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*) 
Abstract storage structures 

by 

H.B.M. Jonkers 

ABSTRACT 

A novel model for the description of storage structures is presented. 

It is based on the consideration that a storage structure is completely 

characterized by two things: the collection of its access paths and a 

relation which indicates whether two access paths access the same 

substructuri~. The model, called a "structure", is abstract in the sense 

that it is free of low level concepts such as pointers and garbage, while 

at the same time it is general in that it allows the description of storage 

structures with arbitrary sharing and circularities. Operations on 

structures (such as creation and replacement) can be described very 

naturally in terms of three primitive operations. These primitive 

operations a.re defined using a special partial order, which turns the set 

of all structures into a complete lattice. 

KEY WORDS & PHRASES: storage structure, data structure, path, object, 

sharing, circularity 

*)This report will be subm;itted for publication elsewhere. 
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1. INTRODUCTION 

The question what a "data structure" is has been a point of dispute 

for several years. Though not ali powder smoke has drifted away yet, a 

beginning of agreement can now be observed. A data structure is a class of 

objects which is fully characterized by the operations which can be applied 

to those objects. There are two aspects to this characterization: an 

external and an internal aspect. The external aspect deals with the 

question what the effect of the operations is. The concept of an "abstract 

data type" [11], which is essentially a heterogeneous algebra [3], has been 

introduced to model this aspect of a data structure. The internal aspect is 

concerned with the question how the effect of the operations is 

accomplished. This aspect is usually dealt with by choosing a 

"representation" for the data structure and "implementing" each operation 

in terms of the well-known operations on the representation. It is 

generally agreed that the internal aspect of a data structure should be 

hidden ("encapsulated" [16]) to the user. 

The above agreement on what a data structure is does not carry over to 

an other crucial question: How should data structures be described, or 

"specified"? It is important, both to the user and to the implementer, that 

a specification of a data structure describes only the external aspect of 

the data structure. The meaning (in the semantical sense) of a 

specification of a data structure must therefore be an abstract data type. 

There are basically two ways to specify data structures (or abstract data 

types, if you like) [12]. 

The first, and apparently the most attractive, is the axiomatic (or 

"implicit") method [6, 7]. In this method the essential properties of the 

operations are described through axioms. The major advantage of this method 

is that it is not necessary to commit oneself to a representation for the 

data structure. There are also two severe drawbacks, however. Apart from 

very simple data structures, it is very difficult to construct complete and 

consistent axiomatic specifications. Specifically data structures involving 

"dynamic" and "shared" data, which are frequently encountered in practice, 

are very hard to specify. Moreover, axiomatic specifications are usually 

far from easy to comprehend. 
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The second way of specifying abstract data types is the "abstract 

model" approach [1]. In this approach an abstract representation for the 

data structure to be specified is chosen. The operations of the data 

structure are then specified in terms of this representation. This method 

clearly contrasts the axiomatic-method as to its advantages and 

disadvantages. First of all, specifications are more easily constructed. If 

the possibility of dynamic creation and sharing is already included in the 

abstract representations chosen, data structures featuring these properties 

are readily specified. The specifications also tend to be more readable 

than axiomatic specifications. The salient disadvantage, of course, is the 

fact that specifications are not re9resentation-independent. If one is not 

very careful, details of the representation chosen may permeate into the 

external world and lead to an "overspecification" of the data structure. 

(Contrast this with the problem of writing complete axiomatic 

specifications.) 

It is my firm belief that for realistic applications the future lies 

in the abstract model approach. A precondition is, however, that the 

problem of representation-dependence is solved satisfactorily. The key to a 

solution of this problem lies in the observation that the choice of a 

representation need not depend on efficiency considerations. The only 

criteria in choosing a representation should be the clarity and 

naturalness of the specification. This implies first of all that the 

representations themselves must be free of implementation detail, or in 

other words, they should be as abstract as possible. In particular they 

should not include such things as pointers, fixed size storage cells, etc •• 

On the other hand, the possibility of dynamic creation and sharing should 

be inherent (otherwise many applications are ruled out). If we had such 

abstract representations at our disposal, data structures could be 

specified relatively representation-independent. The sole purpose of the 

representation would be to increase the comprehensibility of the 

specification, and not to suggest a certain implementation. 

In this paper representations will be described which are believed to 

satisfy the requirements mentioned above. These representations can be 

viewed as abstract "storage structures". They can be used as the basis for 

a specification method, which allows the specification of realistic data 



structures in a comprehensible and unambiguous way, without undue effort 

and at various levels of abstraction. Their use is not restricted to 

specification languages, however. It is envisaged that they can 

successfully be used in definitions of programming languages as well, 

especially in definitions of those progranming languages which feature 

sharing ("aliasing") and dynamic creation of data. 
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The representations, which will be called "structures", are introduced 

in the next section, together with some related concepts. In Section 3 

three primitive operations which can be applied to structures are defined. 

For their definition a partial order, which turns the set of all structures 

into a complete lattice, is introduced first. 

2. STRUCTURES 

The purpose of this section is to define the concept of a "structure". 

A structure can be viewed as an abstract "storage structure", which can be 

"accessed" through special keys called "accessors". Accessors will be 

considered as primitive concepts, usually denoted by strings of letters and 

digits. By repeatedly applying accessors to a structure one can follow an 

"access path". 

An accessor is a primitive concept. 

A is the set of all accessors. 

A* is the set of all finite sequences of accessors. 

A+ is the set of all finite nonempty sequences of accessors 

A is the empty sequence of accessors. 

The sequence A1 , ••• , An of accessors will be denoted as A1 ••• An. 

The following definition of the concept of a structure is based on the 

consideration that a (storage) structure is completely characterized by two 
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things: First, the collection of all of its access paths and second, a 

relation which indicates whether two access paths access the same 

"substructure". (Notice that the latter is necessarily an equivalence 

relation.) Taking into account the properties of access paths as well we 

arrive at the following definition: 

A structure Sis a pair <P, =>, where Pc A* and_ is an equivalence 

relation on P such that 

1. A E P. 

2. PAE P "'°'PEP. 

3. PAE PAP: Q .,o. QA EPA PA - QA. 

APE P will be called a path of S. 

(PEA*,AEA) 

(P, Q E P, A EA) 

An XE Pl=, i.e. an equivalence class of=, will be called an object 

of s. 

Sis the set of all structures. 

Property 1 states that the empty sequence of accessors is a path of S 

(hence P ~~).Property 2 implies that any head piece of a path of Sis 

also a path of S. Property 3 states that equivalent paths have equivalent 

continuations. This property of an equivalence relation is known as "right

invariance". The paths of a structure can be viewed as "names" for the 

objects which they represent. As will be seen later, the concept of an 

object as introduced above is closely related to the intuitive concept of 

an object. 

There are three trivial examples of a structure, which will be called 

the "empty structure", the "convergent structure" and the "divergent 

structure" respectively: 



i = <{A}, {(A, A)}> is a structure called the empty structure. 

TC= <A*, A* x A*> is a structure called the convergent structure. 

TD= <A*, {(P, P) IP EA*}> is a structure called the divergent 

structure. 

Notice that i and Tc contain only a single object, while TD contains an 

infinite number of objects (i.e. if A I~, which we will from now on 

assume). Other examples of structures will be discussed below. 

Example 1 

Let S = <P, =>, where 

P = {A, a, b, ba}, 

- = { (A, A), (a, a), (a, ba), (ba, a), (ba, ba), (b, b) }, 

then Sis a structure containing the following objects: 

Pl== {{A}, {a, ba}, {b}}. 

Notice that the paths a and ba are "aliases" for one and the same object. 

End of Example 

Before continuing some notations have to be introduced. First, if 
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S = <P, => is a structure, then PS and =swill denote P and= respectively. 

Second, if Xis an object of a structures and Pis a path of S such that 

PE X, then, if no confusion can arise, P will denote X. This convention 

fits in with the common mathematical practice of denoting equivalence 

classes by their representatives. Definitions and lemmas which use this 

notation for objects must be proved to be independent of the choice of the 

representatives for the objects. 
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The definition of a structure does not preclude that structures use an 

infinite number of accessors or have an infinite number of objects. 

Structures that use only a finite number of accessors and have a finite 

number of objects constitute an important subclass. The structures in this 

subclass will be called the "finite structures". 

Let S be a structure. 

The accessor set of Sis defined as: 

Sis called finite iff the accessor set and the set of objects of S 

are finite; otherwise Sis called infinite. 

The empty structure .1 is an example of a finite structure, and the 

divergent structure TD is an example of an infinite structure. The 

convergent structure TC is infinite if and only if A is infinite. 

Finite structures can be pictured in a systematic way as follows: 

For each object P 

I Draw a circle cp. 
For each pair of objects (P, Q) 

and each accessor A with PAE Q 

I Draw an arrow labeled by A from cp to CQ. 
Label CA by A. 

Notice that this drawing algorithm is independent of the choice of the 

paths for the objects and that it would never terminate if applied to an 

infinite structure. It is easy to see that the picture thus associated to 

a finite structure is unique. 



Example 2 

The empty structure i has the following picture: 

A 

0 

Fig. 1 

If A= {a, b}, then the picture of the convergent structure T is: 
C 

Fig. 2 

If we try the impossible and apply the drawing algorithm to the divergent 

structure T0 with A= {a, b}, then we get: 
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The picture of the structure S from Example 1 is: 

" 

Fig. 4 

End of Example 

The above may raise the question what the difference is between a 

structure and a rooted graph with labeled edges. At first sight there may 

not seem to be any difference, yet there is. There are two crucial 

differences. First, the concept of "unreachability" is meaningless in a 

structure. Each object has at least one access path. Second, objects do not 

have a separate identity. An object simply is the collection of its access 

paths. These two facts will be seen to have a number of important 

consequences. 

An other important observation is that the paths of a structure should 

not be considered as "pointers": Though a path can be viewed as a name for 

an object, paths are not objects themselves. Instead, the arrows in the 

picture of a structure should be regarded as denoting physical inclusion. 

Since arbitrary kinds of physical inclusion (such as sharing and 

circularity) can be modeled in a structure, the need to introduce pointers 

will nowhere arise. The concept of physical inclusion will be made more 

precise by introducing three relations on the set of objects of a 

structure: 
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Let S be a structure. 

Let P and Q be objects of S. 

Pis a direct component of Q iff there is an A EA such that QA E P. 

A+ -Pis a component of Q iff there is an RE such that QR E P. 

Pis contained in Q iff there is an RE A* such that QR E P. 

Check that these definitions are independent of the choice of P and Q. The 

relations "be a component of" and "be contained in" are both transitive, 

while the latter is also reflexive. Neither of them need be an (irreflexive 

or reflexive) partial order (see Example 3). The meaning of the fact that 

an object is "cyclic" can be defined as follows: 

!An object of a structure is cyclic iff it is a component of itself. 

It is easy to see that cyclic objects contain an infinite number of paths. 

Example 3 

Consider the structure S of Figure 5. 

a 

Fig. 5 
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The objects of Sare: 

A = {A}, 

a= {a}, 

b = {ab, b}, 

aa = {P(ba)n n :2: 0 A p E {aa, abba, bba}}, 

bb = {P(ab)n n :2: 0 A p E {aab, abb, bb} }. 

The three inclusion relations which are defined between these objects can 

be described schematically as follows (the plus sign indicates where the 

relation holds): 

Pis a direct component of Q: 

p A a baabb 

A 

a + 

b + + 

aa + - + 

bb + + 

p is a component of Q: 

--A a b aa bb 

A 

a + -
b + + -
aa + + + + + 

bb + + + + + 
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p is contained in Q: 

--A a b aa bb 

A + 

a + + 

b + + + 

aa + + + + + 

bb + + + + + 

The relation "be a component of" is not an irreflexive partial order here, 

because it is not irreflexive: aa is a component of itself. The relation 

"be contained in" is not a reflexive partial order because it is not 

antisymmetric: aa is contained in bb and bb is contained in aa, but 

aa ~ bb. This, of course, is caused by the fact that aa and bb are cyclic 

objects. 

End of Example 

The above example (and especially the expressions for the objects aa 

and bb) suggests that there is a relation between structures and regular 

languages. Indeed, the objects of finite structures are regular languages: 

LEMMA 1 

Let S be a finite structure, then each object of Sis a regular 

language over A. 

This can be understood intuitively by considering the picture of a finite 

structure as the state diagram of a finite state machine and recalling the 

correspondence between finite state machines and regular languages. A 

straightforward proof can be obtained by using the fact that each 

equivalence class of a right-invariant equivalence relation of finite index 

is a regular language [8]. Another way to prove Lemma 1 is to use the 

relation between left-linear grammars and regular languages. (Check that a 

left-linear grammar, where each nonterminal symbol "produces" an object, 

can be associated to each structure.) Due to Lemma 1 a regular expression 
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notation can now be used for the objects of all finite structures. 

Example 4 

The objects of the structures of Figures 1, 2, 4 and 5 can be denoted by 

regular expressions as follows: 

Fig. 1: A= A. 

Fig. 2: A= (a+b)*. 

Fig. 4: A= A, 

a= a+ba, 

b = b. 

Fig. 5: A= A, 

a= a, 

b = ab+b, 

aa = (aa+abba+bba) (ba)*, 

bb = (aab+abb+bb) (ab)*. 

End of Example 

The concept of an object as we introduced it is closely related to the 

concept of a "dynamic object", as it is normally conceived in computer 

science. Dynamic objects are usually considered as "instances" of "values". 

Two dynamic objects may be instances of the same value and still be 

different. In mathematical models for dynamic objects this problem is 

usually solved by associating an "identity", which is an explicit value, to 

dynamic objects. As stated before, objects in structures do not have an 

explicit identity. It is interesting to see how the identity problem for 

them is solved. The objects in a structure can be viewed as instances of 

structures (so "structures" correspond to the "values" of dynamic objects). 

This is made more precise by the following definition of the "structure" 

of an object: 



Let S be a structure. 

Let P be an object of S. 
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The structure of P, which will be denoted as S[P], is the structure T 

which is defined as follows: 

The proof that Tis indeed a structure and that Tis independent of the 

choice of Pis simple. Two different objects can have the same structure 

(see Example 5). Hence they can be viewed as instances of that structure. 

Example 5 

Consider the structure S of Figure 6. 

A 

Fig. 6 

In this figure we have (using regular expression notation): 

A= A, 

a= a, 

b = b, 

aa = aa+aba+ba+bba, 

bb = ab+bb. 
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The structure of a is: 

s[i] = <Po, =o>, where 

P0 = {Q EA* I aQ E PS}= {A, a, ba, b}, 

Q =o R <=:► aQ - aR, s 

hence Pol=o = {{A}, {a, ba}, {b}}. 

The structurei of b is: 

P1 = {Q EA* I bQ E PS}= {A, a, ba, b}, 

Q = 1 R <a► bQ - bR, s 

hence P1l=1 = {{A}, {a, ba}, {b}}. 

So a and b have the same structure (the structure of Figure 4). 

End of Examp1e 

Example 6 

Consider the structure S of Figure 7. 

Fig. 7 

(Q, R E Po) 
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All objects have the same structure: 

s[AJ = s[b] = s[bb] = s. 

End of Example 

3. OPERATIONS ON STRUCTURES 

In this section three primitive operations on structures will be 

defined. Th1~y constitute a sufficient set in the sense that all other 

useful operations on structures can be defined in terms of them. For their 

definition a special partial order on the set S of all structures will be 

introduced first. 

The partial order Con Sis defined as follows: 

sCT<=>P cP A
S T 

(S, T E S) 

The fact that C is indeed a partial order on Sis trivial. In intuitive 

terms the fact that SC T means that S contains less paths than T and that 

in S less paths are "identified" than in T. 
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Example 7 

The structun:!s of Figure 8 form an ascending sequence: 

A 

A 

..l = 0 C C C 

A 

a b C C 

a 

Fig. 8 

End of ExampJe 

Example 8 

If we define the partial order Co on Sas: 

(S, T E S) 

then the fact. that S Co T means that S is a "partial expansion" of T, as 

illustrated in Figure 9. 



" 

a 

" co 
b 

b 

" co 
a 

a 

" cx==:o 
b 

. Fig. 9 

End of Example 

Notice that the partial orders C and Co are much harder to describe in 

terms of graphs. 
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The relation C is more than just a partial order: It turns S into a 

complate lattice. (A complete lattice is a partially ordered set where each 

subset has a greatest lower bound.) This is stated in: 

LEMMA 2 

<S, C> is a complete lattice. 
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The proof of Lemma 2 is simple. First prove that, if Sand Tare 

structures, <P n P, = n =>is also a structure. It is then easy to 
S T S T 

prove that the greatest lower bound of a set T of structures is given by 

<n T p In T =>,where n T p TE T TE T TE .T 
= A* and n = = A* X A* if T = ~

TET T 
Notice that the empty structure.Land the convergent structure TC are the 

"bottom" and "top" of the complete lattice <S, C>, i.e • .L C S C T for each 
C 

SES. A simple theorem from lattice theory states that apart from a 

greatest lower bound, each subset also has a least upper bound [2]. The 

following definitions are therefore in order: 

For each set T of structures, the structures inf T and sup Tare 

defined as follows: 

inf T = greatest lower bound of T with respect to C, 

sup T = least upper bound of T with respect to C. 

The above will enable us to define the result of operations on structures 

in terms of inf's and sup's of arbitrary sets of structures without having 

to worry over the existence of the inf 1 s and sup's. 
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Example 9 

If s = and T = 

A 
a 

a 
then inf{S, T} = and sup{S, T} = A 

a b 

Fig. 10 

End of Example 

Before defining the primitive operations on structures a remark should 

be made about an other interesting partial order on S. The definition of L 

can be written as: 

(S, T E S) 

If we reverse the implication sign in this definition we still have a 

partial order, call it Lt: 

(S, T E S) 

Intuitively S Lt T means that S contains less paths than T and that in S 

less paths are "distinguished" than in T. The partial order Lt has both a 

bottom (the empty structure~) and a top (the divergent structure T0 ). Yet, 

in contrast with L, it does not turn S into a complete lattice (see 

Example 10) .. 
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Example 10 

Consider the structures in Figure 11. 

A A 

S: T: 

A 

V: W: a C 

Fig. 11 

Suppose Sand T have a greatest lower bound X with respect to C1. Since 

V L1 Sand V L1 T, we have that V C1 X. This implies that a, c € PX and, 

since a tv c, also that a tx c. W C1 Sand W C1 T imply that W C1 x, hence 

b € PX. X C1 Sand a =s b imply that a =x b. Analogously, X L1 T and b =Tc 

imply that b =x c. Using the transitivity of =x we get a =x c, which is a 

contradiction. Hence <S, L1> is not a complete lattice. 

End of Example 

All operations which will be introduced below are considered as 

partial operators on structures. They may have a number of parameters 

(usually objects in the structure to which they are applied, or accessors). 

The result of applying the operation F with parameters x1 , ••• , Xm to the 

structure Swill be denoted as {S}F(x1 , ••• , Xm). The notation 

F(X1 , ••• , Xm) will be used to denote the (partial) operator 

ASES {S}F(X1 , ••• , Xm). Concatenation is used to denote functional 

composition of operators, e.g. F(x1 , ••• , Xm)G(Y1 , ••• , Yn) denotes 

ASES {{S}F(X1 , ••• , Xm)}G(Y1, ••• , Yn). 
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The first primitive operation on structures which will be introduced 

amounts to the "creation" of an object in a structure. The created object 

has i as its structure and is added as a direct component to a given 

object. The operation, called CRE, has two parameters P and A.Pis an 

object in the struct~re S to which CRE is applied and A is an accessor such 

that PA is not a path of S. The effect of CRE(P, A) is pictured in 

Figure 12. 

A A 

p CRE(P,Al 

0 

Fig. 12 

The definition of CRE reads: 

Let S be a structure. If Pis an object of Sand A€ A such that 

PA~ P5 , then {S}CRE(P, A) is the following structure: 

It should be clear that CRE(P, A) does what Figure 12 suggests. The fact 

that "less" in the partial order C implies "less identification" guarantees 

that a new object is created and not some old object is taken as the new 

component of P. 
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Example 11 

A binary tree! can be generated from the empty structure by a sequence of 

operations such as: 

{.L}CRE(I, a)CRE(A, b)CRE(b, a)CRE(ba, a)CRE(ba, b). 

The intermediate and final results of this sequence of operations are 

pictured in Figure 13. 

A A A /\ A A 

0 () 

d a 

Fig. 13 

End of ExampJe 

The second primitive operation on structures is like CRE, except that 

it adds an already existing object as a direct component to an object. The 

operation, called ADD, takes three parameters P, A and Q. P and Qare 

objects in the structure S to which ADD is applied and A is an accessor 

such that PA is not a path of S. The effect of ADD(P, A, Q} is pictured in 

Figure 14. 
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A A 

p 
ADD(P,A,Ql 

p 

0 
Q 

0 ~ 
Fig. 14 

The definition of ADD is given below: 

Let S be a structure. If P and Qare objects of Sand A EA such that 

PA jc'. P8 , then {S}ADD(P, A, Q) is the following structure: 

inf{T E S I S C: T, V R E PS [R - 8 P => RA E PT A RA -T Q]}. 

The greatest. lower bound of the same set of structures as in the definition 

of CRE is taken here, except that the set is restricted to those structures 

in which the paths RA with R =s P and Qare identified. This guarantees 

that not a new object is created, but that Q is added as a new component to 

P. Notice that, in contrast with CRE, it is not simple to define ADD 

without the use of the partial order C:. This is due to the fact that ADD 

may introduce circularities in a structure. 
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Example 12 

Let S be the structure of Figure 15, 

A 

Fig. 15 

then {S}ADD(b, a, A) is the structure of Figure 16. 

A 

a b 

Fig. 16 

End of Example 

The third and final primitive operation can be viewed somehow as the 

(right) inverse of the other two primitive operations. It amounts to 

removing a direct component of an object. The operation, called REM, has 

two parameters P and A.Pis an object in the structure S to which REM is 

applied and A is an accessor such that PA is a path of S. Figure 17 

pictures the effect of REM(P, A). 



A A 

REM{P,A) p 

0 

F~g. 17 

The definition of REM is: 

Let S be a structure. If Pis an object of Sand A EA such that 

PAE PS, then {S}REM(P, A) is the following strcture: 

25 

Notice that, due to the fact that objects may be shared, REM(P, A) need not 

remove the object PA from a structure. That is why this object is 

represented by a dotted circle in the right part of Figure 17. (Strictly 

speaking the path name P should also be dotted, because the path P (but not 

the object P) may be removed from the structure by REM(P, A).) In general, 

REM(P, A) may reduce the number of objects in a structure by a number 

varying from zero to all but one (see Example 13). 
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Example 13 

Consider the structure S of Figure 18. 

I\ 

Fig. 18 

The effect of REM(a, a) on Sis: 

I\ 

Fig. 19 

Notice: the number of objects has not changed. If REM(ab, b) is applied 

subsequently to the structure of Figure 19, we get: 
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Fig. 20 

Notice: two objects have "vanished". 

End of Example 

When choosing structures as the basis of the definition of a 

specification or programming language, the above three primitive operations 

are sufficient in the sense that all more complex operations can be 

expressed in terms of them. In order to illustrate this we shall sketch 

briefly how the meaning of language constructs can be described in terms of 

the primitive operations. The idea is to represent all values as structures 

(and their "instances" as objects of structures). If we consider the 

variables x1 , ••• , Xn of an algorithm as accessors, then the "state" of the 

algorithm can be represented by a structure as pictured in Figure 21. 

A 

Fig. 21 
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In this figure the variables x1 , ••• , Xn of the algorithm are represented 

by the paths loc.x1 , ••• , loc.Xn (dots are used to separate accessors 

here). The values of the variables are {the structures of) the objects 

loc.x1 , ••• , loc.Xn. Since the latter objects may share components, things 

such as "aliasing" can readily be described. The component loc of the state 

constitutes what might be called the "local environment". Apart from a 

local effect an algorithm may also have a global effect ("side effect"). 

This is modeled by the component glo (the "global environment") of the 

state, which is supposed to contain all information global to the 

algorithm. Since glo and loc may share components, local operations with 

global side effects can be described very naturally this way. 

The meaning of a "statement" of an algorithm can now be defined as a 

mapping from states on states, where a state is a structure as in 

Figure 21. As an example consider the assignment statement. This statement 

might have the form "P.A := Q", where A is an accessor and PA and Qare 

paths within the local environment. (The statement should be read as 

"replace the A-component of P by Q".) The meaning of the assignment 

statement could be defined as: 

M(P.A := Q) = ADD(A, p, loc.P)ADD(A, q, loc.Q) 

REM(p, A)ADD(p, A, q) 

REM(A, p)REM(A, q). 

Notice that the following definition would not be correct: 

M(P.A := Q) = REM(loc.P, A)ADD(loc.P, A, loc.Q). 

The reason is that after REM(loc.P, A) both the object loc.Q and the path 

loc.P need no longer exist. The meaning of language constructs other than 

the assignment statement can be described in a similar way. For more 

details about this the reader is referred to [9]. 
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4. CONCLUSION 

In this paper a novel method of characterizing storage structures was 

discussed. The concept of a "structure" was introduced, which is basically 

a simple mathematical model of the access properties of a storage 

structure. Using this model storage structures with arbitrary sharing and 

circularities can be characterized without the need to introduce pointers. 

Creation and replacement become very natural operations which cannot 

produce any "garbage", since the concept of unreachability is nonexistent 

in a structure. Due to the fact that structures are general and yet free of 

such low level concepts as pointers and garbage, they lend themselves very 

well as the basis of definitions of realistic specification and programming 

languages. This is illustrated in [9], in which a specification language 

for abstract data types is discussed, which is used (in a somewhat informal 

way) in [10]. 

The concept of a structure as defined in this paper is believed to 

characterize storage structures in a way more abstract than other methods. 

In order to support this assertion let us give a short comparison of 

structures with some of these other methods. "Vienna objects" [14] are 

basically trees with labeled branches. Sharing and circularity can only be 

modeled by introducing a pointer concept. This is done by allowing 

"composite selectors" (which correspond to "paths") to be used as objects. 

"Graphs" [13] were already discussed in Section 2. Graphs are easily seen 

to be less abstract than structures, because each structure corresponds to 

many graphs. Also, the unnatural choice of an already existing node as the 

new node when creating a node in a graph is not necessary in a structure. 

"Relational objects" [5] are set-theoretic models of storage structures. 

They are built from atomic values using set and tuple constructors. 

Relational objects are more general than graphs (each graph can be 

described as a relational object), but they inherit many of the 

disadvantages of graphs. E.g., sharing can only be modeled by representing 

objects in some way as primitive values (which correspond to the nodes of a 

graph). The programming language SETL [4] even has a special atomic data 

type for this purpose. A more comprehensive comparison of structures with 

other methods of characterizing storage structures can be found in [9]. 
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