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MOIDLI AND CANONICAL FORMS FOR LINEAR DYNAMICAL SYSTEMS 

1. Introduction 

In this paper we are concerned with linear systems (F, G, H), where 

F is an n x n matrix, G an n x m matrix, and H an r x n matrix 

(i.e. there are m inputs, r ouputs, the dimension of the systemi. is n) 

and the equivalence relation induced by basis change in the state space. 

I.e., (F, G, H) ( -1 -1) is isomorphic to TFT , TG, HT , T E GL (k) 
n 

where 

k is the base field we are working <:Ner. For convenience we shall assume 

that k is algebraically closed. (Cf., however, (4 .6)). 

Let Lcr denote the space of completely reachable linear systems. 

It turns out that the orbit space L /GL exists and it has a nice -er n 

natural geometric structure. It is, in fact, a quasi-projective variety. 

l 
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Moreover, this space turns out to be a fine moduli scheme for continuous 

(algebraic) families of comp1etely reachable systems. I.e., its points 

correspond bijectively with equivalence classes of linear systems and 

over the moduli space there exists a universal family of linear systems 

:f'ran which every fam:Uy can be obtained by pullba.ck. 

'Unfortunately (or fortunately, depending on one's point of view), the 

underlying n-vector bundl.e of this universal family is not trivial if' 

m ~ 2, (i.e. if there are 2 or more inputs; the bunclle is trivial if 

m = 1) and this ruins a1l chances of finding global continuous algebraic 

canonical forms (c.f. (4.5)). 

It should be remarked, however, that the local. coordinates of the 

moduli variety are very closely related to certain (currently very popular) 



local canonical forms for (F, G, H). 

Most of the time we shall be concerned with the input aspect only. 

I.e. we study pairs (F, G) under the equivalence relation (F, G) ,.., · 

- (T-~T, TG). It is trivial to extend the theory to triples (F, G, H) 

(cf. 4.6). Dually we could have elected to study pairs (F, H) under 

(F, H) ,.., (TFT-1, HT-1) and completely observable systems instead of 

completely reachable ones. 

The contents of the paper are: 

1. Introduction 

2. The space N . -m,n 
2.1. Reachable systems and n x m(n + l) matrices. 

2.2. 

2.3. 

2 .4. 

Nice selections and successor selections. 

Equations for N • -m,n 

Description of N . . -m,n 

3. The Grassmann variety and moduli schemes for linear systems. 

4. 

3 .1. The Grassmann variety. 

3.2. Families.of linear systems. 

3.3. Existence of a coarse moduli scheme for completely reachable 

linear systems. 

3.4. The canonical bundle over the Grassmann variety. 

3.5. ·A canonical family of linear systems over M • -m,n 
M is a fine moduli scheme. -m,n 3.6. 

3.7. A lower codimensional projective embedding for 
' Local description of M • Canonical forms. -m,n 

4.1. Local description of M • -m,n 
4 .2. Example. Equations for ~ 2 • , 

M • -m,n 
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4.3. 

4 .4. 

Local pieces and patching data description of ~ 2 . , 
Nontriviality of the underlying bundle of the universal family 

of linear systems. 

4.5. Nonexistence of global. continuous algebraic canonical forms. 

4.6. Concluding remarks. 

References. 

Some notation. The field we work over is denoted k; for convenience 

we take k algebraically closed. All schemes, varieties a.re over k• 
' 

we consider only redui::ed algebraic separated schemes (varieties). The 

category of schemes over k is denoted Schk' and Sets denotes the 

category of sets. If s, T E Schk then Schk(T, S) is the set of 

morphisms from T to S. If S E Schk then Q8 is the sheaf of germs 

of :f'unctions on S. Projective space of dimension n and affine space 

of dimension n a.re respectively denoted by ~~ and 

group scheme of invertible n x m matrices, GL (k) 
n 

n 
~; GL 

n 
is the 

is its group of 

k-points; G is the Grassmann variety of subspaces of dimension n n,r 

in r-space. 

If X is a finite set then ~X denotes the number of elements of X. 
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2. The space N • -n,m 

2.1. Conwletely reachable systems and n x m(n + 1) matrices. 

Let (F, G) be a linear input system, where G is an n x m 

matrix and F an n x n matrix (i.e. there are m inputs and the 

dimension of the state space is n). Then (F, G) is completely 

reachable if and only if the rank of the matrix R(F, G) is n, where 

2 .l.1. R(F, G) = (G, FG, ••• , F%). 

Cf. e.g. [4]. 

In this section we describe the image of the algebraic morphism 

2 .l.2. R: FGcr ~ Areg 
-m,n -n, m(n+l) 

where FGcr is the space of all completely reachable pairs (F, G) --m.,n 

a.nd A ( ) -n,m n+l is the space of all n x m(n + l) matrices, and 

Areg( ) is the open subset of A ( ) -n,m n+l -n,m. n+l consisting of the matrices 

of maximal rank (i.e. rank n) . 

The group GL (k) of invertible n x n matrices with coefficients n 

in k acts on (F, G) as 

2.1.3. (F, G) ~ (SFS-1, SG), S E GL (k). 
n 

Thus if we let GL (k) act on n x m(n + 1) matrices A as n 

2 .1.4. A~ SA, S E GL (k) 
n 

then R is a GL (k·)-morphism. n 
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2.2. Nice selections and successor selections. 

The invariants of the action described above of GL (k) on 
n 

~,m(n+l) are ratios of expressions of the form det(Aa), where 

a is a subset of size n of (1, 2, ... , m(n + l)} which is given 

the natural order and Aa is the matrix consisting of the columns of 

A with column index in a. We shall call such subsets of size n of 

(1, 2, •.• , m(n + l)} selections. It is natural to expect that the 

expressions det(Aa)' a a selection, will be important in the description 

of the image of R. 

Certain of these selections play a special role. To define them we 

number the m(n + 1) columns by pairs of integers as follows: 

01, ... , Om; 11, ... , lm: ... ; nl, ... , run. 

2.2.l. Definitions. A selection of a is called nice if (i, j) Ea -=> 

(i', j) Ea for all i' <i. 

Given a nice selection a, its successor selections are obtained 

as follows. Take any (i, j) E (01, ... , nm} such that (i, j) i a 

and (i', j) Ea for all i' <i. Now take awa:y from aU{i, j} any of 

the original elements of a and reorder (if necessary) the resulting 

subset of (01, ... , nm}. 

Note that a successor selection of a nice selection may be nice but 

need not be. 

2.3. Equations for N 
-m,n 

( er , reg We denote by N the image R FG , c A (""'+l) -m, n -m, n -n,m u 

reg closure in the algebraic variety ~ ( +l)• . n,m n 

and by N its -m,n 
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It is easily seen that N -m., n 
reg is neither open nor closed in A ( l)' -n,m n+ 

E.g. the matrix 

2.3.L 
(

0 0 0 0 1 0) 
0 0 0 0 0 1 

is in N as the specialization of -m,n 

2.3.2. 

as t ~ o. 

( t 2 0 t 0 1 0) 
0 t 2 0 t 0 1 

Cf. however (2.4). 

Let a be a nice selection and suppose that det (R(F, G) ) ~ O, a 
for a certain couple (F G) E FGcr • 

' --m,n 
Pictorially we can represent a 

as shown below (where the collilllils of G have been permuted for convenience 

(if necessary)). 

0 

1 

r -1 a 

n 

1 2 . . . . . . . . s 

x . x •..•..•. x 

x 

x 

* 
0 

0 • • .. • • • • • x 

* 
x • • • • • • • . 0 

* 
0 

0 0 0 

s+l .......• m 

* * 
0 •.....•• 0 

.. 
0 0 

The first row consists of the column indices 01, ... , Om of R(F, G), 

the second row of the column indices 11, •.. , lm, etc.; the crosses x 
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indicate the column indices in a the successors of a a.re obtained by 

adding one of' the stars * and then deleting any of the crosses x. 

Multiplying R(F, G) with ( . ) ,-1 .. R(F, G a = S we obtain a n x m(n + 1) 

matrix R 1 (~hich i 6 -~so i·n RfYN"'cr )) h th t R' I th .. "' c:u.. \&\Jf sue a == e n x n ~:m,n a n' 
unit matrix. 

It is now obvious that the ele:m.ents of' the columns of' R' indexed by 

stars in the array above are given by the numbers 2:. det (R13) where f3 

is a successor of' a. (Indeed the successors obtained by adding the 

index of the column in question and then deleting any of the elements of' 

r.i:.) 

There a.re now precisely one F' and G' such that R' = R(F', G'). 
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.... ;'.' 

Indeed if g1, ·~·, ~ a.re the columns of G' 

of F' then 

... ' f the columns 

f'r1+l = er1+21 ••• ,·fr1+r2 -1 == er1+r2 ' f'r1+r2 = R~2-l,2 . 
. 

fn = :fr1+ ••• +rs = 

n 

... ' 

R' r 8 -l,s 

g = R' m o,m 

denotes the (ij)-column of R'. Aa F' and G' a.re now 

known we can calculate the other elements of R' = R(F', G'). 

Let now 1 be any selection, then we find in this way expressions 

det (R') = P' (Jet (R')) 
1 ay ~ 

S :MJna through the successors of a, and p' err is some polynomial, 



Now for any selection 8 

So putting in appropriate powers of det (R~) = 1 in 2.3.4 and 

using 2.3.5 we obtain for every selection r homogeneous relations 

2.3.6. par(det (R(F, G)a; det (R(F, G))r; ... , det (R(F, G)~, ... ) = 0 

where ~ runs through the successors of a. 

By Weyl's irrelevancy of algebraic inequalities principle (cf. e.g. 

[l]) these relations hold for all R(F, G). 

2.4. Description of N and N . -m,n ~- -m,n 

In this section we show that ~,n is the subvariety of ~:!(n+l) 
defined by the equations 2.3.6 (one equation for each pair (,~, r), 

a a nice selection, r any selection), and describe N -m,n as the open 

subvariety of N given by the condition: there is a nice selection a -m,n 
such that det (Ra) I O. 

To do this we need a lemma. 

2.4.1. Lemma. If (F, G) is a completely reachable pair, then there is 

a nice selection such that det (R(F, G)a i-O. 

p~e8 
Wh~ 
Rev. 1 

PROOF. We define a nice subselection of (01, ••. , nm} as an 

ordered subset a of (01, ••• ,nm} of size r ~ n, such that (~, j) Err 

implies (i', j) Ea for all i' <i. 



Now let u be a nice subselection of maximal size such that the columns 

R(F, G)ij for (i,j) E a are independent. (Note that ucr ~ 1 because 

othel'Wise we would have G = O contradicting that R(F, G) has maximal 

rank). Let V be the space spanned by the columns of R(F, G).with index 

in a. Rearranging the columns of G if necessary we can assume that 

B is spanned by the vectors 

&!.-. •••••••••• g 
"';"'~ .s 

Maximality of a then gives that 
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gs+l E V, ••• , ~ E V 

and a very easy induction then gives 

k 
F gs+l E V, ••• , 

for all k E N. i Thus V contains all the vectors F gj, i.e. 

~g E V m 

( n ) . dim V =rank G, FG, .•• , ·F G = n and a is therefore a nice subselection 

of size n, i.e. a nice selection. 

2.4.2. Corollary 

( i) 

(ii) 

N -m,n 
reg 

is the closed subset of ~n,m(n+l) given by equations 2.3.6. 

N is the open subset of N consisting of matrices A r N -m,n -m, n ....m, n 
for which there is at least one nice ~election a such that 



(iii) The morphism R: ~:n -+~,m(n+l) is injective. 

Proof. (iii) follows immediately from. 2.4.1 because we can recover 

(F, G) from R(F, G) by means of the method described in subsection 

2.3. To prove (i) and (ii) take any A E ~~!(n+l) such that equations 

2.3.3 hold and such that there is a nice selection a with det(Aa) I 0. 

Now calculate an (F, G) from A using the method of subsection 2.3. 

Then R(F, G) =A because equations 2.3.6 (for that a, any y) hold 

for A. 
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;. The Grassman variety and moduli schemes for linear system~. 

In this section we describe the Grassman variety and the moduli 

scheme for linear input systems (F, G). 

3.1. The Grassman variety. 

Consider the space Areg (where r > n) of maximal rank n x r -n,r 
matrices. The group GL (k) acts on this space as (S, A) H SA. The n 
geometric quotient for this action exists; it is called the Grassman 

variety G . (Cf. [5] for a discussion of ·G and [61, [7] for the n,r n,r 
definition of' "geometric quotient".) 

It can be described as follows. 

For each selection a (i.e. a subset of size n of (1, ... , r}) 

and A E Areg we let A~ denote the matrix consisting of the columns -n, r u:. 

in A with column index in a. We def'ine a· function xa: 

Let a run through all selections (there are (r) selections). Then, n 
because at least one of the xa(A) is non-zero (because A has maximal 

?'a.Dk), we obtain a morphism 

3.1.1. cp •• Areg ~ _N A -~ (x ) E _N -.P:·, --. ~ N ::Y.k.' --n,r =k "" ..... 

where a runs through all selections. Note that ~(SA)= ~(A), for all 

S E GL (k), so ~ is constant on the orbits. We are going to describe n 

the image of er· 

For each selection a let Ua =(A E Aregl x.(A) I O}, --0,r a: and for 

P8€e 11 
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It is clear that for each A t Ua' and each selection ~ 

3.1.2. det{Aa) • det((A~1A)~) = det(A~). 

( -1 ) -1 
~ow Aa A a= In and the elements of Aa A_1which are not in a 

column with index in a are of the form det((A A) ) for certain ~ a .,., 

and therefore can be written x (A)(x~(A))-1 . Substituting this in 
. l '"" 

3.L2 and multiplying with an appropiate power of xar A) we obtain 

a set of homogeneous relations· 

:;.1.3. ~~( ... , x (A), ... ) = 0 
. r 

which are satisfied (using Weyl's irrelevancy principle again) 

is the trivial relation 

3.1.4. Proposition. 

Im <p is the subset of ~ described by equations 3 .1.3. 

Proof. Let x = ( ••• , xr' ... ) be an element of ~ satisfying 3.1.3. 

There is a.n a such that xa :/ 0. We can assume xa = 1. Now let the 

matrix . Ba(x) be constructed as follows. 

· (Ba(x))a = In' bij = x~ for j ~a, where ~ is the selection 

obtained by adding j to a and deleting the index of the column in 

(Ba(x))a which is equal to the i-th unit vector. 

Then B,.Jx) E A reg and cp(Brv(x)) = x bt!cause x satisfies the 
'"" -n,r '"" 

relations 3 .1.3 (for this particular a and all ~). This follows 

immediately from the way in which the relations were obtained. 
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We shall denote the subvariety of ~ defined by equations 3.1.3 

by G n,r and call it the Grassmann variety. 

3.1.5~ Corollary (of the proof). 

Note that G l,r = ~-

(x E G I xa i O} CO! ~s with s = n(r - n); dim G = n(r-n). n,r - n,r 

The isomorphism is given by the morphisms x H Ba(x). 

3.2. Families of linear systems. 

Let S be an algebraic variety over k. In the definition of what a 

family of linear input systems over S is (or a family parametrized by 

S) we have some choice. We could e.g. define a family over S as 

consisting of an n-vector bundle E over S, an m-vector bundle 

E' over s, an endomorphism of vector bundles F: E -tE and a 

homomorphism of vector bundles G: E' -tE. - - If we take this as a 

definition there is certainly not going to be a fine moduli scheme for 

this functor, because tensoring everything with a nontrivial line 

bundle then gives a locally isomorphic but not globally isomorphic 

family. It is therefore more natural to take a rigidified version of the 

previous tentative definition. 

3.2.1. Definitions. 

A family T of linear input systems of dimension n with m inputs, 

over an.aJ.gebraic variety S, consists of an n-d.imensional vector bundle 

E over S, a vector bundle endomorphism F: ~ -t !, and m sections 
·• . ....,.,: :. : 

S-+ E. 

The family (~, F, g1, ••. , ~) is completely reachable if for every 

s € S we have that the fibre !(s) at s E S is spanned by the vectors 

F(s)1gj(s), i = 0 1 1, ••• , n; j = 1, ••• , m. 
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Two families 1"' = (!, F, g1 , ••• , gm) and "I"' = (~', F', gi, .•• , g~) 

over S a.re said to be isomorphic if there exists a vector bundle 

isomorphism ~= E ~E' such that F'~ = ~F, ~gi = gi, i = 1, ... , m. 

We let F (S) be the set of isomorphism classes of completely 
-m,n 

reachable families of linear input systems "t' of dimension n with 

m inputs over S. 

Let f: T ~ S be a morphism of algebraic varieties and let 1' =' 

= (!, F, g1 , ••• , gm) be a family of' linear systems over S. Then 
t V t I 

the induced family f 0 f"= (f'~, f"F, f"g1 , over T is 
. I 

obtained by "pulling everything back along f". I.e. f'"E is the 
I 

induced vector bundle CN'er T, f°F is its induced endomorphism and 
f 

if we identify (f"~) (t) with ~(f(t)) 
I 

then (f"g.)(t) = g.(f'(t)). 
1 1 

The following diagrams a.re therefore commutative. 

I 9 

The family (f"K, f"F, is completely reachable if 

(and only if) the family is completely reachable. 

Thus we have defined a contra.variant f'unctor. 

3.2.2. F : Schk ~ Sets -m,n 

For convenience we recall what a fine and coarse moduli space for 

F would be. 
-m,n 
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3.2.3. Definitions 

A fine moduli space for F is a scheme M and an isomorphism -m,n m,n 
of functors 

is a scheme 

F ~ Sch_ ( , M ) • -m,n ~ m,n A coarse moduli space for F 
-m,n 

M m,n and a morphism of :f'unctors 4> : F -+ Sch,. ( , M ) -m,n ~A m,n 
such that ~(Spec(k)) is an isomorphism and such that for every scheme 

N and f'unctor morphism <fi: F -+ Sch ( , N) -m,n - there is a unique morphis~ 

'I'= Schk( , h) 0 <!>. h: M -+ N such that m,n 

If M is a moduli space then the k-points of M are in 1-1 
~n ~n 

correspondence with isomorphism classes of linear input systems (dim n, 

m inputs). The map S -+M associated to a family (E, F, g1 , •.. , g) m,n - m 
over S associates to s E S the point in M corresponding to the m,n 
isomorphism class of (F(s), g1 (s), ••. , gm(s)). 

3. 3. A coarse moduli space for families of 1.inear input systems. 

Let ~,n be the subvariety of Gn,m(n+l) defined by the equations 

2.3.6. More precisely, M is the subvariety of G defined -m,n n,m(n+l) 
by the equations 

where the Par are the polynomials of 2 • 3. 6. Then ttm, n is a projective 
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variety, since it is a closed subvariety of G ( +l) C ! . As a subvariety n,m n -
of ~ it is also given by equations 3.3.1 (the equations ~~( ••• ) = 0 

of 3.1.3 are consequences of 3.3.1 as is clear ±'ram the way we obtained 

these equations). 

Let M be the open subspace of M defined by -m,n -m,n 

M = ( x E M I 3 nice selection a such that xl'V :/ O} • 1,n -m,n ..... 



:;.3.2. Theorem. 

M -m,n is a coarse moduli space for F • -m,n 

Proof. We know that Gn,m(n+l) is the geometric quotient of Areg( l) -n,m n+ 
by GL . Now N C Areg is invariant under GL and hence so n -111,n -n,m(n+l) n 

- reg is the closed subvariety N c A ( +l) and the equations defining -m,n -n,m n 
N are polynomials in the x~. Hence M is the geometric quotient -m,n ~ -m,n 
of N by GL and the geometric quotient of N is M . The .-m,n n -m.,n -m,n 
fact that M is a coarse moduli space for F now follows from -m,n -m,n 
the general theory connecting quotient spaces and coarse moduli spaces. 

(Cf. [G] and [M]). Given (E, F, g1, .•• , g ) - m 
over s, then ~(S) 

assigns to s the point of M obtained as follows. Choose any -m,n 

basis in E(s). Let F(s), g1 (s), ... , gn(s) be the matrix and coordinate 

vectors of F and g1, ... , gm with respect to this basis. Then 

]ill(s)g (s)) where ~ is.the morphism 3.1.1. m 

:; .4. The canonical bundle over G n,r 

. . .. . ' ... ' 

Every matrix A E Areg defines an n-dimensional_ subspace of ~r, -n,r 

viz. the subspace spanned by th~ rows of the matrix A. Two matrices 

A, B span the same subspace iff there is an S E GL (k) 
n 

such that 

A = SB. Thus G "is" the space of n-dimensional subspaces of ~r. n,r 

The canonical n-bundle over G n,r can now informally be 

described as the bundle over G whose fiber over x E G n,r n,r 
is the 

n-space represented by x. More precisely £n is the subbundle of 

G x kr defined by (cf. e.g. [3]) n,r 

:; .4 .1 n g n = ( ( x, y) E Gn, r x fj. I y E x} • 
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In terms of trivial local pieces and patching data we have the 

following description. For each selection a from (1, ... , r} let 

v~ = (x E G Ix I 0). Then v ~ An(r-n). ""' n,r a a = 
element of A such that ~(B (x)) = x and -n,r a 

Let B,/x) be the unique 

(Ba(x))a = In. (Cf. the 

proof of 3.1.4 for the construction of Ba(x).) The bundle ~n is trivial 

over each Va. The trivialization being given by 

3 .4 .2. 

In order to describe the bundle s over all of G it therefore n n,r 
suffices to give the identification isomorphisms 

and these are obtained as ;f'ollow-s. Let x E Va nv t3 and let Ta.t3 (x) 

be the unique element of' GL (k) 
n 

such that 

Then 

3.4 .4. Pa1/x, (i1} = (x, Ta~(x{!J. )) · 
n n 

3. 5. A canonical family of linear systems over M . - - -m,n 

Let a be a nice selection. For each 

C f let Bc/x) be the matrix such that 

xEW =V (JM CG ) a a -m,n n,m(n+l 

(Ba(x))a = In and ~(Ba(x)) = x. 

Because x € M there exist a unique n x n matrix Fa(x) and n x m -m,n 

matrix Ga(x) such that R(Fa(x), Ga(x)) = Ba(x). 
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We now define a canonical family (!c, Fe, g~, .•• , ~) of linear 

input systems over ~' n as f'ollows • 

The bundle Ec is trivial over each W = V (')M , and the a a -ill,n 
identification maps Pal3: Wa nw13 x ~n __, Wa nwf3 X ~n are given by 

patl(x,(!1} = (x, Ta~(x{!l) 
n n 

where Ta13 (x) is as above. I.e. the bundle over M is the restriction -m,n 
to M of the canonical bundle over G ( +l) • -m,n n,m n 

c c c The endomorphism F and the sections g1, ... , ~ are given over 

Wa with respect to the canonical basis of ~ by the matrices Fa(x) 

and Ga(x). Then, because Ta13 (x)Ba(x) = B13 (x) and R(Fa(x), Ga(x)) = 
= Ba(x), R(F 13 (x), G13 (x)) = BP (x) and maximality of rank we have, 

Ta13 (x)Ga(x) = G13 (x) 

Ta13 (x)Fa(x) = F13 (x)Tat3(x) 

so that the identification isomorphisms of the bundle transform the 

local. endomorphisms and sections into each other. I.e. we have defined 

a. family of linear systems over M = . U i W • ( Cf'. 2 .2) • -m, n a is n ce a 

3.6. M is a fine moduli scheme. -m,n 

3.6.1. Theorem. M is a fine moduli scheme for families of -m,n 

completely reachable linear m-input systems of dimension n. The 

_,,. . 1 ..,..c (Ee, Fe c c) canonical. .1.aml. Y ' = ' gl' • · ·' ~ of (3.5) is the universal 

family over M • -m,n 
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Proof. We have to show two things. 

(i) Let f: S ~ M be any morphism. -m,n 
' c Then 11>(S) (f"t" ) = f. 

(ii) Let r be a family of systems over S and let f = ~(S) (r) 

then f!'r'c is isomorphic to 't. 

To prove (i), note that the linear system over a point s E S 

defined by f!f'c is given (up to equivalence) by the matrices Fa(f(s)), 

G,.,,(f'(s)) where a is any nice selection such that f(s) E W c M • ,_.. a --m,n 
It now follows imm.ediately from the definition o:f <Ii( S) ( cf. 3 .2) that 

' c ~(S)(f'1"' )(s) = f(s). 

As to (ii), let 1"'= (~, F, gl, ... , ~). For every nice selection 

a let sa = r-1wa. Then s = Us0 ( Let s E Sa and let A(s) be the 

matrix R(F(s), G(s)) where F(s) and G(s) are the matrices of the 

linear system defined by 1' over s relative some basis of E(s). 

Then because ·F(s) E Wa det(A(s\l!) I O in view of the definition of 

~(S). So locally (= over each Sa) f!Y and T are "the same". This 

means that the bundle E of a is trivial over any Sa. And the 

isomorphism aa: ~I~ -7 Sa x ~n transforms FI~ and g1 I so:' .•. , ~I i:tx 
into (Fo:(f(s)), Ga(f(s))). 

To see how these trivial pieces fit together, let s E Sa: ·'l s13 • 

Choose a.nY basis in E(s) and let A(s) be the matrix of' R(F(s), G(s)) 

where F(s) and G(s) a.re the matrices of the system over s relative 

to the chosen basis. Then, relative to this basis and the canoni•~al 

basis in An, the isomorphism ao: at s tflkes A(s) into A(s)~1A(s) = 
= R(Fa(f(s)), G0 (f(s)). Similarly for ~. It follows that the identifica

tion isomorphism 
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is given by the matrix A(s)~1A(s)a and 

which shows that 

because R(Fa(f(s), Ga(f(s)) is of maximal rank. So that the pieces 

a · f f !_c nice, o • and 1" also fit together in the same 

way. (This,by the way; is als.o "i:mmediately clea.r 11 because the isomorphism 

must transform the F and G in the right way, and rank maximality 

then determines the isomorphism uniquely). This concludes the proof 

of the theorem. 

3. 7. A lower codimensional projective embedding for M • -m,n 

Let. ~ 'be the set of selections from (01, .•. , Om; 11, ... , lm; 

••• ; nl, ••. , nm} and let s be the subset of ~ of nice selections 

and successors of nice selections. Let ~ be the projective space with 

coordinate f'unctions labelled by ~ 

coordinate f'unctions labelled by s . 
projection (not everywhere defined). 

Now consider the composed map 

i: M -+ f ~ f' -m,n 

_N' and p-· the projective space with = 
_N -~ _l\i 1 Let 7T: p-· -, y-· 
- -- - be the natural 

where the first arrow is the embedding of M is ~ given by -m,n 

equations 3.3.1. 

Then first of all i: M -+ ~' -m,n is everywhere defined on M -m,n 

(because if x E ~,n there is a nice selection a such that XQ 1 O), 
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· and secondly i is injective because once we know the values of the 

xt3' f3 a successor of a (and ~ I 0) we can calculate Ba ( x) and 

hence all the other x. (Cf. 2.3). 
r 

This gives us an embedding M -+ iP' 
-m,n = of considerable lower 

codimension than the original embedding M -+ rJi. 
-m,n This can be 

convenient for calculations. 

_N' 
To obtain equations for the closure of M in y· 

-m,n proceed 

exactly in the same way as for M c ~--m,n = 

E.g. for ~, 3 we have N = 55 and N' = 15. 
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4. Local description of M • Canonical forms. ;n,n 

In this section we give a local pieces and patching data description 

of . ~,n' we calculate a specific example c~,2), we prove that the 

canonical bundl.e over M (cf. 3.4 and 3.5) is nontrivial if m ~ 2 -m.,n 

and conclude that no globally defined continuous canonical forms exist 

for m-input linear systems of dimension n if ·m > 2. 

4.1. Local description of M . - -m,n 

Let a be a nice selection from ( 01, ••. ' Om; 11, ... ' lm; . . . . ' 
nl, ... ' nm} and let O"a be the set of selections which a.re successors 

to a. Note that #CJ a = mn. For each f3 E CJ a let y 13 E k be arbitrary 

then there ·exists precisely one pair of matrices (F, G) such that 

R(F, G)a =In' det (R(F, G) 13) = yf3 

(cf. (2.3)). 

It follows that 

Wa = {x E ?\.,n I \x I O} .r::..~mn 

Let this isomorphism be 'l/r a· An immediate consequence is 

4.1.1. Proposition. dim M = mn • M is connected and irreducible. -m,n ' -m,n 

Let y = (y~) E ~mn, and let y be a nice selection. The condition 

det (Ba(ta(y))r) =I 0 defines an open subset of ~mn which gets identified 

with the open subset of Amn ~ W defined by det (B ('I/I' (z)) ) =/. o = 7 r .., a 
according to the obvious formulas. (Calculate det (Ba('l/ra(y)) 5 for all 

successors a of y; cf. 4.3 for a specific example.) 

page 22 
10/3/74 



... ;§xample. Equations for ~ 2 • , 
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We consider the Gre.ssmann variety 0216 C f-4• We number the coordinates 

FL4 
as ~' ~3' ~4' x.15' ~6' ~3' ~4' ~5' x26' ~, ~5' x_,6' 

~ ~6' ~6 (xa.b corresponds to the selection 

'I':b.e equations for G2 , 6 in ~14 are 

.. l 

x12x34 = xl3~4 - ~3xl4 

x12x35 = xl.3~5 - ~3xl5 

x12x36 = xl3~6 - ~3xl6 

X12Xf+5 = Xl4 ~5 - ~4 Xl5 

X12Xf+6 = ~4 ~6 - ~4 Xl6 

x12~6 = xl5~6 - ~5xl6 

X13~5 = x14X55 - X15x34 

X13:x'.J+6 = Xl4 X36 - Xl6X34 

Xl3~6 = Xl5~36 - X35Xl6 

:IJ.4~6 = X15xti.6 - Jti+5Xl6 

~3~5 = ~4X35 - ~~5 

~3:lCtt6 = ~4 X36 - ~ ~6 

~3~6 = ~5x36 - ~5~6 

~4~6 = ~5\.6 - xt+5~6 

x34 ~6 = X35J!i+6 - xt+5X36 

* 
* 

* 
* 

* 
* 

* 

* 

* 

* 
* 

* 

ab :from [ l, 2, ... ' 6} • 



The equations for ~,2 as a subva.riety of G2 , 6 are 

4.2.2 

~~5 = ~3~4 - {3 

~~6 = l).4 ~3 - ~3~4 
XX =XX -XX 12 15 13 14 13 23 

xl2 xl6 = ~4 - xl3 x24 

~3Xl4 = Xl2Xl5 - Xl3~3 
2 . 

Xi_3X36 = Xi2X15X35 - Xl3X35~3 

~3xl6 = xl2xl3x35 - xl3xl5x23 + x12xi5 

~4x34 = ~~6 

~4~3 = ~4xl4 - x12~6 
2 
~4~5 = ~4~4~6 - x12~6:!\6 
2 2 
~4 2<25 = x12Xi+6~4 + xl4 xl2~6 - x12X26 

To obtain equations for ~ 2 as a subspace of ~4 one adds the equations 
' marked with a (*) of 4.2.1 to the equations o:f 4.2.2. Equatio::is :for the 

closure of ~,2 in ~' (N' = 8 in this case) axe obtained by 

disregarding all equations involving ~6, X2s' x34 , x36, x45, or x56 . 

4 •. 3. Local pieces and patching data description of ~ 2 . 
' 

There are three nice selections :from (Ol, 02; 11, 12; 21, 22}, so 

~,2 is obtained by patching th7ee pieces vl, v2, v3 together. All 

three pieces are isomorphic to A4 . Let v1 be the piece corresponding 

to the nice selection a= (01, 02}, v2 the one corresponding to 

~ = (01, 11} and v3 the one corresponding to 1 = (02, 12}. 
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The canonical matrix Ba(a) for a E v1 is of the form (a = [01, 11}) 

The canonical matrix Bt3(b) for b E V2 is of the form (B = (Ol, 11}) 

G 
bl 0 b2b3 b3 blb3 + b2b3b4 ) 

b2 1 bl + b2b4 ~ b2b3 + blb4 + b2b~ 

From this we see that V 12 and V 21, the parts of V 1 and V 2 that 

must be identified, are given by 

v]2 = (a E Vl: ~=I O} 

v21 = (b E v2 : b2 =I oJ 

and the identification is given by 

The canonical matrix B (c) for c E v3 is of the form 
)' 

( 
0
1 

l c2c3 . 0 clc3 + 

c2 0 cl + c2c4 1 c2c3 + 

And one finds 

v13 = (a E v1 I ~ =I o} 

V31 = (c E v3 I c2 =I O} 

C2C3C4 c3 ) + 2 c4 clc4 c2c4 

(-y = (02, J2} 
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and the identification is given by 

Finally 

v23 = (b E v2 

v32 = (c E v3 

and the identification is given by 

-b 2 

4 .4. Nontriviality of' the canonicaJ. bundle over M if m > 2 . -~n 

Let Te = (Ee, Fe, g~, •.• , ~) be the universal family defined 

aver M • In this section we shall. show that Ec is not the trivial -m,n 
bundle. More precisely we shall. do this for ~ , 2 but the argument 

generalizes immediately. 

Let ~ be the canonical n-plane bundle on bundle on G and n n,r 

similarly let ~l be the canonical line bundle on Gl,N+l = ~ where 

lf = (n) - 1 and let G ~ efl be the canonical embedding ( cf. 3 .1 
r n,r = 

and 3.4). Then 

where ~~n denotes the n-th exterior product of ~n. 

Now, !c, the \lllder lying bundle of 1f!, is En I J.\n, n. Suppose 

tha.t Ee were trivial over M , then .R !c would be the trivial line -m,n 
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bund1e, but ~ ~c is the restriction of ~l to M and the sheaf of' , m,n 
sections of ~l. is QpN(l) which is very ample • ... 

Therefore if Ec were trivial we would have that the sheaf' QM 
·in,n 

is very ample. But this in turn fcf. [2], Ch. II) implies that the open 

sets 

D(f) = { :x: E M I f( x) =/ O}, f E r(M , Ou ) -m,n -m,n -1..::m.,n 

form a basis for M • -m,n 

Now let f be a global section of i.e. a function ~,2 --+ fi1 • 

Restricted to V 1, f is a po~omial in a.1, a.2 , ~' ~. But from 

equations 4 .3.1 we see that the s::pecialization of f(8J_, ~' 83' 94) 
-1 as 8-:; --+ 0 but ~~ ~some finite limit, must exist. This shows that 

f(8J_, 82' ~' ~) can involve no pure powers of ~. Therefore 
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4.4.2. l 
v f': ~,2 ~ ~ ' either (O, O, 83' 0) E D(f) rJV1 for all 83 E k 

or (O, O, a3' 0) f_ D(f) !lV1 for all ~ E k 

so that the D(f) do not form a basis for the open sets of ~ 2 . It is 
' easy to generalize this argument. Therefore 

4.4.3. Proposition. 

The underlying bundle Ee of' the universal. family of linear systems 

t-c over M is nontrivial. if m > 2. -m,n 

Remark. !'.!:J.,n C>! P;_n and the underlying bundle Ec of the universal 

f'amily over M_ is trivial. :..:.i.,n 



4 • 5 • Canonical forms. 

The nontriviality of !c, or more precisely the nonexistence of 

sufficiently many functions on M -m,n 
:f'or m>2 ruins the chances for 

the existence of a. global continuous algebraic canonical form for linea.r 

input systems with 2 or more inputs. Indeed suppose such a. form existed 
c and let F ( s) , G ( s) be the canonical :f'orm for the system 7 ( s) , 

c c s € M • Then because 't'{s) is not equivalent to 1'(s') for s =/ s' -m,n 

this would give us an embedding 

M -+ An(n+m) s H (F(s), G (s)) 
-m,n = ' 

which would imply the existence o:f' su:f':f'iciently many functions 

to .separate points. As this is not the case ( cf. 4 .4) we see that there 

does not exist a continuous algebraic canonical form. 

Of course there exist many discontinuous algebraic canonical forms, e.g. 
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order the nice selections f'rom { Ol, ••• , om; ll, ..• , l.m; •••• ; nl, •.• , nm} • 

Let these be a1, ..• , ar' and de:f'ine the canonical form by 

(F, G) -+ (F, G) 

where F, G are such that 

R(F, G) = R(F, G)~~(F, G) 
l. 

and det (R(F, G)a·) =I O 
l. 

if' det (R(F, G)aJ = 0 j = 1, ••• , i - l 
J 

There does exist of course a global. continuous algebraic canonical form 

for n-dimensiona.1 fully reachable systems with one input. Every fully 

reachable pair (F, g) being isomorphic to precisely one of the form 



4.6. 

0 •.••••• 0 ~ 
1 

0 . . • . . . ·o . . 
0 . • • • : .6 l a. 

n 

Concludi~ remarks. 

' 

1 

0 

0 

A. Let (F, G, H) be a completely reachable system with inputs 

G and outputs H. A basis change in the state space changes the triple 

of matrices (F, G, H) into (SFS-1, 91, HS-1 ). A fine moduli space 

tor completely reachable systE?JDS of dimension. n with m-inputs and 
nr r-outputs is then M x A • -m,n = 

B. In the preceding we assumed that k was algebraicall.y closed. 
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This is unnecessary. All the algebraic varieties discussed and constructions 

performed exist (resp. can be carried out) over any base field. 
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