
Efficient Compensation Handling via Subjective Updates

Jovana Dedeić
University of Novi Sad

Trg Dositeja Obradovića 6
21000

Novi Sad, Serbia
radenovicj@uns.ac.rs

Jovanka Pantović
University of Novi Sad

Trg Dositeja Obradovića 6
21000

Novi Sad, Serbia
pantovic@uns.ac.rs

Jorge A. Pérez
University of Groningen &

CWI, Amsterdam
Nijenborgh 9, 9747AG

The Netherlands
j.a.perez@rug.nl

ABSTRACT
Programming abstractions for compensation handling and dynamic
update are crucial in specifying reliable interacting systems, such
as Collective Adaptive Systems (CAS). Compensations and up-
dates both specify how a system reacts in response to exceptional
events. Prior work showed that different semantics for compensa-
tion handling can be encoded into a calculus of adaptable processes
with objective updates, in which a process is reconfigured by its
context. This paper goes further by considering subjective updates,
in which, intuitively, a process reconfigures itself. A calculus of
adaptable processes with subjective update its introduced, and its
expressivity is assessed by encoding two semantics for compensa-
tion handling. The resulting encodings are more efficient than those
using objective updates: they require less computational steps.

CCS Concepts
•Theory of computation → Semantics and reasoning; Process
calculi; •Software and its engineering → Error handling and
recovery;

Keywords
Concurrency, semantics of programming languages, process cal-
culi, compensation handling, dynamic update, expressiveness.

1. INTRODUCTION
The staggering number of connected digital artifacts has given

rise to ‘systems of systems’ that define the new socio-technical fab-
ric of society. These Collective Adaptive Systems (CAS) are com-
posed by massive number of units, each one having autonomous
objectives and actions. The interaction patterns between these units
hardly fit in known models and specification languages.

Our interest is in core programming models and linguistic con-
structs that define self-adaptation and evolution in settings such as
CAS. Rather than defining new constructs, we seek to understand to
what extent concepts from established paradigms (such as mobile
communication and service-orientation) relate to each other. We
see this as an essential prerequisite step towards the definition of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 2017, April 03 - 07, 2017, Marrakech, Morocco
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4486-9/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3019612.3019625

sensible, widely applicable programming abstractions. Concretely,
here we compare linguistic constructs for compensation handling
and dynamic update. Following a process calculi approach, we for-
mally relate them by studying their relative expressiveness.

Programming constructs that support failure handling at the heart
of mechanisms that detect failures and bring the system back to
a consistent state. In particular, compensation primitives instal-
l/activate alternative behaviors to compensate the fact that a (long-
running) transaction has failed or has been aborted. Widely stud-
ied in service-oriented settings, forms of compensation handling
also find an application in CAS (at least conceptually), especially
as self-autonomous devices begin to be used in traditional transac-
tional activities, such as distribution and delivery—consider, e.g.,
Amazon’s Prime Air and DHL’s Parcelcopter.

Several formal models with compensation primitives, endowed
with different semantics, have been put forward. To clarify the rel-
ative expressiveness of many of these proposals, Lanese et al. [9]
defined a core calculus of compensable processes: it extends the
π-calculus [12] with transactions t[P ,Q] (where P and Q rep-
resent default and compensation activities, respectively), protected
blocks 〈Q〉, and compensation updates that reconfigure a compen-
sation activity. Different proposals arise as instances of this calcu-
lus: compensations may admit dynamic or static recovery; nested
transactions and protected blocks can be kept after failures via pre-
serving, discarding, and aborting semantics. The language in [9]
thus leads to six instances of calculi with compensation primitives.

Related to compensations but on a different vein, Bravetti et al.
proposed a calculus of adaptable processes to specify the dynamic
update in communicating systems [2]. Adaptable processes specify
dynamic update as triggered by exceptional events, not necessarily
catastrophic. For instance, the update of specific units of a robot
swarm is usually hard to predict, and entails modifying the device’s
behavior; still, it is certainly not a failure. In adaptable processes, a
located process l[P] (where l is a location) can be reconfigured by
an update prefix lo{(X).Q}.R, an adaptation routine for l where
variable X occurs zero or more times in Q. In l[P], location l is
transparent: l[P] may behave as P . With these constructs, dy-
namic update is realized by the following reduction rule, in which
contexts C1 and C2 denote arbitrary nested locations:

C1

[
l[P]

]
| C2

[
lo{(X).Q}.R

]
−→ C1

[
Q{P/X}

]
|C2

[
R
]

(1)

We call this objective update: a located process is reconfigured by
an update process in its context. This is a form of process mobil-
ity (higher-order communication [13]): process lo{(X).Q} moves
from C2 to C1; the reconfigured behavior Q{P/X} is left in C1.

The purpose of this paper is to compare compensation handling
(as formalized in [9]) and dynamic update (as formalized in [2]).
Our prior work [7] encoded the six calculi in [9] into adaptable

51

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301667453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/3019612.3019625

processes with objective update as in Rule (1). These encodings,
however, are not as efficient as one may like: objective updates turn
out to be inconvenient when “collecting” protected blocks scattered
within nested transactions. Roughly, the problem is that objective
update leaves processes in the “wrong location”; as a result, the
encodings in [7] need additional adaptation steps to bring processes
into appropriate locations and achieve the intended semantics. This
difficulty reflects prominently in the number of reductions required
to mimic a compensation step. That is, the encodings in [7] are
inefficient because they are costly in terms of computational steps.
Even if the encodings in [7] add only a few reductions per each
compensation, the overall effect of such additional steps must be
analyzed in the context of systems with many (nested) transactions,
for which the cost of extra reduction steps may rapidly escalate.

More precisely, our prior work [7] does not address the following
question: to what extent the direction of movement in (1) is respon-
sible for the complexity and cost of the encodings? To clarify this
issue, in this paper we encode compensation primitives into adapt-
able processes with subjective update. This is a form of dynamic
update not studied in [7], which implements the opposite direction
of process movement implemented by objective update. Indeed,
in subjective update a located process moves to a (remote) context
containing an update process:

C1

[
l[P] | R1

]
| C2

[
ls〈〈(X).Q〉〉.R

]
−→ C1

[
R1

]
| C2

[
Q{P/X} | R

]
(2)

Above, ls〈〈(X).Q〉〉 is a subjective update prefix. As objective up-
date, subjective update relies on process mobility. However, the
direction of movement is different: above, process P moves from
C1 to C2; the updated behavior Q{P/X} is left in C2, not in C1.
Since the located process “updates itself”, subjective updates offer
a more autonomous adaptation semantics than objective updates.1

In this paper, we carefully revisit the encodings of compensation
handling in [7] using subjective update (as in Rule (2)) rather than
objective update (as in Rule (1)). The main contribution of the
paper are therefore new, efficient encodings of the calculi in [9].
Using results of operational correspondence, we prove that these
encodings with subjective update are correct and are more efficient
than those with objective update proposed in [7].

The paper is organized as follows. § 2 illustrates primitives for
compensation handling; § 3 formally presents the calculi of com-
pensable processes and of adaptable processes. § 4 defines the no-
tion of encoding. In § 5 we define and prove correct encodings
of processes with (static) compensations into adaptable processes,
considering discarding and aborting semantics. § 6 compares en-
codings into calculi with objective and subjective updates. § 7 col-
lects concluding remarks and directions for future work.

2. COMPENSABLE PROCESSES
The process language with compensations we consider here is

based on the calculus in [10] (a variant of the language in [9]).
The languages in [9, 10] are extensions of the π-calculus [12] with
primitives for static and dynamic recovery. As in [7], we consider
variants of the languages in [9,10] without name mobility and with
static recovery. There are two salient constructs:

1. Transactions t[P ,Q], where t is a name and P,Q are processes;

1The terminology ‘subjective’ and ‘objective’ updates is inspired
by the distinction between subjective and objective mobility, as in
calculi such as Ambients [3] and Seal [4]. As explained in [4],
Ambients use subjective mobility (an agent moves itself), while
Seal uses objective mobility (an agent is moved by its context).

2. Protected blocks 〈Q〉, for some process Q.

Basic Intuitions. A transaction t[P ,Q] consists of a default activ-
ity P with a compensation activity Q. Transactions can be nested:
process P in t[P ,Q] may contain other transactions. Also, they
can be aborted: intuitively, process t[P ,Q] behaves as P until an
error notification (abortion signal) arrives along name t. Error noti-
fications are output messages which can originate inside or outside
the transaction. As an example, consider the following transitions:

t[P ,Q] | t.R τ−→ Q | R t[t.R | P2 ,Q]
τ−→ Q (3)

The left transition shows how t can be aborted by an external signal;
the right transition illustrates internal abortion. Abortion discards
the default behavior; the compensation activity is executed instead.

As their name suggests, protected blocks protect a process from
abortion signals. Protected blocks are transparent: Q and 〈Q〉 have
the same behavior, but 〈Q〉 is not affected by abortion signals. Pro-
tected blocks are meant to prevent abortions after a compensation:

t2[P2 ,Q2] | t2 τ−→ 〈Q2〉

Consider now process P = t1
[
t2[P2 ,Q2] | t2.R1 ,Q1

]
, which

includes a transaction t2 which is nested inside t1. Although in
(3) the default behavior was erased following an abortion signal,
the semantics of compensations may partially preserve such behav-
ior. This preservation is realized by extraction functions, denoted
extr(·). For process P , the semantics in [9, 10] decree:

t1
[
t2[P2 ,Q2] | t2.R1 ,Q1

] τ−−→ t1
[
〈Q2〉 | extr(P2) | R1 ,Q1

]
In case transaction t2 is aborted, its compensation behavior Q2

will be preserved. Moreover, part of the behavior of P2 will be
preserved as well: this is expressed by process extr(P2), which
consists of at least all protected blocks in P2; it may also contain
some other processes, related to transactions (see next). Here we
consider discarding and aborting variants for extr(·):

• extrD(P) keeps protected blocks at the top-level in P . Other
processes are discarded.
• extrA(P) keeps all protected blocks in P, including protected

blocks from all nested transactions in P and their respective
compensation activities. Other processes are discarded.

Discarding and aborting semantics thus define different levels of
protection for protected blocks. This way, e.g., given process P =
t
[
t1[P1 ,Q1] | t2[〈P2〉 ,Q2] | 〈P3〉 ,Q5

]
, where P1 does not con-

tain protected blocks, we would have:

Discarding : t | P τ−→D 〈P3〉 | 〈Q5〉
Aborting : t | P τ−→A 〈P3〉 | 〈Q5〉 | 〈P2〉 | 〈Q1〉 | 〈Q2〉

Thus, discarding semantics preserves only the compensation ac-
tivity for t and the protected block 〈P3〉. Aborting semantics pre-
serves all protected blocks and compensation activities in the de-
fault activity for t, including those in nested transactions.

Consider now a Hotel booking scenario, represented as com-
pensable processes (in the following we omit trailing 0s):

R
def
= Hotel | Client

Hotel
def
= t[book.pay.invoice | t1[〈DB〉 ,0] , refund]

Client
def
= book.pay.(t.refund+ invoice)

The hotel is modeled as a transaction t that allows clients to book
a room and pay for it; t contains a database represented by process
DB, kept within a protected block inside nested transaction t1. If
the client is satisfied with the reservation, then the hotel will send

52

him an invoice. Otherwise, the client may abort the transaction; in
that case, hotel offers the client a refund.

Suppose that the client decides to abort his reservation; the tran-
sitions for R under discarding and aborting semantics are:

R
τ−→
∗
D 〈refund〉 | refund τ−→D 〈0〉 ≡ 0

R
τ−→
∗
A 〈DB〉 | 〈refund〉 | refund τ−→A 〈DB〉.

Here again it is easy to see how, in case of compensation, an abort-
ing semantics preserves protected blocks in nested transactions.

3. THE CALCULI
We introduce adaptable processes (§ 3.1) and compensable pro-

cesses (§ 3.2). To focus on their essentials, both calculi are defined
as extensions of CCS [11] (no name passing). In both cases, we as-
sume a countable set of names N, ranged over by a, b, l, t, We
use names l, l′, . . . to denote locations (in adaptable processes) and
names t, t′, . . . to denote transactions (in compensable processes).

3.1 Adaptable Processes
The syntax of the calculus of adaptable processes is defined by

prefixes π, π′, . . ., defined as π ::= a | a | ls〈〈(X).Q〉〉 and
processes P,Q, . . . defined as

P ::= l[P] | 0 | π.P | !P | P | Q | (νa)P | X
We consider input and output prefixes (noted a and a) and the sub-
jective update prefix ls〈〈(X).Q〉〉, where Q may contain zero or
more occurrences of process variable X . For simplicity, we will
write l〈〈(X).Q〉〉 instead of ls〈〈(X).Q〉〉. The syntax of processes
includes located processes (noted l[P] and already motivated) as
well as usual CCS constructs for inaction, prefix (sequentiality),
replication, parallel composition, and restriction. We omit 0 when-
ever possible; we write, e.g., l〈〈(X).P 〉〉 instead of l〈〈(X).P 〉〉.0.

Name a is bound in (νa)P and process variable X is bound in
l〈〈(X).Q〉〉; given a processP , its sets of free and bound names/var-
iables (denoted fn(P), bn(P), fv(P), and bv(P)) are as expected.
We rely on usual notions of α-conversion (noted ≡α) and process
substitution: P{Q/X} denotes the process obtained by (capture
avoiding) substitution of Q for X in P .

The semantics of adaptable processes is given by a reduction
semantics, which relies on structural congruence, denoted ≡, and
contexts, denotedC,D,E. We define≡ as the smallest congruence
on processes that includes ≡α and satisfies the following axioms:

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P | 0 ≡ P
(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P !P ≡ P | !P

(νa)P | Q ≡ (νa)(P | Q) if a /∈ fn(Q)
(νa)l[P] ≡ l[(νa)P]

Contexts are processes with a hole [•]. Their syntax is defined as:

C ::= [•] | C | P | l[C].
We writeC[P] to denote the process obtained by replacing the hole
[•] in context C with P .

Reduction→ is the smallest relation on processes induced by the
rules in Figure 1, which we now briefly discuss. Rule (R-I/O) for-
malizes synchronization between processes a.P and a.Q, enclosed
in contexts C and D, respectively. Rule (R-SUBUPD) formalizes
the subjective update of a location l, as motivated in the Introduc-
tion. Rules (R-PAR), (R-LOC), (R-RES), and (R-STR) are stan-
dard and/or self-explanatory. We write→∗ to denote the reflexive,
transitive closure of→.

(R-I/O)

E
[
C
[
a.P

]
| D
[
a.Q

]]
→ E

[
C
[
P
]
| D
[
Q
]]

(R-SUBUPD)

E
[
C
[
l[P]

]
| D
[
ls〈〈(X).Q〉〉.R

]]
→

E
[
C
[
0
]
| D
[
Q{P/X} | R

]]
(R-PAR)

P → P ′

P | Q→ P ′ | Q

(R-STR)
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

(R-RES)
P → P ′

(νa)P → (νa)P ′
(R-LOC)

P → P ′

l[P]→ l[P ′]

Figure 1: Reduction semantics for adaptable processes.

3.2 Compensable Processes
Building upon input and output prefixes π ::= a | a, the cal-

culus of compensable processes is defined by the following syntax:

P,Q ::= 0 | π.P | !P | (νa)P | P | Q | t[P ,Q] | 〈Q〉
Processes for inaction (0), sequentiality (π.P), replication (!P),
restriction ((νa)P), and parallel composition (P | Q) are standard.
We omit 0 whenever possible. Protected blocks 〈Q〉 and transac-
tions t[P ,Q] have been already motivated. Error notifications are
output messages; they can be internal or external to the transac-
tion. Name a is bound in (νa)P ; α-conversion (noted ≡α) is as
expected. We assume that protected blocks and transactions do not
appear behind prefixes; this is key to ensure encoding correctness.

Following [9, 10], the semantics of compensable processes is
given in terms of a Labeled Transition System (LTS). Ranged over
by α, α′, the set of labels includes a, a and τ. As in CCS, a de-
notes an input action, a denotes an output action, and τ denotes
synchronization (internal action). Formally, we have two different
LTSs, corresponding to processes under discarding and aborting se-
mantics. For each κ ∈ {D, A}, we will have an extraction function
extrκ(·) and a transition relation α−−→κ. The different extraction
functions are defined in Fig. 2; the rules of the LTSs are given in
Fig. 3. As a convention, whenever a notion coincides for the two
semantics, we avoid decorations D and A.

We comment on the rules in Fig. 3:

- Axioms (L-OUT) and (L-IN) execute output and input prefixes,
respectively.

- Rule (L-PAR) allows one parallel component to progress inde-
pendently.

- Rule (L-RES) is the standard rule for restriction. A transition of
process P determines a transition of process (νa)P , where label
α provided that the restricted name a does not occur inside α.

- Rule (L-COMM) defines communication on a.
- Rule (L-SCOPE-OUT) allows the default activity P of a transac-

tion to progress.
- Rule (L-RECOVER-OUT) allows an external process to abort a

transaction via an output action t. The resulting process contains
two parts: the first is obtained from the default activity P of the
transaction using the extraction function; the second part corre-
sponds to compensation Q, executed in a protected block.

- Rule (L-RECOVER-IN) handles abortion when the error notifica-
tion comes from the default activity P of the transaction.

53

extr(π.P) = extr(!P) = extr(0) = 0

extr(〈P 〉) = 〈P 〉
extr(P | Q) = extr(P) | extr(Q)

extrD(t[P ,Q]) = 0

extrA(t[P ,Q]) = extrA(P) | 〈Q〉
extr((νa)P) = (νa)extr(P)

Figure 2: Extraction functions for compensable processes.

(L-OUT)

a.P
a−→ P

(L-IN)
a.P

a−→ P

(L-PAR)
P

α−→ P ′

P | Q α−→ P ′ | Q

(L-RES)
P

α−→ P ′ α 6= a, a

(νa)P
α−→ (νa)P ′

(L-COMM)

P
a−→ P ′ Q

a−→ Q′

P | Q τ−→ P ′ | Q′

(L-BLOCK)
P

α−→ P ′

〈P 〉 α−→ 〈P ′〉

(L-RECOVER-OUT)

t[P ,Q]
t−→ extrκ(P) | 〈Q〉

(L-SCOPE-OUT)
P

α−→ P ′

t[P ,Q]
α−→ t[P ′ ,Q]

(L-RECOVER-IN)

P
t−→ P ′

t[P ,Q]
τ−→ extrκ(P ′) | 〈Q〉

(L-REP)
P

α−→ P ′

!P
α−→ P ′ | !P

Figure 3: LTS for compensable processes. We omit symmetric
variants of (L-PAR) and (L-COMM).

- Rule (L-REP) deals with replication, while Rule (L-BLOCK) es-
sentially specifies that protected blocks are transparent units.

- The semantics of protected blocks is defined via the extraction
functions extr(·) (see Fig. 2).

It is convenient to define structural congruence (≡) and contexts
also for compensable processes. We define ≡ as the smallest con-
gruence on processes that includes ≡α and satisfies the axioms:

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P | 0 ≡ P
(νa)(νb)P ≡ (νb)(νa)P (νa)0 ≡ 0 (νa)a ≡ 0
〈〈P 〉〉 ≡ 〈P 〉 〈(νa)P 〉 ≡ (νa)〈P 〉 〈0〉 ≡ 0
t[(νa)P ,Q] ≡ (νa)t[P ,Q] if t 6= a, a /∈ fn(Q)
(νa)P | Q ≡ (νa)(P | Q) if a /∈ fn(Q)

An n-adic context C[•1, . . . , •n] is obtained from a process by re-
placing n occurrences of 0, that are neither compensations nor in
continuation of prefixes, with indexed holes [•1], . . . , [•n]. This
way, for instance, the syntax of (monadic) contexts is defined as:

C ::= [•] | 〈C〉 | t[C ,Q] | P | C | C | P | (νa)C.

We writeC[P] to denote the process obtained by replacing the hole
[•] in context C with P . The following proposition is key to our
operational correspondence statements.

PROPOSITION 3.1. Let P be a compensable process. If P τ−→
P ′ then one of the following holds:

(a) P ≡ E[C[a.P1] | D[a.P2]] and P ′ ≡ E[C[P1] | D[P2]],

(b) P ≡ E[C[t[P1 ,Q]] | D[t.P2]] and
P ′ ≡ E[C[extrκ(P1) | 〈Q〉] | D[P2]], or

(c) P ≡ C[t[D[t.P1] ,Q]] and P ′ ≡ C[extrκ(D[P1]) | 〈Q〉].

for some contexts C,D, E, processes P1, P2, Q, and names a, t.

4. THE NOTION OF ENCODING
We relate compensable and adaptable processes through encod-

ings. A (valid) encoding is a translation of processes of a source
language into the processes of a target language that satisfies cer-
tain correctness criteria, which attest to the encoding’s quality. The
existence of a valid encoding shows that the target language is at
least as expressive as the source language. Conversely, proving the
non existence of such an encoding shows that the source language
can express some behavior not expressible in the target language.
By combining these positive and negative encodability results, dif-
ferences in expressivity between languages can be established.

To define valid encodings, we rely on the abstract formulation
of [8], focusing on compositionality and operational correspon-
dence criteria. Following [8], a calculus is a triple (P,→,≈),
where P is a set of processes,→ is its operational semantics, and
≈ is a behavioral equivalence. A valid encoding of the source cal-
culus (P1,→1,≈1) into the target calculus (P2,→2,≈2) is then a
mapping J·K : P1 → P2 that satisfies some specific criteria.

In the following, given an operational semantics→ and k ≥ 1,
we will write→k to denote k reduction steps. Also, we write→∗
to denote the reflexive, transitive closure of→.

DEFINITION 4.1. A translation (mapping) J·K : P1 → P2 is a
valid encoding if it satisfies the following criteria:

1. Compositionality: J·K is compositional if for every n-ary oper-
ator op on P1 there is an n-adic context Cop in P2 such that
Jop(P1, . . . , Pn)K = Cop (JP1K, . . . , JPnK) .

2. Operational correspondence, divided into two requirements:

a) Completeness: If P →1 Q then there are P ′ and k such that
JP K→k

2 P
′ = JQK.

b) Soundness: If JP K →∗2 R then there is P ′ such that P →∗1
P ′ and R→∗2 JP ′K.

In this paper, the source languages will be compensable processes
with discarding and aborting semantics; the target language will
be adaptable processes with subjective update. The operational se-
mantics for compensable processes will be τ -labeled transitions;
for adaptable processes we consider their reduction semantics. Also,
we write τ−→

∗
to denote the reflexive, transitive closure of τ−→ .

5. COMPENSABLE PROCESSES INTO A-
DAPTABLE PROCESSES

We define translations of compensable processes into adapta ble
processes, and show that they are valid encodings. We focus on
compensable processes with discarding and aborting semantics, us-
ing static recovery. Given the encodings presented here, extensions
to preserving semantics and dynamic recovery are simple.

Conventions. We shall writeA to denote adaptable processes with
subjective update, as in § 3.1. Also, we shall write CD and CA to de-
note compensable processes with discarding and aborting seman-
tics, respectively, as defined in § 3.2. For convenience, we shall
adopt the following abbreviations for adaptable processes; below,
C1, C2 are contexts, P,Q,R are processes and t is location.

• ts〈〈†〉〉 stands for the update prefix ts〈〈(Y).0〉〉which "kills" both
location t and the process located at t. For instance:

C1

[
t[P1] | Q

]
| C2

[
ts〈〈†〉〉.R

]
→ C1

[
0 | Q

]
| C1

[
R
]

• We write ts〈〈(Y1, Y2, . . . , Yn).R〉〉 to abbreviate the nested up-
dates ts〈〈(Y1).ts〈〈(Y2). · · · .ts〈〈(Yn).R〉〉 · · · 〉〉〉〉. For instance,

54

s
t

a
pt,s

b
pt,s

couts(pt,s, 2, ts〈〈†〉〉) | ps[d] →3

s

a
ps

b

ps
d

ps

Figure 4: Example of outs(pρ0 , n,Q).

let S = C1

[
t[P] | t[Q]

]
| C2

[
ts〈〈(Y1).ts〈〈(Y2).R〉〉〉〉

]
. Then

S → C1

[
0 | t2[Q]

]
| C2

[
ts〈〈(Y2).R{P/Y1}〉〉

]
→ C1

[
0 | 0

]
| C2

[
R{P/Y1}{Q/Y2}

]
• We write

nd

i=1

l[Xi] to denote the process l[X1] | . . . | l[Xn].

Well-formed Processes. To give a sharp formulation of opera-
tional correspondence (in particular, soundness) for our encodings,
we shall focus on a class of well-formed compensable processes,
which excludes processes with dangerous combinations of nested
transactions and concurrent abortion signals. A concise example of
a process that is not well-formed is the following:

P = t1
[
P1 | t2[P2 ,Q2] ,Q1

]
| t1 | t2.

Processes such as P feature a complex form of non determinism
that it is hard to capture properly in the (lower level) representa-
tion that we shall give in terms of adaptable processes. Indeed, P
represents an interference between the abortion of t1 and t2; it is
hard to imagine patterns where this kind of interfering concurrency
may come in handy. In contrast, the following variants of P are
well-formed and are faithfully translated by our encodings:

t1
[
P1 | t2[P2 ,Q2] ,Q1

]
| t1.t2

t1[P1 ,Q1] | t2[P2 ,Q2] | t1 | t2.

5.1 Discarding Semantics
The distinguishing constructs in the calculus of compensable

processes are transactions and protected blocks; they represent the
most interesting process terms to be handled by our encodings.

To encode protected blocks we use a reserved name p and asso-
ciate it with a path ρ: a sequence of (nested) location names rep-
resenting the place of the protected block in the tree representation
of a process. We write ε to denote the empty path. In all the non
empty paths ρ we will omit ε at the end. In this way, the encoding
of a protected block found at path ρ, is defined as

J〈P 〉KDρ = pρ
[
JP KDε

]
.

To encode the extraction function, essential in the semantics of
compensable processes (cf. Figure 2), we use an auxiliary process,
denoted outs(pt,ρ, n,Q), that moves n processes from locations
pt,ρ to locations pρ, and puts Q in parallel. Given n > 0, this
process can be efficiently defined using subjective update prefixes:

out
s(pt,ρ, n,Q) = pst,ρ〈〈(X1, . . . , Xn).

(nl

i=1

pρ[Xi] | Q
)
〉〉 (4)

We define out(pt,ρ, n,Q) = Q if n = 0. This way, e.g., we have

s
[
t
[
pt,s[a] | pt,s[b]

]
| outs(pt,s, 2, ts〈〈†〉〉) | ps[d]

]
→3 s

[
ps[a] | ps[b] | ps[d]

]
as illustrated in Figure 4 (with omitted trailing occurrences of 0).

5.1.1 The Translation
Before presenting the translation J·KDρ : CD → A, we present

two auxiliary definitions. First, we use the following function for
determining the number of locations in a process:

nl(l1, l2[P]) = nl(l1, P) + 1 if l1 = l2

nl(l1, l2[P]) = nl(l1, P) if l1 6= l2

nl(l, (νa)P) = nl(l, P)

nl(l, P | Q) = nl(l, P) + nl(l, Q)

nl(l,0) = nl(l, !P) = nl(l, π.P) = 0

Second, let t and l be names; we use process extrD(t, l), defined
as

ts〈〈(Y).t[Y] | outs(l, nl(l, Y), ts〈〈†〉〉.ht)〉〉. (5)

We then have the following definition:

DEFINITION 5.1. Let ρ be a path. Also, let ht and pρ be fresh
names. We define the translation J·KDρ : CD → A as

Jt[P ,Q]KDρ = t
[
JP KDt,ρ

]
| t.
(
extrD(t, pt,ρ) | pρ[JQKDε]

)
J〈P 〉KDρ = pρ

[
JP KDε

]
Jt.P KDρ = t.ht.JP KDρ

J t.P KDρ = t.ht.JP KDρ

and as a homomorphism for other operators.

A key aspect in our encodings concerns the extraction function.
For compensable processes, the extraction function is an external
semantic device used to formalize the protection of transaction-
s/protected blocks; in fact, it is not formally modeled by process
terms. In contrast, our encodings explicitly specify the essence of
extraction functions by means of (subjective) update prefixes.

Path t, ρ states that t is nested in the transactions listed in ρ. In
case of an abortion signal t̄, process extr(t, pt,ρ) will extract all
processes located at pt,ρ (which are encodings of protected blocks).
Since the structure of a transaction and the number of its top-level
processes dynamically changes, whenever we need to extract pro-
cesses located at pt,ρ, we will first substitute Y , in process out,
with the content of the location t and count the current number of
locations pt,ρ. For example, let ĩ stands for i.hi, with i ∈ {a, b, d},
we have:

s
[
t[pt,s[ã] | pt,s[b̃]] | extrD(t, pt,s)

]
→ s

[
t[pt,s[ã] | pt,s[b̃]]

| outs(pt,s, nl(pt,s, pt,s[ã] | pt,s[b̃]), ts〈〈†〉〉.ht) | ps[d̃]
]

→ s
[
t[pt,s[ã] | pt,s[b̃]] | outs(pt,s, 2, ts〈〈†〉〉.ht) | ps[d̃]

]
.

Consider the encoding of t[P ,Q]: if the abortion signal t̄ is ac-
tivated, after synchronizations on t, it will extract all processes at
locations pt,ρ and move them to their parent location pρ, together
with the encoding of the compensation activityQ. We need to leave
only “garbage” at location t and to erase it together with the loca-
tion. To this end, we use prefix ts〈〈†〉〉. Name ht is introduced
to control execution of abortion signals; it is particularly useful to
represent for errors that occur sequentially.

5.1.2 Translation Correctness
The translation J·KDρ is a valid encoding. The first property, com-

positionality, follows directly from its definition:

THEOREM 5.2 (COMPOSITIONALITY). The translation J·KDρ
is compositional, in the sense of Def. 4.1(1).

55

pb(〈P 〉) = 1

pbA(t[P ,Q]) = 1 + pbA(P)

pb(P | Q) = pb(P) + pb(Q)

pb((νa)P) = pb(P)

pb(!P) = pbD(t[P ,Q]) = 0

pb(0) = pb(π.P) = 0

Figure 5: Number of protected blocks.

We are interested in giving a precise account of the number of
computation steps used by our encodings. This is to support our
claim that subjective updates are more efficient than objective up-
dates. To this end, we introduce some auxiliary notions. Given
a process P , we will write pbD(P) to denote the number of pro-
tected blocks in P ; see Figure 5. There is a correspondence be-
tween (i) the number of protected blocks in the default activity of
the source transaction and (ii) to the number of locations in the
encoding of such a transaction. Also, in order to distinguish usual
input/output synchronizations from compensation steps, we write
P

τa−→ P ′ if P τ−→ P ′ corresponds to a standard synchronization,
for some name a (cf. Proposition 3.1(a)).

We then have the following result:

THEOREM 5.3 (OPERATIONAL CORRESPONDENCE). Let P
be a well-formed process in CD. We have:

1. If P τa−→D P
′ then JP KDε →2 JP ′KDε, for some a.

2. If P τ−→D P
′ then JP KDε →k JP ′KDε where either

a) P ≡ E[C[t[P1 ,Q]] | D[t.P2]] and k = 4 + pbD(P1) or

b) P ≡ C[t[D[t.P1] ,Q]] and k = 4 + pbD(D[P1]),

for some contexts C,D,E, processes P1, Q, P2, and name t.
3. If JP KDε →∗ R then there is P ′ such that P τ−→

∗
D P
′

and R→∗ JP ′KDε.

Cases (1) and (2) concern completeness, while Case (3) describes
soundness. Case (1) concerns standard synchronizations which are
translated by J·KDρ with an additional synchronization (on name ht).
Case (2) concerns synchronizations due to compensation signals;
here the analysis distinguishes two cases, depending on whether
the abortion signal is external or internal to the transaction. In both
cases, the number of reduction steps required to mimic the source
transition depends on the number of protected blocks of the trans-
action being aborted. However, internal abortion signals can be
more efficiently mimicked than external abortion signals.

EXAMPLE 5.4. LetP = s
[
t[〈a〉 | 〈b〉 | c , d] ,0

]
| t.s be a com-

pensable process. By the LTS of Fig. 3, we have

P
τ−→D s[〈a〉 | 〈b〉 | 〈d〉 ,0] | s̄ τ−→D 〈a〉 | 〈b〉 | 〈d〉.

Expanding Def. 5.1 and using ĩ to stand for i.hi (i ∈ {a, b, c, d}),
we have:

s
[
t
[
pt,s
[
ã
]
| pt,s

[
b̃
]
| c̃
]
| t.
(
extrD(t, pt,s) | ps

[
d̃
])]

|
s.extrD(s, ps) | t.ht.s.hs

→6 s
[
ps[ã] | ps

[
b̃
]
| ps
[
d̃
]]

| s.extrD(s, ps) | s.hs
→7 pε[ã] | pε

[
b̃
]
| pε
[
d̃
]

= J〈a〉KDε | J〈b〉KDε | J〈d〉KDε.

EXAMPLE 5.5. We apply the encoding on the example of § 2,

assuming that the client cancels after booking and paying:

JRKDε = t
[
book.hb.pay.hp.invoice.hi | t1

[
pt1,t[JDBKDε]

]
| t1.

(
extrD(t1, pt1,t)

)]
| t.(extrD(t, pt)

| pt[refund.hr])
| book.hb.pay.hp.t.ht.refund.hr

→5 t
[
invoice.hi | t1[pt1,t[JDBKDε]]

| t1.
(
extrD(t1, pt1,t)

)]
| ts〈〈(Y).t[Y] | outs(pt, nl(pt, Y), ts〈〈†〉〉.ht)〉〉
| pt[refund.hr] | ht.refund.hr

→ t
[
invoice.hi | t1[pt1,t[JDBKDε]]

| t1.
(
extrD(t1, pt1,t)

)]
| outs(pt, 0, ts〈〈†〉〉.ht)

| pt[refund.hr] | ht.refund.hr →4 pt[0] = J0KDε.

Therefore we get JRKDε →10 pt[J0KDε].

5.2 Aborting Semantics
We now discuss the encoding of CA into A. Aborting seman-

tics keeps not only top-level protected blocks of a transaction, but
also protected blocks from nested transactions (cf. Fig. 2). For this
reason, given a located process, we define its activation process:
this a process that captures the hierarchical structure of the nested
locations of the process, which arise as a result of encoding trans-
action with its corresponding nested transactions. Names of nested
locations that make up the activation process originate exclusively
from its corresponding transaction name and the names of its nested
transactions (i.e. the names of the locations that are of form pρ are
not included in the formation of the activation process)

DEFINITION 5.6 (ACTIVATION PROCESS). Let l[P] be a lo-
cated process. We denote by St(P) the labeled tree (with root l)
in which nodes are labeled with names of located processes and
sub-trees capture nested locations. The activation process for P ,
denoted Tl(P), is the process obtained by a post-order search in
St(P) in which the visit to a node labeled ci adds prefixes lci .kci .

This way, e.g., given l[P] where

P = a[c[pρ[P1]] | P2] | b[P3 | d[P4] | e[P5]]

and P1, . . . , P5 do not contain located processes, we will have the
activation process Tl(P) = lc.kc.la.ka.ld.kd.le.ke.lb.kb.ll.kl.

Since an abortion signal extracts all nested protected blocks, and
erases nested locations, our encoding will do the same with corre-
sponding located processes and nested locations.

5.2.1 The Translation
Before introducing the translation J·KAρ : CA → A, we give some

addtional explanations. In this encoding we use the function for
determining the number of locations in a process (nl) as in § 5.1.1.
For this translation, process extrA(t, l) is defined as:

ts〈〈(Y).t[Y] | outs(l, nl(l, Y), ts〈〈†〉〉.kt)〉〉. (6)

for some fresh name kt. Thus, the difference between process
extrA(t, l) (given above) and process extrD(t, l) (given in (5)) is
the third parameter, which enables us to have a controlled execution
of adaptable processes, and a tight operational correspondence. We
may now define:

56

tsA(t[P ,Q]) = 1 + tsA(P)

ts((νa)P) = ts(P)

ts(P | Q) = ts(P) + ts(Q)

ts(!P) = ts(0) = ts(π.P) = ts(〈P 〉) = 0

Figure 6: Number of transactions.

DEFINITION 5.7. Let ρ be a path. Also, let ht, lt, and pρ be
fresh names. We define the translation J·KAρ : CA → A as

Jt[P ,Q]KAρ = t
[
JP KAt,ρ

]
| lt.

(
extrA(t, pt,ρ) | pρ[JQKAε]

)
| t.ts〈〈(Y).t[Y] | Tt(Y).ht〉〉

J〈P 〉KAρ = pρ
[
JP KAε

]
Jt.P KAρ = t.ht.JP KAρ

J t.P KAρ = t.ht.JP KAρ

and as a homomorphism for the other operators.

As in the translation of CD, the structure of a transaction and the
number of its top-level processes dynamically changes if there is
an abortion signal; we need need first to substitute Y in activation
process Tt(Y) with the content of the location t. Also, whenever
we need to extract processes located at pt,ρ we will substitute Y in
process out (cf. (4)) by the content of the location t and count the
current number of locations pt,ρ, using function nl.

5.2.2 Translation Correctness for CA
Compositionality for J·KAρ follows directly from its definition:

THEOREM 5.8 (COMPOSITIONALITY). The translation J·KAρ
is compositional, in the sense of Def. 4.1(1).

The analysis of operational correspondence follows the same
ideas as in the translation for discarding semantics. To precisely de-
scribe the number of required reduction steps, we introduce some
auxiliary notions. Given a process P , the number of transaction
scopes in a process P , denoted tsA(P) is as in Figure 6; the num-
ber of protected blocks pbA(P) is as in Figure 5. Also, function
d(P) gives the set of default activities of nested transactions in P :

d(t[P ,Q]) = {P} ∪ d(P) d(P | Q) = d(P) ∪ d(Q)
d(0) = d(π.P) = d(!P) = d(〈P 〉) = ∅ d((νa)P) = d(P)

and we define process S(P) as follows:

S(P) =

pbA(P) if d(P) = ∅

pbA(P) +
n∑
i=1

pbA(Pi) if d(P) = {P1, . . . , Pn}.

We then have the following result:

THEOREM 5.9 (OPERATIONAL CORRESPONDENCE). Let P
be a well-formed process in CA. We have:

1. If P τa−→A P
′ then JP KAε →2 JP ′KAε for some a.

2. If P τ−→A P
′ then JP KAε →k JP ′KAε where either

(a) P ≡ E[C[t[P1 ,Q]] | D[t.P2]] and
k = 7 + 4 tsA(P1) + S(P1)

(b) P ≡ C[t[D[t.P1] ,Q]] and
k = 7 + 4 tsA(D[P1]) + S(D[P1])

for some contexts C,D,E, processes P1, Q, P2, name t.
3. If JP KAε →∗ R then there is P ′ such that P τ−→

∗
A P
′

and R→∗ JP ′KAε.

We close this section by discussing a couple of examples:

EXAMPLE 5.10. We apply the encoding to process P in Exam-
ple 5.4. By the LTS of Fig.3, we have:

P
τ−→A s[〈a〉 | 〈b〉 | 〈d〉 , 0] | s̄ τ−→A 〈a〉 | 〈b〉 | 〈d〉.

By expanding Def. 5.7, process JP KAs is as follows. We write ĩ to
abbreviate i.hi, with i ∈ {a, b, c, d}.
s
[
t
[
pt,s
[
ã
]
| pt,s

[
b̃
]
| c̃
]
| lt.
(
extrA(t, pt,s) | ps

[
d̃
]

| t.ts〈〈(Y).t[Y] | Tt(Y).ht〉〉
)]

| ls.
(
extrA(s, ps)

)
| s.ss〈〈(Y).s[Y] | Ts(Y).hs〉〉 | t.ht.s.hs
→2 s

[
t
[
pt,s
[
ã
]
| pt,s

[
b̃
]
| c̃
]
| lt.
(
extrA(t, pt,s) | ps

[
d̃
])]

| lt.kt.ht | ls.
(
extrA(s, ps)

)
| s.ss〈〈(Y).s[Y] | Ts(Y).hs〉〉 | ht.s.hs

→7 s
[
ps
[
ã
]
| ps
[
b̃
]
| ps
[
d̃
]]

| ls.
(
extrA(s, ps)

)
| s.ss〈〈(Y).s[Y] | Ts(Y).hs〉〉 | s.hs

→10 pε
[
ã
]
| pε
[
b̃
]
| pε
[
d̃
]

= J〈a〉KAε | J〈b〉KAε | J〈d〉KAε.

EXAMPLE 5.11. We apply the encoding on the Hotel booking
scenario (§ 2) where the client cancels a reservation after booking
and paying. Below Γt1 stands for t1.ts1〈〈(Y).t1[Y] | Tt1(Y).ht1〉〉:

JRKAε = t
[
book.hb.pay.hp.invoice.hi

| t1[pt1,t[JDBKAε]] | lt1 .(extrA(t1, pt1,t)) | Γt1
]

| lt.
(
extrA(t, pt) | pt[refund.hr]

)
| t.ts〈〈(Y).t[Y] | Tt(Y).ht〉〉
| book.hb.pay.hp.t.ht.refund.hr

→6 t
[
invoice.hi | t1[pt1,t[JDBKAε]] | lt1 .(t

s
1〈〈(Y).

| t1[Y] | outs(pt1,t, nl(pt1,t, Y), ts1〈〈†〉〉.kt1)〉〉)
| Γt1

]
| lt.(ts〈〈(Y).t[Y]

| outs(pt, nl(pt, Y), ts〈〈†〉〉.kt)〉〉 | pt[refund.hr])
| lt1 .kt1 .lt.kt.ht | ht.refund.hr

→8 t
[
invoice.hi | Γt1 | pt[JDBKAε]

]
| outs(pt, 1, ts〈〈†〉〉.kt) | pt[refund.hr]
| kt.ht | ht.refund.hr

→6 pt[JDBKAε] = J〈DB〉KAε.

When the client cancels the reservation, it first synchronizes on
name t. The mechanism for compensation is enclosed in location
pt
[
refund.ht

]
; it allows the client to claim a refund. The release

of this mechanism from transaction t will be activated via a syn-
chronization on name lt. But first the encoding of the protected
block 〈DB〉 from transaction t1 has to be moved out of t. Sub-
sequently, synchronization on names l1 and lt1 takes place. Ulti-
mately, we get JRKAε →20 pt[JDBKAε].

The encoding of R under a discarding semantics requires less
steps: JRKDε →10 pt[J0KDε]. This is expected, given the different
levels of protection that these two semantics offer.

6. SUBJECTIVE VS OBJECTIVE UPDATES
We substantiate our claim on the efficiency that a language with

subjective update prefixes offers with respect to objective update
prefixes, denoted lo{(X).P}. We consider efficiency in terms of
reduction steps, so we recall the reduction rule considered in [7]:

E
[
C
[
l[P]

]
| D
[
lo{(X).Q}.R

]]
→ E

[
C
[
Q{P/X}

]
| D
[
R
]]

57

It turns out that the main (and only) difference between our encod-
ings and the encodings in [7] is in the process outs(pt,ρ, n,Q),
which is part of extr(t, pt,ρ) — see (4) and (5). Indeed, process
outs(pt,ρ, n,Q) extracts n processes located at pt,ρ.

The analog of outs(pt,ρ, n,Q) in [7] with objective update is as
follows. If n = 0 then outo(pt,ρ, 0, Q) = Q; otherwise we have

out
o(pt,ρ, n,Q) = pot,ρ

{
(X1, . . . , Xn).

zo
{ nl

i=1

pρ[Xi] | Q
}}
.z[0]

Thus, outs(pt,ρ, n,Q) and outo(pt,ρ, n,Q) above differ in the use
of an additional synchronization on name z. This appears indis-
pensable: under a semantics with objective update, after n updates,
processes located at pρ will stay at location t. To avoid leaving such
processes in the wrong location, the encodings in [7] use an (objec-
tive) update on auxiliary location z, so to take them out of t once n
updates on pt,ρ have been executed. When moving from objective
to subjective updates this synchronization on z is no longer needed
— clearly, the improvement will be proportional to the number of
compensation operations in the source language (here CD and CA).

We may then conclude that our encodings of compensable pro-
cesses into adaptable processes with subjective update are more ef-
ficient than the encodings with objective update [7]: for both dis-
carding and aborting semantics, our encodings require one less re-
duction step to mimic a compensation step in the source language.

7. CONCLUSIONS
The quest for programming abstractions that suit emerging com-

putational settings such as CAS is a multi-faceted problem. Rather
than developing new languages from scratch, one approach is to
build on languages already developed for mobile, autonomic, and
service-oriented computing. Here we formally connect program-
ming abstractions for compensation handling (typical of models
for services and long-running transactions) and for run-time adap-
tation. We improve our results in [7] by offering more efficient
encodings that exploit a novel programming abstraction based on
subjective process mobility.

Our work uncovers an interesting dichotomy: should one appeal
to objective or to subjective updates? In this paper, we have con-
sidered the calculus of adaptable processes of [2] with subjective
update prefixes only. This is because our goal was to understand
the effect of subjective mobility in the efficiency of encodings of
compensable processes. While subjective updates appear more au-
tonomous (i.e., determined by a located process itself, not by its
environment) than the objective updates of [7], we believe that the
choice of objective and subjective update largely depends on the
application at hand: there are practical instances of dynamic recon-
figuration for which each form of update is better suited. Hence, a
general specification language should probably include both objec-
tive and subjective updates.

We notice that subjective updates can represent objective up-
dates, at least in an ad-hoc manner. Consider processes S and S′:

S = C1

[
l[P] | R1

]
| C2

[
lo{(X).Q}.R2

]
S′ = C1

[
l[P] | ls1〈〈(X).X〉〉 | R1

]
| C2

[
ls〈〈(X).l1[Q]〉〉.R2

]
Intuitively, S′ is a subjective variant of S: using two reductions, S′

emulates the movement induced by objective updates in S (see (1)):

S′ → C1

[
ls1〈〈(X).X〉〉 | R1

]
| C2

[
l1[Q{P/X}].R2

]
→ C1

[
Q{P/X} | R1

]
| C2

[
R2

]

A similar (ad-hoc) transformation can be defined to represent sub-
jective updates using objective ones. In both cases, however, the
ability of emulating a certain direction of process movement comes
at the price of additional reduction steps that induce inefficient rep-
resentations in the long run. This reinforces our claim that both
forms of update should be kept natively in a specification language.

In future work, we would like to study the dichotomy between
subjective and objective updates in the context of other formal lan-
guages for CAS, such as SCEL [6], AbC [1], and the calculus
with code mobility in [5]. One first challenge is that dynamic up-
date as studied here is based in the point-to-point communication
discipline of CCS and the π-calculus; in contrast, communication
in SCEL and AbC is attribute-based, and permits interactions be-
tween with groups of partners as selected by appropriate predicates.

Acknowledgments.
We are grateful to the anonymous reviewers for their remarks and

useful suggestions. This research has been partially supported by
EU COST Actions IC1201 (BETTY), IC1402 (ARVI), and IC1405
(Reversible Computation), by CNRS PICS project 07313 (SuC-
CeSS), and by grant ON174026 of the Ministry of Education and
Science, Serbia. Pérez is also affiliated to NOVA Laboratory for
Computer Science and Informatics (NOVA LINCS), Universidade
Nova de Lisboa, Portugal (Ref. UID/CEC/04516/2013).

8. REFERENCES
[1] Y. A. Alrahman, R. De Nicola, and M. Loreti. On the power

of attribute-based communication. In Proc. of FORTE 2016,
volume 9688 of LNCS, pages 1–18. Springer, 2016.

[2] M. Bravetti, C. D. Giusto, J. A. Pérez, and G. Zavattaro.
Adaptable processes. Logical Methods in Computer Science,
8(4), 2012.

[3] L. Cardelli and A. D. Gordon. Mobile ambients. Theor.
Comput. Sci., 240(1):177–213, 2000.

[4] G. Castagna, J. Vitek, and F. Z. Nardelli. The seal calculus.
Inf. Comput., 201(1):1–54, 2005.

[5] F. Damiani, M. Viroli, D. Pianini, and J. Beal. Code mobility
meets self-organisation: A higher-order calculus of
computational fields. In Proc. of FORTE 2015, volume 9039
of LNCS, pages 113–128. Springer, 2015.

[6] R. De Nicola, M. Loreti, R. Pugliese, and F. Tiezzi. A formal
approach to autonomic systems programming: The SCEL
language. TAAS, 9(2):7:1–7:29, 2014.

[7] J. Dedeić, J. Pantović, and J. A. Pérez. On compensation
primitives as adaptable processes. In EXPRESS/SOS 2015,
volume 190 of EPTCS, pages 16–30, 2015.

[8] D. Gorla. Towards a unified approach to encodability and
separation results for process calculi. Inf. Comput.,
208(9):1031–1053, 2010.

[9] I. Lanese, C. Vaz, and C. Ferreira. On the expressive power
of primitives for compensation handling. In Proc. of ESOP
2010, volume 6012 of LNCS, pages 366–386. Springer, 2010.

[10] I. Lanese and G. Zavattaro. Decidability results for dynamic
installation of compensation handlers. In COORDINATION,
volume 7890 of LNCS, pages 136–150. Springer, 2013.

[11] R. Milner. Communication and concurrency. PHI Series in
computer science. Prentice Hall, 1989.

[12] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, I. Inf. Comput., 100(1):1–40, 1992.

[13] D. Sangiorgi. Expressing Mobility in Process Algebras:
First-Order and Higher Order Paradigms. PhD thesis,
University of Edinburgh, 1992.

58

