\—
View metadata, citation and similar papers at core.ac.uk brought to youlby i CORE

provided by CWI's Instituti

e en Intormatica

Centrum voor Wiskun

REPORTRAPPORT

IMIAS

Modelling, Analysis and Simulation

Modelling, Analysis and Simulation

MAS The three-large-primes variant of the number field sieve

S. Cavallar

ReporT MAS-R0219 Aucust 31, 2002

https://core.ac.uk/display/301667362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Insfitute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI'is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)
Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2001, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 S Amsterdam (NL)

Telephone +31 20 592 9333

Telefax +31 20 592 4199

ISSN 1386-3703

The Three-Large-Primes Variant of the Number Field Sieve

Stefania Cavallar
Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, The Netherlands
S.Cavallar@TUE.nl

ABSTRACT
The Number Field Sieve (NFS) is the asymptotically fastest known factoring algorithm for large integers. This
method was proposed by John Pollard [20] in 1988. Since then several variants have been implemented with the
objective of improving the siever which is the most time consuming part of this method (but fortunately, also the
easiest to parallelise). Pollard’s original method allowed one large prime. After that the two-large-primes variant
led to substantial improvements [11]. In this paper we investigate whether the three-large-primes variant may
lead to any further improvement. We present theoretical expectations and experimental results. We assume
the reader to be familiar with the NFS.

As a side-result, we improved some formulae for Taylor coefficients of Dickman's p function given by Patterson
and Rumsey[3] and Marsaglia, Zaman and Marsaglia[16].

2000 Mathematics Subject Classification: Primary 11Y05. Secondary 11A51.

1998 ACM Computing Classification System: F.2.1.

Keywords and Phrases: Number Field Sieve, three large primes, semi-smoothness probabilities, Dickman’s Rho
function.

Note: This report was previously published as Chapter 2 of the author's PhD thesis [8]. The research was
carried out under project MAS2.2 “Computational number theory and data security”.

1. INTRODUCTION

In [11], B. Dodson and A. K. Lenstra describe their experiments with the two-large-primes method
in the Number Field Sieve (NFS) which showed that the turnover point between the one-large-prime
method and the two-large-primes method was passed for numbers ranging from 107 to 119 digits.
After that, the two-large-primes method soon became widely used for larger number factorisations.
In this paper we describe experiments with the three-large-primes variant which was also employed
for the special number factorisation record of 233 digits [21]. So far, the experiments do not indicate
a distinct advantage over the two-large-primes version, presumably because we still have not reached
the turnover point.

For sufficiently large numbers, the relations with three large primes will outnumber the relations
with two large primes. But the passage from two to three large primes is not so straightforward as
the passage from zero to one or from one to two large primes. Even when the three-large-primes
relations outnumber the two-large-primes relations, it can still be too expensive (in time) to find
sufficiently many three-large-primes relations in the sieving region. The reason for this is the rareness of
successfully factored tri-composites (and with all prime factors below the large prime bound) amongst
the many candidate cofactors tested.

Here we enlist a few advantages and disadvantages one expects from the three-large-primes version
above the two-large-primes version. We assume that not explicitly mentioned parameters are the same
in both methods. When comparing it to the two-large-primes version, one can either keep the same
size of the factor base or use a smaller factor base.

If we keep the factor base the same size, we have

Advantage 1 A smaller sieving region can be taken to produce the same number of relations.

Disadvantage 1 The time needed to find a useful relation is higher. One reason is the high number
of bi-composites among the candidate cofactors tested for tri-compositeness. Another reason is
the larger composites which have to be factored.

Disadvantage 2 For the same number of relations, one can expect more primes to occur in the
relations. It will be more difficult to combine the relations with the additional third prime
to full relations. As a consequence more sieving will have to be done which might annihilate
Advantage 1.

If we keep a smaller factor base, we have
Advantage 2 Less memory is needed. This is useful to sieve on machines with little memory.

Advantage 3 For a sufficiently smaller factor base, for the same number of relations, one can expect
fewer primes to occur in the relations.

The two example factorisations with three large primes which we treat will show that we have not
yet reached the crossover point to the three-large-primes method. For one example with 179 decimal
digits (7*! + 1) we kept the factor base bound artificially small (Advantage 2) to create the need of
three large primes (we sieved 72'' — 1 with two large primes for comparison), while still not making
use of all the three large primes relations since it would have been too costly in time to produce them
(compared with the two-large-primes method). In this case we noticed Advantage 3.

Also for the other example, the 233-digit number 277 + 1, we handled a rather small factor base
bound (Advantage 2) as the number was going to be sieved in parallel on different machines and, for
simplicity, we kept the same parameters for all the computers involved. Again, time considerations
induced us not to detect all possible three-large-prime relations.

We did not make a comparison between the two-large-prime version and the three-large-prime
version with the same factor base. This is left to further research.

In this paper we give methods to predict the number of relations with i large primes which are found
in the sieving part and compare this with real-sieved data for 7 at most 5. Most of these comparisons
are done for numbers which were sieved with the two-large-primes method (as this is the common
method at the moment) and we will see that we can reasonably well estimate the number of relations.

2. OUTLINE
In Section 3, we give a description of the sieving step. Here we also introduce most of the notation
and terminology needed in later sections.

In Section 4, based on de Bruijn’s ¥ function, we introduce ¥; to count numbers with ¢ large primes
and show a way to predict the number of smooth polynomial values in the sieving region based on
heuristics originating from Peter Montgomery.

In Section 5, we discuss two ways to approximate ¥ by Dickman’s p function and extend this to ¥;
by introducing the functions G; and H;. We thereby generalise work done by Bach and Peralta [3]
(G1) and Lambert [15] (G3) to three and more large primes.

In Section 6, we generalise (and slightly improve) a theorem by Bach and Peralta from one to two
and more large primes: The A; defined is an upper bound for how much the G; approximation for ¥;
is worse than the p approximation of ¥. We measure that the A;s grow with i but, for i« < 5 are all
below 4% for the range of numbers we are interested in.

In Section 7, we present the numerical methods by Patterson/Rumsey and Marsaglia/Zaman/
Marsaglia to compute p and improve upon both methods.

In Section 8 we present actual sieving data for two-large-primes-sieved numbers which we compare
to the theoretical estimates.

In Section 9 we describe the obstructions which are encountered when going from two to three large
primes in more detail.

In Section 10 we analyse data from a three-large-primes-sieved number with more details.

3. Description of the sieving step 3

In Section 11 we compare a two-large-primes-sieved number with a three-large-primes-sieved num-
ber.
Conclusions are given in Section 11.

3. DESCRIPTION OF THE SIEVING STEP
We only describe the sieving step of the Number Field Sieve. For a complete and detailed description
of the Number Field Sieve we refer to [12].

Let N be the number we want to factor. In the NFS two polynomials

fi(x) =cjo+ecpz+ -+ cjdja:df eZz), j=1,2,

are selected which are irreducible over Z and have a common root modulo N. We denote by

1

Fj(z,y) = f;(@/y)y" = cjoy® +ecnay® " + -+ ¢ja,z

the homogeneous form of f;(z). We call
R=[-A,A)x[,B] (] ZxN (3.1)

the sieving region, where A and B are in N. The siever looks for (a,b) € R with a and b coprime
such that both Fj(a,b) and Fy(a,b) factor completely over the primes below the factor base bounds
B, and Bs, respectively, except for at most & and [large primes which should not exceed the so-called
large prime bounds Ly and Lo, respectively. We call such (a, b) pairs relations. Following [11] we shall
denote relations with k large primes in F; and [large primes in F5 as k,[-partial relations whereas
relations with no large primes are called full relations. We will call the method an i-large-primes
variant when allowing k, [-partial relations with max(k,[) < i.!

We allow three large primes for the polynomial which we expect to give the larger values on the
sieving region, i.e., the one with larger

|Cj0ij| + |Cj1Aij_1| + ...+ |dej A |

Let us assume in this section this is polynomial 2. Thus, our three-large-primes variant allows 2, 3-
partial relations.

We sieve the roots of F; modulo a prime p. A triple (p, q,i) denotes 0 < ¢ < p such that F;(q,1) =
0 mod p. With (p,oc0,i) we denote a projective root F;(1,0) = 0 mod p which occurs for p | ¢;q;.
These are the two different ways in which p can divide Fj(a,b) = fi(a/b)b% with gcd(a,b) = 1, namely
a/b = qmod p for (p,q,i) or p| b for (p,c0,1).

The siever sieves the triples for all the primes p € [d, B;] where d is chosen by the user. For
these triples, powers are not sieved. For triples with p < d and not dividing the discriminant of
the polynomial, the highest power of p below d is sieved. During the sieving process the candidate
relations are marked. A relation (a,b) is considered a candidate if

Fib)l<S [o [» L}

(p,g,1) (p,q,1)

2<p<d d<p<Bi
p|F1(a,b) p|F1(a,b)
ptdisc(f1)

n this respect, we differ from the notation in [11] where the method is called an i-large-primes variant, when
allowing k, [-partial relations with k 4+ [< 4. In this sense, the four large primes in the title of [11] indicate a two-large-
primes variant, whereas the three-large-primes variant investigated in this paper corresponds to five large primes in their
notation. Our notation makes comparison with the Quadratic Sieve easier, where one has 1 instead of 2 polynomials.
Actually, Pollard’s original method is already a one-large-prime variant (in either notation), as it allows for 1, 0-partial
relations.

Iy Iy I3
By Ly B2 L3 B3 L3
U I y log. scale
prime prime or prime,
bi-composite bi-composite or

tri-composite

Figure 1:

and

|F2(a,b)| S 52 H leOgP d] H P Lg

(p,4,2) (p,q,2)

2<p<d d<p
p|F2(a,b) p|F2(a,b)
pldisc(f2)

Here S, j = 1,2, are user-chosen constants that have to take account of the primes and prime powers
which are not sieved. The default value for d is 31.

The polynomials are sieved one after another. The siever we use is the so-called line-by-line siever.
We give a short description for sieving polynomial 1 (2 is done analogously): the siever keeps an array
for a fixed b and the single entries are indexed by a. The entries are initialised with 0. When sieving
with (p,q, 1), we add logp to each entry a = bq. For a projective root (p, 0o, 1), we add logp to each
entry a if p | b. By storing the logarithms we can add instead of multiply the factors, which results
in a time reduction even though we have to resieve afterwards. Here we used the natural logarithm,
but in the implementation a more suitable base is chosen. The logarithms will be approximated.

How do we track down the candidates? We recall that (a, b) is a candidate relation if the entry with

index a exceeds log (%ﬁ?l) and log (%‘2?‘) after the sieving of polynomial 1 and 2, respectively.
We divide the corresponding polynomial values by the sieved primes determined by resieving above
a user-chosen threshold and by trial division below this threshold. After that we check whether the
remaining parts are divisible by a higher power of those primes, or by small unsieved primes. The
cofactors C; and Cs do not contain any primes below B; and B, respectively.

We set a condition on the relationship between B; and L;. This restriction is not essential but
enables us to know the maximum possible number of factors of a cofactor. We require L? < B? and
L3 < Bj. Note that it follows that L; < B}, Ly < B3 and L3 < B3.

A cofactor Cs of polynomial 2 is considered only if it falls into one of the three disjoint intervals
Iy = [Ba,Ls], I,y = [B3,L2], I3 = [B3,L3]. If Cy € I; we can immediately conclude that the
cofactor Cy is prime since otherwise Cy > B2 > L. Similarly, if Co € I;, then C> has a maximum of
i primes for 7 = 2,3. See Figure 1.

If a cofactor falls into I»3, we first perform a Rabin’s probable prime test and for composites we try
to find a factor with Pollard’s P — 1 method (see section 3.1). If a factor smaller than L, is found
and the remaining part belongs to Iy, we proceed as for the cofactors falling into Is2, namely we do
a probable prime test on the cofactor and, if it is composite, factor it with Shanks’s SQUFOF or (if
SQUFOF fails) with Pollard Rho. Then we check that the prime factors are in I;.

Since the cofactors which lie centrally in the intervals are the most promising, we restrict the search

4. Counting smooth numbers with W 5

to the subintervals

I21
(B3, By Ly (3.2)
[B32L5*®, By Ly

These cut-off exponents were chosen based on few experiments. In Table 11 in Section 9 we present
some experiments to measure which interval parts are more useful than others. The choice of optimal
cut-off exponents however is left for further research.

The processing of C; is done analogously except that C; can only be bi-composite or prime.

The actual factorisation of cofactors for a relation is attempted only after testing size and primality
of both cofactors. If there remain two composite cofactors C; and Cs they are factored in the following
order: the bi-composite candidate C; precedes a tri-composite candidate Cs. If Cs is a bi-composite
candidate, the larger of ', and Cs is factored first.

3.1 The P — 1 method

The P —1 method finds a factor p of n if p—1 is a product of primes below K; (i.e. p—1is K;-smooth)
or if it is a product of primes below K; and one prime between K; and K, (in the terminology of
Section 4 this means p — 1 is (1, K, K1)-smooth). The algorithm is split into two steps. Step 1
finds the p for which p — 1 is K;-smooth, step 2 the p where p — 1 is (1, K2, K)-smooth. In step 1,
b = 2M mod n is calculated for M the product of the prime powers below K;. If the ged(b — 1,n)
does not reveal a factor, step 2 is started using Lucas’ functions. If p — 1 is (1, K2, K1)-smooth, we
will find ged(2MPi +2-MPi — 2) > 1 for a prime p; in [K;, Ks]. The approach with Lucas’ functions
is less straightforward, but nice properties of these functions allow to check many gcd’s at the same
time. This speeds up step 2 enormously. On the other hand, fewer gcd checks can also mean that
factors are found multiplied together. In that case the algorithm starts over again, but this time with
the P+ 1 method (this is repeated a few times, if necessary). The same code for Lucas’ functions can
be used for this. More gcd checks will be performed in step 1. Note that the P 4+ 1 method is not
invoked if step 2 terminates with a gcd equal to 1. This is better for the average performance (the
ratio time per found factor is smaller) as step 1 of P + 1 is more expensive than step 1 of P — 1. Only
if P — 1 has found the trivial factor n, we (repeatedly) try P + 1, hoping that this method will not
reduce to the P — 1 method for all the factors.

This P — 1 implementation does not attempt a full factorisation when there are three or more
factors. Once a partial factorisation is found, SQUFOF or Pollard Rho can finish the factorisation if
the cofactor is composite and in range.

The bounds K; and K> are user-chosen. The default values are K; = 2000 and K5 = 50 000.

This algorithm was developed and implemented by Montgomery [17].

4. COUNTING SMOOTH NUMBERS WITH ¥

De Bruijn’s function ¥(z,y) denotes the number of positive integers up to x having no prime factors
larger than y. We shall call such integers y-smooth. Analogously we define, for i a positive integer
and z >y > z, ¥;(z,y, 2) to be the number of positive integers up to x having exactly ¢ prime factors
> z and < y and the remaining prime factors < z. We shall call such integers (i,y, z)-smooth. Note
that

Tilz,y,)= > Y Y m(”“” z> (4.1)

LD
2<pi<y z<pi—1<p; 2<p1<ps p pi

We do not know simple and fast ways to calculate ¥(z,y) for large z, so we are going to use an
approximation for ¥(x,y) (see Section 5).

4.1 Approzimation of the number of smooth numbers among polynomial wvalues F(a,b) with
ged(a,b) =1

For our purposes, we want to approximate the number of smooth values among polynomial values

given by a homogeneous polynomial in two variables F'(a,b) with gcd(a,b) = 1.

In Subsection 4.2, we will compute the expected contribution to F(a,b) of all primes p smaller than
the factor base bound B. Therefore we calculate the average exponent of p in the factorisation of
F(a,b); we shall call this cont,(F'). Before that, we will calculate the corresponding value for random
numbers, cont,(r). We build on research by Montgomery [18], Boender [4, Chapter 4] and Murphy [19,
Chapter 4].

The estimated logarithmic norm after dividing out primes in the factor base is then log F'(a, b) —
>_p<p conty(F) logp. The corresponding value for a random number y is logy — > g cont,(r) log p.
According to this, we make the following

Assumption 1. The polynomial values F'(a,b) are about as B-smooth as random integers with loga-
rithmic norm log F'(a,b) + a(F, B) where

a(F,B) = Z (contp(r) — contp(F)) log p.
p<B

According to the definition, ¥(z, B)/z gives the portion of B-smooth numbers among the numbers
from 1 to . The average size of the numbers is (1 + z)/2 which is approximately T = x/2.
The average size of F'(a,b) over the sieving region R (usually R is given by (3.1) is

F_ [/ |F(a,b)|dadb
= [T dadb

According to Assumption 1, we can treat the F(a,b) values like random values of average size T’ =
Fe*(F'B) 0 we use ¥(z', B)/x’ with 2/ = 27 to approximate the portion of B-smooth polynomial
values among the (a,b) pairs from R with ged(a,b) = 1.

In the sieving region we have approximately X = [, da db pairs such that ged(a,b) =1 (see [14,

(4.2)

Section 4.5.2]), so we expect X\I'(”Z—/JB) B-smooth norms among them. Because of (4.1) we can use
X\Ili(I/,L,B)

o as approximations for the number of (i, L, B)-smooth norms in the sieving region. If

i(z],L1,B1) ¥, (x5,L2,Bs) is
z 5

an approximation of the number of i, j-partial relations. This means that we treat them as if the

smoothness of Fj(a,b) is unrelated to the smoothness of Fy(a,b). By this we neglect some minor

effect which can happen for primes which divide the resultant of the two polynomials.

we assume that the two polynomials are independent, then we can use X r

4.2 Calculation of cont,(r) and cont,(F)
In the sequel k shall always denote a positive integer.

Calculation of cont,(r) For random numbers we expect that approximately every p*-th number is

divisible by p*, so, taken a random number, we have probability pik (1 — %) that it is divisible by p*

k41 ; — k 1) _
but not by p**1. Thus, the average exponent for p is equal to contp(r) = >, i3 (1 - ;) =1
Calculation of cont,(F) Let us first do the calculations for the simpler case of a univariate polynomial
f(z) which has n,. distinct roots modulo p¥. Hence a polynomial value is divisible by p* with
probability n, /p*. By Hensel’s lemma [10], we know that if we have a non-multiple root modulo p,
we have a unique corresponding non-multiple root modulo p*. That means that for the primes which

do not divide discf we have n,x = n, for every k > 1 and we can easily sum the exponents of p to

5. Approximating U, 7

give conty,(f) = >, k;ﬁf (1—2) = ;2. For the primes diving discf we need to calculate cont,(f)
manually.

Next, we look into the case of a homogeneous polynomial in two variables F(a,b) = f(a/b)bde8(/),
We want to estimate the probability that p* divides F(a, b) restricted to the (a, b) pairs with ged(a, b) =
1. We know that if p* | F(a,b), then p* | F(a + Ip*,b+ mp*) for [and m integers. So we can restrict
our analysis to Z/p*7Z x Z./p*Z. If we take a random pair (a, b) with gcd(a,b) = 1, we can reduce both
a and b modulo p* and obtain one of the p** — p**=2 pairs (z,y) in Z/p*Z x Z/p*Z with p { ged(z,y).
The p?(*=1) (p? —1) pairs are (almost) equally likely, because in each case ged(a,b) = 1 with probability
T(i%_) if we would consider an infinite (in both dimensions) sieving region.

T2

Consider a root a/b modulo p*, namely f(a/b)b%8/) = 0 mod p*. We distinguish

1. a/b = s mod p* and p { s. There are ¢(p*) possible s between 0 and p* and each s has ¢(p*)
different pairs (z,y) € Z/p*Z x Z/p*Z with z/y = s mod p* and p { ged(z, y).

2. a/b = smod p* and p | s. We have p*~! possible s from 0 to p* — 1 and each s has ¢(p¥)
different pairs (z,y) € Z/p*Z x Z/p*Z with z/y = s mod p* and p { ged(x,y).

3. b/a = smod p* and p | s. This case is like 2, after exchanging x and y. These are called
projective roots.

We see that whichever is the nature of a root with respect to p, we have ¢(p*) corresponding (z,y)
pairs in Z/p*Z x Z/p*Z with p { ged(z,y). Thus, given n,. distinct roots modulo p* (counting also
possible projective roots), the probability for F(a,b) with ged(a,b) = 1 to be divisible by p* is equal
to
nr(p*) _ Nk (4.3)
pQ(k—l)(pQ _ 1) p’“‘l(p + 1)' ’

Like in the univariate case we easily get the total log p contribution for primes not dividing discf: we
have n, non-multiple roots of f modulo p (counting also possible projective roots), thus we find an
average exponent of p equal to

o0

kn 1 Nnpp
tp,(F) = E — P (1--)=_2" 4.4
con p() Pt pkfl(p+ 1) < p> pz —1 ()

For primes dividing discf we need to individually study the division behaviour and calculate cont, (F’).
See Section 8 for information about the primes dividing the discriminant in our example polynomials.

5. APPROXIMATING ¥;
The canonical way to get an approximation for ¥ is by using Dickman’s p function defined by

plr —1)

ply=1for0<z<1 and p(z)=- for z > 1. (5.1)

By using (1.4) and (5.3) from [6], Bach and Peralta [3] deduced that if 0 <y < a < 1 and 27 > 2,

U(z,2%) = zp (é) +0 (71;3:) . (5.2)

We will add the condition logz > Zz which is asked for in de Bruijn’s (1.4).
We have that

Gofa) = fim) —p (2.

—00 T «

Bach and Peralta [3] proved that, for 0 < a < S < 1

a B _
Gi(a,f) == lim Wi (z, 27, 2%) :/ p<1 >‘> dx

r—00 i (6] A

Lambert [15] treated the case i =2: for 0 < a < f < 1/2,

v 8 x 1—(AM+A dA; dA
Ga(a, B) == lim 2(“’ “7 / / 1= (ut o) dhiddy
200 A1 A2
We generalise this further to: for 0 < a < § < 1/i we have
U, 8z
Gi(e, B) := lim M — (5.3)

/ / / 1— (At +X+-+N) && d\;
i a A1 Ag Ai

In fact, in Section 5.1 we will prove

Theorem 1. For a positive integer i, 0 < a < f < 1/i and

lo a:>1ma 102171.0(1

— max
872 % &5 0 " log ((ia)—1)
we have

U, (z, zP , T

Lo+ 0)) dudhe d) log'((ia)™") =
z!/ / / < a) YRV} +O< a(l —ip) 1oga:>‘

The error bound is uniform in i, o and (3.

By log’(z) we mean (logz)’. Since we study ¥;(z,y,z) in the form ¥;(z,z?, z%), we have o =
log z/logz and 8 = logy/ log .
A more sophisticated approximation for ¥(z,y)/z than

logy log x
Go (22) =p (s
ogx logy
is given by
log x 1—v [logx
H = —1].
o) p<10gy> i 10gwp<10gy
This approximation was used by Boender [4, Chapter 4] as well as by Murphy [19, Chapter 4] in their
approximations. We define the corresponding approximations for ¥;(x,y, z), namely

Hi(wazay):
1—~1 (¥ vorl —log(ty - t; dt dt;
G;i(log, z,log, y) + 7.—/ / p(oga: og(ty)1> L. . (5.4)

log x 4! log z t1 log tq t;logt;

i times

5. Approximating U, 9

with logz > log z + i logy.?
For completeness we want to mention work by Vershik [23]. He gives formulae for calculating

(Pi(ala"'aai) = xli_{lgo'r_l |{n <z |pk(n) < makak = 1777’}|

where 1 > ay > -+ > «a; > 0, and pi1(n) > --- > p;(n) are the i largest prime divisors (counting
multiplicity) of the integer n. Vershik’s formulae contain (possibly different) upper bounds and no
lower bound for the p;(n) values whereas our G;(«,) formulae contain one upper and one lower
bound for the p;(n) values.

5.1 Proof of Theorem 1
Let us first prove some intermediate results we will use several times during the proof. We will use
that

w(t) = 1li(t) + e(¢) (5.5)

with ll(t) = f(f d;L'/ lOgiL’ = 1im€—>+0 (f()l_E dz + t dx) and

log 1+¢ logx

t
ety =0 <log—ct> for any ¢ > 0. (5.6)

Lemma 1. For a positive integeri, 0 < a < f < %, logx > W and % < s < 2P, we have

/ tlﬁgt < log ((ia)™") (5.7)
[5 =0 (ames) (5.9
ze alogz |
m“§<s% - /m dﬂT(t) = 0 (log ((ia)™")).- (5.9)

Proof. For (5.7) we have

*odt .
La tlogt o lOg log t] T S log log -TB - log lOg % = log/B — loga

AN

log G) —loga =log ((ia)™") .

For (5.8) we integrate by parts and use (5.6) with ¢ = 1 and ¢ = 2 for the resulting first and second

term, respectively,
Foodt 1
(L 7o) =0 (o)
2o tlog”t alogx

[L ol) o

For (5.9) we use Stieltjes integration and find 3 . _ -, % = :a d”t(t). Then we substitute (5.5),
/S dm(t) /S dt +/S de(t)
wa t Joatlogt Joa t
Thanks to (5.7) and (5.8) we can conclude the proof. O

2or, equivalently, o + 38 < 1.

10

Proof of Theorem 1.

U@ty = Y o % \I,< x ’wa>

2 <p;<xh > <p1<p2 P bi

Z o Z q}(Xz ,< X) g(p1 g) (5‘10)
P1---Pi \P1 " "Di

zo<p;<ah z*<p1<p2

We use a < m and the theorem hypothesis in order to apply (5.2) to the latter expres-
sion. Then we divide by x which results into
U,(z, 27, 2™ 1 1-1o ---pi)/ 1o
i(x, 2P, x%) _ Z Z ,0(g(p1---pi)/ gw) N
T o D1 -Di a
zo<pi<zh r¥<p1<p2
1 1
ol = .. _pibi) 511
T X) e (5.11)

o <p; <xh > <p1<p2 P1-pi

By 8 < 1/i and (5.9), the error term from (5.11) becomes

1 1
0 =
alogz 2. 2 p1---pi(l —log(ps ---p;i)/ log x)

ze<p;<ah zx<p1<p2

i

1 1 ~(log'((ia)™) 1
0 a(l —ip)logz Z _O< a(l —ip) loga:)

o <p<azh

and by using Stieltjes integration (5.11) transforms into

\Ili(.’L',.’L'B,.’L'a) _

/jjﬁ. - /;2) <1 — log(t - ~ti)/10g(a:)> dr(ty) - dm(t;) 40 <logi((ia)1) 1) (5.12)

e t1 t; a(l —1if) logx

We will prove, for 2% > -« > tp 1 >t > --- > %, that

/tk+1.../t2p (110g(t1 "'ti)/10g$> dr(ty) dr(ts) _

t1 tr

/t’““ /t2 1—log(ty---t;)/logx dty dty, L0 log" ™ ((ia)™1) (5.13)
o o P a tilogt; tplogty alogz '

for k < ¢ by induction on k. We define f(t1,...,t;) = 1-log(ty-ti)/log

[e3

)
First we prove (5.13) for £k = 1. We substitute (5.5), use p(f(t1,...,t;)) < 1 and get

/Zp(f(tl,---,ti))M = /Zp(f(tl,...,ti)) il +/2p(f(t1,...,ti))de(t1)

a t1 a t1 log t1 a tl

_ /2p(f(t1,...,ti)) dty +0(1)/2d€(t1).

@ t1 IOg t1 @ t1

6. Analysis of the G; approximations 11

By (5.8) we can conclude the proof for k = 1. Next, we assume (5.13) is true for k < i. Then, by the
induction hypothesis, (5.5) and p(f(t1,...,t;)) <1,

/tk+2 /tz ot l))dw(tl) B dﬂ'(tk+1)

trt1

tryo thy1 ta dtl dtk
[[s B
t1 logty ti, log ty,

0 (10g'» 1<<m>—1>> > dn(tes1)

alogz tht1

bt t2 dt dt
/ / p(f(tlaatl)) - Al
t1 log t try1logte 1
/tk+2 /tk+1 / dtk de(tk+1)
2o B log t1 tk logty tgt1
0 (logk 1((m>—1>> [datten),
alogz) S en

We use k times (5.7) as well as (5.8) and (5.9) and find

o <log’“<<m>1>>
alogz

as error term. This proves (5.13) for k + 1.

We will use (5.13) with k& = i and substitute #” for #54; (this is possible, since in the last induction
step we only used Lemma 1 which is also valid for s = 2”). So the first term on the right hand side
of (5.12) transforms into

to 1—1 1 1 i—Ll//s \N—1 1
t1 logty t; logt; « log x

The error term in (5.14) is contained in the error term from (5.12) since
log((ia)™") > log((if)™") > 1 —if.

By symmetrising the integral bounds in (5.14) and making the substitution A\; = logt;/loga we
conclude the proof. O

6. ANALYSIS OF THE (G; APPROXIMATIONS

With the help of Theorem 2 we will measure how well G;(«,) approximates ¥;(z,z”,2%)/x under
the assumption that p(1/a) is a good approximation for ¥(z,z*)/x. To get an idea about the latter,
see Hunter and Sorenson [13, Table 2].

Theorem 2. Let0 < a < < % and i be a positive integer. Assume the Riemann hypothesis. Choose
c1 and ¢y so that

X
()

¢ < < ¢ (6.1)
tp(1/v)
whenever ﬁ << ﬁ and '8 <t < zg'"® Then, if x* > 2657, we have
v,) B: @
c(l—A,) < M <ea(l14Agy),

-TGZ (O[, ﬂ)

12

where A ; < Ai(a, B,2) for j =1,2 and

p(32) 381
Ar(a, B,2) = Gl((a’ B)) e (6.2)

and, for i > 1,
,0(1;7:6) 1 B 3610g$ [: B
Ai(a,B,2) = G h) (5 ((log <E> + 87ma/2> —log (E))
1 alogw B\ 3Blogz\
* <ama logx * 27m:3a/2> (10g (E) * 87m:a/2> >) (63)

This theorem is a generalisation of Bach and Peralta’s [3] Theorem 6.1 handling ¢ = 1. We give a
slightly better A;. Table 1 contains values of A; for ¢ <5 for the numbers (and their parameters) we
used in Sections 8, 10 and 11 and, in the last row, for the example from [3]. For the latter, the values
of Ay to A5 are too large to be useful in contrast with the remaining values which are all below 4%.

In Table 1, z}, = 2F e (Fe.Br) with F), and ag(F, By) defined in Section 4.2 and o, = log,, B
and), = log%;c L for k = 1,2. The entries “n.a.” (not applicable) indicate that ¢ > 1/8;. The
calculation of the entries with “—” took too long and was abandoned.

For the proof of Theorem 2 we need some estimates comparable to Lemma 1. In the following we
shall use Schoenfeld’s [22, Corollary 1] bound

(o) < Y287 (6.4

which is valid under the Riemann hypothesis for z > 2657.
Lemma 2. Assume the Riemann hypothesis. For 0 < a < 8 and z® > 2657, we have

B

T de(t) 3B logx
/ma t |~ 8mxe/? (6:5)

s

T dn(t) B 3B logzx
[(3) + i 69

s

T dr(t) 1 alogx

< .

/Ia 2 = ar®logr 2mzda/2 (6.7)

Proof. For (6.5) we integrate by parts, apply (6.4) and find

/w‘* de(t) (]|, /w‘*) ,,
T t - t o ro t2
B
le(@®)| _ le(z™)] 1 [* logt
= PR 37 /- t3/2dt
. Blogz alogr Blogs /w‘* dt
8rzbl2 8ra/? 8T $3/2
< 30 logx

Srpa/?’

6. Analysis of the G; approximations

Number Polyn. (k‘) Oé;c B]Ic ZL';C A1 AQ A3 A4 A5
3,993M 1 0.186 0.205 8.2-10°7 [0.007 0.016 0.025 0.031 n.a.
3,993M 2 0.203 0.238 5.2-10%2 | 0.008 0.018 0.026 0.026 n.a.
3,999L 1 0.211 0.240 7.8-10%2 | 0.007 0.015 0.022 0.023 n.a.
3,999L 2 0.181 0.205 4.3-10°® | 0.007 0.015 0.024 0.030 n.a.
3,407+ 1 0.169 0.190 1.1-10** | 0.006 0.014 0.022 0.028 0.026
3,407+ 2 0.211 0.241 1.6-10%® | 0.006 0.014 0.020 0.021 n.a.
3,413+ 1 0.202 0.230 6.0-10%* | 0.006 0.014 0.020 0.021 n.a.
3,413+ 2 0.179 0.201 6.6-10% | 0.006 0.014 0.022 0.027 n.a.
3,427+ 1 0.200 0.223 7.2-10%° | 0.006 0.013 0.020 0.021 n.a.
3,427+ 2 0.179 0.198 2.7-10%* | 0.006 0.013 0.021 0.027 0.027
3,516+ 1 0.204 0.234 1.1-10%* | 0.006 0.015 0.021 0.022 n.a.
3,516+ 2 0.177 0.201 3.5-10% | 0.006 0.015 0.023 0.029 n.a.
F857 1 0.166 0.188 3.2-10*2 | 0.006 0.014 0.023 0.029 0.026
F857 2 0.208 0.234 1.7-10%* | 0.006 0.013 0.019 0.021 n.a.
F949 1 0.18%8 0.214 2.5-10°7 | 0.006 0.014 0.022 — n.a.
F949 2 0.169 0.190 1.3-10** | 0.006 0.014 0.022 0.028 0.026
3,433+ 1 0.252 0.305 1.8-10% | 0.007 0.015 0.017 n.a. na.
3,433+ 2 0.154 0.170 8.5-10%* | 0.006 0.014 0.023 0.030 0.034
2,2130M 1 0.244 0.295 1.3-10%7 | 0.007 0.015 0.017 n.a. n.a.
2,2130M 2 0.152 0.168 4.5-10*" | 0.006 0.014 0.023 0.031 0.035
2,773+ 1 0.161 0.198 2.4-10% | 0.004 0.009 0.016 0.018 0.013
2,773+ 2 0.162 0.200 1.1-10% | 0.004 0.009 0.016 0.018 0.013
7,211— 1 0.169 0.190 3.0-10*2 | 0.006 0.013 0.021 0.026 0.024
7,211— 2 0.200 0.239 6.6-10% | 0.007 0.015 0.022 0.021 n.a.
7,211+ 1 0.160 0.190 3.0-10** | 0.007 0.017 0.028 0.034 —
7,211+ 2 0.200 0.239 6.6-10%* | 0.007 0.015 0.022 0.021 n.a.
B&P 1 0.083 0.133 1.0-10% | 0.040 0.203 0.687 1.769 3.378

Table 1: A;,i=1,...

13

,5 for some parameter values (see Section 8 for the nomenclature of the numbers).

14

For (6.6) we substitute (5.5) and use (6.5). For (6.7) we substitute (5.5), integrate by parts, apply (6.4)

and use that 1t°1§2t is decreasing in the interval [z%, z°]. We find

/ﬁmw__fﬁﬁ +£ﬂﬂﬂf%@ﬁ
e 2 Joa t2logt #2] . pa 13

B
1 v b o 1 1
/ghkmﬂgmn+_/ logt .

IN

alogz 12 x26 2o 4 t5/2
< 1 1 1 log ° log 2 alogx /Iﬁ dt
- alogx \z® 28 8rz3b/2 8rxda/2 Aqge/? [. 12
1 alogx
<

ar®logz 2mzda/?’
O

Proof of Theorem 2. We start from equation (5.10) and symmetrise the summation bounds. In the
first term on the right hand side of (6.8) we miscount the cases that some of the py,...,p; are equal.
The second term is a large upper bound for the correction.

(z, 2% x < v ,() +
<l ¥ o e (G

e <p;<zh x> <p1<zf

€T €T 17105(1’1---1’:21’?,1)/logw
U , 6.8
S S e et (reezeria)) 6

—2Pi— *Pi—2P;_
wo<pi_1<zf zo<p <af Pi—2pi_1 Di—2Pi_

By using Stieltjes integration and from the assumption (6.1) we get

U,(z, iﬁ . (z'/ / (1 — log(t x ti)/loga:> d7rt(1t1) "'dﬂt(iti)+

i times

/ / (1 —log(ty ...ti—ot?_ 1)/logav) dr(ti) dm(ti—2) d7r(ti_1)>. 6.9)
a t ti—o 7,

(3

i— 1 times

We substitute (5.5) for the first part and for the second part we bound

p(llog(ot 1)/loga?>

(07

by p (1;1) , apply (6.7) as well as i — 2 times (6.6) and get

U, (z, 2%, %) 1< (i
st <o (oo + 5 3 () s

1—ip 1 alogz \ <2 (i—2 o (BN (3Blogz\’
p(Q > <axa log x 27T1-3a/2> Z(> J <E> (W) (6.10)

J=

7. Calculating p 15

where
Eijj=
/ / 0 <1 —log(t1 tl)/lOgZIZ) dtl N dti_]’ de(ti_j+1) N de(ti). (611)

(07

t1 lOg t1 ti,j log ti,j ti,j+1 ti

In order to find an upper bound for E;_;; we bound p in (6.11) by p (%) , apply i — j times

5
[oa tliﬁ =log (g) and j times (6.5) and obtain

1—i - 381 i
EFLj§P<_7§é>k%ZJ(g)(g%ﬁ%;)- (6.12)

We use (6.12) to bound the right hand side of (6.10). We divide both sides of the new inequality by
Gila, B) to get

U, (z, 25, 27)
l‘Gi(a, ﬂ)

with A; given by (6.2) and (6.3), respectively.

The lower bound is proven by an entirely analogous argument, starting from the left hand side
inequality in (6.1). Actually, the proof is simpler for the left hand side since we do not need a
correction term as given by the second term on the right hand side of (6.9). (|

S C2 (1 +Al)

7. CALCULATING p
We want to calculate Dickman’s p function to high precision, as our estimates of smooth numbers rely
on values of the p function.

The p function is the solution of a so-called differential-difference equation. This implies that it is
piecewise analytic. For example

{1 ifo<z<1
PEI= 1—logz ifl<z<2

For all the other intervals of length 1 we can write p as a Taylor series where the coefficients depend
on the Taylor series coefficients of p in the left adjacent interval. In order to guarantee correct results
up to a certain precision, we use two methods. One was used first by Bach and Peralta [3] and is
due to Patterson and Rumsey; it expands the series on the right end of the intervals. The other
method is by Marsaglia, Zaman and Marsaglia [16] and expands the series around the midpoints of
the intervals.® Although M&Z&M give nearly correct values for p(10), p(15) and p(20), there are a
few oversights in their formulae. We provide the correct relations in Table 2.

Bach and Peralta found that for computing p(x) in the range 0 < x < 20 with a relative error
of about 10717, it is sufficient to approximate the infinite sums in P&R’s method with the sums of
the first 55 terms. Table 3 reproduces the number of terms and the working precision required to
guarantee 16, 32 or 64 correct digits of p in the range 0 < 2 < 20 for each of the two methods. The
calculations were done with MATHEMATICA’s arbitrary precision: MATHEMATICA maintains as
much precision as possible and, if necessary, performs internal intermediate calculations to up to 50
more digits. If it loses precision because of roundoff errors, only the correct digits are returned. In
Table 3 we also reproduce the time needed to calculate all the ¢’s on an SGI O2 MIPS R5000 180 MHz.

30ne might also think of expanding the series on the left end of the intervals, i.e. writing p(k + &) = >2° cgk)fi for
0 < ¢ < 1. The formulae can be got analogously and would be even simpler as in the other two cases, but the method

is impractical as too many terms are needed due to the very slow convergence of the sums. For example, cgl) = %

16

Patterson & Rumsey Marsaglia & Zaman & Marsaglia
0<¢<1 -1<¢<1
plk—&) = T2, V€ p(k+3+16) =T, ¢
k=1,2,... k=0,1,...
c(()1) 1 c(()O) -1
cgl)zo for i>0 050)20 for i>0
c(()Q) =1-—1log2 C(()l) =1- log(%)
52) - l;l for i>0 cgl) = (;311)1 for i>0
=1 Z; %) czl’; fori >0 Cgk) = _Cgﬁilz)(;li:ll))—gk)l fori>0
TR | b o iy
for k > 1 m 235:)3
mgk) = Cgk;kﬁ@l for ¢>0
for £ >0

Table 2: Taylor coefficients for p - original methods

In order to determine how many terms and how many digits of working precision were needed, we
first chose sufficiently high values for both methods to have the results p(7) for i = 1,...,20 coincide
to a high number of digits for the two methods. We took that as a reference solution. Then we varied

MATHEMATICA’s working precision to find the lower bound for the working precision and after that
we determined the minimum number of terms.

Patterson & Rumsey Marsaglia & Zaman &
Marsaglia
order number working time | number working time
rel. error | of terms precision ins | of terms precision in s
1017 42 17 13 87 45 6
10733 91 32 70 120 61 9
10798 195 64 400 188 93 15

Table 3: Original methods

Both methods have some drawback. P&R have to calculate a sum of ¢ terms for each cgk) (i>0,k>
2) which becomes costly in time when we need high precision and thus many terms. M&Z&M on the
other hand have a very involved way to calculate c(()k)(k > 1). Their treatment requires many more
digits of precision than P&R.

We were able to simplify both P&R’s cgk) (1 >0,k > 2) and M&Z&M’s c(()k) (k > 1) so they resemble
the corresponding ¢ in the other method. Therefore we only needed to follow the approach taken in the
other method. For the derivation of c*) this means to use plx) = ¢ ;_1 p(t)dt for > 1 instead of the

0
integral form of (5.1) which was used by M&Z&M. For M&Z&M, this avoids the need of developing

8. Examples 17

%ﬁgﬂ) into power series which leads to the auxiliary coefficients m;. For the derivation of

cgk) (i > 0) we used (5.1). Then, for P&R, we did NOT develop 1/(1 — £/k) as a power series as

described in [2]. For the new proofs, see Appendix A. In Table 4 we give the simplified terms together
with the similar term in the other method. The recursive formula for P&R’s cgk) (t>1,k>2)can

Patterson & Rumsey Marsaglia & Zaman & Marsaglia
cF=D 1y (R) ke (k 1)+(1)c! (k)]
('k) == +£k RICE RN CE f=— (2kz+1) i>0
e () _ 1 (k=) | guoo g)T
= 123 LT 0 _ﬁ<co +Zj:1T
for k > 1 for k>0

Table 4: New form of Taylor coefficients for p compared to the corresponding term in the other method

also easily be derived from

w = c(kfl) (k 1) (k 1))
_ = J _ 1
G - = fi—i k k.z 1—5 — ’Lk Z fi—1—j + Cz 1
L e o kD)
= = (-0 + e)-

With the new recursion formula P&R has become 6 to 44 times faster. The simplified M&Z&M needs
20 fewer digits of precision and between 56 and 58 fewer terms to produce the same relative error as

the original version. Moreover, it became 2 to 3 times faster. See Table 3 and 5 for some numerical
data.

Patterson & Rumsey Marsaglia & Zaman &
Marsaglia
order number working time | number working time
rel. error | of terms precision ins | of terms precision in s
10-17 42 17 2 31 25 2
10733 91 32 4 64 41 3
10792 195 64 9 130 73 7

Table 5: Improved methods

A further slight improvement in time can be achieved by also using the recursive forms for P&R’s
l? and M&Z&M’s) (i > 0).

Note that in order not to bump into MATHEMATICA’s recursion limit one should give P&R’s cgk)
(k > 2) and M&Z&M’s P (k > 1) explicitly.

8. EXAMPLES
In this section we compare real sieve data with the approximations we derived in 4.1 for several
example numbers. We tried to have some variety in our examples by including Cunningham numbers
as well as Fibonacci numbers. All the numbers were factored by Montgomery at the time of our
experiments. In Tables 7 and 8 we reproduce the parameters used in the factorisations.

With z, y+ we denote z¥ +1. With 2,2AM we denote the Aurifeuillian factor [5, II1.C.2] 2" +2" 41

of 2,2h+. Similarly, 3,3hM is short for 3% + 3" +1and 3,3hL for 3" — 3" +1. The numbers Fiz

3,993M | fi(z) = 3%z—1
folz) = 285432 +3 contg(Fy) = §
3,99L | fi(z) = 3%x-1
folz) = a8 —9z3+27 contg(Fy) = 3
3,407+ | fi(z) = 3Tz -3 -1
folx) = 2°—2* —42% + 322+ 3z -1 conty1 (F) = 15
3,413+ | fi(z) = x-—3%
folw) = 28 —2P+2t -2+ -z +1 contr(Fy) = &
3,427+ | fi(z) = x-3%
fole) = a2 —ad+a' —a®+2”—aw+1 cont7(F2):%
3516+ | fi(z) = 3x-1
folw) = 285432 +9 contg(Fy) = £
F857 filz) = F17lz —F172
falr) = 2°+52" +102° — 5242 conts(Fp) = &
F949 filr) = =x-L146
folw) = 2% —2° — 52t +42° + 62° — 3z — 1 | conty3(Fh) = &
3433+ | fi(z) = =z — 1018022109428884191058
fo () 58215780002 conts(Fy) = 3
—137673816532602* cont(Fy) = 2
—35041112529814762° conts (Fy) = 22
+503373100361009297522 contr(Fy) = g
+41414643218036780062 contgr (Fy) = 2
—563572130841392284366681 contggy (Fa) = ﬁ
22130M | fi(z) = « —5310903123331135610192
folz) = 6590263680z° cont, (Fy) = 3
—710589832922962* conts(Fr) = %
+101267510942253982° conts (Fy) = &
+349867764197537945x> contig(Fr) = %
—5404582433335517396810x contyy (Fz) = %
+2581409262310033997312415 contagos (Fa) = %L

Table 6: Detailed polynomials data

19

8. Examples

4n
CEC61C6
89°0/19°0/06£1686
¢2°0/0L°0/€102SL
89°0/€9°0/016L121
€9°0/62°0/9,9989
2L°0/L9°0/€98662T
99°0/09°0/L¥¥L0TC
€9°0/95°0/986¥6T1
€2°0/99°0/88LT¥L
L9°0/6$°0/02,8021
€9°0/¢¢0/286¥%89
$90LLET

CT6695°0

mmo.m) e

0T - CS690F

L

0¢

00000000T
000000LT
0000057 T
10T - TTPE'T
000002

000002

9

T

69T

QLT

+22¥°¢

6
CEC61C6
L9°0/19°0/6010000T
¥2°0/69°0/€¥8€00T
89°0/29°0/TS8F.LET
$9°0/8S°0/88¥74C9
12°0/99°0/0922€ST
€9°0/65°0/6LF911C
19°0/%S°0/0698001
zL0/%9°0/11€6¢L
€9'0/85°0/621LF0T
19°0/€S°0/ 20208
6698.€C

¢T6695°0

wmo.m - 9FCET'9
pe0T - 62T6E"E

L

0¢

00000000T
000000€T
000000TT

00000¥2

00009€€

9

T

ceT

69T

+ET¥'¢

sordurexy :), o[qer,

86
GEC61T6
L2°0/69°0/0€02€.L8
z8°0/L2°0/8299%6
L270/02°0/89€¢9¢T
¥.°0/99°0/621618
18°0/%2°0/LL€S80T
¢L'0/89°0/€TF66LT
zL'0/%9°0/992¥76
18°0/%L°0/86£9F¥
94°0/29°0/€8LLEL
€2°0/€9°0/TL9LSE
62E6TET

¢T669¢°0
20T - 0£0€C'T

10T 292809

L

oF

00000000T
00000001
000000€T

10T - CTETE'T
000000€

000009

¢

T

8FT

LLT

+20¥°¢

TeT
CYITLYL
89°0/19°0/€¥88T08
¥.°0/0L°0/2008L
89'0/29°0/<61590T
$9°0/85°0/959008
€2°0/29°0/600S¥2T
99'0/65°0/90CTTLT
29°0/¢¢°0/6%9908
€4°0/99°0/569££9
99'0/8S°0/€SS€LS
29°0/¥¢0/gccTIv
€0z62T'T

¢T669¢°0

meH ©869C0°T

2s0T - TT96EF

0€

0¢

00000008
00000001

0000058

10T - 66628°€
0000S2T

00002S2

9

T

671

6ST

T666°C

8T
¥6200LS
1.°0/%9°0/029¢L6¢S
6L°0/%L°0/ 67889
gL °0/99°0/1¥L810T
89°0/19°0/881.29
92°0/0L°0/€66%69
69°0/29°0/€L6SVTT
€9'0/L,€°0/0LT69L
9.°0/89°0/08£89¢
69°0/19°0/G9€T8F
€9'0/9¢°0/ 19662
ZLOSOT'T

¢T669¢°0

160T - CLLLS'T
20T - FLOE6'C

09

a

00000009
000000TT

00000F¥

00009¢T

000089T

9

T

4l

8¢T

INE66E

(sAep) ourry Suraers
(T)19°1
SUoIjR[2I [R10)
‘s[o1 Terjred-g'g
‘s[o1 Terjred-1‘g
‘s[o1 Terpred-g‘g
‘s[oa Terpred-g 1
‘s[oa Terpred-1‘1
‘s[oa Terpred-O‘ 1
‘s[o1 Terpred-g (o
‘s[o1 Terpred-1¢0
suorje[al [[NJ
(2g ‘@)

(g ‘T)o

cx

1o

s

)ef @013ap
)Tf 90130p
9718 10308J0D

Lmogrp SANS
ouIRm

X
d
vV
(z
(z

20

zoT
CEC6126
zL'0/¢9°0/¥660688
€8°0/8L°0/%£02.L6
89°0/€9°0/01¢6.21
€9°0/2¢°0/L61¥.8
z8°0/CL0/8CETLYT
L9°0/19°0/%200€61
29°0/¢50/76£598
z8'0/%L0/821129
89°0/09°0/€19218
29°0/¥<°0/9¢L¥9¢
6TLGT6 G—
¢T6695°0

0002

oF

00000000T
¢1zLLL9T

000002
10T - GFC6S'T
000S€ET

0000026

9

T

8TT

e

INOETET'T

89
CEC6126
29'0/9¢°0/£6982£6
z8'0/8L°0/6¥CET8
€6’ 0/1¢°0/996SFET
0¢°0/9%°0/8¢£229
18°0/6L°0/L268€ET
¢G'0/0S°0/825681¢
0S°0/%%°0/LE8¥101
Z8°0/%L°0/12.££6¢
9¢°0/6%°0/0£5€96
1C°0/%¥%°0/L2S9Fv
eSTOT0F—
cT6695°0

00T

0T

00000000T
¢1zLLLOT

000002

10T - TECEC'S
00000T

0000020

¢

T

ani

e

+ger'e

(ponunuon) sejdurexy :g o[qe],

8¢
CEC6TT6
09'0/%S°0/€20L¥768
L9°0/29°0/1L6%60T
09'0/6S°0/CL8FLET
¢e'0/0¢°0/19€0T19
¢9'0/6S°0/9¥1THF1
26°0/22°0/959L18T
€¢'0/2¥°0/6%9808
¢9'0/85°0/0999€9
8¢°0/T1¢°0/€8¥208
€6°0/9%°0/2TT65e
98TECT'E
¢T669¢°0

T

0€

00000000T
000000€T
000000TT

¢10T - 0867 ¥
00000F¥

00000¥8

9

T

16T

78T

6764

1z
CEC6TT6
$2°0/29°0/SF1T006
$8°0/6L°0/919916
$2°0/89°0/8666LLT
0L°0/€9°0/8S6TL0T
18°0/%2°0/500.£6
2L 0/%9°0/Tv0LIST
89°0/09°0/€S6S60T
z8°0/7L0/€C19¢E
zL0/79°0/28Lz89
89°0/65°0/899£6€
0£2200'T

¢T669¢°0

¢z

0€

00000000T
000000€T
000000TT
¢10T - T0CTTT
0000€0€

0000009

¢

T

6LT

6LT

1684

06
967STES
19°0/9S°0/2958986
89°0/%9°0/86.8V1T
19°0/9¢°0/CTLIFIT
9¢°0/1¢°0/7L¥€C9
99°0/19°0/0S¥829T
65°0/€S°0/2196%0¢
7S'0/8%°0/86£688
99°0/09°0/8LLTVL
6¢°0/2¢°0/06.5€6
¥S°0/L¥°0/LESSOF
€68€6T T

¢T669¢°0

0€

0Z

00000006
0000000T

00000S8
10T - 7698¢"2
000009T

000006€

9

T

)

coT

+91¢°¢

(sAep) ourry Suraers
(T)19°1
suorje[al [ejo)
‘s[ol Terpred-g‘g
‘s[ol Terjred-1‘g
‘s[o1 Terpred-g‘g
‘s[o1 rerpred-g 1
‘s[o1 rerpred-1¢1
‘s[oa Terpred-O‘ 1
‘s[o1 Terpred-g ()
‘s[o1 Terpred-1¢0
suorjed1 [[nJ
Amm. ¢ NHNVB

("g ‘Ly)o

<x

Tx

&g

)ef @013ap
)If 90130p
9ZIS 10)2€J0D
Aymogp SANS

ouIeu

X
d
A
(z
(z

9. Obstructions when going from two to three large primes 21

are Fibonacci numbers, the numbers Lz Lucas numbers.

The numbers were sieved with the Special Number Field Sieve (SNFS), except for 2,2130M and
3,433+, which were sieved with the General Number Field Sieve (GNFS). Also for the latter two we
write the numbers to be factored as algebraic factors, even though we are actually factoring a cofactor.
The cofactor sizes are stated in Tables 7 and 8. The SNFS difficulty is given by the resultant of the
polynomials.

In Table 6 we give the polynomials used for the sieving and the cont,’s for primes dividing the
resultant of the polynomials.

In Tables 7 and 8, the triple entries a/b/c for the i, j-partial relations contain

a := number r; ; of i, j-partial relations,
_ X -Gi(ay,B1) - Gi(ay,53)
Ti,j
X Hl(xllaBlaL) . Hj(x/27327L)
Tij
with zy = 2F}, (see 4.2) and 2}, = zy, - e*Fe:Br) ol = log,, Bk, B, = log,, L for k =1,2. The time
unit is a day.

We also state the value of 1.6li(L) which is a heuristic estimate by Montgomery (private commu-
nication) of the number of total relations needed when sieving with large prime bound L. All the
examples were tuned with simulations to yield approximately that number of total relations.

Examples 3,413+ and 3,427+ used the same higher-degree polynomial.

The polynomials for the two GNFS examples were chosen to have many factors modulo small primes.
This is reflected by the negative « for the high degree polynomials.

The estimates with G; vary from 44% to 79%. The H; estimates are from 4% to 10% higher than
the G; estimates. The estimates tend to be lower for full relations than for partial relations with many
large primes. The estimated number of total relations varies from 54% to 69% and 60% to 77% for G
and H, respectively.

If one likes to know whether certain parameters yield enough data with the two-large-primes sieve
without sieving, we suggest to tune the parameters to yield approximately 0.6-1.6li(L) or 0.7-1.6li(L)
estimated total relations, respectively for G and H.

The sieving time seems to be hardly correlated with the numbers or parameters. This may be due
to the use of different machines.

b:

Cci=

9. OBSTRUCTIONS WHEN GOING FROM TWO TO THREE LARGE PRIMES

In this section we use B and L without indices meaning the factor base bound and the large prime
bound of the polynomial allowing three large primes. In the sequel, by candidate bi- or tri-composite
we mean cofactors in [B2, L?] and [B?, L3], respectively. A candidate bi-composite cofactor can be
either bi-composite or prime, a candidate tri-composite can be tri-composite, prime or bi-composite
(see Figure 1 in Section 3).

We distinguish two types of bi-composites: either both primes are below the large prime bound L
or one prime exceeds L. We discard the bi-composites of the second type. All bi-composite cofactors
between B® and L? have at least one factor exceeding L (since we assumed L? < B?), so we will
discard those. Similarly among the tri-composites, we keep the ones with all three primes below L
and discard the ones with at least one factor larger than L. The major obstruction when switching
from two to three large primes is that only a small fraction of the composite candidate tri-composites
really will be useful tri-composites, while most of them will be useless bi-composites.

Filtering out the primes is easy, as probable prime tests can be performed in times orders of
magnitude smaller than what factoring takes. Unfortunately, distinguishing between bi- and tri-
composites is not so quick on average. A known but not very fast method is to trial-divide primes
starting from B to the cubic root of the number to be factored. The massive presence of bi-composites

22

K, K, #factors f 1—(1— f)3 | #tri-composites %
found found

500 10000 247 0.28 0.63 183 0.63
500 20000 299 0.34 0.71 205 0.70
1000 20000 332 0.38 0.76 221 0.76
1000 50000 404 0.46 0.84 244 0.84
1200 60000 429 0.49 0.87 252 0.86
2000 50000 434 0.50 0.87 255 0.87
2000 | 100000 488 0.56 0.91 265 0.91
10000 | 100000 509 0.58 0.93 267 0.91
2000 | 200000 540 0.62 0.94 277 0.95
5000 | 250000 568 0.65 0.96 280 0.96
10000 | 500000 621 0.71 0.98 281 0.96
12000 | 600000 630 0.72 0.98 281 0.96
20000 | 1000000 676 0.77 0.99 285 0.98
50000 | 1000000 676 0.77 0.99 285 0.98
20000 | 1500000 702 0.80 0.99 288 0.99
50000 | 1500000 702 0.80 0.99 288 0.99
50000 | 2500000 730 0.83 1.00 290 0.99
60000 | 3000000 737 0.84 1.00 291 1.00

Table 9: Percentages found tri-composites for some P — 1 limits

among the composite candidate tri-composites has a big impact on the average sieving time per useful
relation, since a lot of effort is put into the factoring of cofactors which are not useful.

We are interested in a factorisation method which detects tri-composites quickly and gives up on
factoring bi-composites in [B?, L3] early. We found that Pollard’s P — 1 method is well-suited giving
a good yield for numbers of the size of our candidate tri-composites.

The method finds factors p where p— 1 has all factors below a given limit K7 and possibly one factor
between K; and a second limit K5. For a description of the P — 1 implementation, see Section 3.1.
We are interested in small limits, as this means quitting the factorisation of bi-composites in [B?, L?]
early. On the other hand, we want large enough limits to guarantee that a high percentage of useful
tri-composites will be found. Actually, only one factor needs to be found. If it is possible to find a
fraction f of all the prime factors of the useful tri-composites, we estimate that a fraction 1 — (1 — f)?
of the useful tri-composites can be identified. We computed these fractions and the actual numbers of
factored tri-composites for a series of 292 useful tri-composites in the interval [10?!, 10%7] with factor
base 107 and large prime bound 10? and different P — 1 limits. Some results are reported in Table 9.
We do not give the time for factoring the tri-composites here, as this is negligible compared with the
time for factoring the bad bi-composites. Good limits can be investigated with a few simulation runs
of the siever. The default values chosen for the implementation of P — 1 are 2000 and 50000. For
these values and for B = 107 and L = 10° only 50% of the factors of the useful tri-composites were
found, but this accounts for the partial factoring of 87% of the useful tri-composites.

Table 10 compares some three-large-primes sieved runs for different P — 1 bounds. We used the
number 2773 +1 (see Section 10). We sieved a sublattice of the sieving region used, namely the points
(@,9973 - b) with a an integer in [—28875000,28875000) and b = 1,...,2200. The first polynomial
was allowed to have three large primes. The factor base bound was B = B; = 2- 107, the large prime
bound L = 10°.

A total of 1765748 candidate tri-composites were marked, 947992 of which resulted prime. After
checking that the cofactor from the other polynomial value is okay (a bi-composite candidate there will
be factored before attempting the factorisation of the tri-composite), a total of 60531 tri-composite

9. Obstructions when going from two to three large primes 23

— _ o

5 -

< 3 g z 2 g 5 5

2 o 2) S S S o

8 o o % = = w —

|5} + o o « @ = L

< o - — o Q o

- 2 3 g = o, 5 o

K, K, 2 & R 2 20 - -
1000 50000 | 43158 6669 9814 890 3991 13382 | 3699 6.73
1200 60000 | 41862 7408 10345 916 4549 14120 | 3725 6.70
2000 100000 | 38213 9583 11770 965 6402 15916 | 3774 6.71

5000 250000 | 31721 13791 14014 1005 | 10478 18332 | 3814 6.90
10000 500000 | 27037 17058 15410 1026 | 14008 19486 | 3835 7.25
12000 600000 | 25877 17892 15730 1032 | 15022 19632 | 3841 7.41
20000 1000000 | 22780 19994 16715 1042 | 17903 19848 | 3851 7.95
50000 2500000 | 17746 23535 18198 1052 | 23182 19603 | 3861 9.87
60000 3000000 | 16878 24129 18471 1053 | 24212 19441 | 3862 10.62

Table 10: Tri-composite factorizations for 2773 4 1

candidates were tried to be factored by P — 1. In the following listing we describe what the first 6
columns in Table 10 mean:

K; and K5 These are the limits for the P — 1 method.

not factored This gives the number of composites for which the P — 1 method could not find a
factor.

factor too large Here either the factor found by P — 1 is too large or the remaining cofactor (prime
or composite—not tested here) is too large. This count also includes tri-composites where the
second found factor (by SQUFOF or Pollard Rho) or the corresponding cofactor is too large.

cofactor prime After finding the first factor, the size of the factor and the cofactor is checked (this
is covered by the previous column). If okay, a probable prime test is performed on the cofactor.
This column gives the number of probable prime cofactors. A prime cofactor corresponds to a
bi-composite with a too large factor (because of L? < B?).

three factors All three factors are smaller than L. These are the wanted tri-composites.

The last two columns of Table 10 give the total number of relations found and the average time
(in seconds) to find such a relation on a Silicon Graphics Origin 2000 MIPS R12000 300MHz. The
lowest time on this list is with P — 1 bounds 1200 and 60000. These are also the bounds used in the
factorisation of 277 + 1 (see Section 10).

We can see that for P — 1 bounds 1200 and 60000, more than 10 times as many useless bi-
composites than useful tri-composites were found. Note that the factor 10 is a rough lower bound
for the ratio between bi- and tri-composites, as most of the numbers falling into column 3 and 4
are also bi-composites. The time per relation augments for larger P — 1 bounds as more time-
expensive bi-composites get factored and the number of tri-composites saturates. With K; = 1200
and K, = 60000, in average a P — 1 run on a composite candidate tri-composite was about 61 times
the time of a probable prime test on a candidate tri-composite.

In all the sieving experiments we reduced the intervals for bi-composites [BZ, L?], for i = 1,2, and
for tri-composites [B}, L?], for i equal to 1 or 2, according to (3.2). This cuts down the sieving time

24

&
&
el —
'—g)
— — =
: N E ZE| - £
2 -~ 5 E z| ¢g 2 5 =
%) <] - - &) Q o Q 5]
Q ‘5 o o < % g H;) =
= + 8 8 < n n =})
g 8 2 - = o — ~ S 3,
o) Q o =
S = - S 3 5} = o = &
oA = o) Q ‘*5 E) [9) —_— E
v b = =i & S = g7 g7 g =
3.0 | 499077 289805 10290 2344 3280 26 | 1305 4345 | 2851 8.5
2.5 | 635208 355779 14028 2619 3996 165 | 1645 5135 | 2990 8.1
2.0 | 788546 426673 18584 3194 4688 429 | 1972 6339 | 3254 7.5
1.5 | 876915 459383 21785 3922 4916 441 | 2290 6989 | 3266 7.5
1.0 | 628643 318788 15923 3927 2424 131 | 1592 4890 | 2956 8.4
0.5 57466 28589 1487 469 98 0 135 432 | 2825 8.6

Table 11: Tri-composite factorizations for cofactors in [By L3~?, By ~*-*[3:5-7]

as the search in the central parts is more effective. This can be seen in Table 11. The number sieved
is 2772 4 1 on the same sublattice as above with K; = 1200 and K> = 60000. In this table, every
line gives data considering only candidate tri-composites in [BYL?*~?, Bv=0-5[3-~"] while keeping the
whole interval for the bi-composites, [B?, L?]. The interval [B*2L%8 B! L] from (3.2) is contained
in [B25L%5 B1-9L20] which data is given by line 2 to line 4 of Table 11 and which have better rates.
The time is for a SGI Origin 2000 MIPS R12000 300MHz processor.

10. AN EXAMPLE WITH THREE LARGE PRIMES

In this section, we test how well we can approximate the number of relations, especially the ones with
three large primes. We consider a simplified case. Instead of sieving both polynomials simultaneously,
we sieve them separately.

We use the special number 2,773+ = 2773 + 1 for this experiment. This 233-digit number was
factored [21] in October, 2000 by the NFS using a linear and a degree-6 polynomial. The factor base
bounds where B; = By = 2- 107 and the large prime bound L = 10°. On the linear side three large
primes were allowed, on the other side two large primes. The sieving region (3.1) had A = 28875000
and B = 22000000. Further, we chose S; = 0.1 and Sy = 6.0. The P — 1 bounds (see Section 3.1)
were set to 1200 and 60 000.

We sieved values for the linear homogeneous polynomial Fi(a,b) = a — 2'2°b and the degree-6
polynomial Fy(a,b) = a® + 2b° separately.

The discriminant of fo(x) = 25 + 2 is divisible by 2 and 3, so we calculate contz(F3) and conts(Fb)
manually. Modulo 2 the polynomial is 2% which has 0 as the only multiple root which means ny = 1.
The polynomial has no roots modulo 22, s0 ny> = nys = --- = 0. It follows that conts(F,) consists
only of the term (4.3) with k = 1, so conta(F2) = %% = . In an analogous way we find that
contz(Fp) = 1% = 1. The correction values are a(Fy, Bi) = 0.569915 and a(F3, B) = 1.938592.

For this example, we sieved over a small part of the sieving region,* namely all integer pairs

(a,b) € [A, A) x [1000001,1000100] with ged(a,b) = 1. (10.1)

This corresponds to about X = 24 Zigggég? @ ~ 3.52772 - 10° candidate pairs. The mean value of

4This is because we could not take the actual siever output as we were sieving the polynomials separately.

10. An example with three large primes 25

polynomial F} over this region is

o 1 A—-1 1000100 "
F :—/ / Fi(a,b)| dadb ~ 6.73793 - 10*,
! 2AB —A 1000001 | 1()|

whereas F, &~ 8.197267 - 10*3. We put x; = 2 - F; for i = 1,2. We assume (see Assumption 1) we have
got to do with random numbers of maximal size 2 = z;e*(F1:B1) ~ 2.38.10% and), = z,e*(F2:B2) ~
1.14 - 10,

Table 12 gives the results for the linear polynomial. The real siever did not find all good (a,b)
pairs. Most of those missed are with three large primes, but also a few with two large primes were
missed. Some were discarded because the unsieved part does not belong to one of the intervals given
in (3.2). Others were missed because no factor can be found by the P — 1 method according to
the chosen bounds (see 3.1). Another reason for missing a pair is that more small primes appear
in the factorisation than anticipated with the choices of S; and S>. Therefore we also ran a special
(expensive) sieve which found all smooth numbers so that we can better compare with the theoretical
expectations. The numbers of relations from the real siever are reported in column 3 of Table 12
whereas column 2 gives the results from the ideal siever. The estimates outnumber the number of
relations from the ideal siever. The values of the fractions XG;/R; decrease when i increases. The
same happens with the corresponding fraction with H; instead of Gj.

1 x]
0 36214 36214 1.11 1.19 1.00 1.07
1| 201002 | 201002 1.09 1.16 1.00 1.05
2 | 400217 | 397374 1.08 1.12 1.00 1.03
3| 347230 | 184375 1.07 1.09 1.00 1.02
4 | 122983 0 1.04 1.05 0.99 1.00
) 11820 0 1.00 n.a. 1.00 n.a.

Table 12: Numbers of smooth values of the linear polynomial F}(a,b) with (a,b) satisfying (10.1)

Table 13 gives the data for the degree-6 polynomial. Only the ideal sieve data is given, but no
substantial difference with the real data should be expected here as this polynomial was only sieved
with two large primes and only a small part of the pairs with two large primes get discarded. Here,
as in the examples from Section 7, we can see again that the approximations get better when more
large primes are allowed.

To b
) R; XG;/R; | XH;/R; | XG;/R; | XH;/R;
0 | 120758 0.48 0.52 0.34 0.37
1 | 577746 0.54 0.57 0.39 0.41
2 | 959430 0.61 0.64 0.46 0.48
3 | 663086 0.71 0.73 0.57 0.58
4 | 170016 0.88 0.88 0.76 0.77
5 10232 n.a. n.a. 1.15 n.a.

Table 13: Numbers of smooth values of the degree-6 polynomial F»(a,b) with (a,b) satisfying (10.1)

The approximations are within 20% for the linear polynomial, but rather poor for the higher-degree
polynomial (up to 66% off). This is because the linear polynomial is near-constant over all of (10.1)

26

while the degree-six polynomial grows from 2 - 103 to 5 - 10**. To get better results for the higher-
degree polynomial we should split up the sieving region in smaller pieces and do the approximations
on the smaller pieces. This is left for further research.

We gave the results from the approximations by using the real size of the numbers (z) as well as
the size when comparing to random numbers (z’). For the linear case, the latter gives better results,
for the other polynomial it is exactly the other way round. However, in both cases the estimates with
7' are lower than the ones with z, due to the positive a.

10.1 Approximation for the number of smooth numbers in an interval
We investigate how our formulae work for numbers in an interval instead of for polynomial values.
Let us choose the interval

[-X/2+ 2" .1000100, X/2 + 2'% . 1000 100), (10.2)

which treats the same number X of candidates as in the previous section. The numbers in this interval
are larger than = = 2F; but still of the same order of magnitude.

The approximations zG;(log, Bi1,log, L) and zH;(x, By, L) actually approximate the portion of
smooth numbers between 1 and z, so, for the special case of intervals, we will define GI** and Hi"t
and use XG'*(log, By,log, L) and X H**(x, By, L) with = being some element in the interval.

Let us construct Gii“t and Hli“t. As an estimate for smooth values in an interval [z;, z,| we approx-
imate U;(z,,y,z) — ¥;(x;,y, z) by the derivative of the approximation (5.3)

_ d
G (0,2,y) = o (2Gi(log, z,l0g, y)) =

logm log z—log(t1---t;)
G (log log 1 / /y P log z]-) dty o dt; (10 3)
@ %08 ¥ logz —log(ty ---t;) tilogt; t;logt; '

times z, — x; ® for logz > log z + i logy, or the derivative of the approximation (5.4)

L (@B, 2,y)) = iz, 2,0)-

1 log(t
/ /y p e joEht) 1) dty dt;
’l'

logz —log(ty ---t;) t1logty t;logt; B

Hlnt(w 2 y)

1 y 1 / / logz 11(())gg(2t1 t;) 1) p (log zfllggg(ztlmti) N 2)

log z i! log = + logz — log(ty ---t;) — logz

dt, dt;
t1 lOg t1 t; log t;

(10.4)

times x, — x; for logz > 2log z + ilogy.
Again, the estimates are within 20% from the real data. This is comparable with the results for
linear polynomials (Table 12).

11. COMPARING THE TWO- AND THE THREE-LARGE-PRIMES METHOD

The numbers 7,211— = 72! — 1 and 7,211+ = 72!! + 1 differ by 2 and are therefore suited for
comparison purposes. We sieved 7,211— while allowing two large primes on both polynomials whereas
for 7,211+ we allowed up to three large primes on the linear side, i.e. polynomial 1.

5Tn our examples the interval bounds z, — x; < @7, so it does not matter which = € [z;, 2] we use.

11. Comparing the two- and the three-large-primes method 27

i| Ri | XGi/Ri| XH;/R; | XGint/R; | XHi"t/R;
0| 40920 1.1 1.19 0.01 0.98
1| 223495 1.10 1.16 0.92 0.97
2 | 439114 1.09 1.13 0.93 0.97
3 | 374335 1.07 1.10 0.95 0.97
4 | 128293 1.05 1.05 1.01 n.a.

Table 14: Numbers of smooth numbers in interval (10.2) with z = 229 . 1000000, 2 = B; and y = L

We did not take advantage of already known factors

721 = 2.3.141793-¢173
7241 = 2%.255571219-
986018415638331144897705149152887163110839 - ¢128

by taking for 7,211+ the polynomials fi(z) = 7*?2 — 1 and fo(z) = 2® 4+ 7 with root 77**> modulo
128 and ¢173, respectively. So both numbers have the same SNFS difficulty. For both numbers we
have conts(F>) = 2 and cont7(F>) = . Both numbers had the same sieving region and used identical
large prime bounds, but 7,211— had a large factor base with the linear side while 7,211+ allowed
three primes there.

There is a minor secondary effect of the known factors. Since, for example, 72'' +1 is divisible by 8,
the polynomial f; = 7422 — 1 and f»(z) = 2° + 7 share a root = 1 mod 8, increasing the likelihood
that both are simultaneously smooth.

Sieving simulations indicated that sieving with three large primes would be more costly in time, see
the value for the estimated time per relation in Table 15. For the P — 1 method we used the default
bounds K; = 2000 and K5 = 50000 3.1.

In Table 15, a ‘i, j-partial rels.” entry gives the number of sieved i, j-partial relations in the first
column as well as the estimates X - G;(log,, B1,log,, L) - Gj(log,, Bs,log,, L) and X - Hi(z}, B1,L)-
Hj(z4, B2, L) in the second and third column, respectively. The values z}, and a(Fy, By), k = 1,2, are
defined in Section 4.1. In the total relations entry we give the percentage of the real relations instead
of the estimates themselves.

The detailed real sieving data for 7,211— have unfortunately been lost but we expect their ratios
to the estimates to be comparable with those for 7,2114+. The theoretical estimates for relations with
fewer than three large primes for 7,211+ vary between 61% and 86% of the real number of relations.

For the three-large-primes relations the estimates outnumber the real numbers, since (because of
time considerations) the siever discards many three-large-primes candidates.

The real number of relations for 7,211+ is smaller than expected from the sieving simulations. A
2% deviation could be expected, but in fact it is 5%.

We cannot use the total sieving time as an indicator for performance, since 7,211— was sieved
exclusively on low-memory machines, which tend to be slower.

We wanted to analyse which set of relations would give the better (smaller and lighter) matrix when
considering the same number of relations. To this end, we truncated each data set to 11.4 million
non-duplicate relations. After that we filtered (see [7]) with mergelevel 1, filtmin 1M and keep
200K and later with mergelevel 8, filtmin 500K, maxrels 13.0 and maxdiscard 40K.

The matrix of 7,211+ is lighter and slightly smaller than the matrix of 7,211— as there are fewer
relations with more than 2 linear primes larger than 6 million (the B; for 7,211+) in the 7,211+
matrix. If all the relations had been considered for the filtering this would probably have led to a
smaller matrix for 7,211—.

6We inverted the root as it is more more convenient to have A > B with line sieving.

28

method (# large primes)
name

SNFS difficulty

cofactor size

degree fi(x)

degree f>(x)

A
B
X
B,

Bs

L

Si

Sa

T

z2

Oé(Fl, Bl)

Oé(FQ, BQ)

full relations

0,1-partial relations

0,2-partial relations

1,0-partial relations

1,1-partial relations

1,2-partial relations

2,0-partial relations

2,1-partial relations

2,2-partial relations

3,0-partial relations

3,1-partial relations

3,2-partial relations

total relations

1.6li(L)

sieving time (days)

estimated time per relation (simulation)
estimated # relations (simulation)

relations with more than 2 linear primes >6M
#ideals of norm >1M

matrix size

non-duplicate relations in matrix

non-duplicate relations in matrix

with more than 2 linear primes >6M

matrix weight

242
7,211—

179

173

1

5

5400000

3500000

2.29796 - 10'3
15000000

6000000

120000000

300

100

1.68466 - 10*2
2.36785 - 1032
0.569915

1.027386
-/210279/243333
-/646312/731630
-/654225 /725637
-/524958 /596629
-/1613508/1793884
-/1633264/1779189
-/480504/536882
-/1476872/1614244
-/1494954/1601021
n.a.

n.a.

n.a.
12112998/0.72/0.79
10947914

776

0.95s

12.0M-12.5M
2601 059
11137981
1163421 x 1252099
3529432

539731
23346515

3+2

7,211+

179

128

1

5

5400000

3500000

2.29796 - 10'3

6000000

6000000

120000000

1

100

1.68466 - 10*2

2.36785 - 1032

0.569915

1.027386
119560,73402/85456
342560/225609/256941
295549/228372/254836
525659/326026,/372459
1506575/1002072/1119873
1303147/1014341/1110699
831856/530064/594762
2394438/1629201/1788273
2077068/1649149/1773624
318335/385258/425221
917502/1184126/1278512
795323,/1198624,/1268039
11427572/0.83/0.90
10947914

707

1.04s

11.8M-12.2M

2026 232

11096 890
1135638 x 1224487
3509616

359 597
22599 998

Table 15: Comparison of 7,211— with 7,211+

A. Proofs of formulae from Section 7 29

We conclude from this experiment that the three-large-primes method was still not necessary, so the
number 7,211+ could easily have been sieved by the two-large-primes method. In a further comparison
experiment one might try equal factor base bounds for both the 2-large-primes and the 3-large-prime
while having a smaller sieving region for the 3-large-primes bound. sectionConclusions The examples
given in Section 8 show that we can reasonably well estimate the number of partial relations with
the formulae provided and can use this for calculating how many total relations to expect in the
two-large-primes method for given parameter choices. However, calculating the heuristic a(F}, By)
might be too cumbersome and so a short sieving experiment will usually be preferred. Moreover,
a sieving simulation will also provide a global time estimate. To improve the estimates one would
probably need to split the sieving region into smaller regions and calculate the mean absolute value
of the polynomials over the smaller regions.

In Section 9 we describe the obstructions which are encountered when going from two to three
large primes. These obstructions forced us to avoid the “ideal” three-large-primes method which
would generate all possible three-large-primes relations and would consequently be too costly in time.
Instead we chose for an approach which abandons unpromising candidates quickly.

Our theoretical estimates for the three-large-primes relations indicate how many relations would
be obtained with the “ideal” siever and so give a useful measure of how far the real siever (with its
parameter choices for P — 1) is off from the “ideal” siever.

For the sieving of the record SNFS number 2,773+ (see Section 10) the three-large-primes method
was convenient to keep the factor base small and equal for all participating sieving computers. How-
ever, it would also have been possible to sieve with the two-large-primes method with a larger factor
base on machines with sufficiently large memory in combination with the three-large-primes method
on small memory machines.

The comparison between the sieving of 7,211— and 7,211+ which were sieved with the two-large-
primes method and the three-large-primes method with a smaller factor base bound, respectively, did
not show a significant difference between the two approaches.

The general number RSA-155 (see [9]) was still sieved with the two-large-primes method, though
for a considerable part with the lattice siever with two large primes. That method can be seen as a
kind of three-large-primes method because of the additional special prime.

The other 155-digit GNFS factorisation [1] was done with the line-by-line siever, presumably with
2 large primes. The sieving took longer than for RSA-155 but, apart from the choice of the siever,
this may also be due to the polynomial and other parameter choices.

For further research it might be interesting to study the influence of the three-large-primes method
on the matrix by sieving a number twice (or two similar numbers, as we did with 7,211— and 7,2114),
once with the two-large-primes method, once with the three-large-primes method while using identical
parameters (in particular, also the factor base bound and the large primes bound are identical) except
for the sieving region which can be smaller for the three-large-primes method.

APPENDIX A. PROOFS OF FORMULAE FROM SECTION 7
The following two propositions give the proofs for the two improved formulae for the Taylor coefficients
of p.

Proposition 1 (Patterson Rumsey cgk)). Let p(k — &) = >0 c(k)fi with £ € [0,1]. We have

(3

(k) Cgﬁl) + (i~ 1)055)1

‘% = ki
Proof. From (5.1) we know
d plk—1-8

ol —) =

for i>0 and k>1. (A1)

30

We substitute the Taylor series of p for the intervals [k — 1, k] and [k — 2, k — 1], multiply by k — £ on
both sides and get

d [eS)) [e%S) B '
(k — f)d—é_ (Z Cgk)£7’> = chk l)fl-
=0 =0

If the sums are uniformly convergent, we can differentiate term by term which leads to

B icPe=t =N il = 3 et Vel
i=0 i=0 i=0

On comparing coefficients we obtain

(k) CE]:D + (i~ 1)055)1

C; =
! ki

O

Proposition 2 (Marsaglia Zaman Marsaglia c(()k)). Let p(k+ 5+ 3&) = X cgk)fi with £ €
[—1,1]. We have

oo (k—1) j (k)
w _ 1| ¢ tEWe Ao
G =g | +Z i1 for k>0. (A.2)

Jj=1

Proof. Because of

1

p(z) = - /zl p(tydt for z>1 (A.3)

(which is another way of defining Dickman’s p function for z > 1) we can write

1 1 [hte
2 Jk—3

We split the integral in an integral from k — 1 to k and one from k to k + 5. Next we substitute
t=k— % + %z and t =k + % + %z, respectively. Hence,

1 0
] _ 1 _1.1 / 1.1
Co —2k+1</0p<k 2+22>dz+ 71p k+2+2z dz | .

We substitute the respective Taylor expansions and integrate to obtain

w1 — L ey g
© T 9%y Zj+1(cf e 1))

=0
which implies

k—1 ; (k
NON i k1) n i cg.) + (*I)ch.)
0 26\ ° , j+1

j=1

A. Proofs of formulae from Section 7 31

For completeness we also give the proofs for the remaining two recurrence relations. The proof of
Proposition 4 is taken from [2].

Proposition 3 (Marsaglia Zaman Marsaglia cgk)). Let p(k+ 1+ 3¢ =37, cgk)fi with £ €
[—1,1]. We have

b) k
cz('—11) + (i — 1)05—)1

(k) _ _ .
¢ = kT D) for >0 and k>0. (A.4)

Proof. From (5.1) we know

d 11 _ 1p(k—3+ 30
&l (eaeae)) = n

We substitute the Taylor series of p for the intervals [k, k + 1] and [k — 1, k], multiply by 2k + 1+ ¢
on both sides and get

@k+1+@é%<§ié“8>::—§iék1%@
i=0

=0

If the sums are uniformly convergent, we can differentiate term by term which leads to

2k +1) iVt 4+ 3 idMel = 3 eVl
=0 =0 =0

On comparing coefficients we obtain

k—) k
AR _cgfll) + (i — 1)C£7)1

v i(2k+1)
O

Proposition 4 (Patterson Rumsey c(()k)). Let p(k — &) =Y 0y cgk)fi with £ € [0,1]. We have

(k) 1 &

- J 1. A.

Co kfljz:;j+1 for k> (A.5)

Proof. Because of (A.3) we have
k 1
. 1 1
& =pt) = [ottitt= [o2
k-1 0
We substitute the Taylor expansion and integrate to obtain
(oo}
(k) _ 1 1w
o =72 7%
k = +1
which implies
oo (k)
w _ 1 i
“ _k71§:j+f
j=1
O

In all four propositions we implicitly assumed that sums are uniformly convergent. In fact, it can be
proven by induction that the radius of convergence equals 2 for the series defined inductively by (A.1)

and (A.5) with start series c(()l) =1 and cgl) = 0 for 2 > 0, and 3 for the series defined inductively
by (A.4) and (A.2) and start series c(()o) =1 and cgo) =0 fori > 0.

32

10.
11.

12.

References

Fredrik Almgren, Gunnar Andersson, Torbjorn Granlund, Lars Ivansson, and Staffan Ulfberg.
How we cracked the codebook ciphers. http://codebook.org/.

Eric Bach and René Peralta. Asymptotic semi-smoothness probabilities. Technical Report 1115,
Computer Sciences Department, University of Wisconsin, Madison, 1992.

Eric Bach and René Peralta. Asymptotic semismoothness probabilities. Math. Comp.,
65(216):1701-1715, 1996.

Hendrik Boender. Factoring Large Integers with the Quadratic Sieve. PhD thesis, Rijksuniversiteit
Leiden, 1997.

John Brillhart, D. H. Lehmer, J. L. Selfridge, Bryant Tuckerman, and S. S. Wagstaff, Jr. Fac-
torizations of b £1 b = 2,3,5,6,7,10,11,12 up to high powers, volume 22 of Contemporary
Mathematics. AMS, 2nd edition, 1988.

N. G. de Bruijn. On the number of positive integers < x and free of prime factors > y. Indag.
Math., 13:50-60, 1951.

Stefania Cavallar. Strategies in filtering in the number field sieve. In Wieb Bosma, editor,
Algorithmic Number Theory - ANTS-IV, volume 1838 of Lecture Notes in Computer Science,
pages 209-231, Berlin, 2000. Springer.

Stefania Cavallar. On the Number Field Sieve Integer Factorisation Algorithm. PhD thesis,
Universiteit Leiden, 2002.

Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter Lioen, Peter L. Montgomery, Brian
Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist, Gérard Guillerm, Paul Leyland, Joél
Marchand, Francgois Morain, Alec Muffett, Chris and Craig Putnam, and Paul Zimmermann.
Factorization of a 512-bit RSA modulus. In B. Preneel, editor, Advances in Cryptology — EURO-
CRYPT 2000, volume 1807, pages 1-18. Springer, 2000.

Henri Cohen. A Course in Computational Algebraic Number Theory. Springer, 1996.

Bruce Dodson and Arjen K. Lenstra. NFS with four large primes: An explosive experiment. In
Don Coppersmith, editor, Advances in Cryptology — CRYPTO ’95, volume 963 of Lecture Notes
in Computer Science, pages 372—-385, Berlin, 1995. Springer.

Reina-Marije Elkenbracht-Huizing. An implementation of the Number Field Sieve. FEzxperiment.
Math., 5(3):231-253, 1996.

References 33

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

Simon Hunter and Jonathan Sorenson. Approximating the number of integers free of large prime
factors. Math. Comp., 66(220):1729-1741, 1997.

Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, third edition, 1998.

R. Lambert. Computational aspects of discrete logarithms. PhD thesis, University of Waterloo,
1996.

George Marsaglia, Arif Zaman, and John C. W. Marsaglia. Numerical solution of some classical
differential-difference equations. Math. Comp., 53(187):191-201, 1989.

Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization. Math.
Comp., 48(177):243-264, 1987.

Peter L. Montgomery. Comments in rootfinder program, 1992.

Brian Antony Murphy. Polynomial Selection for the Number Field Sieve Integer Factorisation
Algorithm. PhD thesis, The Australian National University, 1999.

J. M. Pollard. Factoring with cubic integers. In A. K. Lenstra and H. W. Lenstra, Jr., editors,
The development of the number field sieve, volume 1554 of Lecture Notes in Mathematics, pages
4-10. Springer, Berlin, 1993.

Herman te Riele. 233-digit SNFS factorization. Available from
ftp://ftp.cwi.nl/pub/herman/SNFSrecords/SNFS-233, November 2000.

Lowell Schoenfeld. Sharper bounds for the Chebyshev functions #(x) and ¥(z). ii. Math. Comp.,
30(134):337-360, 1976.

A. M. Vershik. The asymptotic distribution of factorizations of natural numbers into prime
divisors. Soviet Math. Dokl., 34(1):57-61, 1987.

