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A TUTORIAL INTRODUCTION TO DIFFERENTIABLE MANIFOLDS AND VECTOR 

FIELDS 

Michiel Hazewinkel 

Dept. Math., Erasmus Univ. Rotterdam 

In this tutorial I try by means of several examples to illustrate 

~the basic definitions and concepts of differentiable manifolds. 

There are few proofs (not that there are ever many at this level 

of the theory). This material should be sufficient to understand 

the use made of these concepts in the other contributions in this 

volume, or, at least, it should help in explaining the termi­

nology employed. 

I. INTRODUCTION AND A FEW t10TIVATIONAL REMARKS 

Roughly an n-dimensional differentiable manifold is a gadget 
n which locally looks like R but globally perhaps not; A precise 

definition is given below in section 2. Examples are the sphere 

and the torus, which are both locally like JR 2 but differ globally 

from -:R2 and from each other. 

I. 
Such objects often arise naturally when discussing problems 

in analysis (e.g. differential equations) and elsewhere in 

mathematics and its applications. A few advanta3es which may come 

about by doing analysis on manifolds rather than just on Rn are 

briefly discussed below. 
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! . I ~!)~_rd inate freeness ("Diffeomorphisms"). A differentia­

ble ir..anifold can be viewed as consisting of pieces of "Rn which 

are lh~~,j t 1 1g~ther in a smooth (=differentiable) manner. And 

it .i.s ')Ii tlie ba:.ois uf such a picture that the analysis (e.g. the 

study 11f differential equations) often proceeds. This brings more 

than a m~re extension of analysis on "Rn to analysis on spheres, 

tori, pr[);t:ctive spaces and the like; it stresses the "coordinate 

free a;:..vro:ich", i.e. the formulation of problems and concepts in 

terms which are invariant under (nonlinear) smooth coordinate 4 
transfurmati0ns and thus also helps to bring about a better 

understirnrling even of analysis on :Rn. The more important results, 

concept 1; and definitions tend to be "coordinate free". 

1.2 ~~}y~i-~ continuation. A converi:,ent power series in one 

c0TT1plex v.ir iable is a rather simple object. It is considerably 

mon• Jilt j, .. 111 tu obtain <1.n understanding of the collection 0r 

all nnalytic continuations of a given power series, especially 

because ttn;i lyt ic- continuation along a full circle may yield a 

different futh.:tion value than the initial one. The fact that the 

vari<>1Js <'•.>Ill inuations fit together to form a Riemann surface (a 

i;l'rt.1in ki11J <.•f 2-dimensional manifold usually different from R2) 

was a m;1 j11r nnd rn0st "'nlightening discovery which contribute& 

a gr ... at ,it•;1 \ t1> <Hir understanding. 

I .:I Subm.rnifolds. Consider an equation x = f(x) in Rn. Then 

it often h3ppens, especially in problems coming from mechanics, 

that thl' 0qu~ti0n is such that it evolves in such a way that 

certJin q,1.1ntit1<.?s (~.g. energy, angular momentum) are conserved. 

Thus th•' E'q11.1t i0n really evolves on a subset {x E R 0 jE(x) = c} which 

is often J Jitferentiable submanifold. Thus it could happen that 

ii: .. f (x), t smol,th, is constrained to move on a 2-sphere which 

then imm<•di.1tt•ly tells us that there is an equilibrium point. 
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Also one might meet 2 seemingly different equations, say, one in 

R 4 and one inR3 (perhaps both intended as a description of the 

same process) of which the first has two conserved quantities 

and the second one. It will then be important to decide whether 

the surfaces on which the equations evolve are diffeomorphic, 

i.e .. the same after a suitable invertible transformation and 

whether the equations on these submanifolds correspond under these 

transformations. 

J .4 Behaviour at infinity. Consider a differential equation 

in the plane i = P(x,y), ~ = Q(x,y) where P and Qare relatively 

prime polynomials. To study the beliavior of the paths far out in 

the plane and such things as solutions cscapini; U> in!ini.ty and 

coming back, PoincarE= already completed the pLrne tu real t'ro­

jective ::-spact: (.Jn example of a differenti3.l manifold). Also the 

projective plane is by no means the only s:nt1oth m:mifol<l Cc'rnpa-
·1 

tifying JR- and it will be of some importance for the behaviour 

of the equation near infinity whether the "right" compactifica­

tion to which the equation can be extended will be a projective 

2-space, a sphere or a torus, or, ... , or, whether no such 

compactification exists at all. A good example of a set of 

equations which are practically impossible to analyse completely 

without bringing in manifolds are the matrix Kiccati equations 

(which naturally live on Grassmann manifolds (which also gives 

in this case a very consider~ble saving in the number of dimen­

sions needed)). 

I .5 Avoiding confusion betwt:en different kinds of objects. 

Consider an ordinary differential equation x = f(x) onlRn, where 

f (x) is a function lRn .... F.n. \.lhen one now tries to generalize 

this idea of a differential equation to a differential equation 

on a manifold one discovers that x and hence f (x) are a different 
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kind of object; they are not functions, but as we shall see, they 

are ve~torfields; in other words under a nonlinear change of 

courdinates they transform in a different way than functions do. 

2. DlFFERENTIABLE MANIFOLDS 

i\n 

i 
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u. nu. 
l J 

u. 
J 

fi~.I. PicLorial definition of a differentiable manifold. 
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11 
Let Ube an open subset of~ , e.g. an open ball. A function 

:-o 
f: U +:JR. is said to be C or smooth if all partial derivatives 

(any order) exist at all x EU. A mapping lRn :::> U +Rm is smooth 

if all components are smooth; I.!): U + V, U c JR.11 ; V c JR.n is called 
-I 

a diffeomorphism if q; is I - I, onto, and both lll and tp are 

smooth. 

As indicated above a smooth n-dimensional manifold is a 
n gadget consisting of open pieces of lR smoothly glued together. 

This gives the above pictorial definition of a smooth n-din • ..,11-

sional manifold M (fig.I). 

I} c.JR2 

lR 1 

fig.2. Example: the circle 

lll 

u1 s1-....{s}, u2 = s1-....{N} so u1 u u2 s 1 . The "coordinate charts" 

\:;> 1 and 1p2 are given by 

tD1 (x 1 ,x 2) 
xl 

lll2(xl,x2) 
xl 

l+x 2 I-x 2 

Thus (J)l (U I n u ')) = R-....{o}, (J)2 lU 1 n u 2) JR:--.{ 0 ! and the map 
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-1 l lP2 0 l.P1 : R'-{O} ..... R'-{O} is given by x f.-. x- which is a diffeo-

morphism. 

2.2 Formal definition of a differentiable manifold. 

The data are 

- M, a Hausdorff topological space 

- A covering {Ui}iEI by open subsets of M 

- Coordinate maps t.fl.: U ...... (~. (U.) c: Rn, tp. (U.) open in JR.n. 
l l ll. 11 

These data are subject to 
-1 

- lP. o lP . : (~). ( u . n u . ) ..... 
1 J J 1 J 

the following condition 

t.p.(U. n U.) is a diffeomorphism 
1 1 J 

Often one alsb adds the requirement that M b~ paracompact. We 

shall however disregard these finer points; nor shall we need 

them in this volume. 

~.3 C_onstructing differentia_91e m(lnifolds I: embedded mani-
N folds. Let M be a subset of R . Suppose for every x E M there 

exists an open neighbourhood U c IR.n and a smooth function i;;: 

U ~"RN mapping U homeomorphically onto an open neighbourhood 

V of x in M. Suppose moreover that the Jacobian matrix of ~ has 

rank n at all u EU. Then l1 is a smooth manifold of dimension n 

(Exercise: the coordinate neighbourhoods are the V' s and tlie 
-I coordinate maps are the ~ use the implicit function theorem) 

k n+k Virtually the same arguments show that if <p: U ~JR. , U c .lR , 

is a smooth map and the rank of the Jacobian matrix J(f)(x) is 

for all x E t.fl-l(O), then t.fl-l(O) is a smooth n-dimensional mani­

fold. we shall not pursue this approach but concentrate instead 

on: 

~ ' - .... Constructing differentiable mani~~!:....~~j';-~_i_:~ Here 

the data are as follows 

- an index set I 
n 

- fnr every i EI an open subset Ui cR 

- fer ever·J· onl~red pair (i,j) an open subset U .. c U. 
lJ l 
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- diffeomorphisms q> •• : U .. -. U .. for all i,j E I 
l.J lJ J .l 

These data are supposed to satisfy the following compatibility 

conditions 

- u .... u .. (j) .... id 
11 J. J. J. 

- l.P·k o (j) •• • l.P·k (where appropriate) 
J l.J l. 

(where the last identity is supposed to imply also that 

<.jl •• (u .. n u.k) c u.k so that tp .. (u .. n u.k) = u.k nu .. ). 
lJ lJ l J lJ lJ l J J l 

These are not all conditions but the present lecturer e.g. 

has often found it advantageous to stop right here so to speak, 

~and to view a manifold simply as a collection of open subsets ot 

E.n together with gluing data (coordinate transformation rules). 

From the data given above one now defines an abstract topo­

logical space M by taking the disjoint union of the U. and then 
l. 

identifying x EU. and y EU. iff x EU .. , y EU .. , <.jl •• (x) y. 
l. J lJ J 1 lJ 

This gives a natural injection U. ~ M with image U'. say. Let 
l. 1 

<.j).: U'. ~ U. be the inverse map. Then this gives us a differentia-
l l. l 

ble manifold M in the sense of definition 2.2 provided that M is 

Hausdorff and paracompact, and these are the conditions which 

must be added to the gluing compatibility conditions above. 

2.5 Functions on a "glued manifold". Let M be a differentia­

ble manifold obtained by the gluing process described in 2.4 

above. Then a differentiable function f: M -+R consist simply of 

~a collection of functions f.: U. -+ R such that f. o. <.jl •• = f. 
, l l. J l.J l. 

U .. , as illustrated in fig.). 

on 

lJ 
Thus for example a function on the circle s1, cf. figure 2, 

can be described either as a function of two variables restricted 

to.s 1 or as two functions f 1,f 2 of one variable on u1 and u2 such 
-J that f 1(x) = f 2(x ). Obviously the latter approach can have 

considerable advantages. 
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\P .. 
lJ 

1R 

l 1.· .. I. Fune: t ions on a glued manifold 

M. HAZEWlNKEL 

.: . 6 E!'._;i_:_i!.PJ._c ot a 2 dimensional manifold: the Mobius band. 

nw i,;pcn) H~jbius hand is obtained by taking a strip in R 2 as 

without its upper and lower edges and 

:l•:ntit;·ing the l~·ft hand .rnd right hand edges as indicated 

r--------------- --i 
L_ ------------ - _______ J 

i "'··''" C .. >nslructiun of the t1obius band 

3 
Ill•: r1"c1!ting m;inifuld (as a submanifold ofR) looks 

in~ l ilo v c.hc 1<•! 101Jing figure 5. 
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fig.5. The Mobius hand 

It is Left as an exercise to the rvader tu cast this <.h's-

cri.ption in the form required by the glui.ng descriptiun uf 2.4 

ab0ve. The following pictorial descripti,m (fig. 6) will suffice:. 

fig.6. Gluing description cf tile t!olliL1s band 

2.7 Example: tlte 2-dimensi,)nal spher12. The picture in fi0. 7 
----------------i-·-·-- --·--·--·-·--· 0 

below shuws how the 2-sphere s~ = l(xl,x2,x3) ix~+ x~ + x~ l} 

can be obtained by gluing two di~ks tugethL~r-. lf the surface of 

the e<:lrth is vi.ewed as a model for s- the first disk cover::; 
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everything north of Capricorn and the second everything south of 
Cancer. 

4'12 

u 
2 

fig.7. Gluing description of the 2-sphere s2 

2.8 l·!orE!:_s!11_~~~ifferentiabl_e manifolds._ Let l1 and N be 

dift,•n·ntiable mauifulds obtained by the r;luing j:lrocess of 

st·,·t1on 2.4 above. Say M is obtained by gluing together open sub­

sPts U. oi !kn ·rnd ~.; hy gluing together open subsets V. of :JRm. 
l J 

T\wn .J sm,ioth map f: M -+ N (a morphism) is given by specifying 

U .. c U. and 
lJ l 

f .. : U .. -+ V. such that U 
lJ lJ J j 

U .. = U. and 
l.J l. 

a smooth map 

the f .. are compatible 
l.J 

undl'r the! identifications l() .. ,: U .. ,-+ U.,., l(l .. ,: V .. ,-+ V.,., 
11 11 l l JJ JJ J J 

l .t'. t.,., 0 cp .. , = (;> .. , o f .. whenever appropriate. (Here the 
l J 11 JJ lJ 

1;i's are tin~ gluing rliffeonorphisms for Mand the •,.i's are the 

glo1in;-, diff,•c1morphisms for N). 

2.9 Exercise: Show that the 

in 2. I ubove gives an injective 

l . 
description of the circle S as 

. l 2 
morphism S -+R . 
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N 

1;1,(V.) 
J J 

fig.8. Morphisms 

i TT 

fig.9. The ~~hius band as vectorbundle over the circle 
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3. DIFFERENTIABLE VECTORBUNDLES 

Intuitively a v~ctorbundle over a space S is a family of vector­

spaces parametrized by S. Thus for example the Uobius band of 

example 2.6 can be viewed as a family of open intervals in F. 

parametrized by the circle, cf. fig. 9 above, and if we are 

willing to identify the open intervals with R this gives us a 

family of one dimensional vectorspaces parametrized by s 1 which 

locally (i.e. over small neighbourhoods in the base space s1) 

looks like a product but globally is not equal to a product. 

3.1 Formal definition of a differentiable vectorbundle. A 

differentiable vectorbundle of dimension m over a differentiable 

manifold M consists of a surjective morphism 11: E-+ Hof diffe­

rentiable manifolds and a structure of an m-dimensional real 
-I 

vectorsp~cu on n (x) for all x f M such that moreover there is 

for all x E t! :111 open neighbourhood lJ c 11 containing x and a 
m -1 

diffeom0rphism ll\J: U .x R -+ 7T (U) such that the following 

diagrdm ..:ommutf>s 

JT-l(U) 

u 

where the Lefthand arrow is the projection on the first factor, 

and such that t.? 1 induces for every y E U an isomorphism 
-I i.; 

{y} x Rm-+ 'ff (y) of real vectorspaces. 

3.2 Constructing vectorbundles. The definition given above 

is not ;.ilw~ys particularly easy to assimilate. It simply means 

that a vectorbunJlP over li is obtained by taking an open covering 

{Ui: nf ~I ,ind gluing together products U i x JRm by Deans <)f dif-
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feomorphisms which are linear (i.e. vectorspace structure pre­

serving) in the second coordinate. Thus an m-dimensional vector­

bundle over M is given by the following data 

_an open covering {Ui}iEI of M. 

- for every i,j a smooth map ll) .. : U. n U. -+ GL (R) where GL (R) 
l.J 1 J m m 

is the space of all invertible real m x m matrices considered as 
m2 

an open subset of R • These data are subject to the following 

compatibility conditions 

~ \j) .. (x) = I , the identity matrix, for all x E U. 
l.1 !JI l. 

- \j).k(x) \j) .. (x) = \j).k(x) for all x EU. n U. n Uk 
J l.J l. l. J 

From these data E is constructed by taking the disjoint union of 

the U. x Rm, i E I and identifving (x,v) EU. x Rm with 
l. • l 

(y,w) E UJ. x Rm if and only if x = y and w .. (x)v = w. The mor­
l.J 

phism ~ is induced by the first cuordinate prujections 

U. x 1Rm -+ U .• 
1 1 

3.3 Constructing vectorbundles 2. If the base manifold M is 

itself viewed as a smoothly glued together collection of open 

sets in E.n we can descripe the gluing for M and a vectorbundle E 

over M all at once. The combined data are than as follows 

- open sets U. 
l. 

- open subsets 

x Rm, U. cRn for all i EI 
l. 

U .. cu. for all i,j EI 
lJ l. 

diffeomorphisms \!) •• : U .. -+ U .. 
. l.J lJ j 1 

d "ff h. - U x ..,m U .. · x ..,m of the form - i eomorp isms \j) .. : . . . "' -+ "" 
lJ lJ J 1 

(x,v) f.+ (l.l) .. (x), A .. (x)v) where A .. (x) is an m x m invertible 
lJ l.J lJ 

real matrix depending smoothly on x. 

These data are then subject to the same compatibility c~'nditions 

for the~- .'s (and hence the~ .. ) as described in 2.~ above. 
l.J lJ 

3.4 Example: the tangent vectorbundle of a smooth manifold. 

Let the smooth manifold M be given by the d3ta U., U .. , ~-. as in 
. 1 lj 1J 

<..4. Then the tan;3e>nt bundle n1 is given by the data 
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- U. i<J{n, u .. x}lncu. xRn 
l lj l 

-(l> .. : U .. x)ln-.U .. x:Rn, (il .. (x,v)"' 
l.J lj J l l.J 

where J((p .. )(x) is the Jacobian matrix . lJ 

(t.p .• (x), J(\l> .• )(x)v) 
l.J lJ 

of \0 . • at x E U .•• 
lJ lJ 

Exercise: check that these gluing morphisms do indeed define 

a vectorbundle; i.e. check the compatibility (chain rule ~) 

3.5 Morphisms of vectorbundles. A morphism of vectorbundles 

from the vectorbundle 1'": E -> M to the vectorbundle 11': E' -> M' is 
•c 

a pair uf smooth m.aps f: E-> E', f: M-+ M' such that TI I 0 f f o TI~ 
- -1 -l and such that the induced map f : TI (x) ->TI (f(x)) 

x 
is a homo-

morphism of vectorspaces for all x E M. We leave it to the 

reader tu translate this into a local pieces and gluing data des­

cription. 

As an example consider two manifolds M, N both described in 

t~rms uf local pie(tS and gluing data. Let f: M-> N be given in 

these terms by the f .. : U .. -> V. (cf. 2.8 above). Then the maps 
_ n lJ lJ J 
f .. : U .. x]R -> V. ><:Rm defined. by f .. (x,v) = 

l.J lj J lJ 
(f.. (x), J(f .. ) (x)v) 
- l.J lJ 

combine to define a morphism of vectorbundles f = Tf: TM-> TN. 

4. VECTORFIELDS 

A vectorfield on a manifold M assigns in a differentiable manner 

t,1 every x E !la tangent vector dt x, i.e. an element of the 
-I 

fibre\/!"' 11 (x) of the tangent bundle TM. Slightly more 

precisely this gives the 

4.1 Definitions. Let TI: E ~ M be a vectorbundle. Then a 

section uf E is a smooth map s: M-> E such that n o s = id. A 

sectiun ,lf tht• tangent vectorbundle TH-> Mis called a vector-

fidd. 

Suppose that M is given by a local pieces and gluing data 

description as in 2.4 above. Then a vectorfield s is given by 

"lc)cal sections" s': U.-> U. xR0 of the form s'.(x) = (x, s.(x)), 
1 1 l l l 
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i.e. by a collection of functions s.: U. -+Rn such that 
l l 

J(l.j) .. )(x)(s.(x)) = s.(x) for all x EU ... 
lJ 1 J lJ 

4.2 Derivations. Let A be an n.lgebra uver JR. Then a deriva­

tion is an It-linear map D: A-+ A such that D(fg) = (Df)g + f(Dg) 

for all f,g EA. 

4.3 Derivations and vectorfields. ~ow let tf be a differen­

tiable manifold and let S(H) b<· the IR-algebrJ. of smooth functions 

.M-+ lR. Then every vectorfield s on M Jefines n derivation ot 

S(t!), (which assigns to a func:tion its derivn.tive along s), 

which can be described as fo I lows. Let 11 be given in t<'rms of 

local pieces U. and gluing d.-i ta U .. , C!J ••• Let f: M -+ lR .rnd the 
1 1 J l .J 

section s: M-+ TM be given bv tile local functiuns f.: l1 1 .... ir~. - l 

s.: U. -+Rn. Now define g.: U. -+Il\ by the fL>rmula 
l 1 l l 

)f. 
( 4. 4) ;: "i (x)k __ 1 (x) 

k dXk 

where si (x)k is the k-th component of the n-vector si (x). It is 

now an easy exercise to check that g.(~ .. (x)) = g.(x) for all 
J l J . . l 

x EU .. (because (1.P .. )(x)s.(x) ""s.(x) for these x) so that 
lJ l.J 1 J 

the g. (x) combine to define a function g = D (f): M -+I\.. This 
1 s 

.defines a map D: S(M) -+ S(M) which is seen to be a derivation. 

Inversely every derivation of S(M) arises in this way. 

4.5 The Lie bracket of derivations and vectorficlds. LtL 

D1 ,D 2 be derivations of an .IR-algc!bra A. Then, as is ea~ily chec~­

ed, so is 

So if s 1 ,s 2 are vectorfields 0n M, then there is a vectorfield 

(s 1,s 2 J on l1 corresponding to the derivation [D ,D ]. This 
s I s 2 
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vectorf ield is called the Lie bracket of s 1 and s 2 and 

ts 1,s 2) ~ [s 1,s 2 ) defines a Lie algebra structure on the vector­

space V(l1) of all vectorfields on H. 

If M is given in terms of local pieces U. and gluing data 
1 

u .. ,tp .. then the Lie bracket operation can be described as 
lJ lJ 

follows. Let the vectorfields sand t be 8iven by the local 

functiPns s t · U.-> lRn. Then [s,t] is given by the local func-. i ' i . l 

tions 

at . 
l 

S· 
J 3x. 

J 

- L: 
j 

as. 
t. ]. 

J ax. 
J 

a . 4.6 The-;::-- notation. Let the 
-- t!X -

vectorfield s: H-> TM be given 
. i a r. b\' thefunctionss.: U. -+Rn. 

]. l 

i':sLllll<' simp1 y as labels for 

(.'.+. 7) s. 
l 

Then using the symbo s --· in irst 
()xk 

the coordinates in Rn we can write 

This is ,1 most cunYenient notation because as can be seen from 

l4.~) this gives precisely the local description of the differen­

tial operator (derivation) D associated tu s. 
s 

~.7 Differential equations on a manifold. A differential 

e~uaciun on a manifold M is given by an equation 

x s(x) 

w~1erc s: M-+ 'Hl is a vectorfield, i.e. a section of the ldngent-

b~mJle. At every moment t, equation (4.8) tells us in which 

direction and how fast x(t) will evolve by specifying a tangent 

vecl0r s(x(t)) at x(t). 

Ag~in ic is often useful to take a local pieces and gluing 

d.:i.t.l ;'''tnt c'f view. Then the differential equation (4.8) is 

gi ..... en b~· a collection of differential equations x = s. (x) in the 
l' 
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:nse of the word on U. where the functions s.(x) satisfy 
l l 

~)s.(x) = s.(x) for all x EU ... 
l J l] 

these terms a solution of the differential equation is 

. collection of solutions of the local equations, i.e. a 

on of maps fi: Vi-+ Ui' Vi clR(,2:, 0) such that U Vi= JR(,:;,O;, 

= s.(f.(t)) which fit together to define a morphism 
l l 

• H, i.e. such that <:)ij(fi(t)) = f/t) if t E Vi n vj. 

more global terms a solution of (4.8) which passes 

x 0 at time 0 is a morphism of smooth manifolds f: l\. " 

t Tf: 1lR-+ Tl1 satisfies Tf(t, 1) = s(f(t)) for all t E 1R 

itable subset of IR), i.e. Tf takes the vectorfield 

.) 1: 1R-+ TIR = 1R x lR, t f... (t, l) int0 the vectorfield (sec-

'.1 ... TH. 

f:mcl,_~si~ Here, wl,ere it starts to get interesting, is, 

8 to a developin~ tradition in textbook writing, a good 

stop. 
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This tutorial does not corresp0nd to an actual oral 

lecture during the conference at Les Arcs in June, 1980. 

However, to improve accessibility and understandability of the 

material in this volume it seemed wise to include a small section 

on the basic facts and definitions concerning Lie algebras which 

play a role in control and nonlinear filtering theory. This is 

what these few pages attempt to do. 

1. DEFINITION OF LIE ALGEBRAS. EXAMPLES. Let k be a fielJ and V 

a vectorspace over k. (For the purpose of this volume it suffices 

to take k =:R or (rarely) k = X::; the vectorspace V over kneed 

not be finite dimensional). A Lie al8ebra structure on Vis then 

a bilinear map (called brackett"multiplication) 

(I. J) [,]:VxV-+V 

such that the two following conditions hold 

(I. 2) [u,u] = 0 for all u E V 
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(1.3) [u,[v,w]) + [v,[w,u]] + [w.[u,v] • 0 for all u,v,w, E V. 

The last identity ia called the Jacobi identity. Of course the 

bilinearity of (I.I) means that [au+bv 1 w] • a{u,w] + b[v 1 w] 1 

[u,bv+cw] • b[u 1 v] + c[u,w], From (1.2) it follows that 

(t.4) [u,v] • -[v,u] 

by considering [u+v,u+v] • 0 and using bilinearity, 

1.5. ExaDIJ>le. The Lie algebra associated to an associative 

algebra, 

Let A be an associative algebra over k. Now define a new 

multiplic .. Lion (brackett) on A by the formula 

{ 1.6) [v,w) m vw - wv, w,v € A 

Then A with this new multiplication is a Lie algebra. (Exercise: 

check the Jacobi identity (1.3)). 

1. 9. Remark. In a certain precise sense all Lie algebras arise 

in this way. That is for every Lie alr,ebra L there is an 

associative algebra A containing L such that [u,v] m uv - vu. 

I.e. every Lie algebra arises as a subspace of an associative 

algebra A which happens to be closed under the operation 

(u,v) -+ uv - vu. Thoush this "universal envelopin8 algebra" 

construction is quite important it will play no role in the 

following and the remark is intended to make Lie algebras 

easier to understand for the reader. 
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1.7. Example. Let Mn(k) be the associative algebra of all n x n 

.matrices with coefficients in k. 'nle associated Lie algebra is 

written gt (k); i.e. gt (k) is the n2-dimensional vectorspace 
n n 

of all n x n matrices with the brackett multiplication 

(A,B] • AB - BA. 
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j. 8. Example, Let stn (k) denote the subspace of all n x n matrices 

of trace zero. Because Tr(AB-BA) • 0 for all n x n matrices A,B. 

we see that [A,BJ E st (k) if A,B E s! (k) giving us an 
n n 

(n2-1)-dimensional sub Lie algebra of g~ (k). 
n 

1.10. Example. The Lie algebra of first order differential 
ao 

operators with C -coefficients. 

Let V be the space of all differential operators (on the space 
n 

F(IRn) of C00-functions (i.e. arbitrarily often differentiable 

functions in x 1, ••• ,xn)J of the form 

(I • I I ) x -
n 3 
E f. (x 1, ••• ,x) -~--

i .. l l n oxi 

co 
where the f., i •. I, ••• , n are C -functions. 'nlus 

l 

n a~ 
X: F(IR0 ) + F(IRn) is the operator X(~) '"' E f Now define 

i• 1 i 3xi • 

a brackett operation on V by the formula n 

(I. I 2) 

if X • E f. t-- , Y • E g. 
l xi J 

a --- This makes V a Lie algebra. ax.. n 
J 

Check that [X,Y](~) • X(Y(~)) - Y(X(~)) for all$ E F(IRn). 

1.13. Example. Derivations. Let A be any algebra (i.e. A is a 

vectorspace together with any bilinear map (multiplication) 

Ax A+ A: in particular A need not be associative). A derivation 

on A is a linear map D: A + A such that 
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(I • 14) D(uv) (Du)v + u(Dv) 

d For example let A = IR[x] and D the operator dx· The D is a 

derivation. The operators (I. 11) of the example above are 

derivations on F(lR.n). 

Let Der(A) be the vectorspace of all derivations. Define 

[D 1,D2J = D1D2 - D2D1• Then [D 1,D2] is again a derivation and 

this brackett multiplication makes Der(A) a Lie algebra over k. 

J.15. Example. The Weyl algebra w1• Let w1 be the vectorspace 

of all (any order) differential operators in one variable with 

polynomial coefficients. I.e. w1 is the vectorspace with basis 
. j . 

x1 ~ , i,j E: lN U {O}. (x1 is considered as the operator 
dxJ 

i f(x) 4 x f(x)). C0nsider w1 as a space of operators acting, say, 

on k[x]. Composition of operators makes W 1 an associative 

algebra and hence gives w1 also the structure of a Lie algebra. 

For example one 

[ d2 x2 E__] 
x -2 ' dx 

dx 

has 

2 d2 
3x --~ 

dx~ 

d d i dJ 
+ 2x dx, [x ~d ,x ~-.] 

x dxJ 

. dj 
(i-j)x 1 

dxj 

l. 16. Example. The oscillator algebra. Consider the four 

dimensional subspace of w1 spanned by the four operators 

J ct 2 1 2 d 2 --2 - 2 x , x, dx' I. One easily checks that (under the brackef' 
dx 

multiplication of w1) 

? 
l d~ l 2 

(--2--2x,I] 
2 dx 

[ x, I ) 0 
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Thus this four dimensional subspace is a sub-Lie-al~ebra of 

w1• It is called the oscillator Lie algebra (being intimately 

associated to the harmonic oscillator). 

2. HOMOMORPHISMS, ISOMORPHISMS, SUBALGEBRAS AND IDEALS. 

2. !. Sub-Lie-algebras. Let L be a Lie algebra over k and Va 

subvectorspace of L. If [u,v] E V for all u,v E L. Then V is a 

sub-Lie-algebra of L. We have already seen a number of examples 

of this, e.g. the oscillator algebra of example I. 16 as a 

sub-Lie-algebra of the Weyl algebra w1 and the Lie-alRebra 
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s£ (k) as a sub-Lie-algebra of g£ (k). Some more examples follow. n n 

2.2. The Lie-algebra so (k). Let so (k) be the subspace of 
n n I 

g£ (k) consisting of all matrices A s1:ch that A + ,\ = O (where 
n T 

the upper denotes transposes). Then if A,B E so (k) 
n 

[A,B) + [A,B]T = AB - BA + (AB-BA)T = A(B+B1 ) - B(A+~T) f 

+ (B1+B)A1 - (A1 +A)BT = 0 so that [A,B] E so (k). Thus so (k) LS 
n n 

a sub-Lie-algebra of e£n(k). 

2. 3. The Lie-algebra t (k). Let t (k) be the subspace of g~ (k) 
n n n 

consisting of all upper trianr,ular matrices. Because product 

and sum of upper triansular matrices are again upper triangular 

t (k) is a sub-Lie-algebra of gt (k). n n 

.2.4. The Lie-algebra spn (k). Let Q be the 2n x 2n matrix 

Q (0 

-I 
n 

I n). Now let sp (k) be the subspace of all 2n x 2n 
0 n 

matrices A such that AQ + QA1 = 0. Then as above in .example 

2.2 one sees that A,B Esp (k) m> [A,R] E sp (k) so that sp (k) 
n n n 

is a sub-Lie-algebra of g£, 0 (k) . 
._n 

2.5. Ideals. Let L be a Lie-algebra ewer k. A subvectorspace 

I c L with the property that for all u E I an~ all v l L we have 

(u,v] E I is c1\ll.,d an ideal of L. An ex:,mple is s9. (k) c g\. (k), 
n n 
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cf, example 1.8 above. Another example follows. 

2.6. ~ample. The Heisenberg Lie-aleebra. Consider the 

3-dimensional subspace of w1 spanned by the operators x, ~x' l. 

The formulas ( 1. 17) show that this subspace is an ideal in the 

oscillator algebra. 

2,7. Example. The centre of a Lie algebra. Let L be a Lie algebra. 

The centre of L is defined as the subset Z(L) = {z E Lj (u,z] = 0 

for all u E L}. Then Z(L) is a subvector space of L and in fact ft' 
an ideal of L. As an example it is easy to check that the centre 

of g9, (k) consists of scalar multiples of the unit matrix I • 
n n 

2.8. Homomorphisms and isomorphisms. Let L1 and L2 be two Lie 

algebras over k. A morphism of a: L1 + L2 vectorspaces (i.e. 

a k-linear map) is a _!iomomorphism of Lie algebras if 

~[u,v] = a(u),~(vJ for all u,v E 1 1• The homomorphism a is called 

an isomor?hisn if it is also an isomorphisru of vectorspaces. 

2.9, Example. Consider the following three first-order differen­

tial operators in two variables x,P 

a b=P-,c 
h 

Tht:!n on!:! easily calculates (cf. (1.9)) [a,b] = c, [a,c] = b, 

(b,d = 0. Now define Q from the oscilL.itor algebra of example f' 
l.16 to this 3-dimensional Lie al8ebra as the linear map 

1 d 2 l 2 d 2 dx::: - 2 x .... a, x ~ b, dx + c, l + 0. Then the formulas above 

:i.nd (l.17) show that ci. is a homomorphism of Lie algebras. 

2. JO. Kernel of a homomorphism. Let a: L 1 _,. L2 be a homomorphism 

of Lie algebras. Let Ker(o) = {u E L1 !::t(u) = O}. Then Ker(~) is 

an id~..i.l in L1. 

2.1!. Quotient Li~ algebras. Let L be a Lie alBebra and I an 

ideal in L. Consider the quotient vector space L/l and the 
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quotiant morphisms of vector spaces L ~ L/I. For all u,v E L/I 

choose u,v E L such that a(u) = u, ~(v) = v. Now define 

[~,;] = a[u,v]. Check that this does not depend on the choice 

of u,v. 

This then defines a Lie-algebra structure on L/I and a: L .. L/T 

becomes a homomorphism of Lie-algebras. 
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2. 12. Image of a homomorphism. Let a: L 1 ~ L2 be a homomorphism 

of Lie algebras. Let Irn(a) = a(L 1) = {u E L2 j3v E t 1, a(v) = u}. 

lltThen Ima is a sub-Lie-algebra of L2 and a induces an isomorp~i~~ 

L1/Ker(a) ~ Im(a). 

2. 13. Exercise. Consider the 3-dimensional vector space of all 

real upper triangular 3 x 3 matrices with zero's on the diagonal. 

Show that this a sub-Lie-algebrn of g~, 3 (1R), and shuw that it is 

isomorphic to the 3-dimensional Heisenberg-Lie-.fllr,cbrn of 

example 2.6 but that it is not isomorphic to the 3-dimensional 

Lie-algebra s£ 2 (1R) of example 1.8. 

2 d 2 d 
2.14. Exercise. Show that the four operators x, ~-2 , x dx, l 

dx 

span a 4-dimensional subalgebra of w1, and show that this 

4-dimensional Lie algebra contains a three dimensional Lie 

algebra which is isotnorphic to s9,2 (JR). 

2 d2 d d 
Exercise. Show that the six operators x , ~-2 , x, dx' x dx' 

dx 
2. 15 • • l space a six dimensional sub-Lie-algebra of W 1. Show that 

x, dd , I space a 3-dimensional ideal in this Lie-algebra and· 
1: 

show that the corresponding quotient algebra is sX..1 (IR). 

3. LIE ALGEBRAS OF VECTORFIELDS. 

"" L~t M be a C -manifold (cf. the tutorial on manifolds and 

vectorfields in this volume). Intuitively a vectorfield on M 

sped fies a tangent vectc•r t (m) at every point m E M. Then r:iven 
0;:; 

a C -function f on M we can for each n E M take the derivation 

of f at m in the direction t(m), Riving us a new function g on 
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M. Tilis can be made precise in varying ways; e.g. as follows. 

3. I. The Lie algebra of vectorfields on a manifold M. Let M be 

a c"'-manifold, and let F(M) be the JR-algebra (pointwise additior 

and multiplications) of all smooth (= C00
) functions f: M +lR. 

By definition a C©-vectorfield on M is a derivation 

X: F(M) + F(M). The Lie algebra of derivations of F(M) cf. 

example 1.13, i.e. the Lie-algebra of smooth vectorfields on M, 

is denoted V(M). 

3.2. Derivations and vectorfields. Now let M = lRn so that F(M) 
' 00 ' 

is simply the lR-algebra of C -functions in x 1, .•. , xn. Then it 

is not difficult to sho-w that every derivation X: F(lR.0 ) + F0Rn) 

is necessarily of the form 

(J. J) x 

y.·i th g. E F (IR.n). For a 
l 

vectorfield on JRn now 

) ( , \ T 
( g I ( x ' •.• ' gn XJ ·' • 

proof cf. [4, Ch.l,§2]. The corresponding 
n assigns to x E IR the tangent vector 

On an arbitrary manifold we have representations (3.3) 

loc31ly around every point and these expressions turn out to be 

compatible in precisely the x way needed to define a vectorfield 

as described in the tutorial on manifolds and vectorfields in 

this volume [3]. 

3.4. Homomorphisms of Lie algebras of vectorfields. Let M and N 

be C00-manifolds and let o.: L -• V(N) be a homomorphism of Lie 

algebras where Lis a sub-Lie-algebra of V(M). Let~: M + N be 

a smooth map. Tiien .). and o are said to be compatible if 

(3.5) tii* (o. (X) f) X(ij:i*(f)) for all f E: F(N) 

where~* is the homomorphism of al?ebras F(~) + F(M), 

f + ~*(f) = f 0 ~. 
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In terms of the Jacobian of~ (cf.[3]), this means that 

(3.6) 

where X is the tangent vector at m of the vectorfield X. 
m 

If~ : M + N is an isomorphism of C00-manifolds there is 

always precisely one homomorphism of Lie-algebras 

a : V(M) + V(N) compatible with~ (which is then an isomorphism). 

~t is defined (via formula (3.5)) by 

(3. 7) a(X) (f) ~ (~*)-JX(~*f), f E F(N) 

3.8. Isotropy subalsebras. Let L be a sub-Lie-algebra of V(M) 

and let m M. The isotropy subalgebra L of L at m consists 
m 

of all vectorfields in L whose tanp,ent vector in m is zero, or, 

equivalently 

( 3. 9) L 
m 

{X E LjXf(m) 0 all f E F(M)} 

Now suppose that a: L + V(N) and~: M + N are compatible 

in the sense of 3.4 above. Then it follows easily from (J.5) 

that 

• (3. 10) 

i.e. CL isotropy subalgebras into isotropy subalp,ebras. 

Inversely if we restrict our attention to analytic vectorfields 

then condition (3. 10) on a at m implies that locally there 

exists a~ which is compatible with a [7]. 

4. srnPLE, NILPOTENT AND SOLVABLE LIE ALGEBRAS. 

4.1. Nilpctent Lie algebras let L be a Lie-algebra over k. 
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The descending central seems of L is defined inductively by 

( 4. 2) 

It is easy to check that the C1 L are ideals. The Lie al3ebra 

L is called nilpotent if CnL m {O} for n hig enough, 

For each x E L we have the endor~rphism adx: L • L 

defined by y -• (x,j]. It is now a theorem that if Lis finite 

dimensional then L is nilpotent iff the end,imorphisms adx are 

ni lputent for all x E L. Whence the termin0logy. 

4.3. Solvable Lie algebras. The derived seems of Lie algebras 

of a Lie algebra L is defined inductively by 

(4.4) > 1 

It is <igarn easy to check that the D1 L are ideals. The Lie 

algebra L is called solvable if DnL = \O} for n large en(1ugh . 

. 4.5. Exampl<'S, The Heisenberg Lie :ilp;ebr;:i of example 2.6 is 

nilpotent. The Oscillator aleebra of example I. !6 is s,Jlvable 

but not nilpotent. The sub-Lie-algebra of w1 with vector-space 
? 

b . 2 d~ d I d . . , ·1 l bl as1s x , dx 2 , x, Tx• , x cl; 1s ne1t11er n1 potent, nor so va e. 

The Lie-algebra tn(k) of ezample 2. 'J is sulv:thle and in a way isf 

typi i.:al cf finite dimensional sclvali le Lie algebc:is in the sense 

that if k is algebraically closl:d (e. g. k = C), then ever:; 

finite dimensional solvable Lie alp;ebr:i over k is isomorphic 

tu a sub-Lie-algebra of some t (k). 
n 

4.6. Exr.rcise, Show that sub-Lie-algebras and quotient-Lie­

a!gebras of solvable Lie algebras (resp. nilpotent Lie al~ebras) 

are solvable (resp. nilpotent). 

4.7. Abelian Lie-algebras. A lie alnebra L is called abelian 

if [L,l.] = {O}, i.<'. if ev2ry brackett product is zer.i. 



A SHORT TUTORIAL ON LIE ALGEBRAS 105 

4.8. Simple Lie-algebras. A Lie algebra L is called simple 

if it is not abelian and if it has no other ideals than 0 and L, 

(Given the second condition the first one only rules out the 

zero- and one-dimensional Lie algebras). These simple-Lie­

algebras and the abelian ones are in a very precise sense the 

basic building blocks of all Lie algebras. 

The finite dimensional simple Lie algebras overX: have been 

classified, They are the Lie algebras sl (I:), sp (R:), so QC) of 
~ n n n 
~xamples 1.8, 2.4 and 2.2 above and five additional exception3l 

Lie algebras. For infinite dimensional Lie algebras things are 

more complicated. The socalled filtered, primitive, transitive 

simple Lie algebras have also been classified (cf. e.g. [2]). 

One of these is the Lie-algebra V of all formal vector fields 
n 

a If. (x 1, ••• ,x )~~.where the f. (x) are (possibly non converging) 
i n ox. l 

l 

formal power series in x 1, ••• , xn. This class of infinite dimen-

sional simple Lie algebras by no means exhausts all possibilities. 

E.g. the quotient-Lie-algebras W /IR.I are simple and non-isomor­
n 

phic to any of those just mentioned, 

4.9. Exercise. Let V 1 ORn) be the Lie algebra of all differentiaJ 
a g 

3 operators (vector fields) of the fortTl If.(x1 , ••• ,x )-~~ with 
i n ox. 

l 

~(x 1 , ••• ,xn) polynomial, Prove that Valg(llln) is simple. 

5. REPRF.SENTATIONS. 

Let L be a Lie algebra over k and M a vectorspace over k. 

A representation of L in M is a homomorphism of Lie algebras. 

(5. I) p : L -+ Endk (M) 

where Endk(M) is the vectorspac~ of all k-linear maps M ~ M 

which is of course given the Lie algebra structure 
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[A,B) • A13 - BA. Equivalently a representation of L in M consists 

of a k-bilinear map 

(5.2) cr:LxM-rM 

such that, writing xm for o(x,m), we have x,y m = x(ym) - y(xm) 

for al 1 x,y E L, rn E M, The relation between the two definitions 

is of course n(x,m) = p(x)(m). 

Instead (>f speakine; of a representation 0f L in M we also 

speak (equivalently) of the L-module M. 

5.3. Example, The Lie algebra gl (k) of all n x n matrices 
n 

naturally acts on kn by (A,v) ->- Av E kn and this defines a 

r<'presentation gl (k) x kn -+- kn. The Lie al8ebra \' (M) of 
n 

vectcHfi,1 lds o:-i a manifold M acts (by its definition) on F (M) 

and this is a representation of V(M). A quite important theorem 

concerning the existence of representations is 

5 • .'.i. Ado's theorem, Cf, e.g. [J,§7]. If k is a field of 

characteristic zero, e.g. k = m or C and L is finite dimensional 

then tht!re is a faithful representation p: 1. .... End(kn) for 

some n. (Here faithful !'leans that iJ is injective). 

Thus every finite dimensional Lic> algebra L over k (of 

characteristic zero) can be viewed as a subalgLbra of so~e 

gln (k), :ind this subalp,ebra can then be viewed as a more cone re t­
matrix "representation" of the "abstract" Lie algebra L. W 

5.5. Realizing Lie-alp;ebr;is in V(M), A question of some impor­

tance for filtering theory is when a Lie al8ebra L can he 

realized as a sub-Lie-algebra of V(M), i.e. when L can be 

represented in F(M) by means of derivations of several papers 

in this Vc'lume for a discussion of the relevance of this problem. 

For finite dimensional Lie algebras Ado's theorem gives the 

;inswer br;:::1~se (a .. ) ->=:a . . x. ~ defi:ies an injective 
lJ lj l ox. 

J 

h0m,1morp:1i::;:n of Lie-algebras gl (!R) .... V(!R 11 ) (Exercise: check this) 
n 
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6. LIE ALGEBRAS AND LIE GROUPS. 

6.1. Lie groups. A (finite dimensional) Lie group is a finite 

dimensional smooth manifold G together with smooth maps 

G x G ~ G, (x,y) -+ xy, G 4 G, x -+- x- 1 and a distineuished 

element e E G which make G a group. An example is the open 
n2 

subset of m consisting of all invertible n x n matrices with 

the usual matrix multiplication. _.2. Left invariant vectorfields and the Lie algebrCJ of n .!..ie 

'" group. 

Let G bP a Lie group. Let fur .11 I )'. E G, L : G -+ G be the 
~)' 

::imo,.r.;1 map x )!'< • .\ v'""t,)rfieln X C. V(G) is called left 

invariant if X(L*f) = XL*(Xf) fo~ .di iur.dions fun C, 1lr, 
~ g 

equivalently, if J(L 1X X for :;ll x E (;, cf. secti(1n 3.4 g x g·, 
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above. Especially fro!11 the l;ist ·condi t ic'n it is easy to see th.lt 

X -+ X defines an iso!Tlorphism between the vectorspace of left e 
invariant vectorfields on G ,1nd the tan?,ent spacc: of G dt e. 

Now tlle brackett product of tw~' left in\'ariant vecturfields is 

easily seen to be left invariant again so the tangent space 

of C at e (which is lR.n i.f G is n-dimensit>n<il) inherits a Lie 

algebra structure. This is the Lie algebrJ Lie(G) of the Lie 

group G. It reflects so lo speak the infinitesimal structure 

- G. A main reason for the ilTlportance of Lie algebras in many 
rarts Llf mathematics and its applicatiLin:,, is that this construc­

tion is reversible to a great extent makinr it possible to study 

Lie groups by menns of thte ir Lie alee bras. 

6.:J. F."i!rcise. Show that the Lie algebra of thl" Lie group 

GLn\]l{) of invertible real n x n matrices 1s the Lit' :1lgebr« 

g1 (IR). 
n 
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7. POSTSCRIPT. 

1be above is a very rudimentary introduction to Lie algebras 
Especi.1! ly ~he topic "Lie algebras and Lie groups" also called 
''Lie tht(Jry" has been given very little space, in spite of the 
fact that it is likely to become of some importance in filtering 
(integration of a representation of a Lie algebra to a 
representation of a Lie (semi)group). The books [I, 4, 5, 6, 8) 
are ,ill rec:or:1r.-iended for further material. My personal favourite 
(but by no r.eans the easiest) is [4); [6] is a classic and in its 
present incarnation very good value indeed. 
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