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Abstract 

We survey results on axiomatic completeness and complexity of formal languages for reasoning about finite quantities. 

These languages are interpreted on domains with and without structure. Expressions dealt with include 'at least n X s are 

Ys,' in the case of unstructured domains, and 'at least n 'related' Xs are Ys,' in the structured case. The results contained 

in this paper are brought together from generalized quantifier theory, modal logic, and knowledge representation, while 

a few new results are also included. A unifying approach is offered to the wide variety of formalisms available in the 
literature. 
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1 Introduction 

This is a paper on the borderline between generalized quantifier theory, modal logic, and knowl­

edge representation. It surveys results from these areas on axiomatizations and complexity of 

certain 'counting expressions'; a few new results are included as well. These counting expressions 
include sentences like 

some woman is young, (1.1) 

and, more generally, like 
at least n women are young. (l.2) 

Traditionally, the analysis of such expressions has mainly been confined to the theory of gen­

eralized quantifiers. But over the past few years researchers in modal logic and knowledge 

representation have also taken an interest in them. This interest derives from a concern with 

expressions of a more general pattern; whereas the domain of discourse used to interpret ( 1.1) 

and (1.2) may be any unstructured set, the more general pattern involves domains equipped with 

a certain structure, say of a binary relation, reflected in this pattern: 

some relatives that are female, are young, (1.3) 

and 
at least n relatives that are female, are young. (1.4) 

Clearly, sentences (1.1) and (1.2) arise as special cases of (1.3) and (1.4), respectively, as the 

cases where the structure of the domain is such that all objects are related. 

This paper detects correspondences concerning axiomatic and complexity aspects of the above 

counting expressions between generalized quantifier theory, modal logic and knowledge repre­

sentation. By doing so, and by bringing together relevant results from these areas, we hope the 

paper contributes to each of thein. 
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Results on axiomatic aspects of counting expressions like (1.1)-(1.4) are found mainly in 
modal logic, but usually without an explicit connection with generalized quantifier theory; some 
results on axiomatics are presented in Section 3 below. In Section 4 the complexity of the axiom 
systems discussed in Section 3 is addressed; here, a look at recent papers on the complexity of 
concept languages in knowledge representation proves useful. Proofs of results in the paper will 
be sketchy, referring the reader to the literature for full details. 

We start out by stating the relevant basics of the modal logic, knowledge representation and 
generalized quantifier theory approaches to the above counting expressions. 

2 Preliminaries 

Let us start with some facts on basic modal logic.1 The first thing we need is a general definition 
of modal formulas. 

Let <!? be a set of proposition letters, and let Op be a set of (unary) modal operators. The set 
Form(<P, Op) ofwell-fonned formulas over~ and Op (typically denoted by</>) is built up using 
proposition letters (p E ~).and modal operators (0 E Op) according to the following rule 

</> ::= p I .1 I T I -.<f> I </J1 /\ </>2 I O<f>. 

The language of basic (poly-) modal logic is given by a set ~ = {Po, P1, ... } , and Op = 
{ (R) : R E 'R }. for some set 'R; [R] is short for -i(R)-i; we use Op and { [R] : R E 'R} 
interchangeably. Its semantics is based on structures oot = (W, { R} RE'R., V), where W =f. 0, 
R ~ W 2 (for R E 'R), and Vis a valuation assigning subsets of W to the proposition letters in 
<l?. The truth conditions are oot, x F p iff x E V (p), 9'.n, x f= •<P iff oot, x ~ <f>, 9'.n, x f= </> /\ 'ljJ 
iff 9'.n, x f= </> and oot, x f= 'lj;, and 

oot, x F (R)</> iff for some yin !)Jt we have xRy and !m, y f= </>. 

We say that a fonnula is valid on a model (!m F </>) if !m, x f= </> for all x in 9'.n. Parallel to 
the above truth definition one can define an embedding of the modal language into a suitable 
first-order language. Given this embedding the basic modal language can be viewed as a fragment 
of first-orderlogic (cf. [4] for details). 

Given the analogy between the existential quantifier and the modal operator (R), the Tarskian 
numerical quantifiers2 inspired Fine (11] to consider so-called graded modal operators (R)n 
whose duals -i(R)n....., are written as [R]n (for R E 'R, as before, and n E N). The semantic 
structures are the same as in the basic modal case, and the truth condition of the graded modal 
operators reads 

9'.n, x F (R)n</> iff I{ y : xRy and !m, y F </>}I > n, 

where IX I denotes the cardinality of the set X. Clearly, for all !JJ1 it holds that 9'.n, x F (R)</> ++ 
(R)o</>. and 

!m, x f= [R]n<P iff I{ y: xRy and !m, y pt: </>}I s:; n. 

Just like the basic modal language the graded modal language can be considered as a fragment of 
first-order logic.3 

1 [12] is an excellent and short introduction to (poly-) modal logic. 
2cr. [25]. 
3Some references on graded modal logic include [6, 23] on uses of the language, and [10, 15] on its theoretical aspects. 
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In recent years a connection has been discovered between modal logic and tenninological 
or concept languages. Concept languages provide a means for expressing knowledge about 
hierarchies of sets of objects with common properties (cf. Donini et al. [9] for a brief overview). 

They have been investigated mainly in the field of knowledge representation, but recently also in 

database theory [3], and in logic programming with object-oriented features [1]. 
Just like the earlier modal languages, concept languages may be conceived as fragments of first­

order logic. Expressions in concept languages are built up using concepts and roles, interpreted 

as subsets of and binary relations on a given universe. Compound expressions are built up 
using a number of constructs. To give examples we suppose that female and young are primitive 

concepts, and child and relative are primitive roles. Using intersection and complement, the set of 
'youngsters that are not female' can be described by young n -,female. Most concept languages 
provide restricted quantification, that is quantification over roles. 'Women whose children are · 

all young' are described by female n (ALL child young). Clearly, viewing things from a modal 
logic perspective, primitive concepts can be conceived as atomic propositional formulas, while 
quantifications (ALL R C) become formulas of the form [Rh. 

Another construct found in most concept languages is number restriction. Number restrictions 

on roles denote sets of objects having at least, or at most a certain number of fillers for a role. 

For instance, female n (2: 3 relative young) describes the set of all women having at least three 

young relatives. The connection between number restrictions (2: n R C) and the earlier graded 

modalities should be obvious: the former may be written as formulas of the fonn (R)n-l "Y· 

DEFINffiON 2.1 
We define the basic A..C-language. The language A..C has concepts (denoted by C, D, .. . ) built 

up from primitive concepts (denoted by A) and primitive roles (denoted by R) according to the 
rule 

c ::= T I J_ I A I ....,A I C1 n C2 I (ALL R C) I (SOMER T); 

in A..C roles are always primitive. 

Models for the A.C-languages have the form (D, ,I), consisting of a set D, the domain, and an 
interpretation function .I that maps concepts to subsets of D, and roles to binary relations on D 
such that TI = D and ..l I = 0, as usual, while 

(C1 n C2)I cf n C~, (ALL R c)7 
( -iA)I = D \ AI, (SOMER T)I = 

DEFINffiON 2.2 

{d ED: '<:/y(dRiy-+ y E CI) }, 
{ d E D : :ly ( dRI y) } . 

Languages more general than A.C are obtained by adding to A.C one of the following constructs: 

u union of concepts, written c u D, with ( c u D )I = cI u DI; 
E full existential quantification, written as (SOMER C), defined by 

(SOMER C)I = { d E vI; 3y (dRiy /\ y E cI) }; 

C complement of non-primitive concepts, written as ....,c, with ( -iC)7 = D \ cI; 
)If number restrictions, written as (2: n R) and (s; n R), where n ranges over the non-negative 

integers, with, for each l><l E { ;:::, s; }, 

(rxi n R)7 = { d ED: I{ y : dRiy }i l><l n }; 

M meet or intersection of roles, written as Q n R, with (Q n R)I =QI n RI. 
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Following [9], suffixing the name of any of the above constructs to 'AL'.' denotes the addition of 
the construct to the basic A.C-language; for instance, A£U.N' denotes the extension of A.C that 
allows for union and number restrictions. 

We denote the obvious translation of A.C-expressions into modal ones by o; for instance, 
o(ALL R C) = [R]o(C). Moreover, there is a standard transfonnation A that talces models 
(V, .I) for concept languages into models VJ?= (W, { R} Ren, V) for modal languages, such 
that given (V, .1\ we have x E cz iff .D.(V, .I), x F o(C). For a modal logic L, and concept 
language ACX, we write L ~ A.CX if the translation o from A.CX to L is a bijection. By 
means of such bijections results for modal logics translate effortlessly into results for concept 
languages, and conversely.4 

According to general wisdom a generalized quantifier is a function assigning to every unstruc­
tured set VJ? a binary relation Q!m between subsets of ro?.5 At least as far as axiornatic aspects 
are concerned, so far relatively little attention has been paid to quantification over structured 
domains, that is, to binary relations between subsets of structured domains. Nevertheless, we feel 
that these are at least as important as the unstructured ones, especially since most examples of 
quantification one encounters in applications and in everyday life seem to presuppose some kind 
of structure of the underlying domain.6 

In this paper we assume that our dotnains VJ? are structured by (one or more) binary relations.7 

Then, the mainstream conception of generalized quantifiers arises whenvery special choices are 
made concerning !JJt, namely when it is assumed that all relations coincide with mt x VJ?. It should 
be noted that we only look at the 'explicit' structure present in sentences like (1.3) and (1.4); the 
'implicit' structure often assumed to underly, for example, conditionals is not considered here. 
Even for the case of explicit structure we only look at a basic fragment in which quantification 
is restricted by arbitrary binary relations. This excludes sentences like 'Every woman writes 
a Christmas card', in which one has both unrestricted and restricted quantification. (But, as 
pointed out before, unrestricted quantification could be analysed as quantification 'restricted' by 
the universal relation.) 

The only generalized quantifiers that we will consider in this paper are the ones exempli­
fied in the earlier sentences (1.1)-(1.4): cardinality quantifiers, both over structured and over 
unstructured domains. We will deal only withjinite cardinalities. 

The analogies between such cardinality quantifiers and modal logic should be obvious now. 
Sentences (l .3) and (1.4) can be simulated in the graded modal language by 

-(1.3') 
(1.4') 

(R)o(J /\ y), and 
(R)n.-1Cf /\ y), 

respectively, while (1.1) and (1.2) can be simulated by the same modal formulas provided it is 
assumed that R is the universal relation, that is the Cartesian square of the domain. Van der Hoek 
and De Rijke [18] talce the latter assumption for granted and explore the connections between 
generalized quantifiers and modal logic on the basis of this assumption. 

4 Connections between other concept languages and propositional dynamic logic have been explored by Schild [22]; 
yet another concept language is linked to modal logic in [21]. Complexity results on satisfiability problems in ihe above 
AC-languages are contained in [9]. 

5Cf. [25] for a thorough introduction to and overview of generalized quantifier theory. 
6Cf. [7] for further discussions on quantification over structured domains. 
7 Although various plausible conditions may be imposed on generalized quantifiers over such domains, we will not go 

into them here, but refer the reader to [7]. 
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3 Axioms 

In this section we present axiom systems for the notions of validity introduced in Section 2. 
The languages we consider can be roughly classified along two dimensions. First, we consider 
languages over structured domains, in which sentences (1.3) and (1.4) can be expressed. Then 
we consider languages over unstructured domains, that are equipped to deal with sentences like 
(1.1) and (1.2). For each class, we present axiom systems for two basic languages. The first 
of them allows only for the quantifiers some and all (sufficient to represent (1.1) and (1.3)) and 
the second basic language has tools to reason about sets of arbitrary finite cardinality (needed to 
represent (1.2) and (1.4)). We will also present axiom systems for sublanguages and extensions 
of those four basic systems. The overall picture is that of Figure l. 

no counting counting 

Kn Gr(Kn) 
structure 

AL ALN Grz(Kn) 

Gr(S5) 

no structure 

SYLL AP Gr(Bin) Grz(S5) 

FIG. 1. A plethora of calculi 

We use modal languages to relate the three traditions brought together in this paper: every 
system presented below will also be presented as (a fragment ot) a modal system. For the 
remainder of this section, we suppose to have a fixed set of operators Op = { (R] : R E n }, 
with typical element (R]. We say that an axiom system Lis nonnalfor Op' ~ Op if it has the 
following axioms and derivation rules: 

Tautology: L I- </>, for all propositional tautologies <f>; 

Distribution: LI- [R](</> -+ 'l/J) -+ ([R]<P-+ [R]ip), for all [R] E Op'; 

Modus Ponens: L I- </J -7 'l/J, L I- </J =>LI- 'lj;; 

Substitution: L I- a ++ (3 => L I- </J ++ [°' / ,g]ef>, where [°' / ,g]ef> is a formula obtained by 
substituting any number of occurrences of f3 by a in <f>; 

Necessitation: L I- ef> => L I- [ R] </>, for all [R] E Op'. 

Structured domains 

The first system we present is known as the modal logic Kn: its language deals with structured 

domains (W, { R} RER., V), and does not allow for number restrictions. 



330 Counting Objects 

DEFINmON 3 .1 

The system K R over the language Form( <I>, Op) is the minimal logic that is normal for Op. 

THEOREM 3.2 
Kn I- <P iff <P is valid on all structures (W, { R} RER, V). 

PROOF. The proof consists of two steps. First, a model satisfying a given Kn-consistent for­
mula <P is built by means of a Henkin construction, which yields a canonical model 9J1c = 
(We, {Re }RER1 vc) in which we= { r: r is a maximal consistent (m.c.) set}; vc(p) = 
{ r : p E r } and RcrE iff for all </>, ([R]</> E r => <P E E). The second step is to prove a Truth 
Lemma: for all </>, and r, (We, { Re } RER, Ve) , I' . I= </J iff </l E r. Since every consistent </l is 
contained in some m.c. set r, this proves the satisfiability of such a ef>. I 
REMARK 3.3 
It is easily seen that o : A.CU£C ~Kn. This implies that we have found a sound and complete 
axiomatization ( 15-1 (Kn)) for validity of A.CU£ C-formulas. Moreover, since the construct C 
can be expressed in A.C using the constructs U and£ and vice versa, we also have Kn ~ A.LU£, 
Kn~ A.LC. 

Now that we have related the basic modal logic to one of the concept languages of Section 2, 
we want to match the basic concept language A.L with a modal counterpart. Given proposition 
letters p E <I> and operators (R) E Op we define the language FormAL by </> ::= p I --ip I ..L I 
T I c/>1 /\ <P2 I [R]</> I (R) T. 

DEFINITION 3.4 
As the language Form AL is rather poor, we cannot express important properties (like the mutual 
exclusiveness of p and --ip) within the language itself. Instead we reason about consequences 
A I- 'I/; directly. We stipulate 

Notice that, although we cannot express the inter-definability of (R)T and [R]..L inside our 
language, semantically we can still treat them as being dual. 

We define the logic AL. First, we suppose that 'I-' has the following so-called structural 
properties: 

Monotonicity 
Cut 

A I- 'I/; => Au { <P} I- 'ljJ, 
A I- 'I/; and Au {'I/;} I- X => A I- x. 

and the inferences rules 

Distribution* 
Complement 

A I- 'I/; => { (R].>.: .A E A} I- [R]'I/;, 
r,p I- </>and r, --ip I- </> => r I- <fa, 
r, (R].L I- </>and r, (R) TI- </> => r I- <fa. 

Omitting braces where this does not lead to confusion, AL has the following 'axioms': 

Al <P I- </>, 
A2 p, --ip I- ..L, 
A3 </>I- T, 
A4 ..LI- c/>, 

A5 <P, 'I/; I- <P /\ 'I/;, 
A6 c/> /\'I/; I- </>and c/> /\'I/; I- 'I/;, 
A 7 (R].L, (R) T I- ..L. 
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For infinite sets r, T I- </J' will mean To I- </J for some finite r 0 <; r .' A set of fonnulas A is 

called consistent if for no A' <; A we have A' I- .l. To prove the completeness of AL we cannot 

use the familiar maximal consistent sets as our language does not have full negation. Instead we 

use large consistent (I.e.) sets r whose defining clauses read 

• ..L ~ r; 

•TE f; 
• r' <; rand f' I- </J :::;. </> E f; 
• for every p: p E f or -ip E f; 
•for every R: (R]..L Er or (R)T Er. 

LEMMA 3.5 
Let A be a set of formulas. Assume A Ii '!)! in AL. Then there is an I.e. set r such that A <; r 

and r Ii'!)!. 

PROOF. As this is not completely standard, we will give some details. Let xo, x1, ... enumerate 

all AL-fonnulas in such a way that every formula occurs infinitely often. Define r = Un r n• 

where r o = A, and 

r = { r n U { Xn }, ifr n U { Xn} is consistent and r n U { Xn} Ii 'If;, 
n+l r n, otherwise. 

Then 
1. r Ii'!)!: this follows from the claim that forno n, r n I- '!)!,as may be established by induction; 

together with A4 this gives r If .L. 
2. f' ~ r, f' I- c/J:::;. ef> E f: all formulas involved in deriving</> from f' are contained in some 

r ";let k 2:: n be such that </J:: Xk· Then rk+l = fk U { Xk }. Otherwise either rk U { Xk} 

is inconsistent - but then, by the Cut rule, rk would already be inconsistent as r n <; rk and 

r n I- </J, or r k, X k I- 'If;, but then, by Cut again, r k I- 'lj; - which is impossible because of I •. 

3. For every p and every R we have p E r or -ip E r, and [R]..L E r or (R) T E r; we only 

establish the first claim. Assume p :: Xn• -ip :: Xk for some k > n, and that p, -ip f/. rk+i · 
Then 

Let's check each case: if case (i) and (iii) hold, we have that (i) implies that rk, p I- .l by 

Monotonicity; together with (iii) and the Complement rule this gives rk I- .l contradicting 1. 
Case (ii) and (iii): (ii) and Monotonicity give r k, p I- 'lj;. On the other hand, (iii), A4 and Cut 

give rk, -ip I- 'lj;, which then yields rk I- 'ljJ - contradicting 1. Case (i) and (iv): this is the 
mirror image of case (ii) and (iii). Case (ii) and (iv): by Monotonicity (ii) yields rk, p I- '!)!, and 

with the Complement rule and (iv) this gives rk I- 'ljJ - contradicting 1. I 

THEOREM 3.6 
Let A be a set of AL-formulas. Then A I- '!)!in AL iff A I- 'lj; is valid on all AL-models. 

PROOF. This is a two-step proof. First we build a canonical model consisting of Le. sets. Whereas 

in the standard modal case one may need to have an arbitrary number of R-successors for each 

Le. set r, and R, here we need at most one. If needed this successor can be found as follows. 

Suppose (R) T E r, and consider the set !::..' = { ef> : [R]<P E r }. Then !::..' is consistent. 
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Otherwise, we can find </>1, •.. , </>n E !::.' for which </>1, ... , </>,,. I- J_, Applying Distribution* we 
get (R]<f>1, .•. , [R]<f>,,. I- [R]L Using Lemma 3.5 we conclude that [R]j_ Er. But then r I- J_ 

by axiom A 7 and Monotonicity. It follows that there is an I.e. set !::. 2 !::.'; for this one we put 
Rcr !::.. As usual in the second part of the proof one proves a Truth Lemma. I 
REMARK3.7 
Observe that the translated system 5-1 (AL) is a sound and complete axiomatization for validity 
in the language A.C. 

The next system we present is the graded variant of Kn: its language adds the operators (R)n. 
[R]n to that of Kn. 
DEFINffiON 3.8 
The system Gr(Kn) is a logic over the language Form(<J?, { (R),,. : RE n, n E N} ). We 
define [R]n = -i(R}-i; (R)!o</> = -i(R)o</> and (R}!n<f> = (R}n-1</> /\ -i(R}n<f> if n ~ 1. 
Gr(Kn) is normal over { [R]o : R E n }, and on top of that it has the following axioms 
(n,m EN): 

AB (R}n+i<f>-+ (R},,.</J, 
A9 [R]o(</>-+ 1/;)-+ ((R},,.</>-+ (R)r.1/1), 

AlO [R]o-.(</> /\ 1/J) -+ (((R)!,,.</> /\ (R)!m1/J)-+ (R}!n+m(</> V 1/;)). 

Semantically speaking, axiom A9 guarantees that a formula 1/J is true in at least as many points as 
any stronger formula</>. In fact, A9 is even stronger than the Distribution axiom for [R]o.8 AlO 
expresses a notion of additivity: the number of points satisfying one of two mutually exclusive 
formulas is simply the sum of the number of points satisfying each of those formulas separately. 

THEOREM 3.9 (De Caro [8]) 
For all formulas</> E Form(q>, { (R),,.: RE R, n EN}, we have Gr(Kn) I- <f> iff </>is valid 
on all models m. 
PROOF. We sketch De Caro's 2-step proof. To construct a canonical model 

me= (Wc,{Rc}R•enc,Vc), 

let 6 = { r : r is a maximal consistent set}. For each R E R we define a function SuccR: 
e x e -+ w u { w } by 

S (r !::.) = { w, if 3a E S'f/n ( (R}na E r) 
UCCR ' min{n EN: (R)!,,.a E f, a EA}, otherwise. 

Then, the satisfiability set with respect to R for r, SF R(r) is defined as 

SF R(r) = {(A, i) : A E 0, i ~ SuccR(r, A)}. 

This satisfiability set SF R (r) contains 'sufficiently many' copies of maximal consistent sets, as 
is guaranteed by 

(R),,.a Er iff I{(!::., i) E SF R(r) : a E !::. }I> n. (3.1) 

The canonical model then consists of copies of m.c. sets: we = { (!::., i) : for some r E 6, 
and some R, SuccR(r, A) = i }. We stipulate Rc(r,j)(A, i) iff (A, i) E SF R(r), and the 
valuation ye is standard: vc(p) == {(A, i) : p EA}. 

The final step, the proof of the Truth Lemma, is a straightforward induction on </>, where the 
only interesting case of (R}n-formulas is taken care of by (3.1). I 

8 0bserve that the Distribution axiom is not valid for [R]n with n ~ 1. 



Counting Objects 333 

REMARK 3. l 0 

Of the concept languages considered by Donini et al. [9], the language A.CU£CN is the one 

that resembles Gr(Kn) most. However, in that concept language, one can only reason about 

num~ers of_ R-related things, not about numbers of R-related things that satisfy some property 

C. S1mulatmg A..CUE.CN by modal means would require a restriction of the arguments of {R)n 

~o T (for n 2: _1) ·.From a modal logic point of view, this restriction is not a very natural one, but 

m some cases 1t yields an improvement in complexity, as can be deduced from [9]. Nevertheless, 
many researchers in the field don't consider this restriction. 

Let us quickly move on to a graded modal system that does have a counterpart in the A.C­

hierarchy, a system called ALN. ALN-formulas are generated by the following rule 

if> ::= T J J_ J P \ --ip \ r/>1 A 4>2 \ [R)cp I (R)n T \ [R]nL 

So, the ALN-language extends the AL-language by allowing a restricted form of counting. 

DEFINITION 3.11 

The logic ALN has the rules of AL plus the following Complement rule 

Complement r, [R)nj_ f- 4> and r, (R)n T f- 4> :=:;>- r f- </>, 

instead of the second Complement rule of AL; its axioms are those of AL and on top of that 
(n E N): 

All (R)n+1 T f- (R)n T and [R)n T f- (R)n+1 T, 
A12 (R)nj_, (R)n T f- J__ 

To prove axiomatic completeness for ALN we need to slightly modify the notion oflarge consistent 

sets as used in Lemma 3.5: we say that a set of formulas r is a large consistent set for ALN if it 

is a large consistent set in the earlier sense, and in addition 

•for all n and R: [R]nj_ E r or (R)n T E r. 
THEOREM 3.12 

Let A be a set of ALN-formulas. Then A f- 7jJ in ALN iff A f- 7/J is valid on all ALN-models. 

PROOF. This is another two-step proof. We construct a canonical model as in the case of AL 

(Theorem 3.6). But now we may have to add multiple copies of R-successors. This can be done 

as follows. Let no = min(w, max{ n + 1 : (R)n T E r} ). Then we simply add no copies of 

an I.e. set 6.r extending { 4> : [R]4> E r} to our model. 
As usual, the second step consists of a Truth Lemma. The only interesting cases in its inductive 

proof are formulas of the form (R)n T and [R]nj_; here we only consider the first kind. Now, 

(R)n T E r implies that in our canonical model we have added at least n + 1 R-successors of r; 
this implies that 9J1, r f= (R)n T. Conversely: if (R)n T ~ r then, by construction [R]nj_ Er. 
Let m 0 be the minimal index m such that [R]mj_ E r. Then mo S n, and no S max(O, mo) 

by All, where no is defined as before. Hence, at most mo R-successors 6.r of r were added to 

the canonical model. But then 9J1, r f= [R]mo J_ and 9J1, r f= [R)nj_, hence 9J1, r ~ (R)n T.1 

Observe that in ALN, we can only express that there are at least n R-related things, at most 

n R-related things and that all R-related things share some property if;. So the only possible 

conflicts the logic has to deal with, are combinations of (R)n T with [R]k T (n ::'.'.: k), and not 

with more complicated combinations like (R)n4> with (R]k4>- In Section 4 the benefits of this 
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simplification with respect to Gr(Kn) in terms of complexity are stated. 

We now give anexampleofalogicGr1(Kn) in a language 'in between' Kn and Gr(Kn). This 
system is akin to the system QUANT k studied in [ 18], but the latter is designed for reasoning 
about domains without structure. Its introduction is motivated by the idea that having infinitely 
many operators (R)n for one relation R is sometimes too much for one's purposes. Especially 
for applications in areas where formal laws are applied, decisions are often made when some 
fixed number of requirements is fulfilled, like passing an exam when at least l tests have been 
successfully done, for some fixed l ( cf. [16] for further motivation). 

For the language of Gr1(Kn) we suppose that for each R, we have a threshold lR. In 
Gr1 (Kn) we are able to distinguish between the cases that no, some, at least land all R-related 
things have some property. 

DEFINITION 3.13 
Let lR E N (RE R). Gr1(Kn) is a logic for Form(c», { (R)o, (R)1R : RE R} ). It is nonnal 
in { [R]o : RE R }, and, on top of that, it has the following axioms (with i E { O,lR : R E R} ): 

Al3 [R]o(<i'> ~ 'l/!) ~ ((R)i<i'> ~ (R)i1/J), 
A14 /\o~j#::::;tR[R]o-.(1/!j /\ 1./!k) ~ (/\0 ~i::stR (R)o(1/Ji /\ '1/J) ~ (R)1R1/J). 

Axiom Al3 is just the restriction to the proper indices of axiom A9 for Gr(Kn). Axiom Al4 
is an appropriate version of AIO: whereas in Gr(Kn). to conclude (R)1R 1/J, it suffices to find 
mutually exclusive formulas o:, /3, and numbers n, k such that 

[R]o-.(o: /\ /3) /\ (R)n(o: /\ 1/J) /\ (R)k(/3/\1)!) 

holds together with n + k ;::: lR - 1, in Gr1 (Kn) we need to find lR + 1 of such mutually 
exclusive formulas, according to A14. 

THEOREM 3 .14 
For all <P E Form( .P, { (R) 0 , (R)1R : R E R}) we have that Gr1 (Kn) I- <f> iff <f> is valid in all 
models9Jt= (W,{R}Ren,V). 

PROOF. Again, a two-step proof can be given. The construction of a canonical structure can 
be taken from (18, Lemma 3.6]: it consists of at most min(w, max{ lR : R E R}) copies 
of m.c. sets. The relations are defined by putting, for m.c. sets r, t., and i, j E { 0, ... , l R}: 
Rc(r, i)(t., j) iff either [(j = 0) and (6 E t. ::::> (R) 06 E I')] or [(0 ~ j ~ l) and 
(o E t. ::::> (R)1R o E r)]. In this way, copies of rare Re-related either to no, one, or lR copies 
·oft.. 

Then, toprovetheTruthLemma, assume thatVJ1, (r, i) F (R)1n'ljl. To prove that {R)tn 1f E r 
we distinguish two cases: either there is some t. containing 'ljJ and of which l R copies are R­
related to (r, i) and then, by definition of Re, (R)1R 1f E r. The second case is that there is 
no such t. with'!/; E t. and Rc(r, i)(t., l). In this case one can prove a Separation Lemma 
which guarantees that there are pairwise different sets t.0 , t.1 , ... , t.1R such that 'l/J E b.j and 
Rc(r, i)(b.J, 0) 0 S lR). These different m.c. sets contain mutually exclusive formulas 't/Jj for 
which (R)o('l/Ji /\ 'lj;) Er, so that we can use axiom Al4 to obtain (R)1R'l/J. I 

In Gr(Kn). one may build arbitrary complex expressions, using arbitrary (nestings of) rela­
tional operators, each with its own grade, as in '3 relatives, all living in my home town, received 
at least 4 Christmas cards'. This provides us with a very powerful tool, be it that the relations 
are considered to be primitive: 'relatives living in my home town' cannot be expressed in terms 
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of 'relative' and 'living in my home town'. The construct M in AL-languages does allow for 
intersection of roles. We will now sketch some (im-) possibilities to deal with intersections in 
modal languages. To start with the possibilities, let us consider models 9Jl = (W, { R, S, T}, V), 
in which T = R n S. Our first claim is that validity on those models can be axiomatized. 

DEFINITION 3.15 
The logic Gr(K(3)n) is normal over { [R]o, [S]o, [T]o }. On top of axioms A8, A9 and AlO of 
Gr(Kn.) for the operators [R]o, [S]o and [T]0 it has the axioms (with n E N): 

Al5 (T)nef> -+ (R)nef>, 
Al6 (T)nef> -+ (S)nef>· 

THEOREM 3.16 
Gr(K(3)n) f- if> iff if> is valid on all models 9Jl = (W, {R, S, T}, V), in which T =Rn S. 

PROOF. The proof that a consistent formula is satisfiable consists of three steps. We omit the 
second step, the proof of a Truth Lemma. We first build a model along the lines of the proof 
of Theorem 3.9. It is easily verified that axioms Al5 and Al6 guarantee that, for all r and f', 
we have Succr(I', f') $ SuccR(r, f') and Succr(f, f') $ Succs(f, f'), respectively. It 
follows that ye c Re and Tc c sc, and hence Tc c (Re n sc). However, the converse is not 
true in me .9 

The last step of the proof is a construction that transforms 9Jt into a model 9.Jt' = (W', 
{ R', S', T' }, V'), in which T' = R' n S'. The crucial idea behind this transformation is the 
following. We want to get rid of all pairs ( u, v) E W x W that are in R and S, but not in 
T. This can be done by replacing this pair by two pairs ( u, v1), ( u, v2) of which the first is 
added to R and the second to S. Then u is still both S and R-accessible to a 'v-like' point, 
but not Rn $-accessible anyrnore. Formally, we define W' = { (x1, x2) : x E W }, and, 
letting i and j range over {l, 2}, R' = { (xi, y1), (x;, z2) : (x, y) E Rand (x, z) E T }; S' = 
{(xi,Y2), (x;,z1): (x,y) E Sand(x,z) ET}andT'={(x;,yj): (x,y) ET}. We leave 
it to the reader to verify that 9Jt', ( w, i) I= if> and that moreover T' = R' n S'. I 

The construction above is an adaptation of a construction given in [ 16), for a modal logic 
without numeric operators, but with other requirements on the relations R, S and T. Also, in 
dynamic logic, a lot of attention has been paid to axiomatizing intersection of relations [20]. 

In Theorem 3.16 we only axiomatized the very restricted case of 'graded quantification' over 
two relations plus their intersection. The more general case is far more difficult, and cannot 
be handled by a trivial generalization of the construction of Theorem 3.16. To sketch some 
problems that arise, consider the case in which we have relations R1, R2, R3, and all their 
intersections R 12 , R13, R23 and R123. Suppose that we have a pair (u, v) that is only in the 
relations R 1 , R2, Rs, R12, R 13. Since (u, v) 1. R123, we would have to add a pair (u, v') for 
R 1, R 2 , R 12 and a pair ( u, v") for R1, R3, R13. However, in that case we alter the number of 
'v-points' that are R 1 -accessible from u ! Thus what seems to be needed are additional constraints 
that prevent models from containing such unwanted pairs. 

Many powerful techniques are available in modal logic to deal with modally undefinable 
properties like intersection, usually based on additions like extra derivation rules, or special 
propositional symbols. Attempts to axiomatize validity in numerical modal languages with 
arbitrary many relations and intersections probably have to involve these techniques. 

9 Since the set { [T]o.l, (R)ip, (R)n<P ++ (S)n<I> : <jJ E Form(<P, {(R), (S), (T) }) } is consistent, it will 
have the same Re and sc- successors, but no re-successor. 
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Unstructured domains 

Now we move on to languages for domains without structure, or, as pointed out above, domains 
with a very special structure. This fact that we have more constraints on the binary relation 
is mirrored by the addition of special axioms to the formal systems for those languages; these 
axioms force the relation to have the desired properties. 

Saying that all things are related to each other requires only one binary relation: hence, from 
now on, we will just write 0 for [R) and 0 for (R). 

DEFINITION 3.17 
The logic 85 over Form(cI>, { 0}) is normal over { 0} and has the following axioms on top of 
that: 

A17 D<P-+ c/>. 
A18 Oc/> -+ D 0 </>. 

Remember that our modal formulas are evaluated at some point x in a model !m. But then 
Al 7 just expresses that if all things in the model have some property </>, x must also have this 
property. According to Al8, if there is a <,l>-thing, then where ever one evaluates formulas, there 
must be some <t>-point. Below we show that 85 axiomatizes validity on all structures of the 
form (W, R, V), in which R is the universal relation W x W. This implies that the 85-box 
and -diamond are the modal counterparts of the universal and existential quantifiers, respectively. 
Hence, 85 is a suitable formalism for reasoning with expressions like (I. I) (cf. [13, 18] for further 
uses of 85 along these quantificational lines). 

THEOREM 3.18 
85 I- <I> iff c/> is valid on all structures !m = (W, { R }, V) in which R is the universal relation. 

PROOF. The proof consists of three steps. As before, in the first two steps the Henkin construction 
is used to build a model in which </> is satisfied, and a Truth Lemma is proved. However, the 
canonical relation Re of this model is only an equivalence relation. This property is forced by 
the additional axioms Al 7 and Al8. As an example we show that Re is symmetric. Suppose 
Rcr .6.. If not Re .6.I', there is some 'I/; such that 01/; E ~.but 'I/; ~ r. Since r is an m.c. set, we 
have -.'lj; E r. But then O-.cj> E r (by Al 7). Axiom A18 then guarantees that 0 0 -.'lj; E f, and 
by definition of Re, O-.'I/; E ~- This contradicts our assumption that D'I/; E .6.. 

The third and last step in the proof is to tum this canonical model into a universal one. We 
define a model 9Jl', with W' = { y E W : Rxy } , where x is some state verifying ef>, and let R' 
and V' be the restrictions of R and V to this domain W'. By standard modal arguments WL, x 
verifies the same modal formula as 9Jl', x; moreover, the relation R' is universal on the latter 
model! I 

From the point of view of more traditional quantifier formalisms dealing with unstructured 
domains, 85 has at least two non-standard features. Firstly, 85 allows for arbitrary deep nestings 
of modal operators (or quantifiers) - in the traditional quantifier formalisms this is usually not 
allowed for. But, by a folklore result, over 85 each formula is equivalent to one without nestings 
of operators. A second feature of 85 that is not usually present in traditional quantificational 
formalisms, is that proposition letters (or variables over subsets of the domain) need not occur 
inside the scope of a modal operator (or quantifier). The latter feature suggests that restrictions 
on admissible SS-formulas are a natural thing to consider here. Many (generalized) quantifier 
formalisms designed for reasoning with all and some may actually be viewed as fragments of 85 
in this sense. 
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In this paper we consider two such fonnalisms. To introduce the first one, let us agree 

that a syllogism is an inference scheme with three quantified sentences, two premisses and one 

conclusion, using three variables, all three occurring in the premisses and one (the 'middle term') 

occurring in the premisses but not in the conclusion: 

where the Q; range over the quantifiers all, some, no and not all. 
Let the propositional syllogistic language be propositional logic with atomic sentences of the 

form Q XY, where Q E {all, some } . In this language syllogisms may be written as implications. 

A model for this language is given by a domain W and an assignment V of subsets of W to the 

variables, and the truth conditions are the obvious ones. 
Clearly, the propositional syllogistic language 'is' a fragment of S5 that contains formulas 

generated by the following rule (for proposition letters p, q, .. . ): 

x ::= ()(p /\ q) I D(p-+ q) I ....,x I X1 /\ X2· 

The following axiomatization of validity in the above language may be found in [24]. (We have 

included the modal transcription of the axioms in the right-most column.) 

A19 
A20 
A21 
A22 
A23 

allXX 
all XY /\all YZ-+ all X Z 
some Y X /\ allY Z-+ some X Z 
some XY --+ some Y X 
-,some X X --+ all XY 

D(p-+ p), 
D(p--+ q) /\ D(q--+ r)-+ D(p--+ r), 
()(q /\p) /\ D(q-+ r)--+ O(p /\ r), 
O(p /\ q) -+ ()(q /\ p), 
...., () (p /\ p) --+ D(p--+ q). 

Let SYLL be the theory with A19-A23 as axioms, plus some standard axioms for propositional 

logic, and Modus Ponens as its sole rule of inference. The following may be proved by a 

Henkin-type argument. 

THEOREM 3.19 
SYLL completely axiomatizes validity in the propositional syllogistic language. 

The next subsystem of S 5 we consider here is in some ways even more constrained than SYLL. 
Atzeni and Parker [2] thoroughly study a system, that we call AP, for binary set containment 

inference in knowledge representation, that is, a system for determining the consequences of 

positive constraints X ~ Y and negative constraints X n -Y =J. 0 on sets. The language of 

binary set containment consists of formulas of the form 'X isa Y', and 'not ( X isa Y) ', where 

X, Y are either T, .l, primitive variables, or obtained from primitive variables by application of 

non, where 

non(X) = { i, 
non(X) 

ifX = T, 
if x = 1-, 
if X is of the form non(X'), 
otherwise. 

This language corresponds to the fragment of S5 that is generated by the rule 
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where l 1, l2 are literals of the form p or"' p (for pa proposition letter), and where ,..,, <P is defined 
analog~usly to non(X).10 'X isa Y' is true in a model (W, V) ifthe set V(X) denoted by X 
is a subset of the set V (Y) denoted by Y. 

As with AL axiomatizations for binary set containment cannot have the usual form of a set of 
implicational axioms plus some rules. Therefore, the proof system we are about to present, has 
rules only. 

DEFINmON 3.20 
Let X, Y, ... be as before. Then X int Y is short for not(X isa non(Y)). Let AP be the 
theory with the following inference rules: 

A24 
A25 
A26 
A27 
A28 
A29 
A30 
A31 
A32 
A33 
A34 

X int Y I- X int T 
X int Y I- X int X 
X int Y I- Y int X 
X int Y, Y isa Z I- X int Z 
X int non(X) I- Y isa Z 
X int non(X) I- Y int Z 
I- X isa T 
I- X isaX 
X isa Y, Y isa Z I- X isa Z 
X isa Y I- non(Y) isa non(X) 
X isa non(X) I- X isa Y 

THEOREM 3.21 (Atzeni and Parker [2]) 

.., 0 (p-+ "'q) I-.., 0 (p-+ -T), 

.., 0 (p -+ "'q) I- .., 0 (p-+ -p), 

.., 0 (p-+ "'Q) I-.., 0 (q-+ -p), 

.., 0 (p-+ "'q), O(q-+ r) I-..., 0 (p-+ "'r), 

.., 0 (p-+ p) I- D(q-+ r), 

..., D (p-+ p) I-.., D (q-+ -r), 
I- D(p-+ T), 
I- O(p-+ p), 
D(p-+ q), D(q-+ r) I- D(p-+ r), 
D(p-+ q) I- D("'q-+ "'P). 
D(p-+ "'P) I- D(p-+ q). 

The system AP completely axiomatizes validity in the language of binary set containment. 

PROOF. As the language of binary set containment is very restricted the usual Henkin-method does 
not seem to be applicable. Instead, Atzeni and Parker [2] use a quite Jong alternative argument. 
It is also possible to use semantic tableaux, but this yields an even longer proof. I 

Let us now add the graded modalities to SS, and obtain the last 'main' language of this paper, 
one that is suitable for reasoning about finite quantities of unstructured sets: Gr(S5). 

DEFINmON 3.22 
The modal logic Gr ( S 5) over the language Form ( ~, { 0 n : n E N}) is nonnal in { Do } and 
has moreover the following axioms (n EN): 

A35 Do(</;-+ 1/1)-+ (On<P-+ On'l/J), 
A36 Do-,(</;/\ 'l/J)-+ (O!n<fa /\ 0!.,..1/J-+ Oln+m(</J V 1/1)), 
A37 On+l <P -+ On<P. 
A38 Do</>-+</>, 
A39 On<P -+ Do On </J. 

The axioms A38 and A39 added to Gr(Kn) force the relation R 0 in the canonical model to be 
an equivalence relation. 

THEOREM 3.23 ([I I, 8]) 
For all formulas</> in the language of Gr(S5), we have Gr(S5) I- <P iff <P is valid on all models 
(W,V). 

10Hence, unlike the earlier syllogistic language the language of binary set containment does allow for some structure 
in the 'quantified variables' p and q. 
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PROOF. As with S5 the proof consists of three steps. First, we construct a canonical model using 
the method of Theorem 3.9, and prove a Truth Lemma. Finally, by using axioms A38 and A39 
it may be shown that the relation Re in the canonical model is reflexive, and satisfies 

for all m.c. sets ri. r2, D.. From this it follows that Re-related sets r1 and r 2 will be Re-related 
to the same number of copies of any D.. Hence, Re must be an equivalence relation. But then, 
by taking we = {D. : SuccR(r, D.) :f. 0} for some r containing the fonnula </>we want to 
satisfy, we obtain a universal model that verifies <Pat r. I 

As with S5 the move to study fragments of Gr(S5) can be well-argued for (cf. the remarks 
following Theorem 3.18). Van der Hoek and De Rijke (18] study a system called Gr(Bin) which 
is in fact fonnulated in a fragment of the Gr(S5)-language. To define its syntax, assume that we 
have primitives ( X, Y, ... ) built up from unary predicate letters Po, P1 , ... using complement 
(f and intersection n. The atomic formulas have the form moren XY ('IX n YI > n'), with 
n E N and X, Y primitives. We interpret such fonnulas on models 00? = (W, V) only in a 
global manner: 

00? f= moren XY iff jV(X) n V(Y)I > n. 

A useful abbreviation is all but ... XY := -imore ... xyc. Further, precisely ... XY is defined in 
the obvious way. Notice that this language corresponds to the fragment of Gr(S5) that is given 
by the rule x ::= o ... (</> /\'I/;) I -ix I X1 /\ x2. for</>, 'I/; purely propositional fonnulas. We obtain 
an axiomatization Gr(Bin) for this language simply by removing from the Gr(S5) axioms 
A35-A39 all axioms that alter the number of nestings of operators (that is, A38 and A39). This 
plus an axiom governing the way in which the operators more ... combine with conjunction, is 
sufficient. 

DEFINmON 3.24 
The logic Gr(Bin) has the rules Modus Ponens, Substitution and a restricted version of Neces­
sitation: if the primitive X (considered as a propositional formula) is a propositional tautology, 
then all but0 T X is a theorem of Gr(Bin). Besides the axioms of propositional logic (on the 
level of formulas now) its axioms are the following (we have include.d their Gr(S5 )-equivalents): 

A40 all buto XY -t (more ... T X -t moren TY) 
O(p -t q) -t (On (T /\ p) -t O(T /\ q) ). 

A41 all buto xye -t (precisely ... T X /\ preciselym TY -t preciselym+n T(X UY)), 
O(p -t -iq) -t (O! ... (T /\ p) /\ O! ... (T /\ q) -t Olm+n(T /\ (p v q))), 

A42 moren+i XY -t more ... XY, On+i(p/\q) -t O ... (p/\q), 
A43 more ... XY ++more ... T(X n Y), On(P /\ q) ++ On(T /\(pi\ q)). 

THEOREM 3.25 ((18]) 
Let</> be a formula in the language of Gr(Bin). Then, Gr(Bin) I-</> iff </>is valid on all models. 

PROOF. The proof consists of two steps. In the first one a canonical model is constructed. Since 
this construction diverges from the ones used so far, we will give some details. 

Let <P be a consistent formula in disjunctive normal form. At least one of its disjuncts 
'I/; must be consistent. To build a canonical model for this 'lj;, we restrict ourselves to the 
unary predicate letters occurring in 'lj;. We may assume that 'I/; is a conjunction of formulas 
of the form (-i)(more ... XY), containing only the predicate letters P0 , ... ,Pk. Let N be 
the greatest number for which moreN-l XY is a subformula of 'lj;. We use Ps (s ::; 2k) 
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for fonnulas (-i)Po /\ ... /\ (-i)Pk, and Ut (t S 22k) for disjunctions of such Ps's. Define 
Form.,p = { (-i)moreUiUj : n;:::; N, i,j ;:::; 22k}. Let 'II be a subset of Form,µ that is m.c. 
in Form.p and contains all conjuncts of 7/J. This set W contains all the instructions we need to 
build our model me. First we associate with each Ps a set Ils such that Ils contains exactly the 
positive atoms of Ps. Then we put all pairs (Il8 , n) in we for which moren TPs E w, and 
stipulate that (Il8 , n) E vc(Pi) iff Pi E IIs. (0 Sn SN, s S 2k). 

The subsequent proof of the Truth Lemma is not quite trivial; we refer the reader to [ 18, Lemma 
3.6] for details. I 

4 Complexity 

Before establishing complexity results for the axiom systems discussed in Section 3, we review 
some facts needed to understand these results. 

The complexity classes involved are among P, NP, PSPACE and EXPTIME: P is the class of 
problems decidable in detenninistic polynomial time, NP are the problems decidable in non­
deterministic polynomial time, PSPACE are the problems decidable in detenninistic polynomial 
space, and EXPTIME are the problems decidable in deterministic polynomial time. The relation 
between these classes is: P ~ NP ~ PSPACE ~ EXPTIME; the only known strict inclusion 
is P C EXPTIME. A reduction is a polynomial time computable many-one function. A 
problem L is X-hard (for X E {NP, PSPACE, EXP TIME}) if for every problem in X there 
is a reduction to L. A problem is X-complete, for X as before, if it is both in X and X-hard. 
(Notice that it makes no sense to talk about P-completeness: given our notion of reduction, being 
in P is the least property we can measure.) 

One more detail before we start: we assume that the operators (R)n. [R]n have their indices n 
coded in unary (that is, the integer n is assumed to be represented by a string of length n). This 
yields the following definition of the length #<P of a formula </J: 

#p = 
#(-i</J) = 

Structured domains 
THEOREM4.l 

1 

1 + #<P 

Satisfiability in Kn is PSPACE-complete. 

#(</J/\7/J) 
#((R)n<P) 

= 1 + #<P + #'l/J 
= 1 + n + #r/>. 

PROOF. Ladner [19] proves the PSPACE-completeness of satisfiability in K'R., in case IRI = 1. 
But, as Halpern and Moses [14] note, Ladner's result extends to arbitrary IRI ~ 1. I 

The strong syntactical restrictions in the AL-language may have forced us to use a non-standard 
approach in proving the completeness of AL in Section 3-complexity-wise it has the following 
pleasant consequence: 

THEOREM4.2 
Satisfiability in AL is in P. 

PROOF. Immediate from [9, Theorem 6.2]. 

THEOREM4.3 
Satisfiability in Gr(Kn) is PSPACE-complete. 

I 
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PROOF. As Gr(Kn) extends Kn PSPACE-hardness is obvious by Theorem 4.1. We now 
sketch an algorithm for checking satisfiability in Gr(Kn); the algorithm is a modification of an 
algorithm used by Donini et al. [9] to determine the complexity of ACCN'R; for full details the 
reader is referred to the latter paper. 

By rewriting every formula in negation normal form (NNF), we may assume that every formula 
has negation signs only in front of proposition letters. (This rewriting can be done in linear time.) 

Our algorithm tries to build a model by operating on finite sets of constraints 'x I= </>' and 
'xRy'. The algorithm starts with a constraint set (c.s.) S = { x f= </>},where</> is a formula in 
NNF that we want to satisfy. Subsequent steps add constraints to S until a 'clash' is generated, 
or a model satisfying </> can be obtained from the resulting set. 

Let nR,<1>,s(x) be the number of variables y such that xRy, y f= </> E S; [z/y]S is the c.s. 
obtained from S by replacing each occurrence of y in S by z; this replacement is said to be safe 
if for every variable x, formula</> and relation symbol R with x f= (R)n</>, xRy, xRz E S we 
have nR,</>,[z/y]s(x) > n. A clash is a c.s. extending one of { x f= .L }, { x f= p, x I= -.p }, 
{ x I= [R)o.L, xRy }, or { x f= (R)m</>, x f= [R]n"'</> }, where-</> is -i</> in NNF and m ~ n. 

The algorithm is based on the following completion rules: 

I. s -t i\ { x F </>, x I= 1j;} u S, 
if (x f= </> t\ 1,b) ES and x f= </>, x I= 1,b ~ S; 

2. S -tv { x f= X} US, 
if x I=</> V 1,b E S, neither x f= </> E S nor x f= 1,b E S, and x = </>or x = 1,b; 

3. S -t> {xRy,y I=</>} u S, 
if x f= (R)n</> E S, nR,<1>,s(x) $ n and y is a fresh variable; 

4. -t:::;o { y f= </>}US, 
if x f= [R]o</>, xRy E Sandy f= </> fl. S; 

5. S -t< [z/y]S, 
if x ~ [R]n</>, xRy, xRz ES, nR,t/>,s(x) > n > 0 and replacing y by z is safe in S. 

A c.s. is complete if no completion rules can be applied to it. A clash-free complete c.s. S derived 
from { x I=</>} represents a model of</>, whose elements are the variables in S, whose valuation 
is defined by y E V(p) iff (y f= p) E S, and whose relations are defined by xRy iff xRy E S. 
The decidability and finite model property ofGr(Kn) now follow immediately from 

CLAIM I. Let</> be in NNF. Then</> is satisfiable in Gr(Kn) iff { x f= </>}can be transformed 
into a clash-free complete c.s. using the above rules 1.-5. 

To get the PSPACE upper bound for Gr(Kn)-satisfiability requires replacing rule 3 by 3' below. 

3'. S -t>' {xRy,y I=</>} u S, 
if x I= (R)n</> ES, nR,<1>,s(x) $ n, there are nou,x' (x' ::f. x) such thatuR'x', uR'x ES 
for some R' and x' has successors in S, and y is a fresh variable. 

The idea behind rule 3' is the following. For a variable x, and a relation symbol R rule 3' 
produces at most one successor y with y f= </> that has itself successors. 

Let a trace of { x I= </> } be a. c.s. obtained from { x f= </> } by application of l, 2, 3', 4, 5, to 
which non of the latter rules applies. 
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CLAIM 2. 

•The length of a derivation starting from { x p </;}involving (only) rules 1, 2, 3', 4, and 5 is 
bounded by the length #<P of </J. 

• Every complete c.s. extending { x p </;} is the union of finitely many traces. 
• If Sis a c.s. extending { x p </>},and Tisa finite set of traces such that S = UrET T, then 

S contains a clash if! some T E T contains a clash. 

Based on this claim it is straightforward to write an algorithm that generates all complete c.s.s 
derivable from { x p <P } while keeping only one trace in memory at a time. If pointers are used 
to represent the subformulas of</; occurring in a trace, the algorithm needs space at most cubic in 
the size of</; to store a trace and the necessary control information. I 
REMARK4.4 
Notice that the first item of the above Claim 2 would not be true if we had not assumed that 
numbers are coded as unary strings. If they are coded in binary the number of successors of a 
given variable :r could be exponential in size of the input. We conjecture that binary coding will 
yield an EXPTIME-completeness result for Gr(Kn)-satisfiability. 

As with the earlier system AL, the heavy syntactic restrictions in ALN have the following 
pleasant consequence: 

THEOREM 4.5 ([9]) 
Satisfiability in ALN is in P. 

COROLLARY 4.6 
Satisfiability in Gr1(Kn) is PSPACE-complete.11 

THEOREM 4.7 
Satisfiability in Gr(K(3)n) is PSPACE-complete. 

PROOF. The proof is a variation on the proof of Theorem 4.3. Instead of considering constraints 
xRy one has to look at sequences of constraints xRy, xSy, xTy, where T = Rn S. Cf. [9, 
Theorem 3.2] for details. I 

Unstructured domains 

We now turn to the complexity oflogics designed to reason about unstructured domains. Throwing 
out structure yields an improvement in complexity as compared to Theorem 4.1: 

THEOREM 4.8 ((19]) 
Satisfiability in S5 is NP-complete. 

PROOF. Let </> be an S5-formula. We first prove that </;is satisfiable iff it is satisfiable in a model 
with at most 1 + #<P elements. Let </J be satisfied in an 85-model 9J1 = (W, V). We will use 
the subformulas of <P as instructions for extracting a set of elements W' from W that will serve 
as the domain of the desired small model. A function f is defined inductively on the instances of 
subformulas of</>. 

1. Choose some w E W with 9J1, w f= c/J; put f( </>) = { w}. 

11 This result would not be affected by converting to binary coding. 
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Now suppose that r( 'lj;) has already been defined; then 

2. r(x) = r('lf;) if'l/J = •x; 
3. r(x1) = r(x2) = I'('l/J) if'l/J = x1 A x2; 
4. r(x) = r(1f;) if'l/! = Onx and m,w ~ 'l/J; 
5. if 'ljJ ::: OnX and 9J1, w I= 'l/J, then choose r(x) in such a way that 9J1, I'(x) I= X· 

Define W' to be the union of all I'( 'ljJ), where 'l/J ranges over subformulas of</:>. Put V' = V f W', 
and 9.Jt' = (W', V'). Then IW'I ::; 1 + #</:>. Also, one may establish inductively that for all 
subformulas 'l/; of</:>, and all v E W n W', we have m, v I= 1f; iff !m', v I= 'lj;. 

To show that satisfiability in S5 is in NP, first guess a model with at most 1 + #</:> elements, 
and then check the truth of </:> in some state in this model. This guessing and checking can be 
'done' in polynomial time. NP-hardness is obvious as 85 extends propositional logic. I 
COROLLARY 4.9 

Satisfiability in 8YLL is NP-complete. 

PROOF. As the system SYLL is a subsystem of 85 its satisfiability problem is in NP by Theo­
rem 4.8. But it is also NP-hard because it contains ordinary propositional logic. I 

When viewed as a fragment of the SS-language the language of AP is a very restricted one with 
limited expressive power. But these strong restrictions do pay off in terms of complexity: 

THEOREM 4. JO 
Satisfiability in AP is in P. 

PROOF. Atzeni and Parker [2] show that derivability in AP is in P. Thus to test for (un-) satisfia­
bility one can test (in polynomial time) whether not(</:>) is derivable. I 
THEOREM 4.11 

Satisfiability in Gr(85) is NP-complete. 

PROOF. This is a slight variation on the proof of Theorem 4.8. Let </:> be a Gr(S5)-formula. 
We prove the result by first showing that </:> is satisfiable iff </:> is satisfiable in a model with at 
most 1 +#</:>elements. Let</:> be satisfied in a Gr(S5)-model 9J1 = (W, V). We will use the 
subformulas of </:> as instructions for extracting a set of elements W' from W that will serve as 
the domain of the desired small model. A function r is defined inductively almost as in the proof 
of Theorem 4.8. Clauses I, 2 and 3 are the same, while 4 and 5 are replaced by 

4. r(x) = I'('l/l) if'l/1 = Onx and m,w ~ 'l/J; 
5. if'!/; = OnX and 9.Jt, w I= '!/;, then choose n + 1 distinct points W1, ••. , Wn+i such that 

9J1, W; F X (1 :5 i :5 n + 1), and put r(x) = { W1, ... , Wn+l }. 

The model ml' = (W', V') is defined as in Theorem 4.8. Then IW'I ::; 1 + #</:>, and, for all 
subformulas '!/;of</:>, and all v E W n W', we have m, v I= 'ljJ iff 9.Jt', v I= 'lj;. It follows that 
satisfiability in Gr(85) is in NP. Since Gr(S5) extends 85 this implies the NP-completeness 
~~ I 
REMARK4.12 
As in Theorem 4.3, the result of Theorem 4.1 I depends in an essential way on our encoding of 
numbers as unary strings. Using binary coding we have only been able to show that Gr(85)­
satisfiability is in PSPACE instead of NP [18, Theorem 3.11 ]. In fact, we conjecture that assuming 
binary coding of numbers the problem will be PSPACE-complete. 
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The lower bounds needed in the next corollary are immediate from the fact that the systems 
Gr1(S5) and Gr(Bin) both contain propositional logic, while the upper bounds are given by 
Theorem 4.11. The result for Gri(S5) below would not be affected by converting to binary 
coding of numbers. 

COROLLARY 4.13 
The satisfiability problems for Gr1(S5) and Gr(Bin) are NP-complete. 

5 Concluding remarks 

This paper is a first step towards carrying out a suggestion formulated in [ 18], namely to study the 
hierarchy of formal systems developed to reason about finite cardinalities of subsets of a domain. 
It combines results on such systems from generalized quantifier theory (GQT), modal logic (ML) 
and knowledge representation (KR). 

Of course, the general interest in and framework for the counting expressions considered here, 
derives from GQT. We have used ML to obtain axiomatic completeness results. In that way 
ML has contributed to the theoretical understanding of formalisms from KR; in addition we 
think that this work on axiomatic aspects of (generalized) quantification over structured domains 
has appeared as a natural extension of existing work in GQT. In tum, results from KR settled 
complexity issues for a number of languages in ML and GQT, fitting in nicely with the growing 
sensitivity towards complexity issues in the later two fields. 

What's next? We have only given axiomatic completeness results for a small number of concept 
languages here; finding (modal) axioms for the remaining languages considered by Donini et 
al. [9] is still an open problem. We think that, given the axiomatizations of this paper, finding 
those axioms will be an easy matter in many cases. But for some concept languages the search 
for a complete axiomatization may involve enriching the (modal) language with 'non-standard 
means' such as constants or special derivation rules, as suggested in our remarks following 
Theorem 3.16. This, in tum, may lead to new complexity issues. 

Moreover, we have only looked at first-order counting expressions here: higher-order quanti­
fiers like 'many' and 'most' are the next obvious candidates for an analysis in the spirit of this 
paper. In [18] a first step in this direction is made, but a lot still remains to be done, and this will 
most likely involve the model theoretic work done in GQT on such irreducible binary quantifiers 

.(as found in [5, 25]). 
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