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1. INTRODUCTION

Let X be a topological space, U a finite covering of X (NB the words
'covering' and 'cover' are used interchangeably). We say that (X, ) has the
almost fixed point property for a class qF of continuous maps f: X » X
if for all f € F there is an x € X and U € ¥ such that x € U and
f(x) € U, or, equivalently, if there is a U € Y such that U n £(U) # ¢

For example if X is the euclidean plane and 2{ a finite open covering
by convex sets then (X, U ) has the almost fixed point property for all

continuous maps. Cf. De Groot, De Vries, Van der Walt [2]. Other examples
of almost fixed point theorems can be found in Klee [7], Halpern [6] and
Gray, Vaughan [5].

It is fairly natural to restrict attention to finite coverings of X.
Indeed if a space X is such that (X, U ) has the almost fixed point property
for all open coverings ¥, then X has the fixed point property. It is also
fairly natural to concentrate somewhat on noncompact spaces X because if
a compact space X is such that (X, W ) has the almost fixed point property
for all (or a cofinal set of) finite coverings WU then X has the fixed
point property.

There is an extension of this result. Let X be a T1—space and £:X * X
a continuous map. Let w(X) be the Wallman compactification of X. There is
an induced continuous map w(f): w(X) = w(X). The following two statements

are then equivalent: (i) w(f) has a fixed point; (ii) for every finite open



covering U of X there is a U € U  such that U n £(U) # ¢. This follows
from the fact that there is a one-one correspondence between finite
coverings of X and finite coverings of w(X).
In this paper we develop what Thompson [11] calls an indirect
theory. A main result is a Lefshetz-type almost fixed point theorem.
We first define a certain kind of finite coverings called geometric
coverings. The result then is: let X be a space with a closed
Zeometric covering U and let f: X » X. Then L(f) = 0 or for every
finite open cover U which is refined by € there is a U € U such
that U N £(U) # ¢. Here L(Ff), the Lefshetz number, is defined in terms

of compactly generated éech homology.

The next step 1s then to find at least some examples of geometric

coverings. In this direction we have e.g. the following results:

(i) A compact space X admits a weak semicomplex structure
(cf. Thompson [10] for this notion) if and only if every
finite open covering is geometric. (Spaces which admit a WSC
structure include all compact polyhedra).

(ii) 1f X is a not necessarily compa~t normal space and C is a finite
closed convexoid covering which admits a finite open refinement

then U is geometric. Cf. 8.4.

This last result, the Lefshetz-type almost fixed point theorem,
and a result on the existence of finite closed convex refinements
of finite open convex coverings of euclidean spaces then combine
to give a proof of the following almost fixed point theorem,
conjectured by De Groot, cf. [2].

Let W be a finite open convex covering of R®, r : &® ~ R"

continuous, then there is a U € U such that U N £(U) # ¢.



2. COMPACTLY GENERATED GECH HOMOLOGY

In this section we introduce some notation and give a short outline
of the definitions of the (compactly generated) Cech homology groups.

For more details cf e.g. Eilenberg Steenrod [3] and Spanier [9].

2.1. Some Notations and Conventions

If X is a topological space thencovjkx) denotes the set of all
finite open coverings of X. All coverings occurring in this paper
(open or not) will be finite. If L is a finite covering of X and d¢<: C

is a subset then ﬂd = N A.
Aco

A simplicial complex will be an abstract simplicial complex. All

simplicial complexes will be finite. If S is a simplicial complex then

s® denotes its n-skeleton, AS is the chain complex with coefficients
in @ associated to S and Hk(S) is the k-th homology group of AS . The
symbol I denotes the simplicial complex with two vertices e e and one
1-simplex {eo,e1}. If S and S, are two simplicial complexes then S x S,
is their cartesian product. The vertices of S x I are pairs (a,ei)

where a is a vertex of 8, 1 = 0,1; we write ai for (a,ei), i=0,1. With

this notation the simplices of S8 x I can be described as follows:

let 815 -ees B be an ordening of the vertices of S. Then a simplex of
S x I is of the form {a° ,...,a? . a? ,...,a? } where
i i i i
1 r r+1 k
SR TR SO I U PRPE S

Let U € covf(X), K a subspace of X; with 1L|'K we denote the set
of subsets of K of the form U N K, U€ U , and C(K, U ) stands for
. the simplicial complex which is the nerve of QLI'K; i.e. a typical
simplex of C(K, U ) is a subset o = {Uij,...,Uin} of U such that
U; N...AU; NK#¢. The n-skeleton of Sk, W ) is denoted C*(k, U )
and the k-th™homology group of A é(K, WU ) is denoted Hk( WU x);
if K = X we sometimes write Hk( U ) or Hk(X, U ) for Hk(lL! X) and
C(U ) for C(x, U ).
Let ¢ be a simplex of Sk, U ), UE covf(X), K < X. Then the

support of c,supp(o),is defined as U U N K and the reduced support of ¢ as
Ueo



rsupp(c) = N U N K. A chain ¢ € A C(K, W ) is said to be on a subspace
AcKif ¢ &Igcin the subchain complex Aé(A,‘L{, ) < Aé(K, U ) or, equivalently,
if rsupp(c) N A # ¢ for all o occurring in ¢ (i.e. having nonzero

coefficient in c).

2.2. Cech Homology of Compact Spaces.

Let K be a compact space, K' a closed (compact) subspace of K. Let
Yre covf(K‘) and Y+ € covf(K) then we say that W' refines 1V and
write ' < 9% if for every V' € W' there is a V € ¥ such that
V' = V. Choosing such a V for every V' € W' defines a map of simplicial
complexes (‘Z’(K' , ¥') > &k, ¥ ) and a homomorphism of chain complexes

Ab(kr, W) > Aé(K, v ) and induces a homomorphism Hk( v > Hk( w).

All these maps are called refinement maps. There is usually more than

v v .
one refinement map C(K', Y¥') - C(K, ¥ ) but they are all homotopic and
(V).

hence induce the same homomorphism Hk(‘i}') > Hy

Applying this with K' = K and letting ¥ run through covf(K)
we obtain a projective system of groups and homomorphisms, Hk(K,-) s

indexed by covf(K). The k-th Cech homology group of K is now defined as

-

v - - - - v -
H (K) = 1im Hk(K,—). The canonical projection Hk(K) - Hk(U) is denoted

<

£

Let f: K1 - K2 be a continuous map of compact spaces. Every

u2 € covf(Kz) then gives rise to a f—1u2 = 'L(] € covf(K1),

-1 - : . -
(U, = {f 1U2|U2 € uz}. Assigning to a vertex f 'y the vertex

2) 2

U, defines a map of simplicial complexes é(K1,u1) > 5(K2, u2) and

induces a homomorphism Hk(f) : Hk(u1) - Hk(u2)’ Letting u2 run
through covf(KQ) we obtain a homomorphism of projective systems

Hk(f)i H}{(K1 —) Hk(KZ’—) which in turn gives rise to a homomorphism

B (£): B (k) » B (K,).
Note that we have a commutative diagram
. m(e)
E (k) —S— (k)
(2.2.1)

q a

B (KUY (K, Up)



whenever 1L1 refines f_1142 (where the lower horizontal homomorphism is

the composite of a refinement map Hk(K1,111) - Hk(K1,f-1Z£Q) and

, -1
H, () Hk(KPf u2> - Hk(Kg,u ).

2
4
The Cech homology theory on compact spaces (or more generally
compact pairs) satisfies all the usual homology axioms, cf. Eilenberg

Steenrod [3].

v
2.3. Compactly Generated Cech Homology

Now let X be a not necessarily compact topological space. We could
of course again write down the definitions of 2.2 and thus define
éech homology groups of X hased on finite covers. However, this
homology theory does not satisfy the homotopy axiom (e.g. the éech
homology based on finite covers of R is not trivial). Instead we take
compactly generated Cech homology, also called Cech homology with compact

supports, which is defined as follows.

Let T be a cofinal collection of compact subsets of X, i.e. for
every compact K < X, there is a K' € T such that K <« K'. For each K € T,

write down ﬁk(K): if K1 c K., K K2 € T we have an induced homomorphism

2: ‘]’
ﬁk(K1) - ﬁk(Kg) giving us an injective system of homology groups indexed
by I'. We now define Hk(X) = lim i

KeT

k(K). This definition does not depend
on T'. If f: X » Y is a continuous map then for every K < X, K compact
we have that f(K) © Y is compact and hence we have an induced map

1]

HR(K) > ﬁk(fK) and this gives us a homomorphism of inductive systems and,

v
taking the limit, an induced homomorphism Hk(f): ﬁk(x) > ﬁk(Y).

For compact spaces X these definitions agree with the ones from 2.2.
Let UE covf(X), i.e. U is a finite open cover of the (not
necessarily compact) space X. Then there is a natural homomorphism
X
u

there is a compact K and a z' € il

q. ﬁk(X) > Hk(lL) which is defined as follows. Let z € ﬁk(X), then

k(K) such that z' is mapped onto z

under the natural homomorphism i (K) ~ ﬁk(X). Enlarging K if necessary

k
we can assume that E(K,lt) = é(X,li). We now define qizz) = qﬁfz').

This does not depend on K.



Let £f: X > Y be a continuous map, V€ covf(Y),u € covi(X) end
suppose that U < f_T'{)', then we have a commutative diagram

Hk(f)

(X)) —— L (Y)

i
X Y
4 |5

H, (W)

H, (1)

where the lower horizontal homomorphism is defined in the obvious way.

2.4. Reduced Homology Groups.

The chain complexes AE(K,u) carry a natural augmentation. The
homology groups of the augmented complex are the reduced homology
groups denoted iifk K,U). Replacing Hk K,U) with 'Iyi (K, U) everywhere
in 2.2 and 2.3 then defines reduced Gech homology groups HK(X) (K)

2.5. Lefshetz Theoremn.

Let X be a compact space, U € covi(X). Then there is a
V€ cov (X) which refines U such that

Im(H(X) » BE(U)) = Im(H(W) >H (W)
This follows directly from the fact that the H(U) are finite

dimensional vector spaces over Q.

The same result holds for reduced homology (for the same reason).



3. GEOMETRIC COVERS.

In this section we define and discuss the main technical tool

of this paper, the notion of what we like to call a geometric cover.

3.1. Definition of Geometric Covers.

Let X be a topological space. A finite (not necessarily open)

cover L of X is geometric in dimension < n with respect to compactly

generated Cech homology if there exist

(i) a cofinal collection I' of compact subsets of X

(ii) amap y : ' » T such that
(3.1.1) K < vy(K) for all KE€T

(iii) a finite open refinement U' of T
(iv) for every K € T and VY € covf(yK) such that '!}‘< u"
A8k, un) » aB(vK, W)

such that the following conditions are satisfied

an augmentation preserving chain map Top °

(3.1.2) (Factorization property). If k <n, K€ T, V€ covf(YK),
4 < L', then there is a ¥ € covf(K), V' < V¥ such that the
following diagram commutes (where the two unlabelled arrows

are induced by refinement maps).

H (U [K)

\ e

ka") — W

)
(3.1.3) (Compatibility property). If k <n, K €T, "\)‘1,1)'2 € cov(vyk),
vV, < P, < U' than the following diagram commutes

5 (V)

H (t..)

Rl
\a

(v.,)
Hk(T,]’,Q) L Vy




. v
(3.1.4) (Norm condition). For every T,y 8nd for every o € CnH(K,"U.')

there is a C € U such that rsupp(c) = C N K and -rv(o) is on
C N yK; i.e. rsupp(c') N C N YK # ¢ for all o' occurring in

-rv_(o).

In the sequel we shall use n-geometric as an abbreviation for geometric
in dimensions < n with respect to compactly generated Sech homology.

A finite cover U is geometric if there exists a finite open refinement _
U' € covi(X) of T such that there are for every n € N a cofinal

collection of compact sets I‘n, a map vy, : I‘n > I‘n, and for every Kn € I‘n
f L. (n) ,wn+1 o
and W € cov (YnKn), Y¥¥< U ' chain maps Ty AC (Kn,‘u,') > AC(YnKn,\})

such that (3.1.1) - (3.1.4) hold. Note that W' is not allowed to depend
on n (but that everything else may depend on n).

Examples of geometric ‘covers are all fi-nitle. open covers of compact .
spaces which admit a weak semicomplex structure, cf. 3.2 and 3.3 below.

If X is a not necessarily ccmpe%ce and C is a finite closed
convexold cover which has a finite open .refinement then U is
geometric, cf. 8.k,

As in the case of wea.k semicomplexes the existence of geometric
covers is closely related to various forms of local acyclicity (or local
connectedness) of the space X, Cf. 4.5 and sections T and 8.
| Let U be an n-geometric (or geometric) cover of a space X. Then
01 (T ) denotes the collection of all covers W' of X refining L such

that there exist corresponding I', v, T

v satisfying the conditions listed

above. )
Note that U'€ 0OL(¥) and U" € covf(X), U < U= U" EJT) and
w ea(t), €L <t'= e O'L(’C')',‘i.e. every cover of X refined by an

n-geometric one is itself n-geometric.

3.2. Weak Semicomplex Structures (Thompson [10 ])

Lef X be a compact space. A weak semicomplex structure _‘(WSC) on X

éonsists of :

(i) for every UE covf(X) a cofinal subset Q(WU ) ccovf(X) with a
coarsest element a(M) € Q(U), a(U) < U

(ii) for every ¥, W € @(U), ¥ < W an augmentation preserving chain
map ¢ ::: Aé(X,W) > Aa(X,'V) such that the following conditions
are satisfied




(3.2.1) I ¥' < ¢' <P in Q(U) then the following diagrams are
commutative up to homotopy (where the unlabelled arrows are

refinement maps)

AC(X V')

) | '
AC(X, V") al(x, P

aC(X, V) //‘r/') AE(X, V) /

(3.2.2) For each V€ Q(i), c:j: induces an idempotent homomorphism

' H(V) - H(V) of which the image coincides with the image of
ﬁ(X) in Hﬁ}) (under the natural map)

(3.2.3) If ¥ < W in Q(U ) then the chain map c’;ﬂ; satisfies the following
norm condition: For every 01;: Aé(X,N) + AC(X, V) and
every simplex o € C(X,W) there exists a U € U such that

supp(o) € U and supp(ct;(o)) < U.
3.3. Theoren.

Let X be a compact space which admits a W3C structure. Then every

finite open cover of X is geometric.

Proof. Let U € covf(X). Take W'
= {X}, and define T

a(U), cf 3.2 above. We take
1’
refining U' as follows:

. w

if Ve a(U) take T ” |

if V¢ Q(U) let ’i}' € (U ) be a refinement of V¥ and define Ty
with the refinement map AC(X #1) > al(x, ™)

= C

as the composite of CV'
This definition does not depend on V' (up to homotopy) because
of (3.2.1) (second diagram).
We chock the various axioms, (3.1.1) is automatic and (3.1.3) and
(3.1.4) rollow from respectively (3.2.1) (second diagram and (3.2.3).
It remains to prove the factorization condition. Again it suffices to do
this for V€ Q(U). Let ¥' < ¥ be such that the image of H( ') in H(2*)
is equal to the image of IilI(X) in H(¥* ). Such a # € covf(X) exists

by the Lefshetz theorem 2.5. We have a diagram

: é(X w') > a8(X, ) for every V€ covf(X).



10

<

AC( W

")

N‘I

. a8(V)
3 zjz// \\\\51

AU — AC( W)

2

and this diagram is commutative up to homotopy. Now according to (3.2.2)
c,x 1s idempotent with as image the image of H(X) in H(¥).
It follows that Cid Myx = Tyxe And hence we have

Tia = Coaoix = CoxMox™ 4 = Coxax which proves the factorization.

Inversely we have

3.4. Theorem.

Let X be a compact space and suppose that every open covering of X 1is

geometric. Then X admits a WSC structure.

Proof. Let uo € covf(X), let U be a starrefinement of uo' The cover Y is
geometric by hypothesis; let W' € OL(U). We take a(uo) = W and

Q(uo) ={ V € covf(X)I P< U'Y. Let T, v, Tq be the other structure
elements which make Y a geometric cover. Taking X = K € T we have
augmentation preserving chain maps

Tv: 5(‘&') - AC(¥)

for all 7 .e Q(‘uo) satisfying (3.12.5) —-v(3.1.h).dFor P< W < u’
we define the inverse projections cy C(W) - AC(W) as the composite
of a refinement map S(w) - &(U') with Ty S(wur) » ab(¥). 1t is now
not difficult to check the commutativity up to homotopy of the diagrams

(3.2.1), Indeed if 1},% £ ‘1}24 191 £ U' we have the diagrams:
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A8( ¥,)
S
aC () ____________4)/‘ Al(w) ®
x
c Aé(ﬁé)

vhere the unlabelled arrows are refinement maps. The triangles

1, 2, 3, 4, 5, 6 are commutative up to homotopy because of
respectively: triangle of refinement maps, definition c, definition c,
definition c; definition ¢, compatibility. The outer triangles are

therefore commutative which is what we needed to prove.

We now check the norm condition. Let ¥ < W} , c: AE(W) - Aé(’l}) the
inverse projection. The map c¢ is defined as the composite of a
refinement map 7 : AE(W) -~ AC(W') and Ty Aé('LL') > Aé(’!}‘). Let o
be a simplex of Aé(ln)), then 7o is a simplex of AE)(‘LI,'). Hence because

of the norm condition (3.1.L) there is a U € Y such that
rsupp(no) < U and t(m o)is on U

Because l{ is a starrefinement of U.O this implies that there is
U, € U such that supp( mo) < U, and supp( tma) < U_ and because ™
is a refinement map supp{mo) < U, implies supp¥ o) <U,.

The last condition we have to check is (3.2.2). The chain
homomorphism c: Aé(”(}') - Aé(l}) is defined as TT.

'According to the factorization axiom

v
(V') —

there is a ¥ < VY such that the outer o "
edge triangle of the following iy Aé( ¥) \lv
diagram commutes up to homotopy. n/ ‘ v

. ac(v)

[} ~ " v

It follows that cm m'. This holds AU )

for all fine enough 1¥'. Hence H(c)
maps the image of H(X) in H(?}) identically onto itself.
Murther the various T define (because of (3.1.3) a map of projective

v ) v v
systems HC{WU'") = Hé(X,—) and hence a homomorphism "}* ¢ HC(W?') » H(X).



12

4Y .
We then have Now Cy = T, Ty = Uy T which proves that ¢, maps

,b —
g = T *
H(VW) into the image of H(X) in H(¥% ). This concludes the proof of the
theorem.

3.5. Remark.

Theorems 3.3 and 3..4 show that the compact spaces which admit a
WSC structure are precisely the compact spaces for which every finite
open covering is geometric. This also shows, we feel, that the property
"admits a WSC structure'" is rather more natural than is maybe apparent
from Thompson's original definition. Especially if we notice (ef. L.L)
that conditions (3.1.2) and (3.7.3) really say that the H(TLy) define
& homomorphism of projective systems H(U') - Hé(X,—) such that the
composed map HG(X,-) ~ H(W') ~ Hé(X,—) is the identity homomorphism
(between projective systems), where the projective systems are indexed
by the set of open coverings finer than %'.

Spaces which admit WSC structures include compact polyhedra or more
generally Lefshetz's HLC* spaces (cf. Lefshetz [14]) and finite unions of
compact convex subsets of locally convex topological vector spaces

(cf. Thompson [151).

3,6. Compactly Generated Lebesque Covering Dimension.

Let K be a compact space. We say that K has Lebesque covering
dimension < n if for every UE covi (K) there is a 1€ covf(K), ¥ < 4 such
that dim(C(X, 1)) < n.

Now let X be a not necessarily compact space. Then we say that X
has compactly generated Lebesque covering dimension < n if evefy compact

subspace K of X has Lebesque covering dimensicn < n. We simply write

dim X < n.
3.7. Proposition.
If dim X < n, then every n-geometric cover is geometric.

Proof. Let £ be a geometric cover and %' € ¢L(LC ). (Note that dimC(¥, U')
may we€ll be larger than n and it may not be possible to repair this by

taking a refinement of W). Let T, v, T,y be the corresponding structure

elements.
Ty 6n+1(K,Qi') - Aé(YK,lV)
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If Ve covf(yK) refines W' and dim V' < n, then the chain map
i AC(K,U) » AC(YK, V) by
taking f%'v(c) = 0 if dim o > n+1. If Ve covf(yK) is any covering

. N
Ty can be extended to a chain map T

refining U' choose a ¥ refining such that dim {}' < n, and define
Y . . .
Tos as the composite of %w and a refinement map. One easily checks

that the %1} satisfy (3.1.1) - (3.1.4).

L. CONSEQUENCES OF THE EXISTENCE OF GEOMETRIC COVERS

The existence of geometric covers has strong consequences for the
homology and local geyclicity of a space.
4.1. Theorem.

Let T be an n-geometric cover of the space X. Then the natural
map ﬁk(X) - Hk(u') is monomorphic for all k < n and Y €0(T).
Consequently flk(X) is finitely generated for all k < n.

Proof. Let W' € OL(C) and let t , T', y be such that the conditions
(3.1.1) and (3.1.2) of 3.1 are satisfied. Let K€ I', ¥< U'. Then
according to (3.1.2) there exists a ¥ € covf(K), P' < P such that the

following diagram commutes for all k < n.

B (U'lK)

\Hk“v)

B () , R (1)

Now consider the following diagram (where the unlabelled arrows are

induced by refinement maps and i: K -+ yK is the natural inclusion

i, (1) ]
(X) > B (vK)
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The leftmost triangle and the square are commutative by the definition
of Cech homology groups, cf. 2.2; the lower triangle is commutative

because of (3.1.2). It follows that the whole diagram is commutative.

We now have for all z € Hk(K)
L.1.1) o<, (z) =0 =5 (i)(z) =
L1 w K X

Indeed if qi?[K (z) = 0 then q;FHk(i)(z) =0 for all V€ covf(yK)
refining W |YK. It follows that Hk(i)(z) = 0.
Now let z € ﬁk(x) and suppose that qdu,(z) = 0. Since T is cofinal

there is a K € T such that z comes from K, i.e. K is such that
z € Imih K) - ﬁk(X) . Taking a larger K € T if necessary we can assume

até( u)-é(x U') (i.e. if Uy N...NU_#¢ , U, € U', then
u, n. nurnK#da). It follows (cf 2.3) that qi,u,( ) = 0 for
all z € Hk(K) mapping onto z € ﬁk(X and hence that z = 0 because

of (L.1.1).

L.2. Corollary.
If [ is a geometric cover of a space X then ﬁ*(X) is finitely
generated. In particular ﬁk(X) = 0 for k large enough.

4.3. Remarks.

The "uniformity" of ' with respect to K € T and dimension n is
essential for these results.
Note that properties (3.1.3) and (3.1.4) of a geometric cover

have not been used.
4.4, Remark.

Property (3.1.3) says that the maps H

proobjeois

k(Tv) define a morphism of

Hk(ii'lK) - Hké(yK,~
and property (3.1.2) then says that the composition
Y ~
B C,-) = B (W' [K) = B C(vK,-)

1s the natural homomorphism of proobjects induced by the inclusion
K< yK.
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It follows that the composed homomorphism

T i
f (0 - B(w) B (k) S ()

is the identity for K large enough. (The last map is induced by
the inclusion YK - X). Indeed, because Hk(X) is finitely generated

: (k) > B (X)

there is a compact set K such that the natural map iK
is surjective.
Let x € H (x), x' € ﬁk(K) such that ik(x‘) = x. Then because

q(x) = qu,(x') (cf. 2.3) and (L4.L4.1) above we have

. . K
lyKT*q(X) = lyKT*qu'(X‘) = x.

NB The homomorphism iYK o T, may depend on K.

L.5. Proposition.

Let U be an n-geometric cover of a space X and let Y' € OL(LC ). Then
Y ~
Hk(IJ') > ﬁk(x) is the zero map for all U' € L', k =0, 1, ..., n.

Proof. Let U' € W' and let K < U' be compact. We have to show that
there exists a K' < X such that the inclusion K - K' induces the zero

map on reduced homology. Take K' = yK.
Because K < U' we have \'|K < {K} < '|K and hence H(U'|K) = O.

But from the proof of theorem (L4.1) we have

(4.5.1) qi:lK(z) =0 = K (i)(z) =0 for z € & (k)

The same holds for reduced homology. (By using the Lefshetz theorem

for reduced hcmology). This proves the proposition.
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5. GEOMETRIC COVERS AND AIMOST FIXED POINTS

We are now in a position to state and prove a Lefshetz type almost

fixed point theorem

5.1. Lefshetz Number.

If X is a space such that ﬁ*(X) is finitely generated and f: X + X
. k v
is continuous we define L(f) = £(-1) Tr(Hk(f)) where Tr(g) denotes

the trazce of a linear map g between (finite dimensional) vector spaces

5.2. Lemma.

Let U be a finite closed covering of a space X and let U be a
finite open covering of X such that C < U . For each C € C
choose UC € U such that C < UC' Then there exists a finite open
covering ' of X such that U' € U' and U' N C # ¢ imply U' < UC'

Proof. For each partition [ =4 UB of Cinto two disjoint

parts we define the open set

= (nNxXxC)n{nu

Ut )
oA B ced cep ©

Take for Y' the covering consisting of the nonempty U'* B
[ %0 B

(W' is a covering because

x € U vith B_=(cel |xech, d_={C eelx ¢ cl.

‘#x’ 7?‘x'
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5.3. Theorem.

Let X be a space with a geometric covering t, and let
f: X » X be continuous. Then for every finite open covering U> C

we have Li(f) # 0= 33U €Y such that U N £(U) # ¢.

Proof. U is a geometric cover. Let U > L . For each C € C
choose UC eEU such that C < UC. Now choose ' € 21 (t) such
that U' € Y' and U' N C # ¢ imply U' < Ua- Such a Y can be
found by 5.2, and because any refinement of a cover in OU(T)
is also in OUL). Cf. 3.1. Let n = dim G(X, U'). The cover €
is n-geometric. Let T, v, T be the other structure elements
corresponding to Y' which go into the definition of an
n-geometric covering.

Assume that U N £(U) = ¢ for all U € [{ . We are going
to prove that L(f) = 0. Let K be compact such that Sk, uU') = &(ur)
and such that ﬁ(K) > H(X) is surjective. Let K' o yK be such
that f(vXK) < K'. Let V¥ be a finite open covering of yK such that
1 < W' and such that for each V €1y there is a U' € Y ' such

i

that £(V) « U'. (This can be done because YK is compact). Then

we have an induced chain map
v M
£,:C (W) »~d(ur) =¢ux)

and composing this with '[\\}: Eur) - A%(4) we obtain an induced

chain map

£ Al(w) -~ al(u)

38

On the other hand we have a map of proobjects (cf. L.hL)

Ti(k : Hk('u,‘i KY - Hk(yK,—) and a by f induced homomorphism
fli : Hk(YK”) > Hk(K;—-). Composing this and taking the projective

limit gives a homomorphism
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e o (U = B (W K) » K (k)

Composing this with the natural map i K') » ﬁk(X) gives us a

1
map

Eag ¢ B (U »E (X)

Now consider the following diagram

1 (X)

|

| *
(5.3.1)  a | . J’ * q

E T*k (v) N

| T

4

The starred triangles and gquadrangles are commutative and by (L.4)

we have that i q = id (left most triangle). Retaining only

TK
Yk *k
what we need, we find a diagram

eS = s i)

q{ T e 4

H, (U') — B (Y")
H(f )
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We have q gy = Hk(f.‘) and fuTy = By - Hence gya = TaTugd = Ty
and gf, = Hk(f")q.

v
It follows that H (£, )(H (U')) < B (X) < H( U'), where

\4

Hk(X) is seen as a subvectorspace of Hk(li') by means of the

injection q (with inverse projection T, , cf L.4). And from this
it follows that

(5.3.2) Tr(Hk(f

LX)

)) = Tr(f*k) for all k

Now by (3.1.L4) there is for every o € é(%ﬁlK) an element C € C
such that

rsupplo) © C and rsupp(c') N C # ¢ for all ¢' in Tvﬂo)
It follows that (because U' € W' and U' n C # ¢ imply U' < UC)

suppl(o) « UC and supp(c') < U, for all ¢g' in Tvﬂo)

But U(‘n f(UC) = ¢ . Hence o does not occur with nonzero coefficient
in f.rvﬂc) = f‘v(c). Hence Tr(f‘”)k = 0.
And by the Hopf theorem and (5.3.2) we then have

L(£) = B(=1)5Tr(g,,) = D(-DFTr(E (r,,)) = 2(=1)"Tr((£,,)y) = 0

5.4. Remark. This proof is guite similar in spirit to the prbofs of

various other Lefshetz type fixed point theorem. Cf. eg. Thompson [10].

5.5 Addendum.

It is possible to extend theorem (5.2). A closed continuous
surjective map f: ¥ » X is called a Vietoris map if the subspace
— - . . v
f 1(x) is homologically trivial (with respect to H) for all x € X.

The extended version of theorem (5.2) then reads
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Theorem. Let X be a normal space and U a closed geometric cover of X.
Let Y be a topological space and f,g : Y - X two continuous maps of which
f is a Vietoris map, then if L(f,g) # O then for every finite open cover

U > C thereis an y € Y and U € U such that f(y) € U, gly) € U.

"

Here L(f,g) is defined as L(f,g) = Z(—1)kTr(Hk(g)ﬁk(f)—1) which
makes sense because the Vietoris map f induces isomorphisms on the
homology groups.

This theorem allows one to deal with multifunctions F: X - X
and gives as a corollary an Eilenberg-Montgomery type (cf. [U4])
fixed point theorem by taking X compact (Cf. the introduction).

The chief technical difficulty in proving this theorem (as
compared to theorem 5.2) lies in the obtaining of ﬁk(f)-j as Hk of a
sultably controlled chain map.

‘These things are to appear in Van der Vel [12].

€. LOCAL CONNECTEDNESS

As in the case of e.g. WSC structures (cf. Thompson [10] and [11])
some kind of local n-connectedness (with respect to ﬁ) is related to the
existence of n-geometric covers. This and the following sections are

concerned. with this connection.

6.1. (Partial) Realizations.

Let S5, €S be a pair of simplicial complexes; S1 is said to be

dense in S if S?, the zero skeleton of S], is equal to s°.
Let W be a finite (open) cover of a space X. A partial realization

of 5 i

W 1is an augmentation preserving chain map

v
T, 8 8, > AC(X, W)

where S] is dense subcomplex of S. If 81 = S we speak of a (full)
realization.
If 0 is a simplex of S, then S(o) denotes the subcomplex of S consisting
of all faces of o (including ¢ itself).
The partial realization 7, : S, - AC(X,W) is said to be of norm < [ ,
where € is another covering of X, if for every o € S there is a C € U such

that T1(U) is on C for all u € S1 n s(o).
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Let X < X be a pair of topological spaces; let C ] and -

t u be flnlte covers of X], X2 respectively with u] and u open

covers and tg < t1, u'g < u1. Then we say that the pair ( u u

has enough controlled realizations for dimensions < n (( 'U.], ’U.g) has
ECR(n)) with respect to (t1, tg) if for every S, < S every partial
realization 1, : 8, - AE(XE,, 'U.Q) of norm < tQ extends to a partial

1 1

realization t : ™ U S1 > Aé(X1,u1) of norm < C1. I.e. we have a

commutative diagram

v
5, — AC(Xg,uz)

n T v
5% U s, ——— aC(x,,Uu,)

for some suitable refining homomorphism 1.

6.2. 2c™ and c-gc™ Refinements.

Let X c X be a pair of topological spaces and let C 0> t1 be
covers of X X1 respectively such that t t1. Then t2 is an
g™ reflnement of t if for every u € cov (X ) there exists a
'U. € cov (Xg) such that u2 < u1 and (u1,u2) has ECR{(n+1) with

respect to 1, tg)' If Cz is an fc™ refinement of t1 for every n,

tg is said to be an fc® refinement of E1

NB. 2c” corresponds to ECR(n+1).

Let X be a space and let t2 < C1 be covers of X. We say that

is a c—fc” refinement of 'C1 if for every compact set K2 < X there

Lz

1s larger compact set K, in X such that t2|K2 is an gc" refinement of

1

t1]K1. If €., is an c~gc” refinement of t1 for every n, tg 1s said

to be an c-2c” refinement of t1.

6.3. Elementary properties.

2 3 i

respectively such that tg < C2 < C1. Then

Let X3 < X CX1 and let C3, tz, t1 be covers of X_, X2, X

(1) If tz is an 2%(%c®) refinement of t1 then so is CB
(ii) If t3 is an !Lcn(zcm) refinement of tg then it is also an %™ (2c®)

refinement of t1 v
BizLiotiico: ;- -
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Let tg < T 1 be two covers of a compact space X. Then
(1ii) ‘tz is an c—ﬁcn(resp, c=2c”) refinement of 21 iff tg is an

g (resp. 2¢”) refinement of t1.

6.4. 2c” Spaces and fc” and c-2c” Covers.

A compact space is sald to he get {resp. 2¢¥) if every finite open
cover has an fc” (resp. 2c”) refinement.

A covering T of a space X is c-2c” (resp. 2c®) if it is a c-gc'
(resp. an) refinement of the trivial cover.

One could perfectly well define what a c-2¢” (resp. c-2c¢”) space
would be. But there seem to be very few examples, which are noncompact;
we know none. The property 2c” seems somewhat weaker than Lc*.

(cf. e.g. Begle [1] or Thompson [10] for a definition of Lc*).

T. ACYCLICITY AND c-f%c” REFINEMENTS

We have seen (cf. L.5) that some kind of local acyclicityis implied
by the existence of n-geometric covers. On the other kind given acyclicity
properties of a suitable kind one can go a fair way towards the construction
of n-geometric covers as we shall attempt to show in this and the next
section. The first step is to show that given suitable acyclicity conditions,
partial realizations can be extended. One has even better control over
the supports than is needed for c-%¢" refinements and thi; results in some
"uniqueness up to homotopy statements and these in turn will permit us

to construct n-geometric covers in section 8.
T.1. Lemma.

Let K2 < K1 be compact spaces and suppose that for a certain n
v ¥

the induced homomorphism H:(KE) - Hn‘K1) is trivial. Then for every

finite open cover 111 of K, there is a finite open cover 112 of K2 such

that 112 < 111 and

%}
HL0G, Up) > B0, )
is the trivial map.

Proof. We have a commutative diagram



Hk,) —— H7(K,)
n < 1
2 q1

1

o
?{n(Kg, U ——— 1k, U,)

where 1 : K, + K, is the inclusion. By the Lefshetz theorem (cf. (2.5))

there is a finite open cover U, of K, refining u1 such that

(¥ (€, ) ~ B (8,0 Up) = (R, > ¥ (x,, U,))

It follows that the natural map ﬁn(Kz’ug) > ﬁn(K1,u1) is trivial.
Note that any refinement ué of U2 also works.

7.2. Definition and Construction.

Let X2 < X1 be topological spaces and let CQ’ t1 be finite
covers of X5 and X1 respectively such that CQ < 7.',1. Let j: tg -+ t_]
be a refinement map. We say that J is acyclic in dimension n if for
all subsets of (o t2 and all compact subsets K2 <N 042 there

2
is a compact subset K1C ﬂj(&‘?) such that K2 c K1 and such that

v .
(7.2.1) Hu(K,) > ﬁg(Kﬂ is the zero map

Now let o, and n be nonnegative integers. Suppose we have & sequence

of finite closed covers Co < t1 < ..< C of a space X with

n+1
refinement maps Iy :tk - tkH’ k =0,1, ..., n such that Iy
is acyclic in dimension ng + k.

Let K be any compact subset of X. Then there exists a

sequence of compact subsets

(1.2.2) K=K <K c..cK,

such that for all O‘Ik c tk such that K n (n U" k) # 9.

vV

(71.2.3) Hho+k(Kk nin difk)) > ﬁ;O+k(Kk+1 n(n jk((#'k))) is the zero map

and consequently for every finite open cover Vn+1 of K ., there cxists

a sequence of open covers vk, k=0, 1, ..., 1,




2k

(7.2.4) Vo<W sV, sV

0 — — n+1

such that for all of, = T, such that K, 0 (ngh ) # ¢

(7.2.5) ﬁno*‘k(Kkn(ndk)’ﬁk) M ﬁno+k(Kk+1n(n jkcﬂk),v’kﬂ)

is the zero map

The sequence (7.2.2) is constructed as follows. Suppose we have
, such that K n(no{k) # ¢ let
Kl’:(u‘fk) be a compact set containing K_ ﬂ(ﬂ(,#k) end contained in
n jk(“'"k) such that (7.2.1) is satisfied,

Now let K be the union of all the K'L'{(di’k)' Then of

k+1
course Kk+1 nin Jk"‘l\( o Kl’{(u#k) so that (7.2.3) is satisfied. Toc find

found Kk’ k > 0 for every (’41{ <t

the sequence (7.2.4) such that (7.2.5) is satisfied, apply 7.1 repeatedly.

7.3. Proposition.

Let to <...< tn+1 be a sequence of finite closed covers of a
space X with corresponding refinement maps jk: T e tk+1 such
that jk is acyclic in dimension n, + k. Let tc'> < to have a
refinement map 1i: 'C(') - Co such that Cc'> c interior(i(Cé)) for
all C! € T L. Let 5, =S be a pair of (finite) simplicial
complexes.

. . r f
Let K = K <K, c...c Kn+1 be as in 7.2. Then for every 'v;qﬂ € cov (Kn+1)

" f
$ et o - 1% such that
there exists a sequernce Lo < 1}1 <Ceen < ’l}nﬂ, ’\}k € cov <Kk) uch that
for every partial realization

v .
. [ad - 8
T, + 8 U S, AL(KO,]}O)

of norm < t(‘) there exists a sequence of partial realizations

no+k v
T, ¢ S US1—>AC(K_k,Vk), k=20, ..., n+l
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such that

(7.3.1) T extends T k=0,1, ..., n

k+1 k?

n_ +k
O

(7.3.2) if ¢ is a simplex ol S U S1 then Tk(o) is on N 04k(0) n Kk’

k=0,1, ..., ntl

where C*k(o) =Jdpq - joic*(c), and 0#(o) is defined as follows.

Let Oqs »ens o be thg maximal simplices of S. For each o choose a
Cé(r) such that TO((S °u ST) n S(or)) is on Cé(r).(Such Cé(r) exist
because T is of norm < té). Now define #(o) = {Cé(r)lo is a face
of Gr}"

Moreover in the case n, = 0 there is the following homotopy

property: If’U; 5_1}; ff"f-l7é,5-t} is a second series of refinements

n+1

and Té, T;, cees T£+1 a second series of extensions such that (7.3.1)

and (7.3.2) hold and if r(') = T, on S, then

! = =
H(r ) =8 (r ) for k = 0,1, ..., n.

= ! ' =
Remarks. 1. If n > 0 and T 1. then also Hk(rn+1) Hk<rn+1)
for k =0, ..., no+n.
2. In general there are several different choices for the

Cé(r) and correspondingly one finds different aka) and different Ty+

The proof of proposition T.3 is in several steps: subsections 7.k
- 7.T. The first step is to choose ¥ <...< V4 such that (7.3.2) holds
for k = 0
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7.4. Remarks on the of(c) and the Sequence v'o <eee< vnﬂ'

Choose a sequence of covers {9 < ‘\)1 Seee2 Vg 'Vk € covf(Kk)

such that (7.2.5) is satisfied. Refining ‘\?o if necessary we can also

] 3 ?
assume that V_€ W _, V_n Cg #6 =V cilcl)e L.
Let o be a simplex of S © U Sl. Let o be a face of or. Then

10(u) is on Cé(r) for all vertices p of o. Hence v, n C(')(r) £ ¢

for all Vo occurring in ro(u'), hence Vo c i(C(’)(r)) for all vertices

Vo occurring in to(u),u a vertex of o. Hence supp(ro(o)) c i(Cé(r)) for
all r such that o o hence supp('ro(o)) < (n d‘o(o)) n K, which certainly
implies (7.3.2) which says that rsupp(c') A (n 940(0)) nK, # ¢ for every
simplex o' occurring in ‘ro(o).

Note that
(7.4.1) ua face of ¢ = A(u) > A(o)

(For if o is a face of 0. then so is u).

T7.5. Bxistence of the Sequence of Extensions Ty T

1% s Toeqe
Let 1}'0 <o vnH be the sequence of refinements of 7.4 above.
We have just seen that T, satisfies T7.3.2. By induction we can suppose

that T has been constructed such that (7.3.1) and (7.3.2) hold.

Consider the following diagram

n_+k 1:1\:

° us,) »ac(x, W)

A(s
1 W /

30— 1,(30) € Aé(ndk(o)n;g(,vk>

| Q

gr----3c(o) € Aé(ndk.{.’(o)nx‘k-#'l’vk‘l")
m ,

> \ 1L
n +k+1
(¢ ]

v
s us, AC(Kyyys Vi)
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no+k+? n +k
Let 0 € S ~ 8 ~S5,. Let yu be an ng + k face of o. Then

1
Tk(u) is on N d*k(p) N K, hence il is certainly on nc#k(o) n Kk by (7.4.1).

k
Therefore Tk(ao) is on N L*k(d) n Kk' The image of Tk(ao) under £ is
homologous to zero because (T7.2.5) holds (NB Tk(ac) is a cycle because
Ty is an augmentation preserving chainmap). Therefore there exists a

c(o) such that 3elo) = Rrk(ao). Now define T (g) = ¢(o). Do this for

k+1
no+k+1 n +k
every ¢ € S ~s5° <s , and define T (u) = 21, (n) for
N i 1 k1 K
peEs® u S, Note that T, . satisfies (7.3.1) and (7.3.2).

T.6. The Homotopy Property for Equal Refining Sequences.

Consider the simplicial complex S x I and let S, be the subcomplex

2
82 = S1 x I. Now define
(7.6.1) T : (sx1)° UsS, » AC(K_, )
T o ¥ o > BCLKL VY
as follows. Let €y wees € be an ordening of the vertices of S. Then the

1 1
i(r+1)""’ei(t%

such that i(1) <...< i(r) < i(r+1) <...< i(t) and {ei(1)""’ei(t)}

. . o . o
simplices of S x I are all sets of the form {ei(1),...,ei(r),e

is a simplex of S. We now define To on the vertices of S x I by

oy _ N _ - .
To(ei) = ro(ei), To(ei) = To(ei) and on 8, x I =8, we define T_ by
1 1

[¢] o - =
To({ei(1)""’ei(r)’ei(r+1)"'"ei(t)}) = To{ei(1)""’ei(t)}
Té{ei(1)""’ei(t)}' Then T satisfies (7.3.2). Now extend T, to T 4

exactly as we extended To to T in 7.5, taking care to define

n+1
; ] . o o
Tk(o) = Tk(c) if o is a k-simplex of the form {ei(1)""ei(k+1)} and
Tk(o)

'

k

1'(0) if ¢ is a k-simplex of the form

1 1 .
{ei(1), cies ei(k+1)}' We then have a chain map

T, (g+1)™!

- us, > AG(K )

n+1°> n+1

which restricts to 1 on
Al n+1
S x {1} U S1 x {0}.

This proves that Hk(1g+1) = H

nl
on 8 x {0} U 5, x {0} and to r£+1

( ) for k = 0,1, ..., n.

k Tn+1
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7.7. The Homotopy FProperty for Different Refining Sequences.

Now let ¥ < V. <...<V U, LU L2 V) S Uy, end

n+1? o — n

T o T

o 1° s T H Té, T !, .. ! be two different sequences of

n+1 1° > Tnet

refinements with corresponding v, and ri such that (7.3.1) and

k
(7.3.2) are satisfied. It suffices to prove that Hm(T

Vo= H (¢
n+1’ B n+1

m=20, ..., n in case ﬁ% 5_1}k for all k = 0, ..., n+1. (Take a

)s

commen refinement of the two refinement seguences such that (7.2.5)

holds for this common refinement sequence). Define Tﬂ = Ry e Ty

K 1S induced by a refinement map; we can take lo = £n+1 =

are two sequences of

where £

identity. Then Tgs =ovs T

17"t i1
s T o6 e T
n+1a O’ 3 n+1

extensions corresponding to the same refinement sequence satisfying

(7.3.1) and (7.3.2). Therefore Hm(T ) = Hm( ) for m = 0,1, ..., 1.

1]
n+1 Th+1

7.8. Corollary.

|l
Let €0 < ¥ <...c U, :
7.2, 7.3 and let tg < té be a c-fc extension. Then tg <t

n_-+n
. o . . . ;
is a c-fc extension. In particular if n_ = 0 then Uf < t 1s a
o) o — “n+i

be a sgqu?nce of closed covers as in

n+1

c-{c™ extension.
Proof. Let K be compact, choose K_ such that for every l}o € covf(Ko)
. £ .
there is a V! € cov (K) such that (1}O,Ia;) has ECR(HO} with respect
- 7 1 r ? e Lrdie ™
to ( to’ CO). Now let K < K, <...c K__, be as in 7.2. For every

f i
%}n+1 € cov (Kn+1) let 1?0 < ]}1.§...§.Vh+1 be a sequence of refinements

as in T7.2. Now let 1}5 be such that (Ifo,l?é) has ECR(nO) with respect to

v
(tg,t:}') and let T be a partial realizaticn of S in AC(K, ‘U'(')),

T 5, » AC(K,ﬁ}é) of norm i_tg.
n
- - ‘l
Then there exists an extension TO : S1 Uus © + AC(K ,1)\) of norm
n_+n+]
. . . . o) 4
-ito which in turn can be extended to Toer’ 5, us -+-AC(Kn+],1fn+1)

by T7.3. This extension T satisfies (7.3.2) and therefore is of norm

<

- n+1’

n+1
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, n . .
T.9. Examples of c-fc Covers and Refinements.

Let tﬁé be any cover of R™ and to = ,,. = tn = {R™}. Applying the
corollary and 6.3 we sec that any cover of R” is a c-2c” cover for all
n, i.e. a c-2c" cover.

Let t be a closed convex cover of Rm and C‘_i C such that
for every C' € U' there is a C € € with C' < interior(C) then

. w .
¢' <€ is an c-fc refinement.

T.10. Corollary.

Let dimX < n and let L' <€ be a c-2c” refinement where C is
a closed cover. Let < [ " such that for every C € € there is a

C"' € €" with C < interior(C"). Then ¥' < £" is an c-2c” refinement.

Proof. Take to = ... =tn+1 = €" in 7.8. The acyclicity conditions

now follow from the finite dimension assumption (cf.3.4).

8. ACYCLICITY AND n-GEOMETRIC COVERINGS

We can now construct n-geometric coverings given suitable

acyclicity assumptions.
8.1. Theoremn.

T v }
Let W' <¥! =T, 2...2C
such that

n+1 be a sequence of covers of a space X

RN are finite

. - .. e
(1) U' Is a finite open cover; to’ t 01

o
closed covers.

5 ' €T there is ' < interior(c
(11) for every CO € to there is a CO €E o such that CO interior( O)
(iii) W is a starrefinement of té
(iv) tk < tk+1 is acyclic in dimension k.

Then tn+1 is n-geometric and U' € OUL(E ).

n+1

Let T be any cofinal collection of compact subsets of X. For every
1 , such that (7.2.3) is
satisfied. Enlarging Kn+1 if necessary we can assume that also K

Define K = Kn+1' For every U= v

K € T choose a sequence K = K c K, c...c K
[e] n+
n+1 €r

11 1
0+ 1 § cov(Kn+1) refining Y' choose

a sequence

v, 2V, <0< 'l}i € covf(Ki)

n+1
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such that (7.2.5) is satisfied. For each Cé(i) € té choose
Co(l) € to
such that Cé(i) c:interior(Co(i)). Refining ﬂ; if necessary we can

assume that

(8.1.1) v, € 1}0, Vo neii) # ¢ =V, e C (1)

Let S = é(K,\L'), 8, = S®. We now define Ty s é(KO,l}O) as

follows. For each U'(i) € W' choose a Vo(i) such that Vo(i) ANU'(i) # ¢,
and define TO(U'(i)) = Vo(i). I.e. we have

(8.1.2) t,(U1)) nUut(i) nK # ¢

For each U'(i) choose Cé(i) such that star (U'(1)) < Cé(i). I.e.

(8.1.3) U AUE) £ g U cCl(i)

Now let g = {U'(io),...,U'(im)} be a maximal simplex of S = (K, Y'),
ie. U'(i)) n...n ut(i ) N K # ¢ and hence

(8.1.4) Ur(di )cc:)(is) rys = 0,1, ..., m

r
It follows that
(8.1.5) supp(o) < Cé(is) nkx s =0,1, ..., n
Now 7 _(U'(i,))n ur(i,) n Ko# ¢, K, nU'(E)) < C(i ) n K_. Hence
(8.1.6) TO(U'(ir)) is on Cé(is) nkK, r=0, ...,mys=0, ..., m
which by (8.1.1) implies

(8.1.7) TO(U'(ir)) < Co(is) n K rys =0, ..., m

o
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We can nov choose the (o) as follows. For each maximal simplex

' ' =
o, choose a vertex U (t) of o, and let Co(ct) Co(t). Then

(ef. 7.3) k(o) = {Cé(ot)lc S0, Oy maximall}. In view of (8.1.5),
(8.1.7) we have for all o € é(K,lL') and u € EO(K, u')

(8.1.8)  supp(o) = (nd(0)) N K, supp(t (1)) = (Nel(w)) N K

Now, using these &(0), construct a sequence of extensions

T T .
o? ]

1 “+» T ,q @8 in (7.3). This gives chain maps

T, =1 : Cn+1(

v n+1

We now check the various axiomes which the Tog have to satisfy.
(a) The norm condition (ef. (3.1.4)

K, W) » AC(¥K, )

. This 1s satisfied because Tn+1 = Tx}

satisfies (7.3.2) and because we have (8.1.8) (first part).

(b) The factorization property (cf. 3.1.2). Let i : C(K 1} > C K, U')
- . 3 v

be any refining map; let 1 ¢ C(Kk,if - C Kk+1’ k+1 be refining

maps for k = 0, 1, ..., n. Define ;k =Ty e i, k=0, ..., n+l

and Té = 1id, Tk+1 = ik° .. 0 io’ k=0, ..., n. We then have two

sequences of maps
k’ T C(K 1? )+ ¢( K, Q} )
satisfying (7.3.1) and (7.3.2). Hence Hm(r

ne1) = By () = Bl 00s

m=0, ..., n which proves the factorization property with W = Ug.

(¢) The comptability property {(cf. 3.1.3)

n+1
tet ¥ (1), ..., ¥, (1) =v,; Vv (2), .,V (2) =), and let

n+1 2
10(1), vy T

Let %’1,1}2 be two open covers of YK = K such that Vv, < 1}2 <u

n+1(1) = TVH; TO(2), e Tn+1(2) = 'l:?y2 be the corresponding
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sequences of chain maps. Choose a common refinement 'l)'o of 1}0(1)

,l} . Yo M ~ 3
and o(2). Define t_: C (K, U') » AC(KO, 'l?‘o) by assigning to each
U' a VO such that U' N VO # 0.

()
Define ch)(1) = i'ITO’ 15(2) = i,7, and let T(')(T), e Tr'1+1(1)

Let i,: 'l%» v (1) (resp. i2: ‘196—> V,(2))be any refinement map.

(resp. TC')(Z), cees T;1+1(2)) be the sequences of extensions obtained

by using 170(1) <ial< ‘\}n+1(1) (resp. 1}0(2) <ioe< ’iﬁ’nH(Z)). Then

H (t',,(1)) =H (=

m' n+1 - n+1(1)) and Hm('r' (2)) = H (

A " Tn+1(2)) for m =0, ..., n

The sequences

(2)

T T;(']), ...,TI'1(1),io'r' (1) 1., ' (2), ..., T

1
o’ n+1 o 1 n+1
where 1 is any refinement map C(yK, 'l}'1) -+ C(vYK, ’))2), are sequences of

extensions corresponding to the sequences of refinements

VL (1), (), YL Y (2), L (), Y,

st = ' =
and therefore we have that Hm(n +1(1)) Hm(Tn-l- (2)),m=0, ..., n

n 1
and hence Hm(irn+1(1)) = Hm('cn+1(2) for m = 0,1, ..., n, which

proves the compkability.

This theorem is especlally useful in the case of convex cr more

generally convexoid covers.

8.2. Convexoid Covers (Definition)

A finite closed cover T of a space X is called convexoid in
dimensions < n, if C < U is acylic in dimension k for all k = 0, 1, ..., n
I.e. for every k = 0, 1, ..., n and for every subset f C eana every
compact set K < Nk  there is a larger compact set K' < nd , KoK
such that ﬁ:(K) - f{;(K') is the zero map. L is called convexoid if

is convexoid in dimensions <n for all n € N.
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8.3. Corollary.

Let W' < ¥' < T be a sequence of covers such that

i) U' is finite open, L',T are finite closed covers

(
(i1) U' is a starrefinement of &'
(iii) for every C' € ©¥' there is a C € € such that C' < interior(C)
(iv) ¥ 1is n-convexoid

Then U is n-geometric and W' € OL(C ).

Proof. Apply 8.1 with tc')="C', to= t1= . =C =C.

8.4, Theorem.

Let U be a finite closed convexoid covering of a normal

space X which admits a finite open refinement. Then € is geometric

Proof. Let U be a finite open refinement of L. Because X is normal
there exists a finite open starrefinement W of Y. Let E' be the
covering consisting of the closures of elements of V. Finally let

U' be a finite open starrefinement of V. The chain of coverings
. ? 1
U' < e 2, 22 By

with tato = t1 = ... =tn+1 then satisfies the conditions of

theorem 8.1.

g.e.d.
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8.6. Further Remark.

Instead of relying on acyeclicity conditions to construct geometric
covers one can also rely on c-%c” refinements in order to be able to
construct the necessary chain maps. In fact for the application to the

construction of n-geometric covers a somewhat weaker notion: weak

c—2c” refinement is sufficient. This is defined as follows.
Let K< K', Ve covf(K), V' € covi(K'). The pair ( V',V )
is said to have weak ECR(n) with respect to ( €',¥€) if for every

complex S of dimension < n and partial realization T : S1 + AC(K,V) of norm
< ¥ there exists a realization t': S + AC(K', V') of norm < L'
extending T.
A pair of covers t1 < C , of a space X is then a weak c-fc"
refinement if for every compact K1 < X there is a larger compact K
such that for every 1}2 € covf(KQ) there is a refinement V] € cov (K1)
such that (‘1?2, Y ) has weak ECR(n+1) with respect to (€., T

1 .
One now has e.g. the following theorem

Theorem. Suppose we have a sequence of covers U' < L' <¢' < ¥ of a
space X such that

(1) M ' is a finite open cover; L', L", C are finite closed covers
(i1) W' is a starrefinement of P'; ¥" is a star refinement of C.
(iii) T is a weak c-%c” covering of X (i.e. T < {X} is a weak c-2c"

refinement.

And suppose that in addition one of the following conditions is satisfied

(iv) ¥' is a weak c-fc” refinement of T "
(v) dim W <n and ¥' is a weak c=2c""! refinement of ¢ "
(vi) dimX <n and ¥' is a c-2c™*1 refinement of ¥
Then € is n-geometric and W' € OL(L).
The proof of this theorem is very similar to the proof of theorem 8.1
However, one has slightly weaker control of the supports and it is to

overcome this that one needs the extra starrefinement " < U and condition

(iii). For details ef. [12].




35

9. CONVEX COVERS OF EUCLIDEAN SPACES.

In order to prove that euclidean spactes have the almost fixed
point property with respect to finite open convex covers and
continuous maps we need the following refinement-of-convex-

coverings result.
9.1. Theoremn.

Let A be a finite intetsection of closed halfspaces in &"
or A = R". Then for every finite open convex covering U of A

there exists a finite closed convex covering U such that

(1) T <U, i.e. € refines U

(ii) The interiors of the elements of T still cover A.

To prove this we use some lemmas. Let U c Rn, U # R" be a convex

vt U > R by
rU(x) = sup{r|B(x,r) < U} where B(x,r) is the open ball of radius

set, U its closure. We define a function r

r and center x.
9.2. Lemma.

r.. : U= R is a concave continuous function. I.e.

8)

rU(Ax+(1-A)y) > A (x) + (1—A)rU(y) for x, y € U.

u

9.3. Lemma.

Let C be a closed convex subset of an open convex set U c R". Then

there is a closed convex subset C' such that C < int(C') < C' < U.
Proof. Define

c" = {x € ﬁ]ay € C such that “ x~y|] j_%r (y)}

U

We check that C" is convex. Let |Ix1—y1|[ j_%rU(y1), | x2—y2H j'%rU(yz).
Let O < A < 1. Then
|G+ (1-0)x,) = O+ =0y ) I < Alkeg=wy F+ C=0 ] x|
i_%krU(yl) + %(1—A)rU(y2) < 3 rU(Ay1+(1~A)y2) because ry; is

concave. Now let x be a point in the closure of C". We show that x € U.
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This will prove the lemma. (Take C' = C"). Let (xi), x; € c"
be a sequence of points converging to x. Let y; be such that
1 1 .

i xi-yill < 2ryly; ). Note that riylx;) > sry(y;). Consider the
sequence of real positive numbers rU(yi). If lim inf rU(yi) > 0
then lim inf rU(xi) > 0 and hence rU(x) >0=x €U. If
lim inf rU(yi) = 0 we can assume by taking a subsequence that

. — 1 -
lim rU(yi) = 0 because || xi—yiH < 2rU(yi) it follows that y.

converges to x. But ¥; € C and C is closed hence x € C = U.

q.e.d.

9.4. Lemma.

Let A < R® be a convex set and let x be a point in the interior

of A. Let & bearay starting in x and suppose £ < A. Then

(i) & < int(a)
(ii) 3e > O such that d(y,2) < e =y € int(A), where d(y,%)
is the distance of y to &.

Proof. Let y € £, and let y' be a point on & twice as far from x

as y. Let B be small open ball around x such that B < A. The linear
combinations 2x + 2y', y' € B then constitute an open ball around y,
which proves that y € int(A). This proves (i). To prove {ii) consider
the function LI e R this function is concave and continuous and
rA(y) > 0 for all y € & . It follows that there is an € > 0 such
that rA(y) > g for all y € 2. This proves (ii).
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9.5. Proof of the theorem.

If U is a finite open covering of A we denote with s(lY) the
total number of simplices in ﬁ(ﬂ). By‘induction we can assume that
the theorem has been proved for dim A < n and dim A = n and s(U) < s.
(The cases dim A = 1 and s(U) = 1 being trivial)

Let U be a convex open covering of A, dim A = n and s(¥) = s.

There are two cases to consider

(a) nU =y
(b) NU # ¢

In case (a) let U' < U be a maximal subset such that
NWU' # ¢. Choose U € U~ WU'. By the separating hyperplane theorem
there is a hyperplane H such that U is on one side of H and N Y
on the other. Let A © and A” be the intersections of A with the closed
halfspaces determined by H. Then

s(U|AT) < s(U) end s(U[AT) < s(W)

and by induction we are done with this case.

Suppose we are in case (b). We can assume that A < R", dim A = n
hence int(A) # ¢, dim U = n for all U € 4 . Let x €NU. We can see

to it that also x € int(A). Let S be a sphere with center x. Each
point s € S corresponds uniquely to a ray ZS starting in x. For

every ray is there is a U €U such that zs < U. This is seen as
follows. If QS nA# RS then there is a unique point Vs € L N A such
that 2 N A = segment joining x and Vg5 ¥y is in the boundary of A.
If QS nNA-= ls choose points Yqis ¥ps Y35 «v. OD QS at distance 1,2,3,...
from x. At least one U €U contains infinitely many of these points.
Then QS < U.

For every U €U we now define a set CU as follows

¢y =y € Al3s € S such that y € L, < U}

Concerning these C.. we have

U
(1) CU 1s convex, CU cU
(i1) Cy is closed

Claim (i) is a triviality. To prove (ii), consider Cy N s.
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Let (Si)’ s; € CU N S be a sequence of points converging to s € S.
Let z be a point of L - Then z is the limit of a sequence of points ;
z. € 2 (take z. € 4_ such that || z.-x|| = || z-x|| . Hence z € U. |

Hence Ly < U and hence 2 < int(U) by lemma 9.4. This proves (ii).

To deal with the rays % such that LN A # 2, we use the
following construction. The boundary bd(A) of A is a finite union |

k
A= UA ,dim A, =n-1, A
t=1 t

£ @ finite intersection of closed halfspaces.

For each t let D1(t), cees Dn (t) be a finite closed convex covering
t

of At which refines uJAt. (Induction!)

For each t and 1 € {1,..., nt} we define

Ct ;= {y € A]Bz € Di(t) with y on the sequent joining x and z}
-]

For each Ct 5 choose U €U such that Di(t) < U. Then we have
3

(iii) Ct,i < U and Ct,i is convex

(iv) Ct,i cUu

Claim (iii) is a triviality. To see (iv) let T — S be the subset of
s € S corresponding to rays in C, ;- Let (Si)’ s; €T be a sequence
3

of points converging to s € S. There are two possibilities.

First L naA# - The sequence Vg of endpoints then converges to
i

y, and because ysi € Di(t), vs € Di(t) so that £ N Ac CJC’i < U.

Secondly suppose that RS nNA-= Zs (i.e. the points y, run off to
i

infinity). Let z € 2. The distance {|x—ys || goes to infinity as
i

i » » (Follows from lemma 9.4 (ii). Hence z is the limit

of a sequence of points Z; € ls N A cU. Hence z € U. Thus RS <]
-t

hence 2, < U by lemma 9.4. (i). We have now found a closed convex

finite covering consisting of

Cyps U€eEU ; Ct,i’ t=1, ..., k;y i=1, ..., n
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of A which refines U . Thickening each CU and Et ; 88 in lemma 9.3
2

then gives a finite closed convex covering T which refines U and

such that their interiors still cover A. This concludes the proof

of the theorem.

We can now prove the following almost fixed point

theorem for euclidean spaces which was conjectured by De Groot, cf. [2].

9.6. Almost Fixed Point Theorem for Euclidean Spaces.

Let U be a finite open convex covering of Rn, and f: B » R"

a continuous map. Then there is a U €4 such that U N £(U) # ¢.

Proof. Let L be a finite convex closed refinement of U such that the
interiors of the sets in C still cover R". Such a € exists by
theorem 9.1. The covering U is geometric by theorem 8.L4. It now

suffices to apply theorem 5.2.
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Addendum to Report 7501 (On almost-fixed point theory, by
M. Hazewinkel and M. van de Vel)

1. Very recently it was pointed out to us that in [16], a paper
‘'which deserves to be much more widely known than apparently it is,
Dugundji also gives a proof of de Groot's conjecture.

The methods are different.

2. Using practically the same arguments as in report 7501 one can
prove Theorem. Let U be a finite convex open covering of a
locally convex space X and let f: X -~ X be a continuous map.
Then there is a U € U such that U N £(U) # ¢.

This result is not covered by Dugundji's theorem.

April 30, 1975.

Additional reference

[16] Dugundji. A duality property of nerves.
Fund. Math 59 (1966), 213-219.
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