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Abstract 

The connection of quantum nondemolition observables 
with the symmetry operators of the Schrodinger 
equation, is shown. The connection facilitates the 
construction of quantum nondemolition observables and 
thus of quantum nondemolition filters for a given 
system. An interpretation of this connection is 
given, and it has been found that the Hamiltonian 
description under which minimal wave pockets remain 
minimal is a special case of our investigation. 

1. Introduction 

In developing the theory of quantum nondemolition 
observables, it has been assumed that the output 
observable is given. The question of whether or not 
the given output observable is a quantum nondemolition 
filter has been answered in [1,2]. In practice, 
however, only the dynamical equation governing the 
behavior of the state is known at the outset. and the 
question is one of the existence and determination of 
quantum nondemolition observables for the system. 
This question will now be addressed by appealing to 
the theory of symmetry groups for the solution of 
partial differential equations through separation of 
variables. 

The dynamical equation may be written symbolically as 

St/! :: o , 

where S is the Schrodinger operator. In a more 
general context, Smay be a linear or nonlinear 
differential or integral operator. Within this 
context, group theoretic methods have been used to 
describe in a systematic manner the possible 
coordinate systems in which the equation admits 
solutions via separation of variables. The connection 
between such methods and quantum nondemolition 
observables will now be explored. It will be shown 
that the symmetry operators of the Schrodinger 
equation are in a sense quantum nondemolition (QND) 
operators. Conversely. symmetry operators permit an 
appealing interpretation of QND operators in terms of 
coordinate transformations. 

2. Definitions and Terminologies 

The quantum system of interest is described by the 
Schrodinger equation 
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Cll/i(X, t) 
at :: H(x,t) , ( 1) 

where t/J is the wave function of the system and x an 
appropriate set of dynamical coordinates. 

Definition 1. The symmetry algebra of the Hamiltonian 
H of a quantum system is generated by those operators 
that commute with H and possess together with H a 
common dense invariant domain V. 

With the above definition, if [H,X1J:: 0 and [H,X2J = 
O, then [H,[X1 ,x2JJ:: 0 also on D. Clearly all 
constants of the motion belong to the symmetry algebra 
of the Hamiltonian. 

Denote the Schrodinger operator by 

ll 
S :: il1 :lt - H • 

Then the Schrodinger equation (1) can be written as 

ih ~ - Rl/i :: Sl/i :: 0 • (2) 

Definition 2. If there exist operators Si' i = 
1 • ••• , r, forming a Lie algebra G such that on the 
space of solutions of (2) 

[S,S.] :: f(S) , i:: 1, ••• ,r , 
i 

where f is a polynomial with analytic coefficients 
depending on the coordinates and such that f(O) = 0, 
then the Lie algebra G is called the dynamical Lie 
algebra. 

Note that if f is linear, then S e: G is a symmetry 
operator of S. If l/; is a solution of (2). so is S•J;, 
In general, the dynamical Lie algebra of the quantum 
system contains time-dependent operators S(t), which. 
on the space of solutions, satisfy the Heisenberg 
equation 

[H,S (t)). 

The subalgebra G' of time-independent operators 
satisfies [H,S] :: 0 and is the symmetry algebra of H 
considered in Definition 1. 
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3. Sufficient Condition for a Quantum 

Nondemolition Observable 

observables 

A cos wt - (~/mw) sin t.iJt = x • 
A sin wt + (~/mw) cos t.iJt = x . 

A • A • • • 
where p is the momentum operator and x is the position 
operator; of the simple harmonic oscillator introduced 
in [3,4] are quantum nondemolition observables because 
of the special form that they take. This special form 
is a consequence of the fact that x 1 and x2 are 
conserved, i.e., in the Heisenberg picture, 

dXl,2 
dt = 

It follows immediately that x 1 2 takes the form 
x1 , 2(t) = f(X1, 2Ct0 );t,t0 ). The question that arises 

naturally is whether or not x1 and x2 are the only 
continuous quantum nondemolition observables for the 
simple harmonic oscillator, and, if not, how one can 
determine the other quantum nondemolition observables, 
and in particular examples that are not conserved. 

To determine the quantum nondemolition observables for 
an arbitrary quantum system, we first seek a 
sufficient condition under which an observable C 
qualifies as a quantum nondemolition observable. To 
distinguish between the Heisenberg and Schrodinger 
pictures, subscripts H and S will be used. 

Proposition 1. A sufficient condition for a 
self-adjoint operator C to be a QND operator is that 

[S,CJ = f(S) + g(C) , 

where f and g are polynomials with analytic 
coefficients depending on the coordinates and such 
that f(O) = g(O) = 0. 

Proof. Let w5 (0) be an eigenstate of c5(0) with 
corresponding eigenvalue A(O), i.e., 

CS(O) l/JS(O) = A(O) l/JS(O) = \ l/JS(O) • 

Let l/J5 (t) be the solution of (2) with initial 
condition ljJ5 (0). 

Case 1. Consider g :: O. Then C5 l/Js is also a solution 
~). Since c 5 CtHS(t) and il(O)ljJ (t) are. by 
Cooper's theorem [5,6], both solutions with the same 
initial condition, we conclude that 

Thus l/J 8 (t) remains an eigenstate of CS(t) with the 
same eigenvalue 11(0). By Remark 1 of Section 3.1 in 
[2], C(t) is a QND operator of the Hamiltonian H. 

Case 2. If g(CS) ~ O, then 

SCS$S = g(Cs)~s • (3) 

where ~S is an arbitrary element of the solution space 
of (2). We note that (3) can be written as 
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A 

a~s " i~ ~ = (H+g•(cs))l/Js • 

with ~S = c5 ~5 • and g'(O) not necessarily zero. 

Now a simple computation shows that 

A 
:/Js = 

-i/~g'(A )t 
0 

e l/Js 

(4) 

is a solution of (4) with the proper initial condition 
corresponding to the initial c5-measurement. So, 
apart from a phase shift. the conclusion remains the 
same as in Case 1, and CS is a QND operator for the 
given Hamiltonian Has well as H + g 1 (CS). 

Remark 1. More generally, the result holds for g(C) 
replaced by g(C,B1 •••• ,Bn), where C,B1 , ••. ,Bn commute 
with one another. 

Remark 2. If g : O, we have a conserved QND operator. 
This is seen as follows. By a unitary transformation, 
[S,CS] = f(S) implies in the Heisenberg picture that 

= 0 . 

For time-independent observables, the latter relation 
reduces to 

i.e., constants of the motion are QND operators. 

4. Computation of QND Operators 

From Proposition 1 of the preceding section, the 
symmetry operators are seen to be QND operators 
(operators rather than observables since the symmetry 
operators need not be self-adjoint). To compute QND 
operators for a given system, we can follow the 
standard procedure for computing symmetry operators 
[7,8]. However. for QND operators the following 
modifications are to be made: 

(1) The opera tor ii'! ( ofd t) is to be replaced by the 
Hamiltonian H in the final result. 

(2) The resulting operators are to be extended to 
self-adjoint operators whenever possible, i.e., 
when the deficiency indices [9] are equal. 

In the following examples, we set ~ = 1 and also put m 
= 1. 

Example 1. (Free particle) 

The wavefunction ljJ(x,t) of a free particle is a 
solution of 

1 a2 
2 21/.(x,t) 

ox 



Here S = (1/i)(a/at) - Cl/2)( 'a2/ax2), Computing the 
first-order syunnetry operators of S, we obtain (see 
also [10]) 

I • ax • 
Cl 

-t dX + ix 

1 
2t () t + x 3x + 2 • 

-(t 2+1) a~ - tx ax + t (i/ - t - i) 

2 :i a l 2 
S6 = -(t - 1) dt - tx dX + 2 (ix - t) , 

From the correspondence rules 

" " x + x , -i(a/ax) + p • 

and 

A2 
i(a/atl + H = 1/2 p , 

the associated QND operators are determined as 

c1 = I (trivial) 

112 1111 
tp - xp 

(t2+1)~2 1111 l. II 
txp + 2 x2 

/\/\ l. 112 txp + 2 x 

/\ /\ c3 = tp - x , 

Cnonself-adjoint~ 

Cnonself-adjoint) • 

Cnonself-adjoint) 

Example 2. (Particle in a Constant External Field) 

For a particle subject to a constant external field F, 
the Schrodinger equation is given by 

1 a 1 a2 
i at ljJ = Z z l/! + Fx ljJ 

(IX 

with 

1 
s = i Clt 

The symmetry operators are found to be 

I • 
i 1 
ax + 2 iFt • 

83 -t + ix + l iFt2 
dX 2 . 
a a l l 

84 2t at+ x-+ ixFt ax 2 2 

-(t2+1) a a 1 
( ix2-t-i) SS at - tx - + 2 3x 

86 = -(t2-1) ...£.. tx ...£.. 1 2 
+ 2 (ix -t) + at ax 

1 . F 2 + 2 l.X t 1 

1 2 z ixFt 

The corresponding QND operators are 

cl I (trivial) I c2 
II II II = p • tp - x 

112 1111 1 II 
c4 tp - xp - xFt 

2 
(nonself-adjoint) • 

( t~+l) ~2 All 1 112 
CS - txp + 2x 

1 II 
2 xF (nonself-adjoint), 

C6 
__ (t 2

2-l) 2 /\A 1 A2 1 A 
\ p - txp + 2 x + 2 xF (nonself-adjoint) , 

Example 3. (Simple Harmonic Oscillator) 

The wave function :)r(x,t), x E: R , t > 0, of the Simple 
Harmonic Oscillator is a solution of the Schrodinger 
equation 

1 J l 32 1 2 2 
-;--;;:-iJ,= -2 -2~'- -2 w x ~! 
1 ot ax 

The synnnetry operators for 

s; .!_ _ 
i 3t 

have been computed in [11] with the results 

-cos wt ox - iwx sin wt 

83 
sin wt .1._ 

+ ix cos wt w 3x . 
3 sin 2wt 3 2 

S4 x cos 2wt -+ 2 llt + iwx sin wt ox 
w 

2 1 + cos wt - 2 . 
[x 

a 2 sin 
2 

wt.1_ sin 2wt 
SS -+ 2 d t w 3x 

w 

2 1 (l-w2) a 
- ix cos 2wt + 2w sin 2wt] --2- + at + 

[x 
2 sin 

2 wt sin 2wt 3 
56 -+ 

2 dt w ax 
w 

2 
- ix cos 2wt + ;w sin 2wt] (l~w 2 ) 

Invoking the correspondence rules 

1 
2 

A 1 A2 2112 x + ~ , -i(a/ax) + p • i(a/at) + 2 p + w x • 

the associated QND operators are 

A COS wt A 
x sin wt + --- p • 

w 

i 
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" sin wt 
c3 x cos wt - w 

"" sin 
c4 -cos 2wt xp + 

- ~2 sin 2wt 

_ (l-w2) [ sin 2wt 
CS - 2 - w 

A2 
wt] + a + x cos 

2 [ - sin 2wt (l+w ) 
c6 2 w 

(1 A2 2 p + 1 2"2) 2 w x + 

" p 

Zuit (~ ,..2 1 2 2) 
w p +2wx 

"" xp + 

A2 

(nonself-adjoint) 

2 sin2 wt 
2 

w 

p + 1 2 2) 2 w x (nonself-adjoint) 

2 . 2 Ult "" sin 
xp + 2 

w 

,..2 
x cos 2wt] 

(1 "2 1 2112) - 2P +1wx 

(nonself-adjoint) 

. 

Note that c3 and c 2 are respectively the QND ob­
servables x1 and x2 introduced in Section 3. 

In all of the above examples s1.s2 •.•. ,s6 form a basis 
for the dynamical Lie algebra. They are 
skew-symmetric and the necessary steps have been taken 
to make c1 ,c2 •••• ,c6 symmetric. Depending on how the 

external force is coupled to the system, some of the 
QND operators so derived may turn out to be quantum 
nondemolition filters as well. It can be shown [7] 
that the symmetry algebras obtained in Examples 1 to 3 
are isomorphic. 

5. An Interpretation 

The key idea in quantum nondemolition measurements is 
the notion of phase sensitivity [12]. In a 
phase-sensitive measurement, the fluctuations are not 
allowed to be randomly distributed in phase. This is 
easily seen using the 
for the simple harmonic 
and Hollenhorst [15]: 

squeeze operator introduced 
oscillator by Stoler [13,14] 

[l t 2 1 2] 
S(z) = exp 2 z(a ) - 2 z*(a) • 

The squeeze operator S(z) is unitary, and if I~> is a 
state of the system and z a real number r, then 

so that 

- ·t" k­<:/!IS (x) 84'> 

Similarly, 

and 

-r " e p 

Therefore S(r) j1p, for large r > 0, represents a state 
highly localized in momentum space or• for large r < 

O, highly localized in position. The reason for the 
name "squeeze'' operator is now apparent. 

The squeezed state S( z) I O>, where I O> denotes the 
ground state, can be generalized to wave packets with 
the same shape but displaced from the origin in the 
position and momentum space by 
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ls.z> = D(s)S(z) IO> • 

where D(B) = esp(i3~·i· -13*~) is the displacement 
operator [16]. These states develop in time according 

to 

-iwt -2iwt I Be ,ze > 

The dispersions of ~ and ~ for the simple harmonic 
oscillator in this state are given by [15]. 

" ( 1'i ). 12 
t,x 2mw 

/:;~ = (m~ rz 
-r 

where a. = e 

a. sin wt { 
2 2 

( 1 ) 2 \'2 
+ a. 2 cos wt J 

fr(1 ) 2 2 2 \ I 
~a.2 sin wt + o. cos wt[ 2 

We see from the above expressions that 
" d . . at time t = O, x can be measure arbitrarily 

. I " precisely as a.+···, while at t = rr 2w, p can be 
measured arbitrarily precisely at a. + Measurement 
of the time-varying operator x1allows a precise 

measurement of a linear combination of ~ and ~ to be 
made by suitably tracking the squeezed state. Note 
that at t = 0 a measurement of x1 corresponds to a 

position measurement, while at t = rr/2w it corresponds 
to a momentum measurement; and these measurements are 
dispersion-free as o. + '". In fact the dispersion of 
xl is given simply by 

A similar argument can be carried out for x2 , the 
corresponding dispersion being 

A pictorial representation of the above description is 
given in [4]. 

A given separable coordinate system for a partial 
differential equation corresponds to a symmetry 
operator. The separated solution is characterized as 
an eigenfunction of a symmetry operator. the 
eigenvalue playing the role of the separation 
constant. In the new coordinate system {u .v}, the 
symmetry operator transforms to ·•/•u and the separated 
solution takes the form U(u)V(v). (More generally the 
solution is R-separable and takes the form 
exp(iR(u,v))U(u)V(v) [7].) The fact that the solution 
separates indicates that random fluctuations are 
squeezed out, thus making the corresponding state more 
susceptible to a phase-sensitive measurement. Indeed, 
~f o~e were to measure the symmetry operator (assuming 
it is an observable) in such a state, then the 
measurement result would be the separation constant. 
By construction the symmetry operators given in 
Examples 1-3 are skew-symmetric. From spectral theory 



(17], we know that to each skew-symmetric operator S, 

there corresponds a one-parameter unitary group U(a) = 
exp(aS). It turns out that elements of the unitary 
group associated with the dynamical Lie algebra at t = 
0 can be interpreted as squeeze operators. 

Example 1. Consider the symmetry algebra for the 
simple harmonic oscillator given in Example 3 of 

Section 4. We now think of symmetry operators at a 
fixed time, say t = 0. Taking UJ = 1, the symmetry 
operators become 

sl I S2 dX 

S3 ix . S4 
1 

x 3x + 2 

2 1 '2 1 32 __ a_ 
S5 = ix 2 2 s6 = 2 i 2 

dX dX 

where s 5 and s6 are obtained by substituting 

l.. _]_ 

3t ; ( ::2 -x2). 
The above operators exponentiate to unitary operators. 
The unitary group corresponding to s 1 is the gauge 

transformation, while that corresponding to s2 is the 

shift or translation. The one-parameter unitary group 
corresponding to s3 is conjugate to the shift via the 
Fourier transform. The operator s4 gives rise to the 

group of dilations (or tensions) Ta: f(x) + (Taf)(x) = 
ea/ 2 f(eax). We have already seen this in the guise 

of the squeeze operator defined by Hollenhorst. 
Corresponding to s 5 is the group of Fourier-Mehler 

Transforms. More details concerning the above 
one-parameter groups can be found in [11]. The 

unitary operator exp(ias6 ) is the operator of time 
translation [18]. 

With reference to Section 4, we note that the symmetry 

algebras in Examples 1-3 are isomorphic to one 
another, and therefore the above comments apply to 
Examples 1 and 2 as well. 

Squeezed states are closely related to coherent 
states. Stoler [13] has shown that they are unitarily 

equivalent via the squeeze operator. Stoler calls 
squeezed states ""minimum uncertainty wave packets·· or 

.. minimal packets.·· In general, a minimal packet at t = 
0 does not remain one with the passage of time. 

Mehta, Chand, Sudarshan and Vedam [19,20] have derived 

the most general form of the Hamiltonian such that 
coherent states remain coherent states at all times. 
Similarly, Stoler has determined the most general 
Hamiltonian that preserves general minimal packets. 
Since the minimal packets are eigenvectors of some 

operators, albeit nonself-adjoint, we see that the 
notion of QND operators allows an amplification on 
these considerations. For example, the persistent 

coherent states are eigenvectors of the annihilation 
A . A 

operator a, and therefore one can interpret a as a QND 

operator for the Hamiltonian determined by Mehta et 

al. Likewise the minimal packets of Stoler are 
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eigenvectors of the operator s(z)~ st(z), where s(z) 
is the squeeze operator. 

Example 2. Let the Hamiltonian be 

H(t) = UJ(t)~t~ + f(t)~t + f*(t)~ + i3(t) 

~sing criteria given in [2] one can easily verify tha~ 
a is a QND operator. Consequently an eigenvector of a 
remains one during subsequent evolution. Indeed H(t) 
is the most general form of the Hamiltonian for a 
simple harmonic oscillator in the presence of 
interaction under the restriction that states that are 
initially coherent remain coherent at all times [19]. 

6. Conclusion 

The connection between symmetry operators of the 
Schrodinger equation and QND operators has been 
demonstrated in this chapter. Drawing on the 
mathematical results on the symmetry operators, one 
can construct QND operators for a given system. On 
the other hand, the study of QND operators provides a 
physical interpretation for the solution of partial 
differential equations by separation of variables. 
The unitary groups that arise out of the symmetry 
operators can be interpreted in terms of squeeze 
operators. In particular, the element of the dilation 
group are just the squeeze operator introduced by 
Stoler [13,14], Hollenhoerst [15], Yuen [21]. We also 
saw that if we al low nonself-adjoint QND operators, 
then the dynamics of coherent states or minimal 
packets are encompassed in the present theory. 
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