
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Strategies in Filtering in the Number Field Sieve

S. Cavallar

Modelling, Analysis and Simulation (MAS)

MAS-R0012 May 31, 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301667363?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report MAS-R0012
ISSN 1386-3703

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Strategies in Filtering in the Number Field Sieve

Stefania Cavallar

CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Stefania.Cavallar@cwi.nl

ABSTRACT

A critical step when factoring large integers by the Number Field Sieve [8] consists of �nding dependencies in

a huge sparse matrix over the �eld F2 , using a Block Lanczos algorithm. Both size and weight (the number of

non-zero elements) of the matrix critically a�ect the running time of Block Lanczos. In order to keep size and

weight small the relations coming out of the siever do not
ow directly into the matrix, but are �ltered �rst in

order to reduce the matrix size. This paper discusses several possible �lter strategies and their use in the recent

record factorizations of RSA-140, R211 and RSA-155.

2000 Mathematics Subject Classi�cation: Primary 11Y05. Secondary 11A51.

1999 ACM Computing Classi�cation System: F.2.1.

Keywords and Phrases: Number Field Sieve, factoring, �ltering, Structured Gaussian elimination, Block Lanczos,

RSA.

Note: Work carried out under project MAS2.2 \Computational number theory and data security".

This report will appear in the proceedings of ANTS IV, Leiden, The Netherlands, July 2{7, 2000.

Introduction

The Number Field Sieve (NFS) is the asymptotically fastest algorithm known for factoring large
integers. It holds the records in factoring special numbers (R211 [3]) as well as general numbers
(RSA-140 [4] and RSA-155 [5]). One disadvantage is that it produces considerably larger matrices
than other methods, such as the Quadratic Sieve [1]. Therefore it is more and more important to
�nd ways to limit the matrix size. This can be achieved by using good sieving parameters and by
\intelligent" �ltering.
In this paper we describe the extended version of the program filter which we implemented

following ideas of Peter L. Montgomery. Its goal is to speed up Block Lanczos's running time by
reducing the matrix size but still keeping the weight under control.
A previous implementation of the program filter [8, section 7] did 2- and 3-way merges. When

using Block Lanczos, higher-way merges were commonly banned from the �lter step in order to limit
the matrix weight. For instance, also James Cowie et al. [6, section Cycles] explicitly avoided merges
higher than 3 for the factorization of RSA-130.
The most important new ingredients of the present filter implementation are an algorithm to

discard excess relations and \controlled" higher-way merges. We determine arithmetically which
merges reduce Block Lanczos's running time.
For the factorization of RSA-140 only 2- and 3-way merges were performed which led to a matrix of

4.7 million columns. With the present �lter strategy we could have saved up to 33% of linear algebra
time by reducing the size to 3.3 million columns. For the factorization of R211 we already used
an intermediate filter version which did 4- and 5-way merges, but we could still get an improved
matrix after the factorization. For RSA-155, we could take full advantage of the present version and
did \controlled" merges up to prime ideal frequency 8 which led to a matrix of 6.7 million columns

2

and an average of 62 entries per column which was used to factor the number. Afterwards, we were
able to reduce this size to 6.3 million columns.
First, we give a brief description of the NFS. Secondly, the filter implementation will be described

with special focus on the new features. In section 3 we will describe other �lter strategies we came
across in the literature and compare it with our approach. Finally, experimental results for RSA-140,
R211 and RSA-155 are listed and interpreted.

1. Brief description of NFS

We brie
y describe the NFS factoring method here, skipping parts which are not relevant for the
understanding of this paper such as the sieving step itself.
By N we denote the composite number we would like to factor. We select an integer M and two

irreducible polynomials f(x) and g(x) 2 Z[x] with cont(f) = cont(g) = 1 and f 6= �g such that
f(M) � g(M) � 0 mod N . By �; � 2 C we denote roots of f(x) and g(x), respectively.
The goal is to construct a non-empty set S of co-prime integer pairs (a; b) for which both

Q
(a;b)2S(a�

b�) and
Q

(a;b)2S(a� b�) are squares, say,
2 2 Z[�] and �2 2 Z[�], respectively. Once we have found

S, the two natural ring homomorphisms �1 : Z[�]! Z=NZmapping � to M and �2 : Z[�]! Z=NZ
mapping � to M as well, yield the congruence

�1(
)
2 � �1(

2) �
Y

(a;b)2S

(a� bM) � �2(�
2) � �2(�)

2 mod N:

which has the desired form X2 � Y 2 mod N . By computing gcd(X � Y;N) we may �nd a divisor of
N . The major obstruction in this series of congruences is that we need to �nd
 2 Q(�) from
2 (and
� from �2, respectively). See Montgomery's [15] or Phong Nguyen's [17] papers for a description of
their square root algorithms.
How to �nd the set S? We write

F (x; y) = f(x=y)ydeg(f) and G(x; y) = g(x=y)ydeg(g)

for the homogeneous form of f(x) and g(x), respectively. Consider a� b� 2 Q(�) and a� b� 2 Q(�).
The minus sign is chosen in order to have

NQ(�)=Q(a� b�) = F (a; b)=c1 and NQ(�)=Q(a� b�) = G(a; b)=c2;

where the ci's are the respective leading coe�cients of f(x) and g(x).
After the sieving we are left with many pairs (a; b) such that gcd(a; b) = 1 and both F (a; b) and

G(a; b) are products of primes smaller than the large prime bounds L1 and L2, respectively, which
were chosen by the user before the sieving. The pairs (a; b) are commonly denoted as relations. A
necessary condition for

Y
(a;b)2S

(a� b�) and
Y

(a;b)2S

(a� b�)

to be squares is that the norms

NQ(�)=Q

0
@ Y

(a;b)2S

(a� b�)

1
A and NQ(�)=Q

0
@ Y

(a;b)2S

(a� b�)

1
A

are squares. Therefore we require S to have even cardinality and

Y
(a;b)2S

F (a; b) and
Y

(a;b)2S

G(a; b)

2. Description of the new �lter tasks 3

to be squares. The condition is not su�cient because elements having the same norm may di�er from
each other (not only by units!). Let p be a prime divisor of F (a; b) = f(a=b)bdeg(f). We distinguish
two cases:

� p j f(a=b). This means that a=b � q mod p with 0 � q < p is a root of f(x) modulo p. In the
sequel such a p is referred to as p; q.

� p j b. Since gcd(a; b) = 1 it follows that p - a and therefore p j c1. This can happen for a small
set of primes only, since the leading coe�cient is of limited size. These roots are called projective
roots and denoted as p;1.

We will call the couples p; q, where q is allowed to be 1, prime ideals, since they are in bijective
correspondence with the �rst degree prime ideals of the ring Z[�]\ Z[��1]. See [2, Section 12.6].
Consequently, we write

jF (a; b)j =
Y
p;q

pe1(a;b;p;q) and jG(a; b)j =
Y
p;q

pe2(a;b;p;q):

In order for
Q

(a;b)2S F (a; b) and
Q

(a;b)2S G(a; b) to be squares in Q(�) and Q(�), respectively, we
require all the exponents inY

(a;b)2S

jF (a; b)j =
Y
p;q

p
P
S
e1(a;b;p;q) and

Y
(a;b)2S

jG(a; b)j =
Y
p;q

p
P
S
e2(a;b;p;q)

to be even. This condition can be stated in terms of the �eld F2 as well. We just think of a relation
(a; b) as a vector in F2 whose �rst entry is 1 (in order to control the parity of S) and the following
entries are given by the exponents e1(a; b; p; r) and e2(a; b; p; r) modulo 2. A 1 signals the occurrence
of an uneven power of a prime ideal. The task of �nding some suitable sets S translates now into
�nding dependencies modulo 2 between the columns of a matrix which is built up with the relation
vectors given by the siever. We need to have enough relations to guarantee that the matrix provides
enough dependencies.
Alas, not every dependency yields a set S such that

Q
(a;b)2S(a � b�) and

Q
(a;b)2S(a � b�) are

squares, but we can make the method practical by producing several dependencies and doing quadratic
character tests [2, Section 8].
The �lter stage occurs between the sieving step and the linear algebra step of the NFS. It is a

preliminary linear algebra process since it corresponds to dropping columns (pruning) and adding up
columns modulo 2 (merging).

2. Description of the new filter tasks

We distinguish 19 merge levels: level 0 and 1 fall into pruning, level 2 through 18 within merging.
We shall say that a prime ideal p; q is (un)balanced in a relation (a; b) if it appears to an (un)even

number in F (a; b) or G(a; b)�. We distinguish between prime ideals of norm below and above a user
determined bound filtmin. Accordingly, we speak about small and large prime ideals. We will denote
prime ideals p; q by I . We write a relation r = r(a; b) as the collection of its unbalanced large prime
ideals, r : I1; I2; : : : ; Ik: Merging means combining relations which have a common prime ideal in order
to balance it. For example, if I appears only in r1 : I10 = I; I11; : : : ; I1k1 and r2 : I20 = I; I21; : : : ; I2k2 ,
we can combine the two relations into r1 + r2 : I11; : : : ; I1k1 ; I21; : : : ; I2k2 with the result that I is
balanced in r1 + r2. More generally, a k-way merge is the procedure of combining k relations with a
common prime ideal I into k� 1 relation pairs without I . By a relation-set we mean a single relation,
or a collection of two or more relations generated by a merge. We do merges up to prime ideal
frequency 18. The parameter mergelevel l means that k-way merges with k � l may be performed.
The weight of a relation-set r, i.e., the number of unbalanced prime ideals in it, is denoted by w(r).

�In very rare cases (p divides the polynomial resultant) we can have the same p; q appearing in both F and G.
Recall that they are not the same, since they correspond to ideals in di�erent rings. We abstain from labeling the ideals
accordingly, for the sake of simplicity.

4

2.1 Pruning
As the verb \pruning" suggests, this part of the program removes unnecessary relations from the given
data, that is duplicates and singletons and, if the user wants to, also excess relations. Duplicates are
obviously super
uous and singletons cannot be part of a winning set S since they contain a prime ideal
which does not occur in any other relation and can subsequently not be combined to form a square.
If the di�erence between the number of relations and the number of large prime ideals outnumbers a
user-chosen bound (keep), the clique algorithm selects relations to delete.
mergelevel 0 only removes duplicates and can be used to merge several sieving outputs to a single

�le, possibly before sieving completes. mergelevel 1 will only be performed if the full set of relations
is available and covers algorithms for the removal of duplicates, singletons and excess relations.

Duplicates. First we want to eliminate duplicate relations. They may arise for various reasons. Most
commonly they come from sieving jobs that were stopped and later restarted. In case of a line-by-line
siever [8, section 6] the resumed jobs start with the last b sieved by the previous job; this is the only
way that duplicates arise. In case of a lattice siever [18] the job starts with the special prime ideal I
sieved last, and will generate duplicates, or it can do so because a relation may contain, apart from
its own special I , other prime ideals that are used as special prime ideals as well. The simultaneous
use of line-by-line and lattice siever also causes overlap.
Duplicates are tracked down by hashing [12]. Since it is easier and cheaper to use a number instead

of a relation as a hash table entry, we \identify" a relation with a number. The user speci�es how
many relations he expects to be in the input �le(s) (maxrelsinp). This �gure is used to choose the
size of the in-memory tables needed during the pruning algorithm. The program reads in relation after
relation. In order to detect duplicates, the program maps each relation (a; b) to an integer between 0
and 264 � 1. The mapping function, h = h(a; b), should be nearly injective since relations mapped to
the same value will be treated as duplicates. It is rather easy to construct such a function, since even
a huge amount of relations, say 200 million (for RSA-155 we had to handle 124.7 million relations),
is small compared to the 264 possible function values. With 64 bits for the function value we expect
about�

2 � 108

2

�

264
� 0:0011

false duplicates, which means that there will hardly be any false duplicates. With 32 bits only, this
number would amount to about 4:7 � 106, which is a fair proportion of all relations.
The function h(a; b) is de�ned as follows. It takes values of a and b up to 253. Put � = b� � 1017c

and E = be � 1017c. We have gcd(�; E) = 1. De�ne

H(a; b) = �a+Eb:

If H(a1; b1) = H(a2; b2) and (a1; b1) 6= (a2; b2) we have

a1 � a2
b1 � b2

= �
E

�

which is impossible, since jaj and jbj are known to be much smaller than �=2 and E=2, and gcd(�; E) =
1. De�ne h(a; b) = H(a; b) mod 264. Since H is injective, false duplicates for h can only come from
the truncation modulo 264.
The function values of h again are mapped by a hash function into a hash table. If the user has

speci�ed mergelevel 0, the non-duplicates are written to the output �le whereas, if the user has
chosen mergelevel 1, the non-duplicate relations are memorized in a table for further processing,
while considering only the large prime ideals. In the sequel, we shall call this table the relation table.

2. Description of the new �lter tasks 5

Singletons. If both polynomials f and g split completely into distinct linear factors modulo a prime
p which does not divide the leading coe�cients, we get a so-called free relation corresponding to the
prime ideal factorization of the elements p = p�0� and p = p�0� of norm NQ(�)=Q(p) = F (0; p)=c1 =

pdeg(f) and NQ(�)=Q(p) = G(0; p)=c2 = pdeg(g), respectively. Approximately 1=(gf � gg) of the primes
o�er a free relation, where gf and gg are the orders of the Galois groups of the polynomials f and g,
respectively [10]. The free relation (p; 0) is added to the relation table only if all prime ideals of norm
p appear in the relation table.
Next, a frequency table is built for all occurring prime ideals which is adjusted as the relation table

changes. The relation table is then scanned circularly and relations containing an ideal of frequency
1 (singletons) are removed from it. The program executes as many passes through the table as is
needed to remove all singletons.
At the end of the pruning algorithm we would like the remaining number of relations to be larger

than the total number of prime ideals. Therefore we need to reserve a surplus of relations for the
small prime ideals: Per polynomial, the number of prime ideals below filtmin is approximately
�(filtmin), i.e., the number of primes below filtmin, see [14]. Consequently, we require a surplus of
approximately (2� (gf � gg)

�1) � �(filtmin) relations. If the required surplus is not reached we need
to sieve more relations.

Clique algorithm. If there are su�ciently many more relations than ideals, the user may want to
specify how many more relations than large ideals to retain after the pruning stage (keep).
In [19, step 3] Pomerance and Smith eject excess relations by simply deleting the heaviest relations.

However, as an alternative, they suggest to delete relations which contain many primes of frequency
2. Our approach is similar to this alternative. The algorithm we use is called clique algorithm, since
it deletes relations that stick together.
Consider the graph with the relations from the relation table as nodes. We connect two nodes if the

corresponding relations would be merged in a 2-way merge. The components of the graph are called
cliques. The relations in a clique are close to each other in the sense that if one of them is removed,
the others will become singletons after some steps and are therefore useless.
The clique algorithm determines all the cliques, evaluates them with the help of a metric and at each

step keeps up to a prescribed number of them in a priority heap [12, page 144], ordered by the size of a
metric value. The metric being used weighs the contribution from the small prime ideals by adding 1
for each relation in the clique and 0:5 for each free relation. The large prime ideals which occur more
than twice in the relation table contribute 0:5f�2 where f is the prime ideal's frequency. This way
we \penalize" ideals with low frequency. Relation-sets containing many ideals with low frequencies
are more likely to be deleted than those containing mainly high frequency ideals. By deleting these
low-frequency relation-sets we hope to reduce especially low frequencies even more and get new merge
candidates.
Finally, the relations belonging to cliques in the heap are deleted from the relation table. When

deleting relations we decrease the ideal frequencies of the primes involved. Singletons may arise and
we therefore continue with the singleton processing step. The clique algorithm may be repeated if the
number of excess relations does not approximate keep su�ciently.

After duplication, singleton and possibly clique processing the relations are read again and only the
non-free relationsy appearing in the relation table are written to the output �le. If the input �les have
grown in the meantime, the new relations are discarded.

2.2 Merging
First, we have a closer look at how merging works, which parameters can be given and at how to
minimize the weight increase during a k-way merge. Next, we give details about the implementation

yFree relations will be generated during the merge stage again.

6

of the \controlled" merges. Finally we study the in
uence of merging on Block Lanczos's running
time.
Merging aims at reducing the matrix size by combining relations. Throughout this section we give

�gures about weight changes in the matrix. These �gures do not take account of possible other primes
that may have been balanced incidentally during the same merge.

Parameters mergelevel, maxpass, maxrels and maxdiscard. With the parameter mergelevel the
user speci�es the highest k for which k-way merges are allowed to be executed. The user �xes the
maximum number (maxpass) of shrinkage passes to execute. During a shrinkage pass, all large primes
are checked once and possibly merged, see [8, section 7] for more details.
The simplest case is the so-called 2-way merge. A prime ideal I is unbalanced in exactly two

relations, r1 and r2, and we combine the relations into the relation-set r1 + r2. As a result, we have
one fewer column (r1 and r2 disappear, r1 + r2 enters) as well as one fewer row (prime ideal I) and
the total weight has thereby decreased by 2.
In general, if a prime ideal I is unbalanced in exactly k relations (k � 2)z, we can choose k � 1

independent relation pairs out of the possible
�

k
2

�
pairs. For example, if k = 3, there are 3 possible

ways to combine the 3 relations involved, r1, r2 and r3, to a couple, namely r1+r2, r2+r3 and r1+r3.
Each one can be obtained from the other two, for instance r1 + r3 = (r1 + r2) + (r2 + r3) as all the
prime ideals of r2 are balanced since r2 appears twice.
After the merge, the prime ideal I is balanced. Its corresponding row has disappeared from the

matrix. The total gain of every merge consists in fact in one fewer column and one fewer row. The
drawback of merging is, of course, matrix �ll-in. A 2-way merge causes no �ll-in at all, we even have
2 entries fewer in the matrix. However, a k-way merge, k � 3, causes the matrix to be heavier by
about the weight of k � 2 relations minus the 2(k � 1) entries that disappeared.
If the matrix is going to be \lopsided", i.e., if it has many more relations than ideals, it is useful

to drop heavy relation-sets. The program therefore discards the ones which contain more relations
than the user-determined bound maxrels.x The user may specify maxdiscard, that is, the maximum
number of relation-sets to be dropped during one filter run. Once maxdiscard has been reached,
k-way merges, k � 3, are inhibited.

Minimizing the weight increase of a k-way merge. Which k � 1 of the possible
�

k
2

�
relation pairs

should be chosen in order to achieve the lowest weight increase? First of all, each relation has to
appear in at least one relation couple, that is, we need to form independent relation sets, in order
not to loose data. Secondly, we focus on minimizing the weight increase. In the beginning, when
all relations are true single relations, we usually achieve the lowest weight increase by choosing the
lightest relation (pivot) and combining it with the remaining k � 1 relations. We call this pivoting.
More precisely, this happens always when no additional prime ideals except for the prime ideal I
become balanced in any of the candidate relation couples. If we assume the pivot relation to be rk,
the weight increase �w will be exactly

�w = (k � 2)w(rk)� 2(k � 1): (2.1)

The choice becomes more complicated, when additional prime ideals get balanced, especially when
we are merging already combined relation-sets. For example, consider the following 5 relations, which

zThe case k = 1 denotes a singleton which would be deleted.
xWe weigh a free relation less than 1 (we used 0:5), because, even if it may have several large primes, it should have

less total weight.

2. Description of the new �lter tasks 7

are candidates for two 3-way merges with the prime ideals I and J :

r1 : I and v � 1 other prime ideals
r2 : I and v � 1 other prime ideals
r3 : I; J and v � 2 other prime ideals
r4 : J and v � 1 other prime ideals
r5 : J and v � 1 other prime ideals

For the sake of simplicity, we assume that all the relations have the same weight v and do not share
other primes except for I and J . Imagine, r3 is used as a pivot relation to eliminate I . We get

r1 + r3 : J and 2v � 3 other prime ideals
r2 + r3 : J and 2v � 3 other prime ideals
r4 : J and v � 1 other prime ideals
r5 : J and v � 1 other prime ideals

Now J appears 4 times, so we need a 4-way merge to balance it. For the elimination of J the two
relations r4 and r5 seem the best pivot candidates in a 4-way merge, since they have lowest weight.
However, pivoting with r5 results into

(r1 + r3) + r5 : 3v � 4 prime ideals
(r2 + r3) + r5 : 3v � 4 prime ideals
r4 + r5 : 2v � 2 prime ideals

with total weight 8v � 10, whereas

(r1 + r3) + (r2 + r3) : 2v � 2 prime ideals
(r1 + r3) + r5 : 3v � 4 prime ideals
r4 + r5 : 2v � 2 prime ideals

ends with weight 7v � 8{. When v > 2 we have 8v � 10 > 7v � 8 which indicates that we should not
stick to pivoting for all the merges.
The problem of minimizing the weight increase can be stated using graphs. The vertices are given by

the k relations which are candidates for a k-way merge and the
�

k
2

�
edges between them represent

possible merges. The edge between two nodes rj and rj has weight w(ri + rj). Given this weighted
graph we wish to select a tree with minimum total weight. The solution is called a minimum spanning
tree [11, page 460]. This problem is a well-known problem of combinatorial optimization. In order to
solve it we use the algorithm as formulated by Jarn��k [9, pages 46{47].

Implementation of \controlled" merges. We limit the weight increase of a single merge by requiring
that a merge should not add more than a prescribed number, mmax , of original relations to the matrix.
We give all the initial relations the same weight (except for free relations that weigh one half), which
is reasonable since the relations are the factorizations of numbers of about the same size.
Let us consider k relation-sets which are candidates for a k-way merge. The individual relation-sets

may contain several original relations. Suppose the lightest candidate relation-set has j relations,
where free relations count for 0.5. Let c be the number of relation-sets with exactly this minimum
number j of relations. Shrinkage pass 1 starts with m = 1 and we subsequently augment m up until
mmax and allow for the k-way merge when (k�2)j � m�(c�1)=2. The m gives the maximum weight
increase (in number of relations) allowed during a merge. We introduced c in order to postpone some
merges and do the ones where the best way to merge is clear cut �rst. Since we are still interested

{The latter situation is also achieved when �rst using r1 as a pivot and then doing a 3-way merge with pivot relation
r5.

8

k

�
mmax

k � 2
2

�
=2

mmax = 7 mmax = 8
3 7 8
4 3:5 4
5 2 2:5
6 1:5 2
7 1 1:5
8{9 1 1
10 0:5 1

11{16 0:5 0:5
17{18 | 0:5

Table 1: Allowed number of relations in pivot relation-set for k-way merge

in doing lower weight merges before higher weight merges we increase m only every other shrinkage
pass and set c = 1 during these shrinkage passes. In most of the runs we had mmax = 7, but we tried
mmax = 8 as well. Solving the inequality (k � 2)j � mmax for k gives k � mmax

j + 2. It follows that,

with mmax = 7, merges with ordinary relations (j = 1) are limited to prime ideal frequency 9 whereas
free relations (j = 0:5) can be used in merges up to prime ideal frequency 16. For the factorization of
RSA-155 we performed merges up to prime ideal frequency 8.
Table 1 shows the maximum number of relations a pivot relation-set may consist of, for mmax = 7

and 8. Even if we are not pivoting, we ask at least one relation not to contain more relations than
this bound.

In
uence of merging on Block Lanczos's running time. Given an m � n matrix, n > m, of total
weight w, the running time estimate of Block Lanczos is given by O(wn) + O(n2) [16]. Both terms
grow with n, so we will focus on reducing n. If we manage to reduce n by a certain factor while w
does not grow by more than this factor, we will get a running time reduction, independently of the
constants in the two terms. Moreover, we predict the constant in the O(n2) term to be the larger one.
Therefore, it is natural to write the running time as

O((w + Cn)n) (2.2)

with C � 1. Since we do not need absolute running times, we drop the O-sign and use the function
t(n;w) = (w + Cn)n: The larger the constant C, the more it will be convenient to reduce the matrix
size. The constant depends on the implementation, for example on the number of bits per vector
element (K) usedk. Montgomery (personal communication) at �rst estimated the constant C to be
about 50. For some approximate values of C see Table 7 or Table 2.
Let us determine a bound for the weight increase �w such that a merge causing an increase below

this bound still is bene�cial to the running time. The condition for �w becomes

t(n� 1; w +�w)� t(n;w) < 0: (2.3)

Inequality (2.3) is equivalent to

0 > n ((1� 2n)C � w + (n� 1)�w) = (n� 1)(�2Cn� w + n�w) � w � Cn:

kMontgomery [16] gives the formula O(wn=K) +O(n2) for the running time.

2. Description of the new �lter tasks 9

The inequality is satis�ed if �w < 2C + w
n : It follows that the allowed weight increase grows with

C and the average column weight w
n . That means that denser matrices allow heavier merges than

sparser matrices do.
Let us calculate a limit for the pivot relation weight j of a general k-way merge, k � 3. According

to equation (2.1) we require

�w = (k � 2)j � 2(k � 1) < 2C +
w

n
:

which results into

j <
2C + w

n + 2(k � 1)

k � 2
: (2.4)

In Table 2 we report the allowed pivot relation weights for merges up to prime ideal frequency 10.
We chose w

n = 30 (typical after applying only 2- and 3-way merges) and w
n = 50 (typical w

n of many
of our �nal matrices). The horizontal lines divide between above and below w

n .

k

�
2C + w

n + 2(k � 1)

k � 2

�
� 1

w
n = 30 w

n = 50
C = 49 C = 37 C = 14 C = 1 C = 49 C = 37 C = 14 C = 1

3 131 107 61 35 151 127 81 55
4 66 54 31 18 76 64 41 28
5 45 37 21 13 51 43 28 19
6 34 28 16 10 39 33 21 15
7 27 23 13 8 31 27 17 12
8 23 19 11 7 26 22 15 10
9 20 17 10 6 23 19 13 9
10 18 15 9 6 20 17 11 8

Table 2: Allowed pivot relation weights for k-way merge

From Table 2 we can see that 3-way merges can be done with rather heavy pivot relations; even
for C = 1 and w

n = 50 the allowed weight exceeds w
n . Denser matrices allow also for denser pivot

relations.
By substituting w

n for j in (2.4) we can derive a condition for when to do k-way merges for k > 3
with an average weighing pivot relation:

w

n
<

2C + 2(k � 1)

k � 3
(2.5)

The analysis for k = 3 has to be done separately, we require (2.3) for �w = w
n � 4 By reorganizing

the terms we get �4 (n� 1) � w
n � C (2n� 1) < 0 which is always satis�ed. This means that 3-way

merges with an average weight pivot relation are always pro�table, independently from the density of
the matrix or the constant C.
Table 3 gives the allowed average weights when merging with an average weight pivot relation. If

we assume C < 50 and we apply the merges in ascending order of prime ideal frequency, 6-way merges
with average weighing pivot relations will not be worthwhile because after the 5-way merges we have
seen in practice w

n to be around 50, which is higher than the maximum value of 35.

10

k

�
2C + 2(k � 1)

k � 3

�
� 1

C = 49 C = 37 C = 14 C = 1
4 103 79 33 7
5 52 40 17 4
6 35 27 12 3
7 27 21 9 3
8 22 17 8 3
9 18 14 7 2
10 16 13 6 2

Table 3: Allowed average weights for k-way merge

3. Other methods in the literature

We would like to mention two articles about similar �lter strategies. These are \Solving Large Sparse
Linear Systems Over Finite Fields" of LaMacchia and Odlyzko from 1990[13] and \Reduction of Huge,
Sparse Matrices over Finite Fields Via Created Catastrophes" of Pomerance and Smith from 1992[19].
Their strategies are similar to each other but di�er in some points. Both were designed to reduce the
initial data to a substantially smaller matrix. This matrix was allowed to be fairly dense since it was
going to be processed by Gaussian elimination afterwards. In contrast, the purpose of our method
is to reduce the matrix size but still keep it sparse in order to take advantage of the Block Lanczos
method. They were dealing with matrices of size up to 300K, we with matrices of size up to 7M. Each
re
ects the maximum size that could be handled at the time.
Both other methods executed their operations on the matrix itself whereas we dealt with the raw

relations. We identi�ed relations with columns in the �nal matrix whereas they identi�ed relations
with rows. Nevertheless, for an easier comparison, we will stick to identify relations with columns in
the present description.
They operate only on part of the matrix (active rows) where no �ll-in takes place. The operations

must be memorized in order to be repeated on the complete matrix afterwards. LaMacchia and
Odlyzko store the history in core, whereas Pomerance and Smith keep a history �le.
We will distinguish between the pruning and merging step, as in the description of our method.

The weight they look at is only the weight of the active primes at that moment.
The pruning step does di�er from our approach only in how to delete excess relations. Duplicates

and singletons are removed as soon as possible, as in our approach. Pomerance and Smith choose to
remove the excess immediately, whereas LaMacchia and Odlyzko remove the excess just before the
\collapse" or \catastrophe" during the merge step. Both decide to drop the heaviest relations, but
Pomerance and Smith indicate that one might try other strategies (as we did).
In the beginning of the merge stage, a small number of rows (the heaviest, which correspond to

small primes) are declared inactive. Merges are done by pivoting with columns that have only one 1
in the active part. There is no �xed limit for the prime ideal frequency up to which to merge. Once
all possible merges have been done and there are still 1's in the active part, more rows (again the
heaviest) are declared inactive and the merge step is repeated. This is repeated until the active part
collapses. This procedure leads to very heavy matrices. To overcome this, LaMacchia and Odlyzko
for example, extend the inactive part considerably after it has reached a certain critical size. This
way fewer merges can be executed and the �ll-in is con�ned. Nevertheless, the matrices still have high
column weights: the lightest example given by LaMacchia and Odlyzko has an average of 115 entries
per column for a 6:0 � 104 columns matrix which is much denser than our densest matrix, the 6:3 � 106

4. Experimental results 11

columns matrix from Table 11 having an average 81 entries per column�.
Initially, for a sparse matrix, merges are done with very light columns, since the inactive part is

small and cannot contain many 1's. Further on, pivot relations can be very heavy: very probably,
the single 1 in the increasingly smaller active part mostly represents a large prime and goes together
with many small prime factors, since all polynomial values are about the same size (Pomerance and
Smith try to overcome this by also allowing merges with pivot columns having two 1's in the active
part of the matrix.). Moreover, they do not make a distinction between \original" pivot relations and
already merged ones, which can be substantially heavier.
In our merge procedure we also merge with already merged relations, but this happens in a controlled

way. We limit the number of original relations which can be added during a single merge. We also
minimize the �ll-in per merge by using a minimum spanning tree algorithm instead of the simpler
pivoting, see Section 2.2. But here we also have to say, that we cannot guarantee to always get the
cheapest merge, because we count the contribution from the large prime ideals but only estimate the
contribution from the small prime ideals.
In 1995, Thomas Denny proposed a Structured Gaussian elimination preliminary step for Block

Lanczos [7]. He estimated C = 1 for his own Block Lanczos program. We therefore also included
C = 1 in Tables 2 and 3.

4. Experimental results

The experiments were done with two versions of our program filter. Both of them include pruning
facilities.
The �rst version was capable of doing merges up to prime ideal frequency 5 and corresponded to

the old program [8, section 7] if invoked with mergelevel 2 or 3. With the �rst version the user
needed to specify when to start with the 4- and 5-way merges. For example, in the tables about �lter
runs (Tables 5, 8 and 10) the notation 4(x) in column mergelevel means that 4-way merges started
x shrinkage passes after 3-way merges started. 5(x-y) means that 4-way merges started x shrinkage
passes after 3-way merges did, and 5-way merges started y shrinkage passes later than 3-way merges.
The present filter version does not need this information any more. It can do merges up to prime

ideal frequency 18. The merges are done in order of weight increase (measured in numbers of original
relations). All runs except RSA-155's B6 had mmax = 7.
Table 4 gives an overview of all pruning activities in our experiments for RSA-140, R211 and RSA-

155. All the �gures are in units of a million. With prime ideals we mean prime ideals above 10M;
we need to reserve an excess of 1:3M relations for the small prime ideals. The non-duplicate relation
counts di�er so much due to the use of di�erent large prime bounds. Apparent errors are due to
rounding values to units of one million.
The �gures in Tables 5{11 are given in units of a million (M) or a thousand (K). We labeled

the experiments with capital letters. All experiments with the same letter started with the same
mergelevel 1 run.
In Tables 5, 8 and 10, columns 2{6 are input parameters. Column 7{10 are results: column \sets"

gives the number of relation-sets remaining after the run, column \discarded" gives the total number
of relation-sets which were discarded during the run. \excess" gives how many more relations than
the approximate total number of ideals we retained. It indicates how many more relations we might
still throw away in a further run. \not merged" gives the number of large prime ideals of frequency
smaller or equal to mergelevel among the output relations. For the runs with the new version we
also report the number of output relation-sets made of one single relation since among those could be
candidates for future high-way merges.
The Block Lanczos code typically �nds almost K dependencies [16], where K is the number of

bits per vector element. This enables us to drop the heaviest rows which leads to substantially

�The column weight 70 given in Table 11 corresponds to the matrix obtained when dropping the prime ideals of
norm below 40.

12

number being factored RSA-140 R211 RSA-155
experiment A B A B A B C D

raw relations (1) 65.7 68.5 57.6 130.8
duplicates (2) 10.6 11.9 10.6 45.3

non-duplicates (3)=(1)�(2) 55.1 56.6 47.0 85.5
free relations (4) 0.1 0.1 0.8 0.2
prime ideals (5) 54.2 54.7 49.5 78.8

excess (6)=(3)+(4)�(5) 1.1 2.0 �1:7 6.9
singletons (7) 28.5 28.2 26.5 32.5

relations left (8)=(3)+(4)�(7) 26.8 28.5 21.3 53.2
prime ideals left (9) 21.5 22.6 18.5 42.6

excess (10)=(8)�(9) 5.2 6.0 2.8 10.6
clique relations (11) 17.6 18.7 7.4 0 34.1 33.0 29.6 22.9

relations left (12)=(8)�(11) 9.2 9.8 13.9 21.3 19.1 20.2 23.6 30.3
prime ideals left (13) 7.8 8.1 12.2 18.5 17.4 18.2 20.6 25.3

excess (=keep) (14)=(12)�(13) 1.4 1.7 1.7 2.8 1.7 2.0 3.0 5.0

Table 4: summary of mergelevel 0 and 1 runs

lighter matrices�. We dropped the rows corresponding to prime ideals of norm smaller than 50 for
R211, whereas for RSA-140 and RSA-155, which have both exceptionally many small prime ideals,
we omitted the prime ideals of norm smaller than 40y. In addition, the Block Lanczos code truncates
every m� n matrix by default to m� (m+K + 100).
The tables featuring matrix data (Tables 6, 9 and 11) are made of two parts. In the �rst part we

state the real size (m � n), weight (w) and average column weight (wn) of the matrices built. The
numbers between two lines express the changes in size (number of columns) and weight from one
matrix to the smaller one as percentages. Note that a i% decrease in matrix size makes the term wn
shrink as long as the weight does not increase by more than 100i

100�i% which is slightly larger than i%.
The second part shows the e�ective weight (we�) after truncating the matrix to sizem�(m+K+100),
the e�ective average column weight (

we�

m+K+100) and the Block Lanczos timings from a Cray C90 and
a Silicon Graphics Origin 2000. The timings can vary substantially according to the load on the
machines (other jobs interacting with ours): time di�erences of 20% are not unusual. Aiming at a fair
comparison we tried to run the matrices at times with comparable load. In our tables, comparable
timings are written in the same column. Only one Block Lanczos job per number was completely
executed. All times in the tables are extrapolations: we did a short run, took the time of the fastest
iteration and multiplied it by the number of iterations (m+K + 100)=(K � 0:76), see [16].

RSA-140
This 140-digit number was factored on February 2, 1999. The experiment series A started with
65.7M raw relations, B with 68.5M from 5 di�erent sites. We removed 1.4M and 1.6M duplicates,
respectively, with mergelevel 0 runs on each contributor's data. The experiments in Table 5 start
with the remaining 64.3M respectively 66.9M relations having 54.2M and 54.7M large prime ideals,
respectively. After the pruning step (with filtmin= 10M) we need an excess of 239

120�(10M) = 1:3M
for the small prime ideals. For a summary of mergelevel 0 and 1 runs, see Table 4.
In this paragraph we only describe experiment series A. The mergelevel 1 run on the whole bunch

of data removed another 9.2M duplicates and added 0.1M free relations for large primes. Note, that

�In particular, all quadratic character rows are omitted. The pseudo-dependencies being found for this reduced
matrix must be combined to real dependencies afterwards.

yThese �gures match with the implementation for K = 64. For K = 128, we could even have dropped the prime
ideals up to norm 180. The resulting lighter matrices would have led to shorter timings for that implementation.
However, for simplicity, we used the same matrices for both the K = 64 and the K = 128 versions.

4. Experimental results 13

at this point the excess 64:3M� 54:2M� 9:2M+ 0:1M = 1:1Mz was less than the needed 1:3M. The
excess was su�cient only after removing the singletons, when we were left with 26.8M relations having
21.5M large prime ideals. The clique algorithm removed a total of 17.6M relations to approximate
the excess of 1:4M = 9:2M� 7:8M.
The factorization was done using matrix A1.1 which took 100h on the Cray. Only 2- and 3-way

merges were performed, because the code for higher than 3-way merges was not ready by then. For
logistic reasons we had built the matrix before we received all the data.
With the complete data (experiment series B) the excess was enough from the beginning. Further-

more, a matrix constructed from this data by applying the same �lter strategy as for A1.1 would have
performed better than A1.1 as one can imagine when comparing A1.1.2.1 to B1.2: both did merges
up to prime ideal frequency 5 and the latter is smaller in size and weight.
We also tried mergelevel 8 (B2) with mmax = 7 which was introduced only just before the factor-

ization of RSA-155. The program stopped with k-way merges, k � 3 at shrinkage pass 10 after having
deleted 381K relations. This means that only merges with a maximum weight increase of 6 original
relations had been done. Matrix B2 beats the mergelevel 5 matrix of the same series (B1.2).
In Table 6 one can see from the percentages that each size reduction should have a favourable e�ect

on Block Lanczos's running time which is con�rmed by the time column.
These experiments con�rm our idea of the advantage of higher-way merges. They show that col-

lecting more data than necessary is recommendable. It does not become clear, however, how much
excess data one should keep after the pruning step.

ex
p
er
im
en
t

m
e
r
g
e
l
e
v
e
l

f
i
l
t
m
i
n

m
a
x
d
i
s
c
a
r
d

m
a
x
r
e
l
s

m
a
x
p
a
s
s

se
ts

d
is
ca
rd
ed

ex
ce
ss

n
o
t
m
er
g
ed

A 1 10M keep 1.4M 9.2M 46 040K 90K -
A1 2 10M - 4.0 6 6.0M 54K 36K 59
A1.1 3 10M unlim. 10.0 10 4.7M 3K 33K 0
A1.1.1 4(0) 10M 20K 10.0 10 4.2M 20K 13K 243K
A1.1.2 4(0) 10M 20K 12.0 10 4.0M 14K 20K 0
A1.1.3 4(0) 10M 20K 11.0 10 4.0M 20K 13K 48K
A1.1.2.1 5(0-0) 8M 17K 15.0 10 3.5M 17K 4K 0

B 1 10M keep 1.7M 9.8M 46 906K 384K -
B1 4(5) 10M 300K 8.0 12 4.3M 170K 208K 6K
B1.1 5(1-3) 10M 200K 11.5 10 3.6M 85K 128K 1K
B1.2 5(1-3) 10M 200K 10.5 10 3.4M 200K 14K 28K
B2 8 10M 375K 8.0 15 3.3M 383K 1K 909K/455K

Table 5: RSA-140 �lter runs

With each timing column, we �tted a surface t = s1n
2 + s2nw to the points (n;w; t). The �ts

were done by gnuplot's implementation of the nonlinear least-squares (NLLS) Marquardt-Levenberg
algorithm. The quotient s1=s2 corresponds to the C from (2.2). Table 7 gives some possible values
for C.
C = 14 is much smaller than we had initially expected. According to Table 2, with C = 14 and

assuming w
n = 30 we have that 4-way merges are convenient with pivot relations up to weight 31,

which is slightly above average whereas 5-way merges should be done with lighter than average (max.
21 entries) pivot relations. When assuming w

n = 50 the maxima are higher but below average also for
4-way merges.

zThe apparent arithmetical error is due to rounding all numbers to units of a million.

14

exp. matrix size % weight % col.w. we� col.w. Cray SGI a

A1.1 4 671K � 4 704K
�11

151.1M
+8

32.1 147.4M 31.5 75h 59d 24d
A1.1.1 4 180K � 4 193K

�4
163.1M

+3
38.9 161.3M 38.6 65h 56d 22d

A1.1.3 3 999K � 4 012K
�1

168.7M
+1

42.0 166.8M 41.7 63h 54d 21d
A1.1.2 3 960K � 3 980K

�12
171.1M

+12
43.0 168.1M 42.4 62h 53d 20d

A1.1.2.1 3 504K � 3 507K 191.3M 54.5 190.8M 54.4 56h 51d 18d

B1.2 3 380K � 3 394K
�3

178.8M
+2

52.7 176.8M 52.3 51h 46d 16d
B2 3 285K � 3 286K 182.1M 55.4 182.0M 55.4 50h 43d 15d

Table 6: RSA-140 matrices

aThe second column gives timings from the K = 128 implementation.

Block Lanczos implementation s1 s2 C
vectorized Cray code with K = 64 1:84 �0:06 0:0499 �0:0014 37 �2
SGI code with K = 64 0:86 �0:14 0:060 �0:003 14 �3
improved SGI code with K = 128a 0:69 �0:08 0:0140 �0:0018 49 �12

Table 7: C values for di�erent Block Lanczos implementations

aThis version `under development' by Montgomery is being optimized for cache usage rather than vectorization. It
is being redesigned to allow parallelization, but we used only one processor.

Why then did the matrices, which were constructed by more or less brutally doing all possible 3-,
4- and 5-way mergesx, perform better than we would expect from looking at the �gures in Table 3
and 2? It seems most merges were able to �nd a pivot relation with much smaller weight than average.
Furthermore, we must consider that the inequalities (2.4) and (2.5) do not take account of the weight
and size reduction obtained by discarding relation-sets which are made of more than maxrels relations.
Some bene�t also comes from the minimum spanning tree algorithm.
With C = 49 and w

n = 30, even above average 6-way merges can be bene�cial.

R211
The following two tables give data concerning �lter experiments with the special 211-digit number
R211:= (10211 � 1)=9, which is a so-called \repunit", since all its digits are 1. It was factored on
April 8, 1999. Five sites produced a total of 57.6M raw relations. 1.2M duplicates were removed
during mergelevel 0 runs on the individual data. The experiment series A and B both started
with the remaining 56.4M relations having 49.5M prime ideals of norm above 10M. This means
that we had 6.9M more relations than prime ideals which seemed to be enough since we needed to
reserve 23

12�(10M) = 1:3M more relations accounting for the small prime ideals. Unfortunately, the
mergelevel 1 run on the complete data set revealed 9:4M duplicates. The remaining 47:0M relations
plus 0:8M free relations were less than the number of prime ideals. However, we did not need to sieve
further since we had an excess after removing the 26.5M singletons. The clique algorithm started
hence with 21:3M relations having 18:6M prime ideals of norm larger than 10M, which is an excess of
2:8M. See Table 4.
Experiment series A gives the parameters and results of the filter runs that led to the matrix that

was used to factor the number; it took 120 hours on the Cray. B shows a di�erent approach, where
we kept 1:1M more relations than for A after the pruning step, leaving more choice for merging.

xFor A1.1.2.1, all possible merges up to prime ideal frequency 5, for prime ideals of norm larger than 8M, had been
performed.

4. Experimental results 15

ex
p
er
im
en
t

m
e
r
g
e
l
e
v
e
l

f
i
l
t
m
i
n

m
a
x
d
i
s
c
a
r
d

m
a
x
r
e
l
s

m
a
x
p
a
s
s

se
ts

d
is
ca
rd
ed

ex
ce
ss

n
o
t
m
er
g
ed

A 1 10M keep 1.7M 13.9M 33 839K 433K -
A1 4(5) 20M 300K 6.0 10 6.8M 304K 124K 1 637K
A1.1 5(5-10) 20M 15K 12.0 15 5.6M 15K 109K 796K
A1.1.1a 5(5-10) 8M 50K 15.0 15 4.9M n.a. 63K n.a.

B 1 10M keep 2.8M 21.3M 26 488K 1 484K -
B1 4(5) 20M 1 300K 6.0 10 6.7M 1 310K 206K 1 410K
B1.1 5(5-10) 20M 170K 12.0 15 4.8M 170K 11K 97K
B1.1.1 5(1-3) 8M 10K 18.0 10 4.6M 4K 8K 2
B2 8 10M 1 400K 9.0 15 4.7M 1 421K 30K 1 244K/925K
B3 8 10M 1 400K 10.0 15 4.5M 1 423K 64K 918K/777K

Table 8: R211 �lter runs

aThis run was done with the
ag regroup, which splits up existing relation-sets and does merges from scratch, which
leads to di�erent relation-sets.

Both mergelevel 4 runs can actually be considered mergelevel 3 runs, since the maximum number
of discards, maxdiscard, was reached before 4-way merges would have started.

exp. matrix size % weight % col.w. we� col.w. Cray SGI

A1.1.1 4 820K � 4 896K
�0

234.2M
�5

47.8 221.2M 45.88 118h - 97h 93h 96d
B1.1 4 863K � 4 877K

�3
223.3M

+4
45.8 221.3M 45.92 119h - 97h 95h 97d

B2 4 723K � 4 754K
�2

231.9M
�0

48.8 228.2M 49.10 - 95h 93h 92h 95d
B1.1.1 4 661K � 4 670K

�2
231.2M

+7
49.5 229.3M 49.60 115h - 93h 91h 95d

B3 4 503K � 4 569K 247.5M 54.2 239.0M 53.06 - 90h - - -

Table 9: R211 matrices

Experiment series B achieved smaller matrices than A. The reason must be the di�erent keep values
during the pruning stage. Experiment series A kicked out 7.4M relations with the clique algorithm
whereas B kept all the excess relations, performed more merges and discarded more relations during
the merge steps. We can conclude that for this data the best thing was to skip the clique algorithm.
This is strongly connected to the fact that we barely had enough relations. Sieving any longer would
surely have led to smaller matrices.
Matrix A1.1.1 performed better than matrix B1.1, which may seem counter-intuitive since B1.1

produced the smaller and lighter matrix. However, matrix A1.1.1 contained fewer rows (fewer prime
ideals) than matrix B1.1 and due to the default truncation taking place in the Block Lanczos algorithm
the e�ective A1.1.1 matrix was smaller in size and weight than the e�ective B1.1 matrix.
At B2 we also tried mergelevel 8 while having mmax = 7. maxdiscard was reached already at

shrinkage pass 9 (with 15 possible passes) when the allowed weight increase was 5 original relations.
The �nal matrix was larger than B1.1.1. We had chosen maxrels too low. It was 9, compared to 18
in B1.1.1. With maxrels 10 we achieved the desired reduction (B3).

RSA-155
The 155-digit number RSA-155 (512 bits!) was factored on August 22, 1999. A total of 130.8M
relations were collected from 12 di�erent sites. 6.1M relations were removed in individual mergelevel
0 runs. Another 39.2M duplicates where removed in a mergelevel 0 run on the whole amount of

16

data. All the experiments below started with the remaining 85.5M relations and its 0.2M free relations.
Therefore, in contrast to the previous examples, the �gures in the discarded column do not contain
any duplicates. See Table 4 for details.
Matrix B2 was used for the factorization. It took 225 hours on the Cray.

ex
p
er
im
en
t

m
e
r
g
e
l
e
v
e
l

f
i
l
t
m
i
n

m
a
x
d
i
s
c
a
r
d

m
a
x
r
e
l
s

m
a
x
p
a
s
s

se
ts

d
is
ca
rd
ed

ex
ce
ss

n
o
t
m
er
g
ed

A 1 10M keep 1.7M 19.1M 66 593K 385K -
A1 5(1-3) 10M 370K 11.0 12 7.1M 370K 15K 67K

B 1 10M keep 2.0M 20.2M 65 531K 684K -
B1 8 10M 600K 9.0 15 6.9M 603K 81K 1 611K/764K
B2 8 7M 670K 9.0 15 6.7M 672K 13K 1 576K/716K
B3 8 7M 670K 10.0 15 7.1M 366K 317K 1 432K/744K
B4 16 7M 670K 9.0 15 6.6M 690K �5K 4 130K/694K
B5 16 7M 670K 10.0 15 6.8M 482K 193K 3 797K/562K
B6 18 7M 670K 10.0 15 6.3M 672K n.a. n.a.

C 1 10M keep 3.0M 23.6M 62 092K 1 682K -
C1 8 10M 1 670K 8.0 15 6.8M 1 675K 7K 1 710K/698K

D 1 10M keep 5.0M 30.3K 55 402K 3 677K -
D1 8 10M 3 670K 7.0 15 7.1M 3 698K �20K 2 118K/780K

Table 10: RSA-155 �lter runs

The experiments indicate that retaining more data (keep � 3:0M) after the pruning stage did not
help to reduce the size of the matrix.
Experiments B4 and D1 discarded too many relation-sets which is recognizable from the negative

excess.
In B2 merging was stopped at shrinkage pass 11, while m = 6. Since there were still many unmerged

ideals in B2, we tried to make the matrix smaller by increasing maxrels in B3 which allows also
relation-sets with 10 relations, which were deleted in test B2. But even after this run many potential
merge candidates remained unmerged, although maxdiscard was not reached. This indicates that
the weight increase of the merges was considered too high and the merges were subsequently not
executed. Next, we tried mergelevel 16, which is the maximum prime ideal frequency you can have
a merge with for mmax = 7. Some reduction was achieved (B4 and B5). Finally, we took mmax = 8
together with mergelevel 18 and maxrels 10. maxdiscard was reached during shrinkage pass 14,
when m = mmax .

exp. matrix size % weight % col.w. we� col.w. Cray

B2 6 699K � 6 711K
�5

417.1M
+7

62.2 415.5M 62.0 218h
B6 6 342K � 6 354K 445.3M 70.1 443.4M 69.9 213h

Table 11: RSA-155 matrices

Matrix B6 is 5% smaller than B2 but also 7% heavier. With C = 14 we can expect to save

1 � 14�6:3422+6:342�445:3
14�6:6992+6:699�417:1 � 1% running time, which is too small a gain to accept the weight increase,

whereas with C = 37 or C = 49 we may save 3% or 4%, respectively. The e�ective runs on the Cray
(C = 37) indicate a saving of 2%.

5. Conclusions 17

5. Conclusions

We extended our previous filter program to allow higher-way merges and proved theoretically and
practically that we can reduce Block Lanczos running time by performing higher-way merges. We
determined limits for the weight of pivot columns.
During a merge, instead of merging by pivoting we calculate a minimum spanning tree in order to

assure minimum weight increase.
A denser matrix allows for more weight increase during a merge than a lighter one: this means we

can merge with denser pivot columns. Therefore we do the light merges before the heavier ones.
We determined the ratio between the two terms characterizing the running time of Block Lanczos

for di�erent implementations. To which extent we can pro�t from higher-way merges depends on this
ratio. We saw values ranging from 14 to 49. With the help of this constants we can estimate the
running time of a matrix, given the running time of another matrix.
Collecting more data than necessary is advisable. The clique algorithm enables us to get rid of

excess data quickly and in a sensible way. It is a useful tool when having abundant excess.

18

References

1. Hendrik Boender. Factoring Large Integers with the Quadratic Sieve. PhD thesis, Rijksuniversiteit
Leiden, 1997.

2. Joe P. Buhler, Hendrik W. Lenstra, Jr., and Carl Pomerance. Factoring integers with the number
�eld sieve. In Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors, The development of the
number �eld sieve, number 1554 in Lecture Notes in Mathematics, pages 50{94. Springer-Verlag,
1993.

3. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Paul Leyland, Walter Lioen, Peter L. Mont-
gomery, Herman te Riele, and Paul Zimmermann. 211-digit SNFS factorization. Available from
ftp://ftp.cwi.nl/pub/herman/NFSrecords/SNFS-211, April 1999.

4. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Paul Leyland, Walter Lioen, Peter L. Mont-
gomery, Brian Murphy, Herman te Riele, and Paul Zimmermann. Factorization of RSA-140 using
the number �eld sieve. In Kwok Yan Lam, Eiji Okamoto, and Chaoping Xing, editors, Advances
in Cryptology - Asiacrypt '99, volume 1716 of Lecture Notes in Computer Science, pages 195{207.
Springer-Verlag, 1999.

5. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter Lioen, Peter L. Montgomery, Brian
Murphy, Herman te Riele, Karen Aardal, Je� Gilchrist, G�erard Guillerm, Paul Leyland, Jo�el
Marchand, Fran�cois Morain, Alec Mu�ett, Chris Putnam, Craig Putnam, and Paul Zimmermann.
Factorization of a 512-bit RSA modulus. Submitted to Eurocrypt 2000.

6. James Cowie, Bruce Dodson, R.-Marije Elkenbracht-Huizing, Arjen K. Lenstra, Peter L. Mont-
gomery, and J�org Zayer. A world wide number �eld sieve factoring record: on to 512 bits. In
Kwangjo Kim and Tsutomu Matsumoto, editors, Advances in Cryptology - Asiacrypt '96, volume
1163 of Lecture Notes in Computer Science, pages 382{394. Springer-Verlag, 1996.

7. Thomas F. Denny. Solving large sparse systems of linear equations over �nite prime �elds. Trans-
parencies of a lecture of the Cryptography Group at CWI, May 1995.

8. Reina-Marije Elkenbracht-Huizing. An implementation of the number �eld sieve. Experimental
Mathematics, 5(3):231{253, 1996.

9. Ronald L. Graham and Pavol Hell. On the history of the minimum spanning tree problem. Annals
of the History of Computing, 7(1):43{57, January 1985.

10. J�urgen Neukirch. Algebraische Zahlentheorie. Springer-Verlag, 1992.

References 19

11. Donald E. Knuth. The Stanford GraphBase: A Platform for Combinatorial computing. Addison-
Wesley, 1993.

12. Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, second edition, 1998.

13. Brian A. LaMacchia and Andrew M. Odlyzko. Solving large sparse linear systems over �nite �elds.
In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology - Crypto '90, volume 537
of Lecture Notes in Computer Science, pages 109{133. Springer-Verlag, 1991.

14. Serge Lang. Algebraic Number Theory. Springer, 1986.

15. Peter L. Montgomery. Square roots of products of algebraic numbers. In W. Gautschi, edi-
tor, Mathematics of Computation 1943{1993: a Half-Century of Computational Mathematics,
volume 48 of Proceedings of Symposia in Applied Mathematics, pages 567{571. American Mathe-
matical Society, 1994.

16. Peter L. Montgomery. A block Lanczos algorithm for �nding dependencies over GF(2). In Louis C.
Guillou and Jean-Jacques Quisquater, editors, Advances in Cryptology - Eurocrypt '95, volume
921 of Lecture Notes in Computer Science, pages 106{120. Springer-Verlag, 1995.

17. Phong Nguyen. A Montgomery-like square root for the number �eld sieve. In J. P. Buhler, editor,
Algorithmic Number Theory - ANTS-III, volume 1423 of Lecture Notes in Computer Science,
pages 151{168. Springer-Verlag, 1998.

18. J. M. Pollard. The lattice sieve. In Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors,
The development of the number �eld sieve, number 1554 in Lecture Notes in Mathematics, pages
43{49. Springer-Verlag, 1993.

19. Carl Pomerance and J. W. Smith. Reduction of huge, sparse matrices over �nite �elds via created
catastrophes. Experimental Mathematics, 1(2):89{94, 1992.

