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We construct and analyze parallel iterative solvers for the solution of the linear systems arising in the ap
plication of Newton's method to ;;-stage implicit Runge-Kutta (RK) type discretizations of implicit differential 
equations (ID Es). These 1 incar solvers arc partly iterative and partly direct. Each linear system iteration again 
requires the solution of linear subsystems. hut now only of IDE dimension, which is ;; times less than the 
dimension of the linear system in Newton's melhod. Thus. the effective costs on a parallel computer system 
arc only one LU-decomposition of !DE dimension for each Jacobian update, yielding a considerable reduction 
of the effective LU-costs. The method parameters can he chosen such that only a few iterations by the linear 
solver are needed. The algorithmic properties arc illustrated hy solving the transistor problem (index 1) and the 
car axis problem (index 3) taken from the CW! test set. 1997 Elsevier Science B. V. 
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1. Introduction 

We consider initial value problems (lVPs) for systems of implicit differential equations (IDEs or 
DAEs) 

</{iJ(t),y(t)) "= O. y.r/J E IR!.d. ( I . l ) 

It will be assumed that the initial conditions arc consistent and that the IVP has a unique solution. 

Furthermore, we define the Jacobian matrices I<:= (/Ju(u,v) and J :=-= r/;v(u.v). In the case of 

txplicit ordinary differential equations (ODEs) iJ(t) =c= f(y(f)) we have <h(u,v) == u - f(v). so that 

.T denotes the Jacobian of the right-hand side function f of the ODE. 
In this paper, we construct and analyze parallel iterative solvers for the solution of the .-;d-dirnensional 

linear systems arising in the application of Newton's method to s-stage implicit Runge-Kutta (RK) 
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type discretizations of (I.I). These linear solvers may be considered as inner iteration processes (the 
Newton process itself is the outer iteration process). The inner iteration process is partly an iterative 
method and partly a direct method. In fact, each inner iteration requires the solution of :; linear 
subsystems, but now only of the IVP dimension d. We assume that direct solution methods are used 
for solving these subsystems. The computational effort consists mainly of the s LU-decompositions 
and secondly of the s forward-backward substitutions (briefly FBSs) needed in each inner iteration. 
As we will see, the LU-decompositions can be done in parallel, so that the effective costs on a parallel 
computer system with at least .s processors are only one LU-decomposition of IVP dimension for each 
Jacobian update, yielding a considerable reduction of the wall-clock time (see Section 3 for reduction 
factors). As to the FBS-costs, we distinguish the Jacobi and the Gauss-Seidel approach. In the Jacobi 
approach, the s FBSs per inner iteration can be executed in parallel, so that the effective LU and 
FBS-costs only depend on the frequency of the Jacobian updates and the number of inner iterations, 
respectively, and not directly on the number of stages used in the RK discretization. For ODEIVPs, 
this Jacobi approach was used in [9, 11 ]. We shall show that with appropriate changes, it can also be 
used in the IDE case. In the Gauss-Seidel approach (which is in fact a block Gauss-Seidel approach), 
part of the FBSs per inner iteration have to be done sequentially which increases the effective FBS 
costs. 

The main purpose of this paper is a comparison of the convergence factors of the Jacobi and the 
Gauss-Seidel approach. The algorithmic properties of the inner iteration method are illustrated by 
solving an IDE of index 1 and of index 3 taken from the literature. 

2. Runge-Kutta discretization 

We define the Runge-Kutta type formula for solving the IDE (1.1) by (see, e.g., [4, p. 406]) 

Yn+I = (e:E 0 J)Y,,+1, 

R,,(Y) := <P((h- 1 A- 1 V! I)(Y - W 11 ), Y). 
(2.1) 

Here, A denotes the .<;-by-s RK matrix which is assumed to be nonsingular, W,, is an :;d-dimensional 
vector containing information from preceding steps, I is the d-by-rl identity matrix, h is the stepsize 
tn+I -tn, and 0 denotes the Kronecker product. The,<; vector components Y,1+ 1,i of the :;d-dimensional 
solution vector Y,1+ 1 represent numerical approximations to the exact solution vectors y( t,, + 1)1.), 

c = ( c.i) being the abscissas vector with c" = I. Furthermore, e., is the :;th unit vector, y 11 is the 
numerical approximation to y(tn), and <J>(U, V) contains the values (cp(Ui, Vi)) for any pair of vectors 
U = (Ui) and V = (Vj). In the following, we denote with the symbol I the identity matrix, the 
dimension of which will be clear from the context. 

The method (2.1) is completely specified by A, W,,, and c. If W,, = (E V:1 I)Y,, with l-<,' := eeJ, 
e representing the :;-dimensional vector with unit entries, then (2.1) represents the one-step R K method 
{A,b,c} = {A,ATe",c}. Alternatives are the block methods where Eis a matrix with eigenvalues 
on the unit disk, those of magnitude I being simple, and the k:-step Radau methods where W,,, is 
defined by a linear combination of the step point values y,,, Yn-1, ... , Yn-1.:+I (see, e.g., [4, p. 295]). 
In the following, most of our analysis applies to general back information vectors W,,, but numerical 
illustrations will be confined to one-step Radau IIA methods. 
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The usual approach for solving the implicit equation R 11 (Y) = 0 in (2.1) is the application of the 
modified Newton method 

(I® Kn - A® hJn)(Y(J) - yU- 1l) = -(hA 0 I)Rn(yU- 1)), j = 1, ... , m, (2.2) 

where Kn and In are the Jacobian matrices K and J evaluated at the step point tn, and m is the 
number of Newton iterations which should be determined dynamically in an actual implementation. 
Each Newton iteration requires the solution of a linear system of dimension sd. However, already for 
moderate values of d, this is quite expensive, because the LU-decomposition of the sd-by-sd matrix 
I@Kn -A0 hJn requires as many as ~s3d3 (real) arithmetic operations (operations counts will always 
refer to real arithmetic operations). This number of operations can be reduced by transforming (2.2) 
to "block-diagonal" form (cf. [3]). Let yU) = (Q 0 I)Y(il, then (2.2) transforms to 

(I@ Kn - A 0 hln) (Y"Ul - y(J-ll) = -(hQ- 1A ® I)Rn((Q ® I)Y(j-ll), 

A-= Q- 1AQ, . 1 J = ..... m .. (2.21) 

Assuming that A is nondefective, we can choose Q such that A is a er-by-er block-diagonal matrix 
with either one-by-one or two-by-two real diagonal blocks, where each diagonal block corresponds to 
an eigenvalue (pair) ~k ± ir]k of A. In fact, 

if 1]k = 0, 

if 1]k -=J 0. 
(2.3a) 

Here a1,;, bk and ck are real parameters which depend on the matrix Q and which satisfy the relation 

b1J:1,: =-(a~. - 2~kak + aO, nk := J~X, + rJk· (2.3b) 

In the following it will always be assumed that ~k > 0 and that the ordering of the diagonal blocks 
Akk is such that the ratio irJk/~1.:I increases with k. 

If the RK matrix A has only real eigenvalues, as is !_he case in the methods designed by Orel [ 12] 
and Bendtsen [ l ], then all diagonal blocks of I® Kn -A@ h.ln are of order d. When solving the linear 
system in (2.2') by a direct linear solver, we need the LU-decompositions of these diagonal blocks, 
each requiring 1(i3 operations. Hence, the total LU-costs are isd3 operations. However, since the 
LU-decompositions can be computed concurrently. the effective computational LU-costs in the block
diagonalized Newton method (2.2') are only *d3 operations, irrespective the value of s. Similarly, the 
FBSs can be performed in parallel. 

A drawback of RK matrices with real eigenvalues is the relatively large value of s (and hence large 
numbers of processors) in order to achieve a given order of accuracy. More powerful methods with 
respect to order of accuracy and stability can be obtained by allowing A to have complex eigenvalues. 
For example, in the case of RK discretizations based on Gaussian quadrature:_ formulas, A has at 
most one real eigenvalue (ifs odd). Hence, the diagonal blocks of I® Kn - A® hJn are of order 
either d or 2d, so that the LU-decompositions require either ~d3 or 1; d3 operations. However, by 
writing the 2d-dimensional systems as d-dimensional systems with complex coefficients, the LU-costs 
can be reduced to ~d3 operations (cf. Hairer and Wanner [4, p. 132]). Then, the total LU-costs are 
~(2s - l)d3 operations for s odd and ~(2s)d3 operations for seven. Again, the LU-decompositions 
can be computed concurrently, so that the effective computational LU-costs are only ~d3 operations, 
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irrespective the value of s. The RADAUP codes of Hairer and Wanner [5] use the block-diagonalized 

Newton method applied to Radau IIA discretizations of ( l.l ). 

Remark 2.1. In practice (see, e.g., [2]), it may be recommendable to remove the h- 1 factor occurring 

in the residual fu~ction Rri(yU-IJ) by introducing "derivative" iterates yUl by the relation y(J) = 
Wn + h(A 0 J)Y(JJ. Then, the iteration scheme (2.2) becomes 

(I 0 Kn -A 0 h.In)(Y(j) _ y(j-I)) = -Rn(Wn + h(A 0 J)Y(j-ll), j = l, ... ,m .. (2.4) 

The sequences {Y(J)} generated by the schemes (2.2) and (2.4) are algebraically identical, but (2.4) 

can be used as h ___, 0. Furthermore, the structure of the Newton equations in (2.2) and (2.4) is similar. 

3. Parallel linear system solvers 

The usual approach for solving the linear systems in (2.2) is the application of the Butcher trans

formation to obtain the block-diagonalized Newton method (2.2') and the application of a standard 

linear solver to the u linear subsystems. The solution method analyzed in this paper is different and 
is characterized as follows: 

(i) the matrix A in (2.2') is allowed to be block-triangular with (real) diagonal blocks, 

(ii) the linear subsystems of dimension r1 are solved by a standard linear solver, 

(iii) the linear subsystems of dimension 2cl are solved iteratively by a special inner iteration process 

based on splitting. 

The diagonal blocks Akk of A are again of the form (2.3) and such that the ratio i 111) ~k I increases 

with k. Furthermore, the inner iteration process is such that only linear systems of dimension are to 

be solved. - -
In the following, we shall consider both the case where A i~ block-diagonal and the case where A is 

block-triangular. The advantage of a block-triangular matrix A is that well-conditioned transformation 

matrices Q in the Butcher transformation yU) = ( Q 0 I) yCi) can be chosen, so that there is no 

danger for amplification of iteration errors by an ill-conditioned back transformation. In Section 4, it 

will be shown that this improves the convergence factor associated with the inner iteration process. 

3.1. Definition r~l the inner iteration process 

-- --- ---.. -..... -
Let A = C + D, where C and D are the strictly lower block-triangular part and block-diagonal part 

of A, respectively. Then, (2.2') can be written as 

(I :- Tf D- ~ f J )Y-(j) -G (Y-(:i) y-(j-I)) 
t(,i I\n - (x) L n - n ' ' 

G,,(YUJ, y(j-I)) := (C (X) hJn)y(j) + (J 0 Kn - A@ hJn)Y(j-l) (3.1) 

- (hQ-t A 0 I)R11 ((Q ® I)Y'U-tl). 

This relation represents u linear subsystems with system matrices I (S<) K,, - AH,® h.ln, k = 1 .... , a, 

the dimension of which is either cl or 2d. Note that these systems have to be solved sequentially 

unless the matrix C vanishes. Let us partition yU l and Gn according to yUl = (y;j), ... , y!jl) and 

Gn = (9nl, .. . , 9rw·). Then the kth subsystem has the form 
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(3. l 1) 

where I has the same order as AA:k· If C # 0, then the right-hand side is available as soon as the 
first k: - 1 subsystems have been solved. If C = 0, then the right-hand side does not depend on 
( -(j) -(j) ) 
Y 1 , • • • , Yk- l , so that all subsystems can be solved concurrently. 

The d-dimensional subsystems in the set (3.1 ') are now solved by a standard linear solver, the 2d
dimensi~nal subsystems are solved iteratively by introducing the splitting .4kk = Bkk + (Akk - Bkk), 
where Bkk is a diagonalizable 2-by-2 matrix with positive eigenvalues. This leads to the (inner) 
iteration method 

( I - K' - B- hl ·)-(j,v) ((- - ) )-(j,v-1) .. Q<) n kk ® . n Yk + ' Bkk - Akk ® hJn Yk 

- (Y.Ci-1) -(j) -(J) ) 
- 9nk , Y1 '· · · 'Yk-1 ' (3.2) 

where v = 1, 2, ... , r is the inner iteration index (the number of inner iterations r may depend on k). 
~ach inner iteration again requires the solution of a linear system of dimension 2d. However, since 
Bu. is assumed to be diagonalizable, the system matrix I 0 Kn - EH@ hln of this system can be 
block-diagonalized into two subsystems of dimension cl. Thus, using the block-diagonalized version 
of (3.2), we only have to solve linear systems of the IVP dimension d. 

The inner iteration subprocesses can be executed in parallel if C = 0 and should be done in 
sequence if C # 0. In fact, the C = 0 and C # 0 version of the iteration method (3.2) may 
respectively be considered as Jacobi and (block) Gauss-Seidel type methods. However, assuming that 
the cl-dimensional subsystems are solved by a direct method, in both cases all LU-decompositions can 
be done in parallel, so that the effective LU-costs are ~d3 operations (irrespective the value of s), 

yielding a reduction by a factor 4 when compared with .)the ~d3 operations required by the solution 
of the d-dimensional complex subsystems in (2.21). In the Gauss-Seidel version. the main sequential 
part (that is, the part that cannot be parallelized) consists of the sequential execution of the FBSs to 
solve the .s subsystems of dimension d. If r is the averaged number of iterations needed to solve 
these subsystems, then .sf linear system solves are required, i.e., 2srd2 operations. If there are only 
2d-dimensional subsystems in (3.2), then effectively 1sr linear system s~lves, i.e., srd2 operations. 
are required, whereas block-diagonalized Newton (with block-diagonal A) effectively requires only 
8rl2 operations. Hence, if r is large, then the advantage of the reduced LU-costs is easily lost. Thus, 
the linear solver (3.2) is only effective if we can choose Bkk such that r is small. The choice of fh1c 
will be discussed in Section 4. I . 

3.2. Back transformation 

Relation (3.2) can be used for the convergence analysis of the inner iteration process in the trans
formed space, that is, the convergence of the iterates yp,v). However, for a convergence analysis of 
the back transformed iterates it is more convenient to introduce the inner iterates 

y(j,v) = (Q@ J)Y(j,v), y(.i,v) := (y~j,v), ... 1 Y~,v)), (3.3) 

where :Yi~P) = Yi:j) if the kth subsystem in (~I') happens to have dimension cl (i.e., if the corre
sponding eigenvalue of A is real). In terms of y(j,v), the inner iteration process reads 
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(I® Kn - B ® hJn)Y(j,v) + ( (B - D) ® hJn)Y(j,v-I) = Gn(Y(j), y(j-I)), 
v = 1,2, ... ' (3.4) 

where Gn is defined in (3.1) and B is the block-diagonal matrix with diagonal blocks Bkk with 
Bkk = Akk =~kif Akk is a one-by-one block. Defining the pair {B, C} = { QBQ- 1, QCQ-1 }, the 
back transformation of (3.4) reads 

(I® Kn - B ® hJn)(Y(j,v) - y(j,v-I)) 

= (C ® hln)Y(j) - (I® Kn - (A - C) ® hln)Y(j,v-l) 

+(I® Kn - A® hJn)Y(j-l) - (hA ® J)Rn(y(j-I))' v = 1, 2, .... (3.5) 

Estimates of the speed of convergence should be based on the iteration errors associated with (3.5), 
rather than on the iteration errors associated with (3.4). 

The linear solver (3.5) will be called a PILSRK method (parallel iterative linear system method for 
RK discretizations) and the process { (2.2), (3.5)} will be called a Newton-PILSRK method. 

3.3. Generalization 

Having obtained the back transformation (3.5) of the inner iteration method (3.4), one may wonder 
whether this method can be generalized by using other matrices B and C than the pair { B, C} = 
{ QBQ- 1, QcQ- 1 }. Indeed, the PILSRK method (3.5) is a consistent iteration process for solving 
the linear Newton systems in (2.2) for any pair { B, C} such that I ® Kn - B ® hln is invertible. 
However, in order to have a practical method, we should impose conditions on B and C. In the first 
place, we should of course require that Bis similar to a diagonal matrix B*, i.e., B* = s- 1 BS is 
diagonal for some nonsingular matrix S. If this condition is satisfied, then we can diagonalize (3.5) 
1y means of the Butcher transformation y(J) = (S ® I)X(i) to obtain 

(I 0 Kn - B* ® hJn) (x(J,v) - xU,v-l)) 

= (C* ® hJn)x<il - (I® Kn - (A* - C*) ® hJn)X(j,v-i) 

+(I® Kn - A*® hJn)xU-I) - (hs- 1 A® I)R(YU- 1l), v = 1, 2, ... , (3.6) 

where A*= s- 1AS and C* = s-1cs. First of all, we see that the diagonal structure allows us to 
decouple the LU-decomposition of the system matrix I ® Kn - B* ® hJn into s LU-decompositions 
of size d. Furthermore, if C* = 0, then each inner iteration step in (3.6) can be decoupled into 
s independent iteration steps which can be executed in parallel. If C* i= 0, then (3.6) shows that 
we can decouple each inner iteration step in (3.6) into two or more independent iteration steps by 
imposing a special block structure on the matrices C* and A* - C*. In this way, we can define a more 
general family of PILSRK{B, C} methods which contains the method {B, C} = {QBQ- 1, QcQ-1} 

described in the preceding sections as a special case. 

Remark 3.1. The Jacobi version of (3.5) can be considered as a conventional iteration method for 
linear systems based on the splitting 

I 0 Kn - A® hJn =(I® Kn - B ® hJn) + (B - A)® hJn. 
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Remark 3.2. If only one inner iteration is performed and if we set y(j,O) = y(j-l) and y(j) = y(j,l), 

then the PILSRK method (3.5) reduces to 

(3.7) 

This scheme may be considered as an "approximate" Newton scheme obtained by replacing in (2.2) 
the matrix A by B + C. If B + C is similar to a lower triangular matrix with positive diagonal entries, 
then we can diagonalize (3.7), so that effectively only one FBS is required per outer iteration. The 
method (3.7) is related to the PDIRK and PTIRK methods proposed in [7,8] for ODEs. These PDIRK 
and PTIRK methods are obtained by replacing Kn with the identity matrix, by setting C = 0, and 
by choosing for B either a diagonal matrix or a lower triangular matrix. 

Remark 3.3. Even on sequential computers the diagonalized forms of the PILSRK methods (3.5) 
may be more efficient than the block-diagonalized Newton method. For example, ifs is even, then the 
total LU-costs and FBS-costs associated with (3.5) respectively require ~sd3 and 2srd2 operations, 
whereas block-diagonalized Newton requires 1sd3 and 4sd2 operations. Hence, if r ~ 2, then the 
PILSRK method does not require more FBS-costs, while its LU-costs are 2 times less expensive. 

4. Convergence results 

The convergence can be studied by analyzing the (exact) error recursion 

y(j,v) - y(j) = M(Y(j,v-1) - yUl), 

A1:=(I0 Kn - B 0 hJn)- 1 ((A - B - C) 0 hJn)· (4.1) 

Here, B and C may be any pair of matrices, but as already pointed out, the PILSRK method (3.5) is 
only a feasible method if the matrices B and C have an appropriate structure (see Section 3.3). 

In the convergence analysis, we shall suppose that 
(i) Kn is nonsingular, 

(ii) {Kn, Jn} has a complete (generalized) eigensystem. 
(We will refer to these assumptions as property P.) In practice, this is of course an unrealistic situation. 
However, by observing that d-by-d matrix pairs { K, J} having property P are dense in the space of 
all d-by-d matrix pairs, we can define a one-parameter family of matrix pairs { K ( E), J ( E)} which 
satisfies property P for E > 0 and which converges to {Kn, In} as E __, 0. Hence, for the matrix M(c) 
corresponding to {K(c), J(c)} we have M(c) __, Jvf as E __, 0. Thus, a convergence analysis based 
on property P is relevant for the case where this property is not satisfied. 

A necessary and sufficient condition for convergence of the PILSRK methods is p(M) < 1. In order 
to obtain the eigenvalues of M, we shall list all its eigenvectors. First we look for eigenvectors of the 
form a 0 w, where a and w are vectors of dimensions s and d, respectively. If the eigenvalues are 
denoted byµ, then h(A - B - C + µB)a 0 Jnw =µa 0 Knw. This shows that Jnw and Knw are 
related by the eigenvalue equation Jnw = >..Knw, i.e., >.. is a (generalized) eigenvalue of the matrix 
pair {Kn, Jn}· On substitution of Jnw = >..Knw and by defining z := >..h, we obtain 

z(A - B - C)a 0 Knw =µ(I - zB)a 0 Knw. 
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Since Knw =f. 0, µ = µ(z) is an eigenvalue of the amplification matrix 

Z(z) := z(I - zB)- 1 (A - B - C). (4.2) 

We now impose the condition that Z(h>.) is nondefective for all >. in the spectrum of <7(Kn, Jn). 
This condition and condition (ii) of property Pimply that M has sd eigenvectors of the form a 0 w. 
Hence, all eigenvectors of M are of this form and its eigenvalues are given by those of Z(h>.) with 
A E cr(Kn, Jn)· 

Let p(z) be the spectral radius of Z(z). Then, the region of convergence is defined by the region 

I':= { z: p(z) < 1, Z(z) is nondefective }. 

In analogy with the terminology used in the linear stability theory, we shall call the PILSRK method 
A-convergent if I' contains the left halfplane and £-convergent if it is A-convergent and if p(z) 
vanishes at infinity. Matrix pairs {B, C} will be said to lie in the set JB(A) if {B, C} generates an 
A-convergent PILSRK method. 

From the considerations above we conclude that the PILSRK method (3.5) converges for all h > 0 
if {B, C} E JB(A), if {Kn, Jn} satisfies property P and if its spectrum is in the nonpositive half
plane. 

In order to get some insight into the convergence behaviour, we observe that after v iterations the 
eigenvector components of the iteration error are amplified by zv ( z ), where z = h>. corresponds with 
the (generalized) eigenvectors of {Kn, Jn}· Let us define the averaged amplification factor by 

(4.3) 

Evidently, the spectral radius p(z) of Z(z) equals p<00l(z) and will therefore be called the asymptotic 
amplification factor. 

4.1. The asymptotic amplification factor 

We shall now consider the case {B,C} = {QBQ- 1,QCQ- 1}, i.e., the process (3.4), in more 
detail. We first derive estimates for the asymptotic amplification factor p(z) = p(00l(z). Since the 
matrix Z(z) = QZ(z)Q- 1 is block-diagonal with either one-by-one or two-by-two diagonal blocks, 
v:_e may _:onfine our considerations to the diagonal blocks of Z ( z). Let us define the one-by-one blocks 
Bkk of B by ~k (as in (3.4)) and the two-by-two diagonal blocks 

(4.4) 

- -
(the conditions on the entries of Bkk ensure that its eigenvalues are distinct and positive, so that B 
is diagonalizable). We shall require that {B, C} generates an £-convergent iteration method. This 
requirement is crucial in order to quickly remove stiff components from the iteration error (see [7]). 
In fact, £-convergence implies that zv(oo) vanishes for l/ ;;:: 2, because the matrix Z(z) is block
diagonal. Hence, within two inner iterations, all stiff error components are removed from the iteration 
error. 
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The following result provides a lower bound for p(z) in the len halfplane when we impose the 
condition of £-convergence. The proof parallels the proof of a similar theorem in [9]. 

Theorem 4.1. Let {B, C} = {QBQ- 1 , QCQ- 1 }, let Akk and Bkk be defined by (2.3) and (4.4), and 
let the generated PJLSRK method be L-convergent. Then, we have in the left halfplane for all ak and 
bk the inequality 

p := max p(z) ~ 1 - C,O'. 
Re(z)(O Cl'.O' 

Proof. The eigenvalues µk(z) of the matrix Z(z) = QZ(z)Q- 1 are given by those of the diagonal 
blocks 

(4.5) 

If '1/k = 0, then ZH:(z) vanishes yielding zero eigenvalues. Therefore, we may restrict our con

siderations to the two-by-two diagonal blocks of Z( z ). The eigenvalues of these blocks satisfy the 
characteristic equation 

det (ak - ~LA,~ (z- 1, - uk)p,A:(z) 
LA: - Uk+ l!kJLA:(z) 

It is easily verified that /lk ( z) vanishes at infinity if 

,11 . = (a1.: - 2C,k)nx, + (2rx~, + ckxk)uk - ah,o'X, 
J.. l , 

ak:I:k - lkUk 

(4.6) 

(4.7) 

where :r:1.: and u1.: are still free. In addition, we have to satisfy the inequalities in (4.4). Since UkWk = 
r~~, + :q,ck. these inequalities are satisfied if 'Uk + Wk > 2nk. Eq. (4.6) is solved by 

( "') _ (2(,k - 'llk: - 'Wk)Z 
/LJ.:(z) = 0, flk ~ - 'l 2 . 

· cY."fcZ - ('uk + wA:)z + l (4.8) 

Since the function ll·k ( z) is regular in the left halfplane, its maximum in the left halfplane is assumed 
on the imaginary axis. It is easily verified that 

I (. I \2C,1.: - 'ILk - 'WA: I IYI 
/1,k 1y) = --;========== Jo - <~x,:u2 )2 + (tlh: + 'Wk )2y2 

(4.9) 

assumes an absolute maximum at y = ±nk 1 which is given by 

max p(ZH(z)) = 11 - 2C.k I· 
Rl!(.c)~O U},: +'WA: 

(4.10) 

This value is bounded below by I - C.AJ~!.: 1 (we recall that we have assumed ~A: > 0). Hence, we see 

that the eigenvalues of A with the smallest ratio ~ko.k 1, that is, the eigenvalues with the relatively 
largest imaginary part, determine a lower bound for p(z). Recalling that the ordering of the diagonal 

blocks AA:k is such that l'r/1;:/C.A:I increases with k, we conclude that in the left halfplane the maximal 
value of p(z) is bounded below by I l - ~au.-;;. 1 1, proving the assertion of the theorem. D 
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From (4.10) it is clear that the best we can do is to choose Uk+ wk = Wkak. where ek = 1 +Ek 
with Ek a small positive number. By virtue of (4.7) we obtain the relation 

2 2 (ak - 2~k)ui + (2ai + cka:k)uk - aka~ 2() 
'Uk+ O'.k + Xk = kO'.kUk. 

ak:rk - bkuk 

This equation shows that by choosing Xk = 0, we can compute Uk independently of the values ak, bk 
and Ck. Since the block-triangularizing matrix Q depends on ak, bk, q,, and vice versa, we preserve 
a maximal amount of freedom in selecting Q if xk = 0. Setting Xk = 0 and introducing the new 
parameter 

'Yk := (}k ± Je~ - 1 with ek > 1, 

we obtain 

(4.11) 

We remark that this expression holds for both signs in the formula for 'Yk· By virtue of (4.10), we 
have the result 

( - ) 2''(1,~k max p zkk(z) = 1 - . ' 
Re(z)::;;o bk+ l)ak 

'Yk =J 1, 'Yk > 0. (4.10') 

Furthermore, it follows from (4.8) that firstly, Z(z) has a complete eigensystem for all finite z (this 

is also true for z = 0, because Z(O) = 0), and secondly, p(Zkk(z)) < 1 in the region 

(2'Yk~k - "fkO:k - nk)21zl2 < \'Ykaiz2 - ('Yko:k + ak)z + 'Yk\ 2. (4.12) 

Thus, we have proved 

Theorem 4.2. For 'Yk =J I, 'Yk > 0, .Tk = 0 and all ah bk and Ck satisfying (2.3b) we have 
(i) the matrix pair {B, C} = {QBQ- 1, QCQ- 1} is in IB(A) if B satisfies (4.11), 

(ii) the convergence region I' is given by the cross section of the regions ( 4.12), 

(iii) max p(z) = max Pk, Pk := 1 - ( 72'Yk~k . 
Re(z)::;;O k Tf;; + 1 )o:k 

A comparison with Theorem 4.1 shows that values of 'Yk close to 1 yield an "almost" minimal 
spectral radius. In Table 1, we have listed for a few Radau IIA methods the values of Pk in the case 
'Yk = 7 /8. These values are worst-case values, because in the greater part of the left halfplane, p( z) 
is much smaller. 

Table I 
Values of f>k for 8-stage Radau IIA methods ('Yk = 7 /8) 

k 

2 

3 

4 

s=2 

0.19 

s=4 

0.06 

0.45 

8=6 

0.03 

0.21 

0.57 

s=8 

0.02 

0.12 

0.33 

0.64 
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4.2. The ave raged amplification factors 

First we compute the averaged amplification factor for the eigenvector components of the iteration 

error associated with (3.4) after v iterations. These components are amplified by Zh(z), where z = h>.. 
corresponds with the (generalized) eigenvectors of {Kn, Jn}- Hence, the averaged amplification factor 
associated with (3.4) is defined by 

{ -:::<J. v)("') ·- " 11z-v (,.,.)II k "' .- H:"' · 

Here, rt'!(z) may be considered as the averaged amplification factor associated with (3.2). Let us set 

the free parameter /k = ai.:0:1,: 1, so that the matrix ZJ:k(z) simplifies to (cf. [9]) 

ru(z)) 
I ' 

(4.13) 

With respect to the Euclidean norm, we have 

j/(\:) = l11dz)l(l + lqA:(z)l2)1/2v = l/Lk:(z)ll-1/v(ltlk(z)l2 + lµk(z)qk(z)l2)1/2v_ 

We majorize this expression in the left halfplane by using the maximum values of lµk(z)I and the 

maximum value of 111.A:(z)ql.:(z)I. From Theorem 4.2 it follows that lµA:(z)I ~Pk and an elementary 
calculation yields 

l11.1.(:c)l 2 + l1 1.dz)qk(,::Jl 2 ~PX+ bx,a1.· 2 . 

Thus, 

~(,,,) (. l _,., ,,, 10r) ri 
fli. .:: ""' f!k ·v /JI,,, (11,: = I + +. 

a·ux;,,, 
(4.14) 

Expressing the upper bound (4.14) in terms of the parameters ab bk and Ck, we obtain for the 

amplification factors in the transformed and untransformed space the estimates given in the theorem: 

Theorem 4.3. fl /!.: == a1Jr !.: 1 , then with respect to the Euclidean norm, 

factors lJ}//)(z) and f!(v!(z) satis{y in the lejt halfplane the inequalities 

( 2 2 ') 
; 1 ak + °'-A)-

/JJ.: = + ') ') 1 

rLf./:k 

the averaged amplification 

(4.15) 

r.:(Q) := llQll !IQ- 1 II-

4.3. The tran.1formation matrix 

Theorem 4.3 suggests the use of transformation matrices Q such that ak ;::::; (!.'.fr (to achieve that f!A: 

is close to its minimal value) and r:y, » I. Such transformation matrices can be constructed, however, 

they turn out to be poorly conditioned (cf. [9]), so that we have fast convergence in the transformed 
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space, but not necessarily fast convergence in the untransformed space. Therefore, we shall restrict 
our considerations to orthogonal transformation matrices. This excludes the Jacobi case witb C = 0, 
so that we should consider the Gauss-Seidel case C f. 0 (the Jacobi case {B,C} = {QBQ- 1.Q} 
with non-orthogonal Q has been analyzed in [9]). 

In order to construct an orthogonal matrix Q, let R be an orthogonal transformation matrix such 
that s_ := R- 1 AR is a real Schur form of A with two-by-two diagonal blocks given by 

s_kk = ~k, 

s = (!J.k -kk c 
-k 

if T/k = 0, 

if T/k f. 0. 

The values of g_k and Q.k are completely determined by R (for the construction of R we refer to [ 11 ]). 
We now transform these diagonal blocks by a block-diagonal rotation matrix .6. = (.6.jk) with 

{ 
1, if T/k = 0, 

i1kA:= (cos('l/JA:) -sin(lj!k)) 'f -f-O 
sin('lf1k) cos('lf;k) ' 1 T/k · 

Then, Q = Ri1, K ( Q) = 1 and A = 11- 1 R- 1 AR.6., where the diagonal blocks of A are given by (2.3) 
with 

ak = !lk cos2 (iPk) - (Q.k +~A:) cos( vJk) sin(l/ik) + (2~k - g_k) sin2 (iPk), 

ck = ~k cos2Ci/Jk) + 2(g_k - ~k) cos( vJk) sin( vJk) - Qk sin2 (iPk). 

The parameter Wk is chosen such that the spectral radius Pk occurring in the upper bound ~.15) is 
minimized. This means that ak should be close to ak. In order to avoid defective matrices Bkk· we 
should not allow ak = ak. Let us impose the constraints ak ::;:; 7ak/8 and ak :;:: 9ak/8. We now 
determine iPk such that lak - akl is minimized subject to these constraints. If more than one values 
of 'l/Jk are found that minimizes lak - ak I. then we take the value that also minimizes /3k. 

For the s-stage Radau IIA methods with s = 2, 4, 6 and 8, we found that there exists vJk-values 
such that ak = 7ct1,./8 (i.e., '°Yk = 7 /8). The corresponding Pk-values are listed in Table l. For s = 4 
and .s = 8, the corresponding Pk-values are respectively given by {3.3, 2.0} and {2.6, 2.8, 2.4, 2.4 }. 

Table 2 lists the actual left halfplane Uf?Per bounds for µCvl ( z) using the Euclidean norm in its 
definition (4.3) (in brackets, we listed for C -f- 0 the theoretical upper bounds of (4.15), which are 

Table 2 
Actual upper bounds for p("l(z) for Radau IIA (/'A:= 7/8) 

s=4 s=8 
/,J Jacobi Gauss-Seidel Jacobi Gauss-Seidel 

1.95 0.54 (0.63) 3.51 0.84 (0.98) 

2 0.98 0.49 (0.53) 1.88 0.73 (0.80) 

3 0.76 0.48 (0.50) 1.30 0.70 (0.74) 

4 0.66 0.47 (0.49) 1.19 0.68 (0.71) 

00 0.45 0.45 (0.45) 0.64 0.64 (0.64) 
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too pessimistic by only less than I Yfo). The amplification factors for C = O are taken from [9] and 
turn out to be considerably larger. 

4.4. Effect of" the predictor 

The averaged amplification factor p(u) (z) defined in (4.3) does not take the amplification effect of 
the predictor formula for y(OJ needed in (3.5) into account. This effect plays a role in the overall 
convergence. For example, the predictor may have or may have not a strong damping effect on the 
stiff iteration error components. It can be included by modifying the definition of the convergence 
factor. To that end, we first have to specify the predictors we are going to use. Let y(J,O) = y(O) with 
y(OJ denned by either 

(4.16a) 

or 

(4.16b) 

where Y,, is the stage vector computed in the preceding step and the matrix EJ> can be used to control 
the order of accuracy of y(OJ. The second predictor formula (4. l 6b) is an extrapolation formula based 
on the back values contained in the preceding stage vector Y,,. The first predictor formula (4.16a) is 
obtained from (2.1) by replacing A with 1J + C and W,, with (E r2) J)Y,1 • This formula can be solved 
by a modified Newton process (2.2) using the predictor formula (4.16b) to start the iteration process. 
Performing only one outer iteration, this predictor formula becomes 

(lr-:,K,, (n+C) h.l,,)(YU! y(J 1!) 

h((!J 1CJ I)<fJ((h 1[n+ci- 1 rxJI)(YU- 1J-(E01)Y,,JYu- 1l), 
.J I , .... u 1, 

where y< 0 J (E1, '<' f)Y,,. Evidently, the same LU decompositions as in (3.5) can be used, so that 
only FBSs are needed. 

We consider the predictor effect for linear problems and for ]<.,' := eeY. Let P be a matrix which 
equals either 13 +(.'or 0. Then, we may write the residual function (2.1) and the predictors (4.16) as 

R,,(Y) (/1 1A 11>:,/)((/:-;h.-,, AV;hJn)Y-(EC·)K,,)Y,,), 

(1 /\·,, 11 11 ... f.,,)·yill) (J' 1· )Y. c I' \II II' 

respectively. From (4.1 J and (2.2) it follows that 

yll,u) ylli J\[''(Y(l,O) y(J)) AJ'1(Y(O) y(I)) 

J\Ji'(l /\',, Av)hJ,,) 1 (hA</l)R,,(Y 10 l) 

Ai,, (Y(OJ (I 1>! 1\ 11 - A!/; h.111 ) ···I (J<.: !/1 K,,)Y,,) 

J\1'1 ( (1 (') 1\11 P !/! h./11 ) 1 (f'_,'f' '/! K,,) 

-- (l </; f\11 A h.ln.)-- 1(E ("'.-1 Kn))Y,,. (4.17) 
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Table 3 
Actual upper bounds for p~~~(z) for 4-stage Radau IIA with 1k = 7/8 

Jacobi Gauss-Seidel 

I/ LSV (q = 0) EPL (q = 3) GLM (q = 2) LSV (q = 0) 

2.66 6.98 3.48 0.92 

2 1.15 2.27 1.30 0.61 

3 0.84 1.34 0.91 0.54 

4 0.71 1.02 0.76 0.51 

00 0.45 0.45 0.45 0.45 

Table 4 
Total and effective LU- and FBS-costs for even or odd numbers of RK stages 

Method Total LU/d3 Total FBS/d2 

Block-diagonalized Newton 

PILSRK: Gauss-Seidel 

PILSRK: Jacobi 

¥ or ~(2s - 1) 
2. 
3 
2s 
3 

4s or 4s - 2 

2sr or 2(sr2 - 7'2 + 1) 

2sr 

EPL (q = 3) 

39.5 

4.17 

1.97 

1.36 

0.45 

Eff. LU/d3 

8 
3 
2 
3 
2 
3 

GLM (q = 2) 

2.93 

0.88 

0.67 

0.61 

0.45 

Eff. FBS/d2 

8 

sr or sr2 - 7'2 + 2 

2r 

Taking into account the computational effort involved in applying the predictor formula, we are led 
to the following definition of the averaged amplification factor associated with ( 4.17): 

P~~a(z) := v11zv-0 (z)Z*(z)!I, Z*(z) :=(I - zP)- 1 Ep - (I - zA)- 1 E, 

where 8 = 1 if P = B + C and 8 = 0 if P = 0. 
A qth-order accurate predictor is obtained by defining Ep according to 

Epe = e, EpX=U-PV, 

u : = ( d h) , v : = ( d- 1) , x : = ( ( c - e )j / J) , j = 1, ... ,q. 

(4.18) 

(4.19) 

There are various options for choosing Ep. For P = 0, we have considered the case Ep = eeJ (last 
step value (LSV) predictor) and the case where Ep is defined according to (4.19) with q = s - l 
(maximal order extrapolation (EPL)). For P = B + C, we defined Ep according to (4.19) with q = 2 

and we used the remaining free parameters to minimize both p~~~a(z) + p~~a(z) in the left halfplane 
(GLM predictor). 

Table 3 lists left halfplane upper bounds for p~~~d(z) in the case of the 4-stage Radau IIA method. 
In appreciating these values, we should take the effect of the order of accuracy ~f the predictor into 
account. For example, the LSV predictor together with the Gauss-Seidel version C f= 0 possesses the 

smallest left halfplane upper bounds for p~~d (z ), but its zero order will be a drawback (see Section 5 ). 

4.5. Comparison of LU- and FBS-costs 

We conclude this section by summarizing the total and effective LU-costs per Jacobian update and 
the total and effective FBS-costs per outer iteration. Table 4 lists these costs for the block-diagonalized 
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Newton, the Newton-PILSRK method derived above, and Newton-PILSRK methods with C = 0. 
The cost formulas are given for the cases ,i; even and s odd, assuming that the matrix A has no 
real eigenvalues if s is even and only one real eigenvalue if s is odd. In the case of the PILSRK 
{ QBQ- 1, Qcq- 1} method, 'f and r2 respectively denote the averaged number of inner iterations 
over all subsystems and over subsystems associated with the complex eigenvalue pairs of A. Finally, 
r denotes the maximal number of inner iterations needed for the s subsystems in the PILSRK {B, 0} 
method. The figures in Table 4 show that the two PILSRK methods require the same number of (total 
and effective) LU operations. Their effective FBS-costs are highly dependent on the value of 'f, r2 and r. 

5. Numerical experiments 

The aim of this section is to compare the algorithmic properties of the Newton-PILSRK method 
{(2.2), (3.5)}. We compare th:._ Gauss-Seidel version C-::/: 0 with Q orthogonal as analyzed in this 
paper and the Jacobi version C = 0 with Q nonorthogonal analyzed in [9]. In both cases, we take 
/k == 7 /8. The comparisons are carried out for a few test problems from the literature. 

The corrector, i.e., the matrix A is defined by the 4-stage Radau IIA corrector and the predictor 
formula is either the LSY or the EPL predictor (see Section 4.4), and is specified in the tables of results. 

In the Jacobi case, we have (cf. [9]) 

(0.1096 
-0.0430 0.0268 -0.0080) 

I3 = 0.2085 0.3064 -0.0671 0.0211 
C=O, 

0.2484 0.0823 0.2573 -0.0142 ) 
0.2596 -0.0515 0.4219 0.0780 

(5.1 a) 

and in the Gauss-Seidel case 

( 0.1175 -0.0207 0.0255 -0.0017) 

13 = 0.2555 0.2758 -0.0535 0.0037 
-0.0256 -0.0076 0.2030 -0.0002 ' 
0.0206 0.0528 0.3488 0.1549 

(-0.0061 --0.0117 0.0002 ·0.0019) 
(,' = -0.0281 ---0.0400 -0.0002 -0.0059 
. 0.2492 0.3955 -OJlO I 0 0.0614 . 

0.2099 0.3114 0.0007 0.0470 

(5.2a) 

Diagonalizing (3.5) by the transformation yU! = (S' r/1 [)XU! yields the method (3.6) with 

( 2.9526 0.3159 J .5325 0.0276 ) 
...,, = -7.2663 --0.8756 -1.0553 --0.3113 ' 

3.4202 0.9493 - I 0.7997 -2.1349 
34.8970 4.3753 -42.9039 -5.8960 

(5.1 h) 

(0.1521 
() 0 

0 ) 13* = () 0.1986 () 0 
() () 0.1736 () 

() () () 0.2269 



272 PJ. vun der Houwen, WA. van der Veen I Applied Numericuf Mathematics 25 ( 1997) 257-274 

in the Jacobi case, and 

( 
0.2030 

8 = -0.9495 
0.0858 

-0.2233 

(
0.2269 

B* = 0 
0 
0 

0.3803 
-0.8908 
0.1003 

-0.2275 

0 
0.1737 

0 
0 

in the Gauss-Seidel case. 

-0.0763 -0.0904) 
0.1977 0.2080 

-0.1466 -0.0182 
-0.9662 -0.9738 

0 lt6 ~ ) 
0 0.1521 

(5.2b) 

Since this paper aims at a comparison of algorithmic properties, we avoided effects of stepsize 

and iteration strategics by performing the experiments with fixed stepsizes h and fixed numbers of 
outer iterations m and inner iterations r. Furthermore, the Jacobian and the LU-decompositions were 

computed in each integration step. 
The tables of results list for various values of the numbers of outer iterations rn and inner iterations r 

the minimal number of correct digits at the end point: 

cd :=-·log,() llYcnc.l - YUcmt)llrx.· (5.3) 

Here, Ycncl denotes the numerical solution at the end point tenc.J· Negative cd values will be denoted by 

cd = -. 

5. 1. The transistor amplifier (index I) 

The first test problem is the transistor amplifier given in [6] on the interval [O, 0.2J (see also [I 0 I). 
'his nonlinear, eight-dimensional problem of index I can be represented in the implicit form 

Ky'= f(t, y) 

with a constant, singular capacity matrix K. Table 5 lists results for the EPL predictor and h 2 x JO 4 . 

In both versions, only two inner iterations are needed to produce the same accuracy as the modi ficc.1 
Newton process, but taking just one inner iteration seems to be the most efficient strategy. Furthermore, 

Table 5 

Transistor amplifier with EPL predictor and h = 2 x I() 4 

facobi version 
--·-----------·----

TI/ /' ,. I' -- 2 
--·---------- -·--------

4.6 

2 !i.5 6.h 

1 7.7 7.5 

4 8.1 8.0 

% 9.7 9.7 
--------

Newton 

{' :::::;_ % 

4.6 

6.6 

7.5 

8.0 

9.7 

Gauss-Seidel version 

4.6 

6.6 

7.5 7.0 

8.0 7 .2 

9.7 9.7 
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Table 6 
Transistor amplifier with LSV predictor and h = 2 x 10-4 

Jacobi version Newton Gauss-Seidel version 

'In r=l r=2 r=3 r=4 ----> r = oo <-- r=4 r=3 r=2 r=l 

2.1 2.9 3.l ----> 3.2 <-- 3.1 2.8 2.0 I. I 

2 1.4 3.7 4.7 4.4 ----> 4.4 <-· 4.4 4.2 3.7 2.0 

3 2.5 4.9 5.9 5.8 __.., 5.8 <-- 5.8 5.6 4.9 2.7 

4 3.4 6.0 6.6 6.7 ----> 6.7 <-- 6.8 6.9 6.2 3.7 

00 9.7 9.7 9.7 9.7 ----> 9.7 <-- 9.7 9.7 9.7 9.7 

Table 7 
The car axis problem with EPL predictor and h = 3 x 10-1 

Jacobi version Newton Gauss-Seidel version 

rn r=I r=2 r=3 r=4 r = oo <-- r=4 r = 3 r=2 r=I 

0.8 2.5 ----> 2.5 <-- 2.5 0.8 

2 1.8 2.0 2.4 5.4 5.4 <-- 5.4 2.4 l.9 

3 l.9 5.3 6.5 6.5 6.6 <-- 6.6 5.4 4.3 l.8 

4 2.4 6.3 6.6 6.6 6.6 <-- 6.6 6.6 6.0 2.6 

00 6.6 6.6 6.6 6.6 6.6 <-- 6.6 6.6 6.6 6.6 

in accordance with Table 3, the Jacobi version performs better than the Gauss-Seidel version (note 
that the outer iteration process converges relatively slowly). 

Next, we apply the LSV predictor. According to Table 3, now Gauss-Seidel should be the supe
rior one. Table 6 shows that Gauss-Seidel does perform slightly better than Jacobi. Furthermore, a 
comparison with Table 5 reveals that the EPL predictor is considerably more efficient than the LSV 
predictor because of its higher order. We also tested the OLM predictor, but it could not beat the EPL 
predictor. Apparently, a higher order of accuracy is more important than smaller amplification factors. 

5.2. The car axis problem (index 3) 

Table 6 presents results for the more complicated index 3 car axis problem consisting of I 0 
DAEs [ 10]. As in Table 5, Jacobi is slightly better than Gauss-Seidel and a one-inner-iteration strategy 
is most efficient (note that here the outer iteration process converges relatively fast). 

5.3. ConcludinR remarks 

From the results in Tables 5-7 we may draw the following conclusions: 
(i) The PILSRK inner iteration process profits most from high-order predictors. 
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(ii) If higher-order predictors like EPL are used, then the Gauss-Seidel version (: -::J 0 converges 

slightly slower than the Jacobi version C = 0. 
(iii) If the number of outer iterations rn increases, then the number of inner iterations r can be 

chosen smaller. 
(iv) In a (fixed m, fixed r) strategy, the one-inner-iteration strategy together with a high-order 

predictor seems to be most efficient. A dynamic iteration strategy is expected to perform 
several inner iterations in the first few outer iterations and only one inner iteration in the later 
outer iterations. 
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