
AFDEL I NG I NFORMAT !CA

stichting

mathematisch

centrum

(DEPARTI1ENT OF COMPUTER SC I ENCE)

H.B.M. JONKERS

ABSTRACT STORAGE STRUCTURES

Preprint

~
MC

IW 158/81 JANUARI

kruislaan 413 1098 SJ amsterdam

Plvlnted a;t .the Ma.thema:tlc.al Ce.ntJz.e, 413 Klw.1.6£.a.a.n, Am6.te/Ul.am.

The Ma.thema.Uc.al Centlr.e , 6ounded .the 11-.th 06 FebJw.aJr.y 1946, h, a. non
p11.on,i;t ln.6,t,ltu;t,lon aimlng a;t .the pll.Omo.tlon 06 puJLe ma.themaile1, a.nd -lt.6
a.ppU.catlon6. · 1.t h, iipon601t.ed by .the Ne.theJtl.a.nd6 Gove/l.nment .thMugh .the
Ne.theJci.a.n.d6 01r.ga.n-lzailon 601t. .the Adva.nc.ement 06 PUJt.e Reiiea.Jt.c.h (Z.W.O.).

1980 Mathematics subject classification: 68B15

ACM-Computing Reviews-category: 4.34

*)
Abstract storage structures

by

H.B.M. Jonkers

ABSTRACT

A novel model for the description of storage structures is presented.

It is based on the consideration that a storage structure is completely

characterized by two things: the collection of its access paths and a

relation which indicates whether two access paths access the same

substructuri~. The model, called a "structure", is abstract in the sense

that it is free of low level concepts such as pointers and garbage, while

at the same time it is general in that it allows the description of storage

structures with arbitrary sharing and circularities. Operations on

structures (such as creation and replacement) can be described very

naturally in terms of three primitive operations. These primitive

operations a.re defined using a special partial order, which turns the set

of all structures into a complete lattice.

KEY WORDS & PHRASES: storage structure, data structure, path, object,

sharing, circularity

*)This report will be subm;itted for publication elsewhere.

1

1. INTRODUCTION

The question what a "data structure" is has been a point of dispute

for several years. Though not ali powder smoke has drifted away yet, a

beginning of agreement can now be observed. A data structure is a class of

objects which is fully characterized by the operations which can be applied

to those objects. There are two aspects to this characterization: an

external and an internal aspect. The external aspect deals with the

question what the effect of the operations is. The concept of an "abstract

data type" [11], which is essentially a heterogeneous algebra [3], has been

introduced to model this aspect of a data structure. The internal aspect is

concerned with the question how the effect of the operations is

accomplished. This aspect is usually dealt with by choosing a

"representation" for the data structure and "implementing" each operation

in terms of the well-known operations on the representation. It is

generally agreed that the internal aspect of a data structure should be

hidden ("encapsulated" [16]) to the user.

The above agreement on what a data structure is does not carry over to

an other crucial question: How should data structures be described, or

"specified"? It is important, both to the user and to the implementer, that

a specification of a data structure describes only the external aspect of

the data structure. The meaning (in the semantical sense) of a

specification of a data structure must therefore be an abstract data type.

There are basically two ways to specify data structures (or abstract data

types, if you like) [12].

The first, and apparently the most attractive, is the axiomatic (or

"implicit") method [6, 7]. In this method the essential properties of the

operations are described through axioms. The major advantage of this method

is that it is not necessary to commit oneself to a representation for the

data structure. There are also two severe drawbacks, however. Apart from

very simple data structures, it is very difficult to construct complete and

consistent axiomatic specifications. Specifically data structures involving

"dynamic" and "shared" data, which are frequently encountered in practice,

are very hard to specify. Moreover, axiomatic specifications are usually

far from easy to comprehend.

2

The second way of specifying abstract data types is the "abstract

model" approach [1]. In this approach an abstract representation for the

data structure to be specified is chosen. The operations of the data

structure are then specified in terms of this representation. This method

clearly contrasts the axiomatic-method as to its advantages and

disadvantages. First of all, specifications are more easily constructed. If

the possibility of dynamic creation and sharing is already included in the

abstract representations chosen, data structures featuring these properties

are readily specified. The specifications also tend to be more readable

than axiomatic specifications. The salient disadvantage, of course, is the

fact that specifications are not re9resentation-independent. If one is not

very careful, details of the representation chosen may permeate into the

external world and lead to an "overspecification" of the data structure.

(Contrast this with the problem of writing complete axiomatic

specifications.)

It is my firm belief that for realistic applications the future lies

in the abstract model approach. A precondition is, however, that the

problem of representation-dependence is solved satisfactorily. The key to a

solution of this problem lies in the observation that the choice of a

representation need not depend on efficiency considerations. The only

criteria in choosing a representation should be the clarity and

naturalness of the specification. This implies first of all that the

representations themselves must be free of implementation detail, or in

other words, they should be as abstract as possible. In particular they

should not include such things as pointers, fixed size storage cells, etc ••

On the other hand, the possibility of dynamic creation and sharing should

be inherent (otherwise many applications are ruled out). If we had such

abstract representations at our disposal, data structures could be

specified relatively representation-independent. The sole purpose of the

representation would be to increase the comprehensibility of the

specification, and not to suggest a certain implementation.

In this paper representations will be described which are believed to

satisfy the requirements mentioned above. These representations can be

viewed as abstract "storage structures". They can be used as the basis for

a specification method, which allows the specification of realistic data

structures in a comprehensible and unambiguous way, without undue effort

and at various levels of abstraction. Their use is not restricted to

specification languages, however. It is envisaged that they can

successfully be used in definitions of programming languages as well,

especially in definitions of those progranming languages which feature

sharing ("aliasing") and dynamic creation of data.

3

The representations, which will be called "structures", are introduced

in the next section, together with some related concepts. In Section 3

three primitive operations which can be applied to structures are defined.

For their definition a partial order, which turns the set of all structures

into a complete lattice, is introduced first.

2. STRUCTURES

The purpose of this section is to define the concept of a "structure".

A structure can be viewed as an abstract "storage structure", which can be

"accessed" through special keys called "accessors". Accessors will be

considered as primitive concepts, usually denoted by strings of letters and

digits. By repeatedly applying accessors to a structure one can follow an

"access path".

An accessor is a primitive concept.

A is the set of all accessors.

A* is the set of all finite sequences of accessors.

A+ is the set of all finite nonempty sequences of accessors

A is the empty sequence of accessors.

The sequence A1 , ••• , An of accessors will be denoted as A1 ••• An.

The following definition of the concept of a structure is based on the

consideration that a (storage) structure is completely characterized by two

4

things: First, the collection of all of its access paths and second, a

relation which indicates whether two access paths access the same

"substructure". (Notice that the latter is necessarily an equivalence

relation.) Taking into account the properties of access paths as well we

arrive at the following definition:

A structure Sis a pair <P, =>, where Pc A* and_ is an equivalence

relation on P such that

1. A E P.

2. PAE P "'°'PEP.

3. PAE PAP: Q .,o. QA EPA PA - QA.

APE P will be called a path of S.

(PEA*,AEA)

(P, Q E P, A EA)

An XE Pl=, i.e. an equivalence class of=, will be called an object

of s.

Sis the set of all structures.

Property 1 states that the empty sequence of accessors is a path of S

(hence P ~~).Property 2 implies that any head piece of a path of Sis

also a path of S. Property 3 states that equivalent paths have equivalent

continuations. This property of an equivalence relation is known as "right

invariance". The paths of a structure can be viewed as "names" for the

objects which they represent. As will be seen later, the concept of an

object as introduced above is closely related to the intuitive concept of

an object.

There are three trivial examples of a structure, which will be called

the "empty structure", the "convergent structure" and the "divergent

structure" respectively:

i = <{A}, {(A, A)}> is a structure called the empty structure.

TC= <A*, A* x A*> is a structure called the convergent structure.

TD= <A*, {(P, P) IP EA*}> is a structure called the divergent

structure.

Notice that i and Tc contain only a single object, while TD contains an

infinite number of objects (i.e. if A I~, which we will from now on

assume). Other examples of structures will be discussed below.

Example 1

Let S = <P, =>, where

P = {A, a, b, ba},

- = { (A, A), (a, a), (a, ba), (ba, a), (ba, ba), (b, b) },

then Sis a structure containing the following objects:

Pl== {{A}, {a, ba}, {b}}.

Notice that the paths a and ba are "aliases" for one and the same object.

End of Example

Before continuing some notations have to be introduced. First, if

5

S = <P, => is a structure, then PS and =swill denote P and= respectively.

Second, if Xis an object of a structures and Pis a path of S such that

PE X, then, if no confusion can arise, P will denote X. This convention

fits in with the common mathematical practice of denoting equivalence

classes by their representatives. Definitions and lemmas which use this

notation for objects must be proved to be independent of the choice of the

representatives for the objects.

6

The definition of a structure does not preclude that structures use an

infinite number of accessors or have an infinite number of objects.

Structures that use only a finite number of accessors and have a finite

number of objects constitute an important subclass. The structures in this

subclass will be called the "finite structures".

Let S be a structure.

The accessor set of Sis defined as:

Sis called finite iff the accessor set and the set of objects of S

are finite; otherwise Sis called infinite.

The empty structure .1 is an example of a finite structure, and the

divergent structure TD is an example of an infinite structure. The

convergent structure TC is infinite if and only if A is infinite.

Finite structures can be pictured in a systematic way as follows:

For each object P

I Draw a circle cp.
For each pair of objects (P, Q)

and each accessor A with PAE Q

I Draw an arrow labeled by A from cp to CQ.
Label CA by A.

Notice that this drawing algorithm is independent of the choice of the

paths for the objects and that it would never terminate if applied to an

infinite structure. It is easy to see that the picture thus associated to

a finite structure is unique.

Example 2

The empty structure i has the following picture:

A

0

Fig. 1

If A= {a, b}, then the picture of the convergent structure T is:
C

Fig. 2

If we try the impossible and apply the drawing algorithm to the divergent

structure T0 with A= {a, b}, then we get:

I
I

I

\

\
\

\
\
\

I
I

\
\

\

I
I

\

\

A

Fig. 3

I
I

I
\

\

·,
I

\
\
\

I
I

\
\

I
I

I

\
\

7

8

The picture of the structure S from Example 1 is:

"

Fig. 4

End of Example

The above may raise the question what the difference is between a

structure and a rooted graph with labeled edges. At first sight there may

not seem to be any difference, yet there is. There are two crucial

differences. First, the concept of "unreachability" is meaningless in a

structure. Each object has at least one access path. Second, objects do not

have a separate identity. An object simply is the collection of its access

paths. These two facts will be seen to have a number of important

consequences.

An other important observation is that the paths of a structure should

not be considered as "pointers": Though a path can be viewed as a name for

an object, paths are not objects themselves. Instead, the arrows in the

picture of a structure should be regarded as denoting physical inclusion.

Since arbitrary kinds of physical inclusion (such as sharing and

circularity) can be modeled in a structure, the need to introduce pointers

will nowhere arise. The concept of physical inclusion will be made more

precise by introducing three relations on the set of objects of a

structure:

9

Let S be a structure.

Let P and Q be objects of S.

Pis a direct component of Q iff there is an A EA such that QA E P.

A+ -Pis a component of Q iff there is an RE such that QR E P.

Pis contained in Q iff there is an RE A* such that QR E P.

Check that these definitions are independent of the choice of P and Q. The

relations "be a component of" and "be contained in" are both transitive,

while the latter is also reflexive. Neither of them need be an (irreflexive

or reflexive) partial order (see Example 3). The meaning of the fact that

an object is "cyclic" can be defined as follows:

!An object of a structure is cyclic iff it is a component of itself.

It is easy to see that cyclic objects contain an infinite number of paths.

Example 3

Consider the structure S of Figure 5.

a

Fig. 5

10

The objects of Sare:

A = {A},

a= {a},

b = {ab, b},

aa = {P(ba)n n :2: 0 A p E {aa, abba, bba}},

bb = {P(ab)n n :2: 0 A p E {aab, abb, bb} }.

The three inclusion relations which are defined between these objects can

be described schematically as follows (the plus sign indicates where the

relation holds):

Pis a direct component of Q:

p A a baabb

A

a +

b + +

aa + - +

bb + +

p is a component of Q:

--A a b aa bb

A

a + -
b + + -
aa + + + + +

bb + + + + +

11

p is contained in Q:

--A a b aa bb

A +

a + +

b + + +

aa + + + + +

bb + + + + +

The relation "be a component of" is not an irreflexive partial order here,

because it is not irreflexive: aa is a component of itself. The relation

"be contained in" is not a reflexive partial order because it is not

antisymmetric: aa is contained in bb and bb is contained in aa, but

aa ~ bb. This, of course, is caused by the fact that aa and bb are cyclic

objects.

End of Example

The above example (and especially the expressions for the objects aa

and bb) suggests that there is a relation between structures and regular

languages. Indeed, the objects of finite structures are regular languages:

LEMMA 1

Let S be a finite structure, then each object of Sis a regular

language over A.

This can be understood intuitively by considering the picture of a finite

structure as the state diagram of a finite state machine and recalling the

correspondence between finite state machines and regular languages. A

straightforward proof can be obtained by using the fact that each

equivalence class of a right-invariant equivalence relation of finite index

is a regular language [8]. Another way to prove Lemma 1 is to use the

relation between left-linear grammars and regular languages. (Check that a

left-linear grammar, where each nonterminal symbol "produces" an object,

can be associated to each structure.) Due to Lemma 1 a regular expression

12

notation can now be used for the objects of all finite structures.

Example 4

The objects of the structures of Figures 1, 2, 4 and 5 can be denoted by

regular expressions as follows:

Fig. 1: A= A.

Fig. 2: A= (a+b)*.

Fig. 4: A= A,

a= a+ba,

b = b.

Fig. 5: A= A,

a= a,

b = ab+b,

aa = (aa+abba+bba) (ba)*,

bb = (aab+abb+bb) (ab)*.

End of Example

The concept of an object as we introduced it is closely related to the

concept of a "dynamic object", as it is normally conceived in computer

science. Dynamic objects are usually considered as "instances" of "values".

Two dynamic objects may be instances of the same value and still be

different. In mathematical models for dynamic objects this problem is

usually solved by associating an "identity", which is an explicit value, to

dynamic objects. As stated before, objects in structures do not have an

explicit identity. It is interesting to see how the identity problem for

them is solved. The objects in a structure can be viewed as instances of

structures (so "structures" correspond to the "values" of dynamic objects).

This is made more precise by the following definition of the "structure"

of an object:

Let S be a structure.

Let P be an object of S.

13

The structure of P, which will be denoted as S[P], is the structure T

which is defined as follows:

The proof that Tis indeed a structure and that Tis independent of the

choice of Pis simple. Two different objects can have the same structure

(see Example 5). Hence they can be viewed as instances of that structure.

Example 5

Consider the structure S of Figure 6.

A

Fig. 6

In this figure we have (using regular expression notation):

A= A,

a= a,

b = b,

aa = aa+aba+ba+bba,

bb = ab+bb.

14

The structure of a is:

s[i] = <Po, =o>, where

P0 = {Q EA* I aQ E PS}= {A, a, ba, b},

Q =o R <=:► aQ - aR, s

hence Pol=o = {{A}, {a, ba}, {b}}.

The structurei of b is:

P1 = {Q EA* I bQ E PS}= {A, a, ba, b},

Q = 1 R <a► bQ - bR, s

hence P1l=1 = {{A}, {a, ba}, {b}}.

So a and b have the same structure (the structure of Figure 4).

End of Examp1e

Example 6

Consider the structure S of Figure 7.

Fig. 7

(Q, R E Po)

15

All objects have the same structure:

s[AJ = s[b] = s[bb] = s.

End of Example

3. OPERATIONS ON STRUCTURES

In this section three primitive operations on structures will be

defined. Th1~y constitute a sufficient set in the sense that all other

useful operations on structures can be defined in terms of them. For their

definition a special partial order on the set S of all structures will be

introduced first.

The partial order Con Sis defined as follows:

sCT<=>P cP A
S T

(S, T E S)

The fact that C is indeed a partial order on Sis trivial. In intuitive

terms the fact that SC T means that S contains less paths than T and that

in S less paths are "identified" than in T.

16

Example 7

The structun:!s of Figure 8 form an ascending sequence:

A

A

..l = 0 C C C

A

a b C C

a

Fig. 8

End of ExampJe

Example 8

If we define the partial order Co on Sas:

(S, T E S)

then the fact. that S Co T means that S is a "partial expansion" of T, as

illustrated in Figure 9.

"

a

" co
b

b

" co
a

a

" cx==:o
b

. Fig. 9

End of Example

Notice that the partial orders C and Co are much harder to describe in

terms of graphs.

17

The relation C is more than just a partial order: It turns S into a

complate lattice. (A complete lattice is a partially ordered set where each

subset has a greatest lower bound.) This is stated in:

LEMMA 2

<S, C> is a complete lattice.

18

The proof of Lemma 2 is simple. First prove that, if Sand Tare

structures, <P n P, = n =>is also a structure. It is then easy to
S T S T

prove that the greatest lower bound of a set T of structures is given by

<n T p In T =>,where n T p TE T TE T TE .T
= A* and n = = A* X A* if T = ~

TET T
Notice that the empty structure.Land the convergent structure TC are the

"bottom" and "top" of the complete lattice <S, C>, i.e • .L C S C T for each
C

SES. A simple theorem from lattice theory states that apart from a

greatest lower bound, each subset also has a least upper bound [2]. The

following definitions are therefore in order:

For each set T of structures, the structures inf T and sup Tare

defined as follows:

inf T = greatest lower bound of T with respect to C,

sup T = least upper bound of T with respect to C.

The above will enable us to define the result of operations on structures

in terms of inf's and sup's of arbitrary sets of structures without having

to worry over the existence of the inf 1 s and sup's.

19

Example 9

If s = and T =

A
a

a
then inf{S, T} = and sup{S, T} = A

a b

Fig. 10

End of Example

Before defining the primitive operations on structures a remark should

be made about an other interesting partial order on S. The definition of L

can be written as:

(S, T E S)

If we reverse the implication sign in this definition we still have a

partial order, call it Lt:

(S, T E S)

Intuitively S Lt T means that S contains less paths than T and that in S

less paths are "distinguished" than in T. The partial order Lt has both a

bottom (the empty structure~) and a top (the divergent structure T0). Yet,

in contrast with L, it does not turn S into a complete lattice (see

Example 10) ..

20

Example 10

Consider the structures in Figure 11.

A A

S: T:

A

V: W: a C

Fig. 11

Suppose Sand T have a greatest lower bound X with respect to C1. Since

V L1 Sand V L1 T, we have that V C1 X. This implies that a, c € PX and,

since a tv c, also that a tx c. W C1 Sand W C1 T imply that W C1 x, hence

b € PX. X C1 Sand a =s b imply that a =x b. Analogously, X L1 T and b =Tc

imply that b =x c. Using the transitivity of =x we get a =x c, which is a

contradiction. Hence <S, L1> is not a complete lattice.

End of Example

All operations which will be introduced below are considered as

partial operators on structures. They may have a number of parameters

(usually objects in the structure to which they are applied, or accessors).

The result of applying the operation F with parameters x1 , ••• , Xm to the

structure Swill be denoted as {S}F(x1 , ••• , Xm). The notation

F(X1 , ••• , Xm) will be used to denote the (partial) operator

ASES {S}F(X1 , ••• , Xm). Concatenation is used to denote functional

composition of operators, e.g. F(x1 , ••• , Xm)G(Y1 , ••• , Yn) denotes

ASES {{S}F(X1 , ••• , Xm)}G(Y1, ••• , Yn).

21

The first primitive operation on structures which will be introduced

amounts to the "creation" of an object in a structure. The created object

has i as its structure and is added as a direct component to a given

object. The operation, called CRE, has two parameters P and A.Pis an

object in the struct~re S to which CRE is applied and A is an accessor such

that PA is not a path of S. The effect of CRE(P, A) is pictured in

Figure 12.

A A

p CRE(P,Al

0

Fig. 12

The definition of CRE reads:

Let S be a structure. If Pis an object of Sand A€ A such that

PA~ P5 , then {S}CRE(P, A) is the following structure:

It should be clear that CRE(P, A) does what Figure 12 suggests. The fact

that "less" in the partial order C implies "less identification" guarantees

that a new object is created and not some old object is taken as the new

component of P.

22

Example 11

A binary tree! can be generated from the empty structure by a sequence of

operations such as:

{.L}CRE(I, a)CRE(A, b)CRE(b, a)CRE(ba, a)CRE(ba, b).

The intermediate and final results of this sequence of operations are

pictured in Figure 13.

A A A /\ A A

0 ()

d a

Fig. 13

End of ExampJe

The second primitive operation on structures is like CRE, except that

it adds an already existing object as a direct component to an object. The

operation, called ADD, takes three parameters P, A and Q. P and Qare

objects in the structure S to which ADD is applied and A is an accessor

such that PA is not a path of S. The effect of ADD(P, A, Q} is pictured in

Figure 14.

23

A A

p
ADD(P,A,Ql

p

0
Q

0 ~
Fig. 14

The definition of ADD is given below:

Let S be a structure. If P and Qare objects of Sand A EA such that

PA jc'. P8 , then {S}ADD(P, A, Q) is the following structure:

inf{T E S I S C: T, V R E PS [R - 8 P => RA E PT A RA -T Q]}.

The greatest. lower bound of the same set of structures as in the definition

of CRE is taken here, except that the set is restricted to those structures

in which the paths RA with R =s P and Qare identified. This guarantees

that not a new object is created, but that Q is added as a new component to

P. Notice that, in contrast with CRE, it is not simple to define ADD

without the use of the partial order C:. This is due to the fact that ADD

may introduce circularities in a structure.

24

Example 12

Let S be the structure of Figure 15,

A

Fig. 15

then {S}ADD(b, a, A) is the structure of Figure 16.

A

a b

Fig. 16

End of Example

The third and final primitive operation can be viewed somehow as the

(right) inverse of the other two primitive operations. It amounts to

removing a direct component of an object. The operation, called REM, has

two parameters P and A.Pis an object in the structure S to which REM is

applied and A is an accessor such that PA is a path of S. Figure 17

pictures the effect of REM(P, A).

A A

REM{P,A) p

0

F~g. 17

The definition of REM is:

Let S be a structure. If Pis an object of Sand A EA such that

PAE PS, then {S}REM(P, A) is the following strcture:

25

Notice that, due to the fact that objects may be shared, REM(P, A) need not

remove the object PA from a structure. That is why this object is

represented by a dotted circle in the right part of Figure 17. (Strictly

speaking the path name P should also be dotted, because the path P (but not

the object P) may be removed from the structure by REM(P, A).) In general,

REM(P, A) may reduce the number of objects in a structure by a number

varying from zero to all but one (see Example 13).

26

Example 13

Consider the structure S of Figure 18.

I\

Fig. 18

The effect of REM(a, a) on Sis:

I\

Fig. 19

Notice: the number of objects has not changed. If REM(ab, b) is applied

subsequently to the structure of Figure 19, we get:

27

Fig. 20

Notice: two objects have "vanished".

End of Example

When choosing structures as the basis of the definition of a

specification or programming language, the above three primitive operations

are sufficient in the sense that all more complex operations can be

expressed in terms of them. In order to illustrate this we shall sketch

briefly how the meaning of language constructs can be described in terms of

the primitive operations. The idea is to represent all values as structures

(and their "instances" as objects of structures). If we consider the

variables x1 , ••• , Xn of an algorithm as accessors, then the "state" of the

algorithm can be represented by a structure as pictured in Figure 21.

A

Fig. 21

28

In this figure the variables x1 , ••• , Xn of the algorithm are represented

by the paths loc.x1 , ••• , loc.Xn (dots are used to separate accessors

here). The values of the variables are {the structures of) the objects

loc.x1 , ••• , loc.Xn. Since the latter objects may share components, things

such as "aliasing" can readily be described. The component loc of the state

constitutes what might be called the "local environment". Apart from a

local effect an algorithm may also have a global effect ("side effect").

This is modeled by the component glo (the "global environment") of the

state, which is supposed to contain all information global to the

algorithm. Since glo and loc may share components, local operations with

global side effects can be described very naturally this way.

The meaning of a "statement" of an algorithm can now be defined as a

mapping from states on states, where a state is a structure as in

Figure 21. As an example consider the assignment statement. This statement

might have the form "P.A := Q", where A is an accessor and PA and Qare

paths within the local environment. (The statement should be read as

"replace the A-component of P by Q".) The meaning of the assignment

statement could be defined as:

M(P.A := Q) = ADD(A, p, loc.P)ADD(A, q, loc.Q)

REM(p, A)ADD(p, A, q)

REM(A, p)REM(A, q).

Notice that the following definition would not be correct:

M(P.A := Q) = REM(loc.P, A)ADD(loc.P, A, loc.Q).

The reason is that after REM(loc.P, A) both the object loc.Q and the path

loc.P need no longer exist. The meaning of language constructs other than

the assignment statement can be described in a similar way. For more

details about this the reader is referred to [9].

29

4. CONCLUSION

In this paper a novel method of characterizing storage structures was

discussed. The concept of a "structure" was introduced, which is basically

a simple mathematical model of the access properties of a storage

structure. Using this model storage structures with arbitrary sharing and

circularities can be characterized without the need to introduce pointers.

Creation and replacement become very natural operations which cannot

produce any "garbage", since the concept of unreachability is nonexistent

in a structure. Due to the fact that structures are general and yet free of

such low level concepts as pointers and garbage, they lend themselves very

well as the basis of definitions of realistic specification and programming

languages. This is illustrated in [9], in which a specification language

for abstract data types is discussed, which is used (in a somewhat informal

way) in [10].

The concept of a structure as defined in this paper is believed to

characterize storage structures in a way more abstract than other methods.

In order to support this assertion let us give a short comparison of

structures with some of these other methods. "Vienna objects" [14] are

basically trees with labeled branches. Sharing and circularity can only be

modeled by introducing a pointer concept. This is done by allowing

"composite selectors" (which correspond to "paths") to be used as objects.

"Graphs" [13] were already discussed in Section 2. Graphs are easily seen

to be less abstract than structures, because each structure corresponds to

many graphs. Also, the unnatural choice of an already existing node as the

new node when creating a node in a graph is not necessary in a structure.

"Relational objects" [5] are set-theoretic models of storage structures.

They are built from atomic values using set and tuple constructors.

Relational objects are more general than graphs (each graph can be

described as a relational object), but they inherit many of the

disadvantages of graphs. E.g., sharing can only be modeled by representing

objects in some way as primitive values (which correspond to the nodes of a

graph). The programming language SETL [4] even has a special atomic data

type for this purpose. A more comprehensive comparison of structures with

other methods of characterizing storage structures can be found in [9].

30

REFERENCES

V

[1] BERZINS, V.A., Abstract Model Specifications for Data Abstractions,

Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge,

Massachusetts (1979) •

[2] BIRKHOFF', G., Lattice Theory, American Mathematical Society Colloquium

Publications, Vol. XXV, American Mathematical Society,

Providence, Rhode Island (1967).

[3] BIRKHOFF', G. & LIPSON, J.D., Heterogeneous Algebras, Journal of

Corr~inatorial Theory 8, 115-133 (1970).

[4] DEWAR, R.B.K., The SETL Programming Language, To appear.

[5] EARLEY, J., Relational Level Data Structures for Programming

Languages, Acta Informatica 2, 293-309 (1973).

[6] GOGUEN, J.A., THATCHER, J.W. & WAGNER, E.G., An Initial Algebra

Approach to the Specification, Correctness and Implementation of

Abstract Data Types, In [15].

[7] GUTTAG, J.V. & HORNING, J.J., The Algebraic Specification of Abstract

Data Types, Acta Informatica 10, 27-52 (1978).

[8] HOPCROF'r, J.E. & ULLMAN, J.D., Introduction to Automata Theory,

Languages, and Computation, Addison-Wesley Publishing Company,

Reading, Massachusetts (1979).

[9] JONKERS,. H.B.M., Abstract Storage Structures and the Specification of

Abstract Data Types, To appear, Mathematical Centre, Amsterdam.

[10] JONKERS, H.B.M., Abstraction, Specification and Implementation

Techniques in the Design and Classification of Algorithms, with

an Application to Storage Management and Garbage Collection,

Ph.D. Thesis, To appear, Mathematical Centre, Amsterdam.

31

[11] LISKOV, B. & ZILLES, S., Programming with Abstract Data Types,

Proceedings of a Symposium on Very High Level Languages, SIGPLAN

Notices 9, No. 4, 50-59 (1974).

[12] LISKOV, B. & ZILLES, S., Specification Techniques for Data

Abstractions, IEEE Transactions on Software Engineering SE-1,

7-19 (1975).

[13] MAJSTER, M.E., Extended Directed Graphs, a Formalism for Structured

Data and Data Structures, Acta Informatica 8, 37-59 (1977).

[14] WEGNER, P., The Vienna Definition Language, Computing Surveys 4, 5-63

(1972).

[15] YEH, R. (Ed.), Current Trends in Programming Methodology, Vol. IV,

Prentice Hall, Inc., Englewood Cliffs, New Yersey (1978).

[16] ZILLES, s., Procedural Encapsulation: A Linguistic Protection

Technique, Proceedings of an ACM SIGPLAN-SIGOPS Interface

Meeting, SIGPLAN Notices 8, No. 9, 140-146 (1973).

