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Chapter IX

On the (Intermnal) Symmetry Groups of Linear Dynamical
Systems

M. Hazewinkel

.lntroduction and staterment of the main definitions and results

A tine invariant linear dynamical system is a set of equations

x=Fx+ Gu x(t+1) = Fx(t) + Gu(t)
(1.1) y = Hx (¥) y(t) = Hx(t)
(continous time) (discrete time) ,

where x€X = IR", u€ U = IR™,y €Y = IRP and where F, G, H are matrices with coef-
ficients in IR of the dimensions n X n,n X m, p X n respectively. We speak then of a
system of dimension n, dim(Z) = n, with m inputs and p outputs. Of cource the discrete
time case also makes sense over any field k, (instead of IR). The spaces X, U, Y are
respectively called state space, input space and output space. The usual picture is a “black
box”.

. ,
(1.2)  uy(®) y1(t)
: x(t) :
@ Um® Vo)

That is, the system X is viewed as a machine which transforms an m-tuple of input or
control functions u, (t), ..., ug (t) into a p-tuple of output or observation functions

y1(1), -.., yp(t). Many physical systems can be viewed as such a “black box”. For instance
the box may be a chemical reaction vat. The u,(t), ..., uy (t) may be concentrations of
various chemicals which are inserted and the y, (1), ..., yp(t) represent certain series of
measurements serving as indicators that everything goes as we wish (or not). Especially

the output aspect {represcnted by the matrix H) captures something very oiten encounte-
red in physics, electronics, chemistry, and also astronomy: only certain functions of the
state variables x; (), ..., Xp(t) are directly observable! Thus in astronomy one has to make
do with certain projections (aganst the sky sphere) of the space variables describing. e.g.,
the solar system, in atomic physics one 1nay have to rely only on scattering data, and, as

a last example, in economics one uses socalled cconomic indices. which. hopetully, reflect
more o7 less accurately the goings on of the “zeal” (largely unknown) underlying economic
processes.
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Tne formulas expressing y(t) in terms of the u(t) are
'
nw(t) = HeF'x(0) + j HeF® -7 Gu(ndr,
0
{1.3)
1} .
y(t) = HF'x(0) + ~ HF*™'"' Gu(i),
i=0

where x(0) is the state of the system at time 0 (and where we start putting in input at g
1ime ¢ = 0). Thus the input-output behaviour of our box depends of course on the initl®:

ate %(0). One 15 particularly interested in the input-output behaviour of £ when x(O) =0.
\\e shall write f{ <) for the associated input-output operator. Thus

.t t—1
{13 £1(Z) : u(t) = |He”"”Gu(7)d'r, f(Z): u(t) Z HF'~ =1 Gu(l)

i=
° 0

17 1s now an important fact that the input-output behaviour description of the machine
(1.2YVis degenerate, much as. say, energy levels in atomic physics may be degenerate. More
precisely the matrices F, G, H (and the initial state x(0)) depend on the choice of a basis
1n state space and from the input-output behaviour of the machine there is (without chan-
gng the machine) no way of deciding on a “‘canonical™ basis for the state space X = IR™.
More mathematically we have the following. Let GL,(IR) be the group of all invertible
rea! n X n matrices and let Ly, o p(IR) be the space of all triples of matrices (F, G, H) of
cimensions n X n,n X m, p X n respectively. The group GL,(IR) acts on Ly, n,p(IR) and
IR™ = space of initial states, as

(1.5) (F,G, H)® = (SFS™, SG, HS™), x(0)° = Sx(0)

24 as is easily checked the associated input-output behaviour of the corresponding ma‘%e
s given by (1.3) and (1.4) is invariant under this action of GL,(IR); i.e., in partlcular
i ‘5) f(X). This action corresponds to base change in state space. Indeed if x' = Sx and
X = Fx + Gu,y = Hx then $7'%" = F§S™'x' + Gu,y = HS™'x’ so that x' = SFS§"'x’ + SGu,
v = H§’x" and x'(0) = Sx(0).
Thus chapter is concerned with those aspects of the theory of linear dynamical systems which
are more or less directly related to the presence of the internal symmetry group GL,(IR)
of the internal description of linear dynamical systems by triples of matrices (cf. (1.1)) as
compared to the degenerate external description by means of the operator f(Z) (or (1.3)).
This is not really a research paper (though it does in fact contain a few new results) but
rither a graduate level expository account of some of the material of [3—8] and immediately
12lated matters.
in the remaining part of this introduction we give a slightly informal description of most of
tie main results of sections 2—8 below.

Ve shall concentrate on the continuous time case.
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1.6 Feedback and how to resolve the external description degeneracy. In the case of ato-
mic pnysics a degenerate energy level may be’split by means of, e.g., a suitable magnetic
field. One can ask whether there exists something analogous in our case of degenerate ex-
ternal (= observable) descriptions of linear dynamica! systems. There does in fact exist
some such thing. It is calied s1ate space feedback. Consider the system (1.1). Introduc-
tior: of state space feedback L changes it to the system Z(L)

<&
Y

L

'7) x=(F+GL)x+Gu  u(t) y(t)
"7y =Hx x(t)

L 4

In thinking about these things the author has found it helpful to visualize a linear dynami-
cal system with (variable} feedback as a set of n-integrators, 1, ..., n. interconnected by
means of the matrix F. a set of m input points connected 1o the integrators by means of

the matrix G. a set of p cutput points connected to the integrators by means of the matrix
H and a set of connections from the integrators to the input points (feedback) which may be
varied in strength by the experimentator (as in atomic physics the splitting magnetic field
may be varied). Cf. also the picture below.

it

Y, it}

y,it)z0

~——3'—— interconnections between the integrators as given by the matrix F

0 1 0
F=lfy fn fn
faa 0 fy

—.——.».— connections from the input points to integrators as given by the matrix G
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connections from the integrators to the output points as given by the

matrnx H
) 0  hy hy
H= hm 0 0
4] 0 0

_ connections from the integrators to the input points (can be varied in strengg
* by the experimentator) as given by the matrix L
L = Ill 0 1‘3
0 0 %

Nowlet £=(F,G.H)and = (F',G',H') be two linear dynamical systems, and suppose
that £ and I are completely reachable and completely observable. (This is an entirely
nzwaral restriciion in this context, cf. 1.12 below: for a precise definition of the notions,
=7, 2.6 betow). Suppose that T % I’ but f(Z)=1(Z’). Let Z(L), T'(L) be the systems
sbtained by introducing the feedback L, i.e. £(L)=(F+GL,G, H), £'(L) =(F' + G,
G H'). Then there is a suitable feedback matrix L, which can be taken arbitrarily small
sa that £(Ly and (L) are still completely reachable and observable) such that
f{Z(L)) # f(Z'(L)). L.e. feedback splits the GL,(IR) — degenerate external description

of linear dynamical systems.

1.8 Realization theory. let X be alinear dynamical system (1.1). Then, if we leave T
unchanged. from our observations we can deduce the operator f(Z) or, equivalently, we
can find the sequence of matrices A(Z) = (Ao, Ay, Ag, ...), A; = HF'G. To obtain these r@
5-functions and derivates of &-functions as inputs. Another way to see this is to apply
Laplace transforms to (1.1). This gives

(1.9) sX(s) = Fi(s) + Ghi(s), §(s) = HR(s)

50 that the relation between the Laplace transforms §(s), i(s) of the outputs y(t) and
inputs u(t) is given by multiplication with the socalled transfer matrix T(s)

(1.10)  §(5) = T()(s), T(s) = Hs- )G .
The power senes development of T(s) in powers of 57 (around s = o) is now
(1.11) T(5)= Aos™ +A;s™2 + Ags™ 4+ ... . '

The question now naturally arises: when does a sequence of p X m matrices A = (Ag, Ay, ...)
come from a linear dynamicai system (1.1), or, as we shall say, when is A realizable,
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1.12 Theorem (cf. [10]):

(iY If A isrealizable by an n-dimensional system T then it is also realizable by an n' &< n

dimensional system T’ which is moreover completely reachable and completely ob-
servable.

(ii) The sequence A is realizable by an n dimensional system I if and only if rank
(Hg(A)) =<n forall s€iINU {0} .

6&5 H;(A) is the block Hankel matrix

Ao A; ... A,
Ay

Hs(A) =
Ay . . . Ag

1.13 Invariants and the structure of M (IR) = Lo s (R)/GL,(IR).

Let Ly, q,p(IR) be the space of all triples of matrices (F, G, H) of dimensions n X n,

n Xm, p X n respectively. The group GL,(IR) acts on Ly,  p(IR) asin (1.5). The input-
output matrices A; = HF'G are clearly invariants for this action and the question arises
whether these are the only invariants. Here an invariant is defined as a function p:

L, n,p(IR) = IR (or possibly a function defined on an invariant open dense subset of
Ly, n,p(IR)) such that p((E, G, H®) = p(F, G, H) for all triples (F, G, H) (in the open
dense subset).

‘

1.14 Theorem: Every continuous invariant of GL,, (IR) acting on Ly 5 5 (IR) is a functior
of the entriesof Ag, ..., Azp—-1.

Let ].f:"nc,'p (IR) be the subspace of all triples (F, G, H) € Ly 5,p(R) which are both
completely observable and completely reachable. This is an open and dense subspace of
Lm,n,p (R). On this subspace GL, (IR) acts faithfully and a more precise version of theo-
rem 1.14 describes the quotient space Moo < (IR) =L =¥ (IR)/GL,(IR) explicitly and

m,n,p m,n,p

gives an algorithm for recovering (F, G, H) up-to-GL, (IR)-equivalence from Ag, ..., Aan—1

(cf. 4.25 below). It turns out that Mf:":f"lp(lR) is a smooth differentiable manifold and

that the projection LS (IR~ MS$' & (1R) is a principal GLa(IR)-bundle (cf. 6.4 be-

m,n,p m,mp
low).

1.15 Canonical forms. For many purposes (prediction, construction of feedbacks, identi-
fication and, not least, for proving theorems) an internal description of a black box by
means of a triple of matrices (F, G, H) is preferable over knowledge of the input-output
operator {(2). As was remarked in section 1.14 above there do exist algorithms for cal-
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.ulating some T = (F, G, H) which realizes f(Z) or A(Z) from the matrices Ag, .-., A2n—}-
e such algorithm is described in 4.25 below. All these algorithms have the drawback

‘rat thev are discontinuous in general. This is a nontrivial difficulty, because after all one
cacutates the (F, G, H) because one wants to use them as a basis for further calculations,
engn. predictions etc., and the Ag, ..., Aan—; are after all subject to (small) measure-

~ent errors. Thus the question arises whether there exist continuous methods of recove-

nng %, G, H) up-t0-GL;, (IR }equivalence from Ag, ..., Azn—3. Or, in other words, be-

cause Mo ﬁ’ » (IR} is an explicitly describable subspace of the space of all sequences of

-np X m matrices and M5 " (IR) = L7 2" (IR)/GLy (IR), the question arises whethe@
<here exist continuous canonical forms on Lﬁ::’:p (IR), where a continuous canonical
form 1s defined as follows.

1.16 Definition. A continuous canonical form on a GL, (IR)-invariant subspace
L' T Le,n,p(IR) is a continuous map ¢: L'~ L' such that
(it ¢((F,G,H)S) = ¢((F,G,H)) forall (F,G,H) E L',
1ty if o((F. G, H)) = ¢((F', G', H")) then there is a SE GL, (IR) such that
{F,G',H) = (F, G, H)5, and
(itf) for all (F, G, H) € L' there is an S € GL, (IR) such that c(F, G, H) = (F, G, H)S.

For some additional remarks on the desirability of continuous canonical forms cf. [2]

and also [15]. Also our proof of the “‘feedback suspends degeneracy” theorem mentioned
i 1.6 above is based on the use of a suitable canonical form. It turns out that there exist
'en dense subspaces Uy C L, n,p(IR), which together cover Lp"." (IR), on which
xontinuous canonical forms exist. Cf. 3.10 below. On the other hand.

1.17 Theorem: There exists a continuous canonical form on all of L (IR) if and m
miyifm=lorp=1. e

1.18 On the geometry of M’ (IR). Holes. Now suppose we have a black box (1.2)

m,n,p

which is to be modelled by a linear dynamical system of dimension n. Then the input-
output data give us a point of Mﬁ":fp (IR) and as more and more data come in we find

(ideally) a sequence of points in M'::ﬁfp(lR) representing better and better linear dyna-

fmcal §ystem approximations to the given black box. The same thing happens when one
18 dealing with a slowly varying black box or linear dynamical system. If this sequence
;;;‘Lgar‘cgzraches a limit we have “identified” the black box. Unfortunately the space
f};F""'P(‘H) is never compact sq thateg gfquenoe of points may fail to converge to any-
{ing whatever. There are holes in M n,p (R). Consider for example the following
family of 2-dimensional, one input, one i)utput systems

(L19) g = () Fa= (R Ho=(2%,0),2=1,2,3,... |
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Let u(t). o<t < to be a smooth input function, then y(t) = hm 1 (T u(t) exists and is

equal to y(t) = ra u(t) This operator can not be of the form f(") for any system T of
the form (1.1) (oecause the f(X) are always bounded operators and 3 4 7 is an unbounded
operator ). A characteristic feature of this example is that the mdmdual matrices

F,. G;, H; do not have limits as z - . (A not unexpected phenomenon. because after
all we are taking quotients by the noncompact group GL, (IR)). This sort of situation is
actually important in praciice, e.g. in the study of very high gain state feedback systems
x = Fx + Gu, u=cLx, where c is a large scalar gain factor. Cf. [12].

Another type of hole in A/'cnf f, p( IR} corresponds to lower dimensional systems, and in a
way these two holes and combinations of them are all the holes there are in the sense of

the following definitions and theorems for the case p =m = 1. There are similar theorems
in the more mput/more output cases.

1.20 Definition: We shall say that a family of systems I, = (F,, G,, H;) converges in
input-output behaviour to an operator B if for every m-vector of smooth input functions

u(t) with support in (0, =) we have Iun f(Z,) u(t) = Bu(t) uniformly ir t on bounded t
intervals.

1.21 Definition: A differential operator of order r is an operator of the form

i3
u(ty = y(t) = Dy(t) = agu(t) + a, g‘t u(t) +... +a, ¢ - u(t), where the a, ..., 3, are

p X m matrices with coefficients in IR, and a, #* 0. We write ord(D) for the order of D.
By definition ord(0) = — 1.

1.22 Theorem: Let (Z,), be a family of systems in L, 5, {(IR) which converges in input-
output behaviour. Let B be the limit input-output operator. Then there exist a system X’
and a differential operator D such that

Bu(t) = £ (Z")u(t) + Du(t)
and ord(D) + dim(Z)<n-1.

1.23 Theorem: Let D be a linear differential operator and Z' € L, , {(IR) and suppose
that ord(D) + dim(2") < n— 1. Then there exists a family of systerns (Z,),,
2, €L7%, (IR) such that for every smooth input vector u(t)

limoo f(ZHu(t) = £(ZYu(t) + Du(t)

uniformely on bounded t-intervals.

1.24 Concluding introductory remarks. Many of the results described above have their
anzlogues in the discrete case and/or the time varying case, cf. [3-8, 911, 14]. But not
all. For instance the obvious analogues of theorems 1.22 and 1.22 fail utterly in the dis-
crete time case. In this case }if.“m f(Z,)u(t) exists for all inputs u(t) if and only if the in-

dividual matrices A, (z) = H,Fisz converge for z - °o, This means that in the case of in-
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&

~ut-output convergence the limit operator is necessarily of the form f(Z') for some, possibly
\ower dimensional, system £ The same answer obtains in the continuous time case if
vesiies input-output convergence one also requires that the F,, G, H, (or more generally
tne A, {z)) remain bounded.

5 number of sections have been marked with a #: these contain additional materia} and
zan without endangering one’s understanding be omitted the first time through,

2 Complete reachability and complete observability

Let F,G. H) € Ly n,p(IR) be a real linear dynamical system of state space dimension @
with m inputs and p outputs. We define
2N RAF, G =(GFG...FG),s=0,1,2,...,R(F,G) =R, (F,G)

the n X (s + 1)m matrices consisting of the blocks G, FG, ..., F'G, and dually

H
HF
(.2) Qu(F,Hy=| . |,s=0,1,2,...,Q(F,H) = Q,(F, H).
)
We also define
Ay A ... A
Ay . )
Z3) HF, G H) = Hy(®) =| © 1 FQ(F.BR(F,G),s=0,1,2,..,
A, e Agg

“here Ay = HF'G,i=0, 1,2, ....
it 15 useful to notice that

(24 Ry ((F, G)°) = SRy (F, G), Qu((F, H)®) = Qu(F, H)S™ ,

where of course (F,G)® = (SFS™, SG), (F, H)® = (SFS™*, HS™). It follows that
25) He (%) = Hi((F, G, H)®) = Hi((F, G, H)) = Hy (B)

ivrall S € GLy(IR), which is of course also immediately clear from (2.3).

}' 6 Peﬁnitions of complete reachability of complete observability. The system
¥, G, H) € Lip,n,p(IR) is said to be completely reachable iff rank (R(F, G)) = n. The
Svstem (F, G, H) is said to be completely observable iff rank (Q (F, H)) = n. These are
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generic conditions; in fact the subspace L™ (IR) of Ly, o (IR} consisting of all systems
which are both completely reachable and completely observable is open and dense. We note
that (F. G, H) is co (= completely observable) and cr (= completely reachable) iff the
matrix Ho(F. G, H) = Q(F,H) R(F, G) is of rank n.

*2.7 Termilogical justification. Let (F,G.H) € Ly, , o (IR). Then (F. G, H) is completely
reachable iff for every x; € IR™ there is an input function u(t) such that the unique solu-
tion of

(’ x = Fx + Gu(t), x(@) =0

passes through X,: i.e. every state is reachable from zero. For a proof cf., e.g., [17, theorem
3.5.3 on page 66] or {10, section 2.3}. Instead of completely reachable one also often finds
the terminology (completely state) controliable in the literature.

Dually the system (F, G, H) is completely observable iff the initial state x(0) at time zero
is deducible from y(t), 0<< t < 1,,1, >0 (using zero inputs). Equivalently (F, G, H) is
completely observable if the initial state x(0) is deducible from the input-output behaviour
of the system on an interval [0,t;],t, > 0. Cf,,e.g.,[14, Ch. V, section 3] or [17, theorem
3.5.26 on page 75].

The following theorem says that as far as input-output behaviour goes every system can be

replaced by a system which is co and cr. Thus it is natural to concentrate our investigations
on this class of systems.

2.8 Theorem ([10]): Let £ =(F,G,H)€L,, , »(IR) with input-output operator f(Z). Let
n' = rank(H, (Z)). Then there exists an

' = (F, G, H) € L',/ (R) such that f(Z) = {(Z).

'Proof: Let X = IR be the state space of Z. Let X3k e the linear subspace of X
spanned by the columns of R(F, G). Then, clearly, GUR™) C xreach gnd F(X™M C
Xr2¢h (Because F" = a ]l + a,F + ... + a,_,F" ! for certain 3 € IR by the Cayley-
Hamilton theorem). Taking a basis for X" and completing this to a basis for X we see
that for suitable S € GL, (IR), £° is of the form

(e s ACHE)

where the partition blocks are respectively of the sizes:

X mn-n"Xmn"Xn, n'Xn-n",n-0"Xn",(n-n")X(n- n'"),
pXn'.pX(n—n") for G",0,F", Fy3,0, Fap, H', H respectively if n'' = dimXeh,
Now clearly

-1 L4
HeF7G = (HS™)eSFS 7SG = H'eF "G”
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e
7

and rank R(F”.G"") = rank (R(SFS™, SG)) = rank (SR(F, G)) = rank R(F, G) = n"",
lt follows. ¢f. {1.4). that £ and "' = (F".G", H") have the same input-output operator,
Trus to prove the theorem it now suffices to prove the theorem under the extra hypothesis
wat (F. G, Hiis cr. Let X, be the subspace of all x € X such that HF'x = 0 for all
1=0.1.....0:i.e., Xo = Ker(Q(F, H)). Then HF'x = 0 forall i = 1,2, ..., using the Cay-
& -Hamilton theorem. Hence FX, C X, and HX,, = 0. Taking a basis for X, and comple.
tng it 10 a basis for X we see that for a suitable S € GLy(IR). 35 is of the form

S {( g—-‘) (:” E’ 2), (©, H‘)), ¢

where G'. F". H' are respectively of the sizes n’ X m,n' X n', p X n', n’ = rank (Q(F, H)),
which is atso equal to rank H,(F, G, H)if (F, G, H) iser.
Ciearly

HeF7G = (HS )¢S5 G = H'eF G’

ranx (Q(E, H)) = rank (Q(SFS™, SHS™) = rank (Q(F', H')),

so that ' = (F', G, H') is completely observable and fz’ = 5. Also R(SFS™, SG) is of
the form

R’
R(SFS™, SG) = ( , )
G730 R, &)
But rank R(F, G) = n so that the n rows of R(SFS™, SG) = SR (F, G) are independent.
It fallows that the n' rows of R(F’, G') are also independent, proving that I’ is also comple-
tely reachable.

*29 Pole Assignment. A set A of complex numbers with multiplicities is called symmetric
t with € A also f € A with the same multiplicity. Here § is the complex conjugate of f.
If A isareal n X n matrix then o(A), the spectrum of A, is a symmetric set.

210 Theorem: The pair of matrices (F,G), FEIR"*® G € IR"* ™ is completely
teachable iff every symmetric set with multiplicities of size n occurs as the spectrum of
F + GL for a suitable (state feedback) matrix L.

Le. the system (F, G, H) is cr iff we can by means of suitable state feedback arbitrarily
Teassizn the poles of the system. For a proof cf., e.g., [18, section 2.2].
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3 Nice Selections and the Local Structure of <L‘r:r'!’,n,p (IR)/GL, (IR)

3.1 Nice Selections. Let (F,G,H) €Ly,  ,(IR). We use 1(n, m) to denote the ordered
set of indices of the columns of the matrix R(F, G).

Le. l(n,m) ={(i,j)1i= 0, ..,n;j=1,..., m} with the ordening
(0,10<(0,2)<...<(0, m)<(L, N<...<(1, m <... <(n, 1) <... <(n, m). A nice
selection a C I(n,m) is a subset of I(n, m) of size n = dim I such that

(i,j) € a=(-1,j) €« if i > 1. Pictorially we represent I(n, m) as an (n + 1) X m rectan-
gular array of which the first row represents the indices of the columns of G, the second
row the indices of the columns of FG, ... etc ... . We indicate the elements of a subset a
with crosses. The subset of the picture on the left is then a nice selection (m = 4,n= 5)
and the subset o of the picture on the right below is not a nice selection

X

If B is a subset of I(n, m) we denote with R(F, G)g the matrix obtained from R(F, G)
by removing all columns whose index is not in g.

We use Ly, ,(IR) to denote the space of all pairs of real matrices (F, G) of dimensions
n X n, n X m respectively. '

. 3.2 Lemma: Let (F,G) € Ly, ,(IR) be a completely reachable pair of matrices. Then
there is a nice selection « such that R(F, G), is invertible.

Remark: Complete reachabilitiy means that rank R(F, G) = n, so that there is in any case
some subset f of size n of I(n, m) such that R(F, G)g is invertible. The lemma says that
in that case there is also a nice selection for which this holds.

Proof of the lemma: Define a nice subselection of I(n, m) as any subset § (of size < n)
such that (i,j) €6,i> 1 = (i—1,§) €f. Let a be a maximally large nice subselection of
I(n, m) such that the columnns in R(F, G), are linearly independent. We shall show that
rank (R(F, G),) = rank (R(F, G)), which will prove the lemma because by assumption

rank R(F, G) = n.

Let u = {(0,3), ..., (i1, §1) -+, (0,39, .- -, (ig, Js}}. - Then by the maximality of a we know
the columns of R(F, G) with indices (0,3),j € {1, ..., m}\ {j,, ..., s} and the columns of
R(F, G) with indices (i; + 1,j), t=1,..., s are linearly dependent on the columns of

R(F, G),. With induction assume that all columns with indices (it + k, ji), k<1,
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———en.

7 Nice selections and the local structure of L_fn"n’p (IR)/GL_ (IR)

JUmRE

1=1.....sand (k- 1,j), k<r i€ {1, ...,m}\ {j, .--»js} are linearly dependent on the
solurans of R(F, G)q. So we have relations

Ff"lgj= S a(i,j)Figj,jE{l,...,m}\{jg, NS
(.5 €a

Figﬂgjt = S b(i,j)Figj, t=1,...,s,
(i,j)€a
where g; denotes the jth column of G. Multiplying on the left with F we find @
Fg= Y a)F*'y |
(L)) Ea :

Frlg = N b F'*l,
G.il€a
%e have aiready seen that the F“‘gj, (i,j) € a are linear combinations of the columns of
RiF.G),. It follows that also the F'g; and F{*** ' g; are linear combinations of the co-
bimns of R(F, G),. This finishes the induction and hence the proof of the lemma.

3.3 Successor indices. Let a CI(n, m) be a nice selection. The successor indices of « are

those elements (i, j) €1(n, m) \ « for which i = 0 or for which (i, ) €« for all i’ <i if
= 1. Forevery j, € {1,...,m} there is precisely one successor index of a of the form

!, jo); this successor index is denoted s(a, j,). In the picture below the successor indices
f « are indiced by *'s (and the elements of @ with x's).

Columnsof G . # x & x X1 € X3 ey

Columns of FG X X . €3 . e4
X * . s . Xg m
* X3

Columns of F5G

34 Lemma: Let oC I(n, m) be a nice selection and X1, ..., Xm anm-tuple of n-vectors.
Then there is precisely one pair (F, G) €Ly, ,(IR) such that

R(F, G)q = I,,x n, the n X n unit matrix
R(ch)s(a,j) = X5 forallj =1,...,m
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Proof: Let f; be the i-th column of the matrix F,i=1,2,...,n. Then in the example
given above the values of the g;,j=1,...,mand f;,i=1, ..., n can simply be read of
from the diagram. One has in this case

81 X;,8 % €1,83 =X3,84 = €3
fl = C3,f2 = e41f3 = es,f4 =X4,f5 = Xa.

It is easy to see that this works in general and to write down the general proof though it
tends to be notationally cumbersome.

3.5 Local structure of L‘:,Ln,p(IR)/GLn (IR). Let a C I(n, m) be a nice selection.
We define

Uy = {(F,G,H) € Liy n ,(R)|det R(F, G), # 0}

(3.6)
vo = {(F: Ga H) € Lm,n,p(m)lR(F’ G)c = qu n} s

3.7 Lemma:
(i) Uy = Vo X GLL(IR)
(ii) Vo= IRM* 1P

Proof: (i) Let (F, G, H) € U,. We assign to (F, G, H) the pair (F, G, H)3, $7!) where
S=R(F,G)a'. Then (F,G, H)® € V, because R(SFS™, SG) = SR(F, G) and hence
R(SFS7?, SG), = SR(F, G),- Inversely given ((F, G, H), S) € Vo X GL, (IR) we assign
to it the element (F, G, H)S. This proves (i). Assertion (ii) follows immediately from
lemma 3.4. Indeed, let zE€ IR™"* ™ and view z 2s an m + p tuple of n-vectors

2= (X1, .-, Xms Y15 ---» ¥p). Then there are unique F, G, H such that R(F,G)s = Inx o
R(F, G)s(a,j = Xj» hy = y; where h; is the /th row of H.

3.8 Local structure of Lf:"f,,'p (IR)/GL, (IR). Let again a be a nice selection. Then we de-
fine in addition.

(3.9) Uy = Ug 0 L7 2" (R), Vo = Vo N LYo (IR)

m,n,p m,n,p

Then one has clearly that V3. is an open dense (algebraic) subset of V,, and that
UL = Vo2 X GL, (IR).

3,10 The local nice selection canonical forms c,. Lemma 3.7 defines us a (local) conti-
nuous form on U, for each nice selection a. 1t is

(3.11)  ca{(F,G, H)) = (F, G, H)Sa € V,, S, = R(F,G);!, (F,G,H) € U,
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¢ L, are open dense subsets of L7 | (IR}, and by lemma 3.2 the union of all the U,,
2 a ruce selection. covers all of Lm n, p(IR) This is thus a set of local canonical forms
o F1-h can be usefui in identification problems (it leads to statistically and numerically
weii posed problems, cf. [15, section II].

3.12 The dual results. Dually we consider the set I(n, p) of all row indices of Q(F, H),
winch we also picture as an (n + 1) X p array of dots. Now the first row represents the
rows of H. the second row the rows of HF. ... . A nice selection is defined as before and
one has the obvxous analogues of all the results given above. In particular if

F.GHYE L (R) there is 2 nice selection f C I(n, p) such that Q(F, H), is inver-
tiole. Here Q(F, H)g is the matrix obtained from Q(F, H) by removing all rows whose
index is not in 8.
{ne also has of course local canonical forms 'ép (defined on ﬁpx) for every nice selection
: < I(n,p):

13130 G((F,G.H)) = (F,G, H)%, S5 = Q(F, H)y, (F, G, H) € Up
(3.14) Up={(F,G,H) € Ly, 0,p(IR)|Q(F, H)g is invertible} .

4

4 Realization theory

Let A ={Aq, Ay, Aj, ...) be a sequence of p X m matrices. We shall say that the sequence

A is realizable by an n-dimensional lineas system if there exist a system (F, G, H) €Ly (iR
Lm,n,p(IR) such that A; = HF'G,i=0,1,2,.... It follows immediately from (the proof

of) theorer 2.8 above that if A is realizable by means of (F, G, H) then there is also a
possible lower dimensional system £'= (F',G', H') € L' i/ (R), n’ < n. which also

m, 0} .
realizes A and which is moreover completely reachable and completely observable. @

For each sequence of p X m matrices A we define the block Hankel matrices

Ao Ay ... A,

A, .
4.1) Hy(a) =| . . . hs=0,1,2,....
A, v Ag

4.2 Theorem: The sequence of real p X m matrices 4 = (Ao, A, ...) is realizable by
means of g completely reachable and completely observable n-dimensional system if and
only if rank H(A) = n for all large enough s. Moreover if both X, T'€ Lf: ;’p (IR) realize
4 then T'= =5 for some S € GL, (IR). '

This theorem will be proved below. First, however, we mention a consequence.
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4.3 Corollary: If the sequence of p X m matrices A is such that rank H;(4) = n for all
sufficiently large s, then rank Hy(4) = n forall s>»>n—1.

Proof. if £=(F, G, H) realizes A and I is co and cr and of dimension n, then
rank R, -1 (F, G) = rank Q, _, (F, H) = n, so that rank H,,., (4) = rank (R, _,(F,G)
Qn -1 (F’ }I)) =n

A first step in the proof of theorem 4.2 is now the following lemma which says that if

rank H;(A) =n for all s 21— 1, then the A for i 3 2r are uniquely determined by the
2r matrices Ag, .-, A2r—1.

4.4 Lemama: Let A= (Ao, A,,...) be aseries of p X m matrices such that rank H(A)=n
for all s=r — 1. There are m X m matrices S, ..., S;; and p X p matrices T, ..., Tr-;

such that forall i=0,1,2,....

(4.5) Ajer = ASo + Aj 51t A1 8y =
=ToAit TiAjep + .t e Ajusrs

Proof: Because rank M, _;(A) = n and rank H,(A) = n we have

Ao A .. Ay A
n = rank H, - (A) = rank Al .
A Ayr—g Azroy

50 that there are m X m matrices Sy, ..., Sy..; such that
Ai+r = AiSo + ...t Ai+,_.1S,..1, i=0,..,1— 1.
'Similarly, it follows from
Ao v A

n=rank H_, (A) =rank} A__, Agr_a

A, vee Agreg

that there are matrices Ty, ..., T—; such that
(4.6) Ap+i=ToAj+ ... + TrjAjyr—,i=0, ., 11
Suppose with induction we have already proved (4.5) for i <k -1, k=>r.
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Corsider the following submatrix of Hy (A)

Ao Ay e Ay Ar Ay
Ay
@nl|
Aray Azr-2 Ay .t Ak +r—1
Ar see AZr-—l A2|' s Ak +r

Using the relations (4.5) for i <k —1 we see that the rank of 4.7 is equal to the rank of @

! Ay A, v Ary 0o .. 0 O
A
{4.8)
A Ay_g o ... 0 o0 R
A, ANy 0 ... 0 X
where X =Ay 4 —ArSg — ...~ Ag4r~1S;~; . Using (4.6) we see by means of row opera-

tons on (4.8) that the rank of (4.7) is also equal to the rank of

Ao . Aey | O ... 0 0
At Ama | O .. 0 0
0 .. 0 lo .. o x

Now the rank of (4.7) is n = rank H, _; (A). Hence X = 0 which proves the induction stew.
This proves the first half of (4.5); the second half is proved similarly. 4

More generally one has the following result (which we shall not need in the sequel).

*49 Lemma: Let Ay, ..., A be a finite series of matrices and suppose there are
LEINU {0} suchthat i+j=5—1 and

AA.O e A‘i Ao e Al Ai_"l‘l B Ao “es Ai
rank | - . = rank | - . : = rank . . =n
Aj A“.j Aj Ai+j Ai+j+l Aj “ee A“]

Aj.ﬂ ees Al+j+l
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forsome n €N U {0}, then there are unique Ag4+), Ags 2, ... such that
rank H;(A) = n

for all t = max(i, j).

Proof: By hypothesis we know that there exist matrices Sy, ..., §;

(4.10) Ajsr+1 = ArSot ..+ A8, 1=0,..,5.

Now define A, for t > s by the formula

4.11) A= A1 So - AL

Also by hypothesis we know that there exist Ty, ..., T; such that

(4.12) Ajire = ToAr+ .+ TjAj4r, 1= 0, .., 1.

To prove that rank H,(A) = n for all t 2 max(i, j) it now clearly suffices to show that
{4.12) holds in fact for all r = 0. Suppose this has been proved for r<q-1,q=i+1.

Consider the matrix ®
Ao - A.i Ai.ﬂ Ag
“13)| - : : -
A o A Al o Ajag
Ajer oo Ajsjn I Aivj+z .- Ajs gt

By means of column operations, the hypothesis of the lemma, and (4.10)—(4.11) we see
that the rank of the matrix (4.13) is n. Using row operations and (4.12) for r<q -1 (in-
_duction hypothesis) we see that the rank of (4.13) is also equal to the rank of

Ao A; Alfl e A.q

(4.14) . - »
Ay e Ay | A e Apg

O .. 0 |o . 0 X

where X is the matrix Ajyq41 ~ ToAq — ... = TjAj+ 4. Now use column operations and
(4.10), (4.11) to see that the rank of (4.14) is also equal to the rank of

Ao . A 0 .. 0 O
@IHL A . Ay ] O 0 o
0 .. o 0 0 X

It follows that X = 0,
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4.16 Proof of theorem 4.2 (first step: existence of a co and cr realization; [10]): Let
1 € IN be such that r 2 n and rank Hs(4) =n for all s =1 - 1. We write

Ao . Ag o Apyg—r
H=H_1(A)=| . D HR= :
Aol Az Arsk-1 - Azryg-1
and forall s, t €IN we define
Eox1 = (Tex s10sx ¢ - s))‘f-‘*<t . @
Ele—lle fs=t
Lixt
E = (———-——— ifs>t
s Xt ‘\ 0(5—1) X1 1]

where I, x 5 is the a X a2 identity matrix and 0, x , is the a X b zero matrix. Because H
is of rank n, there exist an invertible pr X pr matrix P and an invertible mr X mr matrix
M such that

1 Onx _
aXa l nX (mem =EernEner'

(4.17) PHM=
Or—n) X n l Ogpr —n) X (mr—mn)

Now define

(4.18) F = Enx pePHOMEmix n, G = Enx x PHEmex ms

H=E;x xHMEmex n
re claim that then (F, G, H) realizes A, i.e. that ‘
1.19) A;=HFG,i=0,1,2,... . @

To prove this we define

0 ... o0 Se 0 I' o' o
D: 9 .". . . C= : . . 0'

o0 0 .. 0 r

0 VI To  euw- Te—1

»"here 0,1,0, 1 are respectively the m X m zero matrix, the m X m identity matrix, the
X p zero matrix and the p X p identity matrix and where the Sgs -0 Se—y and
Tg +» Tr~y are such that (4.5) holds for all i, Then

(420) H® = c'y=nHDX k=1,2,...
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Let H* = MEmrx nEnx prP- Then H* is a pseudoinverse of H in that

(421) HH*H=H

(Indeed using (4.17) we have H H*H = P! Eprx nEnx mrM-l ME ;s x nEnx prP
P EprxnEnxmeM ™ = H becanse MM = 1, PP = I, E, o E

Eqx prEer n = Inx n-)-
We now first prove that

mexn = Inxns

(422) EoxpP C*HMEm,xn=FX k=12, . .
pi

o view of (4.20) this is the definition of F(cf. (4.18)) in the case k = 1. So assume (4.22)
has been proved for k < t. We then have
Eox prPC ' AMEmex 0 = Enx pPC'HDM Epe x o (by (4.20)
= Enx pPC'HH*HDME, x o (by (4.21))

= En X prPC(HMEmrX nEnX prPHDMmeXn
(by the definition of H*)

= F'Ep x prP CHMEq x n (by the induction hypothesis
and (4.20))

= F'F (by the definition of F, cf. (4.18) and (4.20)) .
We now have forall k>0

A= Epy prH®Emex m (definition of H®)
= Epx piC*HEmex m (by (4.20))
= Epy pC*HH*HEmex m (by (4.21))
= Epx prC* M Eqrx nEnx prPHEmrx m (bY the definition of H*)
® = Epx prHD*MEq:x oG (by the definition of G and (4.20))
= Epx pe HH*HD*ME  x oG (by (4.21))
= Epx prHMEme x nEnx prPHD*ME x oG (by the definition of H*)
= HE, x pr PCX HME 5, x 1 G (by the definition of H and (4.20))
= HF*G (by (4.22)) .
This proves the existence of an n-dimensional system Z = (F, G, H) which realizes A. Now
foralls=0,1,2,...
Hs(A) = Qs(F, )R (F, G),
where H

o,(F, 1) =| BF |, R,(F,G) = (G FG .... F*'G).

HE?
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Both Q (F, H) and R,(F, G) have necessarily rank < n. It follows via the Cayley -Hamilton
theorem that (F, G, H) is completely reachable and completely controllable, because
rank M (A) = n for s=r—1.

4 .23 Proof of the uniqueness statement of theorem 4.2: Let £ = (F, G, H) and
=(F, G, Hj be two co and cr realizations of A. Then dim(Z) = rank H,_,(A) = dun(E),
By hypothesis we have

(424) A,=HFG=HFG,i=0,1,2,.

According to lemma 3.2 and 3.11 there exists a nice selection a (of size n) of I1(n ~ 1, m),
the set of column indices of R, _, (F, G) and H,, ., (F, G, H), and there exists a nice selec-
uton § (of size n) of I(n -1, p), the set of row indices of Q,_, (F, H) and H,_; (F, G, H),
such that

rank (Ry— (F, G)o) = rank (Qn—, (F, H)g) = n.

iNote that a nice selection in I{n, m) {or I(n, p)) is always contained in 1(n -1, m)
ter I{in — 1, p).) Let H,_, (F, G, H),, s be the matrix obtained from 4, .., (F, G, H) by
removing all rows whose index is not in § and all columns whose index is not in a. Then

Hy 1 (F, G, H)q 3= Qn-y (F, H)g Ry (F, G)q

so that Hy_y (F, G, H),, g is an invertible n X n matrix. Also
Ho—1(F, G, H)y,p = Hn—y (F, G, H)y 5= Qs (F, H)gR,_; (F,G)q

so that Q, _, (F, H)p and R, _, (F, G), are also invertible. Now let
Z1 = (F1,Gy, H)) = (F,G, H)', T = Qq—, (F, H)y
= (FL,GLH) = (F.G ML T=Quu (. L
Then of course T, and ¥, also realize A. Moreover, using (2.4) we see

Qn—1 (Fy, Hy)g =1y = Qu_( (Fi, Hy)p.
It follows that

R(F;,Gy) = Ha(Z1)g = Ha(Z) = Hn(f)ﬂ= Hn(fx)p = R(F,,C’;,)

and, in turn, this means that F, = F, and G, = G, by lemma (3. 7) (i) combined with

iemma (3.4), Further the matrix consisting of the first p rows of H,(Z;) = Hy(Z4) is
equal to

H,R(F,,G,) = H,R(F,,G))

so that also H, = Hl because R(F,, G,) = R(F,, G,) is of rank n. This proves that indeed
= 2% with $=TIT.
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4725 A realization algorithm. Now that we know that A is realizable by a co and er sy-
stem of dimension n iff rank #;(A) = n for all large enough s it is possible to give a rather
easier algonthm for calculating a realization than the one used in 4.16 above (which is the

algorithm of B.L. Ho). It goes as foliows. Because A is realizablebya T € L,?':rp (IR)
there exist a nice selection a C I(n, m), the set of column indices of R(F,G) and Hq(2),

and a nice selection B C1(n, p), the set of row indices of Q(F, H) and H,(Z), such that
(4.26) Hp(A)ap=8

is an invertible n X n matrix. Consider
S 1 Ha(A) -

!ﬂs n X (n+ 1) m matrix is necessarily of the form R(F, G) for some (F,G) €L ,(IR)
and moreover by (4.26)

(S—l Hn (A)ﬂ)a = In

so that F, G can simply be written down from S™ H,,(A)4 as in the proof of lemma 3.4,
The matrix H is now obtained as the matrix consisting of the first p rows of H,(A),.

After choosing o, this algorithm describes the unique triple (F, G, H) which realizes A
such that moreover R(F, G)g = 1.

%427 Relation with rational functions. Suppose that Hy(A) is of rank n for all sufficiently
large k. Then by theorem 4.2 the sequence A is realizable. Using Laplace transforms (cf.
1.8 above) we see that this means that the p X m matrix of power series

Z A;s~'"! isin fact a matrix of rational functions.
i=o

o
(4.28) Z As = (5" —apys" T - —a;s—ap) T B(s) = d(s) ' B(s),
i=0

where B(s) is a p X m matrix of polynomials in s of degree <n—1.
Inversely if

429) D AsT = d(5)7B(s)
i=0

for a matrix of polynomials B'(s) and a polynomial d'(s)=s"—at_s" ™'~ ...~ ajs— 120
with r = degree (d'(s)) > degree B'(s), then

Ajvr= a0Ait a1Aj 4 oo 21 Ajer
foralli=0,1,2,... . And this, in turn implies that
rank Hk(A) = rank Hr—l(A)
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forall k3> 1 ~1, so that A is realizable. It follows that 4 is realizable iff TA;s ™1}
represents a rational function which goes to zero as s —+ oo,

5 Feedback splits the external description degeneracy

In this section we shall prove the result described in section 1.6. To do this we first diseuss
still another local canonical form.

5.1 The Kronecker nice selection of a system. Let (F,G,H)ELST  (IR). We proce@‘

m,n,p
as {ollows to obtain a “first” nice selection x such that (F, G, H) E U

Consider the set of column indices I(m, n) in the order (0,1) <(0,2)<... <(0, m)<
1L, D< L <1, m<..<(n,D<.. <(n m}. For each (i, j) we set (i,]) €« ng,
is linear independent of the Fi g with (i’,j") <(i,j). We shall call the subset x of I(n,m)
thus obuained, the Kronecker selection of (F, G, H) and denote it with x (F, G, H). Itis
obvious that ¥ has n elements if (F,G, H)€ Lt (IR).

m,n,p

5.2 Lemma: The Kronecker selection k defined above is a nice selection.

Proof: Let (i,j) €« and suppose i > 1. Suppose that (i’, j) € «,i’ <i. This means that
there is a relation

Fig= D bk )F,

k,0 < @',j)
Multiplying with F'=! on the left one obtains
Fig, = Z b(k, I)Fi-i'+kgl . w
k0 <@

showing that F‘gj is linearly dependent on the F’gj, with (s,i') < (i, j). A contradiction,
q.e.d.

$.3 Lemma. Let®, G H)ELm n p(!R) and S€GL,(IR), then
k(F, G, H) = k((F, G, H)%) .

5.4 Lemma. Let (F,G, H)EELm n,p(IR) and let L be an m X n matrix. Then
k(F, G, H) = k(F + GL, G, H).
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The proof of lemma 5.3 is immediate. because the dependency relations between the
(SES™!)'(Sg;) = S(F'g;), (i, j) €1(n, m), are precisely the same as those between the
F'g;, (i.j) € 1(n, m). As to lemma 5.4 we define

Xo(Z) = subspace of X = IR" generated by g;, ..., 8m
X (Z) = subspace of X = IR" generated by g;, ..., Em» F&1, -+-» F8m

(5.5)

Xa(Z) = subspace of X € IR™ generated by gy, ..., Em»
D Fgi,.... Fgm, . Fgy, o0, Flgm ©

A
Let £(L) = (F +GL, G, H) and let F = F + GL. Then one easily obtains by induction
that

(5.6) X;(2(L)) = X;(%),i=0,..,n
and that
(5.7) Fig; = Flg; mod X' (2),i=0,1,..,n

(where, by definition, X (£) = {0}). Lemma $.4 is an immediate consequence of (5.7).
{Note that a basis for X'(Z) is formed by the vectors F* g with (k, ) €« (T) and k <1

the classes of the FX g, with (k,) €« (E) k = i are a basis for the quotient space

X (@YX 4(),i=0,...,n).

fz=(F,G H)eE L” co p(IR) then ¥ (F, G, H) can be calculated from H,(F, G, H).
Indeed in that case Q(F H) is of rank n. Therefore, because H, (F, G, H) = Q(F, H)R(F, G)
the dependency relations between the columns of H,(F, G, H) and between the columns

of R(F, G) are exactly the same.

5.8 Remark: If (F, G, H)€ Lii,n,p(IR) then also (F +GL,G,H) €L p (IR) as is easily
checked. But if (F, G, H)€ L, » (IR), then (F + GL, G, H) need not "also be completely
observable Though of course this will be the case for sufficiently small L (because

Ly, n,p(IR) is an open subset of Ly 5, p(IR)).

*5.9 The Kronecker control invariants. The invariant « (F, G, H) depends only on F and
G, so that we can also write « (F, G). For each j=1, ..., m, let k; be the number of ele-
ments (i, )) in x(F, G) such that I=j. Let «, (F, G)? ZKm (1" G), m' =rank (G), be
the sequence of those k; which are # 0 ordered with respect to size. It follows from
lemma’s 5.3 and 5.4 that the «{(F, G) are invariant for the transformations

(5.10) (F,G) ~ (F,G)% = (SFS™!,8G) (base change in state space)
(5.11) (F,G) =~ (F +GL,G) (feedback) .
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One easily checks that the x;(F, G) are also invariant under
(5.12) (F,G) = (F,GT), T &€GLn (IR) (base change in input space) .

Ttus zan, e.g., be seen as follows. Let A;(Z) = dimX'(Z) - dimX' ™! (Z) for i= 0,1, ....,n.
Consider an rectangular array of (n +1) X m boxes with the rows labelled 0, ..., n. N,ow
~ut # cross in the first A;(E) boxes of row i for i= 0, ..., n. Then kj(Z)j=1,...mis
the number of crosses in column j of the array. Obviously the A;(Z) do not change under

a transformation of type (5.12), proving that also the k;(F, G) are invariant under 5.12,
The group generated by all these transformations is called the feedback group, Thus the
x:(F G) are invariants of the feedback group acting on Lf‘:;n(lR). It now turns out that ’\
these are in fact the only invarants. l.e. if (F, G), (F,G)el,, ,(R) and ¥;(F,G) = w
x(E.CJ,i=1,...m’, then (F, G) can be obtained from (F, G) by means of a series of
tmansTormations from (5.10)—(5.12). Cf. [11] for a proof, or cf. 5.30 below.

The - ;1F. G) are also identifiable with Kronecker’s minimal column indices of the singu-
iar matrix pencil (21, — F1G), cf. [11].

Stil; ar.other way to view the k;(F, G) is a follows.

Consider the transfer matrix T(s) = H(sl, —F}™' G of the cr and co linear dynamical
system T = (F, G, H) considered as a p X m matrix valued function of the complex
variablz s. One can now prove (cf. [14]):

Theorem: There exist matrices N(s) and D(s) of polynomial functions of s such that
) Trs1= N(s)D(s)™*, (ii) there exist matrices of polynomials such that X(s)N(s) +
Y{s)D{3) = 1y, (iii) N(s) and D(s) are unique up to multiplication on the right by a unit
{from the ring of polynomial m X m matrices. Moreover degree (det D (s)) = n = dim(Z).
Now for each s € IC, one defines

¢x(s) = {(NG)u, D)) lu € L™} C ICP*™ .

'f s€1C is such that D(s)™ exists, then also ¢5 (s) = {(T(s)u, u)JuEIC™}CICP* ™, |
2y case oy (s) is a p-dimensional subspace of ICP* ™, In addition one defines ¢y () = 7~
(0, u)ju € L™} C ICP* ™, which is entirely natural because lim T(s) = 0. This gives a
ontinuous map of the Riemann sphere IC U {~} = §? to the Gs;;;;mann manifold
Sm,p+m (IC) of m-planes in p +m space. Let £ = G, b+ m (IC) be the canonical complex
vector bundle whose fibre over 2 € Gy 4y (IC) is the m-plane represented by z. Pulling
back ¢, along ¢y gives us a holomorphic complex vector bundle £(X) over S2.
Now holomorphic vectorbundles over the sphere S? have been classified by Grothendieck.
1:}"3 classification result is: every holomorphic vectorbundle over $? is isomorphic to a
@rect sum of line bundles and line bundles are classified by their degrees.
It now turns out that the numbers classifying £(Z), the bundle over S? defined by the
System I, are precisely the —«;(Z),i=1,..., m, where x;(2) =0 for i >m’ = rank (G).
One also recovers n = dim(Z), if £ € L‘:;":"p (IR), as the intersection number of ¢x (S*)
Witk 2 hyperplane in Gy, 1 4 (IC).
Thesz observations are due to Clyde Martin and Bob Hermann, cf. [13].
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As we have seen the x;(Z) are invariants for the transformations (5.10), (5.11), (5.12).
Being defined in terms of F and G alone they are also obviously invariant under base
change in output space: (F, G, H) ~ (F, G, SH), S € GL, (IR). The &;(Z) are, however,
definitely not a full set of invariants for the group  actingon L, , ,(IR), where & is
the group generated by base changes in state space, input space and output space and the
feedback transformations.

5.13 The canonical input base change matrix T(Z). Let £=(F, G, H) € L:'n'p(lﬁ) and
’let x =k (X) be the Kronecker nice selection of Z. Let (i, j) = s(«, j) be a successor index

of k. By the definition of k we have a unique expression of the form

; Y
(514) Figi= 2 a()Fg+ 2 ak DFtg
(LiYEx k,HE«K
i< k<i

(where the a(k, !) in the second sum also depend on i and j of course). Now define recur-
sively

A N A A
(515) g=g~- Zajﬁ)gj', G= (81, Bm)
i'<j
and

(5.16) T(Z) = (by)
where bjk =1ifj=k, bjk =—ak(j), if j <k, and bjk =0 1fj>k.
fal
Then G = GT(Z), and T(Z) is an upper triangular matrix of determinant 1.

517 Lemma: Let L€ (F,G,H)E€Ly , (IR), then

) TS rew =T
for all S € GL, (IR) and all feedback matrices L € IR™* ™,

Proof. Obvious. (Use (5.7)).

5.18 Example: Let m=5,n=9, and let (F, G, H) € L'y _ (IR) have Kronecker selection
®(F, G, H) equal to

X
X

x
i
E I T A

where we have omitted the last five rows of dots.
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Then T(Z) is an upper triangular matrix of the form

1 0 = 0 =
01 = & %
TX)=(00 1 0 0
00 0 1 =
00 0 0 1

Note that T(Z)™! is of precisely the same form.

This 15 a general phenomon Indeed by (5.14) and (5.15) (cf. also example (5.18) g g is oi
the form

(5.19) F=g+ ~ big TE)=(by).
>
eV
So that by; = 0 unless i = j (and then bjj =1) or i <j and k; > K;j
Let 1y, ..., tm be the columns of T(Z) and ey, ..., &y the standard basis for IR™. Then

(5.20) t=e+ > bye .
ki > kg
i<j
Using induction with respect to an ordening of the {1, ..., m} satisfying i <j = k; > k; it
readily follows that

ej=tj+ Z b{jti.
i<j
k> K
which proves that T(Z)™" also has zero entries at all spots (i, j) withi>j or (1 <jand ﬁ
K; <kj).

5.21 The block companion canonical form. Let x be a nice selection. We are going to
construct a canonical form on the subspace W, of all Z€ L 1" 2% (R) with « (Z) =«k. We
shall do this only in full detail for the case that « is the nice selection of example 5.18.
This special case is, however, general enough to see that this constmctxon works in general.
Let (F,G,H) €W, and let G= GT(Z). Now consider the system (F, G H) which is also
in W, asis easily checked. This system has the property that for each successor index
s(x,j)= (i, j) of k with i 0 we have

(522) Fy= D a'(k HFY
k,EK
k<i
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(i.e. T(F, G, H) = I,,). Indeed, using (5.14)

Fiy=Fg— O a()Fg= > akDFg= Y a'(k F

i'<j & Dex &.DEK
k<i k<i

because, clearly, X;(F, G, H) = Xi(F,é, H) foralli=0,1,2,...,n, cf. {(5.5), and cf. also
the remarks just below (5.7).

Now define a new basis for IR" as follows. Let k = {(0,§1), ..., (i1, 15 - -3 (05 i), - (irs jr)-
‘ien ke=ig+1,t=1,..,r, and K, 4 ... + kK, = n. For the successor indices
) F (ke d), t=1, .., 1, write

(5.23) Ff=— X be(k, HFR,.
x, Ex
k < Ky

Setting by(k, {) =0 for all (k, ]) € x we now define a new basis for IR™ by
m . t .
e =FX 7' + 3 btk - LPFI T g4 4 3 b (LG

ji=1 i=1

m t
e = FU72 + 3 b~ LFI T+ + Y b (2D
. i=1 i=1

o Tl gh
(5.24)

m t
e =F27g 4 3 b e - LDFRT g+ D b (L)
. j=1 i=1

_ A
iy tkp= Biy

: A
Cky 4.4k, = By -

Let X, C IR™ be the space spanned by the vectors %,-l, ceo §,-r i.e. Xo = X4 (F, é, H) =
Xo (Z). Then we see from (5.23) thar for the vectors defined by (5.24) above we have

FCIEXQ, F(Ci)Eei_l mOdXo for i = kl,k1 - l,...,2
Fex, +1 €Xo, F(e) =e;_ymod X, for i=k, +Xky, ...,k +2

Feki+"‘+kr-l EXO, F(Ci) = ey mOdXo for i= k; + ...t kr,...,k1 +... +kr__‘+2.
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A
1t follows that which respect to the basis ey, ..., €n, F and G are of the form

c10...0/l0 -+« 0 0 ++-- 0
ol - : . :
0 .01 |0 . 0 0 .0
* L = ® *
0 0} 010 0 0 . 0
F= 0 ol o0 - 01 0 . 0
& * L I » * - *
(5.25)
0 04 0 0 010 0
. : . . N 0
0 0} o 0 0 . 01
x * ] ] & . *®

é = (’él)%h caey ,ém), with
(5:26) B\ = ey Bia = kprkg oor By T Oy 4ot ke =
=Qforj€{1,...m}\ {j1,--0jr}.
In particular in the case that  is the nice selection of example 5.18 we see that with

respect to the basis ey, ..., ¢, defined by 5.24 the matrices F and G take the form (cf.
3.18, the inverse of T(E) is of the same form as T(ZX)). . m

0 1 0O 0 0 0 0 0O 0
2, az a3 a4 s 3¢ aq ag a9
0o 0 0 1 0 O 0 o0 0
0 0 6 0 1 0 0 o 0

by, bz | by by bg bg | b, bg | by
0 0 {0 O 0 00 1 0

Cy C2 C3 Cs Cs Cg Cqy Cg Cy
dy dy | d3 d¢ ds dg | dy dg | do

(5.27)
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0 0 0 0 O
1 0 = 0 *
0 0 o G O
0 0 0 0 O
G'= 0 0 0 0 O
0 1 b w =
¢ 0 0 0 0O
06 o o1 *
0 0 0 0 1

i his does not yet define a canonical form on W,,. True, for every £ € W, there exists an
S€GLy(IR) such that (F, G)® takes the form (5.27). But for two pairs (F, G) #(F, G),
both of the form (5.27), there may very well exists an S # I, such that (F, G)® = (F, G).

In fact, it is now not difficult to check that if S is an n X n matrix of the form

I 0] 83 554 0 O 0 0 0
0 1 O s;3 5.4 O 0 o 0
0 0 1 60 0 00 O 0
0 010 1 0 O 0 o0 0
Ssf 0 00 O 1 O 0 0 0
0 010 0 0 1 0 O 0
0 O | s;3 84 0 0 1 0 0
0 01} 0 sy 894 0 0 1 0
So; O S93 S9q4 Sgs O S99 O 1

Men SG =G and SFS™! is of the same general form as F, if F and G are of the form
(5.27). Choosing s,3, S14, S73, $74, S91, S93, Sea, S9¢ and Sgq judiciously we see that for every
Z=(F, G, H) €W,, there exists an S € GL(IR) such that SFS™ and SG take the forms

0 170 0 O O0}0 0}]0
2, 3|33 a 0 0 ay; ag| ag
0 0 1 0 00 00
00 01 0j0 O0}O
SF§'=| 0 00 O O 1{0 04O

by by | bs bs bs bgl by byt by
0 00 0 O Oj0 1]0
€ ¢l ey coa O 0] cy cgl co
y 0 {dy 0 0 0ldy, O1ldy

(5.28)
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o0 0 0 O
1 0 ¢3 0 cis
o006 0 0
000 0 O
sG=/0 0 0 0 O
0 1 ¢33 Caa Cas
0 00 0 O
0 0 1 cCas
0 0 0 1 ﬁ

where

1 0 ¢3 0 ¢
0 1 ca3 Coa Cas
TE)*'={0 01 0 0
0 0 0 1 s
000 O 1

The general pattern should be clear: the off-diagonal blocks have zero’s in the last row iff
there are more columns than rows, in fact in that case the last row ends with (number of
columns) — (number of rows) zero’s; the structure of the diagonal blocks is clear.

Now suppose that (F', G, H') and (F"', G", H") are two systems such that (F', G"HS =
(F",G") for some S and such that (F', G") and (F", G") are both of the forms (5.28).
One checks easily that then necessarily S =I,,. We have shown

5.29 Proposition: Let k be the nice selection of example 5.18. Then for every m
Z=(F, G, H)€W, there is precisely one S € GL,(IR) such that SFS™ and SG have the
fcrms (5.28).

This means in particular (in view of the results of section 4 above) that if

TEW,NLY T (IR), then the real numbers ay, ..., 34,27, -+, 33, by, .., bo, €15 ..y Cay
€1, ..., Cg, dy, da, dq, do can be calculated from f(2) (or Ag, ..., A2n—1). Of course these
results hold quite generally for all nice selections k. We note that in general W, is not an
open subspace of Lf,r_m'p(lR). In fact W, /GL,,(IR) is a linear subspace of U, /GL,(IR) =
IR™M*"P ~ V.. In case « is the nice selection of example 5.18 the codimension of

W, /GL,(IR) in Uy/GL,(IR) is 12. (This number can immediately be read of f from «: g
linearly dependent on g,,g, causes 9 —2 =7 linear restrictions; Fgs linearly dependent
on gy, 82,84, 85, F81, FB2, Fg4 causes 9 — 7 =2 extra linear restrictions; F?g, linearly
dependent on gy, g2, 4, 85, F8:, Fgs, Fg4 causes 9 — 7 = 2 more linear restrictions; and

finally Fga dependent on gy, 82, 84,85, Fg1, Fg2, Fga, Fgs causes 9 — 8 = 1 more linear
restriction, 7+2 +2+1=12).
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*¥5.30. Using the results above, it is now easy to prove that the k, (F, G), ..., ky(F,G)
are the only invariants of the feedtack group acting on L[ ,n(IR). Indeed, we have already
shown that the k;(F,G),i=1,...,m' are invariants.

Inversely, using first of all a transformation of type {5.12) we can see to it that (F,GT) has
Ky 2 ks > ... > Kkmy.and then x, (F,G) =k;, ..., km'(F, G) = k', ki = 0 for i >m’. Then,
using transformations of type (5.10) and (5.12), we can change (F, GT) into a pair (F', G)
with F' and G' of the type (5.25),(5.26). A final transformation of type (5.11) then
changes F' into a matrix of type (5.25) with all stars equal to zero. The final pair (F”, G")
thus obtained depends only on the numbers «, (F,G), ..., k ' (F, G).

5.31 Feedback breaks all symmetry. We are now in a position to prove the result menti-
oned in 1.6 that feedback splits the degenerate external description of systems. We shall
certainly have proved this if we have proved.

532 Theorem: let T & Lf,,"”:"p(lﬁ). Then I is completely determined by the input-out-
put maps f(X(L)) for small L. More precisely let £ = (F, G, H) and A;(L)=H(F + GL)‘G
fori= 0, 1,...,2n — 1. Then the entries of A;(L) are differentiable functions of L, and

F,G and H can be calculated from Ay, ..., A5,-; and the numbers
3A;(L)

3k |L=o’
Proof: Let &k =k(Z). Recall that k can be calculated from A, ..., Azn—1 (because T is
¢o and cr). Now assume that « is the nice selection of example 5.18. (This is 51,1ffi<’:ien'tly
general, 1 hope, to make it clear that the theorem holds in general). Let z'=(F,G,H) be
the block companion canonical form of (F, G, H) (Z' is obtained as follows: first calcu-
late any realization £ = (F",G"', H") of Aq, ..., A3n—, €.8. by means of the algorithm
of 4.25 above and then put Z" in block companion canonical form as in 5.21 above).

f“ hen

i=0,.,20-1,j=1,...,mk=1,..,n.

=3

for a certain S € GLn(IR), and it remains to calculate S. With this aim in mind we examine
Z(L) = (F + GL, G, H) and its block companion canonical form. Consider

=@’ = (STFS + S GLS, 571G, HS)
= (F' + G'LS, G H').

Now assurne that L is of the form

0...0
Lu. . . he
533)L={0.. . 0
0...0
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Thenif F' 15 of the form (5.28) we see that if S = (sy)
0 1 0o 0 0 O 0 O

3; a3 a; 47 ag

0
0 0
0 0
FF+GLS=f 0 0 0 110 0O
by by | by by by by | by by | by
0 0
0
0

0 1 0 %
0

C1 Cg Cy

d, 0 dy 0 O d, 0 ds
e
with b; = bj(L) = b; + L\_‘ hs;i, i=1,....9. Thus the block companion canonical form of
i=1

(L) is always S(L)° l if L is of the form (5.33). Note that the number of the row which
has nonzero entries is determined by & (X); it is the smallest i for which k; is maximal;
note also that if j 1s such that k; is maximal then the j-th vector of G’ is always the

tky + ... + k»th standard basis vector (cf. just below (5.19).

S0 10 find S we proceed as follows. Calculate the block companion canonical forms of
(L) from Ag(L), ..., Ay (L) for small L. (This can be done because for small enough
L, Z(L) is still co). This gives us in particular the functions b;(L). Then

b
St ah, |L= 0
This determines S and gives us £ as & = (£')°. q.e.d.

6 Description of L' (IR)/GL, {IR). Invariants

6.1 Local structure of L7 (IR). Let « C 1(n, m) be a nice selection. We recall that
Uy ={(F,G,H) &€ Lim,n,p(R)| detR(F, G), # 0}, that V, = {(F,G,H) € Lm,“'p(lﬁ)l
R(F,G), =15} and that Up/GL,(IR) =V, X IRP™* PP f section 3.

For each x € R"™* ™ let (F,(x), G4 (x), Hy (X)) € V,, be the unique system correspon-
ding to x according to the isomorphism of 3.7 above. )

6.2 The quotient manifold My, | (IR)= Lix.a.p (R)/GL, (IR). Now that we know what
Ua/GL, (IR) looks like it is not difficult to describe Lia,n,p(IR)/GL, (IR). Recall that the
union of the U, for a nice covers Lf“"n'pﬂﬁ)). We only need to figure out how the
Vo > IR™* ™ should be glued together. This is not particularly difficult because if
(F,G,H)* = (F, G, H') for some S and (F, G, H) € U, then S = R(F', G'),R(F, G)Z!. It
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follows that the quotient space Mm n,pR) = Lm n,p (IR)/GLn (IR) can be constructed as
follows.

For each nice selection a let ¥V, = IR™™* 7P ap4 for each second nice selection § let
Vaﬁ = {x €V, ) det R(F, (x). Ga(x))g # 0} .
We define
Pog \7&5 nd \7“
,’by the formula

(6.3) dap(x) =y = R(Fy(x), Ga(x))3' R(F4(x), Go (%)) = R(Fa(y), Gp(¥)) -

Let Mfrf n,p {UR) be the topological space obtained by glueing together the V,, by means
of the isomorphisms Peg-

Then anr p(IR) = L, ,p (IR)/GLy, (IR). If we denote also with V, the 1somorph1c
image of V, m Mcr ap (IR) then the quotient map 7 : Ly ((IR)— My o p{IR) car Le
described as f ollows For each T = (F,G,H)eL] (lR) choose a nice selection & such
that € U,. Then n(Z)=xEVa C MCr (IR) where x is such that

2% = (Fo (x), Go(x), Hy (x)) with S = R(F G);‘

6.4 Theorem: My  _(IR) is a differentiable manifold and 7 : Lo o p(R) > ME | (IR)
is a principal GL, (IR) ﬁbre bundle.

For a proof, cf. [5].

6.5 The quotient manifold M5’ (1IR) = L'¢" (IR)/GL, (IR). Let

m,n,p 'm,n,p

Moo (IR) = w(L3 7 (IR)). Then MioiST (IR) is an open submanifold of Mo ep (R).
can be described as follows. For each nice selection a let Vo = {x € V, KF {x), G (x),
c,((x)) is completely observable} ) and for each second nice selection § let

Vot = Vo' NV g Then ¢os(Vog) = v‘m and Mg’2" (IR) is the differentiable manifold-

obtained by glueing together the Vg by means of the isomorphisms ¢qg : ng = Vga.

6.6 M'." (IR) as a submanifold of IR?PMP Jet (F,G,H) € Lo p (R). We associate
to (F, G, H) the sequence of 2n p X m matrices (A, ..., Ayp~1) € IR2nmp_ where
A;=HFIG,i=0, ..., 2n — 1. The results of section 4 above (realization theory) prove
that this map is injective and prove that its image consists of those elements

(Ags ..., A1) € IR?™™P such that rank 4, _; (4) = rank H, (4) = n. We thus obtain

Moo o (IR) as a (nonsingular algebraic) smooth submanifold of IR?"™”.

6.7 Invariants. By definition a smooth invariant for GL, (IR) actingon Ly 5,p(IR) isa
smooth function f: U~ IR, defined on an open dense subset UC Ly, q 5 (IR) such that
f(Z)=f(Z%) forall ZE U and S € GL, (IR) such that 25 € U.
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Now L (IR) is open and dense in L, n,p(IR). It now follows .from'6.6 that fev?a]y .
mvanam'gé; be written as a smooth function of the entries of the invariant matrix value

functions Ag, .. Azn—1 O L n,p(IR).

7 On the (non) existence of canonical forms

7.1 Canonical forms: Let L' be a GL, (IR)-invariant subspace of Ly, n,p (lR.). A canonical
form for GL, (IR) acting on L' is a mapping ¢: L'~ L' such that the following three p&
perties hold I

(7.2) (2% = ¢(T) forall ZE L', S €GLy(R)
(7.3) forall £ € L' thereisan S € GL, (IR) such that ¢(Z) = £5 .
(7.4) ¢(S) = ¢(Z) =38 € GL,(IR) such that Z' = Z°

(Note that (7.4) is implied by (7.3)). .
Thus a canonical form selects precisely one element out of each orbit of GL,(IR) acting

on L. We speak of a continuous canonical form if ¢ is continuous. °

. co,cr .
Of course, there exist canonical forms on, say L’y (IR), e.g. the following one,

S Lt (RY> L3t (R) which is defined as follows: let Z€ L 5T (IR), calculate
k{T) andlet & (Z) be the block companion canonical form of T as described in section

3.21 above.

This canonical form is not continuous, however (, though still quite usefiil, as we saw in
section 5.31). As we argued in 1.15 above, for some purposes it would be desirable to

have a continuous canonical form (cf. also [2]). In this connection let us also remark that

the Jordan canonical form for square matrices under similarity transformations (M -~ SMS™)

is also not continuous, and this causes a number of unpleasant numerical difficulties, cf.
{16).

7.5 Continnous canonical forms and sections. Let L' be a GL, (IR)-invariant subspace
of Ly 4 p(IR). Let M'= (L) CM7 | ~(IR) be the image of L' under the projection =
{cf. 6.2 above). Now let c¢: L'~ L' be a continuous canonical form on L.'. Then ¢(Z5) =
¢(T) forall ZE€L’ sothat ¢ factorizes through M’ to define a continuous map s: M'~ L'
such that c=so 7. Because of (7.3) we have 7o ¢ = n so that 7= mo s o 7. Because 7 is
curjective it follows that o s = id, so that s is a continuous section of the (principal

CL, (IR)) fibre bundle 7: L' > M". Inversely let s: M'— L' be a continuous section of .
Then son: L'~ L' isa continuous canonical form on L.

7.6 {Non) existence of global canonical forms. In this section we shall prove theorem

1.17 which says that there exists a continuous canonical form on all of Lcl;',‘f'p (R) if and
only if m=lorp=1.



386 IX On the (Internal) Symmetry Groups of Linear Dynamical Systems

First suppose that m = 1. Then there is only one nice selection in 1(n, m), viz. (0, 1),
(1,1}, ...,(n— 1, 1)). We have already seen that there exists a continuous canonical form
¢t Uy = U, for ali nice selections a. (cf. 3.10). This proves the theorem for m=1. The
case p =1 is treated similarly (cf. 3.11). It remains to prove that there is no continuous
canonical form on L3’ ((IR) if m>2 and p > 2. To do this we construct two families
of linear dynamical systems as follows for alla € IR, b € IR (We assume n=> 2;if n=1 the
examples must be modified somewhat).

a 1 0 ... 0 1 b
O 1 1 0 ... 0 1 1 0 ... 0O
Gi(a) = 21 G, (b) = 2 1
.. B . B '
21 2 1

where B is some (constant) (n — 2) X (m — 2) matrix with coefficients in R

1 0 ... ©

e 2 . :
Fi(a) = . '_.-- 0 = F,(b)

yi@ 1 ]2 ... 2 x;(b) 1 ]2 ... 2
ya(@ 1|1 ... 1 x;0) 111 1
Hi@=1 "o B0 70 o

® 6 o 6 o

where C is some (constant real (p = 2) X (n — 2) matrix. Here the continuous functions

y1 (@), y2 (2), X, (b), X2 (b) are e.g. yy (a)=a for |a| <1,y (a) =a™ for [a] 21,

y2(a) = exp(—2a?),x; (b) =1 for | b} <1,x, (b)=b"? for |b] >1,x,(b)=b " exp(~ b"%)
for b # 0, x, (0) = 0. The precise form of these functions is not important. What is impor-
tant is that they are continuous, that x; (5} =b 7y, (0™*), x2 (b)) =b"'y2 (™) for all

b # O and that y, (a) # O forall a and x, (b) #0 forall b.

For all b# 0 let T(b) be the matrix

X)) b 0 ... 0
0

T(b) =

0 ... 0 1
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t £,(a) = (F, (2), Gy (a), H, (2)), Z2(b) = (F2(b), G2 (b), H; (b)). Then one easily checks
that

(7.8) ab =1 =X, ()’ ® = Z,(b).

Note also that £, (a), £, (d) = :: ;rp(IR) for all a,b €IR; in fact

(7.9) S, €U,a=((0,2),(1,2),...,(n-1,2)) foralla € IR

(7100 Z3(b) € U, 8= (0, 1), (1, 1), ..., (n—1,1)) forall b € IR

which proves the complete reachability. The complete observability is seen similarly. m

Ncw suppose that ¢ is a continuous cancnical form on Lﬁ ;"p (IR). Let ¢c(Z, (a)) =

(F,(2).G, (a). H, (), c( 2(d)) = (F, (b), G5 (b), H, (b)). Let S(a) be such that
¢S, (a) = S,(a)"™ and iet S(b) be such that ¢(Z, (b)) = T, (b)s(b)
it foliows from (7.9) and (7.10) that

S{a) = R(F, (a). G (2))q R(F, (), G: (a))a'

S(b) = R(F1(b). G1 (b))g R(F2(b), G2 (b))" .

Consequently S(a) and S(b) are (unique and are) continuous functions of a and b.
Now take 2=b =1. Then ab =1 and T(b) =1, so that (cf (7.7), (7.8) and (7.11))

S(1) = §(1). It follows from this and the continuity of S(a) and S(b) that we must have

(7.12) sign(detS(a)) = sign(detS(b)) forall a,b € IR .
Now take a=b =~1, Then ab =1 and we have, using (7.8),
(- )EENTED = (v (- ) TENSED
= 5 D¥D = (3 (- 1))
=c(Z (- 1)) = T DS ¢
It follows that S(— 1) = S(~ 1)T(~ 1), and hence by (7.7), that
det(S(- 1)) = ~ det (8(~ 1))

{7115

which contradicts (7.12). This proves that there does not exists a continuous canonical
formon LS (IR) if m>2 and p> 2.

m,n,p

*7.13 Acknowledgement and remarks. By choosing the matrices B and C in G, (a),

G: (b}, H, (a), H; (b} judicicusly we can also ensure that rank (G, (a) = m = rank G, (b)
if m<n and rankH, (a) = p=rankH, (b) if p< n.

As we have seen in 7.5 above there exists a continuous canonical form on Li>' " (IR) if
and only if the prinicpal GLy (IR) fibre bundle m: L 2" (IR) - Aiy ncrp(lR) admits a
section. This, in turn is the case if and only if this bundle is trivial. The example on which
the proof in 7.6 above is based is precisely the same example we used in [S] to prove that
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the fibre bundle = is in fact nontrivial if p > 2 and m > 2, and from this point of view
the example appears somewhat less “ad hoc” than in the present setting. The idea of
using the example to prove nonexistence as done abave is due to R. E. Kalman.

8 On the geometry of an"",f.'p (IR). Holes and (partial) compactifications

As we have seen in the introduction (cf. 1.19) the differentiable manifold Mg, o (IR) is
full of holes, a situation which is undesirable in certain situations. In this section we prove

theorems 1.22 and 1.23 but, for the sake of simplicity, only in the case m =1 and p= 1.%)

8.1 Anaddendum to realization theory. Let T(s) = d(s)™ b(s) be a rational function, with
degree d(s) = n > degree b(s). Then we know by 4.27 that there is a one input, one output
system I with transfer function Ty (s). We claim that we can see to it that dim(T) < n.
Indeed if

Te(s) =ags™ + a8 2 +a8™ %+ ...
then, if d(s) = s" — dy ;8" ~! ~ d, s — do, we have
3j+n = doai + dyajs + ... + dy_12j4 0

for all i = 0. It follows that if A = (ag, a,, a1, ...), then rank H;(A) = rank H, -y (&) for
all r=>n—1. But H,,_; (4) is an n X n matrix and hence rank 4, (A) < n for all s, which
by section 4 means that there is a realization of A (or T(s)) of dimension < n.

It follows that a ¢r and co system Z of dimension n has a transfer function Tz(s) =
d(s)"' b(s) with degree (d(s)) = n and no common factors in d(s) and b(s), and inversely
if T(s) = d(s)"' b(s), degree b(s) < n = degree (d(s)), and b(s) and d(s) have no common
factors, then all n-dimensional realizations of T(s) are co and cr.

‘deed if d(s) and b(s) have a common factor, then Tz (s) = d'(s)™ b'(s) with degree
(d'(s)) <n -1 and it follows as above that rank 4, (A) <n— 1 so that £ is not cr and co.
Inversely if £ is not cr and co there is a £’ of dimension < n—~ 1 which also realizes A so
that T(s) = Tg{s) =h'(sl ~F')™g = det (sl — F') "' B(s) = d'(s) " B(s) with degree
@) <n-1.

*8.2. There is a more input, more output version of 8.1. But it is not perhaps the most
obvious possibility. E.g. the lowest dimiensional realization of s i,:;) has dimension 2.

The right generalization is: Let T(s) = D(s)" N(s), where D(s) and N(s) are as in the theo-
rem menticned in section 5.9. Then there is a co and cr realization of T(s) of dimension
_degree {det (D(s)).

LY

1) Added in proof. For the analogous results in the multivariable case and a more careful, easier and
more detailed treatment of M. Hazewinkel, “Families of systems: degencration phenomena'®,
Report 7918. Econcmetrie Inst., Erasmus Univ. Rotterdam.
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n~1
8.3 Theorem: let D=3, ta, 5‘:— .tag- 1:',,_1, a; € IR be a differential operator of
<O, Ccr

order < n — 1. Then there exists a family of systems (Z,), C L 4"} (IR) such that the
f(Z,) converge to D in the sense of definition 1.20.

To prove this theorem we need to do ome exercises concerning differentiation, deter-
runants and partia! integration. They are

(8.4) Let k€2,k> -1 and let Bn « be the n X n matrix with (i, j)-th entry equal to the
binomial coefficient (,,r X “) Then det(Ba)=1.

* ¢

dhu(t
(8.5) Let ()= l:t(‘ ). Then jz“e‘z('”’)u(f)dr =

0
=2 u) + ..t (- DT +0E™)

if supp (u) C (0, =). where 0 is the Landau symbol.

(8.6 Let ¢(r) = (t—1)™u(n), o)) = —ff—) Then ¢?(t) = 0 for i<m and

D) = (- D™iGE=1) ... (i-m+ Du"™B if i > m.
And finally, combining (8.5) and (8.6),

t

(37)] "IN (4 ) ™u(r)dr = (- 1)™m! V (D22 e ™) + 0™
° l—m+l

8.8 Proof of theorem 8.3: We consider the following family of n dimensional systems
(with one output and one input),

0 | -z z 0 ... 0O ’ ’!

g1= 6 1 Fl= M . -." 6 ,hz‘_‘(o,---,o,xm,...,xl)

where the X;. ..., Xy, m < n, are some still to be determined real numbers. One calculates

s?z? (sz2)" !

/l sz '“'2*"" FT)—’-
0 1 Lt :
. . 21
: 1 2
0 . 0 1
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Hence

m

(t ‘r)l"z Z m+i(l|)~ (t_T)l -z(t-1)

and, using (8.7),

t m m+i

J‘lue“"”'gzll('r)dr= Saytx Y N1y (J: 1) g i

“ ° i=1 =i+t
" i~ =D g+ 0™)

m -]

= Z (_l)m‘l-b-lzl(z X,’(m*‘i,—I”]) U(m‘lwl)(t)"'()(;’.

=0 i=1

Now, by (8.4) we know that det«m‘”1 - 1) ) =1, 5o that we can choose X;, ..., Xp
in such a way that

t

j et P Frgum dr=an_u™ D)+ 0@ ™)

0
where a, .; is any pregiven real number.

qm-—1

It follows that zl_i{nw f(Z,) = am -1 el
Let Z,(1) = (F, (i), g, (), h,(1)),i= 0, o n—1 be systems constructed as above with limi-
;ﬁmput/output operator equal to a, a 7. Now consider the n*-dimensional systems i.t

uined by

JF, 0 0 ... 0
0 CoTel 8:(0)
%‘Z= E ‘.. ) . 0 )/g\l= ' lf;z:(hl(o)b""v hz(”" l”
0 ... 0 Fi(n—1) gz(n—1)

Then clearly zhm f(ﬁz) D. Let T(i)(s) be the transfer function of X, (i). Then for cer
tain polynomials "B )(s) we have

89 19 (5) = d,(5)"* B (s), with d_(s) independent of i
The transfer function of %z is clearly equal to

-1 ne
(8.10) T,(s)= 2 T(zi)(s) = d,(s)"' B, (s), B,(s) = Z‘ B(zi) (s)

i=0
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—

Bv 8.1 it follows from (8.10) that T,( s) can also be rea'lized by an n-dimensional system,
<' Then also lim £(E;) = D. Finally we can change Z, slightly to Z, for all z to find
-z 7~ oo

a family (E4); € L{% (R) such that Hm f(Z,) = D. This proves the theorem.

§.11 Corollary: Let I' be a system of dimension i and let D be a differential operrator
of order n—i —1 (where order (0) = —1). Then there exists a family (Z,), C L‘;"’;:l (R)

such that zlix’nmf(zz) =D+f(T)) ﬁ
Froof: Let Ty = (F}, g, by) be a family in Ly, o1 (R) such that lim f(£5)=D. °
Let £ =(F,g,h). Let %, be the n-dimensional system defined by the triple of matrices

. [Fy O gz "o
F‘z(oz F').gzz(s'z)'hzz(h"h)'

Then lm f (f:,) =D+ f(Z'). Now perturb f)z slightly for each z to Z,, to find a comple-
tely reashabie and completely observable family (Z,), such that zlif‘» f(Z)=D+£(Z").

8.12 Theorem: Let (£,); C Ly 5,1 (IR) be a family of systems which converges in input-
output behaviour in the sense of definition 1.20. Then there exist a system ' and a
differcntial operator D such that dim(Z') + ord (D)< n~-1 and zl_i‘:)nwf(}'.‘.',) =f(Z)+D

FProof: Consider the relation
y2(t) = £(Z)u(t)

for smooth input functions u(t). Let G(s) and ¥,(s) be the Laplace transforms of u(t
and y, (t). Then we have £4

Y2(s) = T (9)8(5)

where T, (5) is the transferfunction of Z,. Because the f(Z,) converge as z — o (in the
sense of definition 1.20), and because the Laplace transform is continuous, it follows that
there is a rational function T(s) = d(s) ™ b(s) with degree d(s) <n, degree b(s) <n ~—1
such that .

lim T,(s) = T(s)
Z-> o0
peintwise in s for all but finitely many s. Write

. b'(s
Tis)=egteys+ ... +tey (_ys" i+ b()

d's)
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with degree d'(s) = i, degree (b'(s)) <i. Let I’ be a system of dimension <i with transfer
function equal to d'(s) 7' b'(s) and let D be the differential operator
=i~

eot e dﬁt . teq i1 d‘d'—-—-tn,i_l. The Laplace transform of the relation
y(1) = f(Z)u(t) + Du(t)
for smooth input functions u(t), is

§(s) = T()U(s) -
Because the Laplace transform is injective (on smooth functions) it follows that

lim f(Z,)=f(Z)+D.

I~ o

*8.13 Remarks on compactification, desingularization, symmetry breaking, etc, There
are more tnput, more output versions of theorems 8.3 and 8.12. To prove them it is
more convenient to use another technigque whick is based on a continuity property of
the inverse Laplace transform for certain sequences of functions. (The inverse Laplace
transiorm is certainly not continuous in general; also it is perfectly possible to have a
sequence of systems X, such that their transfer functions T, (s) converge for z —+ o, but
such that the f(Z,) do not converge, e.g. T,(s) =z(z —§)™*).

Let £ be a co and cr system of dimension n with one input and one output. Let T(s)

bo_ys" P+ .. 4bystby  bs)
Sn+dn~l8n—l + ...+d18+d0 d(S)

be the transfer function of . Assign to T(s) the point
. (Mo:...:byy:dg:... 1 : 1) EPT(R),

real projective space of dimension 2n. This defines an embedding of M{";| (IR) into

IP*" (IR). The image is obviously dense 5o that P2"(IR) is a smooth compactification of
Mt (R).

Let M, p ; (IR) be the subspace of P21 (IR) consisting of those points

(Xo e iXpoy:Y0:Y1:-.! Ya) € P (IR) for which at least one y;,i=0, ..., n is diffe-
rent from zero. For these points

T(s) =

Xo+ X8+ ..+ Xqgs"!

Yot y1s+ ...+ y,8"
has meaning and this rational function is then the transfer function of a generalized linear
dynamical system:

x=Fx +Gu

8.14
(8.14) y = Hx + Du
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where D is o differential operator. (The points in PIARY\ I\_A, n.1 correspond to
~systems” which tznd to give infinite outputs for finite inputs; they are interpretable, howe-
ver. 1n terms of correspondences y(t) + u(t))

Furtner let M, n,1. consist of those (xq : . 1yo . .. yn) for which if y;=0 for
> then also x; . =0 forizr. For these pomts the Din (8 14) is zero and these points

thws vield transfer funct'ons of systems of dimension < n. (But many points in M, n,1
have the same transfer functions). Assigning to a point in M, n.1 the first 2n +1 coeffi-
cients of

Xot Xps ¥ .o ¥ Xg s

Yot yis+ .+ yas”
we find the following situation

= aosﬂi + 815-2 + 618—3 +... @

co,cr Jy
M!.n,l c Ml.n.l

A

H

|

' }

r\2n+l = leni-l

Hare H is an embedding and its image is the subspace of all sequences A = (ag, .- 22q)
suzh that rank H, - (A) = rank H,, (A) = n. The image of H is the space of all sequences
A such tl‘at rank Hp (A) = rank H;.., (A) =i for some i< n. This is a singular submanifold
of R*"*! and H is a resolution of singularities.

The points of (M) a1 \ M%,]) correspond to transfer functions of lower dimensional
<o and cr systems. If a sequence x, € Ml"n"l converges to such a point, the internal sym-
metry group GL, (IR) of x; suddenly contracts to some GL,, (IR) C GL, (IR) with

m<n.
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