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PREFACE 

Although Tauberian theory actually is still a living part of 

mathematics, it appears that more and more students are at best 

remotely familiar with this topic which was so popular in the 

first half of this century. 

By writing this booklet I have tried to present an easily read-

able, fairly detailed sketch of the early development of clas-

sical Tauberian theory: a "continuous" mathematical history, 

from Alfred Tauber to Norbert Wiener. 

I hope that in this booklet the reader will find a clear implicit 

answer to the question "What is a Tauberian theorem ?", and 

that (s)he will find the enthousiasm to pursue the subject in 

the great variety of directions I have failed to mention. 

J. van de Lune 
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CHAPTER 1 

THE ORIGIN OF TAUBERIAN THEORY 

0. INTRODUCTION 

We begin our considerations by recalling a more or less standard 

version of Abel's limit theorem for power series. 

THEOREM 0.0. (1826, ABEL [l]) I6 :the powell. .6eJr.-i..e.6 

k 
(0.1) E akx 

k=O 

w-i..:th complex coe66-i..c-i..en:t.6, conve11.ge.6 6011. x = l,:then 

(0.2) lim f(x) ex-i...6:t.6 and = f(l) = 
xtl 

E ak (= A, .6ay) 
k=O 

whe11.e f(x) deno:te.6 :the .6um 06 (0.1) 6011. -1 < x ~ 1. 

Briefly formulated we thus have 

(0.3) E ak = A 
k=O 

lim f(x) = A. 
xtl 

For a proof of this celebrated theorem we refer to KNOPP [3; 

pp. 179-180) or TITCHMARSH [7; pp. 9-10). 

One may ask (as Tauber did) whether the converse of Abel's 

theorem, i.e. the statement 

(0.4) lim f(x) = A ~ E ak 
xtl k=O 

A 

also holds true. 

That this is not the case in general may be shown by the follow
k 

ing simple example. Let ak:= (-1) fork= 0,1,2,3, .•• ; then 

f(x) = (l+x)-l for lxl < 1, so that lim f(x) = 1/2, whereas 
xt 1 

k~O ak is clearly divergent. 

It follows that the converse of Abel's theorem can only be true 

if we impose some additional (so called Tauberian) condition(s). 

As a first example we mention the following very simple Tauberian 

THEOREM 0.1. I6 ak ~ 0 6011. all .6u66-i..c-i..en:tly la11.ge k, :then :the 

conve'1..6e 06 Abel'.6 :theo11.em hold.6 :t11.ue. 
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PROOF. Since ak ~ 0 for all sufficiently large k, we have for all 

sufficiently large n 

(0.5) s 
n 

n n 
:= l: ak = lim l: akxk s lim f(x) = A 

k=O xtl k=O xtl 

so that the eventually monotone non~decreasing sequence Sn is 

bounded and hence convergent. It follows that k~O ak is conver

gent so that we may complete the proof by simply invoking Abel's 

limit theorem. 

However, the use of Abel's theorem may be avoided here as fol

lows. For 0 < x < I, and n sufficiently large, we have 

(0.6) js -f(x)ls 
n 

n 
l: 

k=l 

k I ak I ( I -x ) + l: ak 
k=n+I 

so that (by taking limits for x t I) 

( 0. 7) Is - A I $ 
n 

Since the right hand side is the "general tail" of a convergent 

series it follows that lim S = A. D 
n n+oo 

I. TAUBER's FIRST THEOREM 

The first non-trivial theorem, establishing the convergence of 

k~O ak from the behaviour of the sum of its associated power 

series and some additional condition on the terms ak, was given 

by Tauber. 

THEOREM I.I. 

ly, 16 
(1897, TAUBER [6]) 16 lim kak o o~, equivalent-

k+oo 

(I. I) (k + oo) 

then the conve~~e 06 Abel'~ theo~em hold~ t~ue. 

FIRST PROOF. See TAUBER [6] or KNOPP [3; pp. 518-519]. 

SECOND PROOF. For 0 < x < we have, with E: := sup {kiakl}, n k>n 

(I. 2) Is -n 
f(x) 

n 
( 1-x) l: 

k=I 

n 00 

k 
laklx 

k 
$ l: I ak I ( 1-x ) + l: = 

k=I k=n+I 

I I k-1 
ak (l+x+ ... +x ) + l: 

k=n+I 
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e: 
(l.2a) ~ (l-x)ne:O + n+~ 1-x 

In order to avoid trivialities we assume that all e:n are positive. 

We try to choose x = xn such that (1.2a) is minimal. In order to 

do so we observe that the function 

(I. 3) <P( t) b 
:= at + t' (t > O) 

where a and b are positive constants, assumes its minimal value 

2(ab) 1 / 2 at the point t = (~) 1 / 2 . In particular, with a= ne: 
a 0 

and b e: /(n+I), we find that (1.2a) assumes its minimal value 
n 

(I. 4) 
ne: e: 

2{~}1/2 
n+I 

at the point x = xn defined by 

(I. 5) (O <) - x 
n 

e: 
{ n }1/2 (< I). 
n(n+l)e: 0 

It follows that 

(I. 6) 

Since (a) 

(b) 

(c) 

ne: e: 
Is - f(x )I ~ 2{____Q___ln}l/2 < 2(e:oe: )1/2. 

n n n+ n 

x tends to I from the left as n + 00 

n 

lim e:n = 0, and 
n+oo 
Is - Al ~ Is - f(x )I + lf(x) - Al 

n n n n 

the theorem follows. D 

For some generalizations of Tauber's first theorem see LANDAU 

[4; §8, §11, §12]. 

The integral analogue of Tauber's first theorem reads as follows. 

THEOREM I. IA. 16 the 0unction a(t) i~ (Lebe~gue) integ~able ave~ 

[0,T] (notation: a E L 1[0,T]) 60~ eve~y T > o, and i6 lim ta(t)=O, 

h t+oo 
t en 6~om 

(I. 7) lim f 
-st 

a(t) dt A e 
s+O 0 

a 6ollow~ that 
+oo T 

(I . 8) f a(t) dt := lim f a ( t) dt A. 
0 T+oo 0 
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PROOF. See WIDDER [8; p. 186]. 

2. TAUBER's SECOND THEOREM 

THEOREM 2. I. (1897, TAUBER [6]) Ifi 

( 2. I ) 
n 

lim ~ E ka = 0 
n+oo n k= I k 

then the conve~<1e 06 Abel'<1 theo~em hold<1 t~ue. 

This is the Tauberian part of the following 

THEOREM 2.2. (1897, TAUBER [6]) The <1e~ie<1 

with <1um A i6 and only i6 
n 

( 2. 2) lim E kak 0 n k=I n+oo 

and 

lim E k 
A. 

xtl k=O 
akx ( 2. 3) 

PROOF. 

E ak conve~ge<S 
k=O 

(~) From the convergence of k~O ak we may obtain (2.2) by means 
of a general theorem of Kronecker (see KNOPP [3; p. 131]) or 
directly by observing that 

( 2. 4) 
n 

n E kak 
k=I 

which, by Cauchy's limit theorem, tends to 0 as n + 00 

Clearly (2.3) follows from Abel's limit theorem. 

(~) This is the more elaborate Tauberian part of the theorem. 
00 k 

We first note that k~O akx converges for lxl < J. In order to 
see this we write w0 =o, and wk = a 1+2a 2 + •.. +kak fork 2 I so 

that wk = o(k) ask+ 00 Hence, the radius of convergence of the 

power series k~O wkxk is 2 so that for lxl < I 

( 2. 5) ( 1-x) 

from which it follows that the radius of convergence of k~O kakxk 



m k m k 
is at least I. Since the power series k~O akx and k~I kakx 

m k 
have the same radius of convergence it follows that k~O akx 

converges for lxl < I. 

Next we observe that for lxl < I (using partial summation) 

(2.6) 

E 
k=I 

wk - wk-1 
k 

k x 

m k k+I 
x - x 

E wk{ k+I 
k=I 

k 
x 

m 

E 
k=I 

kak k 
E ---i< x 

k=I 

k k+I 
w {.!__ - _x __ } 

k k k+I 

k x 
+ k(k+I)} 

k 
x • 

We now claim that 

(2.7) lim ( 1.-x) 
xt I 

m wk k 
E k+I x = O. 

k=I 

In order to see this we observe that for 0 < x < I 

(2.8) I< 1-x) 
m wk k n wk k 
E k+ 1 x I ~ ( 1-x){ I E k+ 1 x I + 

k=I k=I 

+ I wk xk I} 
E k+I ~ 

k=n+I 

n lwkl 
~ (1-x) E ""k+T + o • 

k=I n 

It follows that for every n 

(2.9) lim sup 
xtl 

I< 1-x) 

and since limo = 0, our claim (2.7) follows. 
n.+oo n 

From (2.6) and (2.7) we thus obtain 

wk k 
A - a 0 = lim E ) x . 

xtl k=I k(k+I 
( 2. I 0) 

5 
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Since 

( 2. I I ) 
wk 

lim k k(k+I) k+co 
0 

Tauber's first theorem applies to (2.10), so that 

( 2. I 2) 
wk 

E k(k+I) =A - aO. 
k=I 

Observing that 

wk n wk 
( 2. 13) E lim E 

k=l 
k(k+I) n+oo k=I k(k+I) 

lim 
n+oo 

= lim 
n+oo 

n 
I I 

E wk{k - k+ I} 
k=l 

n w 
n 

E ak - lim n+I 
k=I n+oo 

lim 
n+oo 

n wk-wk-1 
E 

k=I k 

w 
- n+~} 

it follows that kII ak converges to A - a 0 , completing the proof. D 

The integral analogue of Tauber's second theorem reads 

THEOREM 2.2A. Let ~ E L 1[0,T] 60~ eve~y T > o. Then 

(2.14) 

i.6 and only 

( 2. 1 5) 

and 

(2.16) 

+oo 

J ~(t) dt = A 
0 

,q 
t 

lim J u~(u) du 
t+oo t 

0 

lim J e-st~(t} dt 
s+O 0 

0 

A. 

This theorem may be generalized as follows 

THEOREM 2.2B. Let the 6unction a(t) be 06 bounded va~iation on 
eve~y inte~val [O,TJ with T > o. Then 

(2.17) lim a(t) = A + a(O) 
t+oo 

i6 and only i6 



t 
(2.18) lim t J u da(u) 0 

t+oo 0 

and 

( 2. I 9) lim I -st da(t) A. e 
s+O 0 

PROOF. See WIDDER [8; pp. 187-188]. 0 

(Widder's proof needs slight adjustment !) 

As an application we derive the Tauberian part of Theorem 2.2 

from Theorem 2.2B. 

Define 

(2.20) a(t) : = l: ak' (t ~ 0) . 
k<t 

Then, for x = e 
-s s > 0, 

(2.21) l: 
k J t da(t) I akx x 

k=O 0 0 

so that 

(2.22) lim J -st da ( t) A. e 
s+O 0 

Since, for t + 00' 
t 

(2.23) ~ I u da(u) l: kak + 
t 0 t k<t 

it follows from Theorem 2.2B that 

(2.24) lim a(t) = A + a(O) 
t+oo 

so that (note that a(O) 0) 

(2.25) lim a(n+1) 
Il+oo 

n 

lim l: ak 
n+oo k=O 

-st 
da (t) e 

0 

3. A THEOREM OF FEJER AND ITS GENERALIZATION 

A. 

We conclude this chapter by proving another early Tauberian 

theorem due to Fejer (see LANDAU [4; pp. 59-60]). 

THEOREM 3.1. (1913, FEJER) 16 

2 and l: k[akl c.o nv e.Jr.g e.1.i 
k=1 

lim l: 
k A, .th e.n i: A. 

xtl k=O 
akx 

k=O 
ak 

7 



8 

Hardy and Littlewood generalized this to 

THEOREM 3.2. (1914, HARDY & LITTLEWOOD [2]) I6 :the.11.e. e.xL6:tf.i a 

eonf.i:tan:t p > f.iueh :tha:t 

( 3. I) i:: kp-1 Ja JP 
k=I k 

eonve.11.ge.f.i and i6 

(3.2) lim i:: 
k 

A 
xtl k=O 

akx 

:then 

(3.3) l: ak =A. 
k=O 

PROOF. In principle the proof is very similar to the second proof 

of Theorem I.I. In addition we will make use of Holder's inequal

ity (see RUDIN [5; p. 62]) 

n n 
(3. 4) J l: uk vk J s { l: 

k=I k=I 

h 11 b d 1 and !+!= 1. w ere a num ers uk an vk are comp ex, p > p q 

From our Tauberian condition it is easily seen (use the Cauchy

Hadamard formula for the radius of convergence of a power series) 

that k~O akxk converges absolutely for Jxl < 1, so that, without 

any further assumptions, the function 

( 3. 5) f(x) := <JxJ < 1} 

is well defined. 

For 0 < x < 

( 3. 6) 

then (with .E.:..!_ 1 
we have a := = q-1 p 
n n 

I i:: ak - f <x) I s (1-x) i:: kJakJ 
k=O k=l 

n 
(1-x) l: kaJakJkl-a + i:: 

k=l k=n+1 

n 
s (1-x){ l: 

k=I 

n 
i:: 

k=I 

k 
+ i:: JakJx = 

k=n+I 



+ { E 
k=n+l 

(r : = 
n 

-a 
= a(l-x) + b(l-x) 

l: 
k=n 

k 
E (~)q}a ~ 

k=n+l ka 

-a -a 
where a= a(n) = r 1 (n+l)q and b = b(n) = rn+l(n+l) • 

9 

In order to avoid trivialities we assume that a and b are posi

tive. One may verify that the function 

( 3. 7) (t > O) 

is minimal at t = (b:) 13 where 13 = ~· 
For our purpose we therefore define xn by 

( 3. 8) 1-x 
n 

rn+I a qa 13 co 13 
{ (n+l)a r 1 n+l} = n+l (rn+l) 

the meaning of the constant c 0 being clear from the context. 

Fortunately x lies between 0 and I if n is sufficiently large, 
n 

and xn tends to I. The corresponding (minimal) value of~ is 

(3.9) co 13 -a rn+l {n+Jr-13 }a 
n +l(rn+I) r1(n+1)q + 1 

(n+J)a cO n+ 

which tends to 0 as n + 00 • Since x tends to 1 from the left as 
n 

n + oo it follows that 

n 
(3.10) lim { E ak - f(x )} = 0 

n+oo k=O n 

so that krO ak = A, completing the proof. D 
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CHAPTER 2 

THE 0-THEOREMS OF HARDY AND LITTLEWOOD 

The main object of this chapter is to present a considerable 

improvement of Tauber's first theorem. 

I. THE 0-THEOREMS OF HARDY AND LITTLEWOOD 

THEOREM 1.1. (1911, LITTLEWOOD [ 7]) 16 the. c..omple.x J.>e.que.nc..e. 

{nan}:. 0 iJ.> bounded on, e.qaivale.ntly, i6 

(I. I) 

(I. 2) 

then 

(I • 3) 

a 
n 

0 (.!.) 
n ' 

f(x) := l: 
n=O 

l: 
n=O 

a 
n 

A. 

(n + oo) 

(x t I) 

I I 

Note the "subtle" difference with Tauber's theorem where we have 

the condition an= 0(1/n) instead of an= 0(1/n). 

The above theorem is an easy consequence of the following (real) 

THEOREM 1.2. (1914, HARDY & LITTLEWOOD [2]) 16 the. powe.n 1.>e.nie.1.> 

nio anxn c..onve.nge.J.> 6on Ix! < I with 1.>um f(x) and i6 liro f (x) = A, 
xtl 

the.n the. 1.>e.nie.1.> n~O an c..onve.nge.J.> to A, pnovide.d (only) that 

the.he. e.xi1.>t1.> a c..onJ.>tant G J.>uc..h that 

(I • 4) na s G 60~ all n. 
n 

Note the one-sidedness of condition (1.4) (in which the symbols 

may just as well be replaced by~). 

Since the proof of this theorem is not as simple as that of 

Tauber's first theorem (compare LANDAU [~; pp. 45-56]) we start 

by presenting a number of preparative lemmas. 

LEMMA I.I. (1930, KARAMATA [4]) 16 g(x) iJ.> de.6ine.d 6on 0 s x < 

and i6 lim (1-x)g(x) = A, then, 6on eve.nu poJ.>itive. inte.ge.n k, 
xtl 

(I. 5) lim (1-x)g(xk) = t =A J tk-I dt. 
xtl 0 
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PROOF. 

lim (1-x)g(xk) 
xtl 

. 1-x k k I lim ~~k(l-x )g(x ) = k·A 
xtl 1-x 

A f tk-I dt. D 
0 

LEMMA 1.2. (1930, KARAMATA [4]) 16 g(x) = n~O bnxn 604 lxl < I 

and i6 lim (1-x)g(x) =A, then 
x+I 

( I • 6) lim (1-x) E b xnP(xn) 
x+J n=O n 

A f P(t) dt 
0 

604 eve4y polynomial P(t) = c 0 +c 1t+ ... 

PROOF. Observe that 

(I• 7) (1-x) E 
n=O 

m m 
= (1-x) E ck{ E 

k=O n=O 

k+I E ck(l-x)g(x ). 
k=O 

Since by the previous lemma 

(I • 8) lim (1-x)g(xk+I) 
xtl 

the lemma follows. D 

A f tk dt 
0 

LEMMA 1.3. (1930, KARAMATA [4]) 16 604 lxJ <I, g(x) n~O bnxn 
with all b ~ O, and i6 lim (1-x)g(x) =A, then 

n xtl 1 
00 

(1.9) lim (1-x) E b xn•(xn) A J •<t) dt 
xtl n=O n o 

604 eve4y 4eal eontinuou6 6unetion • on the inte4val [O,lJ. 

PROOF. Since • is continuous on [0,1] there exists (for every 

* * £ > 0) a polynomial • = •e such that 

(1.10) I • * <.x 1 - .ex) I E 
s 2• (O s x s 1). 

Defining the polynomials p and P by 

(1.111 

we have 

(1.12) 

* E p(x) = • (.x) - Z and P(x) •*(x) + E 
2 

p(.x) S •(x) S P(.x), (OS.xSl). 



Since all b ~ 0 we obtain 
n 

(1-x) L b xnp(xn)S(l-x) L b xn~(xn)S(l-x) L b xnP(xn). 
n=O n n=O n n=O n 

Taking limits (x t I) we find that 

(1.13) 

Consequently 

(1.14) 

A f p(t) dt = lim inf (1-x) L 

0 xtl n=O 

S lim sup (1-x) L b xnHxn) = A J P(t) dt. 
xt I n=O n o 

(lim sup - lim inf)(l-x) L 
xtl xtl n=O 

1 

S A f (P(t) - p(t)) dt = AE. 
0 

13 

Since E > 0 may be chosen as small as we please it follows that 

(I.IS) lim (1-x) L b xn~(xn) exists and = L, say. 
xtl n=O n 

Clearly 

(1.16) A f p(t) dt S L s A f P(t) dt 
0 0 

and, since A ~ 0 by the hypothesis 
l l 

(1.17) A J p(t) dt s A J 
0 0 

so that 

(1.18) JL - A J $( t) d t I 
0 

from which it is clear that 
l 

(1.19) L =A f ~(t) dt 
0 

proving the lemma. D 

~ ( t) 

$ AE 

that all bn ~ 0, we also have 
l 

dt s A f P(t} dt 
0 

LEMMA 1.4. (1930, KARAMATA [4]) Lemma 1.3 al60 hold6 t~ue 16 ~ 

16 R1emann-1nteg~able ave~ Co,1J (1n6tead 06 being cont1nuou6). 

PROOF. Since~ is Riemann-integrable over [O,I] we may construct 

two step-functions sand Son [O,J] such that 



I 4 

(1.20) 

and 

(1.21) 

s(x) s $(x) s S(x), (O s x s I) 

J (S(x) - s(x)) dx < E. 

0 

By means of these step-functions we can construct two piecewise 

linear continuous functions $ 1 and $ 2 on [Q,l] such that 

(J.22) $ 1 (x) s $(x) s $ 2 (x), (Osxsl) 

and 

(J.23) 
0 

From here on the proof is similar to that of the previous lemma. D 

As an application we have 

LEMMA I. 5. (I 914, HARDY & LITTLEWOOD [ 2 J) 

g(x) "' k with au bk o, and 16 = k~O bkx , ~ 

N 
(1.24) lim N E b = A. 

N+oo n=O n 

PROOF. Define the function $ as follows 

$ (x) := 0 if 0 s -1 
x < e 

(1.25) J 
l -1 

$ (x) := - if e s x s l . 
x 

Then 

l 
(J.26) J Ht) dt = J !._ dt -log -1 

By Lemma 

(J.27} 

Let x 

(J.28) 

0 -1 t 
e 

I. 4 we thus have 

"' 
(1-x) E b xn$(xn) 

n=O n 
lim 
xt l 

l 
exp(- N) and observe that 

I n n 

(1-e N) E b e N$(e- N) 
n=O n 

!._ N 
(1-e N) E b 

n=O n 

e 

-

N -
I 
N 

Combining this with (1.27) we obtain 

(1.29) lim N r 
N->- 00 n=O 

b 
n 

A. D 

e 

A f 
0 

I 
N 

16 6 OIL !xl < 1 , 

lim 
xt I 

(1-x)g(x) = A,:the.n 

l . 

Ht) dt A. 

N 
E b 

n=O n 
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LEMMA 1.6. (1914, HARDY & LITTLEWOOD [2]) I6 the neal &unction f 

i~ twice di66enentiable on (0,1) ~uch that lim f(x) =A and 

(1.30) 

&on ~ome con~tant G, then 

(1.31) lim (1-x)f'(x) = O. 
xtl 

xtl 

(O<x<I) 

PROOF. We may assume that G > O. Let 0 < ll < I and choose x 0 

and x 1 such that 0 < x 0 < 

g· The Taylor expansion of f about x 0 reads 

(1.32) 

for some 6 between 0 and 1. This expansion may also be written as 

(1.33) 

From this we obtain 

(I • 3 4) 

f(x 1)-f(x 0 ) 1 2 G ;:: 
ll 2 o(l--x 0 ) 2 

(1-(x 0+eo(1-x 0 ))) 

f(x 1)-f(x 0 ) 
_!_5 G ;:: 

f(x 1)-f(x 0 ) 
I oG 

ll 2 (l-60) 2 ll 2 (1-0)2 

so that 

(1.35) 
llG 

li~ot~nf (1-xo)f'(xo) ;:: - 2(1-0)2· 

Since ll > 0 may be chosen as small as we please it ~allows that 

(1.36) lim inf (1-x)f'(x) <: O. 
xt1 

g. The Taylor expansion of f about x 1 reads 

(l.37) 

for some 6 between 0 and 1. Since this may also be written as 

(1.38) 

it follows that 
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(1.39) 

so that 

(1.40) 
oG 

1!7+~up (1-xl)f'(xl),,; 2(1-o)2 

due to the fact that as x 1 t I then also x 0 

Since o > 0 may be chosen as small as we please we obtain 

(1.41) lim sup (1-x)f'(x),,; 0 
xtl 

and the lemma follows from g and g. 0 

After these preparations we are ready for the 

PROOF OF THEOREM 1.2. It is clear that f(x) = n!o anxn is twice 

differentiable on (O,l) and that 

(1.42) f" (x) i:: 
n=2 

n-2 n(n-l)a x , 
n 

(O < x < 1). 

Since na ,,; G it follows that 
n 

(1.43) (l-x) 2f"(x) ,,; (I-x) 2G i:: (n-l)xn- 2 = G. 
n=2 

By hypothesis we have lim f(x) =A so that by Lemma 1.6 
xtJ 

(1.44) lim (1-x)f'(x) = 0 
xtl 

or 

(1.45) lim (1-x) i:: 
n-1 o. na x 

xtl n=l n 

Hence 

na (n+l)a +l 
(1.46) lim ( 1-x) i:: (I- 2)xn-1 lim ( 1-x) i:: (I- n ) n 

xtl n=1 G xt1 n=O 
G x 1. 



Since 

(I. 4 7) 
na 

n - -c;- ~ 0 for all n 

it follows by Lemma l.S that 

(I. 48) 
I N+ I 

lim N i:: 
N..- n=I 

na 
(I - --E.) 

G 

from which it is clear that 

(I.49) 
N 

lim N i:: 
N+00 n= I 

na. = 0. 
n 
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Hence, invoking Tauber's second theorem, the proof is complete. D 

In 19S2 Wielandt gave an interesting more direct proof of 

Theorem I. I avoiding the detour via Cesaro summability (Lemma I .S). 

We present Korevaar's version of Wielandt's proof. 

DIRECT PROOF OF THEOREM I . I . (WIELANDT [ 9 J ' KOREVAAR 

Define a: [ 0' "') + R by 

(I.SO) a(t) := a n' (n $ t < n+ I) 

and note that 

(I.SI) I a< t) I 
2G+ia 0 1 

$ 
K (t ----=t ' 

> 
t 1-e 

Also observe that, for s > 0, 

(I.S2) 

Defining 

(I.S3) 

we have 

"' n+I 
J a(t)e-st dt i:: f -st a(t)e dt 
0 n=O n 

i:: 
n=O 

e-ns_e-(n+l)s e-s-1 
-s 

i:: 
n=O 

a 
n s 

g(x) := c if 

if 

0 $ 
-I 

x < e 

O}. 

-ns 
a e 

n 

"' 

[S]} 

-s 
~ f(e-s). 

-s 

n-1 n 
(I.S4) s ·= n-1 · l: ~ = J a(t) dt = n J a(nt) dt 

0 

n J a(nt)g(e-t) dt. 
k=O o 0 

Now let E > 0 be given and determine a polynomial p(x} such that 
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(I.55) J l g(x)-x I 
x(l-x) - p(x) dx < £. 

0 

Then we have 

(I . 5 6) 

where P(x) := x + x(l-x)p(x) = 
m k 
l: ckx, so that P(O) 

k=I 

It follows that 

(1.57) 

so that 

(1.58) 

Is -n-1 
-kt I a(nt)e dt 

nl J a(nt)(g(e-t) - P(e-t)) dtl s 
0 

s n J n~lg(e-t) - P(e-t) I dt s 
0 

m 
-kt s J n-1 l: ckn a(nt)e dt+6K£ = 

k=I 0 

m 
l: ck 

k=I 
f a(t)e 
0 

0. 

kt 
n 

dt+6K£ 

for some e with I e I $ I. This result may also be written as 

m 
(1.59) s n-1 l: ck 

k=I 

Without loss of generality 

so that 

e 

k 
k - n I - f(e n) 

k + 6K£. 
-

n 

we may assume that lim f (x2 
x+ 1 

(I.60) lim sup Is I s lelK£. n n-+oo 

A 0 

Since £ > 0 may be chosen as small as we please it follows that 

(J.61) lim s = o. D n 
n-+oo 

The integral analogue of Theorem 1.2 reads 



THEOREM 1.3. Ifi lim 
s+O 

I 9 

eon~tant G ~ueh that F(t) ~ ~ fio~ all t > o, then f F(t) dt A. 
t 

0 

PROOF. See DOETSCH[!; p. 516] or WIDDER [8; pp. 195-196]. 

A simple application of the last theorem is the following. 

Let 

(1.62) 

and 

(I. 63) 

F(t) := 
sin t 

t 
(t > O) 

I -st 
~(s) := e F(t) dt, 

0 

(s > O). 

2 -1 
Then ~'(s) = -(s +I) , from which it is easily seen that 

(1.64) ~(s) 
1T arctan(s). = 2 -

Since F ( t) ~ _!_ 
t for t > o, it follows that 

+co 
sin t 

(I. 65) J dt 1T 
--t- 2 

0 

2. SOME EXTENSIONS TO GENERAL DIRICHLET-SERIES 

A general Dirichlet-series (D-series) is a series of the form 

-sA 
( 2. I ) 

n=O 
a e n (=: D(s), if the series converges) 

n 

with sand all an complex, and AO< Al < A2 < ... 

Quite frequently it is assumed that AO = O. 

+ co 

Note that a D-series is a generalization of a power series 
oo n . -s 

n~O anx by taking x = e , and also of a special D-series 
co -s 

n~l ann by taking An log(n+l). 

We conclude this chapter by listing some Tauberiari theorems 

for D-series. For the proofs we refer to the literature, in 

particular HARDY & RIESZ [3] (and HARDY's Vive~gent Se~ie~). 

THEOREM 2. 0. (Abel) I6 L a = A 
n=O 

n 

THEOREM 2. I . (Tauber) Ifi lim D(s) 

a~ n + co, then 2: 
n=O 

s+O 

a = A. 
n 

THEOREM 2.2 (Tauber) Ifi lim D(s) 
s+O 

a~ n + co, then 2: 
n=O 

a 
n 

A. 

then 1 im D ( s} = A. 
s+O A. -?. 

A and o( n n-J) = a = n \ n 
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THEOREM 2.3. (Hardy) I6 lim sD(s) 
s-1-0 

L and all a ~ O, then n 
n 

lim - 1 
A n-+00 n 

E ak = L. 
k=O 

THEOREM 2.4. (Littlewood) I6 lim D(s) 
s-1-0 

a-O n + m, then E 
n=O 

THEOREM 2.5. (Hardy & Littlewood) I6 

exi-Oth a conhtant G huch that a ~ G n 

then E 
n=O 

a = A. 
n 

REFERENCES 

A and a 
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A -A 
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n 
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n 
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CHAPTER 3 

SOME APPLICATIONS 

00 

I. THE SERIES E n-l-it IS NOT ABEL-SUMMABLE FOR t € R 
n=I 

If the power series E a xn converges for lxl < and if 

21 

• oo n 
li.m ?;, 0 a x 
xt I n- n 

n=O n 00 

= s, then the series E0 a is called Abel-summable n= n 

s. Notation: (A) r0 a n= n to the (Abel-)sum s. 
Using this terminology we may express, for example, Theorem 1.1 

in Chapter 2 as follows: I6 (A) Eo a = sand a oc!),~hen n= n n n 
n~O an = S. 
As an application of this theorem we will show that the series 

00 -1-it 
n~I n is not Abel-summable for any t € ~· 

For if it were, it would follow (since ln-l-itl = !) that 
00 -1-it n 

n~l n is convergent. However, this is not the case as we 

shall show below. 

For t 0 the situation is clear: n~l n is divergent. 

For t r 0 we may argue as follows 

( 1. 1) 
N 
E 

n=1 

-1-it n 
N J x-1-it d[x] -1-it[ ] IN + 

x x 1-0 
1-0 

N -I-it N-it 
N -1-it - I [x] dx = - f [x] dx = 

I I 

N-it 
N [x]-x N dx + (I + it) I 2+it dx + (1 + it) I xl+it I x 1 

-it N 
N + I + it + (I + i't) J [x]-x d 
it it 2+it x. 

I x 

Since 
ao [x]-x J Z+it dx is an absolutely convergent integral, it follows 

x 

that for some constant C 

N -1-it N-it 
(I . 2) E n - it + c + 0 ( 1) ' (N .... 00) 

n=I 

which it is 
00 -I-it diverges. D from clear that n~I n 
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2. AN ALTERNATIVE PROOF OF A THEOREM OF JORDAN 

Let the function f : I + ~ be periodic with period 2n and let f 

be integrable (in the sense of Lebesgue) over [0,2n]. The Fourier 

coefficients of f are defined by 

2n . 
( 2. 1) en := z:rr J f(x)e-inx dx, 

and the series 

( 2. 2) 
n=-oo 

0 

inx 
c e 

n 
(x € R) 

is called the Fourier series of f. 

(n € Zl) 

Such a series is called convergent if the series 

(2.3) 

is convergent. (Even if this series converges its sum need not 

be equal to f(x).) 

As to the convergence of such a series we have the following 

theorem (Jordan): I6 f i~ 06 bounded va4iation in the neighbou4-

hood 06 the point x € R, then the Fou4ie4 ~e4ie~ ofi f eonve4ge~ 

to (see TITCHMARSH [4; pp. 406-407]) 

I 
(2.4) Z(f(x+O) + f(x-0)). 

Below we will prove this theorem by means of Theorem 1.1 of 

Chapter 2. 

DEFINITION. The series 

(Cesaro-}sum S if 

'f a is n=O n 

(2.5) lim *(s 0 + s 1 + 
n+oo 

called Cesaro-summable to the 

where Sk := a 0 + a 1 + ... + ak. Notation: (C} n~O an= S. 

From the theory of Fourier series we borrow the following 

theorem (Fejer): The fou4ie4 ~e4ie~ 06 f i~ Ce~a4o-~ummable to 

4<f(x+O) + f(x-O}) fio4 eve4y value 06 x 604 whieh thi~ exp4e~~ion 
exi~t~ (see TITCHMARSH [4; p. 414]). 

Furthermore, it can be shown that if a series is Cesaro-summable 

to the C-sum S, then it is also Abel-summable to the A-sum S 

(see HARDY [I; p. 108] or KNOPP [3; p. 508]}. In other words, 

Abel-summation is stronger than Cesaro-summation. 
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Combining Theorem 1.1 of Chapter 2 and Fejer's theorem, Jordan's 

theore111 will follow if we can show that c = 0(,4,-) as n + 00 • 

n 1n I 
~or a proof of this fact for functions of bounded variation we 

refer to TITCHMARSH [4; pp. 426-427]. 0 

REMARK. In our approach to Jordan's theorem it is the property 
1 

c = O(T::T) that does the work. For more on the order of magni-
n I n1 

tude of Fourier coefficients we refer to the standard treatises 

on Fourier series, for example, HARDY & ROGOSINSKI [2] and 

ZYGMUND [5]. 
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CHAPTER 4 

INTRODUCTION TO PITT's GENERAL TAUBERIAN THEOREM 

For some mathematicians the rather technical proofs of the 

previous Tauberian theorems are interesting and impressing 

because they make (quoting Wiener) appreciable demands on 
analytical technique. Others feel that these theorems and their 
proofs do not quite satisfy their demands on transparancy and 
insight. N. Wiener was the first to remove this deficiency 

by creating a theory from which, for example, Littlewood's 

theorem is a rather simple consequence. 

We will not immediately begin with Wiener's (general Tauberian) 
theory but work our way up from Littlewood's theorem to the 

more general ideas of Wiener. We prefer to start with the 

introduction of Pitt's general Tauberian theorem for slowly 
oscillating functions. 

The hypotheses in Littlewood's theorem are 

(a) 

(b) 

3 G Ina I s G, 
n 

lim f(x) 
xtl 

lim E 
xtl n=O 

(n ~ I) 

a xn = A. 
n 

Without loss of generality we may assume that A = O. From the 
above conditions we will derive a number of consequences which, 
later on, will serve as hypotheses in a more general theorem. 

LEMMA I. 16 0 < x s y,then 

(I ) 
n xsnsy 

slog Y + min(l,!). x x 

PROOF. In case the interval [x,y] contains no integers the lemma 
is clearly true. If [x,y] contains the integers n 0 ,n0+I, ... ,n0 +m 

(m ~ O},then 

m 
min(t,!) 

y 
(2) E - + E 

no+k 
s + J dt. D n no x t xsnsy k=l x 

As an immediate consequence we obtain 

LEMMA 2. 16 x > 0 and p : = x. ~ l , thevi E s 1 + log p. x n xsnsy 



Now define 

(3) S(v) := E an, 
n<v 

(v E R) 

and note that S(v) is continuous from the left. 

LEMMA 3. S(v) = O(log v), 

a.nd 
00 

(v + oo) 

(4) f(e u) = J S(uv)e-v dv, 
0 

PROOF. For v ~ I we have 

(5) IS(v)I s E 
n<v 

(u > O). 

E 
!Sn<v 

nla I n ---n 

s la 0 i + G E n s ia 0 1 + G(l + log v) 
lsnsv 

proving the first assertion. 

For u > 0 we have 
I 

00 
n 

00 
t 

(6) f(e u) E 
u a e 

n=O n I u dS(t) e 
0 

t t 
00 00 

e us< t > I::·~ + ! I S(t)e u dt I -v S(uv)e dv 
0 0 

proving the second assertion. 0 

DEFINITION. A function ~ 

lating if 

(x 0 , 00 ) + ~ is called slo~ly osail-

(7) i~(px) - ~(x) I < E 

for all p ,x satisfying s p < 1+0 and x ~ N . 
E E 

EXAMPLE: log x is slowly oscillating on (O,oo), 

LEMMA 4. S(x) -i.-6 -6£..owly o-6 c.-i.£..£..a.:Un9 • 

PROOF. Let E € (O,I) be given. Then, for p ~ and 

(8) ls(px) - S(x)I s E la Is 
xsn<px n 

E 
xsnspx 

s G E ..!.. s G(log p + min ( 1 ,..!..)) • 
n x 

xsnspx 

6 
E and 2G 

Now choose -I + exp(2G) N -
E E E 

x > 0, 

Ina I __ n_ s 
n 

25 
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Then ls(px) - S(x)I <£for all p,x satisfying I,,; p < l+o£ 

and x ~ N£, proving that S(x) is slowly oscillating. D 

LEMMA 5. S(x) iJ.i bounded. 

PROOF. 

(9) lf(e x) - S(x)I If S(xv)e-v dv - J S(x)e-v dvl 5 

0 0 

$ J e-vls(xv) - s <x> I dv = 
0 

J e-vl l: a I dv + J e-vl l: a I dv $ 

vx5n<x n 
x5n<vx n 

0 

5 G J (! + llog vl)e-v dv =: K. 
0 I 

Hence IS(x)I 5 K+lf(e x)I and since lim f(e x) exists it 

follows that S(x) is bounded. D x+oo 

After these preparations the reader will have no difficulty to 

see that Littlewood's theorem is a straightforward consequence 

of the following (general) Tauberian 

THEOREM I. (Pitt) 16 the meaJ.iu~able 6un£tion S(v) i;., bounded 
and ;.,lowly oJ.ic.illating on (O, 00 ) and in f e -v S (uv) dv + 0 aJ.i u + 00 

then lim S(v} = o. o 
v+oo 

The proof of this theorem will be given in Chapter II. 

One may try to generalize this theorem by replacing the kernel 
-v I e by some other kernel k(v} E L (0, 00 }. The result would read: 

16 S (v) i;., bounded and J.ilowly oJ.ic.LUating on (O, oo} and i6 
00 . 1 

lim J k(v)S(uv) dv = 0 60~ J.iome. k EL (0, 00 ), the.n li~ S(v) O. 
u+oo 0 v+oo 
In order to investigate the question whether this is a true 

theorem indeed we suppose that there 
00 xoi 

J v k(v) dv = O. 
0 

Observing that the function a(v1 

exists an x 0 E R such that 
xoi 

:= v is 

bounded and slowly oscillating and that 

(I 0) 
00 xoi 

J a(uv) k(v) dv = J (uv) k(v) dv 
xoi 00 xoi 

u J v k(v) dv = O 
0 0 0 

we certainly have 

( I I ) lim J a(uv} k(v) dv o. 
u +oo 0 
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However, 
xoi 

a(v) = v does not tend to zero as v + 00 • Hence, in 

order to obtain a correct theorem we certainly have to stipulate 

f 00 xi 
that v k(v) dv ~ 0 for all x E R. It was shown by Pitt that 

0 
we get the following 

THEOREM 2. (Pitt) In S{v) i-0 bounded and -0lowly o-0eillating on 

(0, 00 ) and in lim r k(v) S(uv) dv = 0 nOJt Mme k E LI (0, 00 ) 

0 
6 ati6 6 ying u+oo 

(I 2) J V xi k(v) dv ~ 0 x E R 

0 

then 

(I 3) lim S(v) o. 
v+oo 

In accordance with the introductory character of this chapter 

we will not prove this theorem here but defer its proof to 

Chapter 11. 

It should be remarked that, from the historical point of view, 

Pitt's theorem was discovered after Wiener had built up his 

general Tauberian theory which will be introduced in the next 

chapter. 
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CHAPTER 5 

INTRODUCTION TO WIENER's GENERAL TAUBERIAN THEOREM 

I. FIRST APPROACH 

In Chapter 3 we already mentioned that Cesaro-summability 

implies Abel-summability. The converse, however, is not general
ly true as may be seen from an example as described in Knapp's 

Theo~ie und Anwendung de~ unendliehen Reihen, pp. 516-517. 

If we impose some (Tauberian) condition on the terms of the 

series in question, then the statement "A-summable => C-summable" 

may be true. In this vein we have the following Tauberian 

THEOREM J. 16 n~O an 

Sn := a 0 +a 1 + ... +an 

:to s. 

i~ Abel-~ummable :to :the ~um s and 16 
i~ bounded, :then n~O a 

n 

PROOF. Without loss of generality we may assume that a 0 = 0 and 

( 1 • J ) w 
n 

(n+l)Sn - (S 1 + s 2 + ... +Sn) 

from which it follows that wn = O(n) as n + 00 • 

Defining vn 

Writing 

w 
n 

:= n(n+I)' we thus have vn 0(_!_) as 
n 

... +na so that 
n 

n + oo 

(I • 2) f(x) i:: 
n=l 

n a x 
n 

and g(x) i:: 
n=J 

n+l v x (jxl <I) 

we have 

( 1 • 3) 

so that, 

(I. 4) 

g(x) + (1-x)g'(x) 

since 

w 
n 

i:: n(n+I) 
n=I 

w 
i:: 

n 
n+I n=l 

s o, 

x 

n+l 
x + 

n+l + 

g(x) + (J-x)g' (x) 

or, equivalently, 

i:: 
n=l 

i:: 
n=J 

w n n x -
n 

w n n x 
n 

o ( I ) , (x 

i:: 
n=l 

i:: 
n=l 

n 

n 

w 

t J ) 

-w n-1 n n 
f(x) x n 



(I • 5) 
d g (x) 

dx !=X 
o (I ) 

2 ' (1-x) 
(x t I). 

Integrating this result over [0,t] with 0 < t < I we obtain 

(I. 6) 

or 

(I . 7) 

Since v 
n 

(I. 8) 

Observing 

(I. 9) 

g(t) 
1-t 

g(t) = 

0 (..!_) it 
n 

E v 
n=I n 

that (see 

N 
E 

n=I 
v 

n 

N 
E 

n=l 

it follows that 

(1.10) 

I 
0 <1-t> 

o ( I ) , 

follows 

= 0. 

(I.I)) 

(t t I ) 

(t t I ) . 

from Littlewood's 

N 
E 

n=l 

Sl+S2+ +SN 
--__,.N,...+"""'1,---

E 
n=l 

v = o. 
n 

theorem that 

Hence E a is Cesaro-summable to the sum 0, completing the 
n=I n 

proof. D 

In the above theorem the condition (A) nfo 

be expressed as 

(I.II} 

or 

(1.12) 

or 

(1.13) 

( 1-r) 

( 1-e 

E 
x n=O 

E s n + r 
n=O 

n 

x) E s e 
n=O 

n 

n 

S e x + S, 
n 

s' (r t 1 ) 

n 
x + s' (x + 

(x + oo). 

Hence, Theorem 1 may also be formulated as 

00 n 

a 
n 

"') 

THEOREM 2. I 6 ..!_ E s x s, (x <X>) ' and in e + + 
x n 

n=O 
I N 

(i. e. s 0(1)), :then N E s + s' (N + 00) • 
n n=O n 

S may also 

s L!> bounded 
n 

29 
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The integral version of this theorem reads 

THEOREM 3. 16 F(x) i-0 bounded and mea-0u~able on (0, 00 ) and 
t 

(J.14} J e x F(t) dt + L, (x + oo) x 
0 

:then 

x 
(1.15) 

x J F(t) dt + L, (x + oo). 

0 

We will not prove this theorem here but use it as an introductory 

means for Wiener's theorem, of which it is also a consequence. 

We reformulate Theorem 3 by means of the following functions 

(1.16) 

Now the 

(h) 

and its 

( c) 

hypothesis 

00 

-t 
e and 

in Theorem 

_!__ J G (!) F ( t) dt x I x 
0 

aonalusion as 

3 may 

+ L f 
0 

if 
if 

be written 

G I ( t) dt, 

_!__ I G (!) F(t) dt + L J G2(t) dt, x 2 x 
0 0 

By means of the transformations 

0 s t s I 
t > l 

as 

(x + 00) 

(x + oo). 

(1.17) ; T T T T x=e ; t=e ; F(e )=f(T}; e G.(e )=g.(-T), 
J J 

(j=l,2) 

Theorem 3 may thus be put into the following form (after having 

replaced ~ by x, and T by t). 

THEOREM 4. 16 

(1.18) f g 1 (x-t) f(t} dt + L f g 1 (t) dt, (x + oo) 

and i6 f i-0 bounded on R, :then 

(1.19) (x + oo}. 

We are thus led to ask the question under which conditions on 

g 1 and g 2 Theorem 4 still holds true. Wiener discovered that 

there is a general condition on g 1 which almost enables us to 

dispense with any condition on g 2 . Wiene~'-O condi:tion i-0 :that 
:the Fou~ie~ :t~an-06o~m 06 g 1 dae-0 no:t vani-Oh on R. 
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This condition is suggested by the theory of Fourier transforms 

of functions of the class L1 (R). In order to illustrate this we 

write P(g,f) for the property 

(1.20) f g(x-t) f(t) dt + L f g(t) dt, (x + oo) 

where L is some complex constant. 

Assuming that P(g,f) holds true and defining h R + a: by 

n 
h(x) = E 

m=l 
(1.21) r g(x-a ), 

m m 

we see that P(h,f) also holds true. This suggests that, with 

proper precautions, that P(h,f) also holds true in case h is 

defined by 

(I • 22) h(x) := j r(u) g(x-u) du. 

We are thus led to ask whether, given g € L 1 (R), an arbitrary 
1 

h € L (R) can be represented as h = r * g where * denotes 

the convolution product. 

For r € L 1 (R) the Fourier transform r is defined by 

(1.23) := J r(u) 
-itu 

e du. 

By a well known property of Fourier transforms it is thus re

quired that 6(t) = ~(tl·i(t) for all t € R. Hence, if we want 

to express h as r * g for some r, then we are led to take r 
- -

such that r(t) = h(t)/g(t) and r itself (in some sense, by the 

inversion formula for Fourier transforms) such that 

"" 
(1.24) r(x) = 2~ J ~(t} eitx dt. 

It seems that this formal procedure can only be successful if 

g(t) # 0 for all t € R. 

We define W(R) as the class of all functions belonging to L1 (R) 

whose Fourier transforms do not vanish on R. If g € W(R} and 

h € L 1 (R) are given, the equation h = r * g may still not be 

solvable, but we can solve this equation approximately (details 

will be given later), and this will be sufficient to prove 
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(Wiener's general Tauberian) THEOREM. In g 1 E W(R) and f E BM(R) 

(i.e. f is bounded and measurable), then 

(1.25) P(g 1 ,f) ~ P(g 2 ,f) 

non all g 2 € L 1 (R). 

We will return to this subject in Chapter 8. 

2. SECOND APPROACH 

Another way of looking at Wiener's theorem is the following. 
I 

From the assumptions f E BM(R), g EL (R) and 

( 2 • I ) f g{x-t) f {t) dt + L f g(t) dt, (x + oo) 

we want to conclude (under suitable conditions) that 

"' 
( 2. 2) f g*(x-t) f(t) dt + L f g*(t) dt, (x + oo) 

* l for every g EL (R). 

Let, for any function g 

by 

R + O:, the translate g be defined 
a 

( 2. 3) g (t) := g(t+a), 
a 

where a is some real number. 

(t € R) 

* Clearly (2.2) holds true if g is a finite linear combination 

of translates of g, i.e. for any h of the form 

N 
LI (R)). ( 2. 4) h := L c ga ' 

(c € 0: ; a € R; g € 

n=l n n n n 

Let T be the set of all these functions h. It is easy to see 

that ~2.2) also holds true for all functions in L 1 (R) which can 

be approximated (in the norm of L1 (R}) arbitrarily close by 

functions from T . Hence, the question arises under what g 
conditions one has that the set T is dense in L 1 {R). In other g 
words: when 

LI {R) ? The 

is the closure T of T equal to the whole space g g 

(2.5) 

In Chapter 8 

answer is 

T = L I (R) ~ g € w (R) • 
g 

we will see that this 

Wiener's general Tauberian theorem 

LITERATURE: WIENER, N. ' The Foun-len 
-l:tJ.i Appl-lc.a:t-lonJ.i, Cambridge 

statement is equivalent to 

described in Section I . 

T n:tegnal and c.en:ta-ln on 
Univ. Press, ] 933. 
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CHAPTER 6 

FOURIER TRANSFORMS 

I. THE SIMPLEST PROPERTIES OF FOURIER TRANSFORMS 

As usual we denote by LI(R), or briefly LI, the set of all 

Lebesgue measurable functions f : R + ~ for which f lf(x) I dx -oo 
is finite. For f E L1 we define the Fourier transform f of f by 

(I • I ) f(x) := J eixt f (t) dt, (x E R). 

PROPOSITION I.I. f i~ bounded on R 6on eveny f ELI. 

PROOF. lf(x)I =I Jeixt f(t) dtl :> jleixt f(t)I dt 

flf<t)I dt < 00 

Hence 

sup lf(x)I :> flf(t)I dt 
XER 

a result that is usually written as 

(I. 2) 

PROPOSITION I.2. f E C(R) 6on eveny f ELI. (C(R) denotes the 

set of all continuous complex functions on R.) 

Before proving this proposition we recall 

LEBESGUE's DOMINATED CONVERGENCE THEOREM (LDCT, for short): 

I6 f E LI fion all n EN and i6 the~e exi~t~ an F E L 1 ~ueh that 
n 

If (x) I :> F (x) 
n 

a.e. on R 

and i6 

lim f ( x) f(x) 
n+oo n 

a.e. on R 

then f E LI and 

llm ff (x) dx 
n+oo -oo·n 

ff(x) dx. 



34 

PROOF OF PROPOSITION 1. 2. For real x and h we have 

(I. 3) f(x+h) f(x) f eixt(e iht -1) f(t) dt -

so that 

00 

iht (I . 4) If (x+h) - £ <x) I ~ J le -1 I If< t) I dt. 

Now observe that 

(I. 5) 

and that for 

(I. 6) 

so that, by 

(I • 7) 

1 e i h t -1 I If tt) I ~ z If< t) I , 

every real sequence h 00 

{ n}n=l with lim 

ih n+oo t 
lim le 

n 
-I I If< t) I o, a. e. 

n+oo 

LDCT, 

lim J leiht_I I lf(t) I dt = J 0 dt = O. 
h+O -

h 

It follows that f is (uniformly) continuous on R. D 

PROPOSITION I. 3. 

n 0 

the set of all continuous functions w on R which vanish at 
infinity, i.e. for which lim w(x) = O.) 

1x I +co 

Before proving this proposition we recall that if f E L 1 then 

(I • 8) lim J lf(x+t) - f(x)I dx = 0. 
t+O 

This property may also be formulated as follows. For a ER and 
f E L 1 let the a-translate f off be defined as before (p. 32): a 

(I • 9) f (x) = f(x+a), a 
(x E R) 

and let the map cpf : R + L 1 be defined by 

(1.10) 
I (a E R; f (fixed) E L ) . 

Property (1.8) may then be stated as 

lim lift - fll 1 = lim llcpf(t) - cpf(O)ll 1 = 0 
t+O t+O 

(I. I I) 

which is equivalent to saying that the map cpf is continuous 
at t = O. (Actually, cj>f is continuous on all of R,) 



PROOF OF PROPOSITION 1.3. We only need to show that 

By definition we have 

(1.12) f(x) = J eitx f(t) dt 

so that, for x ¥ 0, 

(I.13) 
'JTiA 

-f(x) = e f(x) 

From this it follows that 

co 

ix(t+:!!:) 
J e x f(t) dt 

(I.14) 2f(x) = J eixt {f(t) - f(t-:!!:)} dt 
x 

so that 

(I.IS) Zlf(x)I $ 

lim f (x) 
I xl +co 

Now let lxl tend to infinity and the proposition follows. D 
I 

REMARK. The fact that for every f E L 

(I.16) lim f(x) = 0 
I xJ +co 
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is usually known as the Riemann-Lebesgue lemma (RLL, for short). 

From Proposition 1.3 one should not conclude that f E L 1 for 

o. 

1 -t 
every f E L • Let, for example, f (t) = e for t ~ 0 and f(t) 0 

fort< O. Then f(x) = (1 - ix}-l and it is clear that f ~ L 1 • 

We have shown that if f E L1 then f is continuous on R and f 

vanishes at infinity. It seems natural to ask whether every 

function with these two properties is the Fourier transform of 

some function in L 1 • That this is not the case in general may be 

shown by the following example. Let g : R + R be defined by 

(log 
-I 

if x) x > e 

(I.17) g(x) { ~ if 0 $ x $ e 
e 

-g(-x) if x < 0. 

Clearly g E c 0 (R). For a proof that g is not the Fourier trans

form of any f E L1 we refer the reader to GOLDBERG[!; pp. 8-9]. 
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2. FOURIER-INVERSION (Recovering f from f) 

We continue the general theory of Fourier transforms by invest
igating the question whether and how one can determine the 
function f if f is given. We begin by recalling a theorem from 
the theory of Fourier series. 

THEOREM. (Dirichlet) 16 the 6unction f i4 06 bounded va4iation 
on the inte4val [ 0' 0 J 604 4ome 0 > O, then 

I 
0 

sin Rt I I ( 2. I) lim - f f(t) dt = 2 lim f(t) =: Zf( +O). 
1T t 

t+O R+oo 0 

PROOF. See any textbook on Fourier series. D 

As an easy consequence we have the following 

THEOREM. (Jordan) 16 f € L 1 and i6 f i4 06 bounded va4iation 
on 4ome neighbo4hood 06 the point t 0 , then 

(2.2) 
1 R -ixt 0 f(t 0 +o) + f(t 0-o) 

lim ~ J e f(x) dx = 2 R+oo 21T -R 

COROLLARY. I6 f € LI and f i4 06 bounded va4iation on a neigh-
bo4hood 06 to and f i4 continuou4 at to, then 

R -ixt 0 
( 2. 3) f(t 0 ) 2iT lim f e f(x) dx. 

R+00 -R 

We thus have found a set of conditions under which it is possible -to recover f from the values of f. In order to obtain more 
significant results concerning the Fourier inversion problem we 
introduce the following 

DEFINITION. If the function g is integrable on [-R,R] for 
every R > O, then the integral f 00 g(x) dx is said to be Cesaro--oo 
integrable (or C-summable) to the value A if (compa4e p. 22) 

(2.4) lim j (I-~) g(x) dx = A. 
R+oo -R R 

PROPOSITION 2.1. The Ce~a4o-4ummability p4oce44 i4 negula4. 
In othe4 wo4d4: I6 g € L 1 and£: g(x} dx = A,then £: g(x) dx i4 
al4o C-4ummable to the value A. 



PROOF. For any R > 0 let gR be defined by 

(I- hl) g(x) if Ix! ~ R 

(2.5) gR(x) = { R 

0 if Ix! > R. 

Then 

( 2. 6) 

and 

( 2. 7) lim gR(x) = g(x) for all x e R. 
R+co 

Hence, by LDCT,we have 

( 2. 8) lim J gR (x) dx 
R+co -co 

J g(x) dx A 

or, equivalently, 

lim j (1- l~I) g(x) dx 
R+00 -R 

( 2. 9) A 

proving the proposition. D 
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From the theory 

re s u 1 t : I 6 f ic 
of Lebesgue-integration we borrow the following 

integnable on [-R,RJ 6on eveny R > o then 

( 2. I 0) lim 
I h 
h J lf(x+t) - f(x)I dt = 0 

0 h+O 

6on almoct all x e R. 

DEFINITION. The set of points for which (2.10) holds true is 

called the Lebesgue set off e L1 • 

It is clear that the Lebesgue set of f contains all points at 

which f is continuous. It should be emphasized that if f e 1 1 

then the complement of the Lebesgue set of f has measure 0. 

THEOREM 2.1. I6 f e L 1 and in u belong'-> to the Lebecgue cet 06 

f,then 

lim ~1 j (1- hl) 
R+co 21T -R R 

(2.11) 
-iux h 

e f(x) dx = f(u). 

Henee, thic invencion nelation hold'-> tnue 0on 

(a) almoct all u e R 

(b) all point'-> u at whieh f i'-> eontinuou'->. 
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Before proving this theorem we state two important theorems 
which we will use on several occasions. 

( 2. I 2) J J jf(x,y)I dxdy 

i-0 6inite, then f(x 0 ,y) belong-0 to L 1 (R) fio!t almo-0t all x 0 ER. 

Mo!teove!t, the fiunetion g : R + ~ defiined by 

( 2. I 3) g(x) := J f(x,y) dy 

belong-0 to LI (R) and 

( 2. I 4) J g(x) dx J J f(x,y) dxdy. 

Simila!tly f(x,y 0 ) belong-0 to LI (R) 60'1. almo-0t all y 0 E R and 

( 2. I 5) J {f f(x,y) dx} dy = J f f(x,y) dxdy. 

THEOREM. (Tonelli-Hobson) I6 f : R 2 + ~ i~ ~ueh that f(x 0 ,y) 
belong~ to L 1 (R) fio!t almo~t all x 0 E R (0'1. i6 f (x, y 0) belong-0 
to L 1 (R) 60'1. almo~t all y 0 ER) and i6 

( 2. I 6) g(x) := J f(x,y) dy (Oft h(y) := J f(x,y) dx) 

(2.17) J J f(x,y) dxdy = J {j f(x,y) dx} dy = J {j f(x,y) dy} dx. 

PROOF OF THEOREM 2.1. For R > 0 and u ER we define 

( 2. I 8) ( ) ~I Rf (I- !xl) -iux f(x) dx = SR u : = 21T -R ~ e 

ixt e f ( t) d t) dx 

R co I = ~1 J ( J (I- jxR )e-ix(u-t) f(t) dt) dx. 
21T -R 

Now observe that for every x 0 E [-R,R] 

Jx 0 J -ix0 (u-t) 
( 2. I 9) (I - -R-) e f ( t) 

belongs to L1 as a function of t and that 



(2.20) J (I- l;l)e-ix(u-t) f(t) dt 
-oo 

(being a continuous function of x on [-R,R]) belongs to L 1 . 

Hence, by the Tonelli-Hobson theorem, we obtain 

"' R 
Ix!) -ix(u-t) 

(2.21) SR(u) = 2~ f f(t) ( J (I - -p:- e dx) dt. 
-oo -R 

Since 

(2.22) j (I- ~)e-ix(u-t) dx 2 I-cos R(u-t) 
(~ O) 

2 -R R R(u-t) 

it follows that for all u E R 

"' "' I-cos R(u-t) I = .!_ J f(u-t) I-cos Rt 
(2.23) SR(u) = 1T f f(t) 2 dt 

Rt2 
dt. 

TT -oo R(u-t) -oo 

This may also be written as 
0 

(2.24) SR(u) .!_ ( f + J ) f(u-t) 1-cos Rt dt 
TT Rt2 

0 

- J (f(u+t) + f(u-t)) I-cos Rt dt. 
TT 0 Rt2 

Since 

I-cos Rt I-cos a 1-cos 
(2.25) J dt f v dv lim f v dv 

Rt 2 2 2 
0 0 v a+oo I v -a 

a sin v 
+co 

sin 
lim (-

J 
v) I~ I a J dv) J 

v 
-(I-cos + 
v J v v 

a+co 0 
a 

it follows that for any positive ll 
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dv=~ 
2 

(2.26) SR(u) - f(u) J (f(u+t} + f(u-t) - 2f(u))I-cos Rtdt= 
TT 0 Rt2 

Defining 

(2.27) 

ll 
.!_( J + J )(f(u+t) + f(u-t) - 2f(u)) 
TT 

0 ll 

<Pu (y) = If (u+y) + f (u-y) - 2f (u) I 

I-cos Rt dt 

Rt 2 

it is clear that <Pu is integrable over [0,t] for every t > 0 

so that we may define 
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t 
(2.28) <P (t) = J cpu(y) dy, 

u 0 
( t > 0). 

Now suppose that u belongs to the Lebesgue set of f. Then 

t 
(2.29) lim <Pu ( t) = lim _!_ J Jf(u+y) + f(u-y) - 2f(u) I t t 0 uo t+O 

t 
$ lim t J (if(u+y)-f(u)J + J f(u-y)-f(u) I) dy 

t+O 0 

Hence, given E > O, we may choose o such that 

(2.30) (O < t $ o) 

or, equivalently, 

( 2. 3 I) (O<t$o). 

Choosing R 1 such that R < o we have 

(2.32) 
0 

J11I 1 1 $ f Jf(u+t) + f(u-t) - 2f(u)il-cos Rt dt 
Rt 2 

Since 

( 2. 33 )_ 

and 

(2.34) 

it follows 

(2.35) 

0 

R: o 
J + J ) cpu(t) 
0 I 

R 

R 

1-cos Rt dt 
Rt2 

~(Rt) 2 
R R I I $ f cpu(t} 

Rt 2 
dt ~ f cp u ( t) dt 1 

0 2 0 

R <P (_!_) $ E 
2 u R 2 

0 
2 2 I o I" $ J cp u ( t) 

Rt 2 
dt <Pu(t)_--2 I + 4 I I Rt R 

R: 
2<P u(o) 

2R<Pu(-~) 
0 <P ( t) 

R02 
- + 4 J _u __ dt $ 

I Rt 3 

R 

2E 0 
dt $ R5 + 4E J 

Rt 2 
< 2E + 4E 6E 

I 

that i 

I 11 I 1 I E 
6E 

13E < - + -2-2 

0 <Pu ( t) 
J ~ 

dt 
I 

R: 

dy $ 

0. 



An estimate for 1 2 is 

2 "'J cj>u(t) 
!1 2 1 ~ 7TR - 2- dt 

0 t 
(2.36) 

and since 

"' cp ( t) I _u __ dt < "' 

0 t 2 
(2.37) 

it clearly follows that lim 1 2 = 0. 
R+oo 

Combining our results we obtain 

(2.38) 
13£ 

lim sup lsR(u)-f(u)I ~ lim sup !11 I + lim sup II2 1 ~ -z1f 
R+<» R+<» R+<» 
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and since £ > 0 may be chosen as small as we please it follows 

that 

(2.39) lim SR (u) = f (u) 
R+"' 

for every u in the Lebesgue set of f, proving the theorem. D 

COROLLARY. 16 f and f belong to L 1 and 16 f 1~ eont1nuou~ at u, 

then 

(2.40) f(u) f (x) dx. 

PROOF. Since f E L1 the above integral is certainly C-summable and 

(2.41) J e -iux f(x) dx = - 1- lim j (1- ~)e-iux f(x) dx. 
2 1T R+oo -R R 

Since f is continuous at u, this point belongs to the Lebesgue 

set of f and the assertion follows by 

LI 
A 

THEOREM 2. 2. 16 f € and f - 0 then 

au t ER. 

PROOF. By Theorem 2. l it follows that 

Lebesgue set of f. Hence, f can only 

measure 0. D 

COROLLARY. 16 f,g € L 1 and 16 f(x) 

f(t) = g(t) 60~ almo~t all t ER. 

the previous theorem. D 

f(t) = 0 fiO!L almo~t 

f(t) = 0 for all t in the 

differ from 0 on a set of 

g(x) fio~ all x E R, then 

PROOF. The Fourier transform of f-g is f-g - O. Hence f (t) - g(t)= 

= 0 for almost all t E R. D 
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COROLLARY. Two 6unetion6 in L1 whieh di66e4 on a 6et 06 po6itive 
mea6u4e have di6tinet Fou4ie4 t4an66o4m6. 

THEOREM 2.3. 16 £ i6 integ4able ove4 [-R,RJ 604 eue4y R > o and i6 

7 1£(t)! dt <co 
-co I + t 

(2.42) 

then 

(2.43) I J I-cos R(u-t) dt lim - f(t) 
R +co 1T - co R ( u - t ) 2 

f(u) 

604 almo6t all u E R. 

PROOF. Case I. f E LI 

In this case we have (see the proof of Theorem 2.1) 

(2.44) SR(u) = ..!_ J f(t) I-cos R(u;t) dt for all u ER. 
1T -co R(u-t) 

Since 

(2.45) lim SR(u) = f(u) for all u in the Lebesgue set of f, 
R->-co 

and hence for almost all u ER, the proof is complete in case f E L1 . 

Case 2. For any s > 0 define f by s 

{ 
f(t) if It I 5: s 

(2.46) f ( t) s 
0 if It I > s. 

Then 

2 
(2.47) If < t) I 5: ~lfCt)I, Vt E R s l+t 2 

so that f E LI. 
s 

Hence, by case 1 ' 

(2.48) 1 im ..!_ J f ( t) I-cos R(u-t) dt f (u) 2 R+co 1T -co s R(u-t) s 

for almost all u E R. 

From this and the definition of f it is clear that s 
s 1-cos R(u-t) (2.49) lim J f(t) 

2 dt = 1Tf(u) 
R+co -s R(u-t) 

for almost all u E [-s,s]. 

Now observe that, for -s < u < s ' 

(2.50) I J f(t) 
I-cos R(u-t) 

dtl 5: ~ J If< t) I 
dt 2 2 It I <=s R(u-t) Rltl<=s (u-t) 
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I f lf<t)I 
2 2K 00 

lf<t)I I + t dt s I dt ,.;; 

R It I ;::s t2 2 R t2 I + (u-t) -oo I + 

where K is a number satisfying 
s 

(2.5I) I + t2 
K <I t I s) • 2 

,.;; 
s' 

;:: 

(u-t) 

It follows that for every u E (-s,s) 

(2.52) lim ! J f(t) I-cos R(u-t) dt 

R+oo n lt!;::s R(u-t) 2 
0. 

In combination with (2.48) we thus have 

(2.53) lim ! j f(t) I-cos R(u-t) dt = f (u) 
R+oo n -oo R(u-t) 2 

for almost all u E (-s,s). Since s may be chosen as large as 

we please, the theorem follows. D 

3. CONVOLUTION PRODUCTS OF FUNCTIONS IN LI 

We recall that if f and g belong to L 1 (R) then the function 

( 3. I ) f(x-t)g(t), (t E R) 

is measurable for every x E R. Moreover, this function is inte

grable (i.e. belongs to LI) for almost all x ER, so that we can 

define 

( 3. 2) h(x) := J f(x-t)g(t) dt 

for almost all x E R, namely for all those x E R for which 

(3.3) J !fCx-t)g(t) I dt < oo 

By means of Fubini's theorem it may be shown (see RUDIN [2; 

pp. 146-I47]) that the function h belongs to LI. For h we will 

write f * g, the so called convolution product of f and g. 

The reader may verify that the binary operation * satisfies the 
I 

commutative and associative laws, i.e. for f,g,h E L we have 

(3.4) 

and 

(3.5) (f * g) * h = f * (g * h). 

Another important property of the convolution product is 
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(3. 6) 

One of the most intriguing properties of the convolution product 

is expressed in the following 

THEOREM 3.1. Fon f,g € L 1 we have (f * g) f·g. 
In mane venbal language: The Founien tnan~6onm 06 the eonvolution 
pnoduet f * g i~ equal to the pointwi~e pnoduet 06 the Founien 
tnan~6onm~ 06 f and g. 

PROOF. This is a direct consequence of the Tonelli-Hobson theorem. 

For any x E R we have 

(3. 7) f(x)•g(x) J eixt f(t} dt)( J ixu e g(u) du) 

J g(u){ J eix(u+t) f (t) dt} du 

and since the Tonelli-Hobson theorem applies to the function 

(3.8) g(u)f(t)eix(u+t), ( (u,t) E F. 2 

the above iterated integral equals 

(3.9) J g(u){ j eixt f(t-u) dt} du 

J eixt{ J f(t-u)g(u) du} dt 

~ j eixt (f * g)(t) dt ( f * g) (x) 

proving the theorem. 0 

4. APPROXIMATE IDENTITIES 

We note that there is no identity element (in L 1 ) with respect 

to the binary operation*· For if there were a d E L 1 such that 

( 4. I ) d * f = f, for all f E L 1 

then we would also have 

(4.2) 

and hence, by Theorem 3.1, 

(4.3) or (d (x)) 2 d(x) for all x E R. 
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It follows that d can only assume values in the set {O,I}. 

However, we know that d is continuous on R and thatj}~4'1cod(x)=O 
so that we must have d(x) = 0 for all x E R. Hence, d(x) = 0 for 

almost all x E R; but then it is impossible to have d * f = f 

for all f E L 1 

Therefore we introduce the notion of approximate identity 

(app. id., for short). 

DEFINITION. An approximate identity is a non-negative sequence 
co I 

{dn}n=l in L having the· properties II d 11 1 = 1, and d * f + f, n n 
as n + co, the 

I 
limit being taken with respect to the usual 

L -norm, i.e. 

(4.4) limll(d *f)-fll1=0. 
n n+co 

In the sequel we will frequently make use of the following two 

functions (in L 1 ) 

c-ltl if It I ~ 

( 4. 5) Li ( t) = 
if It I > 1 

and 

( 4. 6) O(t) 1-cos t ( t E R). 
'JI t2 

LEMMA 4. 1. Li 2110 a.nd o = Li. 

PROOF. Clearly Li is an even function so that 

co 
~ ixt ( 4. 7) Li (x) J e Li ( t) dt 2 J Li ( t) cos xt dt 

0 
l 

= 2 J (] -t) cos xt dt 2 (l-cos x) 
2110 (x) 2 

x 

proving the first assertion. 
~ I 

Next observe that li,Li E L and that Li is continuous on R so that 

by the corollary on page 41 

( 4. 8) Li ( u) - 1- f e-iux 6(x) dx = J e-iux o(x) dx. 
211 -co 

Since Li(u) Li(-u) for all u E R it follows that for all u E R 

co • 

( 4. 9) Li ( u) J e 1 ux o(x) dx 

~ 

proving that Li 0. D 
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It will also be convenient ta have at our disposal the functions 

(4. I O) A ( ) A (~) "'R x := "' R and oR(x) := Ro(Rx) with R > O. 

PROOF. For every R > 0 we have 

(4.11) OoRl1 = ~ 7 1~edr Rt dt = I 
ir 0 Rt2 

as was shown in the proof of Theorem 2.1. -Since !::. = o we have 

00 i!t 
x f R l::.(R) = e o(t) dt ~ (4. 12) j eixu Ro(Ru) du = I eixu oR(u) du 

-oo -oo 

proving the second assertion. 0 
Note that /::.R is a Fourier transform indeed. 

Before proving one of our main results we recall the following 

LEMMA. (Fatou) Fo4 any 4equenee {fn}:=l 06 non-negative 
mea4u4able 6unetion4 on R one ha4 

00 00 

( 4. 13) I lim inf f (x) dx s; lim inf f f (x) dx. n n -oo n+oo n+oo 

We are now able to prove that {on}:=l is an app. id .• 

THEOREM 4.1. Fo4 eve4y f € L 1 we have 

n+oo 
lim Do 

n * f - fD1 = 0. (4. 14) 

PROOF. For every positive integer n we have 

(4.15) (o * f)(u} = ! Y f(t) 1-eos n(u~t} dt 
n ir -oo n(u-t} 2 

so that by Theorem 2.3 

(4.16) lim (on * f) (u) 
n+oo 

f(u) 

for almost all u E R. 

Next observe that (applying Fatou's lemma to fn := on* f) 

00 

(4.17) 8fB1 = J if(u}I du= J lim l<o * f)(u)i du s; 
n 

-co n+oo 

00 

s; lim inf J I (o * f)(u) I du n n+oo -oo 

from which it follows that 

lim inf Do * fH1 n n+oo 



( 4. 18) DfR1 s lim inf Uc 
n * f0 1 • 

n+co 

Since Do 11 = I and Do * fD1 s Ho 01 ·HfH1 it follows that n n n 

(4. 19) lim sup Do * fH1 s HfD1. 
n n+co 

Combining (4.18) and (4.19) we thus obtain 

(4.20) lim Ho * fH1 = DfD1. n n+co 
Since in addition 

(4.21) lim ( c5 * f) ( u) = f(u) for almost 
n+co n 

it follows that (for details see GOLDBERG [ I ; 

(4.22) lim n < o * f) - fll 1 = 0 n n+co 
completing the proof. D 

all u E R 

p. 4]) 

5. EXISTENCE AND CONSTRUCTION OF CERTAIN FOURIER TRANSFORMS 

In the previous section we saw that the function ~ •f (which 
n 
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vanishes outside the interval (-n,n)) is the Fourier transform 

of c5 *f so that any f E L 1 can be appromimated arbitrarily close 
n 

(in the L 1-norm) by a function (in L1 ) whose Fourier transform 

vanishes outside some bounded interval. Below we shall show that 

for any bounded interval [a,b] there is a function in L 1 whose 

~ourier transform is identically l on [a,b] and identically 0 

outside a slightly larger interval. 

THEOREM 5.1. Given any neal numben~ a,b and h ~ueh that a< b, 

h > o, thene exi~t~ a w E L 1 ~ueh that 

( 5. I) 
{:(x) = l 

w(x) = 0 

for a s x s b 

for x s a-h and x ~ b+h 

whenea~ w i~ linean on the intenval~ [a-h,a] and [b,b+h]. 

1 
PROOF. Let c = z(b-a). We already know that for every R > 0, 

~R is a Fourier transform so that also 

(5.2) 

is the Fourier transform of some w1 E L1 From the graphs of 

(c+h)~c+h and c~c it is easily seen that 

(5.3) -- {QI ;l(x) 
for -c s x s c 

for x s -c-h and x ~ c+h 
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and that ~is linear on [-c-h,-c] and [c,c+h]. 

Now let 

(5.4) 
- ~(a+b)it 

w(t) := e w1 (t), (t e: R) 

so that by an easy computation 

(5.5) w(x) = wl(x - ~(a+b}). 

Hence 

(5.6) for 1 -c s x - 2 ca+b) s c 

which is equivalent to saying that (recall the definition of c) 

(5.7) w(x) = 1 for a s x s b. 

The reader will have no difficulty to complete the proof. 0 

As an application we have 

THEOREM 5.2. 16 f € L1 , f(O) = 0 and g > 0, then the~e exi-Ot.6 
an h e: L 1 -0ati-06ying the 6ollowin9 th~ee p~ope~tie-0 

(i) n hD 1 < g 

(ii) h(x) f(x) 6M all x in .&ome nbhd 06 0 

(iii) h(x) 0 16 f(x) = o. 

PROOF. By the previous theorem there exists a w e: Ll such that 

(5.8) ;(x) = I for lxl S I. 

Defining 

(5.9} wR(t) := Rw(Rt), (R > 0; t e: R) 

an easy computation shows that 

( 5. 1 0) 

so that 

(5.11) :f;or lxl s"R. 

Now observe that 

(5.12) (wR * fl (x) J wR(x-t)f(t) dt = 

co 

J wR(x-t)f (t) dt - wR(x) J f (t) dt = 



..• (since f (0) 0) ••• 

so that 

(5.13) f j(wR * f)(x)j dx s 

~ J J jf(t) I lwR(x-t) - wR(x) J dt} dx = 

(by the Tonelli-Hobson theorem) 

J jf(t)j{ J JwR(x-t) - wR(x)j dx} dt 
-oo 

= J jf(t)j{ J Rjw(Rx-Rt) - w(Rx) I dx} dt 

J jf(t)j{ J Jw(u-Rt) - w(u)j du} dt. 

In combination with the observation that 

(S.14) jf(t) J J Jw(u-Rt) - w(u) I du S 211wll1 · lf(t) I 

and 

(S.15) lim f Jw(u-Rt) - w(u) J du 
R-l-0 -oo 

it follows from LDCT that 

( 5. I 6) lim II w * f 111 = 0. 
R+O R 

Hence, we may choose R so small that 

(5.17) 

and for this R we define 

(5.18) h:= WR* f. 

0 

Then we certainly have II hll 1 < £ and since 

(5.19) 

it follows that 

(5.20) h(x) f (.x) for J .x I s R. 

49 
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From (5.19) it is also clear that h(x) 

completing the proof. D 
0 if f(x) o, 

For later use we prove 

THEOREM 5.3. The4e exi-0t-0 a g E L 1 -Oueh that 

g(x) > 0 if x > 0 

( 5. 2 I) 
{ g(x) 0 if x 5 o. 

PROOF. Define the functions g and G by 

(5.22) g(t) := I I 
(t R) z.rr (l+it) 2 ' 

E 

-x 
if > 0 

Ge 
x 

G (x) := 
if x 5 0. 

(5.23) 

I Then g and G belong to L and integration by parts yields 

(5.24) 

Observing 

on R, it 

G(x) 

that G 

follows 

= J te 
0 

A 

and G 

by the 

-t(l-ix) 
dt I 

= 
(l-ix) 2 

belong to Ll and that 

corollary on page 41 

(5.25) G(t) l OOJ -ixt A 

~ e G(x) dx = 
211 -oo 

-ixt ~ J e 211g(-x) dx 211 J e ixt 

and the theorem follows. D 

As a consequence we have 

211g (-x). 

G is continuous 

that for all t 

g (x) dx g(t) 

E R 

THEOREM 5.4. Fo4 any inte4val 06 the 6o4m (- 00 ,a], 04 [a,oo), 
the4e exi-0t-0 an h E L 1 -0ueh tha.t b. vani-Ohe-0 on the inte4val and 
doe-0 not vani-0h out-0ide the inte4val in que-0tion. 

PROOF. Let g be as in the previous theorem so that 

00 

eixt{e-iat (5.26) g(x-a) J g ( t) } dt. 

Define 

(5.27) h l ( t) 
-iat 

g ( t) ' (t E R) := e 

so that hi E LI and h 1 (x) = g(x-a) for all x E R. 



It follows from the previous theorem that h1(x) 

and that h1 (x) > 0 if x >a. 

Defining 

( 5. 28) h2(t) 
-iat 

g(-t)' (t E R) := e 

we have 

(5.29) h2 (x) = g(a-x) for all x E R 

and the theorem follows. D 
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CHAPTER 7 

ANALYTIC FUNCTIONS OF FOURIER TRANSFORMS 

It is clear that if f E L 1 and n EN (N denoting the set of all 
positive integers), then 

(I ) (f)n = (f * f * ••• * f)~ 

the convolution product consisting of n factors. 

More generally we have that if 

(2) 
n 

P(z) = l: 
r=l 

is a polynomial such that P(O) = O, then P takes Fourier 
1 ~ transforms into Fourier transforms, i.e. if f E L then P(f) 

is the Fourier transform of some g E L 1 , namely 

(3) 
n 

g = i:: a . (f) *r 
r=l r 

where 

(4) (f)*r := f * f * .•. * f 

the convolution product consisting of r factors. 

In order to obtain a more general result we first prove 

THEOREM 1. Let cp(zl be analytic. 6oA lz/ < £ 6oA -0ome £ > 0 and 
let HO) = o. 16 h E L 1 1.-0 -0uc.h that llhll1 < £, :then cp(h) -l-0 a 
PouA-leA tAan-060Am, i.e. theAe ex-l-0t-0 a g E LJ -0uc.h that 

(5) 

PROO~. Since cp is analytic and cp(O) 0 we may write 

(6) cp ( z) = for I z I < £ 

this series being absolutely convergent. 

We also have 

(7) I h <x) I $ II hil 1 for all x E E. 

so that 

(8) cj>(h(x)) 
~ k 

i:: ak(h(x)) 
k=l 
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Define h 1 := h and, for k 

Then 

2, 3, 4, •.• , let hk := hk-I *h. 

(9) II hkll 1 :<:; II hll f 
and 

(I 0) hk (h*k)~ (h)k 

so that 

( I I ) hk(x) (h(x))k for all x E R. 

Now observe that 

n n 
(I 2) i:: I ak I II hk 111 :<:; 

k=m 
II i:: akhkll 1 :.:; 

k=m 

Since II hll 1 < e:, the series 

(I 3) 

converges, so that 

(14) 
n 

llhll t i:: JakJ 
_,. 0 as m,n _,. co. 

k=m 

By the triangle inequality for the 1 1 -norm 

n 
(15) II i:: akhkll1 ->- 0 as m,n->- co 

k=m 

Consequently the sequence 

(] 6) 

it follows that also 

J 
is a Cauchy sequence in (the comJ?lete normed space) 1 and hence 

is convergent with limit g E 1 1 , say. 

Now recall that 

(] 7) llf - fll = II (f - fl 
n n 

so that in our situation 

n 
(I 8) ( i:: akhk) (x) ->-

k=l 

uniformly in x, as n ->- oo 

It follows that 

~ ~ 

~ 

g(x) 

( 1 9) g(x) = i:: akhk(x) = 
k=l 

,., k 
i:: ak · (h) (xl 

k=d 
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so that 

(20) g 

A k 
E ak • (h (x)) 

k=I 

A 

cj> (h) 

ip(h(x)) 

and the proof is complete. D 

COROLLARY. I6 cp i-0 analytie in the enti~e eomplex plane and 
cj>(O) = o, then cp take-0 Fou~ie~ t~an-06o~m-0 into Fou~ie~ t~an-06o~m-0. 
In othe~ wo~d-0, i6 f E L 1 , then the~e exi-0t-0 a g € L 1 -0ueh that 

(2I) cj>(f(x)) g ( x) 6 M aU x € R • 

The hypothesis cj>(O) 

is essential. For if 

0 in the previous theorem (and corollary) 

(22) 

then for no f € L1 it is true that Q(f} is a Fourier transform. 

For if it were we would have (since P(f) is a Fourier transform 

indeed) 

A 

lim Q(f(x)) = a 0 + lim P(f(x}) = a 0 ~ 0 
lxi+oo lxl+oo 

(23) 

so that (by RLL) Q(f) cannot be a Fourier transform. 

Previously we showed that, given an interval [a,b], there exists 
I A 

a w € L such that w(x) I for all x € [a,b]. Hence, if Q is as 

above, then for every f € LI 
A A A 

(24) Q(f(x)) = a 0w(x) + P(f (x)) for all x € [a,b] 

so that Q(f) coincides on [a,b] with some Fourier transform, 

namely a 0; + P(f). 

This result will be generalized in the following 

THEOREM 2. Let cj>(z) be analytie at eaeh point 06 -0ome open 
eonneeted -0et D 06 the eomplex plane and let [a,b] be a elo-0ed 
bounded inte~val in R. Then, i6 f E L1 and f(x) € D 60~ all 
x € [a,bJ, the~e exi-0t-0 a g € LI -0ueh that 

(25) cj>(f(x)) = g(x) 60~ all x € [a,b]. 

In order to prove this theorem we first establish four lemmas. 
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LEMMA I. 16 f E L 1, f(O) = 0 and$ i-0 analytic at z=O -Ouch that 

$(0) = o, then the4e exi-0t-0 a g E L1 -Ouch that 

( 2 6) $(f(x)) = g(x) 

604 all x in -0ome neighbo4hood 06 x = o. 

PROOF. By hypothesis there exists an E > 0 such that $(z) is 

analytic for Jzl < E. By Theorem 5.2 in Chapter 6 there exists 

an h E L1 such that 

(27) II hll 1 < E and· f(x) h(x) 

for all x 

Since II hll 1 

such that 

in some neighborhood (N 0 , say) of O. 
I 

Theorem I guarantees the existence of a g E L < E 

(28) $(h(x)) g(x) for all x E R. 

Thus, for x E N0 we have 
... ... 

(29) Hf (x)) $(h(x)) = g(x) 

proving the lemma. D 

LEMMA 2. 16 f E L 1, f(O) 0 and $(z) i-0 analytic at z=O, then 
.,.h . .,. I h .,.h .,. 
~ e4e ex~-0~-0 a g E L -0uc ~ a~ 

( 3 O) Hf(x)) = g(x) 

604 all x in -0ome neighbo4hood 06 o. 

PROOF. The case $(0) = 0 has been dealt with in the previous 

lemma. Therefore we assume $(0) f 0 and define 

(31) ijJ(z) := $(z) - $(0)_. 

Then 1}!(0} 0 and by Lemma I 
I 

there exists a g 1 E L such that 

... ... 
( 3 2) ijJ(f (x)) = g 1 (x) 

for all x in some neighborhood N0 of O. Without loss of 

generality we may assume that N0 is a closed bounded interval 

so that by Theorem 5.1 in Chapter 6 there exists a w E L1 such 

that w(x) = for all x E N0 • Now define g by 

(33) g := g 1 + $(0)·w 

and a simple calculation shows that for all x E N0 we have 
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( 3 4) <P(f(x)) ijJ(f(x)) + $(0) = 

proving the lemma. D 
1 A 

LEMMA 3. I6 f E L , f(O) S and <P(z) i-0 analytic at z=S, then 
"'"h . ... 1 h "'"h ... ~ e~e ex~-0~-0 a g E L -0uc ~ a~ 

A A 

(35) <P(f(x)) = g(x) 

60~ all x in -0ome neighbo~hood 06 o. 

PROOF. The case S = 0 has been dealt with in the previous lemma. 
In case S ~ 0 we choose w E L1 such that ;(x) = 1 for all 
x E [-1,1] and define f 1 := f - S·w and ljJ(z) := <P(z+S). Then 

(36) f 1 (0) = f(O) - S;(O) = S - S·I = 0 

and since ljJ is analytic at z=O, Lemma 2 guarantees the existence 
I of a g E L such that 

A A 

(37) ijJ(f 1 (x)) = g(x) 

for all x in some neighborhood N0 of 0. Since we may assume that 
N0 c [-1,J] it follows that for all x E N0 

(3 8) <P(f(x)) = ip(f(x) - S) = ip(f(x) - S;(x)) 

= iJ!(f 1 (x)). = ~(xl 

proving the le1llllla. D 
I " LEMMA 4. I6 f E L , f(a) S and <P(z) i-0 analytic at z=S, then 

"'"h . .,. I h "'"h .,. ~ e~e ex~-0~-0 a g E L -0uc ~ a~ 

(39) <P(f(x)) = g(x) 

60~ all x in -Oome neighbo~hood 06 a. 

PROOF. If a = 0 we are done by the previous lemma. 
If a~ 0 we define £ 1 E L1 by f 1 (t) := efot f(t) so that 

(40) f I (x) = f(x + a) for all x E R 

and, in particular, 

( 41 ) f I ( 0) = f(a) = s. 

Hence, 1 by Lemma 3, there exists a g 1 E L such that 

(42) <P(f 1 (x)) = ~ 1 (x) 



for all x 

(43) 

for all x 

(44) 

we obtain 

(45) 

in some neighborhood N0 

<j>(f 1 (x-n)) = g1 (x-n) 

in a neighborhood N of 
CL 

-fot g(t) := e g 1 (t) 

g(x} 

and it follows that 

(46) <j>(f(x)) <j> ( f 1 (x-n)) 

of 0. Hence 

et. Defining g € L 1 by 

g(x) 

for all x in a neighborhood of n, proving the lemma. D 

We are now ready for the 
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PROOF OF THEOREM 2. By Lemma 4 each x € [a,b] is contained in 

an open interval on which <j>(f) coincides with some Fourier 

transform. Since [a,b] is compact, a finite number of these 

intervals will cover [a,b] and we may assume that none of these 

intervals is entirely contained in one of the others. Now let 

(n 1 ,S 1 ) and (n 2 ,S 2 ) be any two of these intervals which have 

a point in common and suppose that n 1 < n 2 < S1 < s2 . 

Choose g 1 and g 2 in L1 such that 

<P ( f (x)) g I (x)' (CL I < x < s] l 
(47) 

{ <j>(f(x}) g2 (x)' (CL 2 < x < Sz} 

and note that gl(x) g2 (x) for all x € [ct2,Sl]. 
Now choose WI and w2 in L 1 such that 

w I (x) I ' (CL] $ x $ CL 2) 

w I (x) o, ( s 1 $ x $ S2) 
(48) 

;2(x) 1 ' ( s 1 $ x $ Sz) 

;2(x) = o, (CL J $ x $ CL 2) 

-and such that WI and w2 are linear on [n2,S1J. 
Now define h € L 1 by 

( 4 9) h := wl * gl + w2 * g2. 
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Then we have 

A 

h(x) 

cj>(f(x)). 

g 1 (x) = g 2 (x) 

so that for these values of x 
A A 

h(x) g 1 (x) = cj>(f(x)}. 

A 

h(x) cp(f(x)). 

It follows that for all x E (a 1 ,6 2 ) 

(50) h(x) = cp(f(x)) 

so that cj>(f(x)) coincides with a Fourier transform on (a 1 ,6 2). 

Repeating this argument a finite number of times we are done. D 

Note that the only property of [a,b] used in the proof was the 

fact that from any covering of [a,b] by open sets we may extract 

a finite number of intervals which still form a covering of this 

interval. Thus, Theorem 2 remains true if we replace [a,b] by 

any set of real numbers having this property, i.e. any compact 

set in R. Consequently we have the following 

COROLLARY. (Wiener) I 6 f E LI and f (x) 1' 0 6011. all value..6 06 x 

be.longing to .6ome. compact .6e.t K, then the.11.e. e.xi.6t.6 a g E L 1 

.6uch that 

( 5 I ) 
f(x) 

g(x) 6011. all x E K. 

This corollary will play a crucial role in the proof of Wiener's 

general Tauberian theorem enunciated in Chapter 5. 
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CHAPTER 8 

WIENER's GENERAL TAUBERIAN THEOREM 

I. SOME SIMPLE PROPERTIES OF Tf AND Tf 
I 

For any f € L let Tf be the set of all finite linear combinat-

ions of translates of f, i.e. h € Tf if and only if 

(I . I) h(x) = E ak f (x+ck) for all x € R 
k 

for some finite set of real numbers ck and complex ak. 

As usual let Tf be the closure (under the L1-norm) of Tf in 1 1 • 

PROPOSITION 1.1. I6 g 1 and g 2 belong to Tf then al-00 a 1 g 1 + a 2g 2 

belong-0 to Tf 6on any eomplex numben-0 a 1 and a 2 • In othen wond-0: 

Tf i-0 a linean -0paee oven the eomplex 6ield ~. 

PROPOSITION 1.2. I6 g E Tf then, 6on any neal c, al-00 the tnan-0-

late gc belong-0 to Tf. In othen wond-0: Tf i-0 tnan-0lation invaniant. 

PROPOSITION 1.3. 16 g E Tf then Tg c Tf. 

The proofs of these propositions are simple and are left to the 

reader. 

2. PROOF OF WIENER's THEOREM 
I -

THEOREM 2.1. 16 f € L and f(A} o, then g(A) 

PROOF. First let g € Tf' so that for all x € R 

(2.1) 

Then 

(2.2) g(x) J e itx 
E ak 
k 

i(u-ck)x 
= E a J e f(u) du 

k k 

so that i<A) = o. 
Now let g € Tf. Then there exists a sequence {gn}:=J in Tf 

such that 

(2.3} 0 
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and for the corresponding Fourier transforms we have 

(2.4) lim Ilg - glloo = 0 
n 

n+oo 

so that in particular 

(2.5) lim g (A) 
n 

n+oo 

Since gn E Tf we have 

completing the proof. 

~ 

g(;\.). 

g (A) 
n 
D 

0 and it follows that g(A) o, 

In combination with Theorem 5.1 in Chapter 6 it follows that the 

I 1 b i"f f~( ) 4 0 f 11 statement Tf = L can on y e true x r or a x E R. 

In other words: The condition "f(x) f 0 for all x ER" is neces

sary for Wiener's general Tauberian theorem. In order to prove 

that this condition is also sufficient we will make use of the 

following striking 

THEOREM 2.2. I6 f E L 1 and g E Tf, then 

PROOF. We may assume that neither g nor h is a zero function. 

Define H := g * h, so that for almost all x E R 

(2. 7) H(x) = J g(x-t)h(t} dt. 

Given £ > 0, choose N such that 

( 2. 8) 

and let 

( 2. 9) 
N 

HN(x) := J g(x-t)h(t} dt 
-N 

for all those x for which H(x) is finite. 

Then 

(2.10) 

so that 

J g(x-t}h(t) dt 
It I <:N 



(2.11) { J jg(x-t)h(t)j dt} dx 
It I <:N 

= J jh(t) I { J jg(x-t) I dx} dt. 
It I <:N 

It follows that 

(2.12) e: 
2 

Now observe that there exists a o > 0 such that 

(2.13) Ljg(x-y) - g(x)j dx s 211~111' <IYI so) 

and choose t 0 , t 1 , ••. , tn such that 

(2.14) • • • < t 
n 

N 

and 

(2.15) 1,2, ..• ,n. 

Then we have 

( 2. 1 6) 

Defining hN by 

(2.17) hN(x) := 

n tk 
E f g(x-t)h(t) dt. 

k=ltk-1 

n tk 
E g(x-tk) f h ( t) 

k=l tk-1 
it is clear that hN E Tg and 

n tk 

dt 
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(2.18) HN(x) - hN(x) = E J {g(x-t) - g(x-tk)} h(t) dt 
k=l tk-1 

so that 

(2.19) 

It follows 

(2.20) 

II~- ~111 

n tk 

n "" tk 
S E J dx J jg(x-t) ~ g(x-tk)j•jh(t)j dt = 

k=1 -co tk_ 1 

N 
$ E J jh(t)j dt 211~11 = znir. f jh(t)j 

e: 
dt $ 2 

k=l tk-1 I I -N 

that 

II H - hNll 1 $ llH - HNll 1 + II HN - hNll 1 f.. + E: 
< 2 2 E: 



62 

and since E > 0 may be chosen as small as we please, and hN € T 
- - g 

we find that H € T • By hypothesis g € Tf so that by Proposition 
g -

1.3, Tg c Tf and it follows that H € Tf' completing the proof. D 

Another important ingredient for Wiener's theorem is 

THEOREM 2.3. 16 f € L 1 and l6 60~ all n € N 

(2.21) on € Tf 

whe~e on l~ a~ on page 46, then Tf = L1 . 

PROOF. Since on € Tf we have by the previous theorem that for 

every h € L 1 

(2.22) 

Previously we found that lim Ho * h - hH 1 
n-+-oo n 

I 
0 for every h € L . 

Combining these two facts we obtain 

(2.23) h € Tf for every h € Ll 

and since 

(2.24) Tf 'ff 

it follows that 

(2.25) 

from which it 1 -is clear that L = Tf, completing the proof. D 

The finishing touch will be achieved by 

1 "' THEOREM 2.4. 16 f € L and f(x) ~ 0 60~ all x € R then on € Tf 

60~ all n € N. 

PROOF. Fix any n € N. Then 1(x) ~ 0 for -n s x s n. 

Hence, there exists a gn € L 1 such that 

(2.26) 

With 6 
n 

(2.27) 

·1 A 

-A-- = g (x), 
f(x) n 

(-n s x s n). 

A 

o as before we have for all x € R 
n 

6 (x)g (x} n n -

so that for all x € R 

~ (.x} • i (x} • g ( x) n n 



and hence 

(2.28) 6 
n 

From this it follows that (see the first corollary of Theorem 

2.2 in Chapter 6) 

(2.29) o = f * (o * g ) n n n 

and, since 

(2.30) 
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it follows from Theorem 2.2 that on E Tf' proving the theorem. D 

Finally we have 

THEOREM 2.4. (Wiener's general Tauberian theorem) 

16 f E L 1 , .then 

(2.31) 

.£6 and only i6 

(2.32) f(x) ~ 0 60~ all x E R. 

PROOF. It has been shown before that condition (2.32) is neces

sary. That it is also sufficient is an easy consequence of the 

foregoing theorems. Indeed, since f(x) ~ 0 for all x E R, we have 

(2.33) on E Tf for all n E N 

so that by Theorem 2.3 

(2.34) 

LITERATURE 

(See page 58) 
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CHAPTER 9 

SOME ALGEBRAIC REFORMULATIONS 

In this chapter we will reformulate some of the preceding results 

in terms of ideals in a commutative Banach algebra. 

First we recall that a complex algebra is a vector space A over 

the complex field ~. on which an associative and distributive 

binary operation * is defined, i.e. 

(i) f * (g * h) (f * g) * h 

(ii) (f + g) * h = f * h + g * h 

(iii) f * (g + h) = f * g + f * h 

for all f, g and h in A, whereas * is related to scalar multi

plication in such a way that for all a E ~ and all f,g E A 

(iv) a(f * g) = f * (ag) = (af) * g. 

Hence, (A, +, *) is such that (A, +} is a vector space over ~ 

whereas (A, + , *) is a ring with the additional property (iv). 
If in addition * is commutetive, i.e. 

(v) 

for all f,g E A, then (A, + , *) is called a commutative 

algebra. 

If there is a norm defined in A which makes A a normed linear 

space and which satisfies the multiplicative inequality 

(v i) llf * gll ~ llfll·llgll 

for all f,g E A, then A is called a normed complex algebra. 

If, in addition, A is a complete metric space with respect to 

this norm, i.e. if A is a Banach space, then we call A a 

Banach algebra. 

An important example of a commutative Banach algebra is 
I 

(L (R), +, *), where+ denotes pointwise addition of functions, 

and * the convolution of functions as defined before. For more 

details we refer to GOLDBERG [I] and RUDIN [2]. 

If A is a commutative algebra and I c A, then we say that I is 

an ideal in A if 
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~ I is an algebra with respect to the operations in A 

b g * h € I whenever g € I and h E A. 

Clearly A itself is an ideal in A and so is the set consisting 

of the zero element alone. Any other ideal in A is said to be 

a proper ideal of A. 

An ideal M in A is said to be a maximal ideal of A if M # A 

and M is contained in no ideal of A other than M itself or A. 

The verification of the following three propositions is left 

to the reader as an excercise. 

PROPOSITION 1. If I is an ideal in L 1, then I, the closure of 

I in L 1, is also an ideal in L 1 • 

PROPOSITION 2. If Mis a maximal ideal in L 1 then either Mis 

closed or M = L 1 • 

l - l 
PROPOSITION 3. If f € L , then Tf is a closed ideal in L • 

We now show that for any f € L 1 , Tf is the smallest closed 

ideal in L 1 containing f. 

THEOREM l. 16 f E L 1 and Ii~ any clo~ed ideal in L 1 containing 

f, then 

( I ) 

PROOF. Let a be any fixed real number. Then for any n € N 

(2) 

so that 

(3) 

((cS) * f)(x) = J cSn(x+a-t)f(t) dt 
n a 

J cSn(x-t)f(t+a) dt J o (x-t}f (t) dt 
n a 

(o 1 * f = cS * f . n a n a 

Since I is an ideal and f € I we thus have (o ) * f € I 
n a 

so that cS * f € I. Since I is closed it follows from Theorem 4. 1 
n a 

in Chapter 6 that f € I' from a 
which it is clear that Tf c I. 

Since I is closed it follows that 'ff c I' completing the proof. 

Now we are able to give the following characterization of closed 

ideals in L1 • 

D 
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THEOREM 2. Let I c L 1. Then the 6ollowing 6tatement6 a4e 

equivalent 

I i6 a elo6ed ideal ofi L 1 

b I i6 a elo6ed linea4 6ub6paee ofi L 1 with the p4ope4tlj that 

i6 f E I, then eve4y t4an6late 06 f i6 al6o in I. 

PROOF. The implication a* b is a direct consequence of 

the previous theorem. 

Now suppose that~ holds true and let g EI and h E L 1 • 

Since I is a linear subspace of L 1 and ga E I for all a ER, it 

follows that T c I and since I is closed it also follows that 

T is an idealgof L 1 so that g * h ET and hence g * h E I. 
g g 

It follows that I is an ideal and since I was given to be 

closed, the proof is complete. D 

DEFINITION. For each A E R we write 

(4) M = {f E L 1 
A 

f(A) = O}. 

THEOREM 3. Eve4y MA i6 a elo6ed maximal ideal in L1 . 

PROOF. (i) MA is closed. In order to see this consider the 

map ~: L 1 + [ defined by 

(5) ~(f) := f(A). 

It is easily seen that this map is continuous and since 

~- 1 (0) =MA, it follows that MA is closed. 

(ii) MA is an ideal in L 1 • Indeed, it is easily verified that 

MA is a subalgebra of L 1 and if g E MA and h E L 1 , then 

(6) (g * h)~ (A} = g(A) ·h(A} = O·h(A) 0 

so that g * h E MA, proving claim (ii). 

(iii) MA is maximal. In order to see this let M be any ideal 

in L 1 such that 

( 7) 

Then it 

Since M 

for any 

(8) 

MA c M and M f 

suffices to show that 

f MA 

h E 

there exists a g 

LI we can define 

h := h - h(A) . g 
g (A) 

MA. 

M LI • 

E M such that g (!\) f 0 so that 
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Clearly 

(9) (h)~(A) 0 

so that n E M. 

Also, by assumption, g E M, so that h (as a linear combination 

of hand g) belongs to M. It follows that L 1 c Mand the proof 

is complete. D 

We leave it as an excercise to the reader to show that MA f MA 

if Al f "2· 
I 2 

The next theorem will prepare us to show that the MA comprise 

all maximal ideals of L1 • 

THEOREM 4.16 I i-0 a elo-0ed ideal r L~ then the~e exi-0t-0 a A ER 

-0ueh that I c M,... 

PROOF. We proceed by contradiction. Assume that I is not con

tained in any MA. From this we shall derive that I= L 1 , which 

is contradictory to our hypothesis. 

Fix any positive integer N. By the assumption that I is not 

contained in any MA, it follows that for each A E [-N,N] there 

exists an fA EI such that fA(A) f 0. Let gA be defined by 

(I 0) 

Then 

( I I ) f e ixt 
fA (-t) dt 

"" f -ixt 
e fA(t) dt fA(x) 

so that 

(I 2) 

Defining 

( I 3) 

we have 

( I 4) and 

so that 

( 1 5} ~A(x} ~ 0 for all x E R and ~l(t..) > 0. 
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Since hA is continuous, this implies that hA(x) ~ 0 for all x in 

some neighborhood UA of A. The interval [-N,N] can be covered by 

a finite number of these neighborhoods 

(16) UA ' UA ' . . . ' UA ' 
say . 

I 2 n 

Defining h € LI by 

( 17) h := hA + hA + ... + hA 
I 2 n 

we have 

(I 8) h E I and h(x} > 0 for all x E [-N,N]. 

oN as before we have for some k E L1 

(19) 
AN (x) 

h(x) 
for all 

so that 

(20) oN = h * k * oN 

which implies that oN E I. Thus I contains oN for all N E N and 

. I . 1 d . ·1 f 11 h I h. h . h since is c ose it easi y o ows t at I = L , w ic is w at 

we wished to show. D 

THEOREM 5. I6 M i-0 a e!o-0ed maxima! idea! in L1 , then M MA 

6011. -Oome A E R. 

PROOF, Since M is maximal we have M f L1 , so that by the previ

ous theorem 

(21) M c MA for some A E R. 

Since MA~ L1 it follows from the maximality of M that M =MA. D 

Wiener's general Tauberian theorem is a simple consequence of 

Theorem 4. In order to see this let f E L1 such that ~(x} f 0 

for all x € R. We know that Tf is a closed ideal. If Tf r L 1 ' 

then, Aby Theorem 4, there exists a A ER such that Tf c MA so 

that f(A) = O, contradicting our hypothesis, 0 
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CHAPTER 10 

SOME ANALYTIC REFORMULATIONS 

In this chapter we present a collection of analytical consequences 

of Wiener's general Tauberian theorem. 

THEOREM I. (Wiener) I 6 f L6 bounded and mea.6u.fl.able on R and 

K 1 E L 1 ~.6 .6u.eh that K1 (x) f 0 601!. all x ER and 

( I ) lim J 
x+oo 

f(t) K1 (x-t) dt 0 

then al.6 a 

(2) lim J 
x+oo 

f(t) K2 (x-t) dt 0 

6 Oil. evefl.lj K2 E LI . 

PROOF. Since K1 E L 1 and K1 (x) f 0 for all x ER we have 

LI . (3) TK 
I 

Fix any K2 
that 

E LI and let £ > 0 be given. Choosing h E TK such 
] 

(4) II K2 - hll 1 . < 
llfn 00 +] 

£ 

we have 

(S) f K2 (x-t)f(t) dtl :S J {K 2 (x-t) - h(x-t)}f(t) dtl + 

+I J h(x-t)f(t) dtl :S llK2-hll1 •llfll 00 + J J h(x-t)f(t) dtl. 

Since h E TK it is clear that 
I 

(6) lim J h(x-t)f (t) dt 0 

so that 

(7) 

x+oo -oo 

lim sup 
x+oo 

I J K2 (x-t)f(t) dtl :S 

completing the proof. D 

From this theorem we easily derive 

£ • II f II 
llflJ 00 +l 



70 

THEOREM 2. 

K1 E LI .L6 
(Wiener) 16 f -i..6 bounded and mea.!Ju~able on R and 

.6 uc.h :t.ha:t. R1 (x) ; o nOll. all x E R and 
co 

(8) lim I 
x+co -co 

:t.hen al.!io 
co 

(9) lim f 
x-+co -co 

l 
60~ eve~y K2 E L • 

K1 (x-t)f(t) dt 

K2 (x-t)f (t) dt 

PROOF. Observing that for all x E R 

co 

L· 

L• 

(I 0) J K1 (t) dt = J K1 (x-t} dt 
-co -co 

we have 

f K1 ( t) 

I K2 (t) 
-co 

(I I ) lim J K1 (x-t){f(t) - L} dt = 0. 
x-+co -co 

dt 

dt 

Hence, the theorem follows from the previous one. D 

We now modify these theorems by an exponential transformation. 

They then become theorems concerning functions defined on 

R+ := (O,co), and it is in this form that they are usually most 

convenient for applications. 

De;f;:i,ne 

( l 2} F(t) ;= f (log t), ( t > O} 

and 

(13) l 
k.(t):= -t K.(-log t), 

;L 1 
(t > O; i = 1,2). 

Then it is easily verified that for all x E R (in particular 

for x = O) 

(14) J k.(t) t-:i.x dt = j K.(u) eiu.x du, 
1 1 

(i=l,2) 

0 -co 

whereas F is bounded and measurable on R+ as soon as f is 

bounded and measurable on R. Also, if K. E L1 (R) then 
1 

k. E L 1 (R+) and conversely. 
1 

Observing that for all x > 0 

(I 5) 
co 

- I k. (!)F(t) dt x 1 x 
0 

f x K.(-log !)f(log t} dt 
x t l. x 

0 



J K. ((log x) - u)f(u) du, 
-oo l. 

( i I , 2) 

1 b ex) we easily obtain (rep ace x y 

THEOREM 3. 16 F i-0 bounded and mea~u~able on R+ and i6 

kl E L 1 (R+) i~ -Ouch that 

(I 6) J t -ix 
k I ( t) 1' 0 fiM all x E R 

0 

and 

(I 7) lim x J kl (i)F(t) dt L J k I ( t) dt 
x+oo 0 0 

then al~o 

(I 8) lim _!_ J k 2 (~)F(t) dt L f k2(t) dt 
x x+oo 0 0 

60~ eve~y k 2 E LI (R +). 

Finally we have 

THEOREM 4. 16 f i~ bounded and mea~u~able on R+ and i6 

g 1 E L 1 (R+) i-0 ~uch that 

(I 9) f ix 
t gl(t) dt 1' 0 6M aU. x E R 

0 

and 

(20) lim J 
t dt J g] ( t) dt g] <x-)f(t) L 

x-1-0 x 
0 0 

then al~o 

( 2 I) lim _!_ f t 
J g2<x)f(t) dt L g2(t) dt 

x-1-0 x o 0 

60~ eve~!:! g2 E 
LI (R +). 
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PROOF. Let F, k 1 and k 2 be as in the previous theorem and define 

(22) ( t > 0} 

and 

] ] 
gi(t}:= 2 k.(t), 

t l. 
(23) (t > O; i = 1,2). 

The remaining details of the proof are left to the reader. D 
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CHAPTER 11 

PITT's GENERAL TAUBERIAN THEOREM 

1. PITT's THEOREM FOR SLOWLY OSCILLATING FUNCTIONS ON R 

DEFINITION. A function f : R -+ a: is called slowly osei l lating 

on R if for every E > 0 there exist numbers 0 > 0 and N such 
E E 

that lf<y)-f(x)I :5: E for all x,y satisfying x ;::: N and ly-xl E 

EXAMPLE. If f is differentiable on Rand lf'(x)I s G for some 

fixed G and all sufficiently large x E R, then f is slowly 

oscillating on R. 

$ 

DEFINITION. A function f : R + R is called slowly decreasing 

on R if for every E > 0 there exist numbers oE > 0 and NE such 

that f(y) - f (xl ;::: - E for all x,y satisfying x ;::: NE and 

0 $ y - x $ 0 . 
E 

EXAMPLES. (i) If f is real valued and slowly oscillating on R, 

then f is also slowly decreasing on R. 

(ii) If f is differentiable on R such that f'(x)? -G 

for some fixed G and all sufficiently large x, then f is slowly 

decreasing on R, 

(iii) If f : R -+ R is roonotonically non-decreasing 

on the interval x ? a for some a, then f is slowly decreasing 

on R. 

0 

PROPOSITION 1.1. I6 f l6 6lowly deehea6lng on 

(6on 6ome 6lxed n) 6on anbltnanlly lange x [= 

R and f(x) ;::: n > 0 

x + 00 a6 n + oo), then f(x) 
n 

lapping) lntehval6 05 6lxed 

n . ;::: 2 .{..n 

length 

x , 6ay, whene 
n 

lntllnltely many [non-oven-
on the po6ltlve neal axl6, 

E 

PROOF, In the definition of "slowly decreasin_g on R'1 take E = ~ 
and corresponding o and N. Then we have the following implication 

(I. I) (x ;::: N and 0 $ y-x $ o) 
n 

f(y) - f(x) ? - 2 * 

n * f(y) ? f(x) - z 
If n 1 is large enough then x ? N so that x 

n nl nl 
that f(y) ;::: n - 2 . 
Now choose x 

nz > x +20 and proceed as before. 
nl 

s y s x +o implies 
Ill 

D 
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PROPOSITION 1.2. 16 f i6 6lowly decnea6ing on Rand f(x) $ -n 
(6on 6ome 6ixed po6itive n) 6on anbitnanily lange value6 06 x 
{= x , 6ay) then thene exi6t in6initely many (non-ovenlapping) n 
intenval6 on the po6itive neat axi6 in which f(x) $ - 1 . 
PROOF. In the definition of "slowly decreasing on :R." take E: = 1 
and determine corresponding c and N. Then we have the implication 

(I • 2) (x ~ N and 0 $ y-x $ c) ~ f(y) - f(x) ~ - 1 
Take n such that xn - c ~ N and let y = xn' Then for all 

x E [xn-6,xn] we have x ~ xn-6 ~ N and 0 $ y-x = xn-x $ c and 
n hence f(xn) - f(x} ~ - 2 or 

(I • 3) n 
2' 

From here on proceed as before. D 

THEOREM 1. I. I 6 f i6 bounded and 6lowly decnea6,ing on R and -l6 
fion eueny A. > o 

(I. 4) lim (c\*f)(x) A, (whene c\ -i.6 a6 on page 46) 
X+co 

then 

(I. 5) lim f(x) A. 
X+co 

PROOF. Since 

( I • 6) f c\(x-t) dt f ct,(t) dt = 

= f A.c(A.t) dt = f c(t) dt = i 

it is no essential restriction to assume that A = 0. Proceeding 
by contradiction we assume that f (x} does not tend to 0 as x + ""· 

Then there exists a positive n such that f(x} ~ n or f(x) $ -n 

for arbitrarily large values of x. Let us assume the first alter
native (leaving the other alternative to the reader). By the pre
vious proposition there exist infinitely many non-overlapping 

intervals [xn-E'xn+EJ on the positive real axis in which f(x) 
Now observe that for all n E N 

( 1 • 7) 

x + E 
n 

J 
x -n 

6 1 (x -t) f (t) dt + 
~ A Il 



+ { 

x -I; 
n 
J + J 

x -I; 
n 
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f + f} o\(xn-t) dt 
x +I; 

n 

= n 

A.I; 
= n J o(t) dt - 211 f JI f o(t) dt. 

0 A.I; 

Since 

A.I; 
(I • 8) lim {n J 0 ( t) dt - 211 fll f o(t) dt} 

\+co 
0 A. I; 

= n J o(t) dt = .!!. 
2 

0 

we may determine A.O such that for all n E N 

(I. 9) J o\ (xn -t) f(t) dt ;:>: n 
4 

-co 0 

Letting n + 00 we arrive at a contradiction, proving the theorem. 

THEOREM 1.2. (Pitt) ~et a : R + R be bounded and -0lowly deenea-0ing 

on R. I6 g " L 1 and g(x) # 0 6on all x "R, then 

(I.JO) lim J g(x-t) a(t) dt A f g(t) dt 
X+oo -oo 

impUe-0 that 

(I.II) lim a(x} A. 
X+co 

PROOF. By the previous theorem we only need to show that 

(I.12) lim f oil (x-t) a(t) dt A (= A !co<\ (t) dt). 
x+oo - 00 

However, I " 
since o\ E L and g(x} # 0 for all x E R the above limit 

relation is an immediate consequence of Wiener's general 

Tauberian theorem, completing the proof. D 

D 
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We now want to show how Wiener's theorem (page 69) can be obtained 
from Pitt's theorem. 

I Let f be bounded and measurable on R and let g 1 E 1 (R) be such 
that g1 (x) f 0, for all x ER. Fix any g 2 E L 1 (R) and define 

(I.13) a(x) := J g 2 (x-t) f(t) dt, (x E R). 
-oo 

Then a is continuous (and hence measurable) and slowly oscillating 
on R. In order to see this we observe that 

(I.14) Ja(y)-a(x}j I J g 2 (y-t)f(t) dt- J g 2 (x-t)f(t) dtl 

I J {g 2 <y-t2 - g 2 <x-t}} f(t) dtl ~ 

~ llfll . J lg 2 (y-t) - g 2 (x-t)I dt 

= 1ifll 00 • J Jg 2 (y-x+u} - g 2 (u)J du. 
-oo 

Since g 2 E L 1 (R) we have 

(I.JS) lim J Jg 2 (y-x+u) - g 2 (u)J du 
y-x-+O - 00 

so that a is slowly oscillating on R. 
Now assume that 

0 

(I.16) lim J g 1 (x-t)f(t) dt 
x~oo -oo 

0 (or A· f g 1 (t) dt). 

We will show that then 

(I.17) lim J g 1 (x-t)a(t) dt"' 0 (or 
x+oo -oo 

Observe that (using Fubini's theorem) 

(1.18) J g 1 (x-t) a(t) dt = J g 1 (x-t) J g 2 (t-u) f(u) du dt 
-oo -oo 

= J g 1 (x-t) J g 2 (u) f(t-u) du dt 

= L g 2 (u) J g 1 (x-t} f(t-u) dt du 

= J g 2 (u} J g 1 (x-t-u} f(t) dt du. 
-oo -oo 
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Since 

(1.19) 

1 
g2 E L (R) 

and 

(J.20) lim J g 1 (x-t-u)f(t) dt 0 (or A· f g 1 (t) dt) 
x+co -co 

we find by LDCT 

(1.21) lim J g 1 (x-t)a(t) dt 0 (or A.f g 2 (t)dt· f g 1 (t)dt) 
x+oo -oo -oo 

and Pitt's theorem yields 

(1.22) lim a{x) = lim J g 2 (x-t) f(t) dt 0 (or A·f g 2 (t) dt) 
x+oo x+co -oo 

proving Wiener's Tauberian theorem. D 

2. PITT's THEOREM FOR SLOWLY OSCILLATING FUNCTIONS ON R+ 

DEFINITION. A function f : R+ + ~ is called slowly oscillating 

on R+ if for every £ > 0 there exist numbers 0£ > 0 and NE such 

that !f(y)-f(x) I :<o: £ for all x,y satisfyin" x <". N and I~ - J j::<o:o • 
"' £ x £ 

DEFINITION. A function f : R+ + R is called slowly decreasing on 

R+ if for every £ > 0 there exist numbers o > 0 and NE such that 
£ 

f(y)-f(x) <". -£ for all x,y satisfying x ~ NE and 1 ~ ~ - I ::<o: l+oE. 

Clearly any real f that is slowly oscillating on R+ is slowly 

decreasing on R+. 

Pitt's theorem may be translated into the following 

THEOREM 2.1. Let a be bounded and ~lowly dee~ea~ing on R+ 

Io g e: L 1 (R+) and j tixg(t) dt 1 o, 60~ all x e: R, then 
0 

( 2. 1) lim J t a(t) dt J g{t) dt g<x-) = A x x+oo 0 0 

impLi.e~ 

( 2. 2) lim a{x) A. 
x+oo 

The proof is left to the reader. D 
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REMARK. In order to speak the same sort of language as in 

Chapter 4 we note that for x > 0 

co 
(2.3) J g(!) a(t) dt 

x x 
0 

3. SOME APPLICATIONS 

f g(v) a(xv) dv. 
0 

APPLICATION I. Let F be of bounded variation over [0,T], for all 

T > 0. Also let F be bounded on [0,co) and assume that F is slowly 

oscillating (or slowly decreasing) on R+. Furthermore assume that 

(3.1) 

Then 

( 3. 2) 

lim J e-st dF(t) = L. 
s+O o 

lim F(t) L + F(O). 
t-+co 

PROOF. Observe that 

(3.3) J -st dF(t) -st 
F(t) I~ -e e 

0 

co 
- F(O) J F(t) -st 

d t' + s e 
0 

Hence 

co co 

I F ( t) de -st 

0 

(s > O). 

s J -st F ( t) dt e (3.4) F(O) + J -st dF(t) e 

so that 

(3.5) 

0 

lim s 
s+O 

0 

co 
J e-st F(t) dt = F(O) + L 
0 

or, equivalently, (setting s = .!.) 
t x 

(3.6) lim .!_ J e x F(t) dt = (F(O) + L)· J 
x 

x-+co 0 0 

-t 
e d t. 

Pitt's Theorem 2.1 applies(!) and we obtain (3.2). D 

APPLICATION 2. Let F be bounded and slowly decreasing on R+. 

If in addition 

x 
(3.7) lim I F ( t) dt L x x-+co 0 

then 

(3.8) lim F ( t) L. 
t-+co 
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PROOF. Define g : R+ + R as follows 

(' (0 <; x s I ) 
g(x) 

O, (x > ] ) . 
L1 (R+}, 

00 00 

tixg(t) 
1 

tixdt= Then g € r g(t} dt = ] and J dt J !+ix 00 

tixg(t) 
0 0 0 

so that J dt .; 0 for all x € lL 
0 

Now observe that (3. 7) may be written as 
00 00 

(3. I 0) lim ..!.. J t F(t) dt f g(t) dt. g(-) = L• 
x+oo x 0 x 0 

Pitt's theorem applies and we obtain (3.8). D 

LITERATURE. 

(See page 72) 
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CHAPTER 12 

A RELATED TOPIC: CLOSED SYSTEMS 

Let V be a vector space over the complex field ~ and let G be a 

subset of V. By the span of G we mean the set of all finite 

linear combinations 

(I ) 

This set will be denoted by H(G). 

If in addition V is a topological vector space then G is called 

a fundamental (or closed) system in V if H(G) is dense in V, i.e. 

H(G) = V. Using this terminology we may formulate Wiener's 

theorem (2.4 in Chapter 9) as follows: 16 f E L1 (R) then Tf i-0 
a 6undamental -0y-0tem in L1 (R) io and only i6 f(t) r O, Vt ER. 

From this we derive the following 

THEOREM 1. Let$ 
c.lo-0 ed -0 y-0tem in 

1 + 
E L (R ). Then the -0y-0tem {$(~x)};. 

L 1 (R+) i6 and only i6 j $(x)xit dx 
0 

PROOF. For any f E L 1 (R+) define 

Then it is easily seen that f* E L1 (R). Also 

(3) 
iut 

e du = 
-co 

co 00 

= f eu$(eu)eiut du = f $(x)xit dx r O, Vt ER. 
-co 0 

€ R + i-0 a 
# 0, Vt € R. 

By Wiener's theorem we may choose constants c E ~and h ER 
n n 

such that 

(4) llf*(u) -
N 
E 

n=l 
c $*(u+h )111 

n n 
< e:. 

The left-hand side of this inequality may be rewritten as 

N 
(5) f if*(u} - E c $*(u+h )i du 

-co n=l n n 

co N u+h u+h 
f leuf(eu) - E c e n$(e n> I du 

n=l n 
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N 

J lf(x) - i:: c ;\ <PO x) I dx 
n=l n n n 

0 

N 

J !f(x) - i:: S <PO x) I dx 
n=l n n 

0 

h 
where s ;i.. 

n 
<C and ;i.. > 0. c c e E 

n n n n n 
Hence 

N 
(6) II f (x) - i:: S <P 0 x) II 1 < £ 

n=l n n L (R+) 

and the proof is complete. D 

We leave it to the reader 

is fundamental in L1 (R+), 

to show that.if the system {<jJ(;\x)};\ER+ 

then f <jl(x)x 1 t dx f 0, Vt ER. 

EXAMPLE. Let <jJ(x) -x 
= e 

(7) 
00 • t 
J <P(x)x 1 dx 
0 

0 
1 + 

x > 0. Then <P E L (R ) and 

J -x it e x dx r(l+it). 
0 

-;\x 
Since the Gamma-function has no zeros at all the system {e };\>O 

is fundamental in L1 (R+). 

1 ;\-1 ;\ } 
THEOREM 2. Let <PEL (0,1). Then the ~y~tem {x <P(x) ;\>0 i~ 

6undamental in L 1 (0,1) i6 and only i6 
l 

(8) J <P (x) (log !2it 
x dx f o, Vt E R. 

a 

PROOF. For any f E L1 (0,1) define 

(9) f*(u) -u -u 
= e f(e ), (u > 0) • 

Then f* E L l (R +) and 

( 1 0) 
00 

• ] it f </l*(u)u 1 t du = f <jl(x)(log x} dx f 0, Vt ER. 
0 0 

The completion of the proof is left to the reader (compare the 

proof of Theorem 1). D 

EXAMPLE I. Let </l(x) =I, (O < x < l). Then 
1 

( 1 1 ) J <P (x) (log _!_)it dx = J (log !) it 
x x 

0 0 

J it -u du r(l+it) f o, Vt u e 
0 

dx 

E R. 
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A-I I 
Thus the system {x }A>O is fundamental in L (0,1). 

(Compare this result with the Stone-Weierstrass theorem.) 

1-xN 
EXAMPLE 2. Let N be a fixed positive integer and let •Cx)= -,-::x· 
Then• E L1 (0,1} and 

(12) 

l 
I · t 00J ]-'e-Nu it -u J •Cx}(log -) 1 dx = u e du 
x O 1-e-u 0 

J (e-u + 

0 

N 00 

i:: f -nu e 
n=lo 

r(l+it) 

-2u e + ••• + 

it N 00 

du i:: f u 
n=lo 

N 
i:: l+TI" n=l n 

e-x(~)it dx 
n n 

Since the Gamma-function has no zeros this leads us to the 
N -I-it 

question whether ngl n has any real zeros. For N s 10 it 

is known that this function does not vanish on R (see [2]). 

For large values of N the answer is not known, although we 

conjecture that for all N E N the above function does not vanish 

on the real line. 

EXAMPLE 3. Let •(x) 1 (O < x < I). Then we have 
(I+x) 2 ' 

( 13) 

For a > 0 we 

(I 4) 

where 

(I 5) 

0 

-x 
lim I e 

(l+e-x)2 a-t'O 0 

have (s cr+it) 

-x 
f e s dx 

(I +e -:x) 2 
x 

0 

00 x 
J s d-e __ x 

l+e x 
0 

"' s-1 
I x dx = s 

l+e :x 
0 

n(s) := i:: 
n=I 

-x it J e x dx 
o (l+e-:x)2 

cr+it dx. x 

f s d-1-x -x 
0 l+e 

00 

I s d-1-x x 
0 l+e 

sr(s)n(s) = sr(s)(l-2 1 -s)~(s) 

and ~(s) := i:: 
n=l 

-s 
n 

(a > O) (a > I) 



It follows that 
1 

(I 6) f $(x)(log !)it dx = r(l+it)(l-2 1-it)t(it). 
x 

0 

We thus have to investigate whether t(it) + 0, for all t € R. 

It is well known that t(l+it) + O, for all t € R and that the 

zeta-function satisfies the functional equation 

( l 7) s -l+s 1-s 
r<2)t(s) = TI r<-2-)t(l-s) 

(see TITCHMARSH [4; p. 22]). From this it is easily seen that 
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t ( i t ) + 0 , f or a 11 t € R • >.- 1 

Conclusion: The system { x A 2 }>.>0 is fundamental in 1 1 (0,1). 
( l +x ) 

In the remaining part of 

to prove that the system 

thiJ chapter we will use this result 
x 00 

{~~} _ 0 is fundamental in C[O,IJ. 
l+xn n-

In order to do so we first prove the following 

PROPOSITION I. Suppo4e that{$ } A i4 a eolleetion 06 eontinuou4 
a aE 

6unetion4 on [a,b] 4ueh that 6on eveny a € A(= index 4et) we have 

(18) 

l 
I6 {$a}aEA i4 a 6undamental 4y4tem in L [a,bJ,then {l}u{$a}aEA 

i4 a 6undamental 4y4tem in C[a,bJ (equipped with the topology 

06 uni6onm eonvengenee). 

PROOF. Let f € C[a,b] and £ > 0 be given. According to the Stone

Weierstrass theorem there exists a polynomial P(x) such that 

(I 9) max If ( x) - P (x) I < ~ 
XE[a,b] 

I 
Clearly P'(x) belongs to 1 [a,b] so that we may choose coeffi-

cients b € ~ such that 
n 

(20) 
N 

lip• - l: b $1111 
n=l n n 

£ 
< 2 

For all x E [a,b] we thus have 

N N 
( 21 ) i{P(x)- l: b $ (x)}-{P(a)- l: b $ (a)}i 

n=l n n n=I n n 

x N 
f {P'(t) - l: b $ 1 (t)} dt[ ~ 
a n=l n n 
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b N 
::; I IP, <t> - E b $' c t) I dt 

n=l n n 
a 

N 
0 P' - E b $' u E 

n=l n n 1 < 2 

Hence 

N N 
(22) if(x) - E b $ (x) - {P(a) - E b $ (a)}i < 

n=I n n n=l n n 

< if(x) - P(x)i +t< e:, Vx E [a,b] 

and it follows that {I}u{lj> } A is fundamental in C[a,b]. D 
a aE 

Hence, in order to reach our goal it suffices to prove that 

the system 

n 
(23) {_!_x_}"" 

dx l+xn n=l 

I is fundamental in 1 [O,I]. 

In order to prove this we will use the following 

PROPOSITION 2. Let G be a 6ub6et 06 the no4med linea4 6paee 
v (ove4 t). Then G L!i a 6undamental 6y1item in V i6 and only i6 
eve1r.11 eontinuou6 l-lnea4 6unet..lonal en y wh..leh vani1ihe6 on G, 
vani6he4 on all 06 v. 
PROOF. Assume G to be a fundamental system in V and let lj> be 

any continuous linear functional on V .which vanishes on G. Then 

$ vanishes on H(G} by linearity and on H(G) by continuity. 

The remaining part of the proof is a simple consequence of the 

Hahn-Banach theorem for normed linear spaces (see RUDIN [3;. 

p. 108]}. D 

Hence, in order to reach our goal we take any continuous linear 
I functional lj> on 1 [O,I] such that for every positive integer n, 

n-1 n 2 
lj>(x /(l+x ) ) = 0 and then show that such a functional must 

vanish identically on 1 1[0,I]. 

It stands to reason that we now want to know all continuous 
1 

linear functionals on 1 [0,1]. Therefore we state the following 

PROPOSITION 3. Fo4 eue4y eontinuou6 linea4 fiunetional $on 1 1co,1J 

the4e exi6t6 a "unique" bounded mea6u4able 6unetion ion [O,IJ 



.6 uc.h :tha.:t 

(24) •<f) J f(x)i(x) dx, 
0 

PROOF. See RUDIN [3; p. 128]. 0 
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I 
Vf € L [0,1]. 

So we take any bounded measurable function• on [O,I] such that 

for all 

n-1 
f x i(x) dx = 0 

n 2 o (I +x ) 
(25) 

and from this we will derive that then • must be a null-function. 

We consider 

s-1 
(26) H(s) = J x 2 •<x) dx, 

0 (I +x s) 
(Re s > O) 

and will show that there exist positive constants K and o such 

that 

(27) 

Writing A 

(28) 

I H( s) I s K· Is I ' Re s ~ 0. 

II$\"'' we have 
1 s-1 

I H ( s) I s A • f I x I dx 
0 (l+xs)2 

-su 
J I e I du 
o (l+e-su)2 

-su I I Is I 
{ ! + f } I e I du 

l/lsl (l+e-su) 2 0 

Setting s = cr+it we have 

(29) 
-su 

e 
-cru-itu 

e 

so that, for 0 s u s 1 

TST' 
(30) larg e-sul = 1-tul s ulsi s 

and hence (draw a picture} 

(31) 11 + e-su I ~ 1. 

Consequently we have 

l/lsl 
f e-cru du s J e-cru du (32) 
0 0 

a 
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For 12 we have the following estimate 

-su 
(33) I2 = J I e I du :<:; 

1/lsl (l+e-su) 2 

-au 
-1 I 00 J 

e du :<:; 

1/lsl(l-e-au)2 l-e-au l/lsl 

-I 
I I + 

1 -a/lsl 
:<:; 

1 -a/lsl -e -e 

= a/ Is I hl :<:; chl. 
1-e-a/sl a a 

Hence, for a ? cS > 0, 

(34) I I + I2 :<:; - + £1.tl :<:; K· Is 1. D a a 

Now we utilize the following 

PROPOSITION 4. In f(z) i~ ~egula~ on a ? 0 and f(z) = O(ekJzl) 

on a? 0 60~ ~ome k < n and i6 f(z) = 0 60~ z = 0,1,2,3, ... , 

then f(z) = 0 identieally. 

PROOF. See TITCHMARSH [4; p. 168]. 0 

In this proposition we take 

(35) f( ) = H(z+l) 
z z+l ' (Re z? 0). 

Then f(z) is bounded on Re z ? 0 so that we may take k O. 

Furthermore 

(36) 

we have by assumption 
1 

f(n) = H(n+I) = __ J_ J 
n+l n+l 

0 

and it follows that H(z) = 0 identically. 

In particular we find that 
1 A,- I 

(3 7) J x A 2 '$(x) dx = O, 
0 ( 1 +x ) 

VI- > 0. 

We already know that the system 
I in L [0,1]. 

1--1 
x } is 

( l +x !- ) 2 !- > 0 

0 

fundamental 



According to Propositions 2 and 3 

null-function, 

in L 1[0,I]. 

so that the system 

n 

we thus obtain that ~ is a 
xn-1 °' 

2 } _ 1 is fundamental 
(l+xn) n-

ConaZusion: The system {~x~} 00 is fundamental in 
l+xn n=O 

C[O,l]. 

REMARK. Example 3 has been taken from KOREVAAR [J]. 
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CHAPTER 13 

IKEHARA's THEOREM 

O. INTRODUCTION 

Let F(x) := Aex, (A; O; x > 0). Then the Laplace transform 

of F is 

( 0. I) Hs) := J 
0 

-sx x A 
e Ae dx = s-l , (s = cr+it € E; cr > I). 

Note that ~ is regular (analytic, holomorphic) on E except at 

s = I where it has a simple pole with residue A. 

Now let G be a measurable function such that G(x)e-x is bounded 

on R+ and lim G(x)e-x = A. Then the Laplace transform of G is 
x+oo 

regular on cr > l, Since F and G share a certain property, namely 

F(x) ~ Aex and G(x) ~ Aex, as x + 00 , one may expect that also 

the Laplace transforms of F and G have some properties in common. 

THEOREM 0.1. 16 F(x) ~ Aex, (x + 00 ), then the Laplace t~an-Ooo~m 
~ 06 F ha-0 no pole-0 on cr = 1, except pe~hap-0 at s = I. 

PROOF. For cr > 1 we have 

(0.2) 

Take s 

(0.3) 

where 

(0.4) 

A 
~(s) - s-1 J e-sxF(x) dx - J Ae-(s-l)x dx 

0 0 

a> 

J e-(s-l)x{F(x) ~ A} dx. 
x 

o e 
l+o+y 0 i, o > o and s 0 = l+y 0 i. Then 

a> 

e-(o+y0 i)x{F(x) I (s-s 0 )U(s) - ~}I ol I s-1 x 
0 e 

a> 

e-oxlF(x)_AI 
T QO 

}e-oxlF(x) - Al $ 0 I dx o{ I + I x 0 T x 
0 e e 

T 
IF(x) -ox 

$ 0 I - Al dx + 0. E:T. I e dx $ 

0 
x 

e T 

T 
IF(x) $ 0 f - Ai dx + e:T 

0 x e 

e:T := sup IF(~) - Al' (T > 0). 
x;:::T e 

- A} dx 

dx $ 

I $ 



Hence 

(0.5) 

and since 

( 0. 6) 

lim ET = 0 we obtain 
T-+oo 

lim (s-s 0 ){1(s) - ~ 1 } 
ofO s 

If y 0 # 0 this is equivalent to 

(O. 7) lim (s-s 0 )w(~) = 0 
o+o 
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0. 

and from this it is clear that in case I has an analytic contin

uation up to o ~ l, s # I, it can have no poles on o = 1, s # 1. D 

The (Tauberian) theorem in the next section contains some con

ditions under which the converse of the previous (Abelian) 

theorem holds true. 

I. IKEHARA's THEOREM 

THEOREM I.I. (1931, IKEHARA [3]} Suppo6e that F : R+-+ R i6 

non-deenea6ing and non-negative and that the Laplaee tnan6fionm 

(I; I) 1(s) J e-sx F(x) dx 

0 

eonvenge6 6on o > 1. 

(I. 2) Li(s) := l(s) - ..A..= l(l+a+Si) - ~ 
s-1 · a+Si ' 

(a > 0) 

tend6 uni6onmly to a limit 6unetion r(S) i6 a f o and -\ ~ s $ \ 

(whene \may be taken a6 Lange a6 we plea6e), then 

(I. 3) lim F(x) = A. 
x x+00 e 

REMARK. If l(s) has an analytic continuation up too~ 1, s # l, 

having a simple pole at s = 1 with residue A, then the conditions 

in Ikehara's theorem are certainly satisfied. 

PROOF. Writing L(x) := e-xF(x) we have for a > 0 

(I • 4) Li (I +a+Si) 

0 0 
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Let H(B) be complex valued and continuous on [-2A,2AJ. 

Then the integral 

(I • 5) 
2A 
J H(B){ J e-Bixe-axL(x) dx} dB 

-2A 0 

exists and equals (see TITCHMARSH [4; p. 392]) 

2A . 
J e-axL(x){ J H(B)e-Bix dB} dx. (I • 6) 

0 -2A 

In particular this holds for 

(I • 7) (n constant). 

Note that for this particular function we have 

(I • 8) 

Defining 

(I. 9) 

2A . 0 f H(B)e-iµx 
-2A 

2A 
.?. J (1 
7f 0 

B TI} cos B(n-x) dB 

. 2, 
sin "i:; := 2 

7r Ai:; 

_?_ sin 2t..(n-x) 
71 t..(n-x) 2 

we thus have 

(1.10) 
2A 
f H(B)~(l+a+Bi) dB 

-2A 

J -ax J -ax = 2 e KA(n-x)L(x) dx - 2A e K;\(n-x) dx. 
0 0 

It is clear that, if a+ 0, then the left hand side of (I.JO) 

tends to 

(1.11) 

Since 

(1.12) 

2A 
f H(B)r(B) dB. 

-ZA 

00 •. 2 . ;l.n .•. 2 J KA(n-x) dx = J sin t..(n-~) dx = { J sin2 u du 
o o 7rA (n-x) - 00 u 

we have by a simple (Abelian) continuity theorem for Laplace 

transforms (see DOETSCH [2; p. 156]} 

(1.13) J -ax lim e K;\(n-x) dx 
a+O o 

J K,_(n-x) dx 
0 



and hence 

( 1 • 14) 

Now we let 

( 1 • 15) 

and 

(1.16) 

so that 

(1.17) 

I -ax lim e KA(n-x}L(x) dx = 
a-1-0 o 

(use the fact: KA (n-x) <: 0) ..• 

00 

I KA(n-x)L(x) 
0 

2'. i J H(B)r(B) 
-2A 

n -+ co. Then (by 

2A 
lim J H(B)r(B) 
n+00-2A 

00 • 2 
I sin u du = 11 --2-
-oo u 

00 

dx = 

dB + 

RLL) 

dB = 

lim J KA(n-x)L(x) dx 
n+oo 0 

A An . 2 
-J~ du. 
1T 2 -co u 

0 

A 
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which may also be written as 

( 1 • l 8) 
An sin2u 

lim J L(n- ~) ~-2~ du 
n+oo -oo u 

11A. 

;:: 1 that An ;:: h and hence n 7X so ! Choose 

(l.19) 
An ... 2 /'}., .. 2 
I L (n- !! ) sin u du <: J L (n - !! ) sin u du ;:: 

A --2-
- fA A --2-

u u 

<: t 1 then F(t 2 } <: F(t 1 ) so that 

tl tl-t2 
<: e L(t 1 ) and hence L(t 2 ) <: L(t 1 )e ) 

IA .2 
;:: I L(n - h> exp(- h + x> sin2 u du ;:: 

-IA u 

1 2 /A . 2 
<: L(n- -n;> exp(- 7?;") J sin2 u du. 

-IA u 

From this it follows that 

(I. 20) 1 
L(n- TA) 

An . 2 * IA . 2 l 
s ( J L(n- ¥>sin2 u du) evA { J sin2 u du}- • 

- u -~ u 
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Combining this with (1.18) we thus obtain 

2 
I>. 2 

du} - I. (1.21) lim sup L(n) $ rrAexp(TA){ J sin u 

-h u 2 n+oo 

By letting >. + 00 we obtain from this 

(1.22) lim sup L(n) $ A. 
n+oo 

2 We have just seen that L(n) is bounded at +oo 
' 

i.e. 

(I.23) (O s) L(n) S G, 

I 
For n > 7I we thus have 

(I. 24) 
>. n • 2 
J L(n-~' sin u du 

>. 1 2 -oo u 

-h h >.n • 2 
'~ { J + J + J }L(n-¥2 sin u du s 

- 00 -h h " u 2 

-h h . 2 
s J. ~ du + J L(n-~1 sin2 u du + J £_ du s 

-oou -I>. >. u hu 2 

... (see the note in part !) . .. 
2G h 

I I 
2 

+ f L(n+ ~) sin u du $ $ TA TA) exp(n + --2-
-h ;\. 

u 

/'A, • .2 
<2G L( I) (2)·js1nud _ 7I + n+ 7I exp TA --2- u. 

-h u 

Combining this with (1.18) we easily obtain that 

(I.25) lim inf L(n) ~ A 
n+oo 

and the desired result 

(I.26) lim L(n} = A or lim 
'1!' (x) 

~ A 
x+oo x n+oo e 

follows from l and ~· D 

REMARK. The original proof of Ikehara's theorem was based on 

Wiener's general Tauberian theorem. The proof above is Doetsch's 

version of Bochner's simplification of Ikehara's proof. 
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2. BOCHNER's THEOREM 

Without proof we state Bochner's 

THEOREM 2.1. (1933, BOCHNER [l]) Let a 

ing and let 

[0, 00 ) + R be non-de.ene.a6-

( 2. I ) f -sx 
f(s) = e da(x) 

0 

be eonve.nge.nt 60~ Res> 1. 

16 
( 2. 2) 

A 
f(s) - s-l + g(t), o 4- I 

( 2. 3) lim a(x)e-x =A. 
x+oo 

As an immediate consequence of this theorem we have the following 

useful 

THEOREM 2.2. Let 0 $Al < A2 < A3 < ••• + 00 and an~ 0, Vn EN 

and 6uppo6e. that the. 6e.nie.6 
-A s 

(2.4) f (s) ~ a e n 
n=l n 

i6 eonve.nge.nt 6on Res> 1. 

16 
( 2. 5) f(s) - 2-_ 

s-1 

ha6 a eontinuou6 e.xte.n6ion up to a~ 1, then 

( 2. 6) lim e-x ~ 
x+oo A Sx 

n 

a "' A. 
n 

PROOF. See BOCHNER [I]. 0 

REFERENCES 

I. BOCHNER, s., Ein Satz von Landau und 1ke.hana, Math. z. 37 

(1933) pp. 1-9. 

2. DOETSCH, G., Handbueh den Lapl~ee. Tnan66onmation, Basel, 1950. 

3. IKEHARA, s., An e.xte.n6ion 06 Landau/6 the.one.m in the. analytie 

the.any 06 numbe.n6, J.M.P.M.I.T. 10(1931) PP· 1-12. 

4. TITCHMARSH, E.G., The. The.any o0 Funetion6, Oxford Univ. 

Press, 1960. 



94 

CHAPTER 14 

THE PRIME NUMBER THEOREM 

I. NUMBER-THEORETICAL PRELIMINARIES 

DEFINITION. By rr(x) we denote the number of prime numbers not 

exceeding x E R. Furthermore we set 

(I. I) 8(x) := E log p' (x > 0) 
pSx 

and 

(I. 2) tjJ( x) := E 8(xm), (x > O}. 
m=l 

LEMMA I. I6 x > o, then 

(I • 3) rr(x) < x 

and 

(I. 4) 8(x) $ rr(x) log x. 

PROOF. If 0 < x < 2 then rr(x) 

From (I. I) it is clear that 

0 and if x ~ 2 then rr(x)Sx-l<x. 

(I • 5) 8(x) E log p $ E log x rr (x) log x. D 
pSx pSx 

LEMMA 2. 

(I. 6) lim 
ljJ (x) - 8(x) o. = 

x+co x 

PROOF. If x ~ 4 and N : = [log XJ then ·1og 2 
] 

N l 
(I. 7) 0 $ ljJ (x) - 8(x) = E 8(xm) $ (N-l)El(x 2 ) < 

m=2 

! log x ! 
log x ! log 

2 l 
N·8(x 2 ) $ rr (x 2 ) x x2 < 

log 2 
< 

2log 2 

and the lemma follows easily. D 

LEMMA 3. Let {ak}~=l be an inc~ea6ing 6equence 06 po6itive 
intege~J.i. Ve6ine P (x) a6 the numbe~ 06 element6 06 thiJ.i 6equence 
not exceeding x and let 

(I. 8) L(x) := E log ak. 
aksx 



16 L(x) ,[1.i 
x 

(I. 9) 

PROOF. For 

(I.JO) 

or 

(I. I I) 

Clearly 0 :s; 

(1.12) 

bounded .:then 

I 

lim {P(x)log x L(x)} 0. 
x x 

X+oo 

< y < x we have 

L(x)-L(y) = l: log ak "' {P(x)-P(y)}log 
y<ak:s;x 

P(x) P(y) L(x) - L ( l'.) :s; + log y 

L(x) :s; P(x)log x and P(x) :s; x so that 

L(x) :s; P(x)log x :s; {p ( y) + 
L(x)-L(l'.) }log x 

x x log y x 

:s; (y + L(x) ) log x 
log y x 

y log x + L(x) log x 
x x log y 

Now choose y = xl-p(x) with 

(J.13) p(x) = (log log x) 2 
log x 

(x>e). 

Then 0 < P(x) < I so that 1 < y < x. Hence 

(1.14) :s; P(x)log x :s; x-plog x + L(x) 
x x 1-p 

or 

y 

:s; 

(1.15) 0 :s; P(x)log x _ L(x) :s; x-plog x + L(x){~l- - l}. 
x 1-p x x 

Since 

(J.16) 

(1.17) 

and 

(1.18) 

. 2 
exp{-(log log x) + log log x}, 

L (x) :s; G 
x 

1 im p (x) = 0 
x+oo 

for some constant G, 

the lemma follows. D 

LEMMA 4. 

(1.19) (0 :s;) e(x) < 4 log 2, 
x 

(x > O). 

95 
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PROOF. Since 2 2n 
2 2n 2 

(l+I) n = k~O ( :), (n EN), we have 

(1.20) 2 2n 
< ' (n E N). 

Note that the binomial coefficient ( 2n) is a positive integer 
n 

which is divisible by all prime numbers p satisfying n < p s 2n. 

Hence 

(1.21) 

or 

(1.22) 

II 
n<pS2n 

8(2n) - B(n) < 2n log 2. 

m-1 
For n = 2 we get 

(I . 23) 

and it follows that 

(1.24) 

Now observe that for every x ~ I there exists a positive integer 

m such that 2m-l s x < 2m, so that 

(1.25) (4log 2)2m-l s (4log 2)x 

and the lemma follows. D 

In Lemma 3 let {ak}:=I be the sequence of prime numbers: 2,3,5,7, ... 

Then P(x) = TI(x) and L(x) = B(x). We have just shown that B(x)/x 

is bounded, so that by Lemma 3 

(1.26) lim {TI(x)log x _ B(x)} = 0 
x x X+oo 

and combining this with (1.6) we obtain 

LEMMA 5. 

(1.27) lim {TI (x) log x 1/1 (x)} 0. = x x X+oo 

Hence, in order to prove the prime number theorem, i.e. 

(1.28) lim 
TI (X) 10 g x 

1 = x x+oo 



we may just as well prove that 

(1.29) 

LEMMA 6. 

( 1. 30) 

PROOF. 

(I • 31) 

lim ljl (x} = 1. 
x 

X+m 

ljl(x) = 

00 

(m € E; p prime) 

ljl(x} E e(xm} = E E log p E log p • 
m=l m=I psxl/m pmsx 
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REMARK. From this lemma it is clear that "1 is a step function 

having its jumps at the points x =pm, (p prime; m € E). 

DEFINITION. 

(I • 32) A(n) := ljl (n} - ljl(n-1), (n € E). 

LEMMA Z. 
log -l6 m 

= { 
p n = p 

(I • 33) A(n} (m 
0 -l6 n <f m 

p 

PROOF. This is clear from Lemma 5. D 

LEMMA 8. 

(I • 34) E A(m} = log k, 
mlk 

(k € E}. 

~ l) • 

PROOF. In the sum in the left hand side we only need to consider 

those divisors of k which have the form pm, m ~ l. 

The lemma is clearly true fork= l. 
al a2 ar 

Therefore suppose that k ~ 2 and that p1 p 2 ···Pr is 

canonical prime decomposition of k. Then 

(I • 35) E A(m) 
mlk 

r 
E 

i=l 

0 
A(p.) = 

l 

r 
E 

i=J 

the 
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2. SOME FUNDAMENTAL FACTS ABOUT t(s) 
00 -s 

The series n~l n is absolutely convergent for a > l and defines 

a regular function (denoted by t(s)) on this half plane. 
n dx 
I As usual ns, s E E, is defined as exp(slog n), where log n 

If a > we may write 

00 

( 2. I) t(s) = I: -s 
n 

n=l 

[x]x-sJ7-o -

dx I J = s - s s 
l x 

00 

1 

00 

J x-s d[xJ 
1-0 

[x] dx -s = 

x-[x] 
= 

s 

s 
~ 

dx 
s-1 x 

I 

[xJ I dx s+T 
l x 

00 

x-[x] J dx. - s ~ 
1 x 

Since x-[x] is bounded, the last integral represents a regular 

function on a > O, so that t(s) has an analytic continuation up 

to a> O, having a simple pole at s = 1 with residue I. 
00 -s 

LEMMA 2.1. The -0e~~e-0 n~l A(n)n ~-0 ab-0olutely conve~gent 60~ 
a > I and -0at~-06~e-0 

(2.2) t ( s) I: 
n=l 

-s A(n)n -t'(s), (a > 1). 

PROOF. The absolute convergence of the series for a > I follows 

from the estimate 0 s A(n) s log n. 

Now observe that (by absolute convergence) for a > 1 

00 

A (ml = ( ; _1 ) ( ; A(m)) 

ms n=J ns 111=1 ms 
(2.3) t ( s) i:: 

m=l 

00 

x 

i:: 
m,n=l 

A(m) 

(mn) s 
I: - 1 ( l: A(m)) 

k=l ks mlk 
i:: 

k=l 
-t'(s).D 

LEMMA 2.2. On a > 1 we have t(s) ~ O -00 that 

(2.4) i:: 
n=l 

A(n) 
s n 

t'(s) 
-nsT (a> 1). 

PROOF. Suppose that t(s) has a zero at s 0 
of order a(~ 1). Then the product 

(2.5) t(s) 
00 

I: 
n=l 

A (n) 
s 

n 

has a zero of order 6 ~ a at s 

Since t(s) has a zero of order a at s - s 0 , t 1 (s) has a zero of 
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order a-I at s = s 0 . This leads to the palpable contradiction 

a-1. D 

REMARK. The fact that t(s} f 0 also follows from Euler's identity 

( 2. ()} =TI ---
p 1- l 

s 
p 

(a> I). 

LEMMA 2.3. Fo~ the analytic continuation 06 t(s) we have 

( 2. 7) t(s) f 0 on a = l. 

PROOF. If a > I then we may write (see (2.6)) 

( 2. 8) 

Consequently 

( 2. 9) 

so that 

(2.10) 

t(s) TI (I-
I -1 

= -) 
s 

p p 

exp ( i:: exp(-ms 
m 

p ,m 

lt<cr+it) I exp ( i:: 
P ,m 

exp( 
I 

TI i:: -ms> 
m=I p mp 

log p)) . 

cos(mtlog p)) 
ma 

mp 

t 3 (1+E)jt(l+£+it}! 4 !t0+£+2it}j = 

= exp ( l: 
p,m 

3+4cos(mtlog p}+cos(2mtlog p}) . 
m(l+£) mp . 

Now observe that for every $ E R one has 

( 2. I I ) 

so that 

( 2. I 2) 

2 
3+4cos $ + cos 2$ = 3+4cos $ + 2cos $ - I 

t 3 (1+£)jt(1+£+it)l 4 !t0+£+2it)j ;:: 

which may also be written as 

(2.13) !t(l+£+it)! 4 ;:: 
l 

3 
1;; (1+£)jt(J+£+2it)j 

Since, for 0 < £ < I, 

2 
2(I+cos $) ;:: 0 

( 2. I 4) (O <) t(l+£) I ~ dx l+ _!_ < 2 
1+i::2---r+E<l+;l+E= £ "E 

n= n 1 x 
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the right hand side of (2.13) is larger than £ 3 /8j,(1+£+2it)j, 

and it follows that 

(2. 15) 1'(1+£+it),4;:: 
£ 8£ I d1+£+2it) I 

Since '(s) is analytic at s = l+2it, t f O, we clearly have 

c2.16> um £1,CJ+£+2it>I = o. 
£+0 

Combining this with (2.15) we obtain 

(2.17) lim I '< 1+£•it) I 
£+0 £ 

00' (t; 0). 

If '(l+it) = 0 for some t ; O, then 

( 2. 18) I 'U+£+itl I 
£ 

1 ,c1+c+itl - ,c1+itl I 
£ 

which (because of the regularity of '(s) on the line a= I, s; I) 

tends to l''(l+it)I as£+ 0. However, this contradicts (2.17) 

so that we have to conclude that '(l+it) ; o for all t r o. D 

LEMMA 2.4. The 6unc..U.on - ~~~:~ ,i.-6 11.e9ula.11. on a ;:: l, exc.ept a.t 
s = 1 whe11.e it ha-6 a. -6imple pole with ll.e-6idue 1. 

PROOF. From the previous analysis it is clear that the function 

under consideration is regular on a<:: l, a·f l. 

The Laurent expansion of '(s} around s = reads as follows 

( 2. 1 9) co< ls-11<1) 

from which it follows by straightforward computation that 

(2.20) 'I ( s) 1 
- s'(s) = s-1 - (co+ll + ••· 

for all s in some neighborhood of l (s r l, of course). D 

LEMMA 2.5. The 6unc.tion 

'' ( s) - S"'f(s) - s-1 ( 2. 21) 

i-6 11.egula.11. on a;:: 1. 

PROOF. This is a restatement of Lemma 2.4. D 

LEMMA 2.6. 

(2.22) '' ( s) - s'(s) (a> 1). 



PROOF. For a > I we have by Lemma 2.2 

(2.23) 
/;;I ( S) 

E 
A(n) 

~ n=l s n 

whereas the series may be written as 

(2.24) 
A(n) t/J (n) - t/J ( n-1) f dt/J (x) E E 

n=l s n=l s +O s 
n n x 

t/J(x)loo - f t/J (x) dx -s f t/J (x) dx s S+T s +O 
x +O x 

f -st t/J (et) dt s e 
0 

proving the lemma. D 

3. THE PRIME NUMBER THEOREM 

THEOREM 3. I. 

(3. I) lim t/J (x) = 1 . 
x x+oo 

PROOF. In Ikehara's theorem take 

( 3. 2) (t ? O). 

Clearly F(t) is non-negative and non-decreasing and the 

Laplace transform oi F(t) is -1;;'(s}/s1;;(s). 

I 0 I 

Since -1;; 1 (s)(s1;;(s) - J/(s-11 is regular on a? I, all conditions 

in Ikehara 1 s theorem are satisfied so that 

(3.3) 1 = lim 
t/J (et l 

t 
e 

lim t/J(xl 
x 

t+oo X+oo 

Combining (3.3) with (1.27) we obtain 

(The Prime Number} THEOREM 3.2. 

(3.4) 
ir (x} log x 

lim - =I. 
x X+oo 

D 

In the above derivation of the Prime Number Theorem the analytic 

behavior of -1;; 1 (s)/s1;;(s) - 1/(s-1} turned out to be of crucial 

importance. The analyticity of this function on a ? l was obtained 

from the fact that 1;;(s} f 0 on a? 1, sf 1. It was easy to show 

that 1;;(s) f 0 on a> 1, so that the PNT is mainly a consequence 

of the fact that 1;;(s) f 0 on a = 1. 
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We conclude by showing that this property of s(s) is also 

necessary for the PNT. 

Indeed, if (3.4) holds, then (by Lemma 5) lim lji(x)/x = I or 
t t t ~+oo 

lim lji(e )/e = I. Setting F(t) := lji(e ), we obtain from Theorem 0.1 
t+oo 
that the Laplace transform of F(t) has no poles on a = 1, s f. I. 

Hence, -~'(s)/ss(s) has no poles on a= 1, sf. 1, so that (by a 

simple function theoretic argument) ~(s} cannot have any zeros 

on a= l. 
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