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We consider the stochastic differential equation 

d~, =al[~.=O]dt +J[~>O]dW, ~o =Xo;;;;.O, (1) 

where W is a Wiener proq_ess and O:e;;;a :e;;; oo. 
It is convenient to represent (1) as a boundary problem with the departure rate of a general form 

(giving by the way the exact meaning to the condition a = oo ). 
For the nonnegative measurable function a,, t ;;;;.o, the process ~ is a solution of the boundary prob­

lem if 

a) ~o =Xo, 

b) ~,;;;;.o, 1;;;;.o, 

c) J[t,>OJd€1 =l[€,>O]dW1, 

d) dr, =1[€, =oid~,;;;;.o, (2) 

e) dr1 =a1Ira,<oo]d/\ 1, 

f) /[u,=oo]d/\, =O, 

where /\ 1 = f hilt. =o1ds, t ;;;;.o. 
It is well known that the equation (1) has· a unique weak solution ([l]; for more general boundary 

problems see [2]). 
For the extremal cases a = 0 (absorbtion) and a = oo (instantaneous reflection) the problem (2) 

admits the strong solutions expressed explicitly by 

x,i =Xo + WT/\t• r=min{s;;;;.O, Xo+ Ws=O}, (3) 

and 

x; = max(X o + W1, max (W, - Ws)). 
O.;.so;;1 

(4) 

In the intermediate case with the finite positive rate of departure from the boundary, however, the 
sticky (or slowly reflecting) Brownian motion ~ is not representable as a functional of the (driving) 
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THEOREM. The equation (1) does not admit a strong solution for O<a<oo. 
We prove this statement by constructing a sequence ~n, n ~I, of solutions of (2) adopted to W, 

which converges to the solution of (I) in the stable topology ([3]), but diverges in the strong sense 
(pathwise). It follows from this that the solution~ of (1) is nonrneasurable with respect to W. To this 
end we proceed in several stages. 

l. THE UNIQUENESS OF THE SOLUTION MEASURE OF (1). 
DEFINITION. A probabilityµ on the Borel er-algebra B(C2) of the product space C 2 =CXC of two 
dirnentional continuous functions (x,y)=(x1,y1), t~O, is called the solution measure of (2) if 

I 

µ{(x,y):x1 =xo +aJI[x,==O]ds +Jl[x,>OJdYs} =I, (5) 
0 0 

µ{(x,y):yEB} =Pw(B), BEB(C), (6) 

where P w is a Wiener measure. 
Denote by µ.1,µ,2,µ, 1(·1·),µ2(-1-) the marginal and conditional distributions corresponding toµ,: 

µ'(B) =µ(BX C), µ, 2(B) = µ( C X B); B EB ( C) 

µ'(B[y) =µ{x EB[y }, µ,2(Blx) =µ.(y EBlx); x,y EC. 

The following constru&ion of the solution measure is presented in [I]. Let px be the (unique) dis­
tribution of the weak solution of (1), and define P, as an image measure corresponding to the mapping 
ip from the probability space (C2,B(C2), PxxPW) into the space (C2,B(C2)) expressed by 

I I 

ip(x,y) =(x1, x 1-x0-afl[x,=oids + j l[x,=oidy,), t~O. 
0 0 

It is easily seen that P, is a solution measure of (I) characterized by the property 
I 

P,{j I [X, =01dYs EB Jx} = Qx(B), B EB( C), a.s; 
0 

(7) 

where, for each x EC, Qx is the distribution of a Gaussian process with independent increments 
expressable as 

I 

f I[J(,=O]dWS 
0 

with a Wiener process W. 
The property (7) is equivalent to the relation 

I I 

E°iif (x)exp(i f Csl[X,=OJdYs) =Ei' f (x)exp(-+ j c;I[X,=OJds), 
0 0 

satisfied for any bounded measurable functions· 

f: (C,B(C))~(R< 1 >, B(R(1l)) 

C: (R<;_>,B (R~l)~(R(l>,B (R<1l)) 

and t~O. 

LEMMA. The equation ( 1) admits an unique solution measure. 

(8) 

PROOF. It is sufficient to show only that for any solution measure of (I) the relation (8) takes place. 
By the uniqueness of µ, 1 =Px as a solution of the Martingale problem corresponding to (1), it 



follows (see [4D that every (bounded) measurable function 

cp: (C, B(C))-(R(IJ, B(R(I>)) 

is expressable as a stochastic integral 

00 

c/>(x) =E"cp(x) + j gs(dxs-alrx,=01ds), Pxa.s. 
0 

with some nonanticipative functional g, = gi(.X). 
Taking 

I t 

c/>(x) =j(x)exp(-2 f c;J[X,=OJds) 
0 

and denoting 

we have 

I 

E"f(x)ex{<_;J Csl[x,=01dYs) =E"cp(x)p1 =E"cp(x)E"p, + 
0 

I I 

+El' J gs(dxs-al[x,=0Jds)p1 =E"cp(x) +E" J gs(dxs-al[x,=OJds) + 
0 0 
I 

+E" /igsCsl[x;>oi/rx,=O]ds =E"cp(x)O 
-0 

2. THE COMPACTNESS OF THE CLASS OF MEASURE SOLUTIONS OF (2) 

3 

Let M be the class of all solution measures corresponding to the (uniquely solvable) boundary prob­
lems (2) with arbitrary departure rates (a,), 1;;;.o. We shall consider the convergence 

u,,-µ, n-oo 

of measuresµ.,.,µ on B(C2) determined by the convergence of integrals 

E"f,,(x,y)-E"f(x,y), n-oo 

for each t and each bounded measurable in y and continuous in x function on f depending on first t 
coordinates (/ (x,y) = f (xs,ys; s <S;;t)). 

Denote by Ms the subclass of M corresponding to the boundary problems (2) having unique strong 
solutions. If µeMs, then there exists some mapping 

qf': (C,B(C))-(C,B(C)) 

such that for each A, Be B(C) 

µ(A XB) = µ2(B n(cpl'r· 1(A)) = fi µ.2(dy). 
(yeB, cp(r)eA} 

Evidently µ2 =Pw, and 

~1 = cp~(Y) pW a.s. Oos;;t, (9) 

represents the solution of (2) as a functional of the driving process. 
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LEMMA 2. ([3]) a). The weak compactness of the class (µ. 1: µEM) implies the (stable) compactness . 
(corresponding to the convergence-;.) of M . . 

b) If P,n EMS, P,n-'>P,, n-'>CO, µEM 5 , 

then 
p"' 

sup j<p~'-<p~j-;.0, n-;.co, t~O. 
Oo;;s<;;;t 

Note that the class Ms consists of the solution measures corresponding to the class a+ of functions 
(a1), t-;.0 which are stepwise constant taking on only two values 0 and co. 

LEMMA 3. The class Mis (relatively) compact. 

PROOF. Let µEM with some (a1), t~O. Consider the time change T 1 =inf(s:s-As=t) and the process 

X?' = Xr,-

H is clear from 
I / I 

j lpr,'=oids 7 j Irx,, =oids = j lrx,, =oid(Ts-Ar) 
0 0 0 

I 

= jI[x.,=01(1-lrx.,=oi)dTs=O, 
0 

that the distribution of )(*P. coincides with the distribution of an instantaneous reflecting Brownian 
motion x· stopped at some random time. 

We have for each O.;;;h.;;;I and t~O, using IT1 -Tsl.;;;lt-sj, 

fl.~(h) =µ 1{.X: SUP IXs-X.,l>t:}..;;;; 
OE;s<u<"s+h..:;;1 

.,;;;pX"{X: sup /Xs-X11 J>t:} =Ll,(h). 
O..:;;s<u<"s+h..:;;1 

Thus the condition of weak (relative) compactness of the class {µ 1 :µEM}, ([5]), follows from the con­
tinuity of the process x·. 

lim sup Ll~(h).;;; Iim~(h) =O. 
h-->0 p.eM n-+0 

Hence the assertion is true by Lemma 2.a) D 

3. THE CONDITIONS OF THE CONVERGENCE TO THE MEASURE SOLUTION OF (1) 

LEMMA 4. Letµ be the (unique) measure solution of (1) and let µn EM, withµ! having strong Markovian 
property, n:;;;;: 1. Then, if for each t >0, 7'.>0 

(10) 

w 
PROOF. Ifµ~-'> µ 1, then for each limit point ~ of the sequence µn we have for each f>O 
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(11) 

In fact 11=0 is equivalent to the property that for each Oo;;;;o;;;;s<to;;;;T, with Xu>O, So;;;;uo;;;;t) the 
equality Yu-Ys=Xu-Xs,so;;;;uo;;;;t, takes place. From c) in (2) it follows that 11=0µ.n a.s. n;:;i.l, and, 
hence, to obtain (11) it is sufficient to take limit in E"'min(71/\C) for each C>O, using the continuity 
of11 on C 2• 

Thus, as the conditions a), b), d), e), f) in (2) are expressed only in terms of the marginal distribu­
tion µ. 1, we have~=µ.. 

Hence it remains to prove that the convergence (10) implies the convergence of finite dimensional 
distributions corresponding to µ.!, n ;;i. 1. 

It is not difficult to calculate the Laplace transforms 
00 

L,(>..) =Lo(">..) = E"( j exp( -'J...(s - t)) dts lx1 =0) 
t 

00 

M,(>..) =M0 ('J...) =E"(j exp(-'J...(s-t))lrx,=oit:Ulx1 =0) 
I 

by solving the boundary problem 
I 

'J...U(x, A) 72lff.K>..), x>O, 

'J...U(x,'J...) = aUxxCx,'J...) + 1, x=O, 

for 
00 

U(x,>..) = E"(j exp(->..s)I1x,=01t:Ulxo=x). 
~o 

From (12) we obtain 

L,('A) = aM,('J...) = aM 0 (>..), M 0(A.) = l 
'J...+ v'iXa. 

Further, for each n-1, the conditional Laplace transform 

4'n(s,t,>..,x) = E"'(exp(-A.x,)lxs=x) 

satisfies the equation (for each t >s,x ;:;i.o) 

A2 I 

4'n(s,t,A.,x) = e-.\x-AE"'(t,-tslxs=x) + 2 fct>n(s,u,h,x)du 
s 

which gives 

2 I A2 "J..,2 
c/>n(s,t,'J..., x) =e-.\x+>. (t -s)-E"'(j exp(2( + -u))(A.dtu+ Td/\u)lxs=x). 

s 

Besides, by the strong Markovian property, we have 
I 

E"'(t1-tslx9 =x) = j e:(t)k(x,u -s)du, 
s 

I 

E"•(/\ 1 -1\slxs=x) = j m:(t)k(x,u -s)du, 
s 

(12) 
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where, for t >u, 

1:(t) =E""(t1 -tulxu =O), m:(t) = E""(/\ 1 - /\lxu =O), 

and k(x,t) is the distribution density function of the random moment 

r = min(t;;a.s:x1 =0) 

with the condition x3 = x. Evidently k does not depend on n ;a.} and s, and, in terms of the Wiener 
process W, 

k(x,t) = dd P(x+ inf Ws<O) = dd P(IWrl>x). 
t O~s~t t 

Thus the convergence of 17(s) and m7(s) (or the convergence (10) of their Laplace transforms L7(A.) 
and M7(A.)) is sufficient for the convergence of the conditional Laplace transforms l/>n 0 

4. THE NECESSARY CONDITION FOR THE STRONG CONVERGENCE 

Let µn EM3 , and let 

r, = <p~"(y) 

denote the strong solutions of (2). 
/ 

LEMMA 5. If for each t>O,A.>0 

Pw( sup jX'; - ~l>t:)_,,O, n,m_,,oo 
O~s<;;t 

then 

PRooF. From (2) we have 

I I 

Ew(X'/-X'f')2 =2Ew f (X';- ~)d(t~ -r:)+ Ew f U[X:>O]-I[x;>oj)2ds. 
0 0 

Thus 

I 

Ew fll[x;=o1-l[x;=o1lds:;;;;;EW( sup IX';-~If + 
O O<;;;s<;;t 

1 

+2 [Ew( sup JX';-X';'lfEW(t7+t7')2]2· 
O.;;s~t 

(13) 

Now it is sufficient to apply the fact that the instantaneous reflecting process X* is maximal in the 
class of all strong solutions ([6]) and, so )(1/ :;;;;;x; a.s. Thus using the estimations 

sup II'.- ~l..;;2 sup x;, Ew(t;')2:;;;;;2Ew[()(7)2 +t]..;;2Ew[(x;)2 +tJ, 
O<;;;s<;;;t O.;;s<;;;/ 

we obtain that the right-hand side of (13) converges to zero D 

5. THE DESCRIPTION OF THE APPROXIMATIONS AND THE WEAK CONVERGENCE 

Consider for each A>O, O:;;;;;a.,;;;; 1, O<o<A, the unique strong solution (expressed as a functional of a 
Wiener process W) 

~1(A, a,o) =qi~(W), 



with the departure rate (a1), t;;;;.>-0 of the form 

a, =0, for tE[ka, kA+aii]U[kA+a:A+8, (k+ 1)6.[ 

a1 =oo, for tE]kb.+aa, kA+aA+8[, k;;;;.>-0 

7 

Thus the process ~(a,a,8) is everywhere absorbing except subintervals of length 8 disposed at the one 
and the same positions inside the intervals [ka,(k + l)A[, k =O, 1, .... 

1 c2 
LEMMA 6. For each O...:a<l and O<c<oo the sequence e'=«-,a,-2 ) converges weakly to the solu­

n n 

tion of(l) with a= -Jtc. 

PRooF. It is sufficient to verify the conditions (10). 
Consider first the case a=O. It is easy to notice that the functions L~8()1.) and M~8()i) correspond­

ing to the solution €(A,0,8) satisfy the relations 

L~ 8(A) = L~· 6(1\), kA+8<,.t.;;;.(k + 1)~ k;;;;.>-0, (14) 

M~·6(A) =Mg(A)exp(([ ~ ]+ l)A-t)+ ~(exp(([~]+ J)A-t)-1), 
/ 

where [ ~ ] is a largest integer of ~ . 
To derive the recurrent equations for M~6 (A) and L~·6 (A) introduce the moment 

-r = min(s;;;;.>-8, €s(a,O, 8) =O). 

Suppose €0(a,0,8) =O. Th:U, by definition, the representations (3) and (4) give 

€,(a,O, 8) = sup (W1 -W3 ), O<,.t.;;;.o 
O.;;s<.t 

€,(a,O,A)-€a(A,0,8) = W1-W11, 8.;;;.t.;;;.-r. 

Thus (taking into consideration that the random variables sup Ws and I W11 have the same distribu­
O<s.;;1 

tion) we obtain 

Ftl.6(t) =Pw{-r<tlro(A,0,8) =O} =Pw{ inf (Ws- W6)<,.- sup (Wa-Ws)} = 
6<.s.;;1+8 O<.s~8 

2 oo oo s2 2 2 - ft 
=P{IW,+8-Wal;ai.IWal} =wt [ f exp(-2t-~)dxdy =-:;;arctg( Vi) (15) 

Consider, for convenience, 

--.A.8 1 00 

M 1 (A) =)::-M~·6(A) =E"(j exp(-A(s-t))/[x,>oJdslx,=O). 
I 

We have 

-ll.IJ .,. .-.AIJ 00 l 
M0 ' (A) =Ejexp(-7\t)dt +Eexp(-A-r)M,.· (A)= j )::(l-exp(-M))Fll.· 8(dt) + 

0 0 

Thus 

(16) 
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where 

00 l 
</>1(.1,6,A) = j );(1-exp(-N))FA.s(dt), 

0 
- A.o 

cf>i(li,lJ,A) =E(exp(-A'T)/[T-[2-JA.;;BJMr (A), 
A 

'T cp3(L\,lJ,A) =E exp(-Ali([~]+ l))J[T-[ ~ ]A;;.llJ· 

For large X we shall use the estimation 

larctg(x) - ; + ~ 1~2( ~ )3. 

Using (15) and (17), since obviously M~' 13 (>..)~ ~ , we have for lJ=c26.2 

00 

cf>2(6., c2 6.2 ,A)~ 2,; (FA· 8(k6. + c 2 6.2)- FA. 0(k6.))exp(-- kA.6.) = 
k cc I 

2 00 v'k +c26. ~ =--;- 2,; exp( - k6A)[arctg( 2 )-arctg( - 2 L\ )~ 
'TTI\ k =I / C /j, C 

~ 2c'lfi. f exp(-k>..6.)L -~ - ... /11 +O(t::,.312)~ 2c'lfi. f c23~2 
'TTA k=I V ~ V k 'TTA k=I 2k 

Further, applying 

_r;:- 00 l Vf lim v a 2,; exp( -ML\) _ !. = °"' 
A-->0 k=I Vk "-

we obtain 

00 

.p3(6.,c 2 6.2 ,A) = 2,; (1-exp(-Ak6.))(FA.°(k6.)- FA. 6((k -1)6.) = 
k=I 

00 

=(l-exp(-AL\)) 2: exp(-AkL\)FA,/'J(kL\) =exp(--A6.) -
k =I 

oo Vf2c -(1-exp(-M))[ 2,; exp(-AkL\) - - +O(L\)] =exp(-Atl) -
k=I k 'TT 

-(I - exp( -A6.))[2 -vSf c + O(L\!J = 1-M.- 2c ~ + o(Li). 

As for the expression .p1, it is easily calculated that 

.P1(L\,C2L\2,A) = ~: [o-exp(-At)) ~ +(t+C2A2) = 

=~[j00(1-ex (-A~ +O(L\)] = lL\c +O(L\). 
A'TT o p t31 2 V:;J: 

Thus using (18), (19) and (20) we obtain 

lim M-~· 15 (>..) = ... f2 c yv; , 
A;;.o V -;;; _ ~ ... ~ 

>..(>..+ v2Ac V -;) 

(17) 

(18) 

(19) 

(20) 



and hence 

with 

lim Mt..B 
tl-+0 ° 

a=c~. 
Analogeously, from the decomposition 

... 

L~6 (J\) =Ej exp(-N)dr, +Eexp(-J\:r)L~· 6 (J\), 
0 

we can derive, using the relation (14), and applying the same arguments as before, that 

L~8 (A.) =E j e->..tdr1(Li(J\+ Vi>:- /2c))- 1 +o(l). 
0 \/ -:;; 

Besides 

... /l 

E j exp( -M')dr, = E j exp( -A.t)dr, =Era + o(Li) = 
0 0 

=E sup Ws +O(Li) =Li - f2c+o(Li) 
O<s<ll \/ -:;; 

Thus 

with 

a=c~. 
From (14) it is evident that (10) is true for all t ;;;.o. 
Finally, it is easyly seen that 

L1t-.f-j(A.) = L~·o,ll(A.), M~+°;il(A.) =M~o.ll(A.), 

and, thus (10) is true for each O~a<l, 1;;;.o. D 

6. THE STRONG NONCONVERGENCE AND THE PROOF OF THE THEOREM 

Consider now the sequence ~n defined for m ;;;.1 as follows: 

l c2 
~n =«-2 , 0, --2 ), as n =2m, 

m (2m) 

l 1 c2 
~n =~(-2 , -2 , --2 ),as n =2m + 1. 

m (2m) 

LEMMA 7. For the sequence ~n defined above 

00 

n~E ! exp(-J\s)llt.'=0]-/[~;'1=o]d.Y>O. 

9 
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PROOF. Obviously 

00 ~ 

E J exp(-A.s)l[~:~oi-1[f''=o]ds-:;;,.E J exp(-At)1[~:=01ds'-
o 0 

00 

- E J exp( -A.s )/[ max(~~, ~7 + 1) = O]ds. 
0 

Let us consider the process ~ which is the strong solution of (2) with 

Li Li a1 =oo, for tE[kLi,k+Li+8]U[k.!l+2, kLi+2+8], 

a1 = 0, otherwise. 

It is easyly seen that (with 8 < ~) 
- I Li 
~1 =max(~1 (Li,0,8), ~1 (Li, 2' 8)) =~1(2,0,8). 

Thus, for 8=c 2Li2,Li=(2mr- 1 

I 1 
~ A+a~ - _A._+_a_1-~-, Li~o. 

where 

~ff~ ~ff 
a= c V -;• a 1 = 2c V-; = 2a. D 

(20) 

Combining now the statements of lemmas and taking into consideration the necessary condition for 
the strong convergence in assertion b) of Lemma 2, we obtain the proof of the theorem. 
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