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" GENERAL INTRODUCTION

The problem which is studied in this thesis has its origin in the phys-
ics of ionized gases. One considers an assembly of ions and electrons. The
electrons, which are highly mobile, are described by a time and space de-
pendent density n,. The ions, which are heavy and slow, are considered not
to move on the time scale of interest; they are described by a time-indepen-
dent density f. One wants to determine the electron density for a given ion
density, with the extra condition that the total number of electrons is also
given. The physical laws which determine this problem are
(1) Coulomb's law, which gives the electric field (or the electric poten—

tial) in terms of the charge densities.
(ii) A constitutive equation which gives the local electron current in
terms of the local electric field and the electron density gradient.
(iii) The continuity equation, which links the local rate of change of the
electron density to the electron current.
These basic laws are stated mathematically in Chapter 1. On several occa-
sions we shall generalize our equations to arbitrary spatial dimension n,
where we use the generalization of Coulomb's law. One can consider either
the limited problem of finding the stationary electron density, or the full
problem with nonstationary solutions. Both are investigated in this thesis.

Given these basic laws we show that these problems can take various
forms, depending on which physical quantity one takes as the unknown func-
tion. The most obvious one is the electron density n, but it is also pos-
sible to take as the unknown function the electric field p due to the elec—
trons or the electric potential u. If one takes as unknown the electric pot-

ential, one obtains the following problem for the stationary state



—Au-ﬁeu/e = f in Q
BVP fQ eu(x)/sdx =C
ulBQ = constant (but unknown)

where Q is a domain in R" and € is a positive constant proportional to the
temperature; the quantity eu/e corresponds to the density of the electrons
and the integral condition expresses the fact that the total charge of the
electrons is a given positive constant C. One assumes furthermore that the
domain @ is surrounded by an electrical conductor which implies the condi-
tion u*BQ = constant.

An alternative formulation of this problem is the minimization of the

free energy

inf € [ divp lndivp +lf(g-P)2
Q 2

such that IQ divp = C

Here g denotes the electric field created by the ions and is given and one

wants to solve for p. These functions are related to n,,u and £ by divp =
u/e

n, =e and divg = f. A short derivation by physical arguments of the

problems BVP and VP* is given in Appendix 2 of Chapter 5.
Because our interests are mathematical, we propose to consider as well

the larger class of problems

—Au+h(%) =f in Q
u(x) _
BVP [, pEPax = ¢
u|aQ = constant (but unknown)

where h: R R is a given continuous, strictly increasing function and the

constant C satisfies the compatibility condition
h(=)]a] < C < h(+)|Q]

where |Q] denotes the measure of Q.



Thé partial differential equation in BVP, whose left-hand-side is the
sum of the Laplacian and of a monotone operator is similar to equations in
problems studied by BENILAN, BREZIS & CRANDALL [5], CRANDALL & EVANS [14]
and VASQUEZ [41]. Also, if one SEEEtitutes m = divp in VP*, one makes more
apparent the similarity between VP* and the Thomas-Fermi model (see for in-
stance LIEB & SIMON [36], ARTHURS & ROBINSON [3] and BENILAN & BREZIS [4]).
The most striking feature of these problems, when Q is unbounded, is that
the existence of a solution may depend on the dimension [41] and on whether
the parameter C lies above or below a critical value [36], [4]; we shall see,
at least in one special case, that such a threshold phenomenon also occurs
with BVP and VP~.

Another interesting feature of BVP is that it is a singular perturba-
tion problem. We shall study it in its general form in the case that Q is
bounded and we shall show that as € + 0 (physically: the low temperature
limit) the solution u of BVP converges to the solution of a free boundary
problem. Related Dirichlet problems have been studied by BRAUNER & NICOLAENKO
[6], [7]; they also use problems similar to BVP to approximate free:boundary
problems characterized by elliptic variational inequalities [8]. FRANK &
VAN GROESEN [21] and FRANK & WENDT [22] consider related inhomogeneous
Dirichlet problems and study in particular the coincidence set of the limit
problem.

The main questions which have been motivating our work are:

(1) What are the conditions which insure existence and non-existence of a
solution for BVP, and, if BVP has a solution, is it unique?

(i1) Is the solution u_ of BVP stable, when considered as the steady state
solution of a suitable evolution problem?
Also, how does the solution of the evolution problem behave in the
case that BVP does not have a solution?

(iii) What is the asymptotic behizipur of u_as e v 0?

(iv) In what sense are BVP and VP* equivalent?
More generally, if one associates a variational problem with BVP, what

does its dual problem (in the sense of EKELAND &TﬁMAM [19])1look like?

This work does not pretend to answer thoroughly all the above questions
but we have used them as a guideline and we may solve in the future some
points that are left open here. We now give a more detailed overview of the

contents of this thesis.



A special case of physical interest 1is that of a filamentary discharge
between two electrodes, considered by MARODE [ 37] and MARODE, BASTIEN &
BAKKER [38]. By means of numerical methods, these authors study a system of
moment equations which describe the motion of particles (charged ioms,
neutrals and electrons) in the filament of the discharge. Because there is
cylindrical symmetry in the experimental situation, one works with two space
variables, the distance r to the axis and the height z, and a time variable
t.

In Chapter 1 we propose a physical model which simplifies the experiment-
al situation. In particular we suppose that the radial dimension of the dis-
charge is much smaller than its longitudinal dimension and thus that all the
quantities involved depend only on r and t. The steady state problem is then

given by the cylindrically symmetric version of BVP, namely

~

1 3 du u/e _
ol %1 + e =f for r € [O,R]
du _
4-5; (0) =0
g eulerdr = C.
L

Rather than studying this problem, we study the two-point boundary value
problem which one obtains after transforming from u and f to two new func-

tions y and g:

x1/2
y(x) = I eu(r)/srdr
0
and
x1/2
g(x) = J f(r)rdr.
0

The transformed problem reads:

exy" + (g(x) —=y)y' = 0 for x € (0,R)
P(e,R){
y(o) = 0’ y(R) = C.

In the experimental situation R is very large and hence the case R = « is
of interest. In Chapter 1 we also derive the evolution problem correspond-

ing to P(e,R) namely



[Vt = exv + (g(x)-—v)vx on D = (0,) x (0,T)
P ,v(0,t) =0 for t ¢ [0,T]
v(x,0) = ¥(x) ' for x € (0,®)

where the initial function ¢ is nondecreasing and such that y(0) = 0 and
P(») = C. Finally we summarize in Chapter 1 in physical terms the results
obtained in Chapters 2-4. We discuss in particular the escape of electrons
to infinity above a critical temperature and the boundary layer exhibited

by the electron density near zero temperature. The references [9] of Chapter
1 can be supplemented with more recent ones on two-dimensional Coulomb sys-—
tems with circular symmetry [1], [10], [29], [30]1, [39].

We remark that the notation used in this introduction does not always
coincide with the notation of the following chapters. Since these were ori-
ginally separate articles, the same symbol denotes sometimes different
quantities.

In Chapter 2 we study the two-point boundary value problem P(e,R), in

which we suppose that g satisfies the hypothesis

Hg: g € CZCR+), g(0). =0, g'(x) >0 and g"(x) <O for all x 2 0,
and suppose that C € (0,g(x)) and R > X = g_l(C). It turns out that P(e,R)
has a unique solution y which is monotonic in € and in R. Interesting from
both the physical and the mathematical point of view are the regions of the
parameters where ¢ is small and R is large.

We first study the limiting behaviour of y when R tends to infinity and
e is kept fixed and obtain the following results: as R > », y converges uni-
formly on compact subsets to a function y. If € < g(») -C, y coincides with
the unique solution of P(e,~) and the convergence is uniform on [0,~); on
the other hand if € > g(~») - C, P(e,~) has no solution and § is character-
ized as follows: it satisfies the differential equation in P(e,»), the bound-
ary condition ;(0) = 0 and the condition at infinity y(e) = max(g() -¢€,0).

The physical problem corresponding to P(e,») is essentially two-dimen-
sional; a mathematical formulation of the same problem in n dimensions is
given by the differential equation

ex 21T o bty Yy = 1



and similar conditions at x = 0 and at x = ©, Using methods like those of
Chapter 2 one can show that this problem has a unique solution if n = 1 and
no solution if n 2> 3.

We then analyse the limiting behaviour of y as € tends to zero and R
is kept fixed. As € + 0, y converges uniformly in x to the function ;(x) =
min(g(x),C) and its derivative y' converges uniformly to ;' on compact sub-
sets of [0,R] which do not contain the point X+ At this point an interior
layer occurs. Using the method of matched asymptotic expansions as presented
for instance by VAN HARTEN [26], we derive uniform approximations for y and
y'.

Finally we consider the problem P(e,R) with much weaker hypotheses on

the function g, namely

g € C'(LO,RD), g(0) = 0, g(®) = C

g has finitely many local extrema on [0,R].

Also in this case, P(e,R) turns out to have a unique.solution which converges
uniformly to a limit function as € + 0: this limit function is continuous
and consists of pieces where it is equal to g(x) and pieces where it is con-
stant. However, there are cases where at this stage we are not able to de-
termine the limit completely.

The methods used in Chapter 2 are based on the maximum principle and
on finding lower and upper solutions; in the case that g is not monotonic
we also use arguments borrowed from the theory of dynamical systems. The fact
that we cannot always completely characterize the limit of the solution as
€ ¥+ 0 has led us to study P(e,R) be means of a variational method which we
shall present in Chapter 4.

Problems related to P(e,R) have been considered by HALLAM & LOPER [25]
and in cases where bifurcation occurs by CLéMENT & PELETIER [11], [121,

HOWES & PARTER [27], KEDEM, PARTER & STEUERWALT [34] and KOPELL & PARTER [35].
Also related are linear problems with turning points studied by GRASMAN &
MATKOWSKI [24], KAMIN [31], [32], [33], DEVINATZ & FRIEDMAN [15] and SCHUSS
[40].

A natural idea, after the investigation of Problem P(e,R) is to analyse
the stability of its solution when considered as a steady state solution of
the evolution problem P. In Chapter 3 we study the limiting behaviour of the
solution v of Problem P as t - <. We suppose that the function g satisfies
the hypothesis Hg given above and that the initial function y satisfies the

hypothesis Hlp 4



(1) wAis continuous, with piece-wise continuous derivative on [0,=)};

(ii) ¢(0) = 0 and Y(») = C;

(iii) there exists a constant M¢ > g'(0) such that 0 < ' (x) < Mw at all
points x where y' is defined.

When studying Problem P the difficulty is twofold: the parabolic equa-
tion in Problem P is degenerate at the origin and the coefficient of B
becomes unbounded as x -+ .

To begin with, we prove a comparison theorem. The method we apply is
inspired by results of ARONSON & WEINBERGER [2] and makes use of a maximum
principle due to COSNER [13]. The uniqueness of the solution of Problem P
is a direct consequence of the comparison theorem.

Then we prove that P has a classical solution v which satisfies further-

more the condition
(%) v(e,t) = C for t € [0,T], T < =

To do so, we first prove that property for certain related uniformly para-
bolic problems. We then deduce that P has a generalized solution, in a cer-
tain sense and finally we show that this solution is in fact a classical
solution; we use herelarguments taken from VAN DUYN [16], [17] and GILDING &
PELETIER [23]. To prove that v satisfies condition (%) we construct a suit-
able lower solution.

We then investigate the behaviour of v as t +~ » and show that it con-
verges towards-the function ; = limRéw y.

Finally we analyse the rate of convergence of v towards its steady state.
If g tends to infinity fast enough, y turns out to be exponentially stable;
our proof follows the same line as that of FIFE & PELETIER [20]. In the more
general case that € < g(»)-C, we use a method of IL'IN & OLEINIK [28] and
VAN DUYN & PELETIER [18] to derive that v converges algebraically fast to-
wards its steady state.

Also considered is the limit case € + 0: as € + 0, v converges to the
generalized solution v of the corresponding hyperbolic problem and as t -+ =,
v converges algebraically fast to its limit.

In Chapter 4, we return to the problem of determining the limit as
€ + 0 of the solution y of the steady state problem P(e,R). In order to keep
the proofs less technical while retaining the essential features of the

problem we choose to analyse the following simplified version of P(e,R)



« (V" ¥y =0
BVP {
y(0) =0, y(1) =1
where the function g € LZ(O,I) is giVen. The existence of a solution Ve of

*
BVP is proven by applying Schauder's fixed point theorem. Alternatively

BVP" can be rewritten as the abstract equation
(eA+I)y = g

where A is a maximal monotone operator on L2(0,1); it is also equivalent to
a variational problem related to ;;;. We use these equivalent formulations
of BVP* to show that as € + 0 y, converges strongly in L2(0,1) to a limit Yo
which is the projection of g on D(A). Finally we give a more concrete form
to the characterization of Yo we present sufficient conditions for a func-
tion to be the limit and we show, by means of examples, how these criteria
can be used in some concrete cases.

In Chapter 5 we study Problem BVP in the case that Q is a bounded do-
main and we suppose that f is a distribution in H-l(ﬂ). In order to prove
that BVP has a unique solution u which belongs to the direct sum of Hé(Q)
and the constant functions on 2, we rewrite it as the subdifferential equa-
tion QVE(u) = 0 where v, is a proper, strictly convex, lower semicontinuous
and coercive functional. A technical difficulty in doing so is due to the
fact that we do not impose any growth condition on the nonlinear function h;
we overcome it by using results from BREZIS [9] and duality theory. We re-
mark here that BVP can be interpreted as a problem of the class Au+B€u = f,
where A and Bé are maximal monotone operators on LZ(Q) x R .

We then show that as € + 0 u converges to a limit function uo; the
main ingredients of the proof are the fact that v is monotonic in € and uni-
formly coercive. The limit function u, can be characterized as the solution
of an operator inclusion relation if h is bounded and as the solution of a
variational inequality if either h(+®) = +» or h(-») = —», Remarkable is the
fact that u, depends only on C, f and h(¥=).

Since we know a variational form of BVP, it is natural to introduce a
dual formulation; to do so we follow closely EKELAND & TEMAM [19]. In the
case of the physical problem it turns out that VP* is precisely the dual
problem corresponding to BVP. In the general case the dual problem is equi-

valent to a problem of the form

(eA+I)p =g



where A is a maximal monotone operator on (LZ(Q))n and g is related to f by
divg = f.

Finally we suppose that f ¢ L7 (Q). Then u and u, belong to Wz’p(Q) for
each p 2 1 and u_ converges weakly to Uy in Wf(’)g(fl). Thus either one has con-
vergence in Wz’p(Q) or a boundary layer develops in the neighbourhood of 3Q
as € + 0. We present criteria in terms of the data f, h(¢») and C from which
it can be decided in many cases which of these two possibilities actually

occurs.
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CHAPTER 1

RIGOROUS RESULTS ON A TIME-DEPENDENT
INHOMOGENEOUS COULOMB GAS PROBLEM

ABSTRACT

We report results obtained by rigorous analysis of a nonlinear differ-
ential equation for the electron density n, in a specific type of electrical
discharge. The problem is essentially two-dimensional. We discuss in partic-
ular (i) the escape of electrons to infinity above a critical temperature;

and (ii) the boundary layer exhibited by ne near zero temperature.

KEY WORDS & PHRASES: singularly perturbed nonlinear two-point boundary value
problem; nonlinear parabolic equation degenerate at the
origin in one space dimension; Cculomb gas; rre-break-

down discharge in an ionized gas between two electrodes



In a filamentary discharge studied by Marode et al. [1,2] electrons
and ions are produced with number densities ne and n;. respectively. The
charged particles move in a background of neutrals. The discharge area is
cylindrical and has its radial dimension much smaller than its longitudinal
dimension. Since to a good approximation the physical situation is cylin-
drically symmetric, it suffices to consider a two-dimensional cross section
perpendicular to the cylinder axis, in which all quantities involved are
functions only of the distance r to the axis. As the ions are heavy and
slow, ni(r,t) = ni(r) may be regarded as fixed on the time scale of interest.
For the density ne(r,t) Marode et al. 3] use the following three equations:

(i) Coulomb's law

a @
e rE(r,t) = 4we[ni(r) - ne(r,t)] (1)

Kl

where E is the electric field and -e the electron charge;
(ii) a constitutive equation for the current density j(r), consisting of a
drift term and a diffusion term,
Bne(r,t)
jlr,t) = eune(r,t)E(r,t) + eD —m (2)
or

where U is the electron mobility and D the diffusion constant; and
(iii) the continuity equation

ane(r,t)

e —m—— =

9
— rj(r,t). (3)
3t or

LR

Both E and j are radially directed.
From Fgs. (1) - (3) a nonlinear partial differential equation for a

single function can be derived. To this end we set [4]

Vx

u(x,t) = f pn (p,t)dp, (4a)
0
Vx

glx) = f en, (p)dp. (4b)

0
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Upon employing for the diffusion constant the Einstein relation D= kBTu/e

(where kB is Boltzmann's constant and T the electron temperature), putting
2

€ = kBT/(Zﬂe ), and absorbing a factor 8mpe in the time scale we deduce

that u satisfies

u, = exu + (g—u)ux, (5)
u(o,t) = 0. (6)
By its definition g(0) = 0. .Typically, as r increases, ni(r) rapidly falls

off to zero, and hence g(x) attains a limit value g(»). The nonlinear term
in Eq. (5) represents the interaction between the electrons. Without it,
this equation would reduce to a linear one studied by McCauley [£] and
describing the Brownian motion of a pair of opposite two-dimensional charges
in each other's field. As it stands, Eq. (5) is rather reminiscent of the
nonlinear equations occurring in the Thomas-Fermi theory of the atom (see,

e.g., ref. [6]).

In the experimental situation that we are describing the total charge
in the discharge area is positive and conserved in time. This is expressed

by
u(e,t) = Ne for 0 £ t < =» (7)

with 0 < N, < g(»). One of the authors has investigated [4,7,8],by rigorous
mathematical methods, the solution of Egs. (5) and (6) for a given initial
distribution u(x,0) = uo(x) and subject to condition (7) on the total charge.

Here we present the main results in physical language.

1. We take g concave and in C2([O,m)). Then at given € (i.e. at given tem-
perature), there exists [4] a unique stationary solutiqn ust(x)
if the total number of electrons Ne is such that Ne < g(®) - €. In partic-
ular, when € 2 g(~), thermal motion prevents any electrons to be bound to
the fixed ionic background. The existence of such a critical temperature
is characteristic of two-dimensional Coulomb systems [9]. The main mathe-
matical tools in treating the stationary problem are maximum principle

arguments and the construction of upper and lower solutions.
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The solution ust' when it exists, has the following properties [4].

2
(i) It belongs to C“([0,»)). It is strictly increasing, concave, and
bounded from above by the function min(g(x),Ne). As X > », ust(x) approaches

its limiting value Ne at least fast enough so that

1
- -lg(x,)-N_]
/r ) € 1 e , ¥ + o 8)

ne(r) £ ne(rl)\;{—/

where rf = Xy 2 0 is arbitrary. Such power law decay is again typical of

Coulomb systems in two dimensions.
(ii) As € v O, ust(x) converges to min(g(x),Ne) uniformly on [0,»), and
we have for the zero temperature limit of the electron density

1

n, (r) r<rg
(9)

0 r >r

where the critical radius 4 is defined by the relation g(ro) = Ne'

At small e there is a ﬁransition layer of width ~ 85,1ocated at ro,
analogous to a Debye shielding length [3]. A uniformly valid approximate
stationary solution for € « 1 is given in [4]. It is obtained by the

method of matched asymptotic expansions.

We consider now the time evolution problem of Egs. (5) and (6).

Suppose that the initial condition u is sufficiently smooth, nondecreas-
ing, with bounded derivative, and with uO(O) = 0 and uo(w) = Ne'
Mathematically one has to find a way to deal with the degeneracy of the
parabolic equation (5) in the origin. In [7] this is done via a sequence

of regularized problems. The following is shown.

(1) The time evolution problem has a unique solution u(x,t) such that u
and u  are bounded. In fact it satisfies 0 < u(x,t) < Ne' it is non-

decreasing in x for all t, and for each t > 0 we have u(w»,t) = Ne'



(ii) In order to discuss the behavior of u(x,t) as t > » we consider the
function ast which satisfies the steady state equation and has boundary

values u (0) = 0 and
st

N, if N, < g(») - ¢ (10a)
ﬁst(m) = { g(®) - ¢ if 0 < g(ew) - € < Ne (10b)
0 otherwise (10c)

We know from section 1 that ast exists and is unique. In particular, in
the case of Eq. (10c), ust(x) = 0. Our result is that the solution u(x,t)
of the evolution problem converges to ust(x) as t > », uniformly on all
compact subsets of [0,®); in the case of Eq. (10a) the convergence is
actually uniform on [0,»). The proofs are based upon the use of upper
and lower solutions of the stationary problem and on a comparison the-
orem. Thus we have proved that all the electrons stay attached to the
ions for t < = at temperatures such that e < g(«) - Ne (case (10a)). If
the temperature rises above this critical value, then some of the elec-
trons diffuse away to infinity (case (10b)), and if it rises above a
second critical value, viz. € = g(«), then all electrons escape to in-

finity (case (10c)).

(iii) For the case of Eq. (10a) (with the inequality strictly satisfied)

st Let

the initial state have the property that Ne— uo(x) < Ne(xl/x)v for some

we have derived results about the rate of convergence of u to u

5 w}
%,,v > 0 satisfying e < (v+1) [g(xl)— Ne]. Then u(x,t) converges to

-1/(2p)

Gst(x) at least as fast as t with p = [1/v]+ 1, for all finite x.

Furthermore, if v > 1 and € < %[g(») - Ne], then u converges to Gst at
least as fast as t_%.

Negative regions in the background charge density. We have considered

an interesting modification of the above problem obtained by also allowing
negative ions to be present in the fixed background [8].

This leads to a function g which can assume minima and maxima. We studied
the stationary state on a bounded domain [0,R] with boundary condition

uSt (R) = Ne. For non-monotone g it is nontrivial to find the zero temper-
ature (e - 0) limit of ust(x) (and thus of ne(r)), since the solution of
the reduced differential equation (i.e. the one obtained by setting € = 0)

is no longer unique. To solve this problem we observe that for € > 0 the

solution ust(x;e) minimizes the free energy functional
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R R 2
F [ul = ¢ I u fnu_dx + % J lE:El_.dx, (11)
€ x pd b .o
0 0
which is readily recognized as the sum of an entropy and an electrostatic

energy term.

In [8] two alternative methods were used to study the minimization of Fs:
one based on the theory of maximal monotone operators and one on duality
theory. Both yield
5 2
lim u_, (x;e) = inf L J iﬂifl— ax, (12)
ey0 S 0<us<N ,u'=0
e 0

i.e. the limit solution of the differential equation is the physically
expected minimum energy configuration. The function ust(x;O) is continuous
[10] and can be characterized as follows: there exist intervals [al,bl],
[az,sz,...,[as,bs], s > 0, where ust(x;O) takes constant values
Cy rCyreeiC

1 s
intervals ust(x;O) = g(x). The constants ai, bi' Ci' i=1,2,...,s, can be

, respectively, and where, therefore, ne(r) = 0. Outside those

shown, finally, to be uniquely determined by the set of implicit inequalities

bi

Ci-g(é)
J — 3 20 if c,# N (13a)

i” Te
g
N -
for all x € [a.,b.i, i=1,2,...,s.

x i’7i

c;-9(&)
J —— d £ 0 if ci # 0 (13b)
a, E
1

To verify this characterization of ust(x;O), one checks [8] that this func-
tion satisfies a variational inequality related to the minimization problem
(12) . In particular, if 0 < ci < Ne' we have the equal area construction
fﬁ%(ci—g(i))z_ldg = 0. The interpretation is that the points x = ai and

b4 i bi are at equal potential and separated by a potential barrier. Egs. (13)

may serve as the basis for a numerical algorithm to compute ai, bi, ci.

The authors acknowledge with pleasure stimulating discussions with
I. Gallimberti. They are indebted to Ph. Clément, O. Diekmann, L.A. Peletier

and R. Témam who together with D.H. contributed to the mathematical

results.
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CHAPTER 2

SIAM J. APPL. MATH
Vol. 39, No. 1, August 1980

A SINGULAR BOUNDARY VALUE PROBLEM ARISING IN A
PRE-BREAKDOWN GAS DISCHARGE*

O. DIEKMANN®, D. HILHORST* AND L. A. PELETIER?

Abstract. We consider the nonlinear two-point boundary value problem exy"+ (g(x)—y)y' =0, y(0) =0,
y(R) =k, where g is a given function. We prove that the problem has a unique solution and we study the

limiting behavior of this solution as R - and as ¢ |, 0.
Furthermore, we show how a so-called pre-breakdown discharge in an ionized gas between two
electrodes can be described by an equation of this form. and we interpret the results physically.

1. Introduction. In this paper we study the two-point boundary value problem
(1.1) exy"+(gx)—y)y' =0, xe€(0,R),

in which R is a positive number, which may be infinite, and g a given function, which
satisfies the hypotheses

H,:ge C*(R.), g(0)=0, g'(x)>0 and g"(x)<0 forallx=0.
We are interested in solutions of (1.1) which satisfy the boundary conditions

(1.2) ) y(0)=0,
(1.3) v(R)=k

in which k € (0, g(0)) and R > x, x, being the (unique) root of the equation g(x) = k.

In § 2 we shall sketch how problem (1.1)-(1.3) arises in the study of electrical
discharges in an ionized gas. It will appear that y" and g’ are measures for, respectively,
the electron and ion densities, and tkat the parameter ¢ is proportional to the
temperature of the gas.

In § 3 we begin the mathematical analysis of problem (1.1)—(1.3). We derive some a
priori estimates and then prove the existence of a solution. Subsequently, in § 4 we
prove that the solution is unique.

The main objective of this paper is the study of the dependence of the solution on
the parameters ¢ and R. In § 4 we prove that the solution is a monotone function of ¢
and R. From the physical point of view the interesting regions of the parameters are
small e and large R. In § 5 we analyze the limiting behavior of the solution when R tends
to infinity and ¢ is kept fixed. It turns out that the solution converges uniformly in x to a
function y which satisfies (1.1)—(1.2) and the limiting form of (1.3), i.e., y(c0) = k, if and
only if ¢ = g(c0)— k. If on the other hand, this inequality is violated, then the solution
converges uniformly on compact sub-sets to a function y which satisfies (1.1)-(1.2) and
y(c0) = max {g(o0) — ¢, 0}. In particular this implies that y is identically zero if £ = g(c0).

In § 6 we analyze the limiting behavior of the solution when ¢ tends to zeroand R is
kept fixed. It turns out that the solution y converges uniformly for x €[0, R] to the
function y(x) = min {g(x), k}, but that its derivative y’ converges uniformly to y' only on
compact subsets of [0, R] which do not contain the transition point x.

In § 7 we discuss in greater detail the behavior of y’ near the point xy as ¢ | 0. By
the standard method of matched asymptotic expansions we formally obtain in § 8 an
approximation y,. In § 9 we prove that for each n > 1

y=y.=0(""""?), y—ya=0("""? aselO,

* Received by the editors March 15, 1978. and in revised form July 9, 1979.
+ Mathematisch Centrum, Amsterdam, the Netherlands.
1 Mathematisch Instituut, Rijksuniversiteit Leiden, Leiden, the Netherlands.
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uniformly on [0, R], where n counts the number of terms included in the approxima-
tion. In this part of our treatment of the singular perturbation problem we derived much
inspiration from reading bits and pieces of van Harten's thesis [9].

Since the limits ¢ | 0 and R » o (for ¢ = g(%0)—k) are interchangeable, the two
separate limits give a complete picture of the limiting behavior with respect to both
parameters.

Finally, in § 10, we consider problem (1.1)—(1.3) under the much weaker condition
ong:

H,:geC'([0,R]), gl0)=0. g(R)=k,

g has only finitely many local extrema on [0, R].

Again, the existence and uniqueness of a solution y(x; ¢) is established and it is shown
that y'> 0. In addition

vixie)>u(x) ase |0,

uniformly on [0, R], where the function «, which is continuous, consists of pieces where
u(x)=g(x) and pieces where u(x) is a constant. The arguments we employ here are
borrowed from the theory of dynamical systems and are somewhat unusual in this
context.

Problems like the one treated in this paper have also been considered by Hallam
and Loper [8], Howes and Parter [11] (also see Howes [10]), Clément and Emmerth [4]
and Clément and Peletier [5]. Both of the first two papers deal with one particular
equation and the second two papers deal with concave solutions y, of a general class of
equations. In all of these lim, | ¢ y. is determined. In this paper we do the same by the
method of upper and lower solutions, which was also used by Howes and Parter, and in
addition we give precise estimates of the behavior of y. and y; as ¢ | 0.

2. Physical background.

2.1. An electrical discharge. Marode et al. [14] consider an ionized gas between
two electrodes in which the ions and electrons are presént with densities n;(r) and n.(r)
respectively, where 7 = (x,, x2, x3). The ions are heavy and slow, and the density n,(r)
may therefore be regarded as fixed. The electrons are highly mobile and assume a
spatial distribution in thermal equilibrium with the ions. The problem is then to find
n.(r) for given n;(r).

A special situation of practical interest is a so-called pre-breakdown discharge
which spreads out in filamentary form (cf. Gallimberti [7] and Marode [13]). In this
situation there is cylindrical symmetry about the xs-axis and the particle densities
depend on p = (] +x)'2 only. Using Coulomb’s law and a constitutive equation for
the electric current, which contains both a diffusion and a conduction term, Marode et
al. [14] derived that the electron density n.(p) should satisfy the equation

el df p d
(2.1) 25 dp(ne(p) & ne(p)) =ni(p)—n.(p),

where ¢ is a combination of physical constants which is proportional to the temperature.
In addition n. has to satisfy the boundary condition

dn,
. 0)=0
(2.2) 3 (0)




and the condition
(2.3) J {ni(p)—n.(p)} pdp =N >0,
0

where N is a measure for the excess of ions.

In the experiment the ions are concentrated near the center of the discharge.
Hence we shall take for n; a function which decreases monotonically to zero as p tends
to infinity. In this paper we study the solution n, of (2.1)-(2.3) and in particular its

behavior as ¢ | 0.
In order to cast (2.1) in a more convenient form, we make the change of variable

(2.4) x=p’

and we define the new dependent variable

2

(2.5) Y(X)=J n.(s)s ds.
0

Thus, y(x) represents the number of electrons contained in a cylinder of unit height and
radius x'"%. Analogously, we define

x1/2

(2.6) g(x) =J n;(s)s ds.

If we now multiply (2.1) by p, integrate from p =0 to p =x"? and use (2.4)-(2.6) we
obtain (1.1). The boundary condition (1.2) is implied by (2.5) and the boundary
condition (1.3), with R = oo, follows from (2.3):

y(c0) = k :=g(0)=N,

where clearly k € (0, g(c0)).

2.2. The two-dimensional Coulomb gas. Equation (1.1) describes the equilibrium
distribution of electrons interacting, via the Coulomb potential, with themselves and
with a fixed positive background in a two-dimensional geometry. Theoretically one can
generalize Coulomb’s law to a space of arbitrary dimension & and then the correspond-
ing equation would become

(2.7) EXZ(M?”/d}y"+(g(X)—y)y'=0

in which ¢ is again a positive constant which is proportional to the temperature.

The behavior of an assembly of charges depends on the competition between the
electrostatic forces, which tend to bind positive and negative charges together, and the
thermal motion which drives them apart. By physical arguments one can show that for
d > 2 the thermal motion wins: at no nonzero temperature are the electrons bound to
the ions. For d <2, the electrostatic forces win, and whatever the temperature the
charges are bound together (see Chui and Weeks [3]).

For the model problem consisting of (2.7) supplemented with the boundary
conditions (1.2) and (1.3), with R = o0, we find these matters reflected in the fact that for
arbitrary positive £, no solution exists when d >2 whereas, on the contrary, a unique
solution exists when d < 2. One can prove this along the lines indicated in § 5.

The marginal case d = 2 is of greatest interest. Presumably there is a critical value
of the temperature at which a transition occurs from bound to unbound charges and
recently there has been much interest in the precise nature of this transition (see
Kosterlitz and Thouless [12]).
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In our study of the two-dimensional case we find indeed, in § 5, a critical value of ¢
(and hence of the temperature)

e1=g(©0)—k=N

at which the nature of the solution n, changes, corresponding to the loss (towards
infinity) of part of the negative charge. Beyond a still higher value of ¢:

sg=g(00]

there appears to be no solution, indicating that the negative charge is no longer bound to
the positive background.

2.3. Low temperatures. We also have studied the equations in the low tempera-
ture regime, i.e. for £ | 0. Physically one then expects all the electrons to gather in the
region of lowest energy, that is in the center of the ion distribution. Indeed we have
found that for ¢ | 0 the solution of (2.1) exhibits transition behavior

. ni(p), p<po.
lim n.(p)=
ed0 0, P > po,

where po is determined by the boundary condition (2.3). There appears to be a
transition layer of width of order ¢ 2 which, according to Marode et al. [14], has the
form of a Debye shielding length.

3. A priori estimates and the existence of a solution. In this section we consider the
problem (1.1)-(1.3) for fixed values of the parameters ¢ and R. By a solution we shall
mean a function y € C*([0, R]) which satisfies (1.1)-(1.3). We first derive some a priori
estimates for a solution and its first two derivatives. Subsequently we prove that a
solution actually exists by constructing an upper and lower solution and by verifying the
appropriate Nagumo condition.

THEOREM 3.1. Let y be a solution; then for all x € (0, R)

(i) 0<y(x)<min{g(x), k};
(ii) 0<y'(x)<g'(0);

(iii) —(g'(0)*/e <y"(x)<0.

Proof. Let us first prove that y’(x)> 0 for all x € (0, R). Suppose that y'(x,) = 0 for
some x; > 0; then the standard uniqueness theorem for ordinary differential equations
implies that y(x) = y(x,) for all x. Since this is not compatible with the two boundary
conditions we conclude that y' is sign-definite. Invoking the boundary conditions once
more, we see that the sign has to be positive.

The positivity of y’ implies that 0 < y(x) < k for x € (0, R). Next we shall prove that
y(x) < g(x). We begin by observing that this inequality holds for x = x,,. Suppose there is
an interval [x,, x2] < [0, xo] such that y — g is strictly positive in the interior of [xy, x2]
and y(x;)—g(x1) =y(x2)—g(x2) =0. Then y'(x;) = g'(x2) < g'(x1) = y'(x1). On the other
hand (1.1) implies that y"(x) >0 for x € (x,, x,) and hence y'(x2) = y'(x,) + 2 y"(£) dé >
y'(x,). So our assumption must be false since it leads to a contradiction. Thus,
y(x)=g(x). Now, let us suppose that y(x,) = g(x;) for some x; >0, then necessarily
y'(x1) = g'(x1). However, because y"(x,) =0 (by (1.1)) and g"(x,) <0, this would imply
that y(x)> g(x) in a right-hand neighborhood of x;, which is impossible. Hence the
inequality is strict for x € (0, R], and this completes the proof of (i).

From (i), y'(x)>0 and (1.1) we deduce that y"(x)<0 for x € (0, R). Hence
y'(x)<y'(0)=g'(0) for x € (0, R) which completes the proof of (ii).



Finally, we note that H, implies that g(x)=g'(0)x and hence that y"(x)=
(ex) '(y(x)—g(x)y'(x)>—(ex) 'g(x)g'(0)=—¢ '(g’(0))’. This proves property
(). O

THEOREM 3.2. There exists a function y € CZ([O, RY) which satisfies (1.1)-(1.3).

Proof. We define two functions & and 8 by a(x):=0and B(x) = g(x)for x € [0, R].
Moreover, we define a function f by f(x, y, y'):=(ex) '(y —g(x))y". Then a"(x)=0=
0=f(x,alx),a’'(x))and B"(x) =g"(x)<0=f(x, B(x), B'(x)) forx € (0, R). Hence a and
B are, respectively, a lower and an upper solution of (1.1). The existence of a solution
now follows from [1, Thm. 1. 5.1] if we can show that f satisfies a Nagumo condition
with respect to the pair a, 8. This amounts to finding a positive continuous function 4 on
[0, o) such that |f(x, y, y)|=h(|y’|) for all x€[0, R], a(x)=y=p(x) and y'€R and,
furthermore, such that

- s
—ds
J’R"BIR)h(s)

cf. [1, Def. 1.4.1]. The function k defined by h(s)==¢ 'g'(0)(s + 1) satisfies all these
conditions. 0

>B(R),

4. A comparison theorem. In order to emphasize that we are going to study the
dependence of a solution on the parameters ¢ and R, we introduce the notation P(e, R)
for the problem (1.1)-(1.3). The main result of this section is a comparison theorem
which is proved by standard maximum principle arguments. As corollaries we obtain
that the solution is unique and that it depends in a monotone fashion on both ¢ and R.

THEOREM 4.1. Let y; be a solution of P(e;, R;) for i=1, 2 and suppose that
R2ZR,>x0 and €22 ¢,. Then y,(x)Zy,(x) for 0<x <R,. Moreover, if one of the
inequalities for the parameters is strict, then so is the inequality for the solutions.

Proof. Let the function m be defined by m(x):=y,(x)—y2(x). Suppose that m
achieves a nonpositive minimum on (0, R;), i.e. suppose that for some x, € (0, R,),
m(x;)=0, m'(x;) =0 and m"(x;) = 0. By subtracting the equation for y, from the one
for y, we obtain

e1xim"(x1) = (e2—e)x1y3(x1) = y1(x1)m(xy) = 0.

However, all the terms on the left-hand side of this equality are nonnegative and if
either £, > g, or m(x,) <0 at least one of them is positive. If £, = £, and m(x;) = 0 then
the uniqueness theorem for ordinary differential equations implies that m(x) = 0 for all
x €[0, R,], which cannot be true if R, > R,. So we see that m cannot achieve a negative
minimum and that m cannot become zero on (0, R;) if one of the inequalities for the
parameters is strict. Since m(0) =0 and m(R,) =0 this proves the theorem. 0

COROLLARY 4.2. The problem P (e, R) has one and only one solution.

Proof. We know that at least one solution exists (Theorem 3.2). Let both y; and y,
satisfy P(e, R), then Theorem 4.1 implies that y;(x) = y,(x) but likewise that y,(x)=
yi(x). Hence, y;(x) = y,(x) for xe[0, R]. O

COROLLARY 4.3. Lety = y(x; &, R) be the solution of P(e, R). Then y is a monotone
decreasing function of € > each R >x, and each x€(0,R) and y is a monotone
decreasing function of R f» . 1ch € >0 and each x € (0, R).

S. The limiting beha+iur as R - 0o, In this section we study the limiting behavior as
R - 0 of the solution y = y(x; &, R) of the problem P(e, R). Since y is a bounded and
monotone function of R, the definition y(x; ¢ i:=lims .+ v(x; e, R) makes sense for all
x. € > 0. This definition implies at once that v(0). )= 0 and that v is a nondecreasing
function of x and a nonincreasing function of «

27
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From the estimates in Theorem 3.1 we obtain, via the Arzela-Ascoli theorem, that
both y(-; e, R)and y'(-; ¢, R) converge uniformly on compact subsets. Invoking (1.1)
we see that the same must be true for y”(-; e, R). It follows that y(-: ¢) belongs to
C?(R.) and satisfies (1.1). Now it remains to determine y(o0, £). We will estimate
y(0, ) from below by constructing a more subtle lower solution for y. But first we
prove a result which can be used to estimate v (¢, £) from above.

LEMMA 5.1. Let zeC*(R.) satisfy (1.1) and z(0)=0. Suppose that
z(00) =lim,.x z(x) exists and satisfies 0 < z(c0) < 00. Then z(c0)= g(©)—¢.

Proof. Both z and z' are positive on (0, ) (cf. the proof of Theorem 3.1). For the
purpose of contradiction, let us suppose that z(c0)>g(o0)—¢. Let x; be such that
B = s_l(z(xl)—g(oo))> —1. Then z(x)—g(x)=z(x;)—g(0)=¢B for all x=x,.
Integrating (1.1) twice from x; to x we obtain

x £ _
z(x)=z(x,)+z'<x1)J' exp(J %ﬂg(")dn) dé.

Thus, for x = x,,

x . B+1
z(x);z'(.n)[ exp(B Ing)d§=xlz (xﬁ((x) —1).

xy X1 B+1 X1

Since B8 +1>0 this would imply that z(x)—> o as x > 0. Hence the assumption that
z(00)> g(o0) — ¢ must be false. [
We define a function s =s(x; A, x;, ) by

(5.1) s(x;A..xl,p):,\(l—(i) )
X4

and we investigate which conditions for the parameters A, x, and v guarantee that
s"Zf(x,s,s') for x Zx, (recall that f(x, y, y')=(ex) (y —g(x))y"). A simple compu-
tation shows that this inequality holds indeed for all x = x, if and only if g(x,) —A —gv —
£ =0, or equivalently, » =¢ '(g(x;)—A)— 1. The latter inequality can be satisfied for
some positive value of v if and only if A <g(x;)—e. In its turn this inequality can be
satisfied for sufficiently large x, and some positive value of A if and only if g(c0) —¢ > 0.

We now have all the ingredients at hand to prove the following theorem.

THEOREM 5.2.

(i) Ife =g(o0)—k then y(©, ¢) = k and limg .o SUPo=x=r |y(x; &, R)—J(x; €)=
03
(i) if g(o©)—k <& <g(©) then y(0; e) = g(0)—¢;

(iii) if € = g(c0) then y(x;€)=0 forall x 0. ;

Proof. (i) For any A < k we can choose x, such that A < g(x,)— ¢ and subsequently »
such that 0<vp és"(g(x,)—z\)— 1. For these values of the parameters, s is a lower
solution on the interval [x,, R]. The function ¢ defined by ¢(x) := k is an upper solution
and f satisfies a Nagumo condition with respect to the pair s, r and the interval [x,, R]. It
follows that the inequality

s(x;A, x,v)Sy(x; e, R)=k,

which holds for x = x; and for x = R, actually is satisfied for all x € [x;, R]. By taking first
the limit R - oo and then the limit x - c we obtain

A=y(0;e)=k.



Since this inequality holds for A <k, necessarily y(c0, ¢)=k. This result and the
monotonicity of y with respect to x together imply that the convergence of y to y is in
fact uniform in x (we refer to [6, Lemma 2.4] for the proof of this statement).

(i) If g(oo)—k <& < g(), we can make s into a lower solution by a suitable
choice of x, and v if and only if A < g(c0) —¢. The argument we used in the proof of (i)
now shows that y(c0;e)=g(0)—¢. On the other hand, Lemma 5.1 implies that
y(00; ) = g(0)—¢. So y(00; &) = g(o0) —e.

(iii) From Lemma 5.1 we deduce that no solution of (1.1) with a positive limit at
infinity can exist if ¢ = g(c0). Hence y(c0; ¢) =0 and consequently y(x;e)=0 for all
xz0. O

The results of this section are at the same time results concerning the existence and
nonexistence of a solution of the problem P(e, ) defined by (1.1), (1.2) and
lim, .o y(x) = k. By exactly the same arguments which we used before one can derive
the bounds of Theorem 3.1 and one can show that there exists at most one solution of
P(e, ). For convenience we formulate this result in the following theorem.

THEOREM 5.3. There exists a function y € C*(R,) which satisfies (1.1), (1.2) and the
condition lim, . y(x) =k ifand only if € = g(c0) — k. If it exists, it is unique and it satisfies
the inequalities given in Theorem 3.1.

6. The limiting behavior as € | 0. Throughout this section R > x, will be fixed and
we will suppress the dependence on R in the notation, because it is inessential. The
solution y of (1.1)—(1.3) is a bounded and monotone function of ¢ and we define
y(x):=lim, o y(x; £). From Theorem 3.1(i) and (ii) and the Arzela-Ascoli theorem we
deduce that y is continuous and that in fact

lim sup [y(x)—y(x;e)|=0.
el0 0=x=R

THEOREM 6.1. y(x) =min {g(x), k}.

Proof. From Theorem 3.1(i) we know that y(x) =min {g(x), k}. Take any x <xo,
then y(x) < k. We claim that this implies that lim, o inf y’(x; £) > 0. Indeed, suppose
that the sequence {;} is such that £, | 0 and y'(x; £;) | 0 as i - o0, then by taking the limit
i - 00 in the relation

R
k=y(R;e)=yl(x; Ei)+J y'(ée)dé=y(x;e)+(R—x)y'(x; e),

we arrive at the conclusion that y(x) = k, which is impossible.
Integrating (1.1) from 0 to x we obtain

6.1) e(y(xi o)y ;0= [ LED=EE g o) g
0
Suppose that x < xo and maxXo=¢=. [V (£) —g(&)|>0;then,since g'(0)>y'(£; €)= y'(x; €)
for 0< ¢=x and lim, o inf y'(x; £) >0, the right-hand side of (6.1) is bounded away
from zero as ¢ | 0. However, this is impossible since the left-hand side tends to zero as
£10.So y(x) = g(x)forall x < xo, and by continuity y(x,) = k. The function y, being the
limit of monotone functions, is monotone nondecreasing. Hence y (x) = k for x > xoand
consequently y(x) =k for x >x,. 0
By taking £ =0 in (1.1) we obtain the reduced equation

(6.2) (g(x)—y)y'=0.
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The limiting function y satisfies the boundary conditions (1.2) and (1.3) and (6.2) except
at the point x = xo, where y' is not defined. Motivated in part by the physical application
(cf. § 2) we shall now investigate the limiting behavior of y'(x; £) as & | 0. It will then
become even more apparent that x = x, is an exceptional point. The following lemma is
needed in the proof of Theorem 6.3, but it is of some interest in itself.

LEMMA 6.2. Let 6 >0 be arbitrary. For any £,> 0 there exists an M >0 such that
0<g(x)—y(x:e)<Mex forall x [0, xo—8) and all £ € (0, &,).

Proof. Let § >0 and £o> 0 arbitrary. We define

m(e) = min {gx)—y(x;e)}
)

xo—8Sx=x0—}

Then there exist positive constants C,, i = 1, 2, 3, such that for ¢ € (0, &)

o-5/2
me=C [ @@ -yende

0—8
G j 082 0(g) = y(&5e)
xX0—8 E

(see the proof of Theorem 6.1 and in particular formula (6.1)). Let the function
v=v(x; ¢) be defined by v(x; ¢):=g(x)—y(x; £) — Mex, where the constant M >0 is
still at our disposal. Then v satisfies the equation

IA

y'(€;e)dé=Cae

ext"—y'(x;e)v=ex(g"(x)+My'(x; ¢))
and consequently exv”—uv>0if M>yu ', £€(0, £o) and x € (0, xo—38], where the
positive numbers y and u are defined by
y=— inf g"(x)

0<x=xo—}5

and

. , )
= 0<T<fsn y (XU_E; E)‘
So if M>yu™" and e €(0, £o), then v cannot assume a nonnegative maximum on
(0, xo—38). Let x(e) be such that g(x)—y(x; e) achieves its minimum on the set
[xo—8, xo—38] in the point x =x(e). Then v(x(e); e)=m(e)—Mex(e)<0 if M>
(xo—8)"'C3. Since v(0;¢)=0, this implies that for M >max {yu ", (xo—8) 'C3},
v(x; e)<0for x € (0, x(¢)) and a fortiori for x € (0, x,—8). 0O
THEOREM 6.3. Let § >0 be arbitrary. Then
(i) lim, 0 SUPo=ysx-5 [8'(x) = y'(x; €)= 0;

(i) lim, ;o Supy,+ssxsr [y'(x; €)[=0.

Proof. (i) From (1.1), Theorem 3.1(ii) and Lemma 6.2 we deduce that —g'(0)M <
y"(x;£)<O0forx [0, xo—8]and ¢ € (0, &¢). By the Arzela—Ascoli theorem this implies
that the limit set of {y'(-; £)| e >0} as £ | 0 is nonempty in C ([0, xo— &]). The result now
follows from the fact that y tends to g on [0, xo—8] as € | 0.

(ii) Integrating (1.1) from x,+ 38 to x we obtain

e(y'(x; €)= y'(xo+18; E))=I yie)—g(6)

"(&;¢) d€.
e & D e

For x € [x, + 8, R] the right-hand side ‘is smaller than 18R '(k —g(xo+(8/2)))y'(x; €).
Consequently 0< y'(x; £)<2g'(0)eR8 '(g(xo+(8/2))—k)™'. D



In the next section we shall concentrate on a formal approximation for y and y' in
the neighborhood of x = x,.

In § S it was shown that the problem P(e, ©) has a unique solution for ¢ sufficiently
small. The analysis of this section can be repeated, mutatis mutandis, to derive the
analogous results concerning the limiting behavior of this solution as ¢ | 0. In particular
this implies that the limits £ | 0 and R - c© are interchangeable.

7. The transition layer. In Theorem 6.3 we have shown that y’ converges nonuni-
formly on the interval [0, R] as £ | 0. This feature is typical for a singular perturbation
problem. In. this section we use the standard method of the stretching of a variable to
obtain more information about the behavior of y’ near the transition point x = xo.

By the stretching of the variable x near x, we mean the introduction of a local
coordinate ¢ according to x = xo+ ¢ °£. At the same time we introduce a local dependent
variable n according to

y(x) = g(xo) +£°n(¢).

If we make these substitutions in the equation, and subsequently only retain the terms
of lowest order in ¢, it depends on the values of @ and B what the resulting equation will
be. One easily verifies that the choicea = = i leads to a significant equation, namely to

(7.1) xomi+(£8'(x0) —n)mi =0,
where we have introduced the subscript 1 to indicate that we consider in fact a first
approximation. To this equation we add the condition that its solution should match the

limits of y to the left and to the right of xo, respectively, up to the appropriate order in
Ve. This amounts to the conditions

(&) =g (xo)E+o(1) asé&->—o,
ni(&)=o0(1), as&->+oo.

A straightforward application of the maximum principle (see Theorem 4.1) shows that
the problem (7.1)-(7.2), which we shall denote by I1;, admits at most one solution.

The problem II, is nonautonomous. However, if we set n} =z,, divide the
equation by z, and then differentiate it, we formally obtain an autonomous problem,
which we denote by I;:

(7.2)

(7.3) xo(—j—‘) +g'(x0)~21=0,

1

z1(é)=g'(xo)+0(1) as&->—oo,

(7.4)
z1(£)=0(1) asé->+oo.

'

One should note that, at least formally up to first order in Ve, z, describes the shape of y
in the neighborhood of xo. In the remainder of this section we shall discuss the existence
of a family of solutions of problem II,, and we shall show how this family can be used to
obtain the solution of problem II;.

One way to handle problem fIl is to write (7.3) as a two-dimensional first order
system and analyze the trajectories in the phase plane. It turns out that the singular
point (zy, z1) = (g'(xo), 0) is a saddle point and that one branch of the unstable manifold
lies in the half-plane z; <0 and enters the (singular) singular point (0, 0). Hence I’[l has
a one-parameter family of strictly decreasing solutions, where the parameter describes
simply the translation of one particular solution.
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However, it so happens that I1, can be solved explicitly for £ in terms of z,. To this
end we put

21 =g'xole” and ¢'= @g
o

Then v = v(¢') has to satisfy
2v"+1-€"=0,
v(—00)=0, v(+00) = —00,
and we obtain, after multiplication by v’ and one integration,
W)l+v—e'=-1
and finally
. (€ dw
(7.5) &= J; ﬁ,

where the parameter C corresponds to the free translation parameter. From this
expression we easily obtain the asymptotic behavior of the solutions:

\/ ’
zl(f)~g'(xo)+exp(%@—0), £>—co,

o)
21(8) ~ g'(x0) exp (-g(—o(f— C)Z). £ +00.
ZXO
As candidates for a solution of I, we take the functions
€ £+C
¢(§,C)=J. z';(r+C)dr=I Zi(7) dr,

where 7, is the particular solution of I1, which satisﬁes.i1(0)=%g’(xo) (or, in other
words, which corresponds with C = %g’(xo) in (7.5)). Using (7.3) we obtain after some
manipulation

(xa+ (68 (x0) =000 = 2 "+ (&8 (x0) =)0,
where primes denote differentiation with respect to ¢ and where we have suppressed the
dependence on C in the notation. Hence
xo¥" +(£8'(x0) )¢ = K ¢,
Furthermore, we deduce from I1, that
U(§; C)=g'(x0)é+K2+0(1), ¢ —co.

Since ¢"/¢' tends to zero as ¢ > —0 it follows that K, = — K. )
Of course the constants K; and K, depend on C and it remains to show that we can
choose C in such a way that they both become zero. We observe that

_y(0;C)
Kl)r=xm6.0)

ZQ(C)’JC

-¢(0;C)

tay

(1) dr.

=XoT T~

Zl(C'



From the known asymptotic behavior of 7, we deduce that K, tends to £20 as C tends to
F00. Moreover

Z—lél(C) =x0(;711~) (C)=Z2:(C)=—g'(x0)<0.
Thus, K is a strictly decreasing function with range (-0, ) and we conclude that there
exists a unique value of C, C, say, such that K,(C)= 0. Consequently n; = ¢(-; C1) is
the solution of problem II,. Furthermore, the properties of z, imply that (i) 7, is
negative, strictly increasing and concave, (ii) 7:(£)- 0 faster than exponentially as
£+, (iii) the function 7:(£)—g'(xo)¢, as well as all its derivatives, converge
exponentially to zero as £ > —0.

The idea of singular perturbation theory is that Z;(- + C;) describes the transition
of y' near x = x, for small values of ¢, and that one can approximate y’ uniformly on
[0, R] by using the building-stones Z,(- + C;) and ¥'. In the following sections we shall
elaborate this idea and we shall prove its correctness. It turns out that this will require
the construction of at least five terms in a uniform asymptotic expansion. Since for us, as
for many mathematicians, five is almost equal to infinity we shall first discuss the
construction of a complete asymptotic expansion.

8. Matched asymptotic expansions. Throughout this and the next section we shall

assume that g e C~([0, R]).
On the interval [0, xo— 8] we look for an asymptotic expansion of the form

(8.1) y(x)= ¥ e"yalx).
We find that yo(x) = g(x) and that y, is defined recursively by
(8.2) Va(x)=(yo(x) ™' xyil—x(x)—:gi yk(x)yi.fk(x)}, nzl.
In order to calculate the matching conditions for the transition layer expansion, we

expand each y, in a Taylor series

o - ylki(x )
n 0
voley= ¥ (a)'=——g"
k=0 k!
where, as before, §=(x—x0)/\/;. If we substitute this in the expansion for y and
rearrange the resulting expression by collecting terms with like powers of Ve, we obtain

(8.3) ylx)= § V) Um(€)

where, by definition,

(21 y 20 ()

(8.4) un(£)= Y £,

oo (m=2n)! "~

On the interval [xo + 8, R] one can also introduce a series expansion in powers of g,
but it will quickly turn out that all the terms, except the one of zero’th order which is k,

are zero.
Next we introduce the transition layer expansion

(8.5) yix)= Y (Ve)'na.(é),
n=0
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where no(¢é) =g(xo) and n, is the solution of the problem II, discussed in § 7.
Substitution in the equation yields an equation for each 7,. Together with the matching
condition which is obtained by formal identification of (8.5), as £ » —00, with (8.3), this
yields for n =2 a linear problem I, defined recursively by

X0+ (8 (X0)é=n)N% =011 = gn,
(8.6) M (&) =un(é)+0(1) asf&->—co,

Mn=o0(1) as¢-+oo,
where

AL PR g"“(x0) i
8.7) 4=~ 5 S0 e = T mea (BT ).
n! k=2 ’( !
As before the maximum principle implies that problem I, can have at most one
solution. In order to discuss the existence of a solution we first rewrite the equation by

making use of (7.1) for n,:

(Z) -m=ts
Xo\ =7 ) — M=

n 71,1 ’
Introducing z, =71, {, = (z,) 'n, and h, = ((z1) 'q,)’, we obtain by differentiation
(8.8) Xoln—21{n = hn.

At this point it is important to observe that we know a particular solution of the
homogeneous equation xo¢" —z,é = 0, namely

. z1(é)
(8.9) #(@)=212

z1(€)
(one can verify this by differentiation of (7.3)). Hence we can construct solutions of
(8.8) through the method of variation of constants, and we find
P 1IN AR
(8.10) {..(E,C)—x— ¢ (1) ¢(0)h,(0) do dr+ Ch(¢)
0 0 —oo

(note that we do not consider the general solution of the homogeneous equation since
only ¢ has the right asymptotic behavior as ¢ > —o0). For any C, the function defined in
(8.10) is of polynomial growth as £ > +00 and behaves like g'(xo)u, as ¢ > —oo. The last
statement can be verified by working out the consistency relations between g, and u,
which follow from the identity

) = (k)

X0) n , ., ol .
8 X0) pneoy—gut =S “M]fk(g—ﬂg“_uk)
n! ol X

Xoun—g'(xo)un =—
and by making use of the known asymptotic behavior of ¢.
Finally, we define

3
(8.11) (&5 C)=I 2U(1)n(7; C) dr = n,(£; 0)+ Cn ' (€).

Then 1, (¢; C) = u,(€)+ B, +g'(x0)C +0(1), £ > —0, where B, is some number, which
does not depend on C. It follows that there exists a unique constant, say C,, for which
the matching condition is satisfied and consequently 7, (¢; C,) is the unique solution of
the problem I1,.. This completes the construction of the transition layer expansion.



To conclude this section we construct a-uniform approximation of formal order
2n +1 in Ve. We introduce two C ™ -functions H and J defined on R (so-called cut-off
functions) with the following properties

{0 if [x —xolZ 81,
H(x)= 5
1 if\,\'fxnlég‘.
i )_{0 if x| =6,

VTN it x| =26,

where 8, and &, are suitable constants which do not depend on e. Then the formal
approximation y,(x) is defined by

o

— n 2n+1 = S
f(x ,—X°> Y o eMya(x)+Hx) ¥ (\/E)"‘(nm(g)
Ve m=1 m=1 \/E

(8.12) yalx)= Aj(g)um()(“_)((’)) for x = x,.
VE \/E

- 2n+1 — -
I(@)k(l -Hx)+H(x) ¥ (V's)'"n,,,(x /_XO) for x = x,,.

Ve m=1 Ve
Apart from the cut-off functions this formula is the usual one, expressing a uniform
approximation as the sum of approximations in the different regions minus the
matching terms, which are contained in two approximations and hence should be
subtracted in order to avoid double counting. The cut-off functions are used to achieve
two ends: the approximation should satisfy the boundary conditions and it should be
smooth at x = x,. Moreover, the cut-off functions are harmless in the sense that they are
multipled by factors which are small (if ¢ is small) in regions where the cut-off functions
are different from one. In the next section we shall prove that y, and y, are indeed
uniform approximations of y and y’ up to the order ¢"*"'/*" and £"~""/?, respectively.

9. A proof of the validity of the formal construction. We begin by deriving an
estimate for the difference

(9.1) z(x)=y(x)=yalx).

It follows from the equation for y and from the construction of y, that z satisfies
exz'+(g—y)z'=v'z+zz' =1,

9.2) -
z(0)=0, z(R)=0,

where the remainder term r, defined by

9.3) r(x)=—(exyi+(g&—Va)ya),

can be shown, after an elaborate computation. to satisfy

(9.4) r(x)=0(xe") asel0and/orx|O0.

If we multiply the equation for z by > and integrate from 0 to R we obtain after some
integrations by parts and an application of the Cauchy-Schwarz inequality
: R

R 5 1 -
FJ x(z'(x)) dx +5J () +v'(x)z7(x) dx = | z||Ir]
0 0

’
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where ||-|| denotes the L,-norm. Since g'(x )+ y'(x)= g'(R) this implies, first of all, that
} 2
| e e ||
Il sl
and hence that
R ’
) 2 g8'(R) » 2 2
5 5 dx +—— S— .
| st ax + B s el

Now, fix & € (0, xo). The estimate above is easily translated into an estimate for the
H'(8, R)-norm of z, where H' denotes the usual Sobolev space of L,-functions which
have a generalized derivative belonging to L,. Thus, by the continuous imbedding of H'
into the space of continuous functions we obtain

zx)=Ce rIH?=Ce™ V2,  S=x=R,

where C depends on 8. Having established this estimate on the interval [8, R], we can
extend it to the interval [0, R ] by means of the maximum principle in exactly the same
way as we proved Lemma 6.2.

Next, it is advantageous to take explicitly into account the dependence on the
parameter n, which counts the number of terms included in the approximation. So
putting z = z, we write the estimate obtained so far as

|z, (x)| = Cxe" 2, 0=x=R, neN.
Then, observing that
|Znar(x) = 2u(x)| = Cxe ™",
we deduce the sharper.estimate
(20 OO = 120 (X) = 201 (X)] + |20 (x)| = Cxe "2,
(This is the familiar ‘‘throwing away’’ of terms which are needed in the proof, but do not

contribute to the result.) We state this as a theorem.
THEOREM 9.1. There exist constants o> 0 and C >0 such that

ly(x) = ya(x)| = Cxe"*'"?

for 0<e<eoand 0=x=R.

Our next objective is to show that the derivative of y, is a good approximation for
the derivative of y (recall that y, is more or less constructed thrcugh the integration of
its derivative, and that in our application the derivative is the function which has a direct
physical meaning). Our proof will be based on the following interpolation inequality.

LEMMA 9.2. There exist constants wo> 0 and D >0 such that for any ¢ € C*([0, R])
and each u € (0, wo)

sup |¢'(x)| = D{u sup [¢"(x)|+u " sup |$(x)

I3

where the suprema are taken over the interval [0, R].
Proof. See Besjes [2]. The proof is based on a result to be found in Miranda [15, 33,

I, p. 149]. O
THEOREM 9.3. There exist constants €,>0 and C >0 such that

[y () —yix)=Cce" "2

for 0<e<ey,and 0=x=R.



Proof. From the equation for z (see (9.2)) we deduce that

wize (|22 + e+ P2
x x
where
Ci:= sup M Cr= sup |yl(x)l.
0=x=R X 0sxs=R

Next we apply Lemma 9.2 with 4 = £(2C;D) "' to obtain

)

sup [z"(x)|=2e" l{sup M} +2(C\D)?e "sup |z (x)|+ C, sup
X
By Theorem 9.1 and the estimate (9.4) this implies that
sup [2"(x)| = O(e"*"%).
Then a second application of Lemma 9.2, this time with u = ¢, leads to the desired
result. (0

10. Some remarks about the case where g is neither everywhere increasing nor
everywhere concave. In this section we shall discuss some extensions of our results to
equations in which the conditions on the function g are considerably relaxed. In fact we
shall merely assume that g satisfies the following hypotheses

H,: geC'([0.R)), g(0)=0, g(R)=k,
g has only finitely many local extrema on [0, R].

Thus, in particular the sign conditions on g’ and g" are dropped.

First of all we observe that the existence of a solution of (1.1)-(1.3) can be proved
asin Theorem 3.2 by using zero as a lower solution and G as an upper solution, where G
is any increasing, concave and smooth function such that G(0) =0 and G(x)=g(x) on
[0, R].

Asbefore we find thatif y = y(x; ) isasolution then y’ > 0 and hence sign y” = sign
(y — g); subsequently, reasoning along the lines indicated in the proofs of Theorem 3.1
one can show that for any ¢ >0,

10.1
( ) 0<y'(x;e)= sup g'(¢).
0s¢=R

This in turn enables one to prove by means of the maximum principle that (1.1)-(1.3)
can have at most one solution, and that the mapping e — y (- ; €) is continuous from R,
into C = C([0, R]).

By (10.1) the set{y(-; €)|e > 0} is a precompact subset of C. Let X denote its limit
set, as £ 0, in C. Taking into account the continuity with respect to &, we conclude that
X is a nonempty, compact and connected subset of C (see Sell [16, p. 20]).

Any element u of X is a nondecreasing function with u(0) =0 and u(R) = k. Our
first objective is to give further characteristics of the elements of X.

LEMMA 10.1. Let u € X. Then there exist a nonempty, open set A and a closed set B
such that

(i) u(x)=g(x)ifxeA,
(i) u is constant on each connected component of B,
(i) ANB=J,AUB=[0,R].
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Proof. Since u € X, there exists a sequence {e,} such that as n >, £,/0 and
y(-; €,) > u stronglyin C. By (10.1) {y(-; £,)}is bounded in H'=H'(0, R)and hence it
is possible to pick a subsequence, again denoted by {e,}, such thatas n >, y(-; €,) > u
weakly in H'.

Next, we multiply (1.1) by an arbitrary function ¢ € H', integrate from 0 to R,
integrate the first term by parts and let n tend to infinity. This yields the identity

R
J‘ (glx)—u(x)u'(x)¢(x)dx =0,
0

whence

(10.2) (g(x)—u(x))u'(x)=0 a.e.on[0,R].

Define the sets A and B by
A ={xe[0, R]|u =g in a neighborhood of x}, B=[0,R)\A,

then clearly u'(x) =0 a.e. on B. In view of the continuity of g and u the sets A and B

have all the properties listed in the lemma. [
LEMMA 10.2. Let u € X and let I be a connected component of B such thatI = (0, R).

Then

HEEH ), o,
X

(10.3) J;

Before proving this lemma, we prove an auxiliary result.
LEMMA 10.3. Suppose that, as n >, €,10 and y(x;e,)~> g(x) uniformly on
[a, b]<[0, R]. Then
enlny'(x;€,)>0 asn->o
uniformly on [a, b].

Proof. Choose a subinterval [c, d] of [a, ] and a positive constant § >0 such that
g'(x) =8 on [c, d]. Define for each n = 1, a point &, € [c, d] such that

y'(én; en)=max{y'(x; e,)|c Sx =d}.
Then it follows that there exists an N, = 1 such that
y'(én; €0) =38 forn=Ny.
If we divide (1.1) by xy’ and integrate from &, to x we obtain

enlny'(x;e,)=¢nIn y'(fn;En)+J
.

Since the right-hand side tends to zero as n - %, the same must be true for the left-hand

side and the result follows. 0
Proof of Lemma 10.2. Let I = (e, f), where, by assumption, 0 <e < f < R. Manipu-
lating as above we obtain

Ty(r, €.)—g(7) dr.

T

e, Iny'(e; e0)— € Iny'(f; €n)=J‘

Applying Lemma 10.3 to a left-hand neighborhood of e and to a right-hand neighbor-
hood of f, we deduce that the left-hand side of this identity tends to zero as n - . So
taking the limit n - co leads to the desired result. 0O



We now collect the information we havé obtained about an arbitrary element u of
X: u is a continuous, nondecreasing function with u(0)=0 and u(R) =k, which is
composed out of pieces where u(x) = g(x) and pieces where u(x) is constant. Moreover,
if I is a maximal interval on which u« is constant, and I does not contain 0 or R, then
(10.3) has to be satisfied. For convenience of formulation we shall call the set of
functions having all these characteristics Y.

Our next objective is to show that Y is finite. First we shall illustrate our approach
by discussing one example in full detail.

Consider a function g satisfying I?K and such that g’ vanishes at only two points b
and ¢, b being a local maximum and ¢ a local minimum. Assume that 0 < b <c¢ <R and
0<g(c)<g(b)<k.Letg;' denote the inverse of g on [0, b]and g5 " the inverse of g on
[c, R].

W b i e — -

Define two points a and b by
a=gi'(glc)), d=g2 (g(b)).

Then g([a, b]) = g([c, d]). (See Fig. 1.)
On (a, b] we define a mapping F by

&5 1(R(X) _
F(x>=J' i 2

T

Then on (a, b)
g3 (g(x) d
F’(x)=g’(x)J T>O

and F(a)<0, F(b)>0. Consequently F has a unique zero on [a, b].

Let w be an arbitrary element of Y. Then w has to coincide with g on [0, a] and
[d, g2' (k)] and it has to be equal to k on [g;'(k), R]. Since w is nondecreasing the
inverse function of w must *‘jump’ from a point on [a, b] to a point on [¢, d]. In view of
(10.3) this jump can only take place at the unique zero of F. Thus Y consists of one and
only one element.

Returning to a general function g satisfying [-?R we define E to be the set of local
maxima and minima of g and D to be the closure of the set {x|g is increasing in a
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neighborhood of x}. Let D, be one of the finitely many connected components of D.
Theset g~ '(E)N D, is finite. Take two successive points @ and B in this set. To [0, Bo]
there correspond finitely many disjunct intervals [a;, 8;]< D such that a; >a, and
g([ao, Bo)) = g([a, B:]). Define g; ' on [g(ao), g(Bo)] as the inverse of g with range in
[ai Bi]. On [ao, Bo] we define mappings F; by

g7 lglx)) _
F"(x)=J’ Md.r

T

Since F; is monotone, it has at most one zero.

Ass already noted above the condition (10.3) implies that a point where the inverse
function of an element of Y makes a jump should be a zero of some F; for some
connected component D, of D and some pair of points a,, Bo. Hence the set of possible
“jump”’ points is finite and likewise the set Y is finite.

Thus X, being a subset of Y, must be discrete. Because it is also connected it can
only consist of a single element. Consequently y(-; ¢) converges in C to this function as
€ | 0. We summarize the results in the following theorem.

THEOREM 10.4. There exists a function u € Y such that

liﬁ)) y(x; e)=ul(x), uniformlyon [0, R].

In some cases the conditions determine the limit uniquely. For instance, this
happens in the example we discussed at length and, more generally if the local extrema
are ordered in such a way that with each connected component of D there corresponds
precisely one possible “jump’ point. In other cases our analysis is not constructive in
the sense that, although we have shown that convergence occurs as ¢ | 0, we are not able
to describe the limit completely. (See Fig. 2.) We intend to investigate whether this
ambiguity can be resolved by using variational principles. See note added in proof.
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FIG. 2. Two possible configurations: separate jumps (a — b, c —d) or a two-in-one jump (a —B).



In conclusion we remark that the hypothesis g(R) = k was made in order to obtain
the uniform convergence on [0, R]. If g(R) < k the solution will exhibit boundary layer
behavior near the right endpoint. However, outside a small neighborhood of this
endpoint, the solution will behave in exactly the same way as we have shown for the case
g(R)>k.

Acknowledgment. This problem was suggested to us by E. Marode and I. Gallim-
berti. H. J. Hilhorst patiently explained to us many physical aspects and suggested
important improvements in the presentation. The comments and suggestions of M.
Bakker, J. Grasman and E. J. M. Veling helped us to overcome several difficulties. The
critical remarks of the referees have led us to a fairly substantial extension of the first
version.

Note added in proof. It has been possible indeed to resolve the ambiguity connected
with the limit £ - 0 by means of a variational formulation of the problem (O. Diekmann
and D. Hilhorst, How many jumps? Variational characterization of the limit solution of a
singular perturbation problem, Proceedings of the Fourth Scheveningen Conference on
Differential Equations, 1979, Springer, to appear).
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