
SYMMETRY, BIFURCATIONS AND PATTERN FORMATION (d' apres Satting
er, Michel, Thom and many others) 

Michiel Hazewinkel 

Econometric Inst., Erasmus University, Rotterdam and 
Centrum voor Wiskunde en Informatica (= Centre for 
Mathematics & Computer Science), Amsterdam 

1. INTRODUCTION 

Nature often seems to like (approximately) symmetric solu
tions to problems. Mathematically, or more generally, scienti
fically, it thus becomes our task to understand why, e.g. by 
showing that more or less regular patterns are usually the most 
stable, or economical, or optimising with respect to a suitable 
criterion. 

Particular aspects of this theme concern the question of 
whether symmetric problems necessarily have symmetric solutions 
and how the symmetry of a problem/solution can change as a 
parameter varies. This last problem in turn is part of bifur
cation theory which examines the question of how the set of 
solutions of a problem can change in nature as certain parame
ters vary. Here it turns out to be remarkably fruitful [9, 29, 
33] to take the symmetry of a situation into account. Also the 
presence of a symmetry group has remarkably strong consequences 
for extrema of functions as we shall see. 

There are two aspects of symmetry which I consider very 
interesting and which perhaps so far have not had all the at
tention they deserve. One concerns approximate symmetry. Here I 
have in mind for instance a symmetric problem which would have 
a symmetric solution if the boundary conditions were equally 
symmetric. Now suppose the boundary conditions are disturbed, 
when will there be an approximatedly symmetric solution, e.g. 
when will there be a boundary layer in which the symmetry will 
be restored and a fully symmetric solution in the middle or 
when will the solution of the new problem be like a crystal 
with defects. There seems to be no general theorem concerning 
such matters. Other approximate symmetry problems (e.g. how to 
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recognise them) arise when dealing with a basically symmetric 
pattern with a (small) random [3] or systematic disturbance 
superimposed. Some preliminary foundational remarks on approxi
mate symmetry are contained in [17, 28]. Much more remains to 
be done and different kinds of approximate symmetry certainly 
exist. Still harder to understand approximatedly symmetric en
tities are the Penrose universes described in section 2 below. 
The second aspect concerns the matter that as certain parame
ters change an object may both lose and gain symmetry, some
times simultaneously. The systematics of symmetry loss, that is 
spontaneous breaking of symmetry, have had considerable atten
tion over the years, see e.g. [17, 20, 21, 22, 24]. The syste
matics of gaining symmetry far less. The matter is discussed 
below in section 3 in terms of the automorphisms of three di
mensional algebras. 

Apart from this example there is little new in this paper 
and it should basically be seen as a low key introduction to 
important work of others, notably the persons mentioned in the 
title. I have added a few more references than are strictly 
necessary for the purposes of this paper itself, e.g. a few 
references to books which treat of bifurcation theory and give 
applications [32, 25, 18, 26, 11, 1] and a few (in my view) 
closely related matters (2, 10, 41, 23]. 

2. PATTERN FORMATION AND SYMMETRY AND APPROXIMATE PATTERNS AND 
SYMMETRIES 

One of the best known examples of pattern formation and 
one of the most studied (the two terms are not synonymous) is 
the Renard convection. Consider a fluid layer heated from below 
as in Figure 1. At a small temperature difference (small tem
perature gradient) heat is transported by conduction and the 
solution 

Figure 1. Fluid layer heated from below. After [12] 

is completely symmetric, that is if we consider only the pos
sible symmetries viewable from the top we have E2 symmetry 
where E2 is the group of rigid motions of the plane (the fluid 
layer is assumed to be infinitely extended). At higher tempera
ture gradients the lighter fluid at the bottom will tend to 
rise, cool at the top and return to the bottom. A microscopic 
pattern arises which can take the form of rolls, c.f. Figure 2 
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or the famous Benard cells (hexagons), c. f. eigure 3. 

Figure 2. Rolls pattern. 
After [ 12] 

Figure 3. Hexagonal 
pattern. After [S] 
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Other less regular patterns develop at still higher temperature 
gradients. We will say a little more about Sattinger's bifurca
tion-in-the-presence-of-symmetry analysis of the Benard problem 
in section 5 below. A highly recommended up to date discussion 
of the topic is [9], which includes also a discussion of the 
spherical case, a model for convection in the molten layer of 
the earth between core and mantle. 

Figure 4. East wall of Death Valley, California. 
After [35]. 
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Another example of a strikingly regular pattern, caused by 
erosion in this case, is depicted in Figure 4 and still more 
examples are the drainage basin patterns of the Figures S, 6, 
and 7 below. These drainage patterns seem perhaps less regular 

Figure 5. Radial drai
nage pattern. After [39] 

Figure 6. Parallel 
drainage patte~. After 
[391 

Figure 7. Dendritic channels. After [35]. 
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than the erosion pattern of Figure 4 and the convection pat
terns of the Figures 2 and 3. Still they are very far from ran
dom and as such demand an explanation of their (amount of) 
regularity. In all these examples the problem is not so much to 
understand that something happens, i.e. that some pattern de
velops, but to explain the striking regularity of the patterns 
and in case there are several patterns to understand the selec
tion mechanisms and the relative stability of these patterns 
with respect to each other. 

Still other examples of spontaneously arising regular pat
terns are the socalled cloud streets, c.f. Figure 8 below, and 
the socalled Liesegang rings, which form e.g. when a drop of 
silver nitrate is placed on a film of gelatine saturated with 
potassum dichromate as in Figure 9. 

However, both nature and man seem to like approximately 
symmetric solutions even better. Or solutions whose obvious 
regularity is much harder to describe in mathematical terms 
then e.g. hexagonal or street patterns. Spiral patterns for 
instance, occur very frequently, c.f. Figures 10 and 11 below 

Figure 8. Stratocumulus cloud streets. After [37] 
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Figure 9. Liesegang rings. After [4] 

Figure 10. Sunflower head. Courtesy of Empire magazine 

Interesting remarks on the mathematics of spirals can be 
found in for instance [6]. Still harder to describe kinds of 
symmetry are those exhibited by various fractal patterns such 
as the twin dragon pattern of Figures 12 and 13 below which not 
only have certain more or less obvious symmetries (c.f. Figure 
13) and the less obvious rotational symmetry of Figure 12, also 
has the property that it can be covered with reduced size rep
licas of itself ad infinitum. 
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Figure 11. After [36] 

Figure 12. Twin dragon fractal, After B.B. Mandelbrot, 
The fractal geometry of nature, Freeman, 1982 

Consider also the spiral tiling of H. Voderberg depicted 

in Figure 14. Though it obviously has many regularity proper

ties and is intuitively very symmetric it is quite difficult to 

find symmetries (apart from a 180 degree rotation which also 

interchanges colours). 
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Figure 13. Tiling of twin dragon fractal, After B.B. Mandelbrot, The fractal geometry of nature, Freeman, 1982 

Figure 14. A non-periodic tiling by H. Voderberg. From [8] 
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There are patterns whose "regularity" is even more distur
bing and very hard, possibly impossible to describe in the ma
thematical framework we usually use in this connection. These 
are the Penrose non-periodic tilings, also called the Penrose 
universes as described in [8] from which the following is 
taken. 

The basic tiles are obtained from a diamond with angles of 
72° and 108° as drawn in Figure 15. The number t is the golden 
ratio !Cl + 15). The two tiles, called dart and kite, so ob
tained are marked with a drawn and dashed circle as indicated 
and there is an additional tiling rule in that abutting edges 
must .ioin circle segments of the same kind so that fitting a dart 
and a kite to form a diamond is forbidden. Using these two kinds 

1---- ---! 

Figure 15. The Penrose dart and kite. 

of tiles and respecting the additional tiling rules it is pos
sible to tile the entire plane. Indeed there are innumerable 
different ways of doing that. Some of the more striking pat
terns are depicted below in the Figures 16, 17 and 18. The cen
tral 10-sided regular polygon consisting of 15 darts and 25 

kites in ?igure 18 is called a cartwheel. Note also that the 
cartwheel pattern of Figure 18 has little symmetry in the ob
vious sense (only a reflection through a central vertical 
line). 

Here are some properties of the Penrose tilings (or uni
verses): 
a) all tilings are non-periodic; 
b) every point in every tiling is inside a cartwheel; 
c) every finite region of diameter ~ d of any tiling occurs 

within distance Zd of any point in any other tiling. 
In addition there are "fractal properties" in that from a 

given tiling another one with larger kites and darts can be 
constructed in a simple systematic way. 
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Figure 16 

Figure 17 
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Figure 18 

Properties b) and c) above are regularity, indeed symme
try, properties especially property c) when applied to the same 
tiling. The "fractal property" is also a symmetry property of 
course. Yet these symmetries are of a different kind then what 
we usually understand by the word. 

2. CHANGES IN SYMMETRY AS A PARAMETER VARIES 

This section contains a number of remarks pertaining to 
what can happen to the symmetry group of an object as a para
meter varies, i.e. during a deformation. 

2.1. Example 

Consider a rectangle with sides 1 and A For A* 1, the symmetry 
group is generated by the two reflections across the central 
horizontal and vertical axis, so that the symmetry group is the 
Klein four group v4 = Z/(2) x Z/(2). For A= l however, there 
suddenly appears an additional bit of symmetry, viz a rotation 
through 90°. For this value of A the symmetry group is suddenly 
larger. 

211 
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Symmetry group Z/(2) x Z/(2) 
Figure 19 

2.2. Example 

M. HAZEWINKEL 

Symmetry group n4 

Consider a small square inside a larger one with the sides 
of the small square parallel to those of the big one as in Fig
ure 20. The parameter which varies is the position of the smal
ler square 

D D D D 
(a) (b) (c) (d) 

figure 20 

If the centre of the small square is precisely in the middle of 
the big one the symmetry group of the whole figure is D4 (Fig
ure 20 (a)), if the centre is on a diagonal but not in the cen
tre the only non-trivial symmetry is a reflection across that 
diagonal (Figure 20 (b)). The situation is analogus for the 
centre on the horizontal or vertical symmetry axis of the big 
square (Figure 20 (c)) and finally if the centre is on none of 
these four lines there is no non-trivial symmetry. Thus, in the 
parameter square of this example we can describe the symmetry 
of the various figures as in Figure 21 below. A similar picture 
holds for example 2.1. And indeed in certain reasonably general 
situations one can show that this is the general pattern as we 
shall see below in section 2.3. Though of course it may happen 
that at a certain critical value the symmetry group increases 
by an infinite amount as when one considers the rigid 
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Figure 21 Figure 22 

motions of the plane which take a given ellipse with major axis 
A and minor axis 1 into itself. When A becomes one (circle) the 
synunetry group suddenly increases from Z/(2) x Z/(2) to the 
circle group s1 of all rotations about the centre of the el
lipse. 

2.3. A general mathematical framework for symmetry breaking 
(20, 211 

We can view the examples above as follows. There is a 
group of potential symmetries, in this case the rigid motions 
of the plane. For certain isolated parameter values a "large" 
subgroup of this group defines actual symmetries and as the 
parameter moves away from this value the symmetry is broken to 
a smaller subgroup. 

A more precise and mathematical setting for this picture 
of symmetry breaking is as follows. . 

Let G be a group acting .on a set M. ·er.·~. there is given a 
map G x M ~ M, written (g,m) = gm such that g 1 (g2m) = (g 1g2)m 
lm = m; think of gm as the result of applying the transform
ation g to m). For instance in the case of example 2.2. we 
would have G = E2 , the group of rigid motions of the plane, and 
the set M is the set of all squares of sizes 6 and 2, the lat
ter inside the other with sides parallel to the co-ordinate 
axes of the pl2ne. 2M can be conveniently described as M 
= {(P1 ,P2 ) Rx R : d(P1 ,P2 ) ~ 2} (P1 is the center of the 
first square, Pz that of the second). 

For each m E M, the isotropy subgroup at m is 

{g €. G : gm = m} ( 2 .1) 
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This is the group of symmetries of the structure represented by 
m M. The orbit of m CM is 

G = {gm : g E; G} 
m 

(2.2) 

G acts transitively on Gm (i.e. for every x,y€Gm there is a 
g€G such that gx = y). A set with an action of G on it is cal
led a G-set. Two G-sets are isomorphic if there is a bijection 
$: M1 + M2 such that $(gm1) = g$(m1) for all m1£M1• If Mis a 
transitive G-set the isotropy subgroups of the points of M are 
all conjugate and this sets up a bijection between isomorphism 
classes of transitive G-sets and conjugacy classes of subgroups 
of G. 

A stratum of G is the union of all orbits belonging to one 
isoclass of G-sets. 2 

Consider for example M = S , the sphere, and G = o2(R) the 
group of all rotations around the N-S axis and inversion 
through the origin. An orbit is then the union of two parallel 
circles at equal northern and southern latitude. There are 
three strata viz {N} U {S} and the equator, both are strata 
consisting of a single orbit, and the third stratum is the 
union of all other orbits. A precisely similar picture is of
fered by the description of example 2.2. by means of Figure 21. 
By restricting immediately to the subgroup n4 of F. 2 which 
leaves the larger square invariant we have G = n4 and M is a 
square of side 4. 

Orbits are e.g. sets of 8 points as indicated by dots in 
Figure 21, or sets of four points as indicated by crosses, or 
sets of four points as indicated by small circles and finally 
the centre is an orbit. There are four strata given precisely 
by these four types of orbits. 

Returning to the general situation. If G is a compact Lie 
group acting smoothly on a smooth manifold M everything is 
beautiful: the isotropy subgroups are closed Lie subgroups, or
bits and strata are submanifolds and there exists a G-invariant 
Riemannian metric on M. A consequence of all this is: 

2.4. Theorem 

Let G be a compact Lie group acting smoothly on a smooth 
manifold M. Then for every m €.M there is a neighbourhood U of 
m such that G is larger than G , (up to conjugacy) for all 
m' E: M. m m 

Thus symmetry can suddenly decrease but not suddenly in
crease which is precisely as in examples 2.1. and 2.2. and also 
as in the example of Figure 22. 

Note that in this setting hidden symmetry may occur. To 
see this consider the follo~ing modification of the example of 
Figure 22. Consider again S and let the group G now consist of 
rotations around the N-S axis and reflexion through the equator 
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plane. For M take the space of all unordered pairs of paral
lels. There is an obvious induced ~ction of G on M by viewing G 
as a group of transformations on S so that each element of G 
takes an element of M to a possibly different element of M. Let 
p be the element of M consisting of twice the equator. The iso
tropy of P is all of G. The rotations are visible. However, the 
reflection (whe.n restricted to the submanifold of s2 represen
ted by P) acts just like the identity. That is as a symmetry of 
the figure P in s2 it is a hidden symmetry, which appears as 
soon as P is deformed into a pair of close together equal lati
tude north and south parallels. 

2.5. Example 

Consider the group of all transformations R2 + R2 of the 
plane into itself of the form (f,g) : (x,y) ~ (f(x), y + g(x)) 
where f: R + R is a diffeomorphism and g: R ~ R is any differ-

entiable map. The inverse of (f,g) is the element (f-1 ,-gf-l) 
and the composition goes as follows: (f 1 ,g1) o (f 1,gl) = (f2f 1, 
g1 + g2f 1). The identity element is (id,o). Thus G is a sub
group of the group Diff(R1) of all diffeomorphisms of R2 into 
itself. Now let M be the space of all unordered pairs of ele
ments of R2 • Consider an element P = {x1 ,y 1), (x2 ,y2)}(M and 
let us calculate the isotrophy subgroup of P. Suppose $ £ G is 
in G • Then we must have 

p 

(i) 

or 

(ii) 

or both which can only happen if (x1,Y1) = (x2,Y2) It is 
quite easy to describe the isotropy subgroup for all P. For the 
purposes of this example, however, we need only two cases. 

Xl = X2 and Y1 f. Y2• 

Then G = {(f,g):f(x1) 
p 

Xl * X2 and y1 f. Y2 

Then G = p 
{(f,g) : f ( x1) 

= g(x2) = O} u 
{(f,g): f(x1) = x2, f(x2) 

g(x2) = Yl- Y2} 

(a) 

(b) 
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In case (b) the set 

normal subgroup of Gp and Gp is in fact the disjoint union Np 

aN where a = (f,g) is any element of G such that p 

f(x1) = x2, f(x2) = x1 , g(x1) = Y2 - Yl , g(x2) = Yl - Y2• 

Now let P = ((x1,Y1), (x2,Y2)) approach a point Q 

=((x,y ), (x,y )) with y1 * y 2 • Then we see that as the limit 
point ts reach~d there is both symmetry gain in that the Np 
part of G becomes bigger and sudden symmetry loss in that the 
aN part gf G disappears. It is in fact easy to show that 
th~re are no ~nclusion up to conjugacy relations between Gp and 
GQ. 

Thus theorem 2.6. does not hold in more general situ
ations. It seems that this kind of phenomenon cannot happen 
when considering the symmetry group (of motions) of figures or 
patterns in Eudidean space as these figures change. Rut I do 
not know of a general theorem to this effect. 

3. DESIGN SYMMETRY VERSUS QENERIC SYMMETRY [14] 

In example 2.7. we saw that in more general cases a state
ment like that of theorem 2.6 does not hold. A more complicated 
but also more suggestive example of the same phenomenon of si
multaneous symmetry loss and symmetry gain during a deformation 
is obtainer! by considering the automorphisms of three (or 
higher) dimensional algebras over R. That is the subject of 
this section. 

3.1. Algebra structures 

Let V = R3 be the vectorspace of all 3-tuples of real num
bers. An associative algebra structure with unit on V is given 
by a bilinear map (the multiplication). 

m: V x V ~ V, (x,y) ~ xy 

such that (xy)z.= x(yz) and such that there exists a 1 E: V with 
lx = xl = x for all x E:. V. By choosing a basis in V suitably we 
can assume that l = e1 = (l,O,O) and we shall do so. Let e 2,e 3 
be the other basis elements. Then because of the bilinearity 
the multiplication is specified by 12 constants (the so-called 
structure constants) 
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l 2 3 2 3 
e2e2 Y22e1 + Y22e2 + Y22e3 e2e3 Y23e1 + y23e2 + Y23e3 

l 2 3 l 2 3 
e3e2 y32e1 + Y32e2 + y3ze3 e3e3= y33e1 + y33ez + y33e3 

In order that the algebra be associative these y~ . have to sa
tisfy certain relations. E.g. from ez(e2e3) = (e~J 2 )e 3 one 
obtains 

2 3 l 
Y23Y22 + Y23Y23 

l 3 2 
Y23 + Y23Y23 

2 3 3 3 
Y23Y22 + Y23Y23 

2 l 3 l 
Y22Y23 + Y22Y33 

3 2 
Y22Y33 

l l 3 3 3 
Y22 + Y22Y23 + Y22Y33 

(3.1) 

The precise fonn of these conditions will not be important for 
us. 

3.2. Isomorphisms and automorphisms 

A map <j>: A + B from an algebra A to an algebra B is an 
isomorphism if it is an isomorphism of vectorspaces and if 
moreover <1>( lA) = 1 and <j>(xy) = cp(x) <j>(y) for all x,y €A. Here 
lA and lB denote t~e unit elements of A and B. An isomorphism 
<1>: A + A is called an automorphism and Aut(A) denotes the group 
of automorphisms of A. This group should also be considered as 
the group of symmetries of the algebra A. Indeed the situation 
fits the general framework <lescribed above. Let G be the group 
of all vector space isomorphisms <j>: V + V such that <j>(e 1) = e1 
(because we only consider algebra structures on V for which e1 
is the unit element). Let M be the space of all 12-tuples 

l 3 
(y22, ••• , y 33) such that all associativity relations like 
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(3.1) hold. For <j>: V + V, <j>(e1) = e 1, let e2 = <!>(e2), e3 = <!>(e3) 

-1 -3 
and let y22 , y33 be defined by 

i, .i 2,3 

The group element <I> now acts on M by 
l 3 -1 -3 

(y22, . . . ' y33) + (y22' ... , y33). 

One sees immediately that if A is an associative algebra with 
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structure constants y = (Y22• 

isotropy subgroup of y M. 
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3 
••• , y33) then Aut(A) =G~, the 

Two algebras A and B are isomorphic if and only if they 
(or more precisely the corresponding 12-tuples of structure 
constants) are in the same orbit. 

3.3. The isomorphism classes of three dimensional algebras 

It turns out that up to is~morphism there are six differ
ent algebra structures on V = R • They are 

A1 ::: R[XJ/X(X-l)(X-2) 
2 

A2 R[XJ/X(X + 1) 
3 

A3 R(X]/X 

2 
Aq R[X] /X (X-1) 

2 2 
A5 R(X,Y]/(X ,Y ,XY) 

A6 with basis 1, e2 , e3 and the multiplication rules 

e~ = 1, e~ = O, e 2e 3 = e 3 , e3e 2 = -e3 

Here if f(X) = x3 + a2x2 + a1X + a 0 is a polynomial R(X]/f(X) 

2 
denotes the 3 dimensional algebra with basis 1, X,X and multi-

2 2 
plication rules XX = X , XX 

gebra As is defined similarly. 

3.4. The deformation/contraction relations between the six iso
morphism classes 

By the symbol A~R we understand that there is a family 
1 3 

of algebra structures A(t) = (Y2z(t), ••• , y33(t)) isomorphic 
for small t * o to A and such that A(o) is isomorphic to B. In 
other words A ~ B means that the orbit corresponding to the 
isomorphism class B is in the closure of the orbit correspond
ing to isomophism class A. 

With this notation the pattern of contraction/deformation 
relations between A1, • • • , A6 is as follows 
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Al 

! 
A4 ============..,.. 

i 
Figure 23 

Figure 24 

Concentrating on the A1, A3, A4 part of Figure 23 the situation 
in y-space is somewhat like depicted in Figure 24. Compare this 
e.g. with Figure 22 and Figure 21. 

The corresponding pattern of automorphism groups is as 
follows 

Aut(A4) s3 Aut( 6) = {(a,b) : b f. o} 

! l 
Aut(A3) = Aut(A5) 

Aut(A4) R \{o} > ~ 

l {(a,b) : a f. o} GL2(R) 

Aut(A2) = s2 

Figure 25 
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Here S is the pennutation group on n letters and GL (R) is the 
group gf real invertible m x m matrices. The multiplTcation 
rules of Aut(A3) and (Aut(A6) are respectively (a,b)(c,d) = 

2 
(ac, ad+ be ), (a,b)(c,d) = (c+ad, bd). 

We see that as a rule during a contraction (~) 
(i) symmetries are both gained and lost 
(ii) the dimension of the symmetry group does not become 

less 

3.5. Design versus generic symmetry 

At least in a large number of cases. there seem to be two 
sources of symmetry. The first is what I like to call "generic 
symmetry" it is the symmetry which is possessed by almost all 
of the structures under consideration. As an example consider 
algebras of the fonn C[X]/f(X) where C denotes the complex num
bers and f(X) is a polynomial of degree n. Almost all f(X) have 
n distinct roots and as a consequence almost all of these alge
bras have S as their automorphism group. The second source is 
what I likento call design symmetry which arises e.g. when 
parts of the structures under consideration are very carefully 
arranged in such a way that a large symmetry group arises. For 
instance if precisely two roots of f(X) are equal and all 
others are different from each other and from this double root, 
then the automorphism group picks up a factor R-{O} but not 
all roots are of the same kind anymore and the generic symmetry 
group drops to Sn_2 (the permutations of the (n-2) unequal 
single roots). It seems to me that the way the symmetry groups 
can change often can be understood systematically in these 
terms. During contraction (') the generic symmetry group tends 
to become smaller and the design symmetry group larger or, 
equivalently, during a deformation ~ the generic symmetry 
group becomes larger and the design symmetry group smaller 
(i.e. gets broken). This last phenomenon was of course the sub
ject matter of section 2 above. 

4. CONSEQUENCES OF THE PRESENCE OF SYMMETRY 

Quite generally the presence of symmetry in a (mathemati
cal) problem can have enormous influence and it can greatly 
facilitate solving a problem. We shall see this when examining 
bifurcation phenomena in the presence of symmetry in the next 
section and we have already seen examples in the previous sec
tion. Here we describe some more material around this theme. 
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4.1. Symmetric problems and their solutions 

A first question to examine is whether symmetric problems 
necessarily have symmetric solutions. This is discussed in con
siderable detail by W.C. Waterhouse in [40] who calls the prin
ciple that this he the case the Purkiss principle. Here are 
some of his examples where the principle holds. 
- of all rectangles with a given perimeter the square has the 

largest area. 
- Take four positive numbers whose product is 16. Then their 

sum is least when all numbers are equal. 
- For a given mean x = n-l (x1 + .•. + x) the value of 

2 2 . n 
x 1 + ... + xn is least when all xi are equal. 

It is clear that statements to the effect that under cer
tain circumstances the Purkiss principle holds are precisely 
the desired sort of mathematical explanations of why nature 
likes symmetric solutions (Cf. the introduction). 

There are also quite simple counter examples to the Pur
kiss principle. For in~tance on2 from R~niak~vsky: find the 
minimum of f(x,y) = (x + (y-1) )((x-1) + y ). This is sym
metric in x and y. The two solutions, however, are (1,0) and 
(0,1). Another example (from [20]) which I like very much is 
the following. Consider four towns located on the corners of a 
square. What is the shortest road system that joins these four 
towns. It is not very difficult to see that there are two solu
tions which are depicted in Figure 26. The angle between the 
horizontal and the top left oblique segment in Figure 26 is 
30°. This solution is better than the other obviously possible 
candidates: three edges of the square or the two diagonals. 

Figure 26 

Note that in both counter examples the total set of solu
tions is symmetric under the full symmetry group of the problem 
but that the individual solutions (if there is more than one) 
are only invariant under an isotropy subgroup. That is, there 
is symmetry breaking in precisely the sense of section 2 above 
with as the manifold M the space of all solutions. 
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4.2. Extrema of symmetric functions 

Here is a result that shows how strong the influence of 
the presence of non-trivial symmetry can be. The setting is 
that of section 2.3 above, i.e. a compact Lie group G (for in
stance a finite one) acting smoothly on a smooth manifold M. 
Let F be the set of all functions f on M which are invariant 
under G, i.e. such that f(gm) = F(m) for all m E M, g E G 

Theorem (cf. e.g. [211). If an orbit is isolated in its 
stratum it is critical for all f €. F (i.e. df = 0 at all points 
of that orbit) and inversely if an orbit is critical for all 
f € F it is isolated in its stratum. 

5. BIFURCATION IN THE PRESENCE OF SYMMETRY 

5.1. General remarks and first examples 

Bifurcation theory is concerned with how the set of solu
tions of a problem can change as a parameter varies. For a 
first introdution to bifurcation theory I refer the reader to 
my chapter "Bifurcation phenomena. A short introductory tu-

Figure 27 
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torial with examples" in this volume [15). Two of the simplest 
examples of bifurcations are the pitchfork bifurcation depicted 
in Figure 27 where a minimum bifurcates into two minima and a 
maximum, and the Hopf bifurcation where a stable equilibrium 
point bifurcates into an oscillatory cycle. In the case of the 
bifurcating valley there is also obviously a kind of symmetry 
breaking involved and in the case of the Hopf bifurcation also 
seems to involve symmetry loss when viewed in space-time space, 
cf. fig 28 below. The continuous translations symmetry gets 
broken into a discrete group of translation symmetries. Quite 
generally it seems clear from the setting of sections 2 and 4 
above that if a solution of a problem is symmetric with 
symmetry group G, and for parameter values A. < A. there is 
(locally) a single solution, and if at A. this sglution 
bifurcates into several, then the new so~utions will have as 
symmetry group isotropy subgroups of G. This should severely 

Figure 28 
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restrict the possible bifurcations. To see how this works, how 
the results of section 4 apply, and how representation theory 
can be used to advantage we first need a slightly more precise 
description of a little bit of bifurcation theory. 

5.2. Microsynopsis of some bifurcation theory 

Consider a map G(A.,.) : B1 + R2 depending on a parameter A. 
(where A. may also denote a vector of parameters). Here the l\ 
are Banach spaces. At this stage it does not hurt to2think of 
the Bi as finite dimensio~al spaces, say B1_= B2 _= R ~nd t~ 

think of (A.,.) as a map given by an expression like (x + y + 
A.xy 2 , x2 + A.xy). We are interested in studying G(A.,u) = 0, u€ 
B1 , and in how the solution set of this equation changes ~s A. 
varies. In most of the interesting examples the Bi are suitable 
spaces of functions and G(A.,.) is e.g. a differential operator 
depending smoothly on A.. An explicit example occurs below. 

Suppose G(A.0 , u0 ) = O; consider the partial derivativ~ 
Gv(A.0,u0 ) at (A. 0 , u0 ~. This is a l~nea~ ~ap B1 +.B2• If this 
linear map is invertible then the implicit function theorem 
says that there is a differentiable mapping A. + u(A.) for A. near 
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A such that G(A, u(A)) = 0 and that locally (i.e. for (A, u) 
c£ose to (A0 , u0) this is the only solution. Thus for bifurca
tion phenomena we are interested in points where Gu (A0 , UC) is 
not invertible. In the finite dimensional case of B1 = Bz = Rn 
we are thus interested in cases where the n x n matrix of 
partial derivatives G (A0 , u0) is not of full rank. If there is 
a symmetry group invoYved it is obvious how (generalised) re
sults like those of section 4.2 above could, indeed will be 
important. 

Assume that G (AO• u0) is a Fredholm operator of index 
zero, so that the ~ernel is finite dimensional and the range is 
closed of co-dimension equal to the dimension of the kernel 
(automatically the case if B1 = Bz =Rn.). In the simplest case 
dim N = 1, where N =Ker Gu(A0u ). Let B1CBz and let P: Bz + 

N be the projection on N and wrfte Q = Id - P. Then we can re
write the equation G(A,u) 0 as 

QG(A, v + q,) 0 and 

where v = Pu, q, = Qu. Fix v, then QGu(A0 ,u0 ) is an isomorphism, 
so by the same implicit function theorem used above we can find 
q,(A, v) as a function of (v, A) so that Q(A, v + 4i(A, v)) = 0 
near (A0 , v0 ). Thus it remains to solve the so-called bifurca
tion equations 

F(A, v) : PG(A, v + q,(A, v)) : R x N + N, F(A, v) = 0 

In the simplest case (dim N = 1) it readily follows that F(A,v) 
is of the form 

so that in the non-degenerate case, the solution set near (A0 , 

0) looks like two lines crossing each other vertically, a 
pitchfork bifurcation. 

5.3. Equivariant bifurcation theory 

Now suppose that there is a group of symmetries involved. 
I.e. there is a group H acting linearly on B1 and B2 and G(A,u) 
is equivariant which means that G(A,gu) = g G(A,u) for all g 
G. Here is a general result [33, theorem 13]. 

Theorem. Let G(A,u) : B1 + B2 be analytic and equivariant 
w.r.t a compact group H. Let G(A0 , u0 ) = 0, gu0 = u for all 
g H, and let Gu(A 0 ,u0 ) be Fredholm of index zero w~th kernel 
N0 • Then N0 is invariant under H (i.e. gN N0 for all g H) 
and the F(A,v) are equivariant. 0 

Now in many interesting bifurcation problems dim N > 1. 
Then the simple analysis of 5.2 above does not apply. However, 
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if there is symmetry it may easily happen that N is an irredu
cible representation of H and if we know which one (i.e. as a 
rule, if we know enough of the representation theory of H) this 
is just as good as the case dim N = 1. 

We also know a priori that the bifurcating solutions will 
have symmetry groups which are isotropy subgroups of H acting 
on N. A very simple example of a bifurcation situation with 
symmetry (rotational symmetry in this case) is the one of a 
stiffish rubber bar with opposite forces acting on the two end 
points as shown in Figure 30. The corresponding bifurcation 
diagram is sketched of Figure 7.9. 

i 

Figure 29 

Figure 30 
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The idea is the following. Just as in case dim N = 1 we 
know that F(A,v) must start off with a term AV (if A0 = O), we 
know in the equivariant case that F(A,v) must start off with 
very specific terms which are determined by the representation 
of H, which is involved. In many cases degree considerations 
and the value of dim N rule out all but a few possible (known) 
representations which may make a case like dim N = t (which is 
usually totally intractable in the general case) quite easy to 
do in a symmetric case. 

5.4. Example: Benard convection [33, 34); cf. also [9) 

In case of the Benard convection such an analysis has ac
tually been carried out by Sattinger, loc. cit. The equations 
involved are the Boussinesq equations which are 
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o -1 °l\ 
f>l\ + 6k3 9 - ~ = Pr ~ u j ox . 

k j J 
' k 1, 2' 3 

Here u1 , u2, u3 are the velocity components of a fluid element 
as functions of the co-ordinates x1, x2, x3• The function 9 is 
the temperature profile and P is the pressure. R denotes the 
Rayleigh number, P1 the Prandtl number and f, denotes the Lapla
cian 

and o~1 the Kronecker delta. The bifurcation parameter X is R. 
Thus in this case B1 and B2 are suitable spaces of 5-tuples of 
functions (ul, u?, U3, e, P) of three variables xl, Xz, X3. and 
it is then immediately clear how to write these equations in 
the form G(X, u) = O. 

The group involved is E2, the group of rigid motions of 
the plane which consists of all motions 

where the matrix is orthogonal and hence of determinant ±1. 
The action of E2 on the spaces of 5-tuples of functions 

B1, Bz is now given oy 

(~ 

Here B is the 2 x 2 matrix which gives the rotation/reflection 
part of g €. E2 and I is a 3 x 3 identity matrix. It is a small 
exercise to cneck that the Boussinesq equations are indeed 
equivariant w.r.t. this action. The reason is that the physics 
is independent of the observer. 
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In this case it turns out that dim N is infinite. However, 
under the assumption that we restrict our attention to solu
tions which are periodic with respect to a hexagonal lattice, 
cf. Figure 31, dim N becomes finite dimensional and an explicit 
bifurcation analysis can be carried out [33, 34, cf. also 9]. 

• • 

• • 

·<c-~~~,L. 
I \ 

I \ 
I \ 

/ \, 
• • 

Figure 31 

• • 

• 

• 

It turns out that the stability of the bifurcation solutions 
depends on two parameters in the manner depicted in Figure 32 
below. This agrees with experimental data. Of course, this does 
not give us a complete mathematical description of the Benard 
convection. It remains to be shown that the E2 symmetry has to 
break through a lattice. This is still an open problem, though 
it is hard to see how E2 symmetry could get broken otherwise to 
a stable solution (cf. also (38, section II.l]). It also re
mains to analyse the relative stability of various lattice pat
terns with respect to each other. Cf. in this connection [31, 
32] • 

Figure 32 

5.5. Drainage patterns. An example • Competing singularities 

227 

Let me conclude with a possible model for the formation of 
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drainage patterns due to Thom [38], which I like particularly. 
Imagine a sandy slope on which a gentle rain is continuously 
falling. At the top small rivulets will form at random, these 
will merge and form larger rivulets further down etc., to form 
a pattern somewhat like the one depicted in Figure 33. 

Figure 33 

Figure 34 

Let Xi denotfJ the position of the i-th watershed near or at the 
bottom. Assume that the "erosion power" of a stream is propor
tial to the width of its basin. Then the position of the i-th 
watershed will move according to the differential equation 

. 
xi C(Xi - xi-1) - C(Xi+l - Xi) = C(2Xi - xi-1 - xi+l) 

(5.1) 
Obviously equipartition (Xi = r(Xi-l + Xi+l)) is a stationary 
solution. For an analysis of the stability of such a solution 
consider two streams at positions X and -X on R with the divide 
at u near zero. Then assuming that C also depends on X we find 

u = 2 C(X) u + 2 XC'(X) u + u2 ( ••••• ) 
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for small u. So that we will have stability if C(X) + XC'(X) < 
O. Assuming that C(X) is somewhat like Figure 34, which is not 
unreasonable, one would expect a characteristic wave length for 
the pattern at bottom given by L = "smallest" X such that C(X) 
+ X C'(X) < O. The picture of Death Valley some pages back 
(Figure 4) is a nice example of just such a pattern with, appa
rently, a characteristic wave length. It remains of course to 
do a complete (bifurcation) analysis which leads from the ran
dom pattern at the top to the regular pattern at the bottom. 
The governing equation above is a discretisation of a certain 
(anti-) diffusion equation. Numerical experiments, [16], with 
such equations are encouraging but it seems that we are quite 
far from a completely satisfactory theory at the moment. 


