the caller maps onto the method pass-
ing the context information in the chain, and the identified parameter maps into the

5.8. Discussion 133

parameter passed as an argument for carrying the information. The seed-quality is
given by the number of invocations in the reported sequence that indeed correspond to
context passing, with respect to the total number of invocations in the chain.

5.7.4 Name-Based Approaches

Several approaches to aspect mining rely on naming conventions for the identification
of crosscutting code. As an example,Identifier analysisapplies formal concept analy-
sis to group program elements, like classes and methods, by words occurring in their
identifiers [Tourẃe and Mens, 2004; Ceccato et al., 2006]. The technique does not
propose an interpretation of the results to recognize crosscutting concerns in the gen-
erated concepts. However, the search for related program elements employed by this
analysis suggests that elements grouped in a concept belongto the same role, which
may be crosscutting. The search goal can then be defined as instances of theRole
superimpositionsort.

Previous experiments have shown that the inspection of results for Identifier anal-
ysis for recognizing crosscutting concerns is difficult andtime consuming [Ceccato
et al., 2006]. The technique works better as an enhancing technique that starts from
known crosscutting concern seeds and provides us with related program elements using
names as association criteria.

Another approach to name-based aspect mining uses lexical chaining; that is, se-
mantically related words recognized in fields, methods and class names as well as in
comments are grouped together [Shepherd et al., 2005b]. Theoutput of the technique
consists of groups of related words (i.e., chains) that occur in many different source
files, and pointers to source code entities that correspond to the words in the chain.
However, to understand the relation between these results and potentially associated
concerns we still need to turn the list of words into a meaningful concern representa-
tion. Therefore, we propose to consider the set of program elements associated with
these words as the results of this aspect mining technique. These elements would typi-
cally represent members of a potentially superimposed role. In terms of our framework,
the technique thus targets instances ofRole superimposition, and each reported result
proposes a set of elements as possible members of the superimposed role. The per-
centage of correctly identified members of the superimposedrole then gives the value
of the seed quality metric.

5.8 Discussion

Multiple search-goals As mentioned before, the relation between a technique and
its search-goal is not exclusive: one technique can target instances of different sorts if
different mappings are defined and applied.

Earlier, our focus for Fan-in analysis was at identifyingConsistent behavior. How-
ever, if we were to employ Fan-in (or Grouped calls) analysisto identify instances

134Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

of the Role superimposition sort (Fan-inRS), we could define the following mapping:
the callers of the high fan-in method belong to the implementation of a crosscutting,
super-imposed role, and the reported method with a high fan-in value implements func-
tionality dedicated to and accessed from the scattered places implementing the role.

Several instances ofRole superimpositionare present in JHOTDRAW. A typical
example is the persistence concern: TheFigure elements implement theStorablein-
terface that defines (read andwrite) methods to (re-)store a figure from/to a file. The
scattered implementations of these methods for persistence invoke functionality from
classes (StorableInputandStorableOutput) that are specialized in reading/writing spe-
cific types of data. The candidates reported by the techniqueare the methods in the
specialized classes together with their callers in theStorablehierarchy.

The persistence candidates forRole superimpositioninstances add to the total num-
ber of seeds identified for the analyzed system. However, since these results are not
compatible with theConsistent behaviorinstances discussed earlier, they should be ad-
dressed distinctly if the technique is to be compared with another one. This is achieved
by explicitly specifying the search-goal, as is done with Fan-inCC and Fan-inRS.

Another observation regards two sorts that share their implementation idiom, namely
Consistent behaviorand Contract enforcement. The Contract enforcementsort de-
scribes concerns implementing condition checks for designby contract. However, the
specific crosscutting symptom for this sort is the same as forConsistent behavior, with
the only difference consisting in theintent of their instances. This allows for aspect
mining techniques to target instances of both sorts together. However, automatic dis-
tinction of the sort for a certain instance is difficult, and thus this step requires human
analysis. Yet, for the purpose of the analysis presented in this chapter, the distinction
between the two sorts is not relevant.

Filters and results extension The Grouped calls analysis builds concepts of
callees×callers from the complete (i.e., un-filtered) set of methodsin the analyzed
system. To these concepts, we then apply our filters, such as those for accessor meth-
ods, which eliminate getters and setters from the sets of grouped callees. Finally, we
reason about the filtered results and decide whether a candidate is a valid seed or not.
However, our filters might eliminate methods relevant to a concern implementation,
particularly from those concepts marked as seeds. A simple solution to missing rele-
vant methods is to extend the concept of our seeds to their full representation by re-
moving the filters for each of the concepts marked as seeds. This way, we are still able
to eliminate the most unlikely candidates by using filters prior to the manual inspec-
tion of the results, but also to reduce the number of false negatives by investigating
all the (remaining) elements in theextendedrepresentation of our seeds. For exam-
ple, by extending the concept for the Grouped calls seed discussed in Section 5.6.2,
which groups theexecute, view, andcheckDamage methods (see Figure 5.7), will
also uncover a set of three methods dealing with setting up the undo support for a
command, namelysetUndoActivity, getUndoActivity, andsetAffectedFigure.

5.8. Discussion 135

These methods point us to the undo concern in the body of the commands’execute
methods.

Similarly, we can use such extensions for the results of the combination of Fan-in
and Grouped calls analyses. In order to achieve better seed-quality, the set of callers for
these results consists of only those callers from the resultof Grouped calls analysis.
However, this selection of callers might eliminate relevant callers from the typically
more extensive Fan-in result being combined. A recommendedpractice in this case is
to use the combination results for selecting the seeds, and then to extend the identified
seeds with the other callers reported by Fan-in analysis.

Results of previous experiments The framework rules and the survey in Section 5.7
confirm the results of our previous experiments reported in Chapter 3. In that chapter,
we found by manual examination of results (and without usingconsistent compari-
son criteria based on sorts) that Fan-in analysis and the search for concepts in traces
(i.e., Dynamic analysis) have a small overlap and are mainlycomplementary. This
is explained by the different main search goals of the two techniques that consist of
instances of different sorts.

As we have shown above, Fan-in analysis can be employed to some extent to search
for instances ofRole superimposition(Fan-inRS); This explains the overlap between
some of the results of the two techniques. Another explanation of this overlap lies with
the description of those results in terms of complex features, like Undo or Persistence
support. Such features typically involve more than one crosscutting concern and the
distinction between the various concerns proved difficult in the absence of a framework
like the one proposed in this chapter. Different concerns (i.e., sort instances) part of
the same crosscutting feature were then counted as a common finding.

Tool performance Although this work’s focus is less on each individual miningtech-
nique and more on the common framework to consistently assess and possibly combine
mining techniques, we briefly discuss the performance of ourtool FINT. The analysis
of the whole JHOTDRAW system for Fan-in analysis requires around 30 seconds on
our test machines (Pentium 4 - 2.66 GHz, with 1GB of RAM) running Eclipse 3.1.x
under either Linux or Windows OS.

The Grouped calls analysis requires the model built for the Fan-in analysis and
takes around 5 minutes to examine all the call relations (approximately 6000× 6000
elements). This analysis will not scale up very well to systems like Tomcat or JBoss,
which have up to 35,000 elements. However, trying to understand such large systems
in one iteration is hardly advisable due to the cognitive complexity. We would suggest
dividing them into sub-systems comparable in size with JHOTDRAW and gather under-
standing for each of these systems. Actually, to ensure maintainability, the architecture
of the two aforementioned systems is already conveniently split in components that are
suitable for analysis in isolation.

The Redirection finder uses the Fan-in model and requires onlya few seconds for

136Chapter 5. A Framework for Evaluating and Combining Aspect Mining Techniques

execution.

Reproducibility To allow for reproducibility of the experiments described in this
chapter, we provide both the tool and detailed setup elements and results sets on the
tool’s and experiment’s web-pages, indicated in footnotes2 and 6.

5.9 Related Work

Several authors have proposed (and taken) steps towards thecomparison and combi-
nation of aspect mining techniques [Marin et al., 2004; Ceccato et al., 2006; Shepherd
et al., 2005a]. We are not aware of related work on providing acommon framework
for systematic aspect mining, and consistent combination and assessment of mining
techniques.

Shepherd et al. [2005a] report on machine learning techniques for combining as-
pect mining analyses. Their approach learns from annotatedcode and they compare
the results of their combination to results of Fan-in analysis [Marin et al., 2004]. A
drawback is the required annotation of crosscutting concerns on some significant sys-
tem, which is needed for training the tool. The techniques considered for combination
include filters for accessor or utility methods, as also usedin FINT. However, the au-
thors of the experiment do not describe their findings in detail nor do they provide rules
to consistently associate results of different representations to crosscutting concerns.

In the collaborative AIRCO effort, described in Chapter 3, three aspect mining tech-
niques are compared and investigated from the perspective of combination. The tech-
niques include fan-in analysis, dynamic analysis of execution traces, and analysis of
shared identifiers in signatures of program elements. Majordifficulties in this experi-
ment were caused by heterogeneity in the search-goals of thethree techniques and in
the representation of results. Such experiments require a tedious effort from the partic-
ipants in the experiment to bring individual results to comparable levels of granularity.
Due to such issues, the experiment could focus only on a limited selection of common
findings. This formed one the motivations for the work presented here.

The survey of the existing aspect mining techniques extendsthe work of Mens et al.
[2007] that describes a number of aspect mining techniques by their implementation
characteristics. By comparison, we investigate how existing aspect techniques can
be used to identify instances of typical crosscutting concerns. We try to answer the
question of when to use these techniques, i.e., for what sorts of concerns, and how to
consistently interpret their results and turn them into meaningful crosscutting concerns.

5.10 Conclusions

With a growing number of aspect mining techniques and approaches, it is increasingly
difficult to consistently assess, compare, and combine mining results.

5.10. Conclusions 137

This chapter addresses this challenge by proposing a commonframework to define
systematic aspect mining based on crosscutting concern sorts. The framework allows
for consistent assessment, comparison, and combination ofcompliant aspect mining
techniques. It identifies a set of requirements that ensure homogeneity in formulating
the mining search-goals, presenting the results, and evaluating their quality.

We demonstrate the feasibility of the approach by retrofitting an existing aspect
mining technique to the framework, and by using it to guide the design and implemen-
tation of two new mining techniques in our FINT aspect mininginfrastructure. Our
application of the three techniques to an aspect mining benchmark known from litera-
ture shows how they can be consistently assessed and combined to increase the quality
of the results. Furthermore, our table containing a mappingof more than ten existing
aspect mining techniques in our framework demonstrates thewide applicability of this
framework.

As future work, we would like to extend FINT with new aspect mining techniques,
and particularly with techniques that target other concernsorts than the ones currently
supported. We shall also use such new techniques to further validate our framework.

Another direction to explore is on elaborating our metrics suite that is part of the
framework. For example, we would like to measure how much of aconcern’s extent
is covered by a particular identified seed – theseed-coverage. This metric for seeds
complements the seed-quality one, for which we can investigate new techniques for
improving the obtained values.

Chapter 6

An Integrated Strategy for Migrating
Crosscutting Concerns

In this chapter we propose a systematic strategy for migrating crosscutting con-
cerns in existing object-oriented systems to aspect-basedsolutions. The proposed
strategy consists of four steps: mining, exploration, documentation and refactoring
of crosscutting concerns. We discuss in detail a new approach to aspect refactoring
that is fully integrated with our strategy, and apply the wholestrategy to an object-
oriented system, namely theJHOTDRAW framework. The result of this migration is
made available as an open-source project, which is the largest aspect refactoring avail-
able to date. We report on our experiences with conducting this case study and reflect
on the success and challenges of the migration process, as well as on the feasibility of
automatic aspect refactoring.

6.1 Introduction

The tangling and scattering that results from implementingcrosscutting concerns in a
software system using traditional object-oriented programming is a known challenge
to program comprehension and software evolution. One approach to mitigate these
issues is to migrate the system to aspect-oriented programming (AOP) and transform
the crosscutting concerns into aspects, a process known asaspect refactoring.

Despite significant research efforts on various parts of therefactoring of crosscut-
ting concerns from existing systems, to date there exists nocompelling show-case for
such a complete migration. One of the main causes for this void is the fact that there
is no clearly defined, coherent migration strategy detailing the steps to be taken to
perform this process.

Successful migration requires a strategy comprising stepslike identification of the
concerns (i.e., aspect mining), description of the concerns to be refactored, and consis-
tent refactoring solutions to be applied. Moreover, such a strategy requiresintegrated

139

140 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

migration steps, so that aspect mining results, for example, can be consistently mapped
onto concerns in code, and further refactored by general aspect solutions. The present
state of the art prevents developers and practitioners fromexperimenting with a com-
plete migration process and assessing the benefits of migrating to AOP.

In this chapter, we propose such an integrated strategy for migrating crosscutting
concerns to aspects, which consists of four main steps: (1) idiom-driven identification
of crosscutting concerns in an existing system (aspect mining); (2) exploration of (the
context of) the concerns identified in the previous step; (3)query-based modeling and
documentation of crosscutting concerns in the system; (4) template-based refactoring
of the object-oriented idioms into AOP solutions.

Our strategy builds upon the classification and decomposition of crosscutting con-
cerns in so-calledcrosscutting concern sortsthat we proposed earlier in Chapter 4.
Each sort describes the typical implementation idiom and relation of crosscutting con-
cerns. Sorts act as glue between the successive steps of the migration: The mining
step in our strategy uses the sort-specific idioms to define search-goals for identifying
crosscutting concerns that belong to a specific sort (i.e.,sort instances). To support
the exploration and documentation steps, we have formalized the concern sorts using
queries over source code and implemented these in a tool for browsing and modeling
crosscutting concerns, as described in detail in Chapter 4.

While the first three steps of our approach have been covered inour earlier work,
this chapter focuses on the fourth step and its connection with the three preceding
steps. In particular, we define template solutions for the aspect refactoring of our sorts
(to AspectJ). Furthermore, we describe a case study in whichwe apply the whole
migration strategy to JHOTDRAW,1 an object-oriented application used in other aspect
mining and refactoring studies as well [Marin et al., 2007a;Ceccato et al., 2006; Marin
et al., 2006a; Binkley et al., 2006]. The results of our migration are available under
version control as an open-source project on sourceforge called AJHOTDRAW, which
is also the largest aspect refactoring publicly available to date that we are aware of.

The remainder of the chapter is organized as follows. In nextsection, we recall the
notion of crosscutting concerns sorts. We describe the migration strategy and elaborate
on the first three steps in Section 6.3. The sort-based aspectrefactoring approach that
we introduce for the fourth step is presented in Section 6.4.Section 6.5 covers our
experiences with migrating crosscutting concerns in JHOTDRAW to aspect solutions.
Section 6.6 discusses the results and outlines a number of lessons learned. We conclude
with an overview of related work and recommendations for future research.

6.2 Crosscutting Concern Sorts

A systematic migration strategy requires a consistent way to address crosscutting con-
cerns in source code. To this end, we distinguish a number ofatomic crosscutting

1 http://jhotdraw.org

6.3. An Integrated Migration Strategy 141

concerns (i.e., concerns that cannot be split into smaller,still meaningful concerns)
that share properties like their implementation idioms andrelations. We group con-
cerns that share such properties in categories calledcrosscutting concern sorts[Marin
et al., 2005a]. These sorts can be used on their own, but can also be composed to
construct more complex crosscutting designs, for example,theObserverpattern, often
used as a typical example of crosscuttingness.

The first column of Table 6.1 describes the identified sorts and Table 6.2 shows
several examples of instances (the other columns of Table 6.1 will be introduced in
later sections).Consistent behavior, for instance, groups concerns whose implemen-
tation consists of scattered calls to a specific method implementing the crosscutting
functionality. Instances of this sort include, for example, a logging concern, a simple
authentication or authorization concern implemented as a call to a method checking
credentials, or a mechanism for updating observers using calls to a notification method.

Similarly, the idiom for implementation of secondary roles, common in design
patterns likeObserveror Visitor, as well as in mechanisms for persistence, is described
by theRole superimpositionsort.

Composite crosscutting designs exhibit multiple sort instances in their implemen-
tation: the aforementionedObserverpattern, for example, comprises two instances
of Role superimposition, for the Subject and the Observer role respectively. Further-
more, it comprises instances ofConsistent behavior, like the concern for notification
of observers, or the one for observers registration. Instances of our sorts are therefore
building blocksfor modeling and describing crosscutting functionality.

6.3 An Integrated Migration Strategy

In this section, we define an integrated strategy for migrating crosscutting concerns in
existing systems to aspect-based solutions. The strategy consists of four steps:

Step 1. Idiom-driven crosscutting concern identification (also known asaspect min-
ing).

Step 2. Concern exploration.

Step 3. Query-based concern modeling and documentation.

Step 4. Sort-based aspect refactoring.

The remainder of this section discusses the first three stepsin more detail and the next
section presents the fourth step. We show how the steps are integrated via crosscut-
ting concern sorts using examples from our JHOTDRAW to AJHOTDRAW migration
experience.

142 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

Sort and Intent Idiom Template aspect solution

(Method) Consistent Be-
havior (CB): A set of
methods consistently in-
voke a specific action as
a step in their execution.

Method invoca-
tions from set of
methods.

Pointcut and advice mechanisms.
around(..) : callersContext(..){

invokeCB(..); //before
proceed();
// or after: invokeCB(..);

}

Redirection Layer (RL):
A type acts as a front-
end interface having its
methods responsible for
receiving calls and redi-
recting them to dedi-
cated methods of a spe-
cific reference, option-
ally executing additional
functionality.

Redirector type
whose methods
consistently
forward calls to
pair methods in
receiver.

Pointcut and around advice to replace each redirection.
around(..) : call Receiver.m(..) &&

filteredCallers(..) {
addBehavior1();
proceed(..); //redirection
addBehavior2();

}

Expose Context (EC):
Context Passing: Meth-
ods in a call chain
consistently use pa-
rameter(s) to propagate
context information
along the chain.

Method in chain
passes parameter
as argument to
callee.

Pointcut and advice, where the point cut collects the context to
be passed - Wormhole [Laddad, 2003b]
around(<caller context>, <callee context>):

cflow(callerSpace(<caller context>)) &&
calleeSpace(<callee context>){
// ... advice body

}

Role Superimposition
(RSI): Types extend
their core functionality
through the implemen-
tation of a secondary
role.

Set of types
(declare and) im-
plement member
roles (which are
possibly declared
by a distinct
interface).

Introduction mechanisms.
declare parents :

Type implements SecondaryRole;
Modifiers Type Type.roleField;
Modifiers Type Type.roleMethod(..){

...//original implementation
};

Support Classes for
Role Superimposition
(SC): Types implement
secondary roles by
enclosing nested support
classes. The nesting en-
forces (and explicates)
the relation between
the enclosing and the
support class.

Set of types (in
hierarchy) imple-
ment Role using
nested classes.

The desired solution, introduction for nested classes, is not
supported by AspectJ. Our solution is to move the support
classes to the aspect.

Exception Propagation
(EP): methods in call
chain consistently (re-
)throw exceptions from
their callees in the ab-
sence of an appropriate
answer.

Method in call
chain re-throws
exception to
caller.

Softening exceptions mechanisms.
declare soft : ExceptionType :

(call(* rootException(..)
throws ExceptionType));

Capture SoftException at top of the call chain.

Table 6.1: Crosscutting concern sorts.

6.3. An Integrated Migration Strategy 143

Sort Examples

(Method) Consistent Behavior (CB) Logging of exception events in system; Wrapping business
service exceptions and re-throwing them as new exception
type [Marin et al., 2007a]; Notification of Figure change
events.

Redirection Layer (RL) Border decorations for Figure elements (Decorator pattern);
Command wrapper for undo support.

Expose Context (EC) Transaction management [Laddad, 2003b]; Credentials pass-
ing for authorization; Progress monitor for long-running oper-
ations.

Role Superimposition (RSI) Figure elements observed by views for changes (Subject role);
Visitable elements (Visitor pattern); Storable figures (Persis-
tence) [Marin et al., 2007a].

Support Classes for Role Superim-
position (SC)

Undo support for Command elements; Event dispatcher for
observers’ notification.

Exception Propagation (EP) IOException thrown if Figure elements recovery fails;
Checked SQLException thrown from methods in the JDBC
API.

Table 6.2: Examples of sorts instances.

6.3.1 Aspect Mining

In our earlier work we have proposed and implemented an idiom-driven approach to
aspect mining based on crosscutting concern sorts [Marin etal., 2006a]. The approach
supports the design of aspect mining techniques that targetinstances of a specific sort
by searching for the sort’s implementation idiom.

The third column in Table 6.1 shows the implementation idioms associated with
each of the sorts. Consider for example the commands in a drawing application, like
JHOTDRAW, that carry out tasks in response to user actions. Each command concludes
its execution with a call to thecheckDamage method in the drawing view, which up-
dates the view with changes triggered by the command. The notification concern is an
instance ofConsistent behaviorwhose implementation idiom is invocation of a spe-
cific method from a (large) set of methods. Aspect mining techniques such as Fan-in
analysis [Marin et al., 2007a] or Grouped calls analysis [Marin et al., 2006a] exploit id-
ioms such as this one in their search process. The techniquesand their implementation
have been discussed in Chapters 2 and 5.

We have implemented the two mining techniques mentioned above and an addi-
tional technique that targets instances ofRedirection layerin our aspect mining tool
FINT2. The techniques and their implementation have been discussed in Chapters 2
and 5. The results of applying FINT to JHOTDRAW are the starting point of our mi-
gration case study.

2 Available from http://swerl.tudelft.nl/view/AMR/FINT and discussed in detail in Chapter 2 and 5

144 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

Like the notification mechanism above, we have found theConsistent behaviorid-
iom in multiple concerns implementing support for commandsand undo operations.
Examples include consistently checking the reference to the active view before exe-
cution of each command, consistent initialization of Command objects by means of
super calls, or consistent checks implemented by all actions to undo a command. Our
search for idioms of theRedirection layerpointed us to wrapper objects for undo-able
commands: methods in the wrapper delegate calls to their wrapped command object.

6.3.2 Concern Exploration

Aspect mining often does not yield complete crosscutting concern instances, but just
concernseeds: (possibly incomplete) sets of program elements that belong to a partic-
ular crosscutting concern.

The second step of our strategy, concern exploration, aims at expanding mining
results (i.e., concern seeds) to the complete implementation of the associated concerns.
In this step, we start from the discovered seeds and use the specific relation of the sort
for the seed’s concern to identify all the participants in the concern implementation.

In ourConsistent behaviorexample, this means looking at all call relations directed
to the methodcheckDamage (or another method, depending on the particular concern
targeted). As it turns out, not all of the 28 calls to this method that we found are part
of the concern of interest, but around two-thirds of them, namely those fromCom-
mandclasses. Similarly, theGrouped callsmining technique, which applies a more
conservative search, covers only partially the set of callsparticipating in the concern.

Our aspect mining tool, FINT, integrates support for seeds exploration and expan-
sion to full concerns, such as detection of structural relations or similar call positions
for the callers of a method. A number of other tools also provide (partial) support for
querying source code and exploring concern sort relations:Eclipse IDE, the Concern
Manipulation Environment (CME) [Tarr et al., 2004], FEAT [Robillard and Murphy,
2002], JQuery [Janzen and Volder, 2003], CodeQuest [Hajiyevet al., 2006], or SO-
QUET [Marin et al., 2007d]. The same tools can be used to further understand the
context enclosing the discovered crosscutting concern. Atthis step, we can see, for
example, how the identified sort instances in command and undo support relate to each
other: commands that can be undone enclose a specializedUndoActivityclass that
knows how to revert the effects of the command’s execution. Two of our mined sort in-
stances cover the key methods of the two classes: theexecute method in a command,
and theundo one in the enclosed undo activity.

6.3.3 Concern Modeling and Documentation

Most approaches to concern modeling and their tool support do not enforce consistency
across the representation of crosscutting concerns. The decision of what is crosscutting
in a system, and how to best represent that, lies with the userof these concern modeling

6.4. Aspect Refactoring 145

tools. Such a concern model can contain ad-hoc collections of program elements, such
as methods and classes, that participate in a concern’s implementation.

However, to ensure generally applicable solutions for concern migration, we need
a coherent way to describe similar concerns and their commonproperties. To this end,
we have defined queries for each of our crosscutting concern sorts which search for
the sort’s specific relation between source code elements. For more information on
these sort queries, we refer to Chapter 4,which formalizes these queries using relation
calculus over source models extracted from the system’s source code.

We have implemented support for this third migration step inour concern modeling
tool SoQueT3 [Marin et al., 2007d]. Figure 6.1 shows two of the main views of the
tool. TheConcern modelview allows us to organize concerns hierarchically, with sort
instances and their associated queries as leaf-elements and composite concerns describ-
ing more complex crosscutting designs as parents. The user can select a sort instance
in the concern model and execute its query; The results of thequery are displayed in
theSearch (Sorts Result)view, from where they can be navigated to their source code
implementation. To add a new sort instance to the model, the user launches the dialog
providing the query templates for each sort, and parameterizes the query for a given
crosscutting concern. For example, to document ourConsistent behaviorinstance for
notification of views, we use the knowledge gained at the previous steps and search
for all the calls to thecheckDamage method from methods in theCommandhierarchy.
The method and the hierarchy are our input parameters to the query. The instances can
then be added to the model from the results view.

A part of the concern model built to document concerns in JHOTDRAW is shown
in Figure 6.1. The model is available for download at the sameweb-site as the tool and
covers over 100 sort instances.3 In Section 6.5, we use this documentation to guide our
refactoring and configure the aspect solutions.

6.4 Aspect Refactoring

We employ a sort-based, idiom-driven approach to aspect refactoring that allows for
consistent integration with the previous steps of our migration strategy. Furthermore,
we define template aspect solutions for each of our concern sorts that we can instantiate
to refactor an occurrence of that sort. Like the previous steps, the refactoring approach
addresses crosscuttingness at the level of atomic concerns, which provides the optimal
trade-off between complexity of the refactoring and comprehensibility of the refactored
element.

The template aspect refactorings for each sort are summarized in the last column
of Table 6.1. A solution basically consist of one aspect language mechanism. At the
moment, however, some sorts do not have an equivalent mechanism in AspectJ (or any
other aspect language existing at this moment). Support classes, for example, cannot

3 Available from http://swerl.tudelft.nl/view/AMR/SoQueT

146 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

Figure 6.1: SOQUET documentation of the concerns for Command support in JHOT-
DRAW.

be introduced similarly to role members, although, as we shall see in Section 6.6, this
would be a desired refactoring.

To refactor a sort instance, we start from its query-based documentation (in SO-
QUET). The query points us to the elements participating in the concern, which we use
to configure the template aspect solution. For example, the query for aConsistent be-
havior instance indicates the callers to be captured by a pointcut definition (the source
context) and the action to be introduced by the advice (the target context). Other con-
figurable elements, such as the type of advice to introduce the crosscutting call (e.g.,
before, after, after throwing, etc.), are decided at the refactoring time.

The solution described in Table 6.1 for theRedirection layersort is a common
approach to refactoring implementations of theDecorator pattern [Hannemann and
Kiczales, 2002; Lesiecki, 2005]. This consists of replacing the redirector class by an
aspect that intercepts (relevant) calls to the methods receiving the redirection, and then
adds the redirector’s functionality by means of an advice.

The aspect solution forExpose contextinstances is discussed by Laddad as the
Wormholepattern Laddad [2003b]: the extra parameter used to pass context is replaced
by using a pointcut to obtain the context from the caller and an advice that makes the
context available to the caller’s control flow.

Solutions for static crosscutting, likeintroductionanddeclare softmechanisms in
AspectJ, apply to two of the sorts in the list,Role SuperimpositionandException prop-

6.5. Aspect Refactoring ofJHOTDRAW 147

agationrespectively. The elements to instantiate these aspect templates are again avail-
able through the sort-based documentation of the concerns:they indicate the members
of a type’s secondary role to be moved to and then introduced from an aspect, or the
checked exception to be turned into an AspectJ soft exception. Soft exceptions, un-
like checked ones, do not need to be caught or re-thrown. Thisallows us to remove
the throwsclauses from the (transitive) callers of the method initiating the exception
propagation. The method at the top of the call chain that deals with the exception has
now to catch the soft exception that wraps the original checked one. The top method
assumes knowledge of the wrapped exception that it has to extract and cast. The code
to handle the (cast) exception requires no modifications.

6.5 Aspect Refactoring of JHOTDRAW

We have used the sort-based migration strategy to refactor anumber of crosscutting
concerns in JHOTDRAW towards an aspect-oriented solution. Based on these experi-
ments, we would like to obtain answers to the following questions:

1. Are the template aspect solutions proposed in Section 6.4applicable in practice?

2. What are the risks and benefits of adopting refactoring strategy that is sort-based?

3. What level of automation of all four steps and the fourth refactoring step in
particular is feasible?

4. Do the refactorings carried out lead to a better separation of concerns?

In the present section, we report our observations and experiences regarding the
migration of specific crosscutting concerns towards aspects in JHOTDRAW. In the
next section, we return to our questions, and try to formulate answers to them based on
the findings presented here.

6.5.1 AJHOTDRAW

We share the refactored version of JHOTDRAW as an open-source project on source-
forge4: AJHOTDRAW is, to our knowledge, the largest migration to aspects available
to date. A transparent, gradual migration process is important for building confidence
in the aspect-oriented solution. Therefore, our refactorings aim at maintaining the con-
ceptual integrity and stay close to the original design. In addition, by publishing the
refactoring steps in a versioned repository, we provide insight in the migration process
and enable traceability, making the refactored system easier to understand.

We focus our next discussion on the refactoring of sort instances contained in the
implementation of the command and undo functionality, which we also used in Sec-
tion 6.3 to explain the first three steps of the approach. We use the organization of

4 http://sourceforge.net/projects/ajhotdraw/

148 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

public class AbstractCommand implements Command {
...
public void execute() {
if (view() == null) {
throw new JHotDrawRuntimeException(

"execute should NOT be getting called when view() == null");
}

}
}

public class PasteCommand extends AbtractCommand {
...
public void execute() {
super.execute();
...

}
}

Figure 6.2: Consistent check - super method idiom.

concerns in the concern model initiating the refactoring todesign the package and type
structure of our aspect solutions. The solutions discussedbelow have been integrated
with the source code available on the public repository.

6.5.2 Consistent Behavior in Command

JHOTDRAW makes use of theCommanddesign pattern in order to separate the user
interface from the underlying model, and to support such features as undoing and redo-
ing user commands. Each command has to realize theCommandinterface, for which a
default implementation is provided in theAbstractCommandclass. The key method is
execute, which takes care of actually carrying out the command (suchas pasting text,
duplicating a figure, inserting an image, etc.).

A typical implementation of a command is highly crosscutting, with theCommand
top interface defining three different roles: besides theircore functionality, commands
are undo-able as well as observable elements. The support for the secondary roles
counts for half of theCommand’s members. Similarly, theexecute method in a typical
concrete command implements multiple concerns.

Eachexecute method should start with a consistency check verifying thatthe un-
derlying “view” exists. Therefore, each concrete implementation of execute starts
with a call to theexecute implementation in the superclass, which is always the one
from theAbstractCommand. This is illustrated in Figure 6.2.

We apply aConsistent behaviorrefactoring template from the last column in Ta-
ble 6.1 using a pointcut capturing allexecute methods, and putting the check itself in
the advice. Observe that mimicking the implementation where the check is in a super

6.5. Aspect Refactoring ofJHOTDRAW 149

pointcut cmdExecute(AbstractCommand aCommand) :
this(aCommand)
&& execution(void AbstractCommand+.execute())
&& !within(*.. DrawApplication .*);

before(AbstractCommand aCommand) : cmdExecute(aCommand) {
if (aCommand.view() == null) {
throw new JHotDrawRuntimeException("...");

}
}

Figure 6.3: Enforcing consistency using advice.

method is not possible in AspectJ: super methods cannot be accessed when advising a
method. The resulting solution is shown in Figure 6.3.

The only surprise in this code may be thewithin clause in the pointcut. In the
exploration step, we learned thatanonymoussubclasses ofAbstractCommanddo not
implement the consistency check. Such classes are used for simple commands like
printing, saving, and exiting the application. Since AspectJ does not provide a direct
way to exclude anonymous classes in a pointcut, we used thewithin operator to ex-
clude executions occurring in the context of the top level object creating the full user
interface. One can also argue that the anonymous classes should include this check (in
which case the exclusion can be omitted from the pointcut), but, as stated before, we
focus on keeping the behavior as it was, not on modifying it.

Besides the separation of the consistency check from the corelogic of the com-
mands, another benefit of the aspect approach is that consistency checks cannot be
forgotten. This is illustrated by a number of the anonymous classes, but also by one
non-anonymous command,5 which does not extend theAbstractCommanddefault im-
plementation. Consequently, it cannot reuse the consistency check using a supercall.
Inspection of theexecute implementation, however, clearly shows that the code exits
with a null pointer exception in case the check fails. This suggests that the aspect that
we are looking for should implement the check not only for theAbstractCommand
class, but for all theCommandimplementations.

6.5.3 Undo Functionality

Support for “undo” functionality was added in JHOTDRAW version 5.4. As can be
imagined, it is a concern that cuts across many different classes. More than 30 ele-
ments of the JHOTDRAW framework, comprisingcommands, toolsandhandles, have
associated undo constructs to revert the changes spawned bytheir underlying activities.
Thecommandsgroup is the largest in terms of defined undo activities.

5Namely, theUndoableCommand.

150 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

The participants of the “Undo” functionality have the following responsibilities:

• Each command is associated with oneundo activity, whose methodundocan
be invoked to revert the command. The undo activity is implemented in a
nested class of the command, which is instantiated using a factory method called
createUndoActivity.

• Prior to the execution of the command’s core logic, the command saves a refer-
ence to its associated undo activity, by calling a dedicatedsetter method.

• The primary abstraction in the undo activity is the list of affected figures: when
the command’sexecute method is invoked, the relevant state of the affected
figures is stored in the undo activity.

• Undo activities are maintained on a stack by the undo manager.

Support classes for role superimposition

The refactoring that we propose for Undo consists of associating a dedicated undo-
aspect to each undo-able command. The aspect implements theentire undo function-
ality for the given command, while the associated command class remains oblivious to
its secondary (undo) concern.

We use naming conventions to relate the aspect to its supported command class.
In a successive step, we refactor each of the sort instances in the undo support. The
command’s nestedUndoActivityclass belongs to aSupport classesinstance. In the
absence of introduction mechanisms for nested classes in AspectJ, our aspect solution
consists of moving theUndoActivityclass into the aspect.

The factory methods for the undo activities (createUndoActivity()), as well
as the members for managing the reference to the command’s undo activity belong
to an instance ofRole superimposition. The role members move to the aspect, from
where they are introduced back into the associated command classes using inter-type
declarations. The design, however, suffers modifications as the visibility of the undo
factory methods has been altered: ASPECTJ cannot be used to introduce the required
factory method asprotected.

Consistent behavior

The invocations in theexecute method that are responsible for setting up the undo ac-
tivity implementConsistent behaviorconcerns: the calls are taken out of theexecute
method, and woven into it by means of advice. In some cases thecorresponding point-
cut simply needs to capture allexecute method calls. However, in other cases the
pointcut is more complex, depending on the way the undo code is mixed with the
regular code.

As an example to illustrate that automating such refactorings is not at all straightfor-
ward, consider the paste-command, whoseexecute method consists of retrieving the

6.5. Aspect Refactoring ofJHOTDRAW 151

public class PasteCommand extends FigureTransferCommand {
public void execute() {

...
FigureSelection selection = (FigureSelection)

Clipboard.getClipboard().getContents();
if (selection != null) {

setUndoActivity(createUndoActivity ());
... //core command logic and other undo setup
FigureEnumeration fe = insertFigures(...);
getUndoActivity().setAffectedFigures(fe);
...

}
}

}

Figure 6.4: The original PasteCommand class.

selected figures from the clipboard, inserting them into thecurrent view, and clearing
the clipboard. All this is done in a single method, using local variables and if-then-else
statements to deal with situations like pasting from an empty clipboard. The undo as-
pect will require the same conditional logic, and access to the same data in the same
order. The following alternatives are possible for aspect refactoring:

• if all getters are side effect free, an approach is to setup the undo activity in a
simple before advice. In JHOTDRAW, however, this is not the case, for example
because of figure enumerators that have an internal state.

• an alternative is to intercept relevant getters, keep trackof the data locally in the
advice as well, and inject advice after all data has been collected. This is the ap-
proach we follow, but some of the pointcuts are somewhat artificial. Figure 6.5
shows such a pointcut in the undo aspect for thePasteCommand, refactored from
Figure 6.4. TheclipboardGetContents()pointcut captures the call that sets the
reference to be checked by both the command’s core logic and the undo func-
tionality in the aspect.

• The last possibility is to refactor the longexecute method into smaller steps
using non-private methods. The extra method calls can be intercepted allow-
ing smooth extension with setting up the undo activity, at the cost of creating a
larger interface and breaking encapsulation. Moreover, wewould still introduce
artificial pointcuts, as our intention is to enhance the behavior of the execute
method, and not of various steps created for supporting advice introduction.

Redirection layer

The design of undo in JHOTDRAW uses wrapper objects to associate undo-able com-
mands to menu items and buttons in the user interface (UI). The wrappers share their
top level interface with regular commands, so they can connect to UI elements and

152 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

public aspect PasteCommandUndo {
//store the Clipboard’s contents - common condition
FigureSelection selection;

pointcut clipboardGetContents() :
call(Object Clipboard.getContents()) &&
withincode(void PasteCommand.execute());

after() returning(Object select):clipboardGetContents(){
selection = (FigureSelection)select;

}
...

pointcut executePasteCommand(PasteCommand cmd) :
this(cmd) && execution(void PasteCommand.execute());

// Execute undo setup
void after(PasteCommand cmd):executePasteCommand(cmd) {

// the same condition as in the advised method
if(selection != null) {

cmd.setUndoActivity(cmd.createUndoActivity ());
...
cmd.getUndoActivity().setAffectedFigures (...);

}
}

}

Figure 6.5: The undo aspect for PasteCommand.

6.5. Aspect Refactoring ofJHOTDRAW 153

Sort Limitations and risks

Consistent Behavior Advice constructs in a privileged aspect can break encapsula-
tion; High degree of tangling might prevent (automatic) refac-
toring; Anonymous classes cannot be referred to consistently,
preventing generic pointcuts; Calls to super class functionality
cannot be migrated into advice; Modular reasoning affectedby
need to keep track of data set in the advised method; Check re-
quired that omissions are not on purpose; Sophisticated pointcuts
needed to intercept all relevant state modifications in the advised
methods; Check required that advice (position) does not change
precedence;

Redirection layer The repetitive logic of redirection for the redirector’s methods is
not eliminated – the aspect solution addresses the redirection at
method level and not at type level; New redirector methods are
not (automatically) covered by the solution; The aspect solution
is not dynamic (dynamic reordering of redirectors) [Hannemann
and Kiczales, 2002]; The aspect solution replaces the redirector
(wrapper) and hence changes the public interface of the applica-
tion to test against; The calls (to the receiver) to be advised for
redirection need to be detected;

Role superimpositionVisibility affected since protected (/non-public) methods cannot
be introduced.

Support classes for
role superimposition

Not supported; Nesting the support class in the aspect breaks
dependencies (thus forcing the enclosing class to make moreof
its interface public) and weakens the relation with the enclosing
class;

Exception propaga-
tion

Type of thrown exception is lost; Refactoringthrowsclauses in
inheritance hierarchy.

Table 6.3: Risks and possible limitations of the aspect solution.

154 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

receive user actions. While most commands are undo-able and wrapped by anUn-
doableCommandobject, there are a few exceptions, such as,CopyCommand.

Wrappers are instances ofRedirection layer. The refactoring of such instances
raises several important issues: first, we need to identify those commands that are
wrapped by anUndoableCommandobject and accessed through this object; second,
we need to check if all clients of a command access its functionality via the wrapper.
Only those calls from command clients that are received by a wrapper in the origi-
nal implementation need to be captured by the aspect solution to attach the wrapper’s
functionality by means of advice.

Further complications that limit feasibility of automatedrefactoring have to do with
the multiple roles inUndoableCommand: since the aspect solution completely replaces
the wrapper class, this means that introduction of roles is no longer possible. Some of
the original roles in the system are implemented by the wrapper only to comply with
the top interface of the wrapped element and add no specific functionality, such as the
Observablerole of Commands. The aspect solution can safely omit these roles. For
other roles however, this is not desired and refactoring requires customized redirector
solutions.

6.6 Discussion

6.6.1 Applicability in Practice

The proposed template aspect solutions proved suitable forrefactoring concrete sort
instances in the JHOTDRAW case and for separating the crosscutting code from the
core system. However, the difficulty of implementing the aspect solution and the qual-
ity of the result will vary from case to case. One of the issuesis pointcut definitions:
Ideally, we would like to use pointcut definitions that describe a set of elements by for-
malizing a common property instead of a brittle enumerationof the elements in the set.
In practice, such definitions will not always be feasible, either because of limitations
in the aspect language, or due to irregularities in the code under investigation.

Desired functionality included for example a pointcut to capture calls from “all
Commandclasses, except all anonymous classes”, or a pointcut for “all objects in-
terested in command events”. Irregularity in the code mightrequire that for certain
methods the advice executes only if a specific condition holds. This is the case for a
few commands in JHOTDRAW that send notifications of their execution only if the clip-
board’s content is not empty. In such a situation, one has to make a trade-off between a
generic pointcut definition that captures all commands, butignores the particular con-
dition, and a definition that enumerates all appropriate elements. The former solution
would execute the code in the advice in spite of its void effect; however, the latter
pointcut definition needs to be updated (manually) for everynew element added to the
set of interest (i.e., every new command).

Similar observations can be made about the definition of advices: sometimes we

6.6. Discussion 155

need to modify the original control flow of a method-to-be-migrated in order to intro-
duce an action to it by means of advice. Although the refactoring may have no effect
on the observable behavior of the method, the original flow could be more natural or
comprehensible.

6.6.2 Benefits and Risks

In comparison with refactoring approaches proposed by others, our sort-based migra-
tion strategy gives a clear definition of the input required for refactoring (i.e., an atomic
concern) and describes it consistently using queries. Thisallows for the definition of
reusable solutions and improves comprehension of refactoring by addressing meaning-
ful concerns instead of code fragments [Binkley et al., 2006;Monteiro and Fernandes,
2005]. Moreover, the concern queries allow us to describe the context cut across by a
concern, and hence the concern’s intent. This gives a betterinsight into the concern and
its aspect solution than the simple enumeration of joinpoints common with most previ-
ous refactoring approaches. We believe that a clearly specified input for a refactoring
solution is a necessary condition for ensuring consistent migration of concerns.

Among the main risks of refactoring, we identify the high level of coupling and
complex dependencies between the base code and the crosscutting concern. We antic-
ipate that any non-trivial aspect refactoring will requireobject-oriented refactorings,
before the crosscutting concern can be taken out of the available system.

The issue with coupling is that, before migration, concern code can freely access
certain parts of the core code that may have limited visibility after the migration. Pos-
sible risks in such a case are weakening the visibility restrictions of those members
or violating encapsulation by declaring the aspectprivileged. Other risks include code
duplication in advice and the advised method or definition ofartificial pointcuts to cap-
ture return values of calls from the advised method; this could be the case when some
control logic is required by both aspect and the advised method.

We encountered several complex dependencies while refactoring instances ofEx-
ception propagationin JHOTDRAW (see Section 4.4.1 for a description ofException-
Propagationin JHOTDRAW). One example is the propagation of theIOException
rooted in the set of methods to read drawings from file. The methods in the call chain
re-throwing the exception override other methods, whose declared thrown exceptions
might only serve for compliance with the method to be refactored. In this case, we also
need to address theirthrowsclause within our refactoring. Moreover, the overriding
elements of a method in the chain that throw the same exception need to be refactored
as well, as their exception declaration is no longer allowed.

Table 6.3 summarizes the above risks and limitations in refactoring to aspects. Note
that many of these limitations are independent of the strategy employed for refactoring.
In spite of that, we are not aware of other papers in the area ofrefactoring to aspects
that discuss these limitations.

156 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

6.6.3 Automation

The refactoring step in our strategy currently has the leastautomation of all steps in
our approach. However, the other (tool supported) steps give us many of the elements
needed for refactoring, such as the crosscutting element and the context it cuts across
which are captured in the concern documentation as repeatable queries. Moreover,
the description of these elements by the sort-queries is similar in many respects to the
definition of pointcuts for a possible aspect solution.

We believe that the case study presented in this chapter is a required step before
setting out to design (automated) aspect refactoring tooling. The study gives us insight
into the complexity of each refactoring and the trade-offs to be made. The challenges
and limitations discussed in the previous sections also indicate that completely au-
tomated aspect refactoring is unfeasible in any practical situation, since the process
requires a significant level of interaction with the users toguide the system through the
right decisions.

A particularly challenging automatic refactoring would bethe one forRedirection
layer instances: the original, dynamic solution uses a common interface for both redi-
rectors and potential receivers. This interface hides the identity of the object for which
a call is made; However, the refactoring of redirectors requires to know which calls are
meant for a redirector and so need to be attached an advice introducing the functional-
ity of the refactored redirector.

6.6.4 Separation of Concerns

Our case study had a satisfactory outcome in achieving a better separation and mod-
ularization of concerns in the targeted application. As we were able to notice, the
crosscutting code is an important part of the refactored elements, in some cases, such
as theCommandelements, over 50%.

We appreciate that the core code is easier to understand in the absence of the mi-
grated crosscutting concerns. To understand the aspect code, on the other hand, one
typically also needs to understand the base code that it advises. This is exaggerated
further by (high) coupling between the aspect and the base code, like for aspects that
intercept calls from advised methods to reuse the values returned by such calls.

While refactored, crosscutting-free code is easier to comprehend, modifications to
such code would still require awareness of the advice that applies to it. For instance,
aspects might assume a certain order of the calls from an advised method, which has
to be preserved to correctly introduce additional behavior.

Keeping track of the order of different advice in an aspect solution and preventing
accidental changes might prove difficult, particularly when the number of aspects in-
creases. The support from present development environments would not provide much
insight into violations of such ordering, or into the ordering itself. This becomes more
of an issue when the order is set using name-based wildcards,and new aspects match
an existing rule for aspect precedence that should not applyto them. A similar situation

6.7. Related Work 157

might occur when changing an aspect solution that is alreadycovered by a precedence
rule, and the changes would not be compliant with that rule. Changing the position
of an advice definition in an aspect could also modify precedence, if multiple advices
in the aspect apply to the same joinpoints. Unspecified precedence could also lead to
interference between new advices introduced by refactoring and existing ones Storzer
and Forster [2006]. Automatic refactoring needs to be awareof these issues when
adding advices to an aspect source file.

Some concerns might be crosscutting for advices, similarlyto the way they are
crosscutting for methods. For instance, the re-use of specialized enumerations in
JHOTDRAW requires to reset them after each iteration. Such enumerations are used by
some advices in the aspect solutions. Applying aspect solutions to aspects might prove
challenging for both tool support and comprehensibility.

6.7 Related Work

While each step in the migration of crosscutting concerns hasbeen addressed by re-
lated research, we are not aware of an integrated strategy like the one proposed in this
chapter.

The present approaches to aspect refactoring can generallybe distinguished by
their granularity. Laddad’s set of refactorings cover bothlow level ones, such asextract
method calls into aspectsor extract interface implementation, as well as more complex
refactorings, like design patterns, transactions management, or business rules [Laddad,
2003b,a]. Although the latter subset typically involves multiple concerns to be refac-
tored, there is no categorization of these various concernsor their refactorings.

Hannemann et al. propose an approach to the aspect refactoring of design patterns
based on a library of abstract roles [Hannemann et al., 2005;Hannemann and Kicza-
les, 2002]. The role-based refactoring requires one to map apattern’s implementation
onto the predefined roles describing the pattern, and then applies a set of instructions to
refactor the implementation to aspects. The approach is a step further towards generic,
abstract solutions to typical problems that involve crosscutting functionality. How-
ever, as we have already seen, these patterns typically havea complex (and variable)
structure in source code, which exhibits multiple (atomic)crosscutting concerns. The
refactoring of a whole pattern in one step might prevent the comprehension of the con-
cerns involved. Moreover, our experience suggests that pattern implementations can
vary significantly from a standard description and one-steprefactoring could be ham-
pered by complex dependencies. We cannot make a full assessment of this approach as
the implementation and the experimental results are not available, but we believe that
all the limitations discussed in this chapter would equallyapply to it.

Finer-grained refactorings have been proposed in the form of code transformations
catalogs [Monteiro and Fernandes, 2005] and AspectJ laws [Cole and Borba, 2005].
These transformations can occur as steps in the aspect refactoring of an (atomic) cross-
cutting concern, but remain oblivious to the refactored concern. They describe the

158 Chapter 6. An Integrated Strategy for Migrating CrosscuttingConcerns

mechanics of migrating Java specific units to AspectJ ones (e.g., Extract Fragment
into Advice, Move Method/Field from Class to Inter-type). Similar approaches have
been proposed Hanenberg et al. [2003], and Ettinger and Verbaere [2004], who em-
ploy program slicing for refactoring to aspects. Such smallstep transformations might
benefit the implementation of automatic refactorings by preventing complex depen-
dencies and ensuring behavior preservation as discussed byCole and Borba [2005].
However, more effort is required to assess their general applicability: for example, the
case-study used for the refactoring in Monteiro and Fernandes [2005], is anObserver
pattern implemented in a demonstrative application, whichlacks the complexity of a
real system like JHOTDRAW.

In comparison to the work on fine-grained refactorings, the sort-based approach
presented in this chapter emphasizes concerns and identifies common properties at a
consistent granularity level. This allows us to design a complete migration strategy,
where the refactoring is integrated with steps for concern identification and compre-
hension.

Similar observations also apply to the comparison with the refactoring approach by
Binkley et al. [2006]. Their emphasis is on full automation, and they offer an Eclipse
plugin for conducting six elementary refactorings. They focus on our fourth step only,
and assume aspect mining has resulted in@begin-aspect and@end-aspect annota-
tions in the code. As an example, one of their six refactorings moves individual calls
to separate aspects, after which a (non-trivial) pointcut abstraction step is needed to
merge the results. Our approach eliminates the need for thiscomplex abstraction step,
thanks to the sort-based integration between aspect miningand refactoring (refactoring
is based on a full concern model in our case). Like us, they useJHOTDRAW as one of
their case studies. Somewhat surprisingly, they do not report any of the limitations that
we identified, although their results exhibit the same limitations.

6.8 Concluding Remarks

In this chapter, we proposed an integrated strategy for migrating crosscutting concerns
to aspect-oriented programming. We presented in detail therefactoring step of our
strategy, and applied the entire migration process to concerns in an open-source appli-
cation. Furthermore, we discussed the challenges of refactoring crosscutting concerns
to aspects and how these could impact the design and implementation of automatic
aspect refactoring.

The contributions of this work can be summarized as:

• An integrated strategy for migrating crosscutting concerns to AOP solutions;

• An aspect refactoring approach based on crosscutting concern sorts and a set of
refactoring templates;

• A report on our experience with migrating concerns in a real system to aspects
and the challenges of this process. This report is useful forassessing the present

6.8. Concluding Remarks 159

support for refactoring and the feasibility of automatic aspect refactoring for
various categories (that is, sorts) of crosscutting concerns.

• AJHOTDRAW, a show-case for aspect refactoring in an open-source implemen-
tation that can be further used by researchers and practitioners to evaluate aspect-
based solutions to crosscutting concerns.

AJHOTDRAW provides a code base for related research to measure code improve-
ments due to aspect code. Furthermore, this work provides uswith the hands-on ex-
perience for designing and implementing sort-based aspectrefactoring. We plan to
extend our tool support for concern documentation, SOQUET, with aspect refactor-
ing options. The refactoring would apply to each query documenting a sort instance,
and hence benefit from the description of the concerns available by the query results.
We appreciate that a significant effort would go into the design and implementation of
wizards to deal with the various reported challenges.

Chapter 7

Conclusions

Crosscutting concerns are a main challenge to program comprehension, and hence
to evolution of existing software systems. Their scattered and tangled implementation
makes it difficult to locate and understand these concerns, to change their implemen-
tation, and to extend a system consistently with its various concerns.

This thesis has focused on better understanding how crosscutting concerns are im-
plemented in existing systems, and how we can support effective software evolution in
the presence of such concerns. Particularly, we have addressed three main challenges
in managing crosscutting concerns in source code:

• Crosscutting concern identification;

• (Query-based) Crosscutting concern documentation and modeling; and

• Concern refactoring to aspects.

7.1 Summary of Contributions

Each of these challenges is a research topic on its own and we can summarize our
contributions in several research areas of software evolution:

• Program comprehension: We provide a detailed picture of various (implemen-
tations of) crosscutting concerns in source code by analyzing and reporting on a
number of open-source Java systems, from different application domains. Our
findings also include a number of concerns not previously covered in literature,
such asUndosupport.

This study of the crosscutting concerns concludes with a classification ofatomic
concerns insortsbased on their distinctive properties, such as specific relations
and implementation idioms. The classification allows for consistency in describ-
ing and addressing concerns at source code level. We describe the concern sorts

161

162 Chapter 7. Conclusions

using source code queries that we implement in SOQUET, our tool supporting
persistent, query-based documentation and modeling of concerns. Documenta-
tion of concerns allows us to build common benchmarks for concern analysis.

• Reverse engineering: One contribution of this thesis is the set of three aspect
mining techniques implemented in a freely available tool called FINT, which
supports (semi-)automatic identification of concerns in source code. Besides
each individual technique, we discuss criteria and challenges to comparison and
combination of techniques. The discussion includes reports on a joint-effort with
two other research groups, and motivates the need for a common framework and
coherent criteria to assess mining techniques and to support combinations aimed
at improved quality of the mining results.

We propose such a framework for design, assessment and combination of mining
approaches and show how new techniques can be built on top of it. Moreover,
we cover in a survey existing approaches to aspect mining anddiscuss how these
can be retrofitted to this framework.

• Program transformation – Aspect-oriented refactoring: The refactoring solu-
tions that we propose ensure a number of important properties: (1) the refactor-
ings address meaningful concerns, which allows for transparency of the refac-
tored concerns; (2) the solutions address concerns at a consistent level of granu-
larity, so solutions do not overlap but complement each other; (3) the solutions
permit for a high level of flexibility so they can be applied tovarious implemen-
tations of concerns in source code.

Besides the refactoring approach itself, we implement AJHOTDRAW, the largest
openly available refactoring to aspects. This open source project is a show-case
for our approach, and also provides a comparative implementation of crosscut-
ting concerns in Java and AspectJ respectively.

The feedback from the refactoring case presented in this thesis can also be useful
to researchers working on design and implementation of aspect-oriented languages:
we report about main challenges in refactoring to aspects due to language limitations,
and present a number of considerations on whether the aspect-oriented code improves
comprehensibility and evolvability with respect to an object-oriented one.

These contributions summarize our achievements in answering the research ques-
tion that we proposed to address in the beginning of this thesis: How can we con-
sistently manage, i.e. identify, model, document and possibly migrate, crosscutting
concerns in existing systems in order to better support program comprehension and
effective software evolution?

7.2. Discussion and Evaluation 163

7.2 Discussion and Evaluation

7.2.1 Revisiting Thesis Objectives

In the beginning of this thesis, we endeavored to meet a set ofobjectives with our so-
lution for enhancing management of crosscutting concerns in source code. We believe
that the aforementioned contributions ensure that we have successfully achieved each
of these objectives.

First, the categorization system based on sorts allows us toaddress crosscutting
concerns in a systematic way. We use distinctive properties, such as implementation
idioms and underlying relations, to describe concerns and to design solutions for their
identification, modeling, and refactoring.

Second, our quest to better understand crosscutting concerns and how they occur
in practice resulted in an openly available set of tools for aspect mining and concern
documentation. Moreover, we produced comprehensible reports on our analysis of
crosscutting concerns in three relevant open source systems, which are already used as
common benchmarks (in aspect mining).

In Chapter 5, we used the concern sorts to develop a common framework for evalu-
ation of aspect mining techniques. Conformance with this framework ensures our third
objective, namely to consistently assess, compare, and combine mining techniques.

Concern sorts also act as a glue between the various steps towards migration of
crosscutting concerns to aspects. This allows for integration of these steps in a coherent
solution for porting object-oriented, crosscutting implementation of concerns to more
modular solutions.

Finally, we achieve flexibility and re-usability of our concern management solu-
tions by raising the abstraction level of addressing crosscutting concerns to categories
of concerns.

7.2.2 Independent and Integrated Migration Steps

Identification, documentation and modeling, or refactoring of concerns to aspects show
different steps towards migration of concerns in source code. One way of using the
contributions of this thesis is to apply each step independently to conduct software
engineering tasks. For instance, aspect mining results point us to relevant program
elements and relations that show important code characteristics, but also give a quick
insight into the (design and features of the) analyzed code.Besides the case-studies
that we have covered in detail in this thesis, we obtained similar such results for other
systems as well. The results of applyingFan-in analysis to the JBOSS server appli-
cation, for example, show that logging for debugging operations is a main, widely
scattered concern: the four methods with top fan-in values,from 444 to 966, imple-
ment this concern. The next top values point us to the server component for registration
and management of bean (MBean) objects, which is a core element in the (Java Man-
agement Extension (JMX)) architecture of the analyzed system.

164 Chapter 7. Conclusions

The metric not only helps us to recognize these concerns in the code, but it also
gives us a good estimate of the impact and costs of changing them.

The search for other concern idioms, like redirections as implemented by wrapper
objects, helps us to recognize design decisions and the extent of their implementation in
the code. The presence of a wrapper, for instance, could indicate that a given (wrapped)
object should be used via its wrapper instead of accessing itdirectly.

Documentation of concerns is aimed at a (persistent) representation of relevant re-
lations in source code and of design decisions that are not transparent in the dominant
decomposition of the system under investigation. A main goal of our approach con-
sist of ensuring a structured, coherent understanding and representation of crosscutting
concerns. This allows developers to consistently describetheir design decisions by
creating concern-based models of the source code that complement the main decom-
position of concerns, which is based on modularization mechanisms of the employed
language. New developers can use this documentation to investigate existing (crosscut-
ting) concerns and designs, and check whether changes or additions to a code element
conform to its concerns.

The refactoring approach we propose follows similar coherence considerations as
outlined for documentation of concerns. By these considerations we distinguish from
other approaches, most of which overlook an explicit representation of the concerns
used as inputs for refactoring to aspects: For example, fine-grained refactorings, which
describe how class members or relations can be migrated to aspects declarations, as-
sume a priori understanding of the concerns and of the program elements that imple-
ment them. Then the refactoring solutions need to be appliedto each of these elements.
Other approaches consist of solutions for heterogeneous examples of concerns, which
require one to map the concerns to be refactored onto these particular examples.

Overall, our refactorings based on concern sorts look to provide flexible solutions
for replacing the crosscutting implementation of concernswith aspects, and hence for
improving modularity and separation of concerns in the codeby means of aspect lan-
guages mechanisms.

We observe that while useful on their own, as discussed above, the three different
steps in migration of concerns assume inputs (such as concerns to be documented or
refactored), which would typically be provided by the othersteps (like the mining one).
Our classification of concerns in sorts allows for consistency for each of these steps,
but also for their integration. The integration of the threesteps in a migration strategy,
as proposed in this thesis, and the application of the strategy to the AJHOTDRAW case
are the first attempts of their kind.

7.2.3 Queries versus Aspects

Both the query-based documentation and the refactoring to aspects are aimed at en-
hancing comprehensibility of crosscutting concerns by making certain relations in
source code explicit or by improving modularity. The two migration steps can be re-
garded as complementary, but also as alternatives to adoption of concern-driven design

7.2. Discussion and Evaluation 165

and aspect-oriented programming.
Our experience, reported in this thesis, shows a number of relevant differences

between the two steps, which may impact on the choice of the adoption strategy for
approaches to crosscutting concerns. One such difference consists of the modification
required to the code base: while queries simply report on existing relations, without
requiring code restructuring, aspects introduce behaviorand need to modify the code.
We can say that queries are apassiveaddition to the code, by comparison with the
aspects that areactiveelements. This difference has both advantages and disadvan-
tages on each side: Because their active nature, aspects can enforce rules in the code
so that they cannot be forgotten, such as having a consistentbehavior attached to new
elements that are covered by a defined pointcut. On the other side, such behavior could
be added erroneously modifying the correct behavior of a system. Preventing such er-
rors requires advanced tool support for aspect programmingand exhaustive regression
testing. Therefore, developers might find adoption of a query-based approach safer.

Documentation of crosscutting concerns, on the other hand,preserves an “optional”
characteristic. Many reports suggest that code often lacks(updated) documentation,
and, as a code can function correctly without documentation, there is no strict en-
forcement on providing it. Yet, we believe that queries haveseveral advantages over
traditional, textual documentation that might ease the task of developers of describing
the design and the concerns in their code: the sort queries, for instance, allow for a
structured, systematic way of producing documentation, which is supported by query
templates. Moreover, queries help developers to keep trackof their design, and to de-
scribe concerns in a consistent way, without the modularization limitations of a certain
programming paradigm. A disadvantage here is the possible limited expressiveness of
a query, but tool support for concern queries can easily integrate textual descriptions
attached to a query.

Query-based documentation of concerns contributes to codecomprehensibility by
providing hints to relevant relations between program elements. This documentation
can be simply assessed as a complement to the available source code for understanding
a program. For aspects, however, assessing improvement in code comprehensibility
due to their use is yet an open issue. AJHOTDRAW is just a first step towards such an
assessment that allows us to compare different implementation of a same design in a
software application.

One possible advantage of queries over aspects consist of the involved complexity
for ensuring comprehensible, expressive descriptions of concerns. The queries remove
part of this complexity as they do not need an equivalent of the advice construct. For
example, the query for a concern implemented by method calls, only needs to specify
the rule of selecting those call sites that are relevant to the concern implementation. The
aspect solution needs to define a pointcut whose definition issimilar to the selection
rule in the query, but also the advice to introduce the call implementing the refactored
concern. The complexity of extracting an advice for refactoring depends on the level
of tangling of the concern at the call sites, and it is often not a trivial task as the call to
be extracted is not a always a simplebefore/afterone.

166 Chapter 7. Conclusions

It is important to notice that despite being a key challenge to describing concerns,
the problem of expressive pointcuts is typically overlooked by most of the approaches
to refactoring, and even modeling.

7.3 Opportunities for Future Research

Each of the chapters of this thesis discusses a number of openissues in the various
steps of the management of crosscutting concerns in source code. Some of the main
issues include:

• The need for further extensive reports on the coverage of various crosscutting
concerns by sorts including, for example, other domain specific concerns.

• Investigating additional metrics for the assessment of mining techniques includ-
ing, for instance, measures for concern coverage of an aspect mining result.

• Integration of the refactoring to aspects into software development environments.

This section suggests several directions for future work covering the issues above.

7.3.1 Aspect Mining

In the discussion of our proposed common framework for aspect mining we have cov-
ered existing techniques and showed how they can fit into the framework. Actual
implementation of these techniques and experiments on common benchmarks would
allow us to assess their results and experiment with combinations.

Available tool support and publicly shared, detailed results are a key element to
better understanding crosscutting concerns and recognizing typical implementation id-
ioms. However, this support is not readily available, and the reports in this thesis are
(among) the most comprehensive ones to date. A larger variety of examples from dif-
ferent application domains would also be helpful to assess the feasibility of existing
aspect-oriented languages, as well as of our sorts, to cope with various crosscutting-
ness.

To better understand the sorts of crosscuttingness, we would like to have at least
one aspect mining technique targeting each of the sorts. Thedescription of concerns
by sorts could be particularly useful here, as new mining techniques can be designed to
search for a sort’s relation, such as call, implement, redirection, or parameter passing
relations. We have found particularly insightful to experiment with the various tech-
niques proposed in this thesis and to discover a significant number of instances for the
targeted sorts. Such techniques give more empirical evidence on the use of idioms to
implement concerns.

Combination of techniques is still in its infancy and this thesis covers the largest
part of the efforts made up to date. The promising results we obtained suggest that this

7.3. Opportunities for Future Research 167

is an interesting direction to further explore for improving quality of aspect mining
results.

7.3.2 Crosscutting Concern Documentation and Modeling

Besides extending the list of our sorts and better understanding what other typical
concerns we encounter in source code, we would also like to see how a query-based
approach is able to support description of new sorts of concerns. The feasibility of this
approach depends on mainly two elements: the ability to query for a sort’s specific
relation, and the flexibility to formalize contexts, i.e., to restrict the endpoints of a rela-
tion to relevant elements, similarly to defining pointcuts in aspect-oriented languages.
Furthermore, a sort and its query have to be able to provide anabstract representation
of all its instances.

The assessment of the approach to concern documentation based on queries re-
quires effective tool support. We identify a number of desirable extensions to SO-
QUET, which include improved integration with traditional refactoring operations. For
example, changes in the source code, like renaming or removal of elements, should up-
date the definition of the queries in the concern model accordingly.

Another desirable extension consists of improved support for querying a concern
model (that documents a system) to find relevant queries attached to a given program
element. For example, when changing aFigure class in a drawing application by
adding a new method, it is relevant to know that figures participate, for instance, in
an Observer design and any modification to the figure’s state has to be notified to the
figure’s display. In this case, we would like to search in the concern model of our
whole application for those queries that document concernsfor Figure elements. This
search feature is only partially implemented in SOQUET at the moment: the search for
concerns attached to theFigure class returns all queries for whichFigure is an end-
point of the crosscutting relation documented by the query.One such result shows us
that figures areObservableelements, and hence implement multiple roles. However,
the query documenting the call to notify the figure’s displayof changes will not be
reported, since theFigure class is not an endpoint of the call relation, but only one of
its methods. Yet, for this particular case, the notificationconcern is relevant for the
intended change operation.

The search for relevant concerns in concern models requiresclearly defined rules
to associate queries to program elements. The rules should specify when a particular
program element is considered related to a query, so the query is reported as relevant
for the relations of that element. Such extensions to SOQUET can be summarized as
desired support for querying queries.

7.3.3 Refactoring to Aspect-Oriented Programming

A natural extension of the work presented in this thesis is tobuild tool support for
(semi-)automatic refactoring based on the solutions proposed for concern sorts. Pre-

168 Chapter 7. Conclusions

Figure 7.1: Integration of migration steps in FINT and SOQUET.

7.4. Closing Remarks 169

liminary experiments show promising results, mainly because the granularity of the
sorts allows for increased flexibility of the refactorings.However, more work is re-
quired on this tool support implementation.

Another interesting direction to investigate comprises testing strategies to ensure
behavior preservation of the refactoring to aspects. We would like to attach to each
of our refactorings a testing component that automaticallychecks for faults after the
execution of the refactoring.

7.3.4 Integration of Migration Steps

FINT and SOQUET provide us with a proper infrastructure for an integrated migration
strategy. A simple extension that we plan to add to FINT wouldallow us to turn
mining results into input parameters for the query templates in SOQUET. For instance,
the mining results ofFan-in analysis, which are displayed by FINT as call relations,
could be turned (automatically) into set of elements that describe the contexts for the
Consistent behaviorsort query, as shown in Figure 7.1.

Furthermore, SOQUET implements support for extending the query-based docu-
mentation of a sort instance in the concern model with options for refactoring it to
aspects. This support includes mechanisms for reusing the information in the query
documenting a concern to configure the refactoring solutionfor the concern’s sort. The
tool-supported integration of these migration steps is briefly outlined in Figure 7.1.

7.4 Closing Remarks

The work presented in this thesis advances the state-of-the-art in the management of
crosscutting concerns in source code by means of a significant set of techniques, de-
tailed case-studies reports and tool support. Moreover, wepresented the first integrated
approach to management and migration of concerns. These contributions are aimed at
helping software engineers to better deal with the complexity of existing systems and
with the tasks of evolving such systems.

In the last chapter of this thesis, we identify a number of research topics that, we
believe, point to relevant and interesting challenges in the area of software engineering
and concern management in particular.

Bibliography

Alur, D., Crupi, J., and Malks, D.Core J2EE Patterns. Sun Microsystems, Inc., USA
[2003].

The AspectJ Team.The AspectJ Programming Guide. Palo Alto Research Center
[2003]. Version 1.2.

Baldwin, C.Y. and Clark, K.B.Design Rules: The Power of Modularity Volume 1. MIT
Press, Cambridge, MA, USA [1999].

Beck, K. Smalltalk: best practice patterns. Prentice-Hall [1997].

Bergmans, L. and Aksit, M. Composing crosscutting concerns using composition fil-
ters.Communications of the ACM, 44(10):51–57 [2001].

Biggerstaff, T.J., Mitbander, B.G., and Webster, D.E. Program understanding and the
concept assignment problem.Communications of the ACM, 37(5):72–82 [1994].

Binkley, D., Ceccato, M., Harman, M., Ricca, F., and Tonella, P.Tool-supported refac-
toring of existing object-oriented code into aspects.IEEE Transactions on Software
Engineering, 32(9):698–717 [2006].

Binkley, D., Ceccato, M., Harman, M., Ricca, F., and Tonella, P.Automated refactoring
of object oriented code into aspects. InProceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM ’05), pages 27–36. IEEE Computer
Society, Washington, DC, USA [2005].

Bloch, J.Effective Java programming language guide. Sun Microsystems, Inc., Moun-
tain View, CA, USA [2001].

Breu, S. and Krinke, J. Aspect mining using event traces. InProceedings of the
19th IEEE International Conference on Automated Software Engineering (ASE ’04),
pages 310–315. IEEE Computer Society, Washington, DC, USA [2004].

171

172 BIBLIOGRAPHY

Breu, S. and Zimmermann, T. Mining aspects from version history. In Proceedings of
the 21st IEEE International Conference on Automated SoftwareEngineering (ASE
’06), pages 221–230. IEEE Computer Society, Washington, DC, USA [2006].

Briand, L.C., Daly, J.W., and Ẅust, J.K. A unified framework for coupling mea-
surement in object-oriented systems.IEEE Transactions on Software Engineering,
25(1):91–121 [1999].

Bruntink, M., van Deursen, A., van Engelen, R., and Tourwé, T. An evaluation of
clone detection techniques for identifying crosscutting concerns. InProceedings
of the 20th International Conference on Software Maintenance(ICSM ’04), pages
200–209. IEEE Computer Society, Los Alamitos, CA [2004].

Bruntink, M., van Deursen, A., van Engelen, R., and Tourwé, T. On the use of clone
detection for identifying crosscutting concern code.IEEE Transactions on Software
Engineering, 31(10):804–818 [2005].

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., andTourwe, T. A quali-
tative comparison of three aspect mining techniques. InProceedings of the 13th In-
ternational Workshop on Program Comprehension (IWPC ’05), pages 13–22. IEEE
Computer Society, Washington, DC, USA [2005].

Ceccato, M., Marin, M., Mens, K., Moonen, L., Tonella, P., andTourwé, T. Applying
and combining three different aspect mining techniques.Software Quality Journal,
14(3):209–231 [2006]. Included as Chapter 3 of this thesis.

Cole, L. and Borba, P. Deriving refactorings for AspectJ. InProceedings of the 4th
International Conference on Aspect-Oriented Software Development (AOSD ’05),
pages 123–134. ACM Press, New York, NY, USA [2005].

Colyer, A., Clement, A., Harley, G., and Webster, M.Eclipse AspectJ. Pearson Edu-
cation, Inc., NJ [2005].

Deransart, P., Ed-Dbali, A., and Cervoni, L.Prolog, The Standard : Reference Manual.
Springer Verlag [1996].

van Deursen, A., Quilici, A., and Woods, S. Program plan recognition for year 2000
tools. Science of Computer Programming, 36:303–324 [2000].

Dijkstra, E.W.A Discipline of Programming. Prentice Hall PTR, Upper Saddle River,
NJ, USA [1997].

Eichberg, M., Haupt, M., Mezini, M., and Schäfer, T. Comprehensive software un-
derstanding with Sextant. InProceedings of 21st IEEE International Conference on
Software Maintenance (ICSM ’05), pages 315–324. IEEE Computer Society [2005].

BIBLIOGRAPHY 173

Eick, S.G., Steffen, J.L., and Eric E. Sumner, J. Seesoft-A Tool for Visualizing
Line Oriented Software Statistics.IEEE Transactions on Software Engineering,
18(11):957–968 [1992].

Eisenbarth, T., Koschke, R., and Simon, D. Locating featuresin source code.IEEE
Transactions on Software Engineering, 29(3):195–209 [2003].

Erlikh, L. Leveraging legacy system dollars for e-business. IT Professional, 2(3):17–
23 [2000].

Ettinger, R. and Verbaere, M. Untangling: a slice extractionrefactoring. InProceed-
ings of the 3rd International Conference on Aspect-Orientedsoftware Development
(AOSD ’04), pages 93–101. ACM Press, New York, NY, USA [2004].

Fabry, J.Modularizing Advanced Transaction Management - Tackling Tangled Aspect
Code. Ph.D. thesis, Vrije Universiteit Brussel [2005].

Ferenc, R., Besźedes,Á., Fulop, L., and Lele, J. Design pattern mining enhanced by
machine learning. InProceedings 21st IEEE International Conference on Software
Maintenance (ICSM ’05), pages 295–304. IEEE Computer Society, Los Alamitos
[2005].

Filman, R.E., Elrad, T., Clarke, S., and Akşit, M., editors.Aspect-Oriented Software
Development. Addison-Wesley, Boston [2005].

Fowler, M. Inversion of control containers and the dependency injection pattern.http:
//martinfowler.com/articles/injection.html [2004].

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D.Refactoring: improving
the design of existing code. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA [1999].

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, MA [1994].

Ganter, B. and Wille, R. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag [1997].

Gil, J.Y. and Maman, I. Micro patterns in java code. InProceedings of the 20th annual
ACM SIGPLAN conference on Object oriented programming, systems, languages,
and applications (OOPSLA ’05), pages 97–116. ACM Press, New York, NY, USA
[2005].

Goetz, B. Garbage collection and performance. IBM developersWorks articles [2004].
www-136.ibm.com/developerworks/java/.

174 BIBLIOGRAPHY

Gradecki, J.D. and Lesiecki, N.Mastering AspectJ - Aspect Oriented Programming in
Java. Wiley Publishing, Inc., Indianapolis, Indiana [2003].

Griswold, W.G., Yuan, J.J., and Kato, Y. Exploiting the map metaphor in a tool for
software evolution. InProceedings of the 23rd International Conference on Software
Engineering (ICSE ’01), pages 265–274. IEEE Computer Society, Washington, DC,
USA [2001].

Gybels, K. and Kellens, A. Experiences with identifying aspects in Smalltalk using
unique methods. InProceedings of the 1st Workshop on Linking Aspect Technology
and Evolution (LATE ’05) at AOSD[2005].

Hajiyev, E., Verbaere, M., and de Moor, O. CodeQuest: Scalable source code queries
with Datalog. In D. Thomas, editor,Proceedings of the 20th European Conference
on Object-Oriented Programming (ECOOP ’06), volume 4067 ofLecture Notes in
Computer Science, pages 2–27. Springer [2006].

Hanenberg, S., Oberschulte, C., and Unland, R. Refactoring of aspect-oriented soft-
ware. In Proceedings of the 4th Annual International Conference on Object-
Oriented and Internet-based Technologies,Concepts, and Applications for a Net-
worked World (Net.ObjectDays), pages 19–35 [2003].

Hannemann, J. and Kiczales, G. Overcoming the prevalent decomposition of legacy
code. InWorkshop on Advanced Separation of Concerns at ICSE[2001].

Hannemann, J. and Kiczales, G. Design pattern implementation in Java and AspectJ. In
Proceedings of the 17th Annual ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’02), pages 161–173. ACM Press,
Boston, MA [2002].

Hannemann, J., Murphy, G.C., and Kiczales, G. Role-based refactoring of crosscutting
concerns. InProceedings of the 4th International Conference on Aspect-Oriented
Software Development (AOSD ’05), pages 135–146. ACM Press, New York, NY,
USA [2005].

Harrison, W., Ossher, H., Jr., S.M.S., and Tarr, P. Concern modeling in the concern ma-
nipulation environment. InIBM Research Report RC23344. IBM Thomas J. Watson
Research Center, Yorktown Heights, NY [2004].

Henderson-Sellers, B., Constantine, L.L., and Graham, I.M. Coupling and cohesion
(towards a valid metrics suite for object-oriented analysis and design).Object Ori-
ented Systems, 3:143–158 [1996].

Henderson-Sellers, B.Object-oriented metrics : measures of complexity. Prentice-
Hall, Inc. [1996].

BIBLIOGRAPHY 175

Henry, S. and Kafura, K. Software structure metrics based oninformation flow. IEEE
Transactions on Software Engineering, 7(5):510–518 [1981].

Janzen, D. and Volder, K.. Navigating and querying code without getting lost. In
Proceedings of the 2nd International Conference on Aspect-Oriented Software De-
velopment (AOSD ’03), pages 178–187. ACM Press, New York, NY, USA [2003].

Johnson, R. J2EE Design and Development. Wiley Publishing, Indianapolis, IN
[2003].

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes,C., Loingtier, J.M.,
and Irwin, J. Aspect-oriented programming. In M. Akşit andS. Matsuoka, editors,
Proceedings of the 11th European Conference on Object-Oriented Programming
(ECOOP ’97), volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg,
and New York [1997].

Kiczales, G. and Mezini, M. Aspect-oriented programming and modular reasoning. In
Proceedings of the 27th International Conference on SoftwareEngineering (ICSE
’05), pages 49–58. ACM Press, New York, NY, USA [2005a].

Kiczales, G. and Mezini, M. Separation of concerns with procedures, annotations,
advice and pointcuts. InProceedings of the 19th European Conference on Object-
Oriented Programming (ECOOP ’05), volume 3586 ofLecture Notes in Computer
Science, pages 195–213. Springer [2005b].

Kitchenham, B., Pickard, L., and Pfleeger, S.L. Case studies for method and tool
evaluation.IEEE Software, 12(4):52–62 [1995].

Koschke, R. and Quante, J. On dynamic feature location. InProceedings 20th
IEEE/ACM International Conference on Automated Software Engineering (ASE
’05), pages 86–95. ACM Press, Boston, MA [2005].

Krinke, J. Mining control flow graphs for crosscutting concerns. InProceedings of
13th Working Conference on Reverse Engineering (the 9th ASTReNet Workshop),
pages 334–342. IEEE Computer Society, Washington, DC, USA [2006].

Laddad, R. Aspect-oriented refactoring.www.theserverside.com [2003a].

Laddad, R. AspectJ in Action - Practical Aspect Oriented Programming. Manning
Publications Co., Greenwich, CT [2003b].

Lesiecki, N. Aop@work: Enhance design patterns with AspectJ. www-128.ibm.com/
developerworks [2005].

Lindig, C. Fast concept analysis. InWorking with Conceptual Structures - Contribu-
tions to ICCS 2000, pages 152–161. Shaker Verlag [2000].

176 BIBLIOGRAPHY

Lippert, M. and Lopes, C. A study on exception detection and handling using aspect-
oriented programming. InProceedings of the 22nd International Conference on
Software Engineering (ICSE ’00), pages 418–427. ACM Press, Boston, MA [2000].

Marin, M. Refactoring JHOTDRAW’s undo concern to AspectJ. InProcedings of the
1st Workshop on Aspect Reverse Engineering (WARE ’04) at WCRE., pages 24–30.
CWI Report SEN-E0502, Amsterdam, The Netherlands [2004].

Marin, M. Formalizing typical crosscutting concerns. Technical Report TUD-SERG-
2006-010, Delft University of Technology [2006a].

Marin, M., van Deursen, A., and Moonen, L. Identifying aspects using fan-in analysis.
In Proceedings of the 11th Working Conference on Reverse Engineering (WCRE
’04), pages 132–141. IEEE Computer Society, Los Alamitos, CA [2004].

Marin, M., van Deursen, A., and Moonen, L. Identifying crosscutting concerns us-
ing fan-in analysis.ACM Transactions on Software Engineering and Methodology,
17(1):1–37 [2007a]. Included as Chapter 2 of this thesis.

Marin, M., Moonen, L., and van Deursen, A. A classification ofcrosscutting concerns.
In Proceedings of the 21st IEEE International Conference on Software Maintenance
(ICSM ’05), pages 673–677. IEEE Computer Society, Los Alamitos [2005a]. (Par-
tially) covered by Chapter 4 of this thesis.

Marin, M., Moonen, L., and van Deursen, A. A systematic aspect-oriented testing
and refactoring process, and its application to JHOTDRAW. Technical Report SEN-
R0507, CWI [2005b].

Marin, M., Moonen, L., and van Deursen, A. A common frameworkfor aspect mining
based on crosscutting concern sorts. InProceedings of the 13th Working Confer-
ence on Reverse Engineering (WCRE ’06), pages 29–38. IEEE Computer Society,
Washington, DC, USA [2006a]. Extended version included as Chapter 5 of this
thesis.

Marin, M., Moonen, L., and van Deursen, A. FINT: Tool supportfor aspect mining. In
Proceedings of the 13th Working Conference on Reverse Engineering (WCRE ’06),
pages 299–300. IEEE Computer Society, Washington, DC, USA [2006b]. (Partially)
covered by Chapters 2, 3 and 5 of this thesis.

Marin, M. Reasoning about assessing and improving the seed quality of a generative
aspect mining technique. InProceedings of the 2nd Workshop on Linking Aspect
Technology and Evolution (LATE ’06) at AOSD, pages 23–27. CWI Report SEN-
E0604 [2006b]. (Partially) covered by Chapters 3 and 5 of thisthesis.

Marin, M., Moonen, L., and van Deursen, A. An approach to aspect refactoring based
on crosscutting concern types.SIGSOFT Software Engineering Notes, 30(4):1–5
[2005c]. (Partially) covered by Chapter 4 of this thesis.

BIBLIOGRAPHY 177

Marin, M., Moonen, L., and van Deursen, A. Documenting typical crosscutting con-
cerns. InProceedings of the 14th IEEE Conference on Reverse Engineering (WCRE
’07). IEEE Computer Society, Washington, DC, USA [2007b]. Covered by Chapter
4 of this thesis.

Marin, M., Moonen, L., and van Deursen, A. An integrated strategy to crosscutting
concern migration and its aplication to JHOTDRAW. In Proceedings of the 7th
IEEE International Working Conference on Source Code Analysis and Manipula-
tion (SCAM ’07). IEEE Computer Society, Washington, DC, USA [2007c]. Covered
by Chapter 6 of this thesis.

Marin, M., Moonen, L., and van Deursen, A. SOQUET: Query-based documentation
of crosscutting concerns. InProceedings of the 29th International Conference on
Software Engineering (ICSE ’07), pages 758–761. IEEE Computer Society, Wash-
ington, DC, USA [2007d]. (Partially) covered by Chapter 4 of this thesis.

Mens, K. and Tourẃe, T. Delving source-code with formal concept analysis.Elsevier
Journal on Computer Languages, Systems & Structures, 31(3–4):183–198 [2005].

Mens, K., Kellens, A., Pluquet, F., and Wuyts, R. Co-evolving code and design with
intensional views: A case study.Computer Languages, Systems & Structures, 32(2-
3):140–156 [2006].

Mens, K., Kellens, A., and Tonella, P. A survey of automated code-level aspect min-
ing techniques.Transactions on Aspect-Oriented Software Development, 4(Special
Issue on Software Evolution):145–164 [2007].

Mens, K., Poll, B., and González, S. Using intentional source-code views to aid soft-
ware maintenance. InProceedings of the International Conference on Software
Maintenance (ICSM ’03), pages 169–178. IEEE Computer Society, Washington,
DC, USA [2003].

Mesbah, A. and van Deursen, A. Crosscutting concerns in J2EE applications. In
Proceedings of the 7th International Symposium on Web Site Evolution, pages 14–
21. IEEE Computer Society, Los Alamitos, CA [2005].

Monteiro, M. Catalogue of refactorings for AspectJ. Technical Report UM-DI-
GECSD-200401, Universidade do Minho [2004].

Monteiro, M. and Fernandes, J. Towards a catalog of aspect-oriented refactorings.
In Proceedings of the 4th International Conference on Aspect-Oriented Software
Development (AOSD ’05), pages 111–122. ACM Press, New York, NY, USA [2005].

Moodie, M. Pro Jakarta Tomcat 5. Apress, Berkely, CA [2005].

178 BIBLIOGRAPHY

Murali, T., Pawlak, R., and Younessi, H. Applying aspect orientation to J2EE business
tier patterns. In Y. Coady and D. Lorenz, editors,Proceedings of the 3rd Work-
shop on Aspects, Components, and Patterns for Infrastructure Software (ACP4IS) at
AOSD, pages 55–61. University of Victoria, Victoria, Canada [2004].

Murphy, G.C., Griswold, W.G., Robillard, M.P., Hannemann, J., and Leong, W. De-
sign recommendations for concern elaboration tools. In R.E.Filman, T. Elrad,
S. Clarke, and M. Akşit, editors,Aspect-Oriented Software Development, pages
507–530. Addison-Wesley, Boston [2005].

Parnas, D.L. On the criteria to be used in decomposing systems into modules.Com-
munications of the ACM, 15(12):1053–1058 [1972].

Pigoski, T.M. Practical Software Maintenance: Best Practices for Managing Your
Software Investment. John Wiley & Sons, Inc., New York, NY, USA [1996].

Porter, M. An algorithm for suffix stripping.Program, 14(3):130–137 [1980].

Rich, C. and Wills, L.M. Recognizing a program’s design: A graph-parsing approach.
IEEE Software, 7(1):82–89 [1990].

Riehle, D. and Gross, T. Role model based framework design and integration. InPro-
ceedings of the 13th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages & Applications (OOPSLA ’98), pages 117–133. ACM Press
[1998].

Robillard, M.P. and Murphy, G.C. Concern graphs: finding and describing concerns
using structural program dependencies. InProceedings of the 24th International
Conference on Software Engineering (ICSE ’02), pages 406–416. ACM Press, New
York, NY, USA [2002].

Robillard, M.P. and Murphy, G.C. Representing concerns in source code.ACM Trans-
actions on Software Engineering and Methodology, 16(1):3 [2007].

Seiter, L. Automatic mining of context passing in java programs. InProceedings of
the Workshop Towards Evolution of Aspect Mining (TEAM) at ECOOP, pages 9–13.
Delft University of Technlogy Report TUD-SERG-2006-012 [2006].

Shepherd, D., Gibson, E., and Pollock, L. Design and evaluation of an automated
aspect mining tool. InSoftware Engineering Research and Practice, pages 601–
607. CSREA Press, Las Vegas, NV [2004].

Shepherd, D., Palm, J., Pollock, L., and Chu-Carroll, M. Timna: a framework for auto-
matically combining aspect mining analyses. InProceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering(ASE ’05), pages
184–193. ACM Press, New York, NY, USA [2005a].

BIBLIOGRAPHY 179

Shepherd, D., Pollock, L., and Tourwé, T. Using language clues to discover crosscut-
ting concerns. InProceedings of the 2005 Workshop on Modeling and Analysis of
Concerns in Software (MACS ’05) at ICSE, pages 1–6. ACM Press, New York, NY,
USA [2005b].

Soares, S., Laureano, E., and Borba, P. Implementing distribution and persistence
aspects with AspectJ. InProceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA ’02),
pages 174–190. ACM Press [2002].

Sommerville, I.Software Engineering. Pearson, NJ, 7th edition [2004].

Storzer, M. and Forster, F. Detecting precedence-related advice interference. InPro-
ceedings of the 21st IEEE International Conference on Automated Software Engi-
neering (ASE ’06), pages 317–322. IEEE Computer Society, Washington, DC, USA
[2006].

Sutton, S.M. and Rouvellou, I. Concern modeling for aspect-oriented software devel-
opment. In R.E. Filman, T. Elrad, S. Clarke, and M. Akşit, editors,Aspect-Oriented
Software Development, chapter 21, pages 479–505. Addison-Wesley, Boston [2005].

Tarr, P., Harrison, W., and Ossher, H. Pervasive query support in the Concern Ma-
nipulation Environment. Technical Report RC23343 (W0409-135), IBM TJ Watson
Research Research Center, Yorktown Heights, NY [2004].

Tarr, P., Ossher, H., Harrison, W., and Stanley M. Sutton, J.N degrees of separation:
multi-dimensional separation of concerns. InProceedings of the 21st International
Conference on Software Engineering (ICSE ’99), pages 107–119. IEEE Computer
Society Press, Los Alamitos, CA, USA [1999].

Tonella, P. and Ceccato, M. Aspect mining through the formal concept analysis of
execution traces. InProceedings 11th Working Conference on Reverse Engineering
(WCRE ’04). IEEE Computer Society, Los Alamitos, CA [2004a].

Tonella, P. and Ceccato, M. Migrating interface implementation to aspect-oriented pro-
gramming. InProceedings of the 20th IEEE International Conference on Software
Maintenance (ICSM ’04), pages 220–229. IEEE Computer Society, Los Alamitos,
CA [2004b].

Tourwé, T. and Mens, K. Mining aspectual views using formal concept analysis. In
Proceedings of the 4th IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM ’04). IEEE Computer Society, Chicago, Illinois, USA [2004].

Vickers, P. Why finalizers should (and can) be avoided. IBM developersWorks articles
[2002]. www-136.ibm.com/developerworks/java/.

180 BIBLIOGRAPHY

Wilde, N. and Scully, M.C. Software reconnaissance: mappingprogram features to
code.Journal of Software Maintenance, 7(1):49–62 [1995].

Wills, L.M. Automated program recognition: A feasibility demonstration.Artificial
Intelligence, 45(1–2):113–171 [1990].

Xie, X., Poshyvanyk, D., and Marcus, A. 3D visualization forconcept location in
source code. InProceedings of the 28th International Conference on SoftwareEn-
gineering (ICSE ’06), pages 839–842. ACM Press, Boston, MA [2006].

Yin, R.K. Case Study Research: Design and Methods. Sage Publications, USA, 3rd
edition [2003].

Zhang, C. and Jacobsen, H.A. Quantifying aspects in middleware platforms. InPro-
ceedings of the 2nd International Conference on Aspect-Oriented Software Devel-
opment (AOSD ’03), pages 130–139. ACM Press, Boston, MA [2003].

Zhang, C. and Jacobsen, H.A. PRISM is research in aspect mining. In Companion to
the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 20–21. ACM Press, Boston, MA [2004].

Appendix A

FINT

This appendix contains the FINT user manual. The underlyingideas are described in
Chapters 2 and 5 of this thesis.

FINT is a (Java) source code analysis tool for detecting smells of crosscutting
implementation of concerns. The tool is available as a plug-in for the Eclipse IDE
(v.3.0.x – v.3.3).1 The source code of FINT consists of 12,500 NCLOC.2

A.1 Installation

The installation procedure simply requires to download andsave the “jar” distribution
of the tool into the “plugins” directory of Eclipse and then (re-)start the IDE.

A.2 User manual

FINT implements three code analysis techniques that we shall see next in action:

• Fan-in analysislooks for crosscutting concerns by investigating all the method
call relations in a system, and allowing the user to select those methods that are
called from many different places, possibly from similar calling contexts. For
example, a tracer for all the method executions in a system might consist of calls
to a tracing method attached at the beginning of each of the system’s methods.
The tracer method will have a large number of callers, and hence a high fan-in
metric value, which makes it likely to be identified by our technique.

A typical refactoring to aspect-oriented programming (AOP) of the concerns
identified by fan-in analysis consists of replacing the scattered method calls iden-
tified by this technique with pointcut and advice constructs.

1Some of the figures may be more difficult to read on paper. We refer the reader to the FINT web
site for the on-line version of this manual, in which the figures are available in high resolution.

2Metrics plug-in, v.1.3.6 – http://metrics.sourceforge.net/. Note that the Metrics tool does not count
lines of code in interfaces.

181

182 Appendix A.FINT

• Grouped calls analysistargets similar code smells and concerns as the previ-
ous technique; however, instead of single method invocations, this technique is
looking for groups of (at least two) methods that are called by the same callers.
Examples of crosscutting concerns following this implementation idiom include
programmatic (JTA) transaction management, where the transaction demarca-
tion is realized by calls to methods such asbegin, commit, androllback.

• Redirections finderaims at identifying wrapper classes (such as decorators) by
analyzing the methods of all the classes in the system under investigation for
exclusive one-to-one call relations with methods of another class.

Each technique has a dedicated view for investigating and further refining the re-
sults. A fourth view allows us to collect and save the resultsthat participate in, and
hence point us to, crosscutting concerns; these results arecrosscutting concernseeds.
The views can be opened from Eclipse’s “Window/Show View/Other...” menu, under
the FINT group, as shown in Figure A.1.

A.2.1 Fan-in analysis

Fan-in is the default analysis in the tool. To run the analysis, the user chooses the
program elements to be analyzed in thePackage Explorerview of Eclipse and selects
from the context menu of these elements (right click) theFan-in Analysisoption, as
illustrated in Figure A.2.

The tool first parses the source code of the selected elements, and builds an internal,
in-memory model of the source code that will be used by all theanalyses available in
FINT (Figure A.3). The model building (for fan-in analysis)takes about 30 seconds
for a system of 20,000 non-comment lines of code (NCLOC) and around 5 minutes for
over 360,000 NCLOC, on a Pentium 4 machine (2.66 GHz).

Fan-in analysis looks at all call relations in the system under investigation and
displays the results in a dedicated view, as shown in Figure A.4. In this view, each
callee method is the tree root of its callers and has attachedto its name the number of
callers. The fan-in value of each callee is indicated next toits name.

As shown in the detailed Figure A.5 the view presents the userwith a number of
options, like:

• Sorting the results by their name or by their fan-in value;

• Showing/Hiding the library-methods in the view (that is, methods that are called
from the analyzed element but not declared in this element. Such elements in-
clude, for instance, the JDK libraries);

• Showing/Hiding the accessor-methods in the view. The tool checks accessor-
methods by their name (get* and set* methods) or by implementation (methods
that simply return a reference or set the value of a field).

A.2. User manual 183

Figure A.1: The FINT views.

184 Appendix A.FINT

Figure A.2: Run the analysis from the context menu.

A.2. User manual 185

Figure A.3: A progress bar shows the time left to complete theinternal model and to
execute the fan-in analysis.

186 Appendix A.FINT

Figure A.4: The results of fan-in analysis displayed in the dedicated view.

A.2. User manual 187

Note that the filter for accessors also checks methods in interfaces and eliminates
those methods for which all implementations are accessors.

Figure A.5: The Fan-in analysis view and the menus for various options.

By double-clicking any element in the view, the user can inspect the code for that
element. Further on, the menus in the view allow us to:

• Change the settings of the analysis, like the fan-in threshold value;

• Refresh the model by re-analyzing (/re-building the model for) the last analyzed
element;

188 Appendix A.FINT

• Clean the model built for the analyzed element and release memory;

• Save the results to file.

Besides the filters for the accessor and library methods, alsoshown in Figure A.6,
the set of filters include:

• Callees filters

– Fan-in threshold: Methods with a fan-in value below the chosen threshold
are not shown in the view;

– ”Utility” methods: methods that the user chooses to ignore and that will
not be shown in the view;

• Callers filters

– Methods that should not contribute to the fan-in value of their callees.

To select ”utility” elements, the user is presented with theJava element hierarchy
of the analyzed Java element. The user can check the ”utility” elements in the dialog
window of the Fan-in Analysis Setup. Such utility elements could include, for instance,
(JUnit) test packages, as in the example shown in Figure A.6.

Reasoning about a candidate

The filtered callee-methods are ourcandidatesfor crosscutting concern seeds. To rea-
son about a candidate, we select it in the view and choose the “Go Into” option from its
context menu, as illustrated in Figure A.7. This command opens the list of its callers
and activates the toolbar button for launching various analyses for the callers.

FINT assists the user through several analyses to decide whether a (high fan-in)
method is a concern seed. These analyses can be accessed fromthe menu of the Fan-in
analysis view, as illustrated in Figure A.8.

The option for analyzing the hierarchies of the callers willcheck the top-level
declaring type (i.e., interfaces/classes) of each caller,and highlight with the same color
those methods that are declared by the same type (see Figure A.9).

The option for analyzing the position of the calls to the (analyzed) method with
a high fan-in value opens a window that shows all the callers of the method and the
position of the calls to this method. The positions are relative to the caller’s body. This
analysis is illustrated in Figure A.10.

A similar analysis is shown in Figure A.11: in this case, we look at all the call
relations for the callers of our method to see whether these callers have other callees in
common besides the method we analyze.

If we decide that a method with a high fan-in value is part of a crosscutting concern
implementation (i.e., it is a concernseed), we can mark it as such by selecting the Mark

A.2. User manual 189

Figure A.6: The dialog to set the filters for the fan-in analysis results.

190 Appendix A.FINT

Figure A.7: Select a method to analyze its incoming call realtions.

A.2. User manual 191

Figure A.8: The dialog to select analyses for the callers of amethod (with a high fan-in
value).

192 Appendix A.FINT

Figure A.9: Same-hierarchy analysis.

A.2. User manual 193

Figure A.10: Analyzing the position of the calls in the caller-method’s body.

194 Appendix A.FINT

Figure A.11: Callers-callees analysis: Display all the callees for all the callers of the
method with the a high fan-in value.

A.2. User manual 195

Seed option from the context menu of the candidate (right-click the candidate in the
view). The method will be marked distinctively and displayed in the Seeds view, as in
Figure A.12.

A.2.2 Grouped calls analysis

Grouped calls analysis requires the model previosuly builtby fan-in analysis. This new
analysis can be run from the Grouped calls view, as shown in Figure A.13.

The candidate-seeds consist of groups of methods that sharetheir callers. The
candidates are displyed in the view as a tree hierarchy, witheach group of methods at
the root of the list of their common callers, as illustrated in Figure A.14.

The results of Grouped calls analysis can be sorted and filtered similarly to Fan-
in analysis. These filters include checking for setters/getters, checking for libraries
methods, as well as for “utilities”.

Besides the threshold for the minimum number of callers of a candidate, we can
also set the minimum number of grouped methods that share their callers. All these
filters are shown in Figure A.15.

The filters for the callers are again similar to Fan-in analysis and allow the user to
ignore certain calls in the analysis, such as, for example, those from unit tests.

Marking a seed for this analysis proceeds again as describedfor the previous tech-
nique. Each of the methods grouped by this analysis is shown in the Seeds view,
together with the other methods in the same group, as illustrated in Figure A.16.

A.2.3 Redirections finder

Redirections finder requires too the model built by Fan-in analysis. To run the search
for redirections in the code, the user needs to select the Refresh button in the Redirec-
tions finder view, which is marked with a circle in Figure A.17.

The same figure shows the results of the analysis: the redirector class and the re-
ceiver of the redirection are shown as the root of the set of methods from each class
related by an exclusive one-to-one relationship. Such a relantionship means that a redi-
rector method calls only one method in the class receiving the redirection, and that the
receiver method is not called by any other method in the redirector class.

The filters that can be applied to this analysis are shown in Figure A.18. In this di-
alog, we can select the minimum number of redirector methodsin a class, according to
the previosuly defined rule, as well as the minimum percentage of redirector-methods.
In our example, a candidate-redirector class has to have at least 3 methods implement-
ing a redirection and then these methods count for at least 50% of all the methods in
that class.

The utility filter is based on the same considerations as the techniques described
earlier.

196 Appendix A.FINT

Figure A.12: Marking selected method as a crosscutting concern seed.

A.2. User manual 197

Figure A.13: Running grouped calls analysis.

198 Appendix A.FINT

Figure A.14: Grouped calls analysis results.

A.2. User manual 199

Figure A.15: The filters for Grouped calls analysis.

200 Appendix A.FINT

Figure A.16: Seeds for Grouped calls analysis.

A.2. User manual 201

Figure A.17: The view for the Redirections finder analysis.

202 Appendix A.FINT

Figure A.18: Redirections finder filters.

A.2. User manual 203

A.2.4 Combination of techniques

FINT also allows the user to combine techniques, namely those techniques that target
concerns following similar implementation idioms. Two such techniques are Fan-in
and Grouped calls analysis, which both analyze method-callrelations for crosscut-
ting concerns. The combination consists of searching for the results of one technique
among the results of the other one. As Grouped calls analysismakes a stricter selection
of the methods with a large number of callers, we can select a lower fan-in threshold
for this technique and then look for the grouped methods among the results of Fan-in
analysis. For each of these methods, we might find a larger number of callers in Fan-in
analysis and hence a better coverage of the concern of that method.

The combination can be launched as illustrated in Figure A.19.
The intersection of results of the two techniques is highlighted in the view of Fan-in

analysis, as shown in Figure A.20.

A.2.5 Seeds management

All the seeds marked by the user are collected and displayed in the Seeds view next to
the technique that identified them, as shown in Figure A.21. The view also allows the
user to add a short description of the concern implemented byeach of the seeds, next
to each seed. The list of seeds can be saved to or re-loaded from file.

204 Appendix A.FINT

Figure A.19: Combining Fan-in and Grouped calls analysis.

A.2. User manual 205

Figure A.20: Combination results.

206 Appendix A.FINT

Figure A.21: The Seeds view.

Appendix B

SOrts QUEry Tool (SOQUET)

This appendix contains the SOQUET user manual. The underlying ideas are described
in Chapters 4 and (partially) 6 of this thesis.

SOQUET is a query-based (crosscutting) concern modeling and documentation tool
distributed as an Eclipse IDE (v.3.2.x – v.3.3) plug-in.1 The source code of SOQUET
consists of 35,453 NCLOC.2 In order to improve independence on the Eclipse releases,
SOQUET code also includes internal packages of Eclipse, whose implementation and
interface is documented to be subject of change between Eclipse releases. This re-used
code serves, for instance, to preserve Eclipse’s default look-and-feel for some of the
tool’s views.

B.1 Installation

To install the tool, the user needs to download and save the “jar” distribution into the
“plugins” directory of Eclipse and then (re-)start the IDE.

B.2 User manual

The documentation and modeling of concerns in SOQUET is based on a cate-
gorization of crosscutting concerns in so-calledsorts. A concern sort describes
elementary (atomic) crosscutting concerns that share their typical implemen-
tation idiom in an object-oriented language, like Java. Forexample, logging,
authentication and authorization mechanisms, notification of changes in observ-
able objects, etc., are typically implemented in Java by means of scattered calls
to dedicated methods, such asorg.apache.log4j.Logger.debug(message),

1Some of the figures may be more difficult to read on paper. We refer the reader to the SOQUET
web site for the on-line version of this manual, in which the figures are available in high resolution.

2Metrics plug-in, v.1.3.6 – http://metrics.sourceforge.net/. Note that the Metrics tool does not count
lines of code in interfaces.

207

208 Appendix B. SOrts QUEry Tool (SOQUET)

java.security.AccessController.checkPermission(permission), or
Subject.notifyObservers() (see the Observer pattern [Gamma et al., 1994]).
We call the sort that describes these concerns and their common idiom, Consistent
Behavior (CB), and we call each of the concerns above aninstanceof this sort.

SOQUET provides the user with a set of (6) query templates. Each query template
describes the relation specific to the sort of concerns associated to it, such as method
call relations or inheritance relations. The sort-queriescan be parameterized by the
user in a SOQUET dialog window, to define concrete queries. The concrete queries
are defined by the user so that their results map onto the source code elements that
implement a particular, (atomic) crosscutting concern.

The parameterized sort-queries can be saved by the user in a dedicated SOQUET
view to document crosscutting concerns by showing the underlying relations of these
concerns as well as the program elements that implement them. Moreover, the queries
can be grouped in composite, hierarchical models to show relations and associations
between different concerns. Such models are aimed at assisting developers in under-
standing what concerns exist in a system and how these concerns are implemented.

This user-manual presents two use-case scenarios: in the first scenario, we use
SOQUET to document crosscutting concerns in the JHOTDRAW drawing application,
particularly in the Observer pattern for figure changes outlined in Figure B.1.

In the second use-case scenario, we should use an existing concern model docu-
menting various concerns in JHOTDRAW to assist us with a software change task.3

B.2.1 Modeling and documenting concerns in SOQUET

Our first use-case scenario assumes the perspective of a developer that is familiar with
a particular system, namely JHOTDRAW, and with the crosscutting concerns in this
system. These concerns are not visible in the class decomposition of our system due to
their crosscutting nature, and hence they are harder to notice and understand. Our goal
here is to use SOQUET to document these concerns and make them explicit.

The main elements of the user interface in SOQUET consist of two Eclipse views
and a dialog window for the sort-queries templates. One of the views is a customized
extension of the defaultSearchview in Eclipse. The results of our sort-queries will be
displayed in this view.

The second view is theConcern Modelview, which can be opened as shown in
Figure B.2. This view can be used to save the queries documenting concerns and to
organize them in hierarchical, composite structures, similar to the ones in Eclipse’s
Package Explorerview, shown on the left-side of Figure B.2.

3This manual uses for exemplification JHotDraw 5.4b1, which can be downloaded fromhttp://
sourceforge.net/projects/jhotdraw/ or from the web-site of SOQUET. To use the concern model
built for this application, the project has to be imported inEclipse and named JHotDraw54b1. The source
packages (CH.ifa.draw..) need to be placed in a ’src’ folder– see the Package Explorer view in Figures
B.2 and B.3.

B.2. User manual 209

Figure B.1: Observer solution for figure changes in the JHOTDRAW drawing applica-
tion.

210 Appendix B. SOrts QUEry Tool (SOQUET)

Figure B.2: Opening the Concern Model view.

B.2. User manual 211

The sort-search dialog can be accessed from Eclipse’s Search menu, as shown in
Figure B.3. The dialog window presents the user with six querytemplates for the six
most commonly encountered sorts of concerns. (If the optionis not available in the
Search menu, check that you are in the Java perspective and select some element in the
Package Explorer view.)

Figure B.3: Opening the sort-search dialog.

Documenting Consistent Behavior (CB)

A first step in documenting our Observer design for figure changes is to recognize those
(atomic) crosscutting concerns that occur in this design. In Figure B.1, we notice that
each action (method) changing the state of a figure (for instance, moving or resizing a
figure), consistently invokes thewillChange method at the beginning of the execution
and thechanged method after the change is completed. The concerns to notify(pre-)
changes in a figure follow the idiom described by theConsistent Behavior (CB)sort
above, hence we will use the template for the CB query to document these concerns as
CB instances.

The template forConsistent Behavior, shown in Figure B.4, requires two param-
eters: the first is the method invoked consistently as part ofthe crosscutting con-

212 Appendix B. SOrts QUEry Tool (SOQUET)

cern to be documented (the target context). For our notification concern, this is the
Figure.changed() method.

Figure B.4: The dialog to parameterize the Consistent Behaviorquery.

The second parameter allows us to select from all the callersof the
Figure.changed() method only those methods that are part of the concern that we
want to document. In our case, all the calls to thechanged() method from elements in
the JHotDraw project are crosscutting and part of our notification concern. Therefore,
we define our source context by selecting the whole JHotDraw project. Figures B.5
and B.6 illustrate how to do this.

After defining the the two contexts and selecting the Search button in the dialog,
the query will run and analyze all the elements of the JHotDraw project to identify
calls to theFigure.changed method. The results of the search give us the participants
in the notification concern. These are displayed in the Search view (see Figure B.7),
from where the user can navigate to the source code of these elements, organize them
by various layouts, apply different filters, etc.

Saving the query documenting the concern

To save our query capturing the notification concern, we needtheConcern Modelview.
A concern model in this view can include (1) atomic concerns,which are associated a
concern sort query, as well as (2) composite concerns, whichgroup together multiple
sort instances (i.e., atomic concerns) and/or other composite concerns.

We start by creating a composite concern that will group together all the concerns in
the JHotDraw project. Figure B.8 shows how to create a new composite concern in the

B.2. User manual 213

Figure B.5: Defining the source context for the CB query.

214 Appendix B. SOrts QUEry Tool (SOQUET)

Figure B.6: Select the whole JHotDraw project as the element that comprises all the
callers of interest for our notification concern.

B.2. User manual 215

Figure B.7: The results of the CB query that describes the figure-change notification
concern as an instance of CB.

216 Appendix B. SOrts QUEry Tool (SOQUET)

Concern Modelview: Right click in the view, selectAdd New Concern, and introduce
a name for the new concern. In our case, our top composite concern is named by the
same name as the JHotDraw project.

We continue with a new composite concern for our Observer pattern, in order to
group together all the sort instances in this pattern’s implementation. This concern is a
child of the composite for the JHotDraw project. The steps toadd this new composite
concern to the model are shown in Figure B.9.

Now, we can add to our concern model theConsistent behaviorsort instance doc-
umenting the notification concern, and its associated query. Following the steps in
Figure B.10, we start in the Search view, which displays the results of our sort query,
and select “Add Sort Instance to Concern Model”. We then choose the parent concern
of our sort instance: FigureChangeObserver.

The new concern shows up now in theConcern Modelview, together with the
description of its associated query (see Figure B.11).

In case we added our sort instance to the wrong parent, we can select the Move
option in the context menu of the instance (right click), andre-assign the parent. The
Expand option in the same menu allows the user to re-run the query associated with
the documented sort instance.

Documenting Role SuperImposition (RSI)

A second (atomic) crosscutting concern in our Observer occurs in Figure classes,
which declare a number of members (on top of their main functionality) to allow lis-
teners to register and receive notifications every time a change occurs in a figure’s
state. These members define a secondary, crosscutting role implemented by Figures,
namely the Subject (or Observable) role. Similarly, the listener elements, such as line
connections between figures, have to implement theFigureChangeListenerrole that
defines the methods for handling notifications from figures. Both these crosscutting
roles follow a similar idiom, namely members declaration (and implementation) to
support additional responsibilities. Same idiom can be observed in other well-known
concerns as well, such as persistence and (special handlingof) serialization in Java
(java.io.Serialziable).

All these concerns are instances of a different sort, namelyRole Superimposition.
The Listener role is already defined by a distinct interface:FigureChangeListener.

To document this crosscutting role, we select theRole SuperImpositionquery in the
Sort Searchdialog, and pass as parameter the listener interface defining the role, as
illustrated in Figure B.12. The source context allows the user to specify what imple-
mentations of this interface are part of the concern to be documented by the query.
Once again, we select the whole JHotDraw project, as all the implementations of the
Listener interface are of interest.

The results of the query are displayed in the Search view, as shown in Figure B.13.
The view shows the FigureChangeListener hierarchy and highlights the members of
the crosscutting role for each element in the hierarchy selected in the view.

B.2. User manual 217

Figure B.8: Create a composite concern for the whole JHotDraw project.

218 Appendix B. SOrts QUEry Tool (SOQUET)

Figure B.9: Create a composite concern for the Observer for figure changes.

B.2. User manual 219

Figure B.10: Add a sort instance to the concern model for the Observer pattern.

220 Appendix B. SOrts QUEry Tool (SOQUET)

Figure B.11:Consistent Behaviorinstance in Concern Model and its context menu.

Figure B.12: Selecting the type that defines the crosscuttingrole.

B.2. User manual 221

Figure B.13: Results of the query for theRole SuperImpositionof listeners for figure
changes.

222 Appendix B. SOrts QUEry Tool (SOQUET)

We can add our sort instance for the listener role to the concern model for the Fig-
ureChange Observer following the same steps as for the notification concern discussed
earlier.

Role SuperImposition (RSI) – virtual roles

The second crosscutting role we would like to document is implemented by Figure
elements to allow listeners to register for and receive notification of changes. This is
the Observable or Subject role in the Observer pattern [Gamma et al., 1994].

Unlike the listener role above, the Subject role in our Observer pattern implemen-
tation is not defined by a distinct interface. To document this role in SOQUET, we
choose theFigure interface for the target context, and then select in the dialog for
the Role SuperImpositionquery the Virtual-type role option. The selection opens a
window, as shown in Figure B.14, that allows us to select the members of theFigure
classes that belong to the crosscutting role. The rest of steps are then similar to the
documentation of the listener concern previously discussed.

Figure B.14: Virtual roles in SOQUET.

The results of the search and all the concerns we documented so far are shown
in Figure B.15. We can now save our model by selecting the Save command in the

B.2. User manual 223

Concern Model view.

Figure B.15: The concerns documented in the FigureChange Observer.

B.2.2 Using SOQUET to aid program comprehension and software
change tasks

A second use-case scenario we shall look at consists of usingSOQUET and an exist-
ing concern model to support us in a software change task. In this case, we assume
that JHOTDRAW is a new system into which we have little or no insight. We would
like to use a provided concern model in SOQUET to be able to extend JHOTDRAW

consistently with concerns already present in this system.
The change we would like to make consists of an extension of the Command sup-

port in JHOTDRAW, namely adding a Command for mirroring a selected figure in the
drawing view.

224 Appendix B. SOrts QUEry Tool (SOQUET)

Command classes in JHOTDRAW implement actions to be run from the applica-
tion’s menus, such as copying and pasting figures in a drawingview, changing the
color of a geometrical figure, etc. Each command implements theCommandinterface
and implements the core logic of its action in theexecute method. As an example,
Figure B.16 shows the command for deleting selected figures from a drawing (view).

(Most of the) Commands can also be undone. The logic of undoinga command is
implemented by a nestedUndoActivityclass, for each command class. The UndoAc-
tivity for DeleteCommand is also partially visible in FigureB.16.

Figure B.16: DeleteCommand in JHotDraw.

We start our change task by loading in SOQUET an existing concern model that
documents various concerns in JHotDraw, including concerns in the Command sup-
port. Figure B.17 shows how to load a concern model in the tool.

For a first insight into our drawing system, we can simply explore the concern hier-
archy in theConcern Modelview and use the Expand option to run some of the queries
documenting atomic concerns, and navigate the results, as shown in Figure B.18.

For significantly large systems and concern models, SOQUET provides (partial)
support to search the concern model for queries documentingconcerns that cover a
specific program element. Following the example in Figure B.19, we select from the
concern model only those concerns whose queries have as one of their end points
(context elements) a Command element.

B.2. User manual 225

Figure B.17: Loading an existing concern model into SOQUET.

After selecting the Command interface (CH.ifa.draw.util.Command) from all pos-
sible name matches, the view will show us only the sort instances of interest (see
Figure B.20).

By examining the concern in the root of the JHotDraw concern model and expand-
ing its query (Figure B.21), we learn that our commands are grouped in theCommand
hierarchy. This hierarchy is rooted in theCommandinterface and a default abstract
command implementation,AbstractCommand.

The other sort instances in the view, shown in Figure B.22, document a command
as a multi-role element, which implements members to support a Listener role as well
as Undoable functionality.

Based on the knowledge gained from exploring the concern model, we can cre-
ate a stub class for ourMirrorCommandby extendingAbstractCommand, and then
distinguishing in this class between the different roles. The new class is shown in
Figure B.23.

After creating the stub, we can return to the full concern model and show all the
concerns, as illustrated in Figure B.24.

We continue with examining some other of the documented concerns in the root of
the JHotDraw model to learn more about the implementation ofCommands. One such
concern is shown in Figure B.25 – its description indicates a common pre-condition
check for commands. We see by running the query for this concern and examining
the results in the Search view that the concern’s implementation consists of method
calls fromexecute methods in variousCommandclasses. The documented call is
the invocation of the super’s method, as shown in Figures B.25and B.26. This call is
aimed at checking a common condition in all commands, so we add it to theexecute

226 Appendix B. SOrts QUEry Tool (SOQUET)

Figure B.18: Exploring the implementations of concerns using the queries in the con-
cern model.

B.2. User manual 227

Figure B.19: Searching concerns for a program element in the concern model.

Figure B.20: Filtered concern model.

228 Appendix B. SOrts QUEry Tool (SOQUET)

Figure B.21: Exploring the concern model by running the queries documenting con-
cerns/sort instances.

B.2. User manual 229

Figure B.22: The Undoable role in the Command classes.

230 Appendix B. SOrts QUEry Tool (SOQUET)

Figure B.23: The MirrorCommand stub distinguishes the multiple roles based on the
documentation of concerns in SOQUET.

B.2. User manual 231

Figure B.24: Filters settings for the concerns to be displayed in the Concern Model
view.

232 Appendix B. SOrts QUEry Tool (SOQUET)

method of our newMirrorCommandas well.

Figure B.25: The concern for pre-condition check before Command executions.

Similarly, we can investigate all the other concerns in the model and ensure that

B.2. User manual 233

Figure B.26: The execute() method in AbstractCommand.

the implementation of ourMirrorCommandis consistent with all existing policies and
rules for Command classes. This exploration of concerns leads us to the stub imple-
mentation of theexecute() method for theMirrorCommandshown in Figure B.27.
The stub shows the crosscutting concerns in this method and makes it consistent with
the other existing Command implementations. Now, we can go ahead with implement-
ing the core logic of our class. This is not a crosscutting concerns so it is up to the user
of this manual to do it.

234 Appendix B. SOrts QUEry Tool (SOQUET)

Figure B.27: The crosscutting concerns in the MirrorCommand.execute() method.

Samenvatting

Het onderwerp van dit proefschrift is het omgaan metcrosscutting concernsin bronco-
de. De evolutie van softwaresystemen beslaat het grootste deel van hun levenscyclus
en dus ook van hun kosten. Daarom komt het ook veel vaker voor dat software engi-
neers moeten werken aan complexe, reeds bestaande softwaresystemen in plaats van
nieuwe systemen te ontwikkelen. Deze reeds bestaande systemen moeten echter eerst
goed doorgrond worden, alvorens wijzigingen kunnen wordendoorgevoerd. Het be-
grijpen van deze bestaande systemen vergt inzicht in de verschillendeconcerns(denk
aan functionaliteit of ontwerpbeslissingen) die de systemen implementeren. De meeste
van deze concerns moeten worden afgeleid uit de broncode. Een bijzondere uitdaging
voor de doorgronding van een systeem – en bijgevolg voor software-evolutie – vormen
de concerns die doorsnijdend (crosscutting) worden genoemd: de implemenatie van
deze concerns doorsnijden de opsplitsing in modules. Dit heeft als gevolg dat code
verspreid (scattered) en verweven (tangled) wordt.

Het onderzoek dat binnen dit proefschrift wordt gepresenteerd, biedt een geı̈nte-
greerde aanpak die consistente doorgronding, identificatie, documentatie en migratie
van crosscutting concerns in bestaande systemen mogelijk maakt. Dit werk heeft als
doel dat deze crosscutting concerns makkelijker begrijpbaar en beheersbaar worden
voor software engineers. Een laatste stap van de aanpak die we voorstellen is een ex-
periment dat crosscutting concerns herfactoriseert naar een aspect-gëorienteerde aan-
pak van programmeren. Hierbij reflecteren we op de ondersteuning die deze nieuwe
programmeertechniek biedt voor het verbeteren van de modularisering van concerns.

Inleiding

Moderne software systemen worden steeds complexer, en bestaan uit miljoenen regels
broncode die meerdere verantwoordelijkheden implementeren, die ookconcernswor-
den genoemd. Een reenvoudig tekenprogramma, bijvoorbeeld, stelt de gebruiker in
staat om geometrische figuren te tekenen, te manipuleren en aan te passen; om ver-
anderingen terug te draaien, tekeningen op te slaan in een bestand, of ze in te laden;

235

236 Samenvatting

om te interacteren met de applicatie door middel van een reeks menu’s in een grafi-
sche interface, enzovoorts. Om de complexititeit van dergelijke systemen te beheersen
maken software engineers in de ontwerpfase gebruik van bekende programmeerwerk-
wijzen, zoals het toekennen van verantwoordelijkheden in de applicatie aan specifie-
ke programmamodules zoalsklassenof methoden. Deze werkwijze wordt ook wel
descheiding van verantwoordelijkhedenof separation of concernsgenoemd [Parnas,
1972; Dijkstra, 1997; Baldwin and Clark, 1999].

Voor niet-triviale software systemen is er echter geen manier om een volledige
opdeling van concerns te bewerkstelligen. Het resultaat isdat de implementatie van
bepaalde concerns is verspreid over verscheidene modules,en dus wordt vermengd
met de voornaamste functionaliteiten van deze modules. Zulke alomtegenwoordige
concerns hebben een doornsijdend karakter, en worden (crosscutting) genoemd. Hun
karakteristieke implementatie maakt dat ze in de broncode moeizaam zijn te herken-
nen en te begrijpen, wat ze tot een belangrijke uitdaging maakt bij het aanpassen en
evolueren van bestaande software-systemen. Dit proefschrift gaat deze uitdaging aan
door een gëıntegreerd systeem te introduceren voor het werken met alomtegenwoordi-
ge concerns in broncode.

De onderzoeksmethode die in dit proefschrift wordt gehanteerd is gebaseerd op de
volgende pijlers:

• Het gebruik van casussen om een beter begrip te verkrijgen van het probleemdo-
mein.

• De ontwikkeling van nieuwe theorieën, concepten, en technieken, zoals een nieu-
we techniek voor de identificatie van concerns, een benadering voor het modelle-
ren van concerns, of een nieuwe beschrijving van het fenomeen alomtegenwoor-
dige concerns.

• De ontwikkeling van gereedschap dat de toepassing van de methoden en tech-
nieken op bestaande software systemen mogelijk maakt.

• De validatie van de nieuwe methoden en technieken door middel van verkennen-
de casussen waarin het ontwikkelde gereedschap worden toepast op een reeks
“open source” Java systemen.

• Een analytische generalisatie van de casusresultaten, metdaarin een kritische
discussie van de bevindingen.

Probleemdefinitie

Het omgaan met alomtegenwoordige concerns in broncode omvat meerdere activitei-
ten, zoals de identificatie, modellering, en documentatie of herconstructie van concerns
naar aspect-georiënteerd programmeren. Dit laatste is een nieuwe manier van program-
meren waarin crosscutting concerns toch opéén lokatie gedefinieerd kunnen worden,

Samenvatting 237

waarna ze met behulp van programma-transformaties in de rest van de code geweven
kunnen worden.

Hieronder bespreken we in het kort elk van deze activiteiten.

Aspect-opsporing Aspect-opsporing (aspect mining) is een relatief recent onder-
zoeksgebied waarin de ontwikkeling van (broncode analyse)technieken en ondersteu-
ning voor de (semi-)automatische identificatie van alomtegenwoordige concerns in be-
staande systemen centraal staat.

De identificatie van alomtegenwoordige implementaties is een noodzakelijke eer-
ste stap om bewustzijn bij ontwikkelaars te creëren dat het systeem dergelijke concerns
implementeert. Dit bewustzijn is nodig bij elke functionele wijziging die een ontwik-
kelaar doorvoert, daar deze wijziging immers altijd kan interfereren met́eén of meer
alomtegenwoordige eigenschappen.

Bovendien is deze stap belangrijk om de aard te doorgronden van voorkomens van
alomtegenwoordige concerns in “echte” applicaties, van hun typische implementaties,
en van de specifieke eigenschappen die hen onderscheiden vanandere concerns.

Het Modelleren van Concerns De volgende opgave is de representatie van de geı̈den-
tificeerde alomtegenwoordige concerns in broncode, om hen eenduidg en systema-
tisch te beschrijven, te modelleren, en te documenteren. Dezeconcern modelingstap
stelt ons onder meer in staat om beschrijvingen van ontdekteconcerns op te slaan,
Bovendien helpt dergelijke documentatie de alomtegenwoordige betrekkingen tussen
programma-elementen expliciet te maken, en daarmee het verkrijgen van softwarebe-
grip en het uitvoeren van evolutietaken te vergemakkelijken.

Aspect-georïenteerd Programmeren en Herconstructie naar Aspecten Aspect-
georïenteerd programmeren omvat verscheidene programmeertechnieken die zijn ont-
worpen om modularisatie van alomtegenwoordige concerns inbroncode te ondersteu-
nen door gebruik te maken van nieuwe taalconstructies en compositiemechanismen.
De populairste van deze benaderingen is vooralsnog AspectJ4 [Kiczales et al., 1997],
een Java taaluitbreiding die is gebaseerd op hetjoinpoint model. Dit model stelt de
programmeur in staat om bijvoorbeeld reeksen executiepunten in een programma aan
te duiden waar bepaalde code wordt uitgevoerd, zoals een methode-aanroep.

Om de modulariteit van concerns in bestaande systemen te verbeteren d.m.v. aspect-
georïenteerde technieken, moeten we deze concernsmigrerendoor hun implementatie
te herstructureren naar een aspect-georiënteerde oplossing.

Uitdagingen en Probleemdefinitie Ondanks een behoorlijke dosis bestaand onder-
zoek is een aantal belangrijke problemen die betrekking hebben op het beheren van al-
omtegenwoordige concerns in broncode nog niet voldoende opgelost. De verscheidene

4eclipse.org/aspectj/

238 Samenvatting

oplossingen die vooralsnog beschikbaar zijn, zijn doorgaans moeizaam met elkaar te
integreren. Ook is het moeilijk onderlinge resulaten te vergelijken, omdat criteria voor
een uniforme evaluatie ontbreken. Zelfs binnenéén en dezelfde benadering, bijvoor-
beeld voor de opsporing van concerns of herstructurering, worden alomtegenwoordige
concerns behandeld op verschillende niveaus van granulariteit. Dit bemoeilijkt het ver-
gelijken en combineren van deze oplossingen. Hier komt nog bij dat ondersteuning in
de vorm van vrij beschikbaar gereedschap en gedetailleerdecasussen schaars zijn.

Dit proefschrift richt zich op alomtegenwoordige concernsin bestaande systemen
en streeft ernaar de volgende onderzoeksvraag te beantwoorden:

Hoe kunnen we op consistente wijze alomtegenwoordige concernsin
bestaande systemen beheren, dat wil zeggen, identificeren, modelleren, do-
cumenteren, en wellicht migreren, om zodoende het verkrijgen van softwa-
rebegrip te ondersteunen en softwarevolutie te verbeteren?

Aanpak en Resultaten

We gebruiken de volgende aanpak om onze onderzoeksvragen tebeantwoorden:

1. We beginnen met een studie van crosscutting concerns in bestaande systemen.
Om deze studie te ondersteunen gebruiken we een nieuwe aspect mining tech-
niek.

2. Met het begrip van crosscutting concerns dat we hebben opgedaan door bestaan-
de systemen te bestuderen, stellen we een categorisatie voor van concerns in
soortendie gebaseerd is op typische implementatie idiomen en specifieke rela-
ties.

3. Vervolgens gebruiken we deze soorten van crosscutting concerns om een geı̈nte-
greerd systeem te bouwen dat ondersteuning biedt bij het omgaan met crosscut-
ting concerns in broncode. Dit systeem bestaat uit drie componenten, respectie-
velijk een component voor aspect mining, voor het documenteren en modeleren
van concerns en voor het refactoren van concerns naar aspect-georïenteerde op-
lossingen.

De belangrijkste contributies van dit proefschrift kunnenals volgt samengevat worden:

• Het tot op heden meest uitvoerige rapport over aspect miningresultaten en cross-
cutting concerns in broncode. We analyseren en rapporterende resultaten van
drie relevante open-source software case studies in de hoofdstukken 2, 3 en 5.

• Een verzameling van drie aspect mining technieken met bijbehorende programma-
ondersteuning, inclusief combinaties van deze technieken, die worden besproken
in de hoofdstukken 2 en 5.

Samenvatting 239

• Een nieuwe classificatie van crosscutting concerns op basisvan onderscheidende
eigenschappen en een programma-ondersteunde, vraag-gebaseerde aanpak voor
het documenteren en modelleren van concerns, zoals wordt beschreven in hoofd-
stuk 4.

• Een nieuwe aanpak voor het herfactoriseren van concerns naar een aspect-ge-
oriënteerde oplossing gebaseerd op elementaire crosscuttingconcerns. Voorts
stellen we een showcase voor het refactoren naar aspecten voor, die beschikbaar
is als een open-source project, genaamd AJHOTDRAW. Dit open-source project
is momenteel het grootste publiek beschikbare software systeem dat het resultaat
is van een herfactorisering naar een aspect-georienteerdeoplossing. De aanpak
en zijn toepassingen worden besproken in hoofdstuk 6.

• Een gëıntegreerde migratie-strategie die volgende stappen omvat: aspect mining,
concern documentatie en modellering en aspect herfactorisering, wordt voorge-
steld in hoofdstuk 6.

Conclusie

Met dit proefschrift hebben we beoogd de stand der techniek te versterken op het
gebied van het management van crosscutting concerns in broncode. Dit heeft ge-
leid tot een uitgebreide verzameling van technieken, bijbehorend software-greedschap,
en gedetailleerde rapporten van uitgevoerde case studies.Bovendien stellen we een
gëıntegreerde aanpak voor die toelaat concerns the managemenen te migreren. Deze
contributies zijn bedoeld om softare engineers beter te laten omgaan met de complexi-
teit van bestaande software systemen en met de taken die nodig zijn om dergelijke
systemen te laten evolueren.

In het laatste hoofdstuk van deze thesis identificeren we eenaantal onderzoeksvra-
gen die in het verlengde van het onderzoek van dit proefschrift liggen, in het bijzonder
op het vlak van concern management.

Curriculum Vitae

Marius Marin was born on September 30th, 1976 in Bucharest. From 1995 to 1996 he
studied at the Police Academy in Bucharest, after which he transferred to the Technical
University of Civil Engineering, Bucharest. He graduated in 2000 with a Diplomat
Engineer degree in Civil Engineering – Buildings Services. From 1997 to 2002, he
studied at the Academy of Economic Studies, Bucharest, wherehe graduated with a
Licentiate degree in Economics – Economic Informatics (IT). Between 2001 and 2003
he worked as an IT specialist with Nergal, an IT solutions andconsultancy company
based in Rome.

He started his PhD research in 2003, at Delft University of Technology. Until
2007 he was a member of the Software Engineering group, the Software Evolution and
Research Laboratory.

241

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks for
Intelligent Data Analysis: theoretical
and experimental aspects. Faculty of
Mathematics and Natural Sciences, UL.
2002-01

V. Bos and J.J.T. Kleijn. Formal Spec-
ification and Analysis of Industrial Sys-
tems. Faculty of Mathematics and Com-
puter Science and Faculty of Mechanical
Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understand-
ing Legacy Software Systems. Faculty
of Natural Sciences, Mathematics and
Computer Science, UvA. 2002-03

S.P. Luttik . Choice Quantification in
Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity.
Faculty of Mathematics and Computer
Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Ver-
ification of Probabilistic, Real-time and
Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2002-06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius:
Guiding and Cost-Optimality in Model
Checking of Timed and Hybrid Systems.
Faculty of Science, Mathematics and
Computer Science, KUN. 2002-08

R. van Stee. On-line Scheduling and Bin
Packing. Faculty of Mathematics and
Natural Sciences, UL. 2002-09

D. Tauritz . Adaptive Information Filter-
ing: Concepts and Algorithms. Faculty
of Mathematics and Natural Sciences,
UL. 2002-10

M.B. van der Zwaag. Models and Log-
ics for Process Algebra. Faculty of Nat-
ural Sciences, Mathematics, and Com-
puter Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Exten-
sions of Semantical Models. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2002-12

L. Moonen. Exploring Software Sys-
tems. Faculty of Natural Sciences, Math-
ematics, and Computer Science, UvA.
2002-13

J.I. van Hemert. Applying Evolutionary
Computation to Constraint Satisfaction
and Data Mining. Faculty of Mathemat-
ics and Natural Sciences, UL. 2002-14

S. Andova. Probabilistic Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL.
Faculty of Mathematics and Computer
Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Stor-
age for Video on Demand. Faculty
of Mathematics and Computer Science,
TU/e. 2003-01

M. de Jonge. To Reuse or To Be Reused:
Techniques for component composition
and construction. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations.

Faculty of Natural Sciences, Mathemat-
ics, and Computer Science, UvA. 2003-
03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Veri-
fication in Process Algebras with Data
and Timing. Faculty of Mathematics and
Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations of
Catalytic Reactions. Faculty of Math-
ematics and Computer Science, TU/e.
2003-06

M.E.M. Lijding . Real-time Scheduling
of Tertiary Storage. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process
Annotation – CoMPAs. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-08

D. Distefano. On Modelchecking the
Dynamics of Object-based Software: a
Foundational Approach. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2003-09

M.H. ter Beek. Team Automata – A For-
mal Approach to the Modeling of Col-
laboration Between System Components.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-10

D.J.P. Leijen. Theλ Abroad – A Func-
tional Approach to Software Compo-
nents. Faculty of Mathematics and Com-
puter Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios
for the Differencing Method. Faculty
of Mathematics and Computer Science,
TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive The-
orem Proving. Faculty of Mathematics
and Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Comput-
ing – Splicing and Membrane systems.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments. Fac-
ulty of Mathematics and Computer Sci-
ence and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduction
and Probabilistic Specification Formats.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2004-06

L. Cruz-Filipe . Constructive Real
Analysis: a Type-Theoretical Formaliza-
tion and Applications. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2004-07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary In-
vestigation of Fundamentals, Strategies,
and Business Applications. Faculty of
Technology Management, TU/e. 2004-
08

N. Goga. Control and Selection Tech-
niques for the Automated Testing of Re-
active Systems. Faculty of Mathematics
and Computer Science, TU/e. 2004-09

M. Niqui . Formalising Exact Arith-
metic: Representations, Algorithms and
Proofs. Faculty of Science, Mathematics
and Computer Science, RU. 2004-10

A. L öh. Exploring Generic Haskell.
Faculty of Mathematics and Computer
Science, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Al-
gorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril . Real-time Scheduling for
Media Processing Using Conditionally
Guaranteed Budgets. Faculty of Math-
ematics and Computer Science, TU/e.
2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences,
Division of Mathematics and Computer
Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-
Based Economics. Faculty of Technol-
ogy Management, TU/e. 2004-15

E.O. Dijk . Indoor Ultrasonic Position
Estimation Using a Single Base Station.
Faculty of Mathematics and Computer
Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verifica-
tion and Verified Distribution. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for Struc-
tured Documents. Faculty of Mathemat-
ics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quan-
titative Prediction of Quality Attributes
for Component-Based Software Archi-
tectures. Faculty of Mathematics and
Computer Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Super-
visory Machine Control by Predictive-
Reactive Scheduling. Faculty of Me-
chanical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support-. Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remod-
eling in Bone Tissue. Faculty of Biomed-
ical Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights
Control - Expression and Enforcement.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2005-
03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-
ulty of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2005-05

M.T. Ionita . Scenario-Based System Ar-
chitecting - A Systematic Approach to
Developing Future-Proof System Archi-
tectures. Faculty of Mathematics and
Computing Sciences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-07

I. Kurtev . Adaptability of Model Trans-
formations. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network

Reliability. Faculty of Science, UU.
2005-09

O. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engineer-
ing, TU/e. 2005-11

J. Eggermont. Data Mining using Ge-
netic Programming: Classification and
Symbolic Regression. Faculty of Mathe-
matics and Natural Sciences, UL. 2005-
12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verification
of Hybrid Systems using Simulation Re-
lations. Faculty of Science, Mathematics
and Computer Science, RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Science,
TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of
Probabilistic Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics and
Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju . Analysis and Transformation
of Source Code by Parsing and Rewrit-
ing. Faculty of Natural Sciences, Math-
ematics, and Computer Science, UvA.
2005-19

M.Valero Espada. Modal Abstraction
and Replication of Processes with Data.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2005-20

A. Dijkstra . Stepping through Haskell.
Faculty of Science, UU. 2005-21

Y.W. Law . Key management and link-
layer security of wireless sensor net-
works: energy-efficient attack and de-
fense. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2005-22

E. Dolstra. The Purely Functional Soft-
ware Deployment Model. Faculty of Sci-
ence, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Faculty
of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. For-
mal Specification and Analysis of Hybrid
Systems. Faculty of Mathematics and
Computer Science and Faculty of Me-
chanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications
of UML Models: Tool Support and Com-
positionality. Faculty of Mathematics
and Natural Sciences, UL. 2006-05

M. Hendriks . Model Checking Timed
Automata - Techniques and Applica-

tions. Faculty of Science, Mathematics
and Computer Science, RU. 2006-06

J. Ketema. Böhm-Like Trees for Rewrit-
ing. Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted verification of JML pro-
grams. Faculty of Science, Mathematics
and Computer Science, RU. 2006-08

B. Markvoort . Towards Hybrid Molec-
ular Simulations. Faculty of Biomedical
Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and Natu-
ral Sciences, UL. 2006-10

G. Russello. Separation and Adaptation
of Concerns in a Shared Data Space.
Faculty of Mathematics and Computer
Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Computer
Science, RU. 2006-12

B. Badban. Verification techniques for
Extensions of Equality Logic. Faculty of
Sciences, Division of Mathematics and
Computer Science, VUA. 2006-13

A.J. Mooij . Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2006-14

T. Krilavicius . Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2006-15

M.E. Warnier . Language Based Secu-
rity for Java and JML. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-16

V. Sundramoorthy. At Home In Service
Discovery. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2006-18

L.C.M. van Gool. Formalising Inter-
face Specifications. Faculty of Math-
ematics and Computer Science, TU/e.
2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Computer
Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Implemen-
tation and Composition. Faculty of
Mathematics and Natural Sciences, UL.
2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natural
Sciences, Mathematics, and Computer
Science, UvA. 2007-01

N.K. Kavaldjiev . A run-time reconfig-
urable Network-on-Chip for streaming
DSP applications. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2007-02

M. van Veelen. Considerations on Mod-
eling for Early Detection of Abnormali-
ties in Locally Autonomous Distributed
Systems. Faculty of Mathematics and
Computing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty
of Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-04

L. Brand án Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2007-06

M.W.A. Streppel. Multifunctional Geo-
metric Data Structures. Faculty of Math-
ematics and Computer Science, TU/e.
2007-07

N. Tr čka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Science,
TU/e. 2007-08

R. Brinkman . Searching in encrypted
data. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT.
2007-09

A. van Weelden. Putting types to good
use. Faculty of Science, Mathematics
and Computer Science, RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Processes.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2007-
11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs . What to do Next?: Analysing
and Optimising System Behaviour in
Time. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2007-13

C.F.J. Lange. Assessing and Improving
the Quality of Modeling: A Series of Em-
pirical Studies about the UML. Faculty

of Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Delivery.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science,UvA. 2007-
15

B.S. Graaf. Model-Driven Evolution of
Software Architecturest. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2007-16

A.H.J.Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty
of Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam . New Data Structures and
Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W.Pieters. La Volont́e Machinale: Un-
derstanding the Electronic Voting Con-
troversy. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automaton
Proofs in PVS. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-02

M. Bruntink . Renovation of Idiomatic
Crosscutting Concerns in Embedded
Systems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-03

A.M. Marin . An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2008-04

