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MODULI AND CANONICAL FORMS FOR LINEAR DYNAMICAL SYSTEMS

1. Introduction

In this paper we are concerned with linear systems (F, G, H), where
F isan nXn matrix, G an n X m matrix, and H an r X n matrix
(i.e. there are m dinputs, r ouputs, the dimension of the system is n)
and the equivalence relation induced by basis change in the state space.

I.e., (F, G, H) is isomorphic to (TFT-]'

, 6, HTY), Te€ 6L (k) where
k 1is the base field we are working over. For convenience we shall assume

that k 1is algebraically closed. (Cf., however, (4.6)).

Let L or denote the space of completely reachable linear systems.

It turns out that the orbit space Ecr/GLn exists and it has a nice

natural geometric structure. It is, in fact, a quasi-projective variety.

Moreover, this space turns out to be a fine moduli scheme for continuocus
(algebraic) families of completely reachable systems. I.e., its »points
correspond bijectively with equivalence classes of linear systems and
over the moduli space there exists a u‘niversal- family of linear systems

from which every family can be obtained by pullback.

‘Unfortunately (or fortunately, depending on one's point of view), the
underlying n-vector bundle of this universal family is not trivial if

m> 2, (i.e. if there are 2 or more inputs; the bundle is trivial if
m=1) and this ruins all chances of finding global continuous algebraic

canonical forms (c.f. (4.5)).

It should be remarked, however, that the local. coordinates of the

" moduli variety are very closely related to certain (currently very popular)
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local canonicael forms for (F, G, H).

Most of the time we shall be concerned with the input aspect only.
I.e. we study pairs (F, G) under the equivalence relation (F, G) ~-
~ (T‘lFT, TG). It is trivial to extend the theory to triples (F, G, H)
(ef. 4.6). Dually we could have elected to study pairs (F, H) under
(F, H) ~ (TFT"l, HT'l) and completely observable systems instead of

completely reachable ones.

The contents of the paper are:

1. Introduction

2. The space N .
2.1. Reachable systems and n X m(n + 1) matrices.
2.2. Nice selections and successor selections.
2.5. Equations for Iy-m,n‘

2.4, Description of Ijm,n’
3. The Grassmann variety and moduli schemes for linear systems.
3.1. The Grassmann variety.
3.2, Families .oftlinea;r systems.
3.3. Existence of a coarse moduli scheme for completely reachable
linear systems.

3.4k. The canonical bundle over the Grassmann variety.

.3.5. A canonical family of linear systems over M .

,n
3.6. g-m,n is a fine moduli scheme.
3.7. A lower codimensional projective embedding for yl_m n°
3

4. Local description of Mo Canonical forms.

4

4.1. Local description of P—dm,n'

4.2, Example. Equations for M, -
3
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4.3, ZLocal pieces and patching data description of ME,Q.

L L. Nontriviality of the underlying bundle of the universal family
of linear systems.

4 .5. Nonexistence of global continuous algebraic canonical forms.

4.6. Concluding remarks.

References.

- Some notation. The field we work over is denoted k; for convenience
we take k algebraically closed. All schemes, varieties are over Kk;
we consider oniy reduced algebraic separated schemes (varieties). The
category of schemes over k is denoted §g§k, and Sets denotes the
catégory of sets. If S, TE€ §g§k then §g§k(T, 8) is the set of

morphisms from T to S. If S € cha then O, is the sheaf of germs

S
of functions on S. Projective space of dimension n and affine space

of dimension n are respectively denoted by gﬁ

group scheme of invertible n X m matrices, GLn(k) is its group of

and .gkn; GL, is the

k-points; Gn r is the Grassmann variety of subspaces of dimension n
B

in r-space.

If X 1is a finite set then #X denotes the number of elements of X.
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2. The space gn,m'

2.1. Completely reachable systems and n X m(n + 1) matrices.

Let (F, G) be a linear input system, where G 3is an nxm
matrix end F an n X n matrix (i.e. there are m inputs and the
dimension of the state space is n). Then (F, G) is completely

reachgble if and only if the rank of the matrix R(F, G) is n, where
2.1.1. R(F, G) = (G, F&, ..., FG).

Cf. e.g. [4].

In this section we describe the image of the algebraic morphism

. cr reg
2.1.2. R: G o _)-n, m(n+1)

where FGcrn is the space of all completely reachable pairs (F, @)

i

and én,m(n+l) is the space of all n X m(n + 1) matrices, and

reg .
én,m(n+l) is the open subset of én,m(nﬂ.)

of maximal rank (i.e. rank n).

consisting of the matrices

The group GLn(k) of invertible n X n matrices with coefficients

in k actson (F, G) as

2.1.3. (F, G) v (SFS™L, sa), Se¢ oL, (x).

Thus if we let GLn(k) act on n X m(n + 1) matrices A as

2.1.k. ArSA, S € GL (k)

then R is a GLn(k‘) -morphism.
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2.2. Nice selections and successor selections.

The invariants of the action described above of GLn(k) on
éh,m(n+l) are ratios of expressions of the form det(@a), where
@ is a subset of size n of (1, 2, ..., m(n + 1)} which is given
the natural order and Aa is the matrix consisting of the columns of
A with column index in «. We shall call such subsets of size n of
{1, 2, «vo, m(n + 1)} selections. It is natural to expect that the

expressions det(Aa), Q@ a selection, will be important in the description

of the image of R.

Certain of these selections play a special role. To define them we
number the m(n + 1) columns by pairs of integers as follows:

o1, ..., Om; 11, ..., Im: ...3; nl, ..., nm.

2.2.1. Definitions. A selection of « is called nice if (i, j) €a =

(i', §) € @ for all i' < {i.

Given a nice selection @, its successor selections are obtained
as follows. Take any (i, j) € (01, ..., mm} such that (i, j) € «
and (i', j) € a for all i' < i. Now take away from o \U{i, j) any of
the original elements of « and reorder (if necessary' the resulting

subset of (01, ..., nm}.

Note that a successor selection of a nice selection may be nice but

need not be.

2.3. Equations for _ﬁﬁ

b

er reg = i
We denote by Ny, the image R(Egm’n, C A m(ar) o4 bY .gm,n its

reg
closure in the algebraic variety én,m(n+1)'



It is easily seen that Em n is neither open nor closed in A

b

E.g. the matrix
2.3.1. 0O 0 0 01 0

' 0 0 0 0 0 1
",

n
2
2.3.0. 20 t 0 1 0
0 20 ¢t 0 1

as 't —» 0. Cf. however (2.4),

as the specialization of

reg
“n,m(n+1) "

Let @ be a nice selection and suppose that det (R(F, G)a) # 0,

_ er
for & certain couple (F, G) € IG»,n‘

as shown below (where the columns of G have been permuted for convenience

(if necessary)).

1 2 ........
0] X X teseae.
1 x .
2.3.3 rs-l . AETERRPRY
rerl . -: sevoeee
: .0
rl-l : .
. 0] .
n o 0

0

seaae QO

a6 680690600885 000 8

0

Pictorially we can represent «

I EEEEEE

LY

The first row consists of the column indices 01, ..., Om of R(F, G),

the second row of the column indices

11, ..., im, etc.; the crosses x

page 6
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indicate the column indices in « the successors of « are obtained by

adding one of the stars * and then deleting any of the crosses x.

Multiplying R(F, G) with (R(F, G))™ = S we obtaina nx m(n + 1)
matrix R' (which is also in R(Egg?n)) such that R} = I, the nxn

unit matrix.

It is now obvious that the elements of the columns of R’ indexed by
stars in the array above are given by the numbers + det (Ré) where 8
ie a successor of «@. (Indeed the successors obtained by adding the
index of the column in question and then deleting any of the elements of

a.)

‘There are now precisely one F' and G' such that R' = R(F', G').

Indeed if gl,'.,., gm are the columns of G' and fl, ey fn the columns

of F* then

€ =8 & = Cry+ls ves By erl+...+rs_l+1, 8oy = = R!

R! .
0, s8+1’ > 8y o,m

fl 55 fé = e

]

35 +ees Trol1 = ey, fry = Rfl-l,l

frl+l' .= er1+2, seey ‘ fri+r2 <1 = erl+r2’ frl+r2 = Ri'2"1,2

@ @ L]

. - — 3
Trgte.brg g+l T Crpb. drg 1425 eees T = Trpteoirg = Brge1s

where R! denotes the (ij)-column of R'. As F' and G' are now

i3
known we can calculate the other elements of R' = R(F', G').

Let now 7y be any selection, then we find in this way expressions
t)y = pr (. R!
2.3.h. det (R}) = B} (det (RY))

where 8 runs through the successors of @, and g;y is some polynomial,
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Now for any selection &
2.3.5. det (R(F, G)6) = det (Ré)det (R(F, G)a).

So putting in appropriate powers of det (R&) =1 in 2.3.4% and

using 2.3.5 we obtain for every selection 7y homogeneous relations
2.3.6, Ray(det (R(F, G)a; det (R(F, G))y; ..., det (R(F, G)B, ) =0

where £ runs through the successors of .

By Weyl's irrelevancy of algebraic inequalities principle (cf. e.g.

[1]1) these relations hold for all R(F, G).

2.4, Description of N and N .

S0 “m,n
In this section we show that X is the subvariety of ATCE
-m,n —n,m(n+1)

defined by the equations 2.3.6 (one equation for each pair (x, ),
& a nice selection, y any selection), and describe Em n 8 the open
J

subvariety of ﬁ; n given by the condition: there is a nice selection «
3

such that det (Ra) # 0.

To do this we need a lemma.

2.4.1. Lemna. If (F, G) is a completely reachable pair, then there is

& nice selection such that det (R(F, G)a #0.

PROOF. We define a nice subselection of (01, ..., nm} as an

ordered subset o of (01, ..., nm} of size r <n, such that (i, j) € o

implies (i', j) € ¢ for all i' < i.
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Now let o be a nice subselection of maximal size such that the columns
R(F, G)iJ for (4i,3J) € o are independent. (Note that #o > 1 because
otherwise we would have G = O contradicting that R(F, G) has maximal
rank). Let V be the space spanned by the columns of R(F., G) with index
in 0. Rearranging the columns of G if necessary we can assume that

B 1is spanned by the vectors

gl gz .......... ss
Fe, . L

: : s

. . F €s
. Frlg2

Maximality of o then gives that

+1 +1 +1 :
Fl g €V, F2 g, €V, ..., F's B €V, € €V, ..., g €V

and a very easy induction.then gives

+k +k X X
Fl g €V, ..., F's 8, €V, Fg €V, ..., Fg €V

1

for all k € N. Thus V contains all the vectors Figj, i.e.
dim V = rank(G, FG, ..., FG) =n and o is therefore a nice subselection

of size n, 1i.e. a nice selection.

2.4.2, Corollary

- reg ' .
(1) Em,n is the closed subset of én,m(n+l) given by equations 2.3.6.
— ) Jg
(11) Em,n is the open subset of Em,n consisting of matrices A ﬁm,n

for which there is at least one nice selection « such that

det(Aa) # 0.
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- (141) The morphism R: FGST

i —)en,m(n+l) is injective.

Proof. (i1i) follows immediately from 2.4.1 because we can recover

(F, G) from R(F, G) by means of the method described in subsection
2.3. To prove (i) and (ii) take any A € é;,ei(ml) such that eqpations
2.3.3 hold and such that there is a nice selection Q with det(Aa) # 0.
Now calculate an (F, G) from A using the method of subsection 2.3.
Then R(F, G) = A Dbecause equations 2.3.6 (for that @, any ) hold

forA A.
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3. The Grassman variety and moduli schemes for linear systems.

In this section we describe the Grassman variety and the moduli

scheme for linear input systems (F, G).

3.1. The Grassman variety.

Consider the space _A_zef (where r > n) of maximal rank nxr
b

matrices. The group GLn(k) acts on this space as (S, A) — SA. The

geometric quotient for this action exists; it is called the Grassman

variety G _. (Cf. [5] for a discussion of G and [6], [7] for the
— Tn,r n,r

definition of "geometric quotient”.)
It can be described as follows.

For each selection a (i.e. a subset of size n of {1, ..., r})

and A€ é; eg we let Aa denote the matrix consisting of the columns
3

in A with column index in «. We define a function Xyt ézef —>§l
. , =

by xa(A) = det(Aa).
Let « run through all selections (there are (i) selections). Then,
because at least one of the xa(A) is non-zero (because A has maximal

rank), we obtain a morphism

3.1.1. . p: AT®E P, Ao (xa)a €

r
-, =x’ N = (n) -1

=k’

where O runs through all selections. Note that o(SA) = ¢(A), for all
S € GLn(k), so ¢ 1is constant on the orbits. We are going to describe

the image of -

\
!

_ reg, _ _
For each selection a let U, = (A€ én,rl ’ﬁ(A) # 0}, and for
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_ -1
A€ U, we define ca(A) = A A

It is clear that for each A € Ua’ and each selection B
3.1.2, det(Aa) . det((Aa A)B) = det(AB).

Now (A&IA) = T_ and the elements of A YA which are not in a
(04 n [0 -1
column with index in « sare of the form det((Aa A)y) for certain +
and therefore can be written x7(A) (xa(A))'l. Substituting this in
3.1.2 and multiplying with an appropiate power of xaf A) we obtain

a set of homogeneous relations
3.1.3. ap(--r £ @), ..) =0

which ere satisfied (using Weyl's irrelevency principle again)

by all A € AT%B, (1f #(aMB) =n - 1, dqy is the trivial relation
—-n,r s B

xa(A)xB(A) - xa(A)xB(A)) .

3.1.4. Proposition.

Im ¢ dis the subset of described by equations 3.1.3.

=k
Proof. Let x= (..., X ...) be an element of __lf; satisfying 3.1.3.
There is an o such that X, # 0. We can assume X, = 1. Now let the

matrix . Ba(x) be constructed as follows.

‘ (Ba(x))a =TI bij = xg for j ¢ @, where B is the selection
obtained by adding J to & end deleting the index of the column in

(Ba(x)) o Which is equal to the i-th unit vector.

\

Then B (x) € AT and o(B (x)) = x Uecause x satisfies the
CI "'n’r CX
relations 3.1.3 (for this particular a and all B). This follows

immediately from the way in which the relations were obtained.
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We shall denote the subvariety of Eg defined by equations 3.1.3

by €& and call it the Grassmann variety. Note that G, _ = P..
n}r l,r =k

3.1.5. Corollary (of the proof).

s . _ L s B _
[X€Gn’r|xa7’o}ué with s = n(r - n); d:LmGn’r-n(r n.

The isomorphism is given by the morphisms x o Ba(x).

3.2, PFamilies of linear systems.

‘Let S be an algebraic variety over k. In the definition of what a

femily of linear input systems over S is (or a family parametrized by

S) we have some choice. We could e.g. define a family over S as
consisting of an n-vector bundle E over S, an m-vector bundle

E' over S, an endomorphism of vector bundles F: E—E and a
homomorphism of vector bundles G: E' — E. If we take this as a
definition there is certainly not géing to be a fine moduli scheme for
this functor, because tensoring everything with a noﬁtrivial line

bundle then gives a locally iscmorphic but not globally isomorphic
family. It is therefore more natural to take a rigidified version of the

previous tentative definition.

3.2.1. Definitions.

A femily 7% of linear input systems of dimension n with m inputs,

over an. algebraic variety S, consists of an n-dimensional vector bundle

E over S, a vector bundle endomorphism F: E - E, and m sections

C et

Bys ooes gm 'S - E.

The family (_E_l_, F, 8y +os gm) is complet.ely reachable if for every

8 € S we have that the fibre _E_(s) at 8 € S 1is spanned by the vectors

F(B)igd(s), 1=20,1, ooy 03 J=1, c0o0p M
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Two femilies T = (E, F, 81 +ees gm) and ? = (E', F', gl +ees gr'n)
over S are said to be isomorphic if there exists a vector bundle

isomorphism o: E - E' such that F'c = oF, og; = gi, i=1 ..., m.

- We let _F_'_m n(S) be the set of iscmorphism classes of completely
24
reachable families of linear input systems ¥ of dimension n with

m inputs over S.

Iet f: T - S be a morphism of 'a.lgebraic varieties and let T =-
= @_: Fy 815 =2 gm) be a family of linear systems over S. Then
the induced family £ = (f"g, :E'"F, f"gl, cees f’gm) over T is
obﬁained by "pulling everything back along f£". I.e. f:_E_ is the
iﬁduced vector bundie over T, f!F is its induced endomorphism and
if we identify (f"g) (t) with E(£(t)) then (f"gi) (t) = g, (£(¢)).

The following diagrams are therefore commutative.

. M ’
£ E— 3 E £ E— >E
J ’[f! { \ N £ TK.
g g. - E
i i = — ML
. /
T _..____f:___? s T £ }S/

? t 4 ?
The family (£f°E, f£°F, f'gl, ceny f'gm) is completely reachable if

(and only if) the family (E, F, g5 +ees gm) is completely reachable.

Thus we have defined a contravariant functor.

3.2.2. -F-‘m,nz Sc}l.‘ -» Sets

For convenience we recall what a fine and coarse moduli space for

P would be.
-m,n
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3.2.3. Definitions

A fine moduli space for Em,n is a scheme Mm,n and an isomorphism

of fugctors o8 zm

3

n = Schy (, Mm,n) . A coarse moduli space for F

]

is a scheme Mm,n and & morphism of functors ¢: F—m,n - Seh ( Mm,n)

such that o¢(Spec(k)) is an isomorphism and such that for every scheme
N and functor morphism ¢: _F_‘m n > Sch( , N) there is a unique morphisn
9
h: Mm,n —- N such that ¥ = Schk( , h) ° o.
I M is a moduli space then the k-points of M are in 1-1
m,n m,n
correspondence with isomorphism classes of linear input systems (dim n,
m inputs). The map S —M  associated to a family (E, F, 85 +nes gm)
, =
over S associates to s € S the point in M n corresponding to the

m,

isomorphism class of (F(s), gl(s), ceey .gm(s)).

3.3. A coarse moduli space for families of linear input systems.

Let _N_Im n be the subvariety of Gn,m(n+l) defined by the equations

¢4

2.3.6. More precisely, Em n is the subvariety of G defined
;4

n,m(n+1)
by the equations

3.3.1. Pay(}%x’ xy, eer Xy cea) =0

where the de are the polynomials of 2.3.6. Then Em , is a projective
$d

n,m(n+1) = fN- As a subvariety

of _IjN ‘it is also given by equations 3.3.1 (the equations an(...) =0

variety, since it is a closed subvariety of G

of 3.1.3 are consequences of 3.3.1 as is clear from the way we obtained

these equations).

' b M fined b
Let y—m n be the open subspace of ym’n dg ined by

9

n_am,n ={x€ yxm’n | 3 nice selection « such that x, # 0}.
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3.3.2. Theoren.

M is a coarse moduli space for F .
-m,n -m,n
. . . reg
Proof. We know that Gn,m(n+l) is the geometric quotient of A Jm(n+1)

by GL . Now N _ C AY®E
n -m

,n -n,m(n+1) is invariant under GLn and hence so

is the closed subvariety -—ﬁm C AT®E
3

n " En m(n+1) o0d the equations defining

Em,n are polynomials in the Xy Hence Mm n is the geometric quotient

of N by GL_ and the geometric quotient of N is M . The
“m,n n -m,n -m,n

fact that M is a coarse moduli space for F now follows from

—n,n -m,n
the general theory comnecting quotient spaces and coarse moduli spaces.
(cf. [G] and [M]). Given (E, F, 815 -ees gm) over S, then &(8)
assigns to s the point of Iiim n obtained as follows. Choose any

>4

basis in E(s). Let F(s), gl(s), ceey ?g_n(s) be the matrix and coordinate
vectors of F and 815 <5 8 with respect to this basis. Then
0(8)(s) = o(g,(s)...g (s); F(s)g, (s)...F(s)g (s); .ov; i"'n(S)El(S), cees

'fn(s)'é'm(s)) where ¢ is the morphism 3.1.1.

3.4. The canonical bundle over Gn r
3

Every matrix A € .5; ei defines an n-dimensional subspace of 1_§.r,
" 2

viz. the subspace spanned by the rows of the matrix A. Two matrices
A, B span the same subspace iff there is an S € GLn(k) such that

A = SB. Thus Gn r "is" the space of n-dimensional subspaces of ér.
)T

The canonical n-bundle gn over Gn can now informally be

£

described as the bundle over Gn r whose fiber over x € Gn is the
b 3
n-space represented by x. More precisely E‘n is the subbundle of

G x k¥ defined by (cf. e.g. [3])

n
3.4.1 = l(x y)ec  x& |yex.
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In terms of trivial local pieces and patching data we have the
following description. For each selection & from (1, ..., r} 1let

n(r-n .
v, = (x € Gn,r | e # 0}. Then vV, =4 ( ). Let Ba(x) be the unique

=

1]

element of én,r such that cp(Ba(x)) X and (Ba(x))o:= In' (Cf. the
proof of 3.1.4 for the construction of Ba(x).) The bundle £ is trivial

over each Va. The trivialization being given by

V. x A" 5@ x aY
[0 = n,r =
34,2, (x, (tl, cee tn)) - (x, (tl, cens tn)Ba(x))

In order to describe the bundle gn over all of Gn r it therefore
J

suffices to give the identification isomorphisms

. n n
papt (Vg MVg) X A" > (V. NV) x 4

and these are obtained as follows. Iet x € VQ, ﬁVB and let Taﬁ(x)

be the unique element of GLn(k) such that

343 T (0B = B (x).
Then
t t
JRE 1
3.14- I paB(x; (1:-, )) = (x: TOﬂB(x>(é ))
n n

3.5. A canonical family of linear systems over M

s

let @ be & nice selection. For each x € W, = VamMm,n C Gn,m(n+l)

C EN let Ba(x_) be the matrix such that (Bo:(x))a = In and cp(Ba(x)) = X.

Because x € Mm n there exist a unique n X n matrix Fa(x) and nXxXmnm
>

matrix Ga(x) such that R(Fa(x), Ga(x)) = Ba(x).
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We now define a canonical family (E, FC, gi, cees g:) of linear

input systems over Mm,n as follows.

c
The bundle E~ is trivial over each W, =V, ﬂgm’n, and the

identification maps fapt Yy ﬁWB X én W, MW

, f t t
1y J1
paB(x,(é )) = (x, TO!B(X)({; ))
n

n

B X _F:n are given by

where T _(x) is as above. T.e. the bundle over M is the restriction
aB “m,n

to -Mm,n of the canonical bundle over Gn,m(n+l)'

The endomorphism F° and the sections g]c_, cony g; are given over
Wa ‘with respect to the canonical basis of én by the matrices Fa(x)
and Ga(x). Then, because Tas(x)Ba(x) = BB<X) and R(Fa(x), Ga(x)) =
= Ba(x), R(FB(X)’ GB(x)) = BB(X) and maximelity of rank we have,
TaB(x)Ga(x) = GB(x)
TaB(x)Fa(x) = FB<X)TO(B(X)
so that the identification isomorphisms of the bundle transform the
local endomorphisms and sections into each other. I.e. we have defined
& family of linear systems over M W . (cf.2.2).

= U .
-m,n & is nice «

3.6. M is a fine moduli scheme.
-m,n

3.6.1. Theorem. E'I-m n is a fine moduli scheme for families of
- 3

completely reachable linear m-input systems of dimension n. The

C

canonical family 7 = (Ec, Fo, g]c_, cees g:;) of (3.5) is the universal

family over -N-Im,n'
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Proof. We have to show two things.
(1) et £:S—»M Ve any morphism. Then o(S)(£%°) = r.
iy

(11) Let ¢ be & family of systems over S and let £ = o(s)(®

1
then £'7° is isomorphic to 7.

To prove (i), note that the linear system over a point s € S
1
defined by £7° is given (up to equivalence) by the matrices Fa(f(s)),
Ga(f(s)) where O is any nice selection such that f£(s) € W, C Mm
iy

It now follows immediately from the definition of ¢(S) (ef. 3.2) that
t
8(8) (£°7%) (s) = £(s).

As to (ii), let % = (E, F, Brs +ees gm). For every nice selection

o let sa=f“lwa. Then S=US,. Iet s€S  andlet A(s) be the

matrix R(F(s), G(s)) where F(s) and G(s) are the matrices of the
linear system defined by P* over s relatiw_re scme basis of E(s).

Then because ‘F(s) € W,

]
®(S). So locally (= over each Sa) £7° anda T are "the same". This

det(A(s) a) # 0 in view of the definition of

means that the bundle E of T is trivial over any Sa. And the

[04
into (F(£(s)), G, (£(s))).

. . n
isomorphism a_: Elsa—asax.g transforms Flsa and gl{sa, e & g,

To see how these trivial pieces fit together, let s € Soc M SB'
Choose any basis in E(s) and let A(s) be the matrix of R(F(s), G(s))
where F(s) and G(s) are the matrices of the system over s relative
to the chosen basis. Then, relative to this basis and the canoni«;al
basis in J__x__n, the isomorphism a;z at s teskes A(s) into A(s)&lA(s) =
= R(Fa(f(s)), Ga(f(s)). Similarly for B. It follows that the identifics-

tion isomorphism

n ' AR
Saﬁssx A -—»sﬁf\sax A
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18 given by the matrix A(s)élA(s)a and

R(F (£(s), C,(£(s)) = Als) ;A(s) R(E, (2(s), G (2(s))

which shows that
As)TYa(s) = T (£(s))
B a ap

because R(Fa(f(s), Ga(f(s)) is of maximal rank. So that the pieces
over Sa’ @ nice, of f:rc and ¥ also fit together in the same

way. (This,by the way, is also "immediately clear" because the isomorphism
must transform the F and G in the right way, and rank maximality

then determines the isomorphism uniquely). This concludes the proof

of "'bhe theorenm.

3.7. A lower codimensional projective embedding for Mm n
4y

Let. .'q ‘be the set of selections from (01, ..., Om; 11, eee, 1mg
cee3 nly, ..., nm} and let ¢ be the subset of n ©Of nice selections
and successors of nice selections. Let SN be the projective space with
coordinate f‘unctidns labelled by 7 and =PN' the projective space with
coordinate functions labell‘ed by t. Let m: ;PN - EN ' be the natural

projection (not everywhere defined).

Now consider the composed map

i: M AENEEN'
-m,n = =

3

where the first arrow is the embedding of Mm is I__’N given by
)

n
equations 3.3.1.

?
Then first of all 1i: Mm n - gN is everywhere defined on Mm

r3e)

(because if x € l:&n n ‘there is a nice selection « such that x, # 0),
3
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.and secondly 1 1is injective because once we know the values of the
xB, B a successor of a (and Xy # 0) we can calculate Ba(x) and

hence all the other xy. (cf. 2.3).

T
This gives us an embedding bilm n = EN of considerable lower
s =

codimension than the original embedding M_ - . This can be
0~ E

convenient for calculations.

. 1
To obtain equations for the closure of b_/_[m n in E’N proceed

3
c P,
n =

exactly in the same way as for :Mm
- t4

E.g. for MEB we have N =55 and N' = 15.
2
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4. local description of Mm o+ Cenonical forms.
3

In this section we give a local pieces and patching data description
of Ag-m,n’ we calculate a specific example (_31_12’2), we prove that the
canonical bundle over Mo (ef. 3.4 and 3.5) is nontrivial if m > 2

y

and conclude that no globally defined continuous canonical forms exist

for m-input linear systems of dimension n if '‘m > 2.

4.1. Local description of M .
‘ : =m,n

Let o be a nice selection from {01, ..., Om; 11, ..., 1m; ...}
nl, ..., nm} and let Oy be the set of selections which are successors
to «a. Note that ﬂcra = mn. For each B € o, let yB € k be arbitrary

then there exists precisely one pair of matrices (F, G) such that

R(F, G), =1, det (R(F, G)B) = ¥g

(ef. (2.3)).

It follows that
= & A
W, {xeMm,n | x, 7 0} =4
let this isomorphism be lli‘a. An immediate consequence is

4.1.1. Proposition. dim Mm,n = mn; ym,n is connected_ and irreducible.

let y = (yﬁ) € émn, and let 7y be a nice selection. The condi_tion'
det (B (¥,(y)) ) # O defines an open subset of A™ which gets identified
with the open subset of __.ﬁ_\mn & W,y defined by det (37 (ﬂfy(z))a) #0
according to the obvious formulas. (Calculate det (BO‘(?IJ‘OL(y))8 for all

successors § of v; cf. 4.3 for a specific ekample.)



Example. Equastions for MQ o°
?
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We consider the Grassmann variety G2 6 C ljlh. We number the coordinates
R =

P
= M By MW N5 N o3 B st N7 M M50 60

> H,60 X (xab corresponds to the selection ab from ({1, 2, ..

The equations for (;2 6 in P
, =

*12%3, = *13%)
*12%35 = *13%25
*12%36 = *13%26
*12%5 = X4 ¥os
*12%46 = *2h%06
*10%56 = *15%26

*13%5 = *14*35
X13%6 T X4 %36

X13%56 = *15%36 "

%56 = X15%6
Toz%s T ouFss
Xoz¥6 T Folu*36
*o3%s56 T *e5%36
%4556 = %2576

*5%56 = T5%u6

14

T To3¥y
- %23%15
- %2336
- %ou¥15
- *ou*16
- *25%16
T *15%3
T *16%34
*35%16
T %56
T T4 %os
i -1
" 35%26
- R5%6
T R5%36

are

.y 6.



The equations for ’fe, p, 88 & subvariety of G2, 6

Mo%os5 = ¥z%y - ’53
12%6 = Tz - %osXy,
Xlles = xlBXlLl- - X13125

*10%16 = xoilp = *13%)

are

N T meds
L.2.2 X3%) = XpXs - X13%03
2 .
*13%36 T X10%15%55 T ¥3%35%03
X =X X.%X _ -x X, X %

13716 ~ T12713735 T X13%15%03 t Fo¥s

¥z T XXy, T XpXg

2
FolFys T XXonNg T Xo¥ogH,s

2 2
U5 = XX gXol F XX pKop - X pXoe

To obtain equations for M2 o> 8@s a subspace of flu one adds the equations
s =

marked with a (¥) of L.2.1 to the equations of L4.2.2. Equations for the
N 1 4
closure of ME o, in _l_’N (N* = 8 in this case) are obtained by

s =

disregarding all equations involving X6 ::25, x%, x56, XMS’ or X56'

h.3. Iocal Pieces and patching data description of MZ o
J

There are three nice selections from {01, 02; 11, 12; 21, 22}, so

_M2 2 is obtained by patching three pieces Vl’ V2, V3 together. All
b4 \

three pieces are isomorphic to ‘f. Let Vl be the piece corresponding

to the nice selection «a = {01, o2}, V2 the one corresponding to

B = {01, 11} and ’V3 the one corresponding to vy = {02, 12},

page 24
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The canonical matrix Ba(a) for a €V

y 1is of the form (¢ = (01, 11})

o
108 & & *taa; a8, +as

0 1 a5 & ejaytoam st

The canonical matrix BB(b’) for b€ V, is of the form (B = {01, 11})

1 bl 0] b2b3 b3 blb3 + b2b3b)+

2
0 b2 1 bl + b2b1§ b’-l- 'b2b5 + blb)-l- + bgbu

From this we see that V12 and v21’ the parts of Vl and V2 that

must be identified, are given by

Vo, =laEvV: a3¥0}

Vy, = (b EV,: by #0)

and the identification is given by

-1 -1
k.3.1. bl = - 885 b, = o

Sa Ty

\Nd
[}

N

of°

P

P

-l:‘d
|

The canonical matrix B_,v(c) for c € V5 is of the form (y = {02, 12}

C

( cy 1 cac5 ' o} e s +. cyC50) c3
2

2
o} c:L + c2°’+ 1 c2c:3 + clch + cach 0)4

And one finds

L3

V13=[a€Vl|a2#0}

V31={c€V3Ic25-’0}



and the identification is given by

L.3.2, cl= -8'291! c:3=a,2a,3 -a'lai}
-1
¢ = & G =2ty

Finally

= 2 2
oz = (bev, | by *+ bybyby - bpbg # 0}

Vsp = {c € V3 | ci +cjee - c§c3 # 0}

and the identification is given by

‘ _ bl + b2-b’+ "bz
433 17 %R ¥ oymoly - o 27 ¥+ b, - b
273 1 ¥ bbby - By 3
c:5 = ‘b3 ¢, = b21L
4. Nontriviality of the canonical bundle over M g if m>2
° ed

let T° = (2% F°, g}, ..., &) be the universal family defined
over M n In this section we shall show that E_c is not the trivial
3

bundle. More precisely we shall do this for ’L‘g 5 but the argument
>

generalizes immediately.

Let En be the canonical n-plane bundle on bundle on Gn r and
b4
similarly let §l be the canonical line bundle on Gl,N+1 = Ij; where

N = (;1) -1 and let G o, gN be the canonical embedding (cf. 3.1

t4

and 3.4). Then

Rgn ™ IE1 l Gn,r

where Rgn denotes the n-th exterior product of En'

Now, E_}_c, the underlying bundle of ¥°, is tn ] M, ,- Suppose
?

that E° were trivial over M, then AE’ would be the trivial line
1 .

page 26
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bundle, but R Ec is the restriction of £, to Mm n and the sheaf of

¢4

sections of g, is _QPN(l) which is very ample.

Therefore if E_c were trivial we would have that the sheaf O
s

is very ample. But this in turn (ef. [2], Ch. II) implies that the open

sets

D(f) = {x€ Moo | B0 F0), fe Ty 2 O )

form a basis for ym,n'

. . 1
Now let f be a global section of QME,E’ i.e. a function {»b’2 - A",

Restricted to Vl, f is a polynomial in a_, 8ys a3, 8, . But from
equations 4.3.1 we see that the specialization of f(al, 8y 8, 5’4)
as agl ~0 but s,a; - some finite limit, must exist. This shows that

f(al, 8y &, a,_l_) can involve no pure powers of o Therefore

1
L hy.2, v £ 1_42,2 — A", either (0, O, a5 0) € () ﬂvl for all & € k

or (0, 0, a;, 0) ¢ D(£) MV, for all a5 € k

80 that the D(f) do not form a basis for the open sets of _I\il2 o+ It is
b

easy to generalize this argument. Therefore

4 .h.3. Proposition.

The underlying bundle }_E!_c of the universal family of linear systems

™ over M is nontrivial if m> 2.
3

Remerk. M = A" and the underlying bundle E° of the universal
M,n=4

family over Ml n is trivial. s
s
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4 5. Canonical forms.

The nontriviality of f.:_c , Oor more precisely the nonexistence of
sufficiently many functions on Em n for m > 2 ruins the chances for
the existence of a global continuous algebraic canonical form for linear
input systems with 2 or more inputs. Indeed suppose such a form existed
and let F(s), G(s) be the canonical form for the system 15(s),

8 € I‘—‘m,n' Then because T‘c(s) is not equivalent to Ts(s') for s # s

this would give us an embedding

w22 s (F(s), 8(s))

which would imply the existence of sufficiently many functions f: h_dm n” Al
3] o5
to separate points. As this is not the case (cf. 4.4) we see that there

does not exist a continuous algebraic canonical form.

Of course there exist many discontinuous algebraic canonical forms, e.g.
order the nice selections fram {01, ..., om; 11, ..., Imj....; nl, ..., nm}.

Let these be otl, ceny ar,’ and define the canonical form by
(F’ G) - (F: é‘)

where i"-, G are such that

R(F, G) = R(F, G)&iR(F, G) 4if det (R(F, G)aj) =0 j=1, veu, i =1

and det (R(F, G)g,) # O

There does exist of course a global continuocus algebraic canonical form

for n-dimensional fully reacheble systems with one input. Every fully

reachsble pair (F, g) being isamorphic to precisely one of the form
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0 ....... O al 1

1 ° .. 0

* . ° - ’ L2

O I.C ‘O : : :

. .. 0 .

0 ....:.01 & 0
n

4.6. Concluding remarks.

A. Iet (F, G, H Dbea completely reachable system with inputs

G and outputs H. A basis change in the state space changes the triple

1 -—1)

of matrices (F, G, H) into (SFS™, G, HS™). A fine moduli space

for completely reachable systems of dimension. n with m-inputs and

r-outputs is then M x AT,
-.m’n

B. In the preceding we assumed that k was algebraically closed.

This is unnecessary. All the algebraic varieties discussed and constructions

performed exist (resp. can be carried out) over any base field.
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