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A TUTORIAL INTRODUCTION TO DIFFERENTIABLE MANIFOLDS AND VECTOR
FIELDS

Michiel Hazewinkel

Dept. Math., Erasmus Univ. Rotterdam

In this tutorial I try by means of several examples to illustrate
’the basic definitions and concepts of differentiable manifclds.
There are few proofs (not that there are ever many at this level
of the theory). This material should be sufficient to understand
the use made of these concepts in the other contributions in this
volume, or, at least, it should help in explaining the termi-

nology employed.

1. INTRODUCTION AND A FEW MOTIVATIONAL REMARKS

Roughly an n-dimensional differentiable manifold is a gadget
which locally looks like R" but globally perhaps not; A precise
definition is given below in section 2. Examples are the sphere
and the torus, which are both locally like szut differ globally
from 'Rz and from each other.

Such objects often arise naturally when discussing problems
in analysis (e.g. differential equations) and elsewhere in
mathematics and its applications. A few advantazes which may come
about by doing analysis on manifolds rather than just on R" are

briefly discussed below.
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78 M. HAZEWINKEL

1.J Couvrdinate freeness ("Diffeomorphisms''). A differentia-

ble manifold can be viewed as consisting of pieces of Iﬁlwhich

are giaed together in a smooth (= differentiable) manner. And

it is on the basis of such a picture that the analysis (e.g. the
study of differential equations) often proceeds. This brings more
than a mere extension of analysis on R" to analysis on spheres,
tori, pro.ective spaces and the like; it stresses the "coordinate
free approach', i.e. the formulation of problems and concepts in
terms which are invariant under (nonlinear) smooth coordinate '
transformiations and thus also helps to bring about a better )
understanding even of analysis on R". The more important results,

concepts and definitions tend to be "coordinate free'.

1.2 Analytic continuation. A convergent power series in ome

complex variable is a rather simple object. It 1is censiderably
more Jdifticalt to obtain an understanding of the collection or
all analytic continuations of a given power series, especially
because anilytic continuation along a full circle may yield a
different function value than the initial one. The fact that the
various cont inuations fit together to form a Riemann surface (a
certain kiud ot 2-dimensional manifold usually different from Rz)
was a major and most enlightening discovery which contributes

a great deal to our understanding.

1.3 ﬁgmqigjfolds. Consider an equation x = f(x) in R" . Then
it often happens especially in problems coming from mechanics,
that the ecquation is such that it evolves in such a way that
certain yuantities (e.g. energy, angular momentum) are conserved.
Thus the equationreally evolves on a subset {x € Rn[E(x) = ¢} which
is often a Jditferentiable submanifold. Thus it could happen that
x = f(x), t smooth, is constrained to move on a 2-sphere which

then immedi.ately tells us that there is an equilibrium point.
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Also one might meet 2 seemingly different equations, say, one in
RA and one iniR3 (perhaps both intended as a description of the
same process) of which the first has two conserved quantities

and the second one. It will then be important to decide whether
the surfaces on which the equations evolve are diffeomorphic,
i.e. the same after a suitable invertible transformation and
whether the equations on these submanifolds correspond under these

transiormations.

1.4 Behaviour at infinity. Consider a differential equation

in the plane % = P(x,y), ¥ = Q(x,y) where P and Q are relatrively
prime polynomials. To study the behavior of the paths far out in
the plane and such things as solutions escaping te Infinity and
coming back, Poincaré already completed the plane to real pro-
jectlive 2-space (an example of a differential manifeold). Also the
projective plane is by no means the only smooth manifold compa-
tifying R2 and it will be of some importance for the behaviour
of the equation near infinity whether the '"right" compactifica-
tion to which the equation can be extended will be a projective
2-space, a sphere or a torus, or, ..., or, whether no such
compactification exists at all. A good example of a set of
equations which are practically impossible to analyse completely
without bringing in manifolds are the matrix Riccati equations
(which naturally live on Grassmann manifolds (which also gives
in this case a very considerable saving in the number of dimen-

sions needed)).

1.5 Avoiding confusion between different kinds of objects.

. . . . . . n
Consider an ordinary differential equation x = f(x) on R, where
. . n n . .

f(x) is a function R - R . When one now tries to generalize
this idea of a differential equation to a differential equation

on a manifold one discovers that x and hence f(x) are a different
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kind of object; they are not functions, but as we shall see, they
are vectorfields; in other words under a nonlinear change of

coordinates they transform in a different way than functions do

2. _Ql_f'fj;RENTIA@_ILE MANIFOLDS

fig.l. Pictorial definition of a differentiable maniiold.
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Let U be an open subset of Rn, e.g. an open ball. A function

f: U >R is said to be Cm or smooth if all partial derivatives
(any order) exist at all x€U. A mapping'Rn 5> U »R" is smooth
if all compcnents are smooth; @: U » V, U CiRn,V cR" is called
a diffeomorphism if ¢ is | - 1, onto, and both ¢ and w—l are
smooth.

As indicated above a smooth n-dimensional manifold is a
gadget consisting of open pieces of R" smoothly glued together.
This gives the above pictorial definition of a smooth n-dimcu~
sional manifold M (fig.l1).

2.1 Example. The circle SI = {(x],xz)]xi + xg =1} cR?

- 7
1

s W
]

R
fig.2. Example: the circle
u, = SI\{S}, U, = Sl\{N} se U, UU, = s'. The "coordinate charts"
9, and 0, are ziven by
1 )
wl(xl,x:) = TI;E- s wz(xl,xz) ]_xz

Thus @ (U, N U,) = R~{0}, @, N U, R~‘0: and the map
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-1 . . -
®, 0 0 R0} » R~{0} is given by x b x ! which is a diffeo-
morphism,

2.2 Formal definition of a differentiable manifold.

The data are
- M, a Hausdorff topological space
- A covering {Ui}iEI by open subsets zf M
- I 4 . . n
Coordinate maps @i' Ui - wi(Ui) R, wi(Ui) open in R .
These data are subject to the following condition
-1 . . .
- . 0 @. : w.(U. . . (U, .
ml wJ (QJ(U1 n UJ) - Lpl(U1 n UJ) is a diffeomorphism
Often one alsv adds the requirement that M be paracompact. We

shall however disregard these finer points; nor shall we need

them in this volume.

2.3 Constructing differentiable manifolds |: embedded mani-

folds. Let M be a subset of RN. Suppose for every x € M there
exists an open neighbourhood U < R" and a smooth function [V

u e'RN mapping U homeomorphically onto an open neighbourhood

V of x in M. Suppose moreover that the Jacobian matrix of ¥ has
rank n at all u € U. Then Y is a smooth manifold of dimension n.
(Exercise: the coordinate neighbourhoods are the V's and tle
coordinate maps are the w—]; use the implicit function theorem).
Virtually the same arguments show that if ¢: U »iRk, U CjRn+k,
is a smooth map and the rank of the Jacobian matrix J(f)(x) is |}
for all x € w—](O), then w_l(O) is a smooth n-dimensional mani-
fold. We shall not pursue this approach but concentrate instead

on:

2.4 Constructing differentiable manifolds 2: gluing. Here

the data are as follows
- an index set I

. n
- for every 1 € I an open subset Ui c R

- fer every ordered pair (i,]) an open subset Uij c Ui
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- diffeomorphisms wij: Uij -
These data are supposed to satisfy the following compatibility

U.. for all i,j € I
ji

conditions

T Upp = Upe gy = id

- ¢3k o wij - wik (where appropriate)

(where the last identity is supposed to imply also that
Lpij(Uij n Uik) c Ujk so that tpij(Uij n Uik) = Ujk n Uji)'

These are not all conditions but the present lecturer e.g.
has often found it advantageous to stop right here so to speak,
and to view a manifold simply as a collection of open subsets ot
r" together with gluing data (coordinate transformation rules).

From the data given above one now defines an abstract topo-
logical space M by taking the disjoint union of the Ui and then
identifying x € Ui and y € Uj iff x € Uij’ y € Uji’ wij(x) = y.
This gives a natural injection U, - M with image Ui say. Let
@, Ui -+ Ui be the inverse map. Then this gives us a differentia-
ble manifold M in the sense of definition 2.2 provided that M is
Hausdorff and paracompact, and these are the conditions which

must be added to the gluing compatibility conditions above.

2.5 Functions on a “glued manifold". Let M be a differentia-
g

ble manifold obtained by the gluing process described in 2.4
above. Then a differentiable function f: M - R consist simply of

' a collection of functions fi: Ui - R such that fj o wij = fi on
Uij’ as illustrated in fig. 3. ]

Thus for example a function on the circle S, cf. figure 2,
can be described either as a function of two variables restricted
to.S1 or as two functions fl’f2 of one variable on U] and U2 such
that fl(x) = fz(x—l). Obviously the latter approach can have

considerable advantages.
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R

tiv.3. Functions on a glued manifold

2.6 Example or a 2 dimensional manifold: the Mobius band.

[he lupen) MObius band is obtained by taking a strip in R" as
indicated below in fig. % without its upper and lower edges and

identitying the left hand and right hand edges as indicated

— - - — o o— — - oy — o em e e MR S een e - .

e em o = e - mm = wm e e s e e S ee o= e

tip. 4. Construction of the Mobius band

the reoalting manifold (as a submanifold of RB) looks

- : . . c
ceethne Like the Tollowing figure 5.
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fig.5. The Mobius band
It is left as an exercise to the reader tu cast this des-—

cription in the form required by the gluing description of 2.4

above. The following pictorial description (fig. 6) will suffice.

J//’//’,,————"’—" @, ———-‘""‘—-\\\\\\\\
Ul U2
: ;;/

4

-
4
N
4
AN
2.

&7 =

12 21

fig.6. Gluing description of the !Obius band

2.7 Example: the 2-dimensional sphere. The picture in fig. 7
2 > ;
=1}
3
ac

2
the surface o

) n
below shows how the 2-sphere §° = {(xl,xz,xB)jx + xI o+ x

2
1

1y

can be obtained by gluing two disks together. 1

-
the earth is viewed as a model for 5”7 the first disk covers
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everything north of Capricorn and the second everything south of
Cancer.

[ ]

Ul' U

o

21

fig.7. Gluing description of the 2-sphere S2

2.8 Morphisms of differentiable manifolds. Let M and N be

difterentiable manifolds obtained by the gluing process of
section 2.4 above. Say M is obtained by gluing together open sub-
sets Ui of K" 2nd hy gluing together open subsets Vj of Rm.
Then o smooth map £: M - N (a morphism) is given by specifying
for atl 1,) an open subset Uij c Ui and a smooth map

U -+ V. such that U U.. = U. and the f.. are compatible
] . 1] 1 1]

i] 5

under the identifications wii': U

ij’

- U.,., ..,V

gt TV O55 Vi 2 Vg

lee. L.y, 00 = o fij whenever appropriate. (Here the

. .
1] 11 3]
n's are the gluing diffeomorphisms for M and the y's are the

gluing diffeomorphisms for N).

2.9 Exercise: Show that the description of the circle Sl as

. . .. . . 1 2
in 2.1 above gives an injective morphism S - R .



DIFFERENTIABLE MANIFOLDS AND VECTOR FIELDS

fig.9. The Mdhbius band as vectorbundle over the circle

87
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3. DIFFERENTIABLE VECTORBUNDLES

Intuitively a vectorbundle over a space S is a family of vector-
spaces parametrized by S. Thus for example the MObius band of
example 2.6 can be viewed as a family of open intervals in R
parametrized by the circle, cf. fig. 9 above, and if we are
willing to identify the open intervals with R this gives us a
family of one dimensional vectorspaces parametrized by S! which

locally (i.e., over small neighbourhoods in the base space S])

-—

looks like a product but globally is not equal to a product.

3.1 Formal definition of a differentiable vectorbundle. A

differentiable vectorbundle of dimension m over a differentiable
manifold M consists of a surjective morphism %: E - M of diffe~
rentiable manifolds and a structure of an m~dimensional real
vectorspace on n_l(x) for all x € M such that moreover there is
for all x € M an open neighbourhood U < M containing x and a
diffeomorphism @0y U xR™ > W“I(U) such that the following

diagram commutes

Rt -1

U xR® ——— 7 ()

where the lefthand arrow is the projection on the first factor,
and such that By induces for every y € U an isomorphism

m -1
{y; xR =7 (y) of real vectorspaces.

3.2 Constructing vectorbundles. The definition given above

is not always particularly easy to assimilate. It simply means
that a vectorbundle over !f is obtained by taking an open covering

{Ui} of M and gluiny together products Ui x R" by means of dif-
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feomorphisms which are linear (i.e. vectorspace structure pre-
serving) in the second coordinate. Thus an m-dimensional vector-
bundle over M is given by the following data
- an open covering {Ui}iEI of M.
- for every i,j a smooth map wij: Ui n Uj - GLmGR) where GLmGR)
is the space of all %nvertible real m X m matrices considered as
an open subset of R” . These data are subject to the following
compatibility conditions
b @ii(x) = Im, the identity matrix, for all x € u;
- wjk(x) mij(x) = wik(x) for all x € Ui n Uj n Uk
From these data E is constructed by taking the disjoint union of
the U, R", i € I and identifying (x,v) € U, R™ with
(y,w) € Uj x R® if and only if x = y and wij(x)v = w. The mor-
phism 7 is induced by the first cuordinate projections

U. xR" - U..
1 1

3.3 Constructing vectorbundles 2. If the base manifold M is

itself viewed as a smoothly glued together collection of open
sets in R" we can descripe the gluing for M and a vectorbundle E
over M all at once. The combined data are than as follows

- open sets Ui xiRm, Ui cR"” for all i € 1

~ open subsets Uij c Ui for all 1,3 € L

- diffeomorphisms ®,.: U..
) - ij° i

- diffeomorphisms @ij: Ui?

(x,v) b (wij(x), Aij(x)v) where Aij(x) is an m x m invertible

- U..

ji
x R™ - Uji~XTRm of the form
real matrix depending smoothly on x.

These data are then subject to the same compatibilitv conditions

for the ®ij's (and hence the wij) as described in 2.4 above.

3.4 Example: the tangent vectorbundle of a smooth manitold.

Let the smooth manifold M be given by the data Ui’ Uij’ w‘j as in
<.4. Then the tanpent bundle TM is given by the data



~'90 . M. HAZEWINKEL
- v, < R", Ui xR cu xR
o~ n n -~
- wij. Uij L Uji xR, wij(x’v) (@ij(x), J(wij)(X)V)
where J(mii)(x) is the Jacobian matrix of mij at x € Uij'
Exercise: check that these gluing morphisms do indeed define

a vectorbundle; i.e. check the compatibility (chain rule !)

3.5 Morphisms of vectorbundles. A morphism of vectorbundles

from the vectorbundle 7: E » M to the vectorbundle 1': E' - M' is
avpair of smooth maps f: E - E', £: M » M' such that m'of = f o n'
and such that the induced map fx: w-](x) - n’l(f(x)) is a homo-
morphism of vectorspaces for all x € M. We leave it to the
reader to translate this into a local pieces and gluing data des—~
cription.

As an example consider two manifolds M, N both described in
terms of local pieces and gluing data. Let f: M - N be given in
these terms by the fij: U

- Vj (cf. 2.8 above). Then the maps
- -

1]
! m . =

i Uij xR - Vj xR defined by fij(x,v) ffij(x)’ J(fij)(x)v)
combine to define a morphism of vectorbundles f = Tf: TM - TN.

4. VECTORFIELDS

A vectorfield on a4 manifold M assigns in a differentiable manner
to every x € !l a tangent vector at x, i.e. an element of the

. -1, . .
fibre T M = 7 (x) of the tangent bundle TM. Slightly more (

precisely this gives the

-~

4.1 Definitions. Let m: E - M be a vectorbundle. Then a
section of E is a smooth map s: M » E such that 7 o s = id. A
sectivn of the tangent vectorbundle ™ - M is called a vector-
ficld.

Suppuse that M is given by a local pieces and gluing data
description as in 2.4 above. Then a vectorfield s is given by

"local sections" s;: U, > U, x R" of the form si(x) = (x, si(x)),
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i.e. by a collection of functions s U, »Rr" such that

J(wij)(x)(si(x)) = sj(x) for all x € Uij‘

4.2 Derivations. Let A be an algebra over R. Then a deriva-
tion is an R-linear map D: A - A such that D(fg) = (Df)g + f(Dg)
for all f,g € A.

4.3 Derivations and vectorfields. Now let M be a differen-

tiable manifold and let S(}) be¢ the R-algebra of smooth functions
M - R. Then every vectorfield s on M defines a derivation ot
S(), (which assigns to a function f its derivative along s),
which can be described as follows. Let M be given in terms of
local pieces Ui and gluing data Uij’ mij' LLet f: M - R and the
section s: M - TM be gliven by the local functions fL: u, »E,

n .
;¢ Ui - R . Now detine gi: Ui - It by the formula

5.
(4.4) g, (x) = k s 00 -a-x—; (x)
where si(x)k is the k-th component of the n-vector si(x). It is
now an easy exercise to check that gi(oij(x)) = gi(x) for all
x € Uij (because (wij)(x)si(x) = sj(x) for these x) so that
the gi(x) combine to define a function g = Ds(f): M - R. This
defines a map D: S(M) —» S(M) which is seen to be a derivation.

Inversely every derivation of S(M) arises in this way.

4.5 The Lie bracket of derivations and vectortields. Let

D ,D, be derivations of an R-algebra A. Then, as 1Is easlily check-—
1772 :

Ed, S0 1s

(p,,0,] =D D, - D,D

2] 2 271
So if S8, are vectorfields on M, then there is a vectorfield
[SI’SZ] on M corresponding to the derivation [Ds sD 1. This

P2
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vectorfield is called the Lie bracket of s, and s, and
(sl’SZ) b [51,52] defines a Lie algebra structure on the vector-
space V(M) of all vectorfields on M.

If M is given in terms of local pieces Ui and gluing data

u then the Lie bracket operation can be described as

1579
follows, Let the vectorfields sand t be given by the local
functions saty u; - R". Then [s,t] is given by the local func-

tions

] 3] i
4.6 The é%Apotation. Let the vectorfield s: M - TM be given

. n . . .
by thefunctlunssi: Ui - R . Then using the symbols Sgn in first
Tk

. . . . n .
instance simply as labels for the coordinates in R we can write

R B
(4.7) S, = o §.(X), —
1 1 k dxk

This 1s a4 most convenient notation because as can be seen from
{4.4) this gives precisely the local description of the differen—

tial operator (derivation) Ds associated to s.

4.7 Differential equations on a manifold. A differential

equation on a manifold M is given by an equation
(4.8) x = s(x)

where s: M » 1M is a vectorfield, i.e. a section of the tangent-
bundle. At every moment t, equation (4.8) tells us in which
direction and how fast x(t) will evolve by specifying a tangent
vecter s(x(t)) at x(t).

Again it is often useful to take a local pieces and gluing
data powat of view. Then the differential equation (4.8) is

given by a collection of differential equations % = si(x) in the
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nse of the word on Uy where the functions Si(X) satisfy

;)si(x) = sj(x) for all x € Ui"

these terms a solution of the differential equation is

collection of solutions of the local equations, i.e. a

on of maps fi: Vi - Ui’ Vi < R(» 0) such that U Vi = R(20),
si(fi(t)) which fit together to define a morphism

» M, i.e. such that @ij(fi(t)) = fj(t> if t € Vi n Vj.

more global terms a solution of (4.8) which passes

x, at time O is a morphism of smooth manifolds f: R -

.t Tf: TR -» Ti satisfies Tf(t,1) = s(f(t)) for all t € R

itable subset of R), i.e. Tf takes the vectorfield

D) 1:R->TR =R xR, th (t,]) into the vectorfield (sec-
M- TML.

Conclusiovn. Here, where it starts to get interesting, is,
o
<

to a develeoping tradition in textbook writing, a good
stop.



A SHORT TUTORIAL ON LIE ALGEBRAS

Michiel Hazewinkel

Dept. Math., Erasmus Univ. Rotterdam
P.0. Box 1738,

3000 DR ROTTERDAM

This tutorial does not correspond to an actual oral
) lecture during the conference at Les Arcs in June, 1980.
However, to improve accessibility and understandability of the
material in this volume it seemed wise to include a small section
on the basic facts and definitions concerning Lie algebras which
play a role in control and nonlinear filtering theory. This is

what these few pages attempt to do.

1. DEFINITION OF LIE ALGEBRAS. EXAMPLES. Let k be a field and V
a vectorspace over k. (For the purpose of this volume it suffices
to take k = R or (rarely) k =X; the vectorspace V over k need
not be finite dimensional). A Lie algebra structure on V is then

a bilinear map (called brackett multiplication)
(1. 1) [, 1: VvxV-=>vV

such that the two following conditions hold
(1.2) [u,u] = 0 for all u € V

95
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.3 lu,lv,wl] + [v,{w,ul]] + {w,[u,v] =0 for all a,v,w, € V,

The last identity is called the Jacobi identity. Of course the
bilinearity of (!.1) means that [au+bv,w] = alu,w] + blv,w],
[u,bv+cu] = blu,v] + clu,w]. From (1.2) it follows that

(1.4) {u,v] = =[v,u]

by considering [utv,u+v] = 0 and using bilinearity.

1.5. Example. The Lie algebra associated to an associative

al gebra.

Let A be an associative algebra over k. Now define a new

multiplic.tion (brackett) on A by the formula
(1.6) - [v,w] = vw = wv, w,v € A

Then A with this new multiplication is a Lie algebra. (Exercise:

check the Jacobi identity (1.3)).

1.9. Remark. In a certain precise sense all Lie algebras arise
in this way. That is for every Lie algebra L there is an
associative algebra A containing L such that [u,v] = uv - vu.
I.e. every Lie algebra arises as a subspace of an associative
algebra A which happens to be closed under the operation

{u,v) » uv - vu. Though this "universal enveloping algebra”
construction is quite important it will play no role in the
following and the remark is intended to make Lie algebras

easier to understand for the reader.
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l.i. Example. Let Mn(k) be the associative algebra of all n x n
matrices with coefficients in k. The associated Lie algebra is
written gln(k); i.e. gln(k) is the nz-dimensional vectorspace
of all n x n matrices with the brackett multiplication

[A,B] = AB - BA.

1.8. Exaggle. Let szn(k) denote the subspace of all n x n matrices
of trace zero. Because Tr(AB-BA) = O for all n x n matrices A,B,
we see that [A,B] € sln(k) if A,B € sln(k) giving us an

(nz—l)—dimensional sub Lie algebra of gﬂn(k).

1.10. Example. The Lie algebra of first order differential

. 0o . -
operators with C -coefficients.

Let vn be the space of all differential operators (on the space

F@R") of C -functions (i.e. arbitrarily often differentiable

functions in xl,...,xn)) of the form
n

(la11) X = I fi(x],...,x

d
)
i=1 o

o .
where the fi' i=1, ..., n are C -functions. Thus

n
X: FGR“) -+ FGR“) is the operator X(¢) = T fi %%—. Now define
i=1 i

a brackett operation on Vn by the formula

ag . 3 Bfi 3
(1.12) [Xx,Y] = RS H "‘J'ax. = " 8 "é?{.‘ﬁi.‘)
1,] 1 ] 1
if X =L f - Y=1Lg. 3__, This makes V_ a Lie algebra.
i Bxi ? j ij n

Check that [X,Y]($) = X(Y(¢)) =~ Y(X(4)) for all ¢ € F@R™).

1,13, Example. Derivations. Let A be any algebra (i.e. A is a

vectorspace together with any bilinear map (multiplication)
A X A+ A: in particular A need not be associative). A derivation

on A is a linear map D: A + A such that
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(1.14) D(uv) = (Du)v + u(Dv)

For example let A = R[x] and D the operator %;. The D is a
derivation. The operators (1.11) of the example above are
derivations on FGR“).

Let Der(A) be the vectorspace of all derivations. Define
[D],Dz] = DD, = D,D,. Then [D‘,Dz] is again a derivation and

this brackett multiplication makes Der(A) a Lie algebra over k.

1.15. Example. The Weyl algebra Wl. Let w] be the vectorspace 61

of all (any order) differential operators in one variable with

polynomial coefficients. I.e., W, is the vectorspace with basis

. .
: g—f , i,j EN U {0}, (x* is considered as the operator
dx

1

f(x) ~ xlf(x)). Consider w] as a space of operators acting, say,
on k[x]. Composition of operators makes w] an associative
algebra and hence gives w] also the structure of a Lie algebra.

For example one has
2

2 .
CRENC I I WL N K S VR N S B
2 dx 2 dx dx
dx dx dx dx

1.16. Example. The oscillator algebra. Consider the four

dimensional subspace of W

£ 12
de 2

1 spanned by the four operators

4
dx’

N —

1. One easily checks that (under the bracke.ﬁ

multiplication of w])

2 2
1d” 1 2 o _d 14”1 24d, _ d .
s m b gt el -
(1.17) x x
14> 2 d
['é""‘—‘z"a'!( ,l]=[x,]]=[d—£,1]=0
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Thus this four dimensional subspace is a sub-Lie-algebra of

Wi It is called the oscillator Lie algebra (being intimately

associated to the harmonic oscillator).
2. HOMOMORPHISMS, ISOMORPHISMS, SUBALGEBRAS AND IDEALS.

2.1. Sub-Lie-algebras. Let L be a Lie algebra over k and V a

subvectorspace of L. If [u,v] € V for all u,v € L. Then V is a
sub-Lie-algebra of L. We have already seen a number of examples
of this, e.g. the oscillator algebra of example 1.16 as a
sub~Lie-algebra of the Weyl algebra w] and the Lie-algebra

sQn(k) as a sub-Lie-algebra of gln(k). Some more examples follow.

2.2. The Lie-algebra son(k). Let son(k) be the subspace of
gin(k) consisting of all matrices A such that A + AT = 0 (where

the upper T denotes transposes). Then if A,B € soq(k)
(A,B] + [A,B]T = AB - BA + (AB-BA)T = A(B+BY) - B(a+al) +

+ (8T+8)AT = (aT+a)BY = 0 so that [A,B] € so (k). Thus so_(k) is
a sub-Lie-algebra of gln(k).

2.3. The Lie—algebra tn(k). Let tn(k) be the subspace of an(k)
consisting of all upper triangular matrices. Because product
and sum of upper triangular matrices are again upper triangular

tn(k) is a sub-Lie-algebra of gln(k).

'2.4. The Lie-algebra spn(k). Let Q be the 2n x 2n matrix

Q = (O In). Now let spn(k) be the subspace of all 2n x 2n
-1 0
n
matrices A such that AQ + QAT = 0. Then as above in example
2.2 one sees that A,B € spn(k) = [A,B] € spn(k) so that sp (k)

is a sub-Lie-algebra of giqn(k)‘

2.5. Ideals. Let L be a Lie-algebra over k. A subvectorspace
I « L with the property that for all v € I and all v € L we have

[u,v] € 1 is called an ideal of L. An example is sQn(k) < g?n(k),
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cf. example 1.8 above. Another example follows.

2.6, Example. The Heisenberg Lie-algebra. Consider the

3-dimensional subspace of W spanned by the operators x, 3;’ 1.
The formulas (1.17) show that this subspace is an ideal in the

oscillator algebra.

2.7. Example. The centre of a Lie algebra. Let L be a Lie algebra.

The centre of L is defined as the subset Z(L) = {z € L{[u,2z] =0
for all u € L}. Then Z(L) is a subvector space of L and in fact 1*“
an ideal of L. As an example it is easy to check that the centre

of gln(k) consists of scalar multiples of the unit matrix In.

2.8, Homomorphisms and isomorphisms. Let L] and L, be two Lie

2

algebras over k. A morphism of «: L1 > L2 vectorspaces (i.e,

a k-linear map) is a homomorphism of Lie algebras if

alu,v] = au),a(v) for all u,v € L]. The homomorphism a is called

an isomorphisn if it is also an isomorphism of vectorspaces.

2.9, Example. Consider the following three first-order differen-

tial operators in two variables x,P

a= (I—pz) %; - Px %; , b=P c =

Q| w
"

2
ax ’
Then ovne easily calculates (cf. (1.9)) [a,b] = ¢, [a,c] = b,

[b,¢] = 0. Now define o from the oscillator algebra of example ‘E‘

1.16 to this 3-dimensional Lie algebra as the linear map

2 d
ST= T3 % - a, x> b, e > ¢, I » 0. Then the formulas above

and (1.17) show that ~ is a homomorphism of Lie algebras.

2,10, Kernel of a homomorphism. Let a: L] - L2 be a homomorphism

of Lie algebras. Let Ker(a) = {u € Llla(u) = 0}. Then Ker(a) is

an ideal in Ll'

2.1

. Quoutient Lie algebras. Let L be a Lie algebra and I an

ideal in L. Consider the quotient vector space L/1 and the
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quotient morphisms of vector spaces L & L/1. For all u,v € L/T
choose u,v € L such that a(u) = G, a(v) = v. Now define

(u,v] = alu,v]. Check that this does not depend on the choice
of u,v.

This then defines a Lie-—algebra structure on L/I and a: L = L/T

becomes a homomorphism of Lie-algebras.

2.12. Image of a homomorphism. Let a: Ll - L2 be a homomorphism
of Lie algebras. Let Im(a) = a(Ll) = {u € Lviﬂv € L], a(v) = ul.
Then Im&t is a sub-Lie-algebra of L

Ll/Ker(a) = Im(a).

7 and o induces an isomorphism
2.13. Exercise. Consider the 3-dimensional vector space of all
real upper triangular 3 x 3 matrices with zero's on the diagonal.
Show that this a sub-Lie-algebra of gQ3GR), and show that it 1is
isomorphic to the 3-dimensional Heisenberg-Lie-algebra of
example 2.6 but that it is not isomorphic to the 3-dimensional
lLie-algebra siZGR) of example 1.8. )

2.14, Exercise. Show that the four operators x2, g—;,

dx

X

span a 4-dimensional subalgebra of W,, and show that this

1
4-dimensional Lie algebra contains a three dimensional Lie

algebra which is isomorphic to slﬁOR).
- 2
d

5 X5 7Ty X T
dx2 dx dx

2.15. Exercise. Show that the six operators x2,

space a six dimensional sub-Lie-algebra of Wl. Show that

s %;3 1 space a 3-dimensional ideal in this Lie-algebra and

. @

show that the corresponding quotient algebra is si,@®).

rs

3. LIE ALGEBRAS OF VECTORFIELDS.

Let M be a dm-manifold (cf. the tutorial on manifolds and
vectorfields in this volume). Intuitively a vectorfield on M
specifies a tangent vector t(m) at every point m € M, Then piven
a Cm-function f on M we can for each m € M take the derivation

of £ at m in the direction t(m), giving us a new function g on
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M. This can be made precise in varying ways; e.g. as follows.

3.1. The Lie algebra of vectorfields on a manifold M. Let M be

a Cm—manifold, and let F(M) be the R—algebra (pointwise additior
and multiplications) of all smooth (= Cm) functions f: M »> RR.

oo ’ . 3 .
By definition a C -vectorfield on M is a derivation

X: F(M) » F(M). The Lie algebra of derivations of F(M) cf.

example 1.13, i.e. the Lie-algebra of smooth vectorfields on M,
is denoted V(M).

3.2. Derivations and vectorfields. Now let M = R" so that F(M)

is éimply the R-algebra of C’-functions in Xps sees Xoo Then it
is not difficult to show that every derivation X: F@®RD) -+ F@®R™)

is necessarily of the form

. .2
(3.3) X= 7 8 3%
= i

with g; € F®R™). For a proof cf. [4, Ch.1,§2). The corresponding
vectorfield on R" now assigns to x € R" the tangent vector
(€, (), ..y g G

On an arbitrary manifold we have representations (3.3)
locally around every point and these expressions turm out to be
compatible in precisely the x way needed to define a vectorfield
as described in the tutorial on manifolds and vectorfields in

this volume [3].

3.4. Homomorphisms of Lie algebras of vectorfields. Let M and X

be C -manifolds and let a: L - V(N) be a homomorphism of Lie
algebras where L is a sub-Lie-algebra of V(M). Let ¢: M -+ N be

a smooth map. Then 2 and ¢ are said to be compatible if
(3.5) G*(@(X)E) = X(d*(£f)) for all f € F(N)

where ¢* is the homomorphism éf algebras F(N) - F(M),
£ > 9*(f) = f o d.
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In terms of the Jacobian of ¢ (c£.[3]), this means that

(3.6) IO XY = aty

where Xm is the tangent vector at m of the vectorfield X.

If ¢ : M > N is an isomorphism of C -manifolds there is

always precisely one homomorphism of Lie-algebras
a : V(M) > V(N) compatible with ¢ (which is then an isomorphism).
t is defined (via formula (3.5)) by

(3.7) a(X) (£) = (6% 'X(*£), £ € F@V)

3.8. Isotropy subalgebras. Let L be a sub-Lie-algebra of V(M)

and let m M. The isotropy subalgebra Lm of L at m consists
of all vectorfields in L whose tangent vector in m is zero, or,
equivalently

(3.9) L = {X€ LIXf(m) = 0 all f € F(M)}

Now suppose that a: L » V(N) and ¢: M -+ N are compatible
in the sense of 3.4 above, Then it follows easily from (3.5)
that

(3.10) a(Lm) c V(N)¢(m)

i.e. a isotropy subalgebras into isotropy subalpebras.
Inversely if we restrict our attention to analytic vectorfields
then condition (3.10) on a at m implies that locally there

exists a ¢ which is compatible with a [7].

4, STPLE, NILPOTENT AND SOLVABLE LIE ALGEBRAS.

4.1. Nilpctent Lie algebras let L be a Lie-algebra over k.
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The descending central seems of L is defined inductively by

(4.2) ¢t =1, ¢ o= n,elil, 1>
It is easy to check that the CiL are ideals, The Lie algebra
L is called nilpotent if C"L = {0} for n big enough,
For each x € L we have the endomorphism adx: L - L
defined by y » [x,j]. It is now a theorem that if L is finite
dimensional then L is nilpotent iff the endomorphisms adx are ’!

nilpotent for all x € L, Whence the terminvlogy.

4,3, Solvable Lie algebras. The derived seems of Lie algebras

of a Lie algebra L is defined inductively by

(4.4) plL =, p**'L = 1,01y, i >

. . N i . .
It is agaln casy to check that the DL are ideals., The Lie

algebra L is called solvable if DL = {0} for n large enough.

4,5, Examples, The Heisenberyg Lie alpebra of example 2.6 is
nilpotent, The Oscillator algebra of example [.16 is soulvable
but not nilpotent, The sub-Lie-algebra of W
2
basis xz, 2:7’ X, %;, 1, x %; is neither nilpotent, nor solvable,
dx

! with vector-space

The Lie-algebra tn(k) of example 2.3 is solvable and in a way isc
typical of finite dimensional sclvable Lie algebras in the sense
that if k is algebraically closed (e.g. k = C), then every

finite dimensional solvable Lie algebra over k is isomorphic

to a sub-Lie-algebra of some tj(k).

4.6, Exercise, Show that sub-Lie-algebras and quotient-Lie-
algebras of solvable Lie algebras (resp. nilpotent Lie alpebras)

are solvable (resp, nilpotent).

4.7, Abelian Lie-algebras. A lie alpebra L is called abelian

if [L,1] = {0}, i.e. if every brackett product is zero.
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4,8. Simple Lie—algebras., A Lie algebra L is called simple

if it is not abelian and if it has no other ideals than O and L.
(Given the second condition the first one only rules out the
zero— and one-dimensional Lie algebras). These simple-Lie~
algebras and the abelian ones are in a very precise sense the
basic building blocks of all Lie algebras.
The finite dimensional simple Lie algebras over L have been

classified, They are the Lie algebras slnGC), spnGE), sonGC) of
xamples 1,8, 2.4 and 2.2 above and five additional excepticmal
Lie algebras. For infinite dimensional Lie algebras things are
more complicated. The socalled filtered, primitive, transitive
simple Lie algebras have also been classified (cf. e.g. [2]).

One of these is the Lie-algebra Vn of all formal vector fields
3 . .
Zfi(xl""’xn)§§2‘ where the fi(X) are (possibly non converging)

formal power series in Xiseees X This class of infinite dimen-
sional simple Lie algebras by no means exhausts all possibilities,
E.g. the quotient-Lie-algebras wnﬂR.l are simple and non-isomor-

phic to any of those just mentioned.
4.9, Exerxrcise. Let VqlgORn) be the Lie algebra of all differential

operators (vector fields) of the form Zfi(x],...,xn)%;— with

. n . .
‘(xl,...,xn) polynomial. Prove that ValgC[R ) is simple.

5. REPRESENTATIONS,

Let L be a Lie algebra over k and M a vectorspace over k.

A representation of L in M is a homomorphism of Lie algebras.

G.1) p: L~ Endk(M)

where Endk(M) is the vectorspace of all k-linear maps M ~ M

which is of course given the Lie algebra structure
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[A,B] = AB - BA. Equivalently a representation of L in M consists
’

of a k-bilinear map

(5.2) g:LxM-M

such that, writing xm for o(x,m), we have x,y m = x(ym) - y(xm)
for all x,y € L, m € M, The relation between the two definitions
is of course o(x,m) = p(x)(m).

Instead of speaking of a representation of L in M we also

speak (equivalently) of the L-module M, {F’

5.3. Example. The Lie algebra gln(k) of all n x n matrices
naturally acts on K by (A,v) - Av € k" and this defines a
representation gln(k) x k"~ k™, The Lie algebra V(M) of
vectorfields on a manifold M acts (by its definition) on F(M)
and this is a representation of V(M). A quite important theorem

concerning the existence of representations is

5.4. Ade's theorem, Cf. e.g. [1,§87]. If k is a field of
characteristic zero, e.g. k =R or C and L is finite dimensiocnal
then there is a faithful representation p: L ~ End(kn) for
some n, (Here faithful means that p is injective).

Thus every finite dimensional Lie algebra L over k (of
characteristic zero) can be viewed as a subalgcbra of some
gln(k), and this subalgebra can then be viewed as a more comret?\

matrix "representation” of the "abstract" Lie algebra L.

5.5, Realizing Lié-algebras in V(M). A question of some impor-—
tance for filtering theory is when a LIe algebra L can be
realized as a sub-Lie-algebra of V(M), i.e. when L can be
represented in F(M) by means of derivations of several papers

in this volume for a discussion of the relevance of this problem.
For finite dimensional Lie algebras Ado's theorem gives the

. ) . .. .
answer because (a..) - fa..x. =—— defines an injective
i] ij71 9x

homemorphism of Lie-algebras glnGR) - VGRn) (Exercise: check this)
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6. LIE ALGEBRAS AND LIE GROUPS.

6.1. Lie groups. A (finite dimensional) Lie group is a finite
dimensional smooth manifold G together with smooth maps

G xG~>G, (x,9) » xy, G+~ G, x ~ x—l and a distinguished
element e € § which make G a group. An example is the open
subset of]Rné consisting of all invertible n x n matrices with

the usual matrix multiplication,

‘.2. Left invariant vectorfields and the Lie algebra of a Lie
group.
Let G be a Lie group. Let for all g € G, Lp: G »> G be the
smocth map x ~ gx. A vectorfield X € V(G) {s called left

invariant if X(L*r) = KL;(Xf) for all functions f on G. Or,
5 g

equivalently, if J(LR}XX = Xz% for all x € G, cf, section 3.4
above. Especially from the last vondition it is easy to see that
X -~ Xe defines an isomorphism between the vectorspace of left
invariant vectorfields on G and the tanpent space of G at e.
Now the brackett product of twoe left invariant vecturfields is
easily seen to be left invariant again so the tangent space
0f G at e (which is R" if G is n-dimensicnal) inherits a Lie
algebra structure. This is the Lie algebra Lie(G) of the Lie
group G. It reflects so to speak the infinitesimal structure

{ G. A main reason for the importance of Lie algebras in many
Farts of mathematics and its applications is that this construc-
tion is reversible to a preat extent making it possible to study

Lie groups by means of their Lie algebras.

6.3. Fxercise. Show that the Lie algebra of the Lic group
GLndR) of invertible real n x n matrices is the Lie algebra

ginCrR).
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7. POSTSCRIPT,

The abuve is a very rudimentary introduction to Lie algebras
Especialiy vhe topic '"Lie algebras and Lie groups" also called
"Lie thecry' has been given very little space, in spite of the
fact that it is likely to become of some importance in filtering
(integration of a representation of a Lie algebra to a
representation of a LIe (semi)group). The books (1, 4,5, 6, 8]
are all recommended for further material. My personal favourite {
(but by no means the easiest) is [4]; [6] is a classic and in its

present lncarnation very good value indeed.
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