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ABSTRACT

In this paper we analyse advective transport of polymers, crosslinkers and gel, taking into account non-equilibrium

gelation, gel adsorption and crosslinker precipitation. In absence of di�usion/dispersion the resulting model consists

of hyperbolic transport-reaction equations. These equations are studied in several steps using mainly analytical

techniques. For simple cases, we obtain explicit travelling wave solutions, whereas for more complicated cases we

rely on analytical techniques to analyse the problem qualitatively. Finally, a numerical solution for the full system

of equations is obtained. The results developed in this study can be used to validate numerical solutions obtained

from commercial simulators.
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1. Introduction

Mature oil �elds (oil �elds are often referred to as reservoirs) su�er from excessive water

production. Large water production creates serious environmental problems concerning

water waste disposal. Additionally the operating cost increase and large oil reserves re-

main unproduced. A major cause for high water production is water-chanelling through

high permeability layers in reservoirs.

To minimise water production, polymers and crosslinkers in aqueous solution are injected,

aiming at decreasing the permeability of well-permeable layers. Polymers react with

crosslinkers and then form gel (gelation). The gels used are hydrophilic, i.e. they easily
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dissolve in water and hardly in oil. Consequently, the water viscosity increases thereby re-

ducing water mobility, whereas the oil viscosity and mobility remain practically unchanged.

The gel is adsorbed on the skeleton of the reservoir (gel placement). As a consequence:

� webbs may arise from bridging adsorption [8],

� the ow area of the pore may decrease due to layer formation on the skeleton of the

porous medium.

Both processes cause a decrease of the permeability. Since water ows near the skeleton

of the porous medium, the �rst process e�ects mainly the relative permeability of water.

Zitha et al [9] calculated changes of the relative permeabilities of oil and water through a

gel treated porous medium. The di�erence found was signi�cant.

Crosslinker precipitation depends crucially on the acidity of the uid. High acidity results

in high crosslinker solubility which in turn prevents precipitation. When the degree of

acidity decreases, the crosslinker solubility decreases as well and precipitation will take

place. This was shown by Stavland et al [5]. Under practical circumstances one uses an

acetatic preush to increase the acidity and hence to reduce the crosslinker precipitation.

Stavland et al [5] give a detailed description of the chemical processes that occur during

gel placement in porous media. In this paper we investigate the consequences of these

processes when transport takes place. For this purpose we formulate a transport-reaction

model taking into account:

1. constant injection rate,

2. convection of polymers, crosslinkers and gel,

3. gelation reaction, i.e. polymer + crosslinker $ gel,

4. crosslinker precipitation,

5. gel-adsorption of the gel in the reservoir.

The assumption of constant injection rate, when combined with uid incompressibility and

simple ow geometries, implies a given stationary discharge �eld. Hence we do not take

into account the inuence of gel placement on the uid ow. This will be treated in Part 2

of this work where we consider constant pressure boundary conditions in a heterogeneous

reservoir. Note that we disregard e�ects of di�usion and dispersion in this model, since

the porous medium is assumed to be homogeneous and isotropic.

The aim of the paper is to understand the e�ect of the various chemical processes during

gel placement in porous media. We do this by employing mainly analytical methods. De-

pending on the degree of complexity we present explicit solutions, qualitative statements

about the behaviour of solutions and �nally a numerical solution technique.
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In Section 2 we formulate a model for gel placement in porous media. We give explicit solu-

tions and qualitative statements about solutions in Section 3. Conclusions are summarised

in Section 4.

2. Model Formulation

In this section we formulate a model for gel placement in porous media and we treat the

transport, chemical processes and model equations in separate subsections. We consider a

radially symmetric reservoir of constant thickness, H (m), and of in�nite horizontal extend.

At the central axis a well with radius rw (m) is present which extends over the full thickness

of the reservoir. Water containing polymers and crosslinkers at constant concentrations

ĉp (mol=m
3) and ĉx (mol=m

3), respectively, is injected through the well into the reservoir

at a constant rate Qin (m3=s). Initially polymers, crosslinkers and gels are absent in the

reservoir.

2.1 Transport

Let the porous medium be homogeneous and isotropic with porosity �. Further, let the

uid be incompressible. Assuming the ow to be uniformly distributed across the thickness

of the reservoir, the speci�c discharge (radial component) is given by:

q = q(r) =
Qin

2�Hr
; r > rw; (2.1)

where r (m) denotes the distance towards the central axis of the reservoir.

2.2 Chemical Processes

First we consider the gelation process:

K(P )aq + L(X)aq $ (G)aq;

Here the subscript ()aq denotes that P , X and G are in aqueous solution and P , X and

G denote polymers, crosslinkers and gel respectively. Their concentrations cp; cx and cg
respectively are expressed in mol=m3. Further K and L are the stoichiometric parameters

of the gelation reaction. Following Stavland et al [5] we disregard gel-decay with respect

to gelation. This assumption implies that gelation continues until either crosslinkers or

polymers are consumed. The gelation rate, J (mol=m3s), is given by:

J = J(cp; cx) = a � cp
kcx

l; (2.2)

where a (
h

m3

mole

ik+l+1
1

s
) denotes the gelation rate constant. The exponents k, l do not

necessarily have to be equal to K and L.

Next we consider crosslinker precipitation. Crosslinkers (X) can react with OH-ions ac-

cording to the following reaction:

(X)aq + �(OH)aq $ X(OH)� (s):
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Here (s) indicates that the reaction product is a solid. Let Ax be the precipitated crosslinker

concentration (mol=m3). According to Stavland et al [5] the reaction rate in presence of

precipitated crosslinkers is given by

@Ax

@t
= k1

�
(cxc

�
OH)

�
� k2

�
:

Here � > 1 is a precipitation parameter introduced by Stavland et al [5]. Further k1

(
�
mole
m3

�1��(�+1) 1

s
) and k2 (

�
mole
m3

��(�+1)
) are reaction rate constants. Suppose that initially

Ax = 0 and (cxc
�
OH)

�
< k2 then above equation gives a @Ax

@t
with a negative sign and

hence Ax becomes negative as well. Therefore we extend above equation with the results

of Knabner & Van Duijn [3] to obtain

@Ax

@t
= k1 � (cx(cOH)

�)� � k2 � w); (2.3)

where the function w is introduced by Knabner & van Duijn [3] to quarantee that Ax

remains nonnegative at all stages. This function satis�es w 2 H(Ax) with:

H(s) =

8<
:

0; s < 0

2 [0; 1]; s = 0

1; s > 0

In Section 3 we show that this formulation describes precipitation and dissolution properly.

Then we will see that w = r as Ax = 0 and r < 1. Equation (2.3) can be rearranged, with

Ksol := (k2
k1
)
1
� , into:

@Ax

@t
= k2 �

 �
cxc

�
OH

Ksol

��

� w

!
=: kp (r(cx; cOH)� w) : (2.4)

The constant Ksol is the solubility product. In Section 3 we will show that crosslinker

precipitation occurs if and only if:

cx � c
�
OH > Ksol: (2.5)

Finally we consider gel adsorption. Let A(r; t) denote the concentration of adsorbed gel,

expressed in mole=kg porous medium. The non-equilibrium adsorption rate is modelled

by:

@A

@t
= ka � (�(cg)� A): (2.6)

where ka (1=s) is the gel adsorption rate constant and �(cg) (mol=kg) the gel adsorption

isotherm.
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2.3 Model Equations and scaling

Here we formulate the mass balance equations for the chemical species. Since the con-

centrations at the well are constant over the height of the reservoir and gravity can be

disregarded, all concentrations are functions of the horizontal distance r and time t only.

Consequently, we have for r > rw and t > 0, the mass-balance equations:

� Polymers, subject to convection and gelation:

�
@cp

@t
+

~q

r

@cp

@r
= ��KJ(cp; cp); (2.7)

where ~q = Q

2�H
.

� Crosslinkers, subject to convection, gelation and precipitation:

�
@cx

@t
+

~q

r

@cx

@r
= ��

�
LJ(cp; cx) +

@Ax

@t

�
: (2.8)

� Gel, subject to convection, gelation and gel adsorption:

�
@cg

@t
+

~q

r

@cg

@r
= �MJ(cp; cx)� �s(1� �)

@A

@t
: (2.9)

� OH-ions, subject to convection and precipitation:

�
@cOH

@t
+

~q

r

@cOH

@r
= ���

@Ax

@t
: (2.10)

Here, the crosslinker precipitation rate (@Ax

@t
), gel adsorption rate (@A

@t
) and gelation rate

(J) are given by equations (2.4), (2.6) and (2.2), respectively.

Introducing the transformation x = Q�

4�H
(r2�r2w) and rede�ning A := �s

1��

�
A and �(cg) :=

�s
1��

�
�(cg), we arrive at the set of equations (with w 2 H(Ax)):

(P1)

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

@cp

@t
+
@cp

@x
= �K � J(cp; cx)

@(cx + Ax)

@t
+
@cx

@x
= �L � J(cp; cx)

@(cg + A)

@t
+
@cg

@x
= J(cp; cx)

@(cOH + �Ax)

@t
+
@cOH

@x
= 0

@A

@t
= ka � (�(cg)� A)

@Ax

@t
= kp � (r(cx; cOH)� w)
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which we need to solve, subject to the initial condition for x > 0

(IC)

8<
:

cp(x; 0) = 0; cx(x; 0) = 0; cg(x; 0) = 0;

cOH(x; 0) = c0OH ; A(x; 0) = 0; Ax(x; 0) = 0;

and boundary condition for t > 0

(BC)

8<
:

cp(0; t) = ĉp; cx(0; t) = ĉx;

cg(0; t) = 0; cOH(0; t) = ĉOH :

3. Analysis of the model

As a �rst observation we note that the equations for the (precipitated) crosslinkers, poly-

mers and OH-ions are independent of the (adsorbed) gel concentration. Therefore we can

treat these equations separately.

First we consider crosslinker precipitation from equation (2.4). Subsequently we analyse

the pro�les of (precipitated) crosslinkers, polymers and OH-ions. Finally we treat several

stages of gel-adsorption.

3.1 Crosslinker precipitation

In this section we show that equation (2.4), and in particular the introduction of the func-

tion w, describes all properties of the precipitation-dissolution process away from possible

shock curves in the x; t-plane. For convenience we write r = r(cx; cOH) in equation (2.4)

and we drop the space dependence in Ax. We show �rst that Ax(0) � 0 implies Ax(t) � 0

for all t > 0. Arguing by contradiction, suppose Ax(t) < 0 for some t > 0. Since Ax

continuously depends on t, then exists 0 � t < t such that Ax(t) < 0 for all t < t � t and

Ax(t) = 0. Next we multiply (2.4) by Ax and integrate the result over the interval (t; t).

This gives

0 �
A2
x(t)

2
= kp

Z t

t

(r � w)Axdt: (3.1)

Since r � 0 and w = 0 on (t; t), we see that the right hand side of (3.1) is non-positive,

giving the contradiction. Clearly r > 1 implies precipitation (@Ax

@t
> 0) since w � 1. Con-

versely, dissolution, i.e. Ax > 0 and @Ax

@t
< 0, implies r < 1. This follows directly from the

requirement that w = 1 where Ax > 0. Finally, if Ax = 0 in some interval, then @Ax

@t
= 0

as well, leading to w = r.

In the construction of the solutions presented in Section 3.2. we use the following obser-

vation: if Ax(t
�) = 0 for some t� � 0 and r < 1 for t > t�, then Ax(t) = 0, with w = r as a

consequence, for all t > t�. This follows directly from identity (2.3).
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3.2 The crosslinker, polymer and OH pro�les

In this section we consider the crosslinker, polymer and OH equations, which can be solved

without apriori knowledge of the (adsorbed) gel concentration. Combining these equations

we observe that

v := �(cx �
L

K
cp)� cOH; (3.2)

satis�es

@v

@t
+
@v

@x
= 0:

Thus v is in this respect a conserved quantity, only subject to convection and can be

expressed by

v(x; t) = (v0 � v̂)H(x� t) + v̂;

where v̂ := �(ĉx �
L
K
ĉp) � ĉOH and v0 := �(c0x �

L
K
c0p) � c0OH. We can interprete v as a

scaled (positive) electric charge of the solution.

Using v, we eliminate cOH from the equations for cp and cx. This leaves us with the system,

for x > 0 and t > 0:

(P1a)

8>>><
>>>:

@cp

@t
+
@cp

@x
= �KJ(cp; cx)

@cx

@t
+
@cx

@x
= �LJ(cp; cx)� kp(~r(cx; cp; v)� w)

where ~r(cx; cp; v) := r(cx; �(cx �
L
K
cp)� v).

We consider the following two cases:

i) r̂ := ~r(ĉx; ĉp; v̂) � 1. Due to the gelation reaction we have ~r < 1 and consequently

Ax = 0; w = ~r for all x; t > 0. Hence, equations (P1a) reduce to8>>><
>>>:

@cp

@t
+
@cp

@x
= �KJ(cp; cx)

@cx

@t
+
@cx

@x
= �LJ(cp; cx)

We seek solutions of the form:

cp; cx(x; t) = cp; cx(x) �H(t� x): (3.3)

This leads to system 8>>><
>>>:

dcp

dx
= �KJ(cp; cx);

dcx

dx
= �LJ(cp; cx);
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for x > 0 subject to ~cp(0) = ĉp and ~cx(0) = ĉx. Clearly cp =
K
L
(cx� ĉx)+ ĉp. We distinguish

the cases:

1. ĉp <
K
L
ĉx. Then cp(x)! 0, cx(x)! ĉx�

L
K
ĉp as x!1. In other words, all polymers

will be consumed, leaving a positive crosslinker concentration. As in [6] the following

can be established. If k � 1 (see equation 2.2) then cp > 0, cx > ĉx �
L
K
ĉp for all

x > 0. However, if k < 1, then there exists a distance xD > 0 such that

cp(x) > 0; cx(x) > ĉx �
L
K
cp for 0 < x < xD

cp(x) = 0; cx(x) = ĉx �
L
K
cp for x � xD

The distance xD is given by

xD =
1

K

Z cp

0

1

J(s; ĉx +
L
K
(s� ĉp))

ds:

2. ĉp >
K
L
ĉx. Then cp(x) ! ĉp �

K
L
ĉx, cx(x) ! 0 as x ! 1, indicating that now all

crosslinkers will be consumed, leaving a positive polymer concentration. As above the

limit values can be attained at �nite or in�nite distance, depending whether k < 1

or l < 1.

An example of crosslinker concentration pro�les is shown in Figure 1. Input values are

taken from Table 1.

Parameter values

a 1

K 1

L 5

k 0:5

l 2:5

ĉx 2

ĉp 0:2

Table 1

ii) r̂ > 1. This case implies precipitation. Due to gelation and precipitation ~r(cx; cp; v) < r̂

in the entire x; t-plane. To construct a solution of equations (P1a) and (IC) we distinguish

the following subdomains in the x; t-plane, see Figure 2.8>>>><
>>>>:

I := f(x; t) : t > 0; x > tg;

II := f(x; t) : t > 0; 0 < x < min(x1; t)g;

III := f(x; t) : t > x; x1 < x < tg;
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Figure 1: Crosslinker concentration pro�les at the times: t = 0:25; 0:5; 0:75; 1.

where x1 > 0 will be de�ned later.

The hyperbolic nature of (P1a) implies that

cp = cx = Ax = 0; v = v0 ( or cOH = c0OH) in I:

Since v = v̂ along characteristics t = x + t0, with t0 > 0, and the boundary conditions

are constant, integration of equations (P1a) along these characteristics yields a smooth

solution which depends on x only in the remaining region 0 < x < t; t > 0.

Since ~r > 1 and cp; cx decrease along characteristics, we arrive at the situation sketched

in Figure 2: i.e. ~r > 1, with w = 1 and Ax > 0 in region II and ~r < 1, with w = r and

Ax = 0 in III. The monotonicity of the concentrations uniquely de�nes the position x1
where ~r = 1. Hence along characteristics x = t+ t0 with t0 > 0 we have to solve the system

(P1b)

8>>><
>>>:

dcx

dx
= �LJ(cp; cx)� kp(~r(cx; cp; v̂)� w)

dcp

dx
= �KJ(cp; cx)

for x > 0 where

w =

8<
:

1; x < x1;

~r(cp; cx; v̂); x > x1:

Explicit solutions to the system (P1b) can only be constructed for a limited class of func-

tions J and ~r. In general one has to rely on phase plane methods to gain insight in the

behaviour of its solutions. The underlying idea is to consider solutions of (P1b) as orbits

in the cx; cp phase plane. The behaviour of such orbits crucially depends on the value of ~r:

i.e. whether or not precipitation occurs. Combining the expressions for ~r and v = ~v, we
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III

I

I

x x

Figure 2: Characteristics in the x,t plane.

�nd at a trajectory that

~r ><1 if and only if cp
<
>f(cx; v̂); (3.4)

where

f(cx; v̂) =
K

L�

�
�cx � v̂ � (

Ksol

cx
)1=�
�
: (3.5)

Note that the boundary conditions ĉx, ĉp and ĉOH uniquely determine v̂ through (3.2) and

thereby the location of the curve cp = f(cx; v̂ in the cx; cp plane. Two typical cases are

shown by the dashed curves in Figure 3. Input values are taken from Table 2.
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Parameter values

a 1

K 1

L 5

k 0:5

l 2:5

ĉx 2

ĉp 0:2

ĉOH 1

c0OH 1

� 1

kp 1

Ksol 0:2

Table 2

The asymptotes of cp = f(cx; v̂), are given by

cp =
K

L
cx �

K

L�
v̂: (3.6)

Comparing with (3.2), this implies that the boundary condition ĉx and ĉp, i.e. the starting

positions of orbits in the cx; cp plane, are always below (for ĉOH > 0) or at (for cOH = 0)

the asymptotes.

Starting with boundary conditions above dashed curve (1), gives ~r < 1, w = ~r (no precip-

itation takes place) and from (P1b)

dcp

dcx
=
K

L
; (3.7)

i.e. solution orbits are parallel to the asymptote of (3.4,3.5). When boundary conditions

are taken below curve (3.4,3.5), ~r > 1 and w = 1 as long as the solution orbit is below this

curve. Then the orbit satis�es

dcp

dcx
=

K

L+ kp
~r�1

J(cp;cx)

<
K

L
; (3.8)

and the intersection with curve (3.4,3.5) determines the position x1 when the precipitation

stops. For x > x1, the orbit satis�es again (3.7) and then continues parallel to the asymp-

tote of (3.4,3.5). These two possibilities are shown by the orbits (1) and (2) in Figure 3.

Note that these orbits correspond to di�erent values of cOH : orbit (1) results from the

smaller ĉOH . To obtain the concentration pro�les requires a second integration. Figure 4

gives the resulting cOH pro�le at di�erent times. Note that these pro�les show a minimum

in cOH concentration (ĉOH = c0OH = 1) caused by precipitation. As in case i) we can select

boundary conditions such that either all polymers or all crosslinkers will be consumed, at
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Figure 3: Two orbits in the cx; cp phase plane. The input parame-

ters are equal except for the value of ĉOH : situation (1) corresponds

to the lower ĉOH = 0 and situation (2) corresponds to ĉOH = 1. The

dashed lines indicate the curves cp = f(cx; v̂) for each set of bound-

ary conditions. At the intersection of the solid and dashed lines

we have ~r = 1. The dotted lines represent asymptotes of the curve

cp = f(cx; v̂).

�nite or in�nite distance. The same criteria apply.

In Figure 5 we investigate the inuence of the solubility product Ksol. Decreasing Ksol,

implies that the curve ~r = 1 moves upwards in the phase plane, ending on the asymptote

(3.6) when Ksol = 0. As a consequence the orbits (or concentrations) are subject to pre-

cipitation over an increasing distance in the cx; cp phase plane. This is shown in Figure 5,

where the orbits emerge from the same boundary conditions. The corresponding precipi-

tated crosslinker concentration Ax, taken at the same time t = 0:5, is shown in Figure 6.

3.3 The gel pro�le

From the previous subsection it appears that

cp; cx(x; t) = cp; cx(x) �H(t� x):

This implies that J(cp; cx) can be written as

J(cp; cx) = J(x) �H(t� x):
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Figure 4: OH-concentration pro�les at several times. Input data

are taken from Table 2.
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Figure 5: Some computed orbits in the phase plane for di�erent

values of Ksol. Situations (1-4) correspond to respectively Ksol =

0:05; 0:2; 0:5 and 0:75.
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Figure 6: Some computed orbits in the phase plane for di�erent

values of Ksol.

We shall restrict ourselves to the case when J(x) = 0 for x � xD: meaning that either

polymers or crosslinkers are consumed for x � xD. Hence the source term is known in the

gel equations. For x > 0 and t > 0 they read as

(P2)

8>>><
>>>:

@cg

@t
+
@A

@t
+
@cg

@x
= J(x)H(t� x);

@A

@t
= ka(�(cg)� A);

where cg and A satisfy initial and boundary conditions (IC), (BC), i.e.

cg(0; t) = 0 for all t > 0;

cg(x; 0) = 0 = A(x; 0) for all x > 0:

In general we are not able to construct (semi) explicit solutions. Only when simpli�ed

assumptions are made, some qualitative remarks can be made. Otherwise we have to rely

on numerical techniques.

To solve (P1) and (P2) we use a �nite volume method, see for instance [4], [1]. To avoid

numerical dispersion as much as possible, we apply the Van Leer limiter [7], see also

Hundsdorfer [2] for a well presented survey. The time integration is done with an explicit

trapezium rule as in Hundsdorfer [2].
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Figure 7: Gel concentration pro�les with ka = 0 at times: t = 0:25,

0:5, 0:75 and 1. Input data are taken from Table 1. Note that here

xD = 0:52.

Next we discuss some simpli�cations concerning (P2). If we assume that no adsorption

takes place, i.e. ka = 0 in (P2), then A = 0 and as before:

cg(x; t) = cg(x) �H(t� x):

The function cg(x) is then given by the integral over the known source function J(x):

cg(x) =

Z x

0

J(s)ds; with c�g := cg(xD) being its maximal value.

The corresponding solution is shown in Figure 7.

If the adsorption is instantaneous, i.e. ka = 1, then (P2) reduces to the single equation

(see [6] for a theoretical justi�cation)

@

@t
fcg + �(cg)g+

@cg

@x
= J(x)H(t� x): (3.9)

This equation is solved numerically, again using the ux-limiter of Van Leer. The results

are shown in Figure 8 where we used a Langmuir isotherm for adsorption given by

�(cg) =
3cg

1 + cg
: (3.10)

The values of the coe�cients in isotherm (3.10) are unrealistic. They were chosen to

illustrate the behaviour of the gel pro�le ahead of the shock. In Figure 8 we see the

following four features:
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Figure 8: Gel concentration pro�les, with ka = 1 and � given by

3.10, at times: t = 0:8; 1:6; 2:4; 3:2 and 2. Input data are taken

from Table 1.

1. The occurrence of a shock, located at x = s(t). Its speed, _s(t), is given by the

Rankine-Hugoniot condition

_s(t) =
cg(s�(t); t)� cg(s+(t); t)

cg(s�(t); t) + A(s�(t); t)� cg(s+(t); t)� A(s+(t); t)
< 1;

due to adsorption. Hence s(t) < t.

2. cg(x; t) = cg(x) for 0 < x < s(t), except near the shock due to numerical dispersion.

This is explained by the method of characteristics. Along each characteristic, starting

at the positive t-axis in the x,t plane, we have

dcg

dx
= J(x); 0 < x < t;

dt

dx
= 1 + �0(cg);

cg(0) = 0:

9>>>>>>>=
>>>>>>>;

(190)

It is clear from characteristics emerging from the t-axis (x = 0) that as long as

they do not intersect with characteristics emerging from the x-axis, the solution is

independent of t. This results in the enveloping behaviour as observed in Figure 8.

The characteristics of (190) are illustrated in Figure 9. Due to the concave shape of

�(cg), characteristics in the x,t-plane are concave as well.
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Figure 9: Sketch of characteristics of (190), corresponding to Figure

8.

3. Occurence of a toe in the gel pro�les for s(t) < x < t. This can be seen as follows.

Each characteristic starting from the x-axis is at �rst a straight line, due to the

absence of the source term for x > t. Since �0(0) > 0, we have dt
dx

> 1 and hence

these characteristics intersect the line x = t. After this intersection the source term

becomes positive and since �(cg) is concave, the characteristics continue as concave

curves as well, see Figure 9. These characteristics intersect with the ones starting

at the t-axis resulting in the shock at x = s(t). The positive source term gives an

accumulation and hence a toe occurs between the shock and the position x = t.

4. Disappearance of the toe. Characteristics starting from the x-axis that will arrive

at x = t for x � xD, will continue as straight lines towards the shock curve. In

particular, the characteristics starting from ~xD =
�0(0)

1+�0(0)
xD, is the �rst one to satisfy

this behaviour, see Figure 9. Consequently, the toe disappears at the intersection of

this characteristic at the shock curve. Moreover, the shock proceeds with constant

speed given by:

_s(t) =
c�g

c�g + �(c�g)
;
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Figure 10: Gel pro�les for times t = 0:5; 1; 2; 3 and t = 4. The

adsorption isotherm is linear with � = 1. Other input data are

taken from Table 1.

When the adsorption isotherm is linear, i.e. �(cg) = � cg, problem (19') can be solved

explicitly in terms of J(x). The corresponding gel pro�le is then given by

cg(x; t) =

8>>>><
>>>>:

R x
0
J(s)ds; 0 � x � t

1+�
;

R x
(1+�)x�t

�

J(s)ds; t
1+�

< x � t;

0; x > t:

Since characteristics do not intersect in this case (i.e.
dt

dx
= 1 + �) no shock occurs at the

toe for all x > 0, see Figure 10.

For �nite adsorption rate we �nd smooth gel pro�les. This is shown in Figures 11 and 12. In

Figure 11 we used ka = 1 to illustrate the gradual build-up of the adsorbed concentration.

In Figure 12 we used the larger value ka = 10, to illustrate the travelling wave behaviour

at the leading edge of the pro�le for large values of t. As intermediate constant state we

�nd again cg = c�g and A = A(c�g). Following van Duijn & Knabner [6] we can determine

the shape at speed of this wave by considering the following problem, for �1 < x < 1,
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Figure 11: Adsorbed gel pro�les for times t = 0:2; 0:4; 0:6; 0:8

and t = 1. The adsorption isotherm is taken from Langmuir, see

equation 3.10. The adsorption rate constant is ka = 1. All other

data are taken from Table 1.
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Figure 12: Gel pro�les for times t = 1:2; 2:4; 3:6; 4:8 and t = 6.

The adsorption isotherm is taken from Langmuir, see equation 3.10.

The adsorption rate constant is ka = 10. All other data are taken

from Table 1.
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t > 0: 8>>>>>>>>>>><
>>>>>>>>>>>:

@cg

@t
+
@A

@t
+
@cg

@x
= 0

@A

@t
= ka(�(cg)� A)

cg(�1; t) = c�g A(�1; t) = �(c�g)

cg(1; t) = 0 A(1; t) = 0

Setting � = x � st and considering solutions of the form cg = cg(�), A = A(�), we arrive

at, for �1 < � <1 8>>>>>>>><
>>>>>>>>:

�s (c0g + A0) + c0g = 0

�sA0 = ka(�(cg)� A)

cg(�1) = c�g A(�1) = �(c�g)

cg(1) = 0 A(1) = 0:

The boundary conditions directly imply

s =
c�g

c�g + �(c�g)
;

which is in close agreement with the results obtained in Figure 12. The boundary conditions

at � = +1 also imply

cg =
s

1� s
A;

which leaves us with the integral equation

Z cg(�)

cg(�1)

d�

�(�)� s
1�s

�
=

ka

s� 1
(� � �1);

from which the leading edge pro�les for cg and A can be determined. To match the location

of the wave with the leading edge front an additional argument is needed. We locate the

wave in the x; t plane so that its center of mass co-incides with the location of the shock

when ka =1 (see Figure 9, for x and t su�ciently large). This amounts to the following.

First determine �1 so that x� st� �1 matches the shock curve in Figure 9 once it becomes

linear. The corresponding value cg(�1) is now selected so that the shaded regions in Figure

13 have equal area.
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Figure 13: Travelling wave pro�le with cg(�1) selected so thatZ �1

�1

(c�g � cg(s))ds =

Z
1

�1

cg(s)ds.

4. Conclusions

In this paper we developed a model for the transport of polymers, crosslinkers, gel in

combination with chemical reactions. This model predicts the following:

� Concentration pro�les do not depend on initial acidity in the reservoir when disper-

sion is absent.

� Crosslinker precipitation is consequently also independent on initial acidity.

� When crosslinker precipitation takes place, then precipitated crosslinker increases

linearly with time.

� Gelation reaction results in a pulse-like gel-pro�le and develops in a constant state

preceeded by a travelling wave with a constant speed.
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