
LEAST FIXED POINTS REVISITED

J.W. de Bakker

Mathematical Centre, Amsterdam

ABSTRACT

Parameter mechanisms for recursive procedures are investigated. Con-

trary to the view of Manna et al., it is argued that both call-by-value and

call-by-name mechanisms yield the least fixed points of the functionals de-

termined by the bodies of the procedures concerned. These functionals dif-

fer, however, according to the mechanism chosen. A careful and detailed pre-

sentation of this result is given, along the lines of a simple typed lambda

calculus, with interpretation rules modelling program execution in such a

way that call-by-value determines a change in the environment and call-by-

name a textual substitution in the procedure body.

KEY WORDS AND PHRASES: Semantics, recursion, least fixed points, parameter

mechanisms, call-by-value, call-by-name, lambda calculus.

Author's address
Mathematical Centre
2e Boerhaavestraat 49
Amsterdam
Netherlands

28

NOTATION

Section 2

s,t,ti,t',...

S,T,...

p,p',...

P,...

a~A, aeA}
b r B, I B e B

x,y,z,u �9 X, ~,~ �9 X]

J qcQ, x~0.

r149149

T(t I tn), ~(tl,.-.,tn) ~

T(TI' '~r)' P(~I' '~r)J

~x I �9 . .xs I �9 . .Ym.t,

~x] . . .xs I . . .ym.p,

h~l . . . ~ r . T , hX1 �9 . .Xr .~

if p then t' else t"~
[

if p then p' else p"J

n(T), <n(T),r(r)>

1 -< i <- n , 1 -< j -< r ,)

1 -< h -< l, 1 _< k - <

t,T,x,~, . ..

individual }

function terms

functional

! ~individual}

boolean .J function terms

f u n c t i o n a l

constants

variables

procedure symbols

application

abstraction

selection

rank

indices

vector notation

syntactic identity between terms

Section 3

sit/x], sE~l~],...

x~ E~
v ~

Section 4

V = V 0 u {•

C

E

D

J = <V,C,E;D>

v,w e V, f E V n § V,

F e (vn+v) r § (vn§

valt(t,J,N) I
val(t,7), val(t,E)

Section 5

v! ~ V2, fl ~ f2' FI ~ F2

val(r,7), val(T,J)

t I ~ t 2, T I ~ T 2, T I i T 2

~,P

P

*[V,C,E;D]

~ ~, ~ ~, ~ tl = t 2

29

substitution

change of environment

domain

constant-interpretation

variable-interpretation

(environment)

declarations

interpretation

elements of (higher) domains

evaluation functions

partial orderings

extension of val

atomic formulae

sets of atomic formulae

element of

assertion

<V,C,E;D> satisfies

simplified forms of assertions

SO

Section 7

~o
O3

0

t,T,T

t(i),T(i) ,T(i)

the nowhere defined procedure

~o(~)
~xly.o3

replacing procedure symbols by new

variables

approximants to t,T,T

31

1. INTRODUCTION

1 . 1 . MOTIVATION

The fixed point approach in the semantics of programming languages has

gained considerable popularity in recent years. The basic programming no-

tions of recursion and iteration have found a satisfactory mathematical

treatment in terms of least fixed points, as opposed to the operational

methods, where the emphasis is on techniques using stacks, displays and the

like. (For a discussion on the distinction between mathematical and opera-

tional semantics one should consult the works of SCOTT and STRACHEY, such

as [20].) In order to explain our motivation for the present paper, a brief

sketch of the history of the subject is needed.

KLEENE's first recursion theorem [6] already gave a characterization

of recursive functions (albeit restricted to integer functions with para-

meters called-by-value, see below) in terms of least fixed points. For some

time, applications in programming theory remained tentative, however. We re-

fer for example to the results of McCARTHY [10], and, in particular, to the

early work of LANDIN (e.g. [7]) where CURRY's Y combinator was used to deal

with recursion in such a way that the fact that the fixed points concerned

are least with respect to a suitable partial ordering remained implicit. As

another important predecessor we mention MORRIS [12]. In 1969, a number of

people arrived independently at some methods and results causing a revival

of the fixed point approach, viz. BEKIC, PARK [15] and SCOTT and DE BAKKER

[19]. To be more specific, by "fixed point approach" we refer to the whole

of techniques for proving properties of programs which take as starting

point the fact that the function defined by a recursive procedure can, in

a sense to be made precise presently, be viewed as the least fixed point

of a functional which is associated in a rather natural way with the body

of the procedure declaration. The paper [19] also contained the first state-

ment of an important rule of proof, SCOTT's induction rule, which has found

a variety of applications in the next few years [1,2,3,4,8,9,11]. On the

theoretical side, the invention of SCOTT's models of the lambda calculus,

where the relationship between the least fixed point result and the Y com-

binator could be settled, has added to the success of the method.

32

As to the applications, we are in particular interested in the papers

by MANNA and his colleagues - then at Stanford - which contain both a long

list of examples, and a discussion of the relationship between SCOTT's in-

duction (computation induction, as they call it), and other methods such as

MORRIS' truncation induction [13]. Moreover, their work drew attention to

a problem which inspired the present paper. This problem is stated e.g. in

MANNA & VUILLEMIN [9] (p.529): "many programming languages use implementa-

tions (such as call-by-value) which do not necessarily lead to the least

fixed point", or in MANNA, NESS & VUILLEMIN [8] (p.496): "we are interested

in computation rules that yield the least fixed point ... we call such

computation rules fixed point computation rules ... the left-most innermost

rule is not a fixed point rule ...". In both of these papers, the work of

MORRIS [12] is mentioned in support of the quoted statements. The present

author believes that it is advantegeous to take a different approach to

these matters: We view the main assertion of Morris to be that the function

determined by a procedure with parameters called-by-value (fv' say) may be

properly included in the function determined by the same procedure with

parameters called-by-name (fn' say) (A partial function f is said to be

included in a partial function g (fsg) iff whenever f is defined, g is de-

fined with the same value.) However, it may well be that fv and fn' though

different, are both least fixed points, albeit of different functionals.

In order to explain this, consider the example of a recursive procedure

(from MANNA & VUILLEMIN [9]):

(1.1) ~(x,y) ~ if x = 0 then 0 else #(x-l,#(x,y))

Suppose we consider ~ for integer x,y. Then, if ~ has parameters called-by-

value, we obtain for the function f determined by (I.I), say f :
V

fv(X,y) = if x = 0 then 0 else undefined

whereas, when the parameters are called-by-name, we obtain f :
n

fn(X,y) = if x -> 0 then 0 else undefined.

33

Clearly, fv ~ fn" Writing

(1.2) ~(x,y) ~ ~(~)(x,y)

as short-hand for (1.1), with ~ determining a functional F, it is now cer-

tainly impossible that f and f are both the least fixed point of F. How-
v n

ever, the notation in (1.2) leaves out the important distinction between

the two parameter mechanisms used, since one same t is used for both cases.

What is needed is a treatment of (1.2) such that the functional term

carries the information about the parameters along: We then have two dec-

larations: ~(x,y) ~ ~v(~)(x,y), and ~(x,y) ~ ~n(~)(x,y), which determine

functions f and fn' and functionals F and Fn, such that f is the least
v v v

fixed point of Fv, and fn is the least fixed point of Fn (and that fv _a fn'

with the possibility that fv ~ fn)"

Now we can state the goal of our paper: We want to make the above

considerations precise, and to prove, in careful detail, the least fixed

point result for both parameter mechanisms. As we understand the literature,

this result has been obtained before for call-by-name only, and by using

quite different proof methods, viz. in Cadiou's Stanford Ph.D. thesis, in

ROSEN [17] and NIVAT [14]. An attempt at clarification of the same issues

was made by DE ROEVER [16], who also emphasizes that different parameter

mechanisms give rise to different transformations, but elaborates this

idea in the framework of axiomatized relations. An elementary exposition,

which does not involve the somewhat advanced logical and algebraic tools

of Nivat and Rosen, but which has certainly benefited from the ideas of the

lambda calculus, may be of interest. No applications are dealt with; we do

not even prove the continuity of the functionals, nor do we give a justi-

fication of Scott's induction rule. (Observe, however, that our results im-

ply that the rule is valid for (each combination of) call-by-value and call-

by-name; this should be contrasted with the position taken in [8,9].) On

the contrary, we concentrate solely on the stated problem. We shall use a

rather extensive formalism for this purpose, and spend much attention to

a detailed development of the argument. We feel that this may be justified

in a situation where wedeal with an intricate issue which has led to some-

what diverging opinions.

1.2. OUTLINE OF THE PAPER

In section 2 we define the syntax of a formal language centered around

the notions of application, abstraction, recursion and selection. In spirit,

the syntax is very much like a typed lambda calculus, with two major dif-

ferences

- the explicit addition of recursion by procedure declarations and - calls

(as opposed to the implicit recursion via the Y-combinator in the non-

typed lambda calculus)

- the explicit notational distinction between call-by-value and call-by-name

parameters

and one minor difference: the number of types is restricted to three: indi-

vidual, function, and functional.

In section 3 we give the standard definitions of free and bound (occur-

rences of) variables, and of substitution.

Section 4 is of central importance, giving the semantics of the con-

structs in our language. Terms are provided with an interpretation: select

a domain V, map constants and variables to elements of V (and of the de-

rived domains of higher type), and, moreover, fix a set of declarations for

the procedure symbols. This being done, a process of evaluation is prescrib-

ed: The well-known extension of V with an extra element to provide a "value"

in the case of non-terminating evaluations is used, and, for terminating

evaluations, the number of steps needed is carried along (this being of im-

portance in a later proof which uses induction on this number). Recursion

is defined by body replacement, call-by-value parameters by changing the en-

vironment, and call-by-name parameters by substitution.

Section 5 leads up to the formalism to state facts about our terms

which hold for all interpretations (so-called valid assertions). First a

partial order on the domains is introduced, and various properties of the

Va~-function are derived, which are of technical importance for the proof

of the monotonicity theorem in section 6.

Section 7 introduces the notion of approximating a term by procedure-

free approximants, and develops a precise notation for this, resulting in

35

the lemma that, for each term t, its value in a given interpretation is also

the value of an approximant to t.

Section 8, finally, brings the proof of the least fixed point theorem,

which relies heavily on the result of section 7.

ACKNOWLEDGMENT. Our interest in applying a formalism near to the lambda

calculus in investigating semantics has been stimulated by lecture notes

of Robin Milner, explaining work of Peter Landin and Dana Scott.

2. SYNTAX

We introduce a formal language which contains the main programming con-

cepts relevant for our purpose. Starting from some initial classes of ex-

pressions, construction rules are provided to build up more complex expres-

sions. These rules correspond to the following programming concepts:

- application apply a function to one or more arguments

- abstraction an expression may be "parametrized", yielding a function

of one or more arguments (such abstraction is part of the

mechanism usually invoked at procedure declaration)

- recursio~ a mechanism for "declaring" and "calling" (possibly re-

cursive) procedures is introduced

- selection this gives the usual conditional construct in programming

A subset of the expressions of our language, with elements called terms,

is intended as the class of "abstract programs". In section 4, a method will

be given to interpret these terms by means of an evaluation mechanism yield-

ing individuals, functions and functionals as values. The evaluation mechan-

ism is, of course, designed in such a way that it models program execution,

in sofar as this is concerned with the programming concepts just mentioned.

Anticipating the precise definitions, we already indicate that an interpre-

tation will start with the choice of a domain V, such that the terms of our

language will, in this interpretation, have values according to the follow-

ing table:

36

Class of terms

individual

function

functional

boolean

boolean function

boolean functional

Denotation

s,t,t0,ti,t',...

a,r,r0,zj,T',...
S,T,T',...

p,p',...

P,

Intended interpretation

c V

V n § V
(vn+v) r § (vn+v)
{0,1}
V n + (0,1)
(V n + { 0 , 1)) r + (u n + (0 , 1))

Figure I. Intended interpretation of terms

The terms are made up by means of the construction rules mentioned

above starting from certain given symbol classes, of constants, variables,

and procedure symbols.

Type of class

Individual

Function

Boolean

Boolean function

�9 constants

Individual 1

Function
Boolean I v a r i a b l e s

Boolean function

Procedure I symbols

Boolean procedure

Notation
Class Element

A a

A a

B b

X x~y,z~u

X ~,n

Q q

Q •

F

G

Figure 2. The initial classes of symbols

The syntax of our language is now given in the following two tables

(explanatory remarks follow the definition):

87

te rati~
t

(individual)

P

T

(func t ion)

T

(functional)

constant

a s A

b c B

a ~ A

B ~ B

variable

x ~ X

q ~ Q

~ c X

x~a

application

T(t I t n)

W(tl,...,t n)

T(z I , ,rr)

P(~I' '~r)l

Figure 3a. Syntax, first part

te•--•peration
t

(individual)

P

T

(function)

T

(functional)

P

abstraction

vxl..-Xl%Yl...Ym.t

(l+m>0)

VXl.--xlhyl...ym.P

�9 .% h~l "'~r
(r>0)

%XI,. .Xr.~

selection

i_~f p then t' else t"

if p th.en p' else p"

~ F

o e G

Figure 3b. Syntax, second part

We assume -~without bothering to justify this - that each term can be

uniquely parsed. Moreover, parentheses will be used freely to enhance read-

ability.

Syntactic identity between terms will be denoted by "E". Some examples

of terms are:

$8

I. Individual terms:

a, x, ~(xl,x2), (hx.x)(a), if p the____nn a else ~(e(xl) , ~(xl,x2))

2. Function terms:

~, 6, (%E.~)(#), vxlx 2. if p then a else ~(~(Xl) , ~(xl,x2))

Xyly 2. if p then a else ~(~(yl), #(yl,Y2))

(we adopt here the obvious conventions for I = 0 or m = 0)

3. Functional terms:

X~. VXlX 2. if p then a else ~(~(Xl) , ~(Xl,X2))

hE. %yly2. if p then a else ~(~(yl), E(yl,Y2))

(for suitable interpretation of p,a and ~, these two functional terms

correspond to the ~ and ~ of the introduction, cf. remark 2 below).
v n

The following remarks will help the reader in reading and understand-

ing the syntactic definitions in figures 3a, 3b.

I. (Reading the tables). Consider, e.g., the first line (after t in fig. 3a).

This should be read as:

- Each individual constant or individual variable is an individual term.

- If T is a function term, and each ti, i=],...,n, is an individual term,

then T(tl,...,t n) is ~ an individual term (obtained by the construction

rule of application).

2. (Abstraction). Most of the tables should now be readable, apart from the

abstraction-column, which needs further explanation. Consider the con-

struct T ~ VXl...xs For each individual term t, T denotes a

function term which, in the interpretation to be given presently, will

obtain as meaning a function with

- the I ~ 0 arguments (formal parameters) xl,...,x l called-by-value

- the m e 0 arguments (formal parameters) yl,...,y m called=by-name.
In other words, the v-abstraction is intended to model call-by-value

parametrization, the h-abstraction call-by-name parametrization. (The

reader should not confuse this statement of intention, to be made pre-

cise in section 4, with the "normal" h-abstraction in the lambda calcu-

lus, where the conversion order is (very much) left open.) Again antici-

pating, call-by-value parameters will be evaluated by changing the en-

vironment, i.e.'the variable-value correspondence, and call-by-name

parameters by textual substitution. For these definitions to make sense,

39

we assume from now on that the Xn, I ~ h ~ s Yk' I N k N m, are all dif-

ferent variables. An analogous requirement is imposed upon the ~,

j=l,...,r, in the formation of %~l...~r.T.

3. (Functionals). For functional terms, we do not need the call-by-value

type of arguments, and we restrict ourselves to the usual %-abstraction,

thus turning function terms into functional terms. It will be noticed

that only very limited means are provided to construct functional terms.

As a matter of fact, they are, strictly speaking, unnecessary, and are

only introduced to obtain eventually a more appealing form of the least

fixed point theorem. Note also that we introduce functionals of a rather

restricted format: Instead of elements of [(vnI§ x (vn2§ x...• (vnr§247

§ (vn~v), we have the simple form as given. This is a restriction imposed

for convenience sake only. All the results of the paper go through for the

more general case, but we did not want to add an extra burden to the al-

ready rather heavy formalism.

4. (Recursion). The recursion column is as yet rather meagre: no declara-

tions are given yet, only the procedure symbols. We find it more conven-

ient to introduce declarations as part of the interpreting mechanism,

though an appraoch which brings in declarations at an earlier stage might

also have been adopted.

5. (Rank and arity). The syntax tables are not very explicit on the role of

the integers n and r. The following supplementary information is in or-

der: Each function term T has a certain so-called rank n(T), each func-

tional term T has a rank-palr <n(T),r(T)>. The rank is initially given

for the ~, ~ and ~, and for the other constructs it is defined as follows

- if T ~ ~xl...xl%Yl...Ym.t , then n(T) = l + m

- if T ~ T(TI,...,Tr) , and n(Ti) = n(i=l r), then n(T) = n

- if T ~ %~l...~r.T, and n(T) = n, then n(T) = n and r(T) = r

- similar definitions hold for the boolean case.

Furthermore, we require

- if t ~ T(t I ,tn), then n(~) = n

- if T ~ T(TI,...,Tr) , then n(T) = n(Ti) , i=l ,r, and r(T) = r.

This system is, of course, designed in this way in order that

- each T of rank n = n(~) is to be interpreted as a function of arity

40

n: V n § V

- each T of rank <n,r> is to be interpreted as a functional:

(vn+v) r § (vn§

- similarly for the boolean case.

We are aware of the fact that we have not adopted here the most general

solution. We have envisaged a system with terms t of rank n(t) ~ 0, with

abstraction restricted to one variable, such that, for t ~ %x.t' or

t ~ vx.t', n(t) = n(t')+|, and n(t) = 0 indicating that t is to be in-

terpreted as an individual (e V), and with application restricted to the

one-argument case. For our present purpose, the syntax as in figs. 3a,b

was thought to be preferable. The restriction of our presentation to

terms of three levels (individual, function, functional) is closer to

the concepts as they appear in programming than a system with an infin-

ite hierarchy, and our main goal - clarification of the two parameter

mechanisms - seems, after some experiments with the mathematically more

elegant approach just sketched, to be achieved in a better way.

One last remark on notation: We sometimes use a "vector"-notation, and write

T(t) for T(t|,...,tn) , T(~) for T(T| Tr) , x for (x I xs etc.

3. SUBSTITUTION

In the interpretation of terms to be given in section 4, we shall de-

fine the evaluation of call-by-name parameters by a process of textual re-

placement of "formal" by "actual" parameters, i.e., by means of substitu-

tion. Therefore, we devote this section to a precise definition of this op-

eration. We do this by a restatement of standard techniques, see e.g. E5],

as adopted to our present goals. At the end of the section a notation for

changing the environment - which is used to model call-by-value evaluation -

is given.

First we introduce the notion of a variable occurring in a term in

41

I. x occurs

1 . t . t =

1.2. t---

1.3. t ~

2. x occurs

2.1. T---

2.2. T_ =

3. x occurs

3.1. T-

4. ~ occurs

4.1. t~

4.2. t-

5. ~ occurs

5.1. T~

5.2. T---

5.3. T -

DEFINITION 3.1 (Occurrences).

in tiff

x

T(t],...,tn) , and x occurs in T or any of the ti, i=|,...,n.

if p then t' else t", and x occurs in p, t' or t".

in Tiff

vx%y.t, and x occurs in t

T(T|,...,Tr) , and x occurs in T or any of the T., j=],...,r.
J

in Tiff

%[.T, and x occurs in T.

in tiff

T(t],...,tn) , and ~ occurs in T or any of the t., i=],...,n.
l

if p then t' else t", and $ occurs in p, t' or t".

in T iff

vx%y.t, and ~ occurs in t

T(T] ,Tr) , and ~ occurs in T or any of the T., j=],...,r.
J

6. ~ occurs in Tiff

6.1. T ~ %~.T, and ~ occurs in T.

7. The definitions for p, ~ or P are similar.

Observe that x does not occur in %x.a. Next, we need the notions of

bound and ~ree occurrences of a variable in a term.

DEFINITION 3.2 (Bound and free occurrences).

I. An occurrence of a variable x in a term is bound iff x occurs in a part

of that term of the form vx]...xs , with x z Xh, for some h,

| ~ h ~ s or x ~ Yk' for some k, | ~ k ~ m.

2. An occurrence of a variable x in a term is free, otherwise.

3. An occurrence of a variable ~ in a term is bound iff ~ occurs in a part

of that term of the form %~l,...,~r.T, with ~ ~ ~j, for some j, I ~ j ~r~

4. An occurrence of a variable ~ in a term is free, otherwise~

42

EXAMPLES :

- x o c c u r s b o u n d i n % x . x , f r e e i n a (x) , a n d b o u n d a n d f r e e i n (% x . x) (~ (x)) .

- both ~ and x occur bound in ~.~X.~l((~D.~)(D)(x)) , whereas 4 occurs free

in that same term.

We now define the important notion of substitution. A term t (or r)

may be substituted for (i.e. replace all free occurrences of) a variable x

(or ~) in any term s,o,S,p,~ or P. The results are denoted by sit/x],...

...,P[t/x], s[~/~],...,P[~/~]. The process of substitution is defined by

induction on the complexity of the terms involved:

DEFINITION 3.3 (Substitution).

1. s[t/x]

1.1. a[t/x] ~ a, x[t/x] ~ t, y[t/x] ~ y(y~x).

1.2. o(~)[t/x] ~ ~[t/x](~[t/x]).

1.3. (if p the___n_n s' >Ise s")[t/x] ~ if pit/x] then s'[t/x] else s"[t/x].

2. ~[t/x]

2.1. ~[t/x] ~ ~, gEt/x] ~ ~, ~[t/x] ~ ~.

2.2. (vx%y. s) It/x]

vxly.s, if x ~ Xh, for some h, I ~ h 5 s or x ~ Yk'

for some k, 1 g k ~ m; otherwise

>x%y.s[t/x], if none of the x or y occurs free in t; otherwise

vz%u.s[z/x][u/y][t/x] where the z,u are new variables

2.3. S(~)[t/x] ~ S[t/x](~[t/x])

3. s[t/x]

3.1. (k~.r)[t/x] ~ %~.T[t/x]

4. sir/g], ~[~/g], S[T/gJ. We only give the central cases~ the remaining

ones then follow as in I-3.

4 . 1 . ~ [T /~] ~ T, nE~/g] ~ n (~)

4 . 2 . (ag.~)[~Ig]

l~.a, if r = ~j, for some j,] ~ j ~ r; otherwise

l~.o[T/~], if none of the ~j occurs free in T; otherwise

l~.o[~/~][r/~] where the ~ are ne~ variables

5. Substitution in boolean terms is defined similarly.

43

REMARK: The precautions in 2.2 and 4.2 have the usual reason: Without them,

variables free in t (or T) would be turned into bound variables (then, e.g.,

(hy.x)[y/x] ~ by.y), and substitution would not be "meaning preserving"

(e.g., in the intended interpretation, %y.x determines a function which, for

each argument, yields the value of x as a result, whereas %y.y determines

the identity function).

EXAMPLES OF SUBSITUTION:

I. (~.~x.a]((~n.~)(q)(x)))[hz.~(a)/n] ~ ~.hx.~ 1

2. ((hy.x)(~(x)))[~(y)/x] ~ (hz.~(y))(~(~(y)))

((hn.~)((%z.~(a))(x))

The following lemma states a number of basic properties of substitu-

tions to be used in later sections:

LEMMA 3.4.

I. If y is not free in s, and neither y nor any variable free in t is bound

in s, then s~y/x][t/y] z sit/x].

2. If y ~ x, and y is not free in t", and no variable free in t' or t" is

bound in s, then s[t'/y][t"/x] ~ s[t"/x][t'[t"/x]/y].

PROOF. See HINDLEY, LERCHER & SELDIN [5].

Call-by-name parameters are dealt with by means of substitution, call-

by-value parameters by changing the environment. A definition of this fol-

lows in the next section, but we already introduce a notation designed for

this purpose.

Let, for the moment, E be any function mapping arguments x to values

and arguments ~ to values f. Then E~ is a function which satisfies: v,

2. (E~)(y) = E(y), for each y x.

(E~)(~) = E(~), for each ~ ~ ~.

Extension of the notation to the vector case: E$~, and restriction of it

t o c a s e s s u c h a s v ' s h o u l d b e c l e a r , O b s e r v e t h a t a n o t a t i o n s u c h a s E

has nothing to do with substitution which is a notion making sense only

for linguistic entities.

44'�9

4. SEMANTICS

The variety of terms as introduced in section 2 are now provided with

a meaning. We define a process of interpretation of terms, in which the no-

tion of their evaluation - by means of the function val - plays a central

part.

An interpretation J = <V,C,E;D> has the following components:

I. A domain (non-empty set) V.

2. C (dealing with the constants) maps A to V, B to {0,1}, A to V n -~ V,

B to vn + {0,|} (with, for a e A, n = n(a), etc.).

3. E (dealing with the variables) maps X to V, Q to {0,1}, X to V n ~ V

and Q to vn § {0,1} (with, for ~ e X, n = n(~), etc.) (The variable-

value mapping established by E is often referred to as the environment.)

4. D (dealing with the declarations) maps procedure symbols ~ (or boolean

procedure symbols ~) of rank n to function terms T (or boolean function

terms ~) of the same rank.

We now discuss the way in which the interpretations J are used to ob-

tain values of terms: A certain computational process is defined, which is

intended to model the semantics of the programming concepts concerned -

such as described e.g. in the ALGOL 60 report - and which, for each of the

pairs <t,7> and <p,J> will yield a value in V or {0,I}, respectively, as

their value. However, this gives rise to an important point: We know that

some computations in a programming language with recursion do not termin-

ate, and, hence, that our function val will have to be partial: for some

terms, no value will be delivered. In order to deal with this problem, the

domain V is extended with one special element • which is not an element of

V, and which stands for "undefined". From now on, V will refer to this ex-

tended set, and the subset of all "defined" elements of V will be called V0;

i.e., we have V = V 0 u {i}. This extension is seemingly a trick which does

not do away with any of the essential problems stemming from possibly un-

ending computations. However, it will turn out to lead to a streamlining of

much of the ensuing argument, and may be compared to some extent with the

introduction of ~ in the calculus.

We shall next define the function val, with val(t,J) yielding v e V,

45

according to the following scheme: First we introduce the partial function

valt(t,J,N) (valt standing for terminating evaluation), where N is an inte-

ger which tells us how many computation steps are needed in order to arrive

at the result v. Then we define the total function val(t,J) in terms of

valt(t,J,N).

DEFINITION 4.1 (Terminating evaluations).

Let J = <V,C,E;D> be an interpretation, and t an individual term. valt(t,J,N)

is defined by the following inductive definition:

l.t~aeA.

If C(a) = v �9 V0, then valt(a,J,1) = v.

2. t ~ x e X.

If E(x) = v �9 V0, then valt(x,J,1) = v.

3. t ~ T(t! tn) ~ T(~).

3 .] . z ~ a e A

If valt(ti,J,N i) = v i �9 V0, i=1,...,n, and C(a)(v) = v �9 V0,

then

valt(~(~),J,(~Ni)+l) = v.

3 .2 . T ~ e X

If valt(ti,J,N i) = v i e V O, i=l ,n, and E(~)(v) = v e V0,

then

valt(~(~),J,(~Ni)+l) = v.

3.3. (The central case). Y ~ vx%y.t

If v a l t (t h , J , N h) = v h �9 VO, h = l , . . . , / ,

and

m <V,C,E~;D>,N) = v valt(t[Zh/X h] =l[tl+k/Yk]k=l ,
where the z = (zl,...,zl) are new variables,

then

valt((~xXy.t)(~),J,(~Nh)+N)_ = v.

3.4. z ~ T(T l ,z r) = T(z), where T ~ h~.T 0.

If valt(~o[~/~](t),J,N) = v

then

valt(T(r)(t),J,N+1) = v.

46

3.5. ~---#~F

If valt(D(#)(~),J,N) = v

then

valt(~(~),7,N+1) = v.

4. T - if p the____~n t' else t".

If valt(p,7,N) = ! and valt(t',7,N') = v, then

valt(if p then t' else t",7,N+N') = v.

If valt(p,7,N) = 0 and valt(t",7,N") = v, then

valt(if p then t' else t",7,N+N") = v.

5. The definition of valt(p,7,N) is completely analogous to I-4 and omitted.

DEFINITION 4.2 (Evaluations).

I, val(t,7) = v if there exists N such that valt(t,J,N) = v.

2. val(t,J) = 1, otherwise.

3. Similarly for val(p,7).

The following remarks have to be made on these definitions:

I. Observe that, if valt(t,J,N) = v, then v e V 0. This follows by induction

on the complexity of t. All the "terminal" cases in the inductive defini-

tion explicitly require that v be an element of V0, and this property is

inherited by the "non-terminal" cases.

2. (Clauses 1,2 of def. 4.1). The case that t is a constant or variable are

clear.

(Clauses 3.1, 3.2 of def. 4.1). Let t = T(~) be an application, with

a constant or variable. Here we require that, for valt to be defined, v

and each of the vi, i=|,...,n, be in V 0. Observe that, otherwise, val(t,7)

will, by definition 4.2, be set to • The requirement that v.l be in V 0

is justified by our desire to have that our basic functions (i.e., the

functions that are not defined via our language) satisfy the property

that a function value be undefined when one of its arguments is undefined.

That v E V 0 fits in with our scheme that valt defines only terminating

computations.

(The central case)~ Let t ~ ~(t), with T an abstraction. Here we observe

that

a. The value parameters th, h=I,...,s are evaluated first. The fact that

3.

4.

5.

6.

7.

47

the v h are an outcome of vaZt guarantees that these evaluations ter-

minate (cf. remark]). Note that, if ~a~t would not terminate for

some th, then the attempt at defining uaZt for t would fail, and

clause 2 of definition 4.2 would apply.

b. The environment is changed to a new environment which links new var-

iables z h to the v h obtained above. The need for this change of var-

iables from x to z is explained by the possibility that the x occur

free in the tl+ k.

c. For the name parameters, no evaluation takes place, but a process of

substituting the actual parameters tl+ k for the formal parameters

Yk' k=]'''''m' is instead applied.

(Clause 3.4 of def. 4.1). This case is dealt with only for completeness

sake.

(Clause 3.5 of def. 4.1). Here we find the rule of body replacement,

which gives the standard meaning to recursion: The procedure symbol

is replaced by the term ?(#) which forms its body, and, next, the evalu-

ation is continued.

(Clause 4 of def. 4.]). This defines the standard meaning of condition-

als.

5. ASSERTIONS

Before we introduce the fo~-malism to assert that certain facts hold

for our terms under all interpretations, we need some preparatory concepts

and lemma's.

Firstly, we introduce a partial ordering on our domains:

DEFINITION 5.].

1. For v],v 2 E V,

v I i v 2 iff v I = • or v] = v 2.

2. For fl,f2 e V n § V,

f] ! f2 iff, for all ~ e V n, f](~) ! f2(v).

3. For FI,F 2 c (vn§ r § (vn+v),
F l ~ F 2 iff, for all f ~ (vn+v) r, F](f) i F2(f)"

48

Clearly, "~" is indeed a partial ordering. Thus v| = v 2 iff v| ~ v 2 and

v 2 ! vl, etc. Anticipating again, now that ~ is defined on V, we know what

val(t,J) ~ val(t',J) means, viz. that, for this J, either the evaluation of

t does not terminate, or, t and t' have the same value in V 0. If the inclu-

sion and its reverse hold for all J, we shall call t and t' semantically

equivalent. Details follow. (We have made here the first step towards the

extensive lattice-theoretic treatment in the more advanced theory of SCOTT,

see e.g. [18]. The development of this is not necessary for our present

purpose.)

As the next step, we extend the val function to terms r and T. In this

definition (and many of the subsequent formulations) we write val(t,E), etc.,

instead of val(t,J), etc., since it is only the E-component of J which in-

terests us, the other components remaining fixed throughout.

DEFINITION 5.2.

I. val(T,E) is defined as that function f: V n § V which satisfies:

f(~) = v iff, for new x, val(~(x),E~) = v.

2. val(T,E) is defined as that functional F: (vn+v) r § (vn§ which satisfies:

F(f) = f iff, for new ~, val(T(~),[~) = f.

As the first lemma about the extended val we state

LEMMA 5.3.

I. If none of the z,u occur free in s,

val(~xhy.s,E) = val(~zhu.s[z/x][u/y],E).

2. If none of the n occur free in ~,

va~(~.o,E) = val(~.~[~/~],E).

PROOF. Follows from the definitions and lemma 3.3.

REMARK. This lemma is, clearly, the analogue of the rule of a-conversion in

the ordinary lambda calculus. It allows us a rewriting of bound variables

where this is convenient.

The next lemma is of considerable technical importance in our develop-

49

ment. It is the main tool in the proof of the monotonicity theorem of the

next section, which, in turn, plays an important part in the proof of the

least fixed point theorem.

LEMMA 5.4.

Assume

I. val(t,E) = v, val(T,E) = f

2 . 1 . v a l (o , E) c v a l (o ' , [~ ')

2.2. val(S,E) c val(S',E')

3.1. val(si,E) c__ val(s~,E'), i=l ,n

3.2 val(oj,E) ?_val(oj,E'), j=l,...,r

4. v' c v", f' a f".

Then

!.I. val(s[t/x],E) = val(s,E~)

1.2. val(o[t/x],E) = val(o,E~)

1.3. val(S[t/x],E) = val(S,E~)

1.4. val(s[~/~],E) = val(s,E~)

1.5. val(a[~/~],E) = val(o,Ek)

1.6. val(S[~/~],E) = val(S,E~)

2.1. val(a(s I ,Sn),E) c_val(a,(s I ,Sn),E,)

2.2. val(S(o I Or),E) c val(S,(~ I ~'),E')
-- r

x~ x~
3.1. val(s,Ev,f,) a_ val(s,Ev,,f,,)

x~ x~
3.2. val(o,Ev,f,) a__ val(o,~,,f,,)

3.3. val(S,E x, ,) <__ val(S,Ev,,f,,)

PROOF. By simultaneous induction on the complexity of the te~ns. We prove

a few selected cases:

50

1.1. s ~ a: val(a[t/x],E) = val(a,E) = val(a,E$).

s ~ x: val(x[t/x],E) = val(t,E) = v = val(x,E$).

s z y~x: val(y[t/x],E) = val(y,E) = val(y,EX).
V

s ~ ~(s): val(~(7)[t/x],E) = val(o[t/xJ(~[t/x]),E).

We have, by conclusions].2, 1.1, and induction:

val(o[t/x],E) = val(a,~)

val(7~t/x],E) = val(~,E~)
Hence, by conclusion 2.1 applied twice, and induction,

val(o[t/x](s[t/x]),E) = val(o(s),E x)
V

s ~ if p then s' else s". For the reader.

1.2. The cases that ~ is a constant, variable or application are clear. Now

let ~ z ~xhy.s. By suitably rewriting of bound variables (lermna 5.3)

we may assume that none of the x or y occurs free in s or t. Then

val((wx%y.s)[t/x],E) = val(vx%y.s[t/x],E). We have, by definition 5.2,
. . . . - - X -- -- val(~x%y.s[t/x],E) = val('ox%y.s,E) iff, for new z and arbitrary w,

s[t/x])(z),E z) = val((vxhy.s)(z),E xM) val ((vx%y. v~_' or, by definition of

the z are new, val(s[t/x][z/y],E z) = va/(s[z/y],.v~ Ex~) (we va/ and since

assume that none of the w h = • otherwise, the result is obvious) or,
- - ~ - - ~x

by lemma 3.3, val(s[z/y][t/x],E~) = val(s[z/yJ,E~), and this holds by

conclusion I.I of the lemma and induction.

1.3, 1.4, 1.5, 1.6. For the reader

2.]. By assumption 2.1, val(o,E) c ~al(a',E'), i.e. by definition 5.2,

E ~ _ val(o(x),E~), for new x and arbitrary v. By conclusion va~(~(~), v) c

3.1 and induction, val(d'(~),E'$) i val(a'(x),E'$,), if ~ i v'" Now

choose v = val(7,E), v' = val(7',E'). Then ~ a v' by assumption 3.1.

We then have

val(o(x),E~) i val(o'(~),E'$,) (derived above)

val(o(x)[~/x],E) = val(o(x),~) (by conclusion].I and induction)

~a/(a'(x)[s~x],E v) = val(~'(x),E'~,) (similarly)

Hence, val(a(~),E) a val(o'(s'),E'), as was to be shown.

2.2 Omitted.

BI

3.1. The cases that s is a constant or variable are clear. Now let s 7 o(s).
x ~ x r

We have v a l (o , E v , f ,) c v a l (o , E v , , f , ,) , by c o n c l u s i o n 3.2 and i n d u c t i o n ,
- x~ - xr

val(s,Ev,f,) c val(s,Ev,,f,,), by conclusion 3.1 and induction; the re-

sult then follows by two applications of conclusion 2.1 and induction.

The case that s is a selection is, once more, for the reader.

3.2, 3.3. Omitted.

As the first consequence of lemma 5.4 we have lemma 5.5, which shows

that our extension of the definition of val as given in definition 5.1, is

consistent.

LEMMA 5.5.

I. val(~(t),E) = val(T,E)(val(t,E)).

2. val(T(7),E) = val(T,E)(val(7,E)).

PROOF.

I. Let val(t,E) = v. Then val(T,E)(val(~,E)) = val(T,E)(v) =

= (df. 5.2)val(T(x),E$) = (lemma 5.4, part l.l)val(T(x)[t/x],E)

= va~(T(~),E).

2. Similar.

We are also in the position to show that changing call-by-value to

call-by-name for one or more of the parameters yields a possibly extended

function:

LEMMA 5.6. val(VXl...Xl+lhXl+2...Xn.t,E) ~ val(WXl...xlhxl+l...Xn.t,E).

PROOF. We show that, for new ~ = (zl,...,z n)

val((VXl...Xl+lhXl+2...x .t)(~),E~) c val((VXl...xl%xl+l...x .t)(~),E~).
n - n

If any of the Zn, I ~ h ~ /+|, equals • the left-hand side of this inclu-

sion has • as value, and we are done. Otherwise, since the z are new,

val((~Xl...Xl+lhXl+2...Xn.t)(z),E ~) = (def. 4.1)

l+l n z l n g
val(t[zh/Xh]h=l[Zk/Xk]k=l+2,E~) = val(tEZh/Xh]h=l[Zk/Xk]k=l+l,E~) =

val((~Xl...xlhxl+1...Xn.t)(z),E~).

52

We can now, at last, introduce the formalism in which we shall below

state the main theorem of our paper.

We are interested in proving assertions about formulae ~,~ A for-

mulae is a set of atomic formulae, and an atomic formula is an inclusion

of one of the forms tl ~ t2, TI ~ r2' or T| ~ T 2. An assertion has the form

r

For assertions in this format we introduce the notion of validity in

DEFINITION 5.6 (Validity of assertions).

Let D be a given mapping from (boolean) procedure symbols to (boolean) func-

tion terms.

I. Let t| ! t 2 be an atomic formula. We call this formula satisfied by an

interpretation J, iff val(tl,7) ~ val(t2,7). Similarly for T! i T 2 and

T| ! T 2.

2. 7 satisfies a formula ~ iff it satisfies each element of the set ~. If

J = <V,C,E;D> satisfies ~, we also say that "~EV,C,E;~] holds".

3. An assertion ~ I= D ~ is called valid iff:

For all V,C, whenever, for all E, ~[V,C,E;D] holds, then, for all E,

P[V,C,E;P] holds.

Note carefully the structure of clause 3 in the definition. Firstly,

V will remain fixed in the application we have in mind, and is not subject

to quantification. However, we emphasize the difference between the role of

the V and C on the one hand, and E on the other hand: We define ... ~ ...

as a statement of the form VV,C[VE... ~ VE...], and not of the form

VV,C,E[... m ...]. In order to explain this, consider for instance the de-

sired monotonicity property, which includes as special case:

{x ~ y} I= D {x[t/x] ! y[t/x]}. Now, according to the second (rejected) def-

inition, this means that for all E, if E(x) a E(y) then val(t,E) a E(y),

which is clearly absurd. According to the first (adopted) definition, all

it states is that, if for all E, E(x) a E(y), then for all E, val(t,E) c E(y),

and this implication does hold since its antecedent is false.

53

The section is concluded with some additional pieces of notation:

I. For # [=9 ~ we write, in the case that D is understood, just ~]= P.

2. For @ [= ~, with # the empty set, we write I= P.

3. When confusion is improbable, we omit the {} around a collection

= {pl,P2,...} of atomic formulae.

4. For [= t I ~ t2, t 2 ~ t I we write ~ t I = t2, and similarly with

T I = T 2 and I = T 1 = T 2.

6. MONOTONICITY

The first theorem of the paper states the monotonicity of our terms:

The syntactical constructions of substitution, application, abstraction

and selection all preserve the semantic ordering "c" between terms. (Re-

cursion also preserves "~", but this can be proved only a~ter the least

fixed point result has been established. No further attention will be paid

to this; the reader will have no problem to adapt the proof e.g. in [I] to

the present formalism.)

THEOREM 6.1. (Monotonicity).

s c s' t c t' t c t' -- ' -- ' i -- i' i=l,...,n, p _c p'

oco' j , T c T', " r . c T',. =l,...,r

Sc S',

sit/x] c s'[t'/x],

o[t/x] c o'[t'/x],

S[t/x] c S'[t'/x],

s[~l~] c s'[~'l~],

a[~l~] c o'[T'/~],

S[TI~] c S'[T'I~],

O(t| ,t) c o'(t I ,t'),
n -- n

S(TI,...,Xr) __c S'(x I x$),

(Substitution,|)

(Substitution,2)

(Application)

B4

VXl. . .xs i ~Xl- . .xl%Yl. . .Ym " t '

~ l . . . ~ r -T ~ h ~ l . . . ~ r . ~ ' ,

if p then s else t c

if p' then s' else t'.

' (Abstraction)

(Selection)

PROOF.

I. (Substitution). sit/x] c s'[t'/x]. Choose any E, and let val(t,E) = v,
v a l (t ' , E) = v ' . Then v a l (s [t / x] , E) = v a l (s ,) c v a l (s , E ,) c v a Z (s ' , v ,) =

v a l (s ' [t ' / x] , E) , by lemma 5 .4 , pa r t 1.1, lemma 5.4, par t 3 .1 , the assump-

t i o n , and lemma 5.4 , pa r t 1.1. The o the r cases for s u b s t i t u t i o n are s imi-

l a r .

2. (Application). Direct from lemma 5.4, part 2.1.

3. (Abstraction). Let z be new variables, and let v be an arbitrary ele-

ment in V n. We shall show val((wx%y.t)(~),E~) ~ val((~x%y.t')(z),E~).
If any of the.Vh,] N h ~ s equals • the whole evaluation on the left-

hand side yields • and we are done. Otherwise, we argue as follows: we

apply the definition of val, the fact that val(z,E~) = v, and the fact

that the z do not occur in ~xhy.t or vx%y.t', and obtain successively:

val((vx%y.t)(z),~) = (def. 4.1)

val(t[z/x][z/y],~) = (lemma 5.4, part I.I)

_zxy. val (t , t rxrr ~) ~ (assumption)

val(t',E~) ... val((~xhy.t')(~),~) = = , as was to be shown.

The functional case is left to the reader, as is

4. (Selection). U

Statement and proof of the monotonicity theorem for the various boolean

cases are omitted.

7~ APPROXIMATIONS

We arrive at our last body of definitions and preparatory lemmas.

We assume from now on that we deal with one fixed ~, defined on each of

B5

~1,...,~r, with D(~j) ~ Tj, j=1,...,r. The proof to be given presently has

to have available terms which, for all interpretations, have non-terminat-

ing evaluations. This is the reason for the following conventions: We ex-

tend our set of procedure symbols with the symbol #0' with declaration

D(~0) ~ ~0" Hence, ~0 is a procedure which, when evaluated, causes nothing

but a call upon itself. Clearly, therefore, the evaluation of #0 terminates

for no argument.

Let us write m, ~, 0 for the "nowhere defined" individual-, function-

and functional terms defined by:

- ~0(z), with z new variables,

- ~. ~,

0 ~ ~.~.

It is left to the reader to verify that, for all J, val(~,7) = • val(~,J) =

= f0' where f0(~) = • for all v c V n, and val(O,J) = F0, where F0(f) = f0

for all f �9 (vn§ r

The reason we are interested in these constructs is the following: We

want to define a process of approximation to our terms. An intuitive ex-

planation is given first. Consider an individual term t. In general, t con-

tains one or more occurrences ("calls") of the (recursive) procedure sym-

bols ~1,...,~r, and evaluation of t will result in a, more or less elabor-

ate, "calling tree" for the ~, where, in general, some ~j| may call a ~j2'

this calls ~j3' etc., with the possibility that ~Ji ~ ~Jk for i # k. How-

ever complicated this process may be, we always have that, if the evalua-

tion of t terminates with value v �9 V0, then the calling tree is finite.

It is then possible to obtain the same v as value of a new term, which is

derived from t by suitable finite replacement of procedure symbols by the

bodies of their declarations, where the procedures at the innermost level

are not called any more (in general as a result of selection choosing an-

other branch). These innermost occurrences of procedure symbols may then be

replaced by whatever term we like, without changing the outcome. We now

choose for this the undefined term ~ just introduced, since this choice

guarantees a convenient ordering of the approximations, as will be seen

soon. To be somewhat more specific, we shall prove that, for each term t

56

and interpretation J, there exists a term t (i) (with i an integer which is

derived from the size of the calling tree determined by t, and, therefore,

depending upon 7) such that val(t,7) = val(t(i),7), and, moreover, t (i)

contains no occurrences of any procedure symbol.

The first step towards the precise formulation of this idea is the

introduction of one more syntactic operation on terms t, T and T. The oper-
II~I!

ation is denoted by , and defined with respect to the collection

{~|,...,~r }. It amounts to the replacement, in the term at hand, of each

occurrence of a procedure symbol ~j by a new variable ~j, for j=],...,r.

In other words:
~ ~ ~

a. x ~ x, a z a, T(t) ~ ,

(i__ff p then t' else t") ~ ~ if p then ~' else ~".

~ 7 ~ ~j, T(~)~ ~ T(~), b. ~ ~ ~, ~ ~ ~,_ ~ _ _

(wx%y.t) ~ vx%y.t.

c. (~.~)~ ~ ~.7

The approximations are now defined in

DEFINITION 7.] (Approximations).

]. t (0) - ~, T (0) - ~, T (0) -= 0.

2. t (i+]) -~[T.(i)/~j] r j
j=l

(i+]) _ TLTj ,_~j j=] ~r (i)/~]r

T(i+]) = ~[~i)/~j]r
j=l

, i=0,1,...

, i=0,1

, i=0,1

It should be observed here that the T. in this definition are the bodies
3

of the procedures ~, and that the ~ are the new variables introduced in
J J

the definition of the -operation. In words, the zero-th approximation to

T is ~, the i+]-st approximation is a term resulting from �9 by

- replacing all procedure symbols by new variables

- substituting for these new variables the i-th approximations to the T.
3

(This somewhat roundabout process is necessary since we cannot substitute

for procedure symbols.)

As first lemma on these new constructs we have

57

LEMMA 7.2.

]. ~!i+]) ~ r!i) (~(D(,jl)(i)) j=] r, i=0,1 ...
] J ' , ,

2. [= r = (X~.T)(* I *r)
(~ (i) (i)

3. [= t "i" c t, T a T, T c T, i=0,I

4. s c t, ~ c T, S c T

s (i) a t (i) o (i) a T (i) S (i) c T (i) i=0,!

PROOF. Straightforward from the definitions.

The next lemma is the key result for the proof of the least fixed

point theorem.

LEMMA 7.3. For all t and 7, if val(t,7) = v, then there exists some i such
that val(t(i),J) = v.

PROOF. If v = • take i = 0. Otherwise, v e V0, and valt(t,7,N) = v, for

some N. We prove, by induction on N, the following statement: If

valt(t,7,N) = v, then, for some i and M, valt(t(i),7,M) = v.

I. t - a or t - x. Take i = I.

2. t - T(~).

a.

b.

T ~ ~j. We have successively

valt(~j(~),7,N) = v, or, by definition 4.1,

valt(Tj(~),7,N-]) = v, or, by induction, for some i 0 and M,

valt((Tj(t))(io),7,M) = V, or, by definition 3.3 and 7.1,

valt(T~io)(~(io)),7,M) = v, or, by lemma 7.2, part I,

valt(~io+1)(~(io)),7,M) = v, or, by monotonicity,

valt(~io+l)(t(io+l)),7,M) = v, or, as above,

valt((~j (t)) (i0+l),j,M) = v.

Taking i = i0+l thus proves this case.

T ~ a. Let valt(a([),7,N) = v. Then there exist v k such that

valt(tk,7,N k) = Vk, with N k < N, for k=l,...,n. Thus, by induction,

58

valtC (i k) _t k _ , ,Mk) = v k . Now t a k i n g i = m a x (i l , o . . , 1 n) s e t t l e s t h i s

case.

c. r ~ ~ or, r ~ T(~), or �9 ~ ~xhy.t. These cases are proven similarly

using induction and monotonicity.

3. t ~ if p then t' else t". For the reader.

REMARK. As pointed out by the referee, it should be observed that this

lemma - though sufficient for our present purposes - needs additional

assumptions in order to be generalized to domains with a richer partial

ordering than the one imposed on our V by def. 5.1.1.

8. LEAST FIXED POINTS

The time for the payoff of our labour has arrived. We state and prove

THEOREM 8.1 (The least fixed point theorem).

Let ~l..-.,~r_ ~ be procedure symbols with D(~i)~ ~ ~j, j=l r. Let us put

T. =- h~.~.. Then
J J
I. I = {r.(01 ,~r) = 0j} r j j=1

2. {T. ,... _ u }r {~. j(al 'Or) = j j=l ~ j c o.} r
-- j j = l

REMARK

I. The first statement tells us that the ~'s are fixed points of the T's;

the second that they are least w.r.t. "c".

2. Observe that the first statement is nothing but J={T~ J --#j}r j =I " However,

this formulation does not bring out the fixed point aspect, and we have

taken no inconsiderable trouble to provide a notation - with all the

extra's for functionals - which does emphasize this.

PROOF.
r

I. We show that 1 = {~j = ~j}j=l o

a. a: Let val(T.(z),Ex) = v. If v = • we are done. Otherwise, there
-- j v -

exists N such that valt(Tj(z),~,N) = v. Then, by definition 4.1,

valt(~j(7),~, N+I) = v, hence val(~j(z),r~) = v. This proves "i""

b. ~ : Reverse the argument of part a.

2. We first show

59

(8.1)

(8.2)

{T.(o �9 c O.}. r
3 1 ' " ' ' O r) -- 3 3=1

by induction on i.

I = {~i)c oj}~ i=0,I

a. i = 0. Immediate from the definitions.

b. Assume the result for some i:

(i) }r
(Tj(~176 r) ! oj} =! I = (~j i ~j j=l'

By lermna 7.2 and the definitions,

i= ~i+l) (i) = T. , and
3

~J~(i) = (rj(~l,...,~r)) (i) (~ T~i)(~(i))) I=

(l~.~j) (i) (%~.~j)~[r~'-]r ~ (i-l)/~j]~ Now T(i). =_ s z I)/~. j=l - (lg.~),r. ---
J 3 3 =]

~.T z ~.~ _-- T~, as follows from the definitions of and of substi-

tutiono Thus we obtain

(8.3) #(i+I) (i) (i)~
j = T.(~3 ! '''''#r z.

By monotonicity we have

(8.4) (i) }r li) .(i)) ~ Tj }r
{~j i oj j=l I= {Tj(# '~r (o! Or) j=l"

From (8.2), (8.3) and (8.4) we conclude

{ (i+l) }r
{Tj(~ 'Or) i ~}~=I I= ~j ! ~ j=l

thus completing the inductive proof of (8.1) (or, in fact, of a stronger

version with "c" instead of "=" in its antecedent). Next, we choose some

V and C, and assume that for all E, Nal(Tj(o I ,Or),J) ~ ~al(oj~J), for

j=l ,r and with J = <V,C,E;D>. We show that then, for all E (using the

notation with V and C suppressed), val(~j,E)__c val(o.,E),3 i.eo, for new z

and arbitrary va~(~j(z),_~) c val(o.(~),E), j=l ,ro Assume -- j

80

val(#j(7),h~) -~ = v.t=Then, by iemma 7.3, for some i, val((~j(z))(i),E~) ~

= v, i.e., vaZ(+~i)(z),Ez) = v. From (8.1) it then follows that
j v

J 7) = v, as was to be shown.

We have completed the proof of the least fixed point theorem, thus

achieving the goal of our paper.

REFERENCES

[1] DE BAKKER, J.W., Recursive Procedures, Mathematical Centre Tracts 24,

Mathematisch Centrum, Amsterdam, 1971.

[2] DE BAKKER, J.W., Fixed points in programming theory, in: Foundations

of Computer Science (J.W. de Bakker, ed.), p.I-49, Mathematical

Centre Tracts 63, Mathematisch Centrum, 1975.

[3] DE BAKKER, J.W. & W.P. DE ROEVER, A calculus for recursive program

schemes, in: Automata, Languages and Programming (M. Nivat, ed.),

p.167-196, North-Holland, Amsterdam, 1973.

[4J DE BAKKER, J.W. &. L.G.L.T. MEERTENS, On the completeness of the in-

ductive assertion method, to appear in J. of Comp. Syst. Sciences.

[5] HINDLEY, J.R., B. LERCHER & J.P. SELDIN, Introduction to Combinatory

Logic, Cambridge University Press, Cambridge, 1972.

[6] KLEENE, S.C., Introduction to Metamathematics, North-Holland, Amster-

dam, 1952.

[7J LANDIN, P.J., The mechanical evaluation of expressions, Comp. J, 6

(1964), p.308-320.

[8] MANNA, Z., S. hESS & J. VUILLEMIN, Inductive methods for proving

properties of programs, CACM, 16 (1973), p.491-502.

[9] MANNA, Z. & J~ V-UILLEMIN, Fixpoint approach to the theory of computa-

tion, CACM, 15 (1972), p.528-536.

[I0] McCARTHY, J., A basis for a mathematical theory of computation, in:

Computer Programming and Formal Systems (P. Braffort & D. Hirsch-

berg, eds.), p.33-70, North-Holland, Amsterdam, 1963.

61

[113 MILNER, R., Implementation and applications of Scott's logic for com-

putable functions, in: Proc. of an ACM Conference on Proving

Assertions about Programs, p.I-6, ACM, 1972.

[12] MORRIS, J.H., Lambda-calculus models of progran~ning languages, Ph.D

Thesis, M.I.T., 1968.

[13] MORRIS, J.H., Another recursion induction principle, CACM, 14 (1971),

p.351-354.

[14] NIVAT, M., On the interpretation of re~rsive program schemes,

Report A74/09, Saarland University, Saarbr~cken, 1974.

[15] PARK, D., Fixpoint induction and proof of program semantics, in:

Machine Intelligence, Vol. 5 (B. Meltzer & D. Michie, eds.)

p.59-78, Edinburgh University Press, 1970.

[I 6] DE ROEVER, W.P., Recursion and parameter-mechanisms: an axiomatic

approach, in: Automata, Languages and Programming (J. Loeckx,

ed.), p.34-65, Lecture Notes in Computer Science Vol. 14,

Springer-Verlag, Berlin etc., 1974.

[17] ROSEN, B.K., Tree-manipulating systems and Church-Rosser theorems,

J.ACM, 20 (1973), p.160-187.

[18] SCOTT, D., Outline of a mathematical theory of computation, in: Proc.

of the Fourth Annual Princeton Conference on Information Sciences

and Systems, p.169-176, Princeton, 1970.

[19] SCOTT, D. & J.W. DE BAKKER, A theory of programs, unpublished notes,

IBM Seminar, Vienna, 1969.

[20] SCOTT, D. & C. STRACHEY, Towards a mathematical semantics for computer

languages, in: Proc. of the Symposium on Computers and Automata

(J. Fox, ed.), p.19-46, Polytechnic Inst. of Brooklyn, 1971.

