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The followinp, text presents no more (nor less) than an outline and possibly 

a guide to the principal results of [2-5) and some related material [6,7). 

(I) 

A constant, linear, dynamical system is a set of equations 

x Fx + Gu 

y Hx 

(continuous time) 

xt+l = Fxt + Gut 

yt = Hxt 

(discrete time) 

with u €]Rm= input space or control space, x E lRn = state space, y E lRP = output 

space. Here F, G, H are real matrices of the appropriate sizes with constant 

coefficients. The system is completely given by the triple of matrices (F,G,H). 

We use L QR) to denote the space of all triples of matrices of sizes nxn, m,n,p 
nxm, pxn respectively. 

Of course the discrete time systems (I) also make sense for matrices (F,G,H) 

with coefficients in any field. 

From the "black box" or "input-output" point of view the system E 

assigns the output function 

t 

(2) y fl: u, y(t) J HeF(t-T)Gu(T)dT 

0 

(F,G,F!) 

to the input function u(t) if we start in x(O) at time t = 0. From this point 

of view there is a redundancy about the description of the system by means of 

a triple of matrices (F,G,H). Indeed let GLnOR) be the group of invertible real 

rum matrices and let GL QR) act on L OR) according to n m,n,p 

(3) S -I -I (F,G,H) = (SFS , SG,HS ) 

Then the input-output maps of E = (F,G,H) and of L: 8 = (F,G,H)~(both with 

starting state x(O) = 0 at time t=O) are exactly the same for all SE GLnQR). 

We thus have an (internal) group of symmetries GLnOR) of "basis transformations 

in state space". (The action just described corresponds to the state space 

transformation x' = Sx). 

Several related questions now rise: 

(i) What are the invariants for the action (3)? (Here an invariant is any 

continuous function f: L QR) -+lR such that f((F,G,H) 8) = f((F,G,H)) m,n,p 
for all SE GLnQR)). 
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(ii) Does (3) describe all the redundancy in the description (F,G,Hl of the 

input-output map (2}; can '!'ecover "(F ,G,H}_-up-to.,.GLn (IR.1-action" from the 

input-output data (2}. How does one recognize that an input-output map 

comes from a (finite dimensional} system (F,G,H)? 

(iii) Do there exist continuous canonical forms on suitable subspaces of L (IR)_? m,n,p 
Here a continuous canonical form on a subspace L' c: L (IR)_ i:s a 

m,n,,e 
continuous map c: L' ~ L' such that: (al if c(F,G,Hl = (F,G,Hl then there 

s . - - • is an SE GLn(IR} such that (F,G,H) = (F,G,Hl and (b) c(F,G,H)_ = c(F,G,Hl 
- - - s if and only if there is an S E GLnOR} such that (F,G,Hl = (F,G,Hl . 

To answer these questions it is necessary to define two more concepts. The 

system (F,G,H) is said to be completely reachable (er) if the matrix 

R(F,G) (G FG •.• FnG) consisting of all the columns of the matrices 

FiG, i 0, ••. , n, has rank n; the system (F,G,H) is said to be completelv 
. T T T T T n..T observable if the matrix Q(F,H) defined by Q(F,Hl = (H ,F H , ... ,(F) tl 1 

has rank n. Here an upper "T" denotes "transposes". These two I\otions have 

the meanings suggested by their names, cf. (6]. Let Lcr,coORl be the open 
m,n,p 

subspace of L (lR) consisting of all completely observable and completely m,n,p 
reachable triples. 

Theorem I. Every invariant of GLnOR) acting on L (IR) can be written 
m,n,p 2 -1 

as a continuous function in the entries of the 2n-matrices HG,HFG, .•. ,HF n G. 

Let A= (A0 ,A1 ,A2, •.• } be a sequence of real pxm matrices. We say that o'(. 

is realizable if there exists a triple (F,G,H) EL (IR) (for some n) such . m,n,p 
that A. = HFiG for all i = 1,2, .... For each r,s E lN let 'J/. ~l be the block 

i r,s 
Hankel matrix 

d{ (al) 
r,s 

The answer to question (ii) is now given by 

Theorem 2. (Ho, Kalman, Meadowes, S:llverman, Tissi,Youla). The sequence rA-
is realizable by a triple (F,G,H) EL (IR) iff there is an n such that m,n,p o 
n > n = rank 'J{ 1 1 (~ = rank~ (cf) for all r,s > n -I. Moreover all 

- o n0 - ,n0 - r,s - o 

realizations of dimension n0 are co and er and they all are in the same GLnOR) 

orbit. 

It is now clear from theorem 2, that question (iii) is especially important 

for the subspace Lcr,co()F!) . Before answering it let us take time out to explain m,n,p 
why the word continuous in question (iii) is (sometimes) important. First, using 

delta functions as inputs we see from (2) that knowing the input-output data of 
2 

a system amounts to knowing the sequence of matrices HG,HFG,HF G, ...• Now 

suppose we have an unknown black box to be modelled by a linear dynamical 
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system (!). The algorithmic proof of theorem 2 gives us a way of calculating 
2n-1 (F,G,H) from HG, .•. ,HF G. Because of measurement errors it would be highly 

2n-1 desirable to have a continuous algorithm calculating (F,G,H) from (HG, ••• ,HF G). 

Now the existence of such a continuous algorithm is easily seen to be equivalent 

to the existence of a continuous canonical form. Cf. also (!] for some remarks in 

a related case. 

Theorem 3. There is a continuous canonical form on Lcr,coQR) if and only if 
m,n,p 

m I or p = l. 

The proof of this theorem goes via a detailed study of the orbit space 
Lcr,coQR)/GL QR). 
m,n,p n 

Theorem 4. Lco,cr(IR)/GL (IR) = Mco,cr(IR) is a smooth noncompact differentiable 
m,n,p n m,n,p 

manifold (without boundary) of dimension mn + np. The natural projection TI: Lcr,co(IR) + 
m,n,p 

+ Mco,crQR) is a locally-trivial principal 
m,n,p GLn(IR) bundle which is (globally) trivial 

iff p = l or m = l. 
From the identification of systems point of view (cf. also just above theorem 3) 

it is interesting to see if Mco,cr(IR) can be compactified in a system theoretically m,n,p 
meaningful way. 

d dn-1 
Theorem 5. Let D = B0 + B1 dt + ••• + Bn-I ---u=T be the linear operator 

dn-1 dt 
u(t)t-+ y(t) = B0 u(t)+ •.. + Bn-l ~ u(t), where B0 , ••• , Bn-l are constant real 

dt 
pxm matrices. Then every such operator D arises as a converging limit of input-output 

maps of systems in Lcr,co(IR). Inversely if Es,s = 1,2, ••. is a sequence of systems 
er co m,n,p 

in L ' (IR) such that lim fE u(t) = fu(t) uniformly on each bounded t interval, 
m,n,p g+o:l 8 

then f is the (direct) sum of an integral operator of (size pxm and) order .::_ i-1 and 

the input-output function of a co and er system of state space dimension n-i. 

This provides a partial, but apparently system theoretically maximal,compactification 
of Mcr, co QR) . 

m,n,p 
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