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Abstract.
This is partly an introductory survey paper to clustering and classification problems with
particular emphasis on the classification of lists of key words and phrases from a given
scientific domain such as mathematics. In addition the paper contains a number of new
concepts and results; a number of open questions, and some as yet untried embryo clustering
ideas. New are the idea of Urysohn distance (section 3), the idea of using Lipshitz distance
(section 4), the universal lower bound in terms of Lipshitz distance for any fixed depth
hierarchical classification scheme (section 8), the optimality of single link clustering with
respect to Lipshitz distance (section 8); in addition there are new results on what I have
started to call the Buneman tree of a metric space (section 9); also new are the ideas of third
party support (section 11) and power set metrics (section 10).

Mathematics Subject Classification 1991: 05C05, 54E35, 62H30, 68T10.

Key words & Phrases:  Classification tree, classification hierarchy, clustering, mathematical
taxonomy, single link clustering, Urysohn distance, Hausdorff distance, Lipshitz distance,
dissimilarity space, Buneman tree, distance between metric spaces, overlapping clustering,
Urysohn space, distance between graphs.

Note. I dedicate this paper to Wim Kuyk. Wim was ever ready  to explore mathematically
some new  area. This paper is precisely about an set of problems that has had, so far, but little
real mathematical attention.
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1. The central mathematical problem.
The central mathematical problem that I am concerned with in these notes is simply stated:
given a discrete metric space, or more generally, a dissimilarity space (definition below),
what is the "best" classification tree to describe it. The motivation comes from classification
problems in mathematics and other sciences and the intended application is to a large set of
‘key words’ and ‘key phrases’  of a discipline like all of mathematics, or all of physics, or
substantial subfields like ‘Lie algebras’ or ‘Surface physics’. It could help for much of what
follows to keep this intended application in mind. In particular there is no claim that everything
in this essay is relevant for all kinds of taxonomic problems.

It is a little peculiar and disturbing how pervasive and popular tree classification
schemes are. One even finds statements in the scientific literature to the effect that if you
cannot organize your knowledge in the form of a tree it is not worth doing anything. I must
disagree with emphasis. Indeed, I do not think that our brains store knowledge in that way. I
submit that the preoccupation with trees as an organizing principle comes from the tyranny of
the classically printed word. It is just about the only kind of interconnectedness scheme that
can be conveniently printed in book form.

To formulate the mathematical problem of classifying things precisely requires making
precise what is meant with a classification tree and what is meant with ‘best’. Also, what is a
discrete metric space (for completeness) and a dissimilarity space.

1.1. Dissimilarity spaces.
A dissimilarity space is a (finite) set M together with a function d

�
M M: × → R  such that

(1.1.1) d x y d y x x y M( , ) ( , ) ,     ,= ≥ ∀ ∈0

(1.1.2) d x x x M( , ) ,    = ∀ ∈0

A dissimilarity space M  is a metric space if in addition:

(1.1.3) d
�

x y x y( , )      = ⇒ =0

(1.1.4) d x y d x z d y z x y z M( , ) ( , ) ( , ),    , ,≤ + ∀ ∈

If (1.1.4), for distinct x y z, , , is always satisfied with the strict unequal sign, I shall say that
the strict triangle inequality holds.

1.2. Classification trees.
A  (undirected) graph (without multiple edges) Γ  is a finite set V, of which the

elements are called nodes or vertices, together with a set E of unordered pairs of nodes called
edges. We shall only consider graphs without loops, i.e. there are no edges of the form { , }x x .
A path in Γ  from a vertex x to a vertex y of k steps is a sequence of edges   e ek1, ,L  so that
x e∈ 1, e ei i  and +1  have precisely one node in common, and y ek∈ . A node x is incident with
an edge e iff x e∈ . The degree of a node is the number of edges it is incident with.

A tree is a graph such that for every pair of vertices there is precisely one path from
the one to the other. A rooted tree is a tree with one distinguished node called the root. The
nodes which are maximal  in number of steps from the root are called the leaves. These are
also precisely the nodes of degree 1.

 A classification tree for a dissimilarity space ( , )M d  is a rooted tree, Γ , together with
a mapping of ϕ : M V→  to the nodes of Γ . For a standard classification tree for M, the
mapping ϕ  is required to be to the leaves of Γ . Often this mapping will be injective, but this
need not necessarily be the case, especially when distances zero occur between distinct
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need not necessarily be the case, especially when distances zero occur between distinct

elements of the dissimilarity space ( , )M d .
That trees should be used for classification purposes is natural. Their role in clustering

is emphasized in e.g. [23].
For a standard classification tree, the points of M are supposed to be the leaves of the

rooted tree. For a nonstandard one, this need not be the case. In the illustrations I shall use
small black filled circles for vertices of the tree that correspond to elements of M and small
white circles for nodes that do not correspond to elements of M. Thus figure 1 above depicts
a standard classification tree.
A classification tree is of uniform depth if the number of steps from the root to a leaf is
always the same. Thus figure 1 is a uniform depth standard classification tree of depth 3.
Figure 2 depicts a nonstandard classification tree of non-uniform depth.
Let us further admit that the edges of the tree, or the nodes, can have weights attached to
them. The leaves of a tree, rooted or not, will always have weight zero; all other weights will
be required to be strictly positive. Thus, above on the left, there is an edge-weighted standard
classification tree of uniform depth 2 (figure 3) and on the right there is a nonstandard and
nonuniform node-weighted classification tree (figure 4).  The latter
are special kinds of edge-weighted trees: the edges issuing from a
node towards its children (viewed from the root) are all given half

the weight of that node.
By convention a non edge-
weighted tree has all edges
weighted by 1/2. An edge
weighted graph is also
called a network; it is a
tree network if the
underlying graph is a tree.
Every tree network, Γ ,
and more generally every
network, defines a path
length and from that a
distance on its set of
vertices by:

h
1

h2

Figure 
4
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(1.2.1
  
l p w e p e ei k

i

k

( ) ( ),  = =
=
∑ 1

1

L

where p is a path in Γ , and w e( )  denotes the weight of an edge e, and

(1.2.2) d x y l p
p

Γ ( , ) min{ ( )}=

where p runs over all paths from x to y in Γ . Of course if Γ  is a tree there is precisely one
path from x to y. The distance on M defined by a standard or nonstandard, uniform or
nonuniform, edge-weighted or not, classification tree ϕ : M → Γ  for ( , )M d  is a new
dissimilarity d

�
ϕ  on M defined by

(1.2.3) d
�

x y d x yϕ ϕ ϕ( , ) ( ( ), ( ))= Γ

If the classification ϕ : M → Γ  is injective this will be a new metric on on M.

1.3. Best approximating classification tree.
Now, to define the notion of a best approximating classification tree of a given kind it
remains to define a suitable notion of distance between different metrics or dissimilarity
measures on a set, or more generally, between different metric spaces. A very easy choice
would be to observe that metrics and dissimilarity measures on a given set M  are simply
special kinds of functions on  M M×  and to use any of the well known distance notions for
functions on a set such as l2-distance, giving:

(1.3.1) δl
x y M

d d d x y d x y
2 1 2 1 2

2

1 2

( , ) ( ( , ) ( , ))
,

/

= −





∈
∑

I shall use δ' s to designate distances between (different)  metric spaces, and d’s to denote the
distances defined on a given set.

Alternatively one could use the uniform, or lp, or weighted-l2, or any other favourite
norm on function spaces. These are in fact the usual distances traditionally used in mathematical
taxonomy, [18, 33, 34, 53]. There is something very unsatisfactory in this. Distances are very
special kinds of functions and to compare them using notions designed for dealing with  the
immeasurably larger collection of all functions is a little like using a classification scheme for
all of the vegetable and animal kingdom to grade a batch of apples according to a handful of
sizes.

Below I shall discuss a few other notions of distance between metric spaces which are
more specific for that class of objects. Perhaps the most natural is Urysohn distance (section
3), but it has the disadvantage that I know of no way to calculate it in concrete cases. Another
which is very calculable and which seems to be well-suited to mathematical taxonomy is
Lipshitz distance (section 4). Finally in section 5 a few distances between graphs are mentioned,
which may be worth considering when dealing with classification problems.

Once a notion of distance between metric spaces (or dissimilarity spaces) has been
chosen, the problem of finding the best approximating classification tree (of a specified type)
is well defined, though, of course, there may be more than one solution.
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2. The motivation.
The classification scheme currently used in mathematics (The Mathematics Subject
Classification Scheme (MSCS), developed by Mathematical Reviews and Zentralblatt für
Mathematik and Grenzgebiete) is essentially top-down. It incorporates enormous expertise
and a vast amount of effort from specialists in the various (sub)fields; it is very valuable as an
information finding tool, but I am convinced that even better tools can be developed.

To a large extent the MSCS reflects how mathematics evolved historically and split
into finer and finer subspecialisms. There is no check on whether the classification tree that is
used reflects the actual occurrence in the mathematical literature (in relation to each other) of
the various technical mathematical terms used.

Exactly the same things can be said about PAC, the most used Physics and Astronomy
classification scheme.

The mathematical literature currently grows at well over   50 000 journal and proceedings
articles per year and with more than 1200 books a year. All in all, world-wide, even with the
current funding crises, a considerable amount of (financial) ressources is spent on new
mathematical research; very little is spent on making sure that a result (a mathematical fact),
once discovered, will ever be found again when needed, [26, 29]. The problem is serious and
occasionally recognized as such, [13].

The MSCS is a uniform depth classification tree with near 5000 leaves. As a result
whole books and (rarely) even whole journals can fall within a single leaf, and the number of
articles that are assigned to a given leaf classification number can run in the thousands. Here
is a small random sample with the minimum and maximum (in this sample) marked:

03E55 (Large cardinals): 880
03F55 (Intuitionistic mathematics 575
03G05 (Boolean algebras in logic) 807
05C05 (Trees) 3147
14D22 (Fine and course moduli spaces) 163 ←
14H52 (Elliptic curves) 326
14L05 (Formal groups) 465
20F28 (Automorphism groups of groups) 398
20G15 (Linear algebraic groups over  arbitrary fields) 1254
31B05 (Harmonic, sub- and superharmonic functions) 1081
34D20 (Lyapunov stability for ODE) 4321
35K22 (Evolution PDE of any order) 1453
35L65 (Conservation laws for PDE of hyperbolic type) 1355
46E15 (Banach spaces of .... functions) 1748
46L35 (Classification of C*-algebras, factors) 636
58F07 (Completely integrable systems) 1504
90C10 (Integer programming) 4348 ←

Inevitably there are overlaps. These are handled with ‘see references’. All in all the
number of such (indicated) overlaps (between nodes at the finer levels) is quite small.

2.1. Control list (glossary, thesaurus).
I estimate that a control list (also called thesaurus or glossary) is needed of some 120000
items (= key-phrases and key-words) in order to give reasonably effective descriptions of
journal articles by assigning them items from this control list. Ideally, these items will also
provide descriptions of the leaves of the MSCS in terms of (probably overlapping) clusters.

2.2. The web of mathematics.
Once the control list is established, the items in it can be considered as the nodes of an edged
weighted graph where two items are connected if they occur together in the same mathematical
paper (or other suitable unit) and where the weight is inversely proportional to how many of
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paper (or other suitable unit) and where the weight is inversely proportional to how many of

such co-occurences there are. There are of course many ways of doing this. This topic of
turning similarity indicators (such as co-occurences) into a metric or dissimilarity has had
considerable attention in the classification and taxonomy literature, and I will say nothing
more about it here.

There results a network of nodes and labelled links, a web, which I call the web of
mathematics. Such a web will form one of the main navigation structures in the future
hypertext organized, interactive, electronic, CDROM based, four-fold expanded Encyclopaedia
of Mathematics, [24, 25, 27] (the KREEM project), and an electronic version of [5], the
VEIG project.

One thing which will no doubt come out of this study is the discovery of numerous
notions from different parts of mathematics which are completely or mostly the same. I was
once lucky that way, [30], and have no doubt that there are many such cases, mostly unrecognized,
except by an occasional individual. One function of the control list is to provide the list of
such alternatives when they exist. Whence the alternative name ‘thesaurus’ for the control
list.

2.3. Local search.
This web also provides the possibility for the creation of a refined mathematical information
finding tool in that one can search for occurences of phrases and papers that are within a
specified distance of a given node (local search).

2.4. BUC’M, bottom-up classification in mathematics.
Once the web of mathematics is constructed one has a metric space, and one can try to find
the best classification tree (of a desired kind), approximating it. This is the intended application
of the research program outlined in this essay. I call it BUC’M, Bottom-up Classification in
Mathematics. It will, I expect, provide valuable supplementary classification information to
the top-down MSCS scheme, [28].

It works from the actual scientific data in the form of the published literature and aims
to establish the “best”classification tree on that basis and then to compare the results with the
existing classification scheme.

Once established it will also provide tools for the automatic assignment of key-words
and key-phrases to articles and the automatic classification of articles in terms of the MSCS
and BUC’M classification trees. These matters, providing key-words and key-phrases, are
currently often left to authors (a haphazard procedure), scientific editors ( almost equally
unreliable), or even desk-editors employed at scientific publishers (totally unreliable).
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3. Urysohn distance.
Probably the most intrinsic notion of distance between metric spaces is what I shall call here
Urysohn distance. To define it I need the notion of the Hausdorff distance between two
subsets of a metric space.

3.1. Hausdorff distance.
Let X Y,  be two subspaces of a metric space M . Then the Hausdorff distance between them
is defined by:

(3.1.1) Hd( , ) max{sup inf { ( , )}, sup inf { ( , )}}
       

X Y d x y d x y
x X y Y y Y x X

=
∈ ∈ ∈ ∈

(Sometimes a variant is employed in which instead of the max, the sum of the two terms is
taken; there are also of course all the possibilities of lp-type).The Urysohn distance between
two metric spaces is now defined as

(3.1.2) δ α β
α β

U M M M M( , ) inf { ( ( ), ( )}
,

1 2 1 2= Hd

where the infimum is taken over all isometries α β,  of M1 and M2 into a third metric space
N.

3.2. Urysohn spaces.
There exist universal metric spaces. More precisely Urysohn, see [37, 56, 57, 58],  proved
that there is a unique complete metric space that is ℵ� 0-universal and ℵ� 0-homogeneous. Here
these phrases mean the following. A metric space U is ℵ� 0-universal if for every metric space
M , of countable cardinality there is an isometric inbedding M U→ ; a metric space U is
ℵ� 0-homogeneous if for every finite metric space Y and subspace X of Y and isometry α : X U→ ,
there is an isometry β : Y U→ , that restricts to α  on X. Actually such spaces exist for all
cardinals and not only for ℵ� 0. One way to construct them is as inductive limits over all
(isometry classes of) relevant spaces with respect to the filtered system of isometries between
them.

This means that in the definition (3.1.2) it is not necessary to vary N over all (finite)
metric spaces; it suffices to consider only isometries of M1 and M2 into a Urysohn space U.

3.3. Theorem. The Urysohn distance as defined by (3.1.2) is a metric on the set of all
isometry classes of finite metric spaces.

Proof. It is obvious that δU M M( , )1 2 0≥ , and thatδU M M( , )1 2 0=  if and only if M1 and M2

are isometric. It remains to prove the triangle inequality. So let α1 1: 'M U→ ,α 2 2: 'M U→ ,
andβ2 2: M U→ , β3 3: M U→  be isometric inbeddings such that

(3.3.1) Hd( ( ), ( )) ( , )α α δ ε1 1 2 2 1 2M M M MU≤ +

(3.3.2) Hd( ( ), ( )) ( , )β β δ ε2 2 3 3 2 3M M M MU≤ +

for some positive (small) real number ε . Replacing, if necessary, U' with the union of the
images of M1 and M2, we can assume that U' is finite and view, via α 2, M2 as a subspace of
U' . By the homogeneity property of U, there exists an isometry γ : 'U U→ , that extends the
isometry β2 . Then γα β2 2= , and Hd Hd(( ( ), ( )) (( ( ), ( ))α α γα β1 1 2 2 1 1 2 2M M M M= , and hence



8

isometry . Then , and , and hence

(3.3.3)

δ γα β
γα β β β

δ δ ε

U

U U

M M M M

M M M M

M M M M

( , ) ( ( ), ( ))

( ( ), ( )) ( ( ), ( ))

( , ) ( , )

1 3 1 1 3 3

1 1 2 2 2 2 3 3

1 2 2 3 2

≤ ≤
+ ≤

+ +

Hd

Hd Hd

This proves the triangle inequality for the Urysohn distance.

The Urysohn distance as defined by (3.1.2) (with a fixed Urysohn space U if desired
instead of all finite metric spaces N) is completely intrinsic. However, I know of no way to
compute this distance between two given metric spaces.

These ideas extend to dissimilarity spaces. I.e. there should also exist a universal
dissimilarity space for all finite dissimilarity spaces, and then that one can be used for
defining a Urysohn dissimilarity between dissimilarity spaces, using the Hausdorff dissimilarity
between two subsets of a dissimilarity. All these will be defined completely analogously to
(3.1.1) and 3.1.2).
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4. Lipshitz distance.
A completely different idea of comparing metric spaces is based on the idea of Lipshitz
mappings. This is probably the origin of the name ‘Lipshitz distance’. It is eminently calculable
and has the additional merit of having proved its worth in another field of mathematics, viz
Riemannian geometry, [17, 20, 46]. It is essentially limited to comparing two different
metrics on the same underlying set, or, equivalently, on two sets of the same cardinality. The
paper [40] contains some results concerning inbeddings of finite metric spaces into Euclidean
spaces with minimal Lipshitz distance between the original metric and the induced metric.

4.1. Lipshitz distance.
Consider a set M and two metrics, d

�
d1 2,  defined on it. The distortion of d

�
2with respect to d

�
1

is defined by

(4.1.1) distor( , ) sup
( , )
( , )

d d
d x y

d x y2 1
2

1

=

where the sup is taken over all x y M, ∈ , x y≠ . The Lipshitz distance between d
�

d1 2,  is now
defined as

(4.1.2) δL d d d d d d( , ) log( ( , ) ( , ))1 2 2 1 1 2= distor distor

Note that if the two distances are proportional, their Lipshitz distance is zero. This is really an
advantage in our setting because in classification problems like these a constant scalar factor
should not matter.

It is easy to see that:

4.2. Proposition. The Lipshitz distance δL defines a metric on isometry classes up to a scalar
factor of metrics on a fixed set M.
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5. Various graph distances.
Several distances between (not edge labelled) graphs have been defined in the literature. The
underlying ideas can probably be usefully extended to the case of edge labelled graphs, i.e.
networks. I mention a few. A selection from the literature is [1, 2, 8, 36, 52, 54, 61], and the
material in this section comes from there (mostly [54]). I shall not do anything with these
distances in this essay. All the same it will certainly be interesting to compare these distances
with Urysohn distance and Lipshitz distance.

For two graphs G H,  define:

(5.0.1) U Gm( ), the set of isomorphism classes of subgraphs of Gwith m vertices;

(5.0.2) U G( ) , the union of all the U Gm( )

(5.0.3) u H G( , ), the number of subgraphs of G isomorphic to H;

(5.0.4) G H∩ , the largest, in number of vertices, graph that is isomorphic to both a
subgraph of G and to a subgraph of H;

(5.0.5) G H∪ , the smallest, in number of vertices, graph that contains a subgraph
isomorphic to G and a subgraph isomorphic to H.

5.1. Zelinka distance.
The Zelinka distance between two graphs is now defined as

(5.1.1) δZ G H V G V H V G H( , ) max{# ( ),# ( )}  # ( )= − ∩

where # X  denotes the number of elements of a set X.

5.2. Some other graph distances.
Define

(5.2.1) m G H m U G U Hm m1( , ) min{ : ( ) ( )}= ≠

(5.2.2) m G H m L V L m u L G u L H2( , ) min{ :   # ( ) ,  ( , ) ( , )}= ∃ = ≠such that

Using these one defines the graph distances

(5.2.3)
  
δ1

11

0
( , )

max{# ( ),# ( )} ( , ) /
G H

V G V H m G H G H

G H
=

+ −

î

if   

if  

Æ

Æ˚˚˚˚

(5.2.4)
  
δ2

21

0
( , )

max{# ( ),# ( )} ( , ) /
G H

V G V H m G H G H

G H
=

+ −

î

if   

if  

Æ

Æ˚˚˚˚

(5.2.5)
  
δ3

1
1

0
( , )

( , ) /
G H

m G H G H

G H
=



î

− if   

if  

Æ

Æ˚˚˚˚

(5.2.6)
  
δ4

2
1

0
( , )

( , ) /
G H

m G H G H

G H
=



î

− if   

if  

Æ

Æ˚˚˚˚
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(5.2.6)

(5.2.7) δ5 2( , )  # ( )   # ( )   # ( )   |# ( ) # ( ) |G H E G E H E G H V G V H= + − ∩ + −

(5.2.8) δ5 2( , )   # ( )   # ( )   # ( )   |# ( ) # ( ) |G H E G E H E G H V G V H= − − + ∪ + −

If in (5.2.7) one replaces the three E’s with V’s, the Zelinka distance is re-obtained (more
precisely twice the Zelinka distance).

5.3. Proposition. The formulas (5.1.1), (5.2.3)-(5.2.8) all define distances on the set of
isomorphism classes of graphs.

Still another distance is the edge rotation
distance defined on the set of (isomorphism
classes of) graphs with a fixed number of
edges and vertices. That distance is
measured by the least number of edges
that must be rotated to get from one graph
to the other. Here an edge rotation  is a
local modification operation such as
illustrated on the right. Here on the left
side of the picture there is not supposed to
be an edge from 1 to 3. It is a not totally
obvious fact that one can always go from
one graph to any other (with the same
number of edges and vertices) by means
of such edge rotation operations.

1

2 3

1

2 3
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of such edge rotation operations.

6. Clustering.
A nonoverlapping clustering on a set of objects M is simply a standard classification tree for
M. All clusterings in this section will be nonoverlapping. Overlapping clusterings will be
discussed below in section 10. To carry out a clustering procedure is to construct such a
classification tree. More precise definitions follow.

6.1. Definitions.
A single layer clustering on a set of objects M is simply a partion of M; i.e. a splitting up of M
into clusters   C C Ck1 2, , ,L  such that

(6.1.1) C C i ji j∩ = ∅ ≠if  , and 
  
U
i

k

iC M
=

=
1

A (hierarchical) clustering of M is a collection �   of subsets of M, such that:

(6.1.2)

{ } ,  

, ,  ,   ,   

m m M

M

C D C D C D D C

∈ ∀ ∈
∈

∀ ∈ ∩ = ∅ ⊂ ⊂

�
�

� or or

By adding to the sets making up a single layer clusteringthe whole set and the singleton sets
(in so far as not already present) such a partition defines a hierarchical clustering of depth 2.

The classification tree of a hierarchical clustering � consists of the elements of � ,
ordered by inclusion, with M as the root and the singleton sets as the leaves.

There are a great many methods in the classification literature for obtaining clusterings.
A few will be briefly mentioned below.

6.2. Single link clustering.
Define the single link dissimilarity between two subsets X Y,  of a metric space M as

(6.2.1) sld( , ) inf { ( , )}
,

X Y d x y
x X y Y

=
∈ ∈

Then an algorithm for single link clustering can be described as follows:

(6.2.2) 1) Let �  consist of all singleton sets. Seti = 0.
2) Set i i:= +1. Find the minimal single link distance ≠ 0 between the
(current) elements of � . Let d be this minimal single link distance. Let �
denote a set of temporary clusters. Set � � ∅ .
3) Set � � � � �∪ . Join any two clusters in � '  at sld d and add the new
cluster to � .
4) Repeat 3 until no more clusters are left in � ' at sld d. Now let (the new) �
be the union of (the old) �  and the maximal elements of � .
5) If � �∈ , stop; otherwise go to step 2.

There is choice involved in step 3). But it is easy to see that this does not matter for the end
result. Step 3) and 4) together can be conceptually cleaner described as follows.

(6.2.3) Two clusters in � are related if their sld is equal to d. Take the transitive
closure of this relation. From the unions of the elements in the equivalence
classes for this equivalence relation and add those to � .
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classes for this equivalence relation and add those to .

In the network example of a metric space above all distances indcated by short edges are
equal to 1, and the three long ones, i.e. the three distances to object 13, are equal to 2.When

single link clustering is applied to this example the result
is as sketched in Figure 6 on the right.

This certainly illustrates what is perhaps the major
defect of single link clustering, known as chaining: long
extended chains of objects are put into single clusters.
Other clustering methods have been invented to avoid this,
but the price for that appears high. More about that below.
More about single link clustering and its many good
properties can be found in section 7 and 8.

A third way to think about single link clustering is
as follows. List the distances that occur in the metric space
under consideration.

(6.2.5)   0 1 2< < < <d d dnL

Given this here is a third description of single link clustering.

(6.2.6) For each   i n=1, ,L  draw the graph with
as vertices the elements of M and
with two elements connected if and only
if their distance is less or equal to d

�
i .

The connected components of these
graphs for   i n=1, ,L  are precisely the
members of the single link hierarchy

� for M.

It is in fact more customary to use single link clustering
to construct a fixed depth standard classification tree.
That means that if in the procedure (6.2.6) for different i
some clusters are the same these are retained and placed
at all levels at which they occur. Thus the result of single
link clustering on the network of figure 5 will become as
in figure 7 on the right rather than as in figure 6 above.

21 1 2 13

...

Figure 7

1 3

M

{1, ... , 12}

...

Figure 6

1

2

3 4 5 6 7 8 9 1 0

11

12

13

Figure 5
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6.3. Complete link clustering and some others.
Complete link clustering as it is often described proceeds exactly like (6.2.2) except that the
distance between two clusters is calculated differently. Instead of the dissimilarity ‘dsl’, the
complete link distance ‘cld’ is used as defined by:

(6.3.1) cld( , ) sup { ( , )}
,

X Y d x y
x X y Y

=
∈ ∈

Incidentally, cld is a distance; but sld is not (it does not necessarily satisfy the triangle
inequality).

For complete link clustering the choices involved in step 3 of (6.2.2) do matter and
the results obtained from different choices can be dramatically different. Two examples are
above. It is clear that the results can be very unsatisfactory.

For this reason Jardine and Sibson, [34], strongly argue that at each stage the transitive
closure of the nearest distance relation between clusters should be taken. This makes complete
link clustering exactly analogous to single link clustering in the form (6.2.3), except that the
distances between clusters are measured by ‘cld’ instead of ‘sld’. In the example above this
version of complete link clustering gives exactly the same as single link clustering. The
example is not large or diverse enough for the different ways of measuring distances between
non-singleton sets to show up.

Figure 8 Figure 9
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Still other ways, intermediate between complete link and single link clustering, have
been frequently explored in the literature. For instance average link clustering, where the
distance between two clusters is defined by

(6.3.2)   ald( , ) (# ) (# ) ( , )
,

X Y X Y d x y
x X y Y

= − −

∈ ∈
∑1 1

In case the data set M is inbedded in a Euclidean space, still other ways of defining distances
between sets can be natural leading to for instance the centroid clustering method. Hausdorff
distance between sets, cf (3.1.1) above, could also be used. That possibility I have not (yet)
seen in the literature. All of these suffer from the same choice difficulty as complete link
clustering.

One can examine the many many clustering methods that are in the literature and that
are being used from the axiomatic viewpoint. This means that one makes a list of desirable
properties that a method should have and checks which methods satisfy which desirability
axiom. This has been done for a substantial collection of methods in [16, 34, 58].

According to [34] only the single link method survives this critique except for
overlapping variants of the single link method in which overlap between clusters is permitted
of a maximal fixed in advance number of elements or a fixed in advance percentage of the
size of the clusters involved.

Single link clustering has in addition a number of very nice properties (besides being
also easy to implement). Some of these will be discussed in the next section.



16

7. Single link clustering.
As has already been mentioned a
defect of single link clustering is
‘chaining’: quite distant groups of
objects get joined by long tenuous
chains. This can take quite serious
forms as the example on the right
illustrates. On the other hand single
link clustering has very many good
properties inclusing some categorical
ones. It solves a universal problem in
the sense of category theory. Most of
this section is devoted to that

7.1. Chaining example.
Imagine that in a scientific subject
classification situation like the one we
are envisaging a quite nice constant
depth standard classification tree has
been found which really describes the
interrelatedness of the concepts
involved perfectly. As depicted in
figure 10 on the right.  Now some
talented maniac discovers a first
tenuous connection between some
quite distant parts. The intermediate
concepts he defined for this purpose
are interesting and taken up by a few
more people. And shortly afterwards
the situation is like depicted in the
upper part of Figure 11, where the
new objects are in grey. Now apply
single link clustering to the new
situation. Not only do to quite distant
clusters get joined, but also a number
of higher level groupings are
destroyed (and the new classification
tree in this example suddenly has
depth two instead of three).

7.2. Ultrametric spaces.
A metric d on a set M is ultrametric
if it satisfies the following ultrametric
property

(7.2.1) d x y d x z d y z x y z M( , ) max{ ( , ), ( , )}, , ,≤ ∀ ∈

It is easily checked that the metric defined on its set of leaves by a standard constant depth
classification tree is always ultrametric. The inverse is also true.

Figure 10

Figure 11
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7.3. Theorem (Johnson, [35]).
A dissimilarity space ( , )M d  is an ultrametric space if and only if it is the metric defined by a
standard, constant depth, vertex weighted classification tree for ( , )M d .

7.4. Subdominance of single link clustering.
Let ( , )M d be a metric space. Let   0 1 2< < < <d d dkL  be the distances occurring. Construct
the single clink clustering constant depth standard classification tree by, say, (6.2.6). Give the

vertices at i steps from a leaf the weight 
1
2 1( )d di i− − , where d

�
0 0= . The weighted classification

tree thus defined defines a new metric on M, which will be denoted d
�

sl . Then:

7.4.1. Theorem (see e.g. [34]). The metric d
�

sl  is uniformly smaller than d; i.e. d
�

x y d x ysl( , ) ( , )≤
for all x y M, ∈ . The metric d

�
sl  is ultrametric and for every ultrametric d

�
' that is uniformly

smaller than d, denoted d
�

d' ≤ , d
�

dsl' ≤ . If d is ultrametric d
�

dsl = .

Thus d
�

sl is the largest amoung the ultrametrics dominated by d. This
property is referred to as the subdominance property of d

�
sl

7.5. Universality of single link clustering.
A property like the subdominance property above smells like
universality properties and adjoint functor properties. An example of
these, familiar to algebraists, is the universal enveloping algebra of a
Lie algebra   g, which is defined by the following universality property.
It is an associative algebra   Ug, together with a map of Lie algebras   ε : g g→ U  such that for
every map of Lie algebras from   g to an associative algebra A,   ϕ : g→ A, there is a unique
map of associative algebras   ˜ :ϕ Ug→ A, such that   ϕ̃ ε ϕo = .

In the present setting of metric spaces it is not so clear what is the appropriate notion
of morphism which should be used. Let us for the moment settle on the category of metric
spaces and contracting maps.

Within this setting, the single link classification space has the exact analogous property.
Let Msl be the set M with the metric given by its single link classification tree (which is
ultrametric). The canonical map M Msl→  is contracting, and for every contracting map of M
into an ultrametric space there is a unique factorization through Msl. This is immediate from
theorem 7.4.1. (The map is uniquely defined by the fact that as sets M and Msl are identical,
and the contractiveness of the factoriztion map then follows from the subdominace property).
So, technically, the single link classification tree functor from metric spaces to ultrametric
spaces is adjoint to the forgetful functor from ultrametric spaces to metric spaces.

In [51], Roux gives an algorithm for turning a given metric space into an ultrametric one. It
will be interesting to find out the relevance of this procedure to the single link way of
producing an ultrametric from a given one.

Ugg

A

ε

ϕ̃ϕ
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producing an ultrametric from a given one.

8. Lipshitz distance and clustering

8.1. Lipshitz distance and traditional clustering desirabilities.
Consider for the moment the problem of finding a single layer clustering for a given discrete
metric space ( , )M d  and consider what trying to find minimal Lipshitz distance between d
and the resulting classification tree distance implies. Let   M C Cm= ∪ ∪1 L  be a partition of
M. Then the corresponding classification distance is

(8.1.1) d x y

x y

i x y CT i( , )  ,=
=

∃ ∈




î

0

1

2

if 

if such that   

otherwise

By the definition of Lipshitz distance, see (4.1.2), we must try to minimize

(8.1.2) sup
( , )
( , )

sup
( , )
( , )

d x y

d x y

d x y

d x yT

T

over all x y≠ . For subsets X and Y of M, let

(8.1.3) s X d x y
x y X x y

( ) inf { ( , )}
, ,

=
∈ ≠

,  diam( ) sup{ ( , )}
,

X d x y
x y X

=
∈

and let cld sld( , ), ( , )X Y X Y  be the complete link and single link distances between X and Y as
defined in section 6 above. Then minimizing the Lipshitz distance between d and d

�
T means

trying to minimize simultaneously the following quantities

cld

sld

( , )

( , )

C C

C C
i j

k l

,   
cld( , )

( )

C C

s C
i j

k2
,   

diam( )
( )

C

s C
i

k

,   
2diam
sld

( )
( , )

C

C C
i

k l

There no absolute relations between these four types of quantities. But something can be said
‘generically’. As a rule not every pair of objects that are maximally close together should
finish up in different clusters. That makes

inf
�

{ ( )} ( )
k

ks C s X= ,

so that keeping the third type of expression in (8.1.4) under control means keeping the
diameters uniformly reasonably small. (If all closest pairs are broken up, the fourth term will
dominate the third and tend to get rather large).

Given that, the fourth type of term says to keep the clusters well separated and the
first and second type of term then also argue in favour of keeping the diameters small and to
keep the number of clusters relatively small as otherwise some of the cld distances will get
near to diam(X). These are all considerations that are frequently found in the clustering
literature and which are all of course intuitively right. Thus optimization with respect to
Lipshitz distance seems to capture much of what seems intuitively right when looking for a
good clustering.

Similar heuristic arguments give information on the sort of thing to try when trying to
find the clusterings at a given level in a hierarchy.

8.2. Some examples.
Let us again consider the example of figure 5 and compare  in terms of Lipshitz distance
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Let us again consider the example of figure 5 and compare  in terms of Lipshitz distance

some intuitive clusterings with the results of single link clustering. Here are the clusterings

that we shall examine. For convience the metric space itself is also reproduced. Give all
vertices weight 1/2. The clusterings 12.2 and 12.3 come from single link clustering. The

1

2

3 4 5 6 7 8 9 10

11

12

13

Figure 12.1

21 12 13

..

.

Figure 12.2

21 12

13
..
.

Figure 12.3 Figure 12.4

1 2 3 4 5 6 7 8 13 9 10 11 12

1 2 3 4 5 6 7 13 8 9 10 11 12

Figure 12.5

1 2 3

4

5 6 7

13 8 9

10 11 12

Figure 12.6

1 2 3

4 5 6 7 13 8 9

10 11 12

Figure 12.7
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vertices weight 1/2. The clusterings 12.2 and 12.3 come from single link clustering. The

Lipshitz distances from the original metric to the new ones defined by these clusterings are as
follows:

12.2: log(9)
12.3: log(9)
12.4: log(9)
12.5: log(9)
12.6: log(15/2)
12.7: log(6)

Clusterings 12.4 and 12.5, though intuitively perhaps more appealing, are no better, in terms
of Lipshitz distance, than single link clustering, showing that it is in fact not so easy to do
better. The clusters themselves are indeed better, but the price of breaking up closest neighbour
pairs like 4, 5 or 7, 8 or 8, 9 for these clusterings is high. This is a general phenomenon which
argues for single link clusterings. It will be made more precise below.

8.3. Step across separation and a universal lower bound.
A path P from x to y in M is simply a sequence of points   x x x x yn= =0 1, , ,L . The step length
of P is equal to

(8.3.1)
  
sl P d x x

i n
i i( ) max { ( , )}

, ,
=

= − +
0 1

1
L

The step-across-separation of two unequal points x y M, ∈  is defined as

(8.3.2) sasx y sl P
P

( , ) min{ ( )}=

where the minimum is taken over all paths P from x to y. Finally the “distance step-across-
separation quotient” of M is defined as

(8.3.3) dsq M
d x y

sasx yx y
( ) max

( , )
( , )

=
≠

8.3.4. Theorem. Let   π π π π= ( , , )0 1 L n  be a constant depth standard classification tree on M
with associated distance d

�
T. Then δL Td d dsq M( , ) log( ( ))≥ .

Proof. Let x y M, ∈  be such that the maximum in (8.3.3) is assumed for this pair. Moreover
let   x x x x yn= =0 1, , ,L  be a path for which the step length is equal to sasx y( , ). Let d

�
x y dT j( , ) = .

Then

(8.3.5) distor( , )
( , )

d d
d x y

dT
j

≥

Now consider the chain   x x x x yn= =0 1, , ,L . Let   πj mC C= { , , }1 L . We can assume that x y C, ∈ 1.
Suppose that in πj −1 the set C1 splits up into the disjoint sets   C C k11 1, ,L . We can assume that
x C∈ 11, and then y C∉ 11. Therefore there is a first xi  that is not in C11. There are two
possibilities. If x Ci ∈ 1, then d

�
x x dT i i j( , )− =1 ; if x Ci ∉ 1, then the finest partition with a set in

it that contains both x xi i−1,  has index > j , so that

(8.3.6) d
�

x x d dT i i j j( , )− +≥ >1 1
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(8.3.6)

Also d
�

x x sasx yi i( , ) ( , )− ≤1 . Combining these two we see that

(8.3.7) distor( , )
( , )

d d
d

sasx yT
j≥

Inequalities (8.3.5) and (8.3.7) together prove the theorem.

8.4. Single link clustering and Lipshitz distance.
It is in fact not an accident that in the examples of Figures 12, all the constant depth
clusterings did not improve on single link clusterings. We shall see here that in fact single
link clustering is optimal (though there may be other clusterings that are equally Lipshitz
close to the original metric).

Single link clustering yields the following hierarchy. Let   d
�

d dm1 2< <L  be the distances
that actually occur. Let Gj  be the graph on M which has two vertices linked if and only if
their distance in M is ≤ dj . Then the partition πj  has level d

�
j  and it consists of the connected

components of the graph Gj . Let d
�

sl , the single link clustering hierarchy distance, be the
distance defined by this classification tree.

8.4.1. Theorem. Single link clustering is optimal with respect to Lipshitz distance. More
precisely:

(8.4.2) δL sld d dsq M( , ) log( ( ))=

Proof. In view of theorem 3.4, it suffices to show that

(8.4.3)    δL sld d dsq M( , ) log( ( ))≤

Let x y M x y, ,∈ ≠ . Then sasx y d x ysl( , ) ( , )= . It follows that

(8.4.4 distor( , ) sup
( , )
( , )

( )d d
d x y

d x y
dsq Msl

sl

= ≤

On the other hand, as has already been observed, theorem 7.4.1, d
�

x y d x ysl( , ) ( , )≤  for all
x y M, ∈ . Hence

(8.4.5) distor( , )d dsl ≤ 1.

The combination of (8.4.4) and (8.4.5) establishes (8.4.3) and hence (8.4.2) and the theorem.
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9. The Buneman tree of a dissimilarity space.

9.1. Tree metrics and the four point condition.
Let T be a tree and M a subset of the vertices of T. Let the edges of T be labelled with strictly
positive numbers. This makes T a network (of a special kind), and induces on M a metric as
follows:

(9.1.1) d
�

x y T x y( , ) = length of the unique path in  from  to .

Such a metric on M will be called a tree metric. There is something special about this kind of
metrics. They satisfy the socalled four-point condition:

(9.1.2) d x y d u v d x u d y v d x v d y u( , ) ( , ) max{ ( , ) ( , ), ( , ) ( , )}+ ≤ + +

for all x y u v M, , , ∈ . This condition is easiest remembered by noting that there are three ways
of splitting up four points into two pairs. The sum of the distances of each such pair now
must be smaller than the mximum of the other two sums. It follows that at least two of these
sums are equal and maximal. Taking u v= , one sees that the four-point condition implies the
triangle condition. The four-point condition in fact characterizes tree metrics.

9.1.3. Theorem. A metric on M is a tree metric if and only if it satisfies the four-point
condition.

This was proved independently by Buneman and Dobson, [6,15]. Another proof is in [49].
Buneman, however, did much more. He associates in a canonical way, with every metric
space M an edge labelled tree BTM , together with a map β : M BTM→ , such that if the metric
on M was a tree metric than β  is injective and the induced tree metric on M by BTM  is the
original one. The next subsection summarizes the constructions and results from [6].

9.2. The Buneman construction.
Let X be any set. A splitting, σ ,  of X is a two element partition of X, i.e.

(9.2.1) σ = = ∪ ∩ = ∅{ , },   ,   A B X A B A B

Two splittings, σ σ1 1 1 2 2 2= ={ , },  { , }A B A B , are compatible if at least one of the four intersections

(9.2.2) A A A B B A B B1 2 1 2 1 2 1 2∩ ∩ ∩ ∩,  ,  ,  

is empty. Let σ0 be the trivial splitting σ0 = ∅{ , }X . Let   Σ = { , , , }σ σ σ1 2 L m be a compatible
set of splittings. Such a set of splittings defines a tree, TΣ , as follows. The vertices of the tree
are collections of sets

(9.2.3)   { , , , },  ,  , ,C C C C j mm j j1 2 1L L∈ =σ

such that

(9.2.4   C C i j mi j∩ ≠ ∅ ∀ =,  , , ,1L

It turns out that there are precisely m+1 vertices if σ0 ∉ Σ , and m vertices otherwise. Two
vertices
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(9.2.5   { , , },  { , , }C C D Dm m1 1L L

are linked in the tree TΣ  if and only if there is precisely one index   j m∈ { , , }1L  such that
C Dj j≠  (and hence C Dk k=  for all k j≠ ). This edge can and will be identified with the
splitting σ j  which determines it. Note that the trivial splitting does not define an edge. As it
turns out, all others do. One now has:

9.2.6. Theorem, [6]. Let there be given a set of compatible splittings, Σ , of m elements. Then
the definitions (9.2.3) - (9.2.5) define a connected tree of m+1 vertices and m edges if
σ0 ∉ Σ , and with m vertices and m−1 edges if σ0 ∈ Σ .

9.2.7.Remark.  Admitting the trivial splitting is a slight departure from Buneman’s paper. It
makes very little difference, but does make the treatment below a little cleaner.

Now let ( , )M d  be a metric space (or, more generally, a dissimilarity space). For each
splitting σ = { , }A B  of M, define

(9.2.8)  µσ = + − −
∈ ∈

1
2

inf { ( , ) ( ' , ' ) ( , ' ) ( , ' )}
, ' ; , 'a a A b b B

d a b d a b d a a d b b .

A splitting σ = { , }A B  is admissable if and only if µσ > 0. Note that the trivial splitting is
always admissable.

9.2.9. Lemma, [6]. Two admissable splittings are compatible.

Now define Σ( )M  to be the set of all admissable splittings, andthe Buneman tree, BTM , of M
as the tree defined by Σ( )M  according to theorem 9.2.6.

For each vertex   v C Cm= { , , }1 L  of BTM , define its support by

(9.2.10)
  
supp( )v Cj

j

m

=
=1
I

This support can well be empty. Finally for each a M∈  let β( )a  be the unique vertex in BTM

characterized by

(9.2.11)   β( ) { , , } , , ,a v C C a C i mm i= = ⇔ ∈ =1 1L L .

This defines a canonical map

(9.2.12) β : M BTM→ .

Finally let d
�

T be the network metric on BTM  determined by giving edge σ  weight µσ , and
let d

�
B  be the dissimilarity on M defined by

(9.2.13) d x y d x yB T( , ) ( ( ), ( ))= β β

Because β  need not be injective it can happen that d
�

B  takes the value zero for two unequal
points x,y; otherwise it satisfies, of course, the triangle condition and the four-point condition.
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9.2.14. Theorem, [6]. For all x y M d x y d x yB, ,  ( , ) ( , )∈ ≤ . If d is a tree metric, i.e. if it satisfies
the four-point condition, d

�
dB = .

This concludes the summary of [6] needed for what will follow.

The whole construction has a very canonical feel to it and has the flavour of the kind of thing
that solves a universal problem of some kind. In contrast to the case of ultrametric spaces, cf
7.5 above, I have no idea of what would be the right categories and morphisms for this in this
case.

9.3. Examples.
In each of the examples below the original metric space is given first as a network, and its
Buneman tree is next to it or below it. In the network representation of the metric space all
edges have length 1 unless something else is explicitely indicated.

A vertex of the Buneman tree whose support
is precisely one element is depicted by a filled black
circle, a vertex with empty support is depicted by an
open circle and a vertex whose support consists of
more than one element is given by a small black
filled square.

In the Buneman tree on the right of figure
13, all edges have weight 1/2, so that the original
metric is exactly reproduced in this case.

Figure 14 shows that the canonical map need not be injective. It also shows that the new
dissimilarity d

�
B  need not be the

s u b o p t i m a l  f o u r - p o i n t
dissimilarity with respect to d. In
this case an edge distance 2
between the two vertices of the
Buneman tree would still be
uniformly smaller than d. This can
also happen if the canonical map
is injective.

Figure 13

2

3

a

b

c

d

e

1

{c,d,e}{a,b}

Figure 14
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2

2

2

b

b'

a

a'

d

d'

c

c '

{a,b,c,d}

a' b'

c 'd'

Figure 15
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In the right half of figure 15 the four edges all have
weight 1.

For the metric space of figure 16 there is no other
admissable splitting than the trivial one. This is one good
reason to admit the trivial splitting.

Finally in Figure 17 the Buneman tree is given of the
standard example, that has been discussed before from
various points of view (Figure 5, Figure 12.1). In Figure

17.2 all edges (including the ‘vertical’ one) have weight 1 except the ones around the empty

support vertices on the left and right; the edges from these two groups of three all have
weight 1/2.

9.4. Continuity.
The Buneman tree construction is continuous. More precisely the assignment  d

�
dBa  is

continuous. This is easily seen. Indeed every admissable splitting for a given d will remain
admissable under a sufficiently small perturbation of d. Also the weight of the corresponding
edge will change less than 2ε  if the original distance function changes less than ε . It may
happen that additional splittings become admissable, as in the example of Figure 18. However,
the corresponding edges will have lengths less than 2ε . As an example consider again the
network of Figure 15 above. But now let the diagonal distances, i.e. the distances from a to c
and from b to d be 4 − ε  instead of 4 (and correpondingly the distance from a’ to c is 5� − ε ,
etc.). Then the Buneman tree changes to the one depicted in figure 18 where the middle four
edges have weight ε / 2. This example also illustrates that even when the canonical map is
injective, d

�
B  need not be a maximal four-point distance that is uniformly smaller than the

original distance.

Figure 16

1

2

3 4 5 6 7 8 9 1 0

11

12

13

Figure 17.1

Figure 17.2
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original distance.

9.5. Locality and circuits.
Let us for this occasion define a circuit in a metric space as a sequence of points

  x x x x xn n0 1 1 0, , , ,L − = , with distances d
�

x x di i i( , )− =1 , such that  the distance fromxi  to xj ,
i j< , is either equal to   d

�
di j+ + +1 L , or equal to  D d di j− + ++( )1 K , where

  D d d dn= + + +1 2 L . Now consider a metric space that consists just of one circuit (as in
Figure 19). The canonical map from such a circuit space to its Buneman tree will be injective
if an d only if 2( )min maxd d D+ > ,
where   d

�
d dnmin min{ , , }= 1 L  and

  d
�

d dnmax max{ , , }= 1 L .  T h e
presence of such circuits seems
to be the major reason why the
canonical map from a space to
its Buneman tree need not be
injective. It also seems that the
construction of the Buneman tree
is more or less localized where
‘local’ is to be understood in
terms of minimal circuits of
length 4 or more.

9.6. The strict triangle inequality
case.
Let M be a metric space that satisfies the strict triangle inequality for all triples of points.
Then for all x M x M xx∈ =,  {{ }, \ { }}σ  is an admissable splitting. It follows that the canonical
map is always injective in this case. It is also clear that for
all x M∈ , β( )x  will be a leaf of the Buneman tree whose
sole incident edge is precisely σ x . Indeed there can clearly
be only one vertex   v C Cm= { , , }1 L  which has at σ x  the
component { }x (because we must have C Ci j∩ ≠ ∅  for all
i j, . These remarks also solves the following question.
Which metrics are such that the four-point condition holds
as well as the strict triangle inequality. These are precisely
the tree metrics induced on the set of leaves of a tree.

9.7. Perturbations.
The easiest way to ensure that the canonical map of a metric space to its Buneman tree is
injective is to make sure that the strict triangle inequality holds. So the question arises
whether that can be done systematically. This is in fact very easy. Let ϑ  be a function from
the nonnegative real numbers to the nonnegative numbers such that

(9.7.1)

ϑ
ϑ ϑ
ϑ λ λϑ λ

( )

( ) ( )     

( ) ( )    

0 0

1

=
> >
< >

x y x y

x x

 if   (monotonicity)

 if   (sublinearity)

Then ϑ ϑ ϑ( ) ( ) ( )a b a b+ < + , and it follows that

(9.7.2) d x y d x yϑ ϑ( , ) ( ( , ))=

defines a new metric on M for which the strict triangle inequality always holds. Of such

x n-1

x
0

x1

d1

dn

x
2

Figure 19
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defines a new metric on M for which the strict triangle inequality always holds. Of such

functions ϑ  there are many. For instance any monotone convex function taking zero to zero
such as   a aa  or   a aa log( )1+ . (But a (differentiable) function that satisfies (9.7.1) need
not be convex.)

It is perhaps even easier to do the following. Let again ( , )M d  be a metric space. Now change
the metric d as follows

(9.7.3)
d x x

d x y d x y x y

η

η η
( , )

( , ) ( , )   

=

= + ≠

0

if  

where η  is a small positive number. Then d
�

η  is a new metric on M (which differs but little
from the original one) for which the strict triangle inequality holds. It is possible to describe
exactly what happens to the Buneman tree of M under the change   d

�
da η . This needs the

following lemma which says that for a metric space it is never just a triangle equality that
prevents a splitting from being admissable. (For dissimilarity spaces this lemma need not
hold).

9.7.4. Lemma. Let M be a metric space and let σ = { , }A B  be a splitting such that both A and B
have two or more elements. Suppose that for all foursomes of different elements a a A a a, ' , '∈ ≠ ;
b b B b b, ' , '∈ ≠

(9.7.5) d
�

a b d a b d a a d b b( , ) ( ' , ' ) ( , ' ) ( , ' )+ > +

Then σ  is admissable.

Proof. Because of (9.7.5), if σ  were not admissable, this must be the case because there is an
a A∈  such that

(9.7.6) d
�

a b d a b d b b( , ) ( , ' ) ( , ' )+ =

for certain b b B, ' ∈  (or a similar situation with A and B interchanged, which is treated
similarly).
Besides (9.7.5) we also have

(9.7.7) d
�

a b d a b d a a d b b( ' , ) ( , ' ) ( , ' ) ( , ' )+ > +

Adding this to (9.7.5), and using (9.7.6), we obtain

(9.7.8) d
�

a b d a b d b b d a a( ' , ) ( ' , ' ) ( , ' ) ( , ' )+ − − >2 0

On the other hand by the triangle inequality

d
�

a b d a a d a b( ' , ) ( , ' ) ( , )≤ +

d
�

a b d a a d a b( ' , ' ) ( , ' ) ( , ' )≤ +

Adding these two, and using (9.7.6) again, gives

d
�

a b d a b d a a d b b( ' , ) ( ' , ' ) ( , ' ) ( , ' )+ ≤ +2

which is in conflict with (9.7.8). q.e.d.
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Now let me describe what happens to the Buneman tree of a metric space( , )M d  when d is
changed to d

�
η . In any case for all x M∈ , the splitting σ x x M x= {{ }, \ { }}  becomes admissable

if it were not already so. And this is the only thing that happens. Indeed for pairs a a b b≠ ≠' ,  '
the admissibility condition does not change when d is replaced by d

�
η  and the lemma says that

for splittings that are not of the form σ x  a triangle equality cannot be the only cause of
nonadmissability. It is now not difficult to figure out what happens to the Buneman tree itself.
The result is:

An interior vertex with empty support remains as before (complete with incident
edges)
An interior vertex with nonempty support gets replaced with an interior vertex with
empty support. The original incident edges with the original vertex now become
incident with the new empty support vertex. In addition there appear as many extra
leaves as there were support elements and these are all linked to the new empty
support vertex. This is illustrated in Figure 20.

As an example consider the metric space given by the network depicted on the left side of
Figure 21. The Buneman tree of the original metric space is in the centre and the Buneman
tree of the perturbed metric space is on the right.

9.8. Buneman clusters.
It seems to me that the Buneman tree of a metric space gives valuable information as what
clusters might be worth consideration. One could for instance find a Buneman tree like the
one depicted in figure 22 below. This one suggests the various clusters (not all at the lowest
level) which are indicated. A precise definition of what clusters are defined by the Buneman
tree of a metric space needs to be given.

9.9. Open problems concerning tree metrics.
In my opinion the Buneman construction is likely to prove important. Let me list a variety of
open questions concerning it.

A. The construction has a functorial flavour. It
is however far from obvious what should be
the categories and classes of morphisms to bring
out this functoriality.

B. The Buneman metric d
�

B  of a metric space
( , )M d  is always smaller than the original metric.
It is however not necessarily maximal amoung
the tree metrics that are smaller than d. The
problem thus arises to find the maximal tree
metrics smaller than a given one. In [51], Roux
gives a convergent algorithm for changing a
metric into a tree metric which could be
examined in this setting. Is there a suboptimal
tree metric?

C. Are there systematic ways of constructing the Buneman tree of a network by collapsing
parts of minimal circuits and the like?

D. If the metric space satifies the strict triangle inequality (which can always be ensured by a
arbitray small perturbation, cf 9.7 above), the original space identifies with the leafs of the
Buneman tree. This gives a first level clustering; the clusters are those groups of leafs that

Figure 20
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Buneman tree. This gives a first level clustering; the clusters are those groups of leafs that

have an immediate common ancestor. Now define a metric between these clusters by taking
the Hausdorff distance and repeat. This gives a classification scheme. What are its properties?

10. Overlapping clustering.
For overlapping clusterings, hierarchical or not, one asks for coverings of the set M  instead
of partitions. A covering of M is a set of subsets   γ = { , , , }V V Vm1 2 L  such that

(10.0.1)  
  

V Mi
i

m

=

=
1
U

There is a totally trivial way of obtaining a “classfication scheme” for a dissimilarity space
( , )M d which still has its points.

10.1. The poset of balls.
For each h define a ball of diameter h in M as a maximal subset B(h) such that

2 2

Figure 21

Figure 22
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For each h define a ball of diameter h in M as a maximal subset B(h) such that

(10.1.1) d x y h x y B h( , ) ,   , ( )≤ ∀ ∈

The maximality here means that if z B h∉ ( ), then there is an x B h∈ ( ) such that d
�

x z h( , ) > .
The partially ordered set (poset) of balls of ( , )M d  is now the collection of all balls ordered
by inclusion. It comes with a function on it which to each ball associates its diameter. The
metric (or dissimilarity) can be easily recovered from these data: the distance between two
points is the diameter of the smallest ball in which they are both contained. This is just about
totally trivial.

In the example of Figure 23 the distances of the four sides of the diamond are 4, the
two vertical pieces are 3 and the two horizontal ones are 2.

Thus, the construction is trivial but in concrete cases this may well be the only thing
that needs to be done. In any case listing all finest level balls with their members and the
inclusion relations between balls can be a vastly more efficient way of describing a metric
space (compared to giving the distance function) when the overlap between balls at  each
level is modest like,
say, 10%.
Take e.g. a constant
depth 4 situation with
some 4000 leaves, 20
f irst  generat ion
children, each of
which has on average
some 10 second
generation children;
these have in turn on
average 6 children
and those have again
some 6 children.
These are the kind of
parameters one finds
in actual existing
classification
schemes. Assuming 10% overlap, the ball poset desciption will be a factor of about 104 more
efficient. The situation is anlogous to the socalled ”watchmaker paradox”.
 Not all partially ordered sets can arise in this way. They obviously have the following
property. For each element x of a poset P with largest element, define

(10.1.2)   m x y P y x y P( ) { : ,  }= ∈ p  is minimal in 

Then the poset of balls of a dissimilarity space satisfies

(10.1.3)   y x m y m xp   ( ) ( )⇔ ⊂

It is not difficult to see that this is also sufficient for a poset to arise as a poset of balls.

10.2. Powerset metrics.
Let M be a set and Pow M( ) the set of all subsets of M. Let X be a subset of Pow M( ) which
includes all one element subsets, and let t X: → R  be a function such that

(10.2.1)

t V V X

t V V

t V t V V V V

( )  

( ) ( )    

≥ ∈
=

> ⊃ ≠

0

0 1

1 2 2 1 2

for all 

( ) =   if and only if #

if V and  1

a b c

d

e
d a b c e

diameter 2

diameter  3

diameter 4

diameter 6

Figure 23
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(10.2.1)

These data define a metric on M as follows. Construct the network with vertices the elements
of X and with edges between V and W if and only if V W V W⊂ ≠,  , and there are no
elements of X strictly in between V and W. Give this edge the weight t W t V( ) ( )− . Now
identify M with the single element subsets of Pow M( ) (which are all in X), and take the
metric on M induced by that network metric of X. I will call such metrics on M powerset
metrics.

Now take a metric space ( , )M d and take for X the poset of balls of it. Define t X: → R  by
t B h h( ( )) /= 2. This defines a new metric, d

�
t , on M which need not be the old one as the

example of Figure 24 shows. In this example the d
�

t  of the leftmost and rightmost point
becomes 3 (while it was 4 originally).

Completely open is the question of which metric spaces are such that the powerset metric
defined by their poset of balls is equal to the original one.

Also open is the question of what special properties powerset metrics have. For example the
metric space of the left half of Figure 24 can not come from a powerset metric.

diameter 1

2

2

1

2

2

diameter 2

diameter 4

Figure 24
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11. Third party support.
We have seen that in the case of the example that has been
considered several times (Figure 5, Figure 12.1) single link
clustering is just as good as several others. Still some of the
others definitely look better.

In our intended applications the distance function
comes from the number of cocitations of two terms or phrases.
That is, it comes from a direct comparison of the two items
involved while ignoring more indirect relatedness. I would
submit that the two outer points in the middle part of Figure
25 are more related than the two outer points in the upper
part  and that this is still more the case in the lower part. This
is what is intended with the phrase ‘third party support’.

Let us think in terms of networks (which is not really
a limitation at all).
For two points x y M, ∈ , define their relatedness as

(11.0.1) r x y l p
p

( , ) ( )= −∑ 2

where the sum is over all paths from x to y without loops. And then define a new distance

(11.0.2) d x y r x yr ( , ) ( , )= −2

Now perform single link clustering on the new space ( , )M dr . This is one way of trying to
incorporate the idea of indirect relatedness. It will be of interest to try this out on real data.
Note that the powerset metric d

�
t  defined by the poset of balls also incorporates something of

the idea of third party support (cf Figure 24).
What exponent is taken in (11.0.1) and (11.0.2) is largely open. Probably at least two

to avoid something like an analogue of the Olber paradox from astronomy.

Figure 25
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12. Gravity clustering and other untried ideas.
Here are some more possibilities that I feel should be tried out and that I have not found in
the literature.

12.1. Gravity clustering.
Define the weight of a point x M∈  by

(12.1.1) w x d x y
x y M

( ) ( , )= −

≠ ∈
∑ 2

A sink is a point whose weight is greater than the weights of all its nearest neighbours. In this
proposed scheme these sinks determine clusters. They are the basins of attraction of the sinks.
Let the sinks be   x x xn1 2, , ,L . Then y M∈  belongs to cluster i iff

(12.1.2)
  
w x d y x w x d y xi i

j n
j j( ) ( , ) max{ ( ) ( , ) }

, ,

−

=

−=2

1

2

L

(This can cause mild overlap).
To get a hierarchy repeat with as the new data set the clusters formed provided with

Hausdorff distance.
Here also, the exponent to be used can be changed.

12.2. Cut-set clustering.
A cut-set in a network is a collection of edges such that their removal causes M to decompose
into several connected components. Define the strength of a cut-set E as

(12.2.1) s E l e
e E

( ) ( )= −

∈
∑ 1

where l e( ) is the length of the edge e. Now proceed as follows. Find the smallest s for which
there is a cut-set of strength s. Remove all edges which are in cut-sets of strength s. This
defines the first level clusters. Now repeat with each cluster to get the next partitioning. Or go
on to the next strength of cut-sets.
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13. Dual clustering and bipartite graphs.
So far I have exclusively discussed matters from the point of view of clustering objects from
one single space, which is thought of as a space of scientific key words and phrases. This
does not reflect the background situation completely. In fact we have two spaces: a space of
key items and a space of documents and they are related as a bipartite graph with a key item
and a document linked if and only if that key item occurs in that document. Moreover the two
metrics on these two (dual) spaces are both derived from the incidence matrix, i.e from this
bipartite graph.

Thus a good clustering of one of the spaces should tell us things about the other space,
and the two clustering problems, one for documents, one for key items, should be treated
together. The desirability of doing this is discussed in [11].

Concerning the mathematical problems that arise in such a setting virtually nothing
has been done so far. But see [7] for one initial idea.

In particular, there is a well-known other technique for clustering documents, viz
co-citation analysis. This leads for instance to research fronts, [50, 55, 60]. These research
fronts in turn should give rise to information on key item clustering. This has not yet been
explored at all.
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