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This paper is concerned with information retrieval from large scientific data bases 
of scientific literature. The central idea is to define metrics on the information 
space of terms (key phrases) and the information space of documents. This leads 
naturally to the idea of an enriched weak thesaurus and the semi- automatic 
incremental generation of such a tool for information retrieval. Quite a large 
number of unsolved (mathematical) problems turn up in this context. Some 
of these are described and discussed. They mostly have to do with missing 
information and classification and clustering issues. 

NOTE. The present text is a revised and expanded version of the write-up of a 
talk presented at the workshop on "Metadata: qualifying webobjects" that took 
place at the University of Osnabriick, 12-15 October, 1997, organized by Roland 
Schwanzl and Judith Plumer 1 . 

1. INTRODUCTION 

This paper is concerned with the matter of finding information in science. 
More precisely it is concerned with finding information about something using a 
(rather large) bibliographic database such as the data base MATH of FIZ/STN 
(Karlsruhe) which has records of basically the whole mathematical literature 
from 1931 to the present. 

Most scientists seem to feel that this is not (yet) a very serious matter. 
They are well acquainted with what is going on in their own superspecialism 
and that, together with the informal network of friends and colleagues who can 
be asked questions, seems to them to work well enough. 

1 See http://www.mathematik.uni-osnabrueck.de/projects/workshop97/proc.html for 
the write-up of the Osnabriick talk 
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I disagree. Mainly on the basis of my experiences with [4, 9) (which forced 
me to find information also outside my own immediate fields of expertise). I 
think the problem is orders of magnitude worse than one generally realises and 
I consider it odd that enormous financial investments are made towards new 
research while almost nothing is devoted to the matter of (re)finding an existing 
bit of knowledge if and when needed. 

Given the size of the information spaces involved (about a million records, 
about 4 million key phrases for the case of mathematics) it becomes necessary 
to give some additional structure to these sets. After all, typing in a key 
phrase and than getting some 6000 hits is not very useful. In this paper I 
explore the idea of providing these spaces with a metric (and related topological 
notions) so that it becomes possible to localize one's searches and so that one 
can thus vastly increases the chance of finding more relevant information and 
less garbage. This paper almost completely concentrates on these matters and 
by and large neglects the more traditional (linguistic) concerns in the world of 
indexes, thesauri and linguistics-based information retrieval. 

The key concerns in this paper are the structure of an enriched weak the
saurus (and how to generate such a structure semi- automatically and incre
mentally), various problems of missing and contaminated (dirty) data, and the 
mathematical problems (and some results) that arise from these. 

2. ENRICHED WEAK THESAURI AND THEIR USES 

2.1. Enriched weak thesaurus 
Very roughly, a classical thesaurus, according to ISO standard 2788 and various 
national and international multilingual standards, consists of a (large) list of 
words and phrases provided with additional structure as follows: 

Terms come provided with extra information in the form of broader terms 
(more general terms), narrower terms (more specific terms), and related terms 
(terms that are close (in some sense) but are not broader of narrower). There is 
an implied suggestion that the whole thesaurus has more or less a tree structure. 

In addition there is often additional structure in the form of preferred terms, 
information on synonyms etc. See e.g. [1) for more detailed information. There 
is no doubt that a thesaurus for a given field of interest is an immensely valuable 
thing to have. Thesauri are also very expensive to construct; indeed presently 
almost impossibly expensive. Apart from that, such a structure is very difficult 
to update incrementally (dynamically). 

Thus it is natural to look for structures that can at least be semi- auto
matically generated and for which the updating problem is less severe. One 
candidate for such a structure is what I call a enriched weak thesaurus. The 
definition is as follows. It consists of: 

- a (large) list of terms (key words and key phrases), which, together, are 
adequate to describe a given field of interest, e.g. mathematics. 

- a distance function on this set of terms turning it into a semi-metric space. 
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The phrase semi-metric (instead of metric) here refers to the fact that two 
different terms can have distance zero; then they are synonyms. The metric 
replaces the ideas of 'broader -', 'narrower -', and 'related terms' in a clas
sical thesaurus. What is lost is the local partial order 2 given by 'narrower' 
and 'broader', whence the term 'weak thesaurus'; on the other hand the met
ric gives (some) quantitative information as opposed to the purely qualitative 
information of 'broader', 'narrower' and 'related'. There arises the (mathemat
ical) problem, whether perhaps the partial order information can be recovered 
from the metric information. This is briefly discussed in Section 5. 

There are some more bits of structure to incorporate. In addition there is a 
classification scheme (such as the MSCS (Mathematics Subject Classification 
Scheme) for mathematics, or PAC for physics and astronomy. Each term of 
the thesaurus is given one or more classification numbers from the classification 
scheme, and, conversely, each node in the classification scheme has attached 
to it all terms from the thesaurus that are linked to that classification node. 
Thus the classification scheme also gets enriched: the nodes are given content 
and meaning. This enrichment part roughly consists of: 

- links to a classification scheme. 

Finally, partly for dealing with problems of missing and inaccurate data, each 
term is assigned a collection of terms that in actual documents in the field 
concerned are likely to occur the neighbourhood of that term. I call these 

- identification clouds, 

and they form the last part of the enrichment structure. There is overlap 
between this part of the enrichment structure and the metric structure. Con
ceivably, in very large enriched weak thesauri, for the identification clouds one 
could simply take all terms that are within a given, to be determined, distance 
of the term concerned. See Sections 4.4 and 4.5 below for a discussion of how 
identification clouds are to be used. 

2.2. Potential uses of the metric on the information spaces of terms and 
documents 
Let us suppose that we have defined an adequate metric on the information 
space of documents and the information space of terms. Here are some of the 
(potential) uses one can make of those. 

Automatic assignment of key phrases and classifications to documents. 
Given an adequate list of standard key phrases, all provided with clas
sification numbers, it is a straightforward (though not trivial) matter to 
write a program that can scan a document against these and can come up 
with a list of suggested suitable key phrases and classification numbers. 

2 See the footnote to Section 5.5 below for a definition of this term 
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- Dialogue mediated search. Given a weak enriched thesaurus it is possible 
to use a dialogue with the machine to refine and sharpen queries. Here is 
an example of how part of such a dialogue could look: 

Query: I am interested in spectral analysis of transforma
tions? 
Answer: I have: 

- spectral decompositions of operators in Hilbert space (in 
domain 47, operator theory, 201 hits) 

- spectral analysis (in domain 46, functional analysis, 26 
hits) 

- spectrum of a map (in domain 28, measure theory, 62 hits) 

- spectral transform (in domain 58, global analysis, 42 hits) 

- inverse spectral transform (in domain 58, global analysis, 
405 hits) Please indicate which are of interest to you by 
selecting up to five of the above and indicating, if desir
ed, other additional words or key phrases. 

- Local search. There are several possible versions of this. Here is one. It 
might easily happen that a user looking for information has a good example 
of a relevant document in his mind (for instance one of his own papers). 
Using the metric on the document information space it is now possible to 
formulate a query like: "find all documents with one or more of the following 
key phrases and which is within distance y of the following document". 

There are many more kinds of local search using also the metric on the term 
information space (or both metrics). For instance, if no example document 
is available to localize the search, a virtual document can be introduced by 
specifying a set of terms. After that the query can be as before. Or, suppose 
one is interested in interrelations between two different parts of mathematics 
A and B. Describe both A and B by sets of terms, and then ask for documents 
whose sets of terms come close to both A and B in some way that can be 
specified by the metric on term information space. (E.g. for both A and B the 
document must contain terms that are within distance 2 of A and B). 

There are basically two kinds of things that one can do using the metrics on 
the two information spaces. On the one hand, localize searches by specifying a 
centre and limiting the search to a neighborhood of that centre; on the other 
hand one can give oneself some more latitude by requiring only that some 
nearby terms (to a given term) occur in the document instead of a precisely 
specified one (which may easily not occur in an ideal document for the search 
concerned for a large variety of reasons). 
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3. GENERATION OF WEAK ENRICHED THESAURI 

The first step in (semi-)automatically generating a weak enriched thesaurus is 
to generate a list of key phrases (terms) from the available data. This is a 
well-known problem and there exist (first generation) computer programs to 
assist one in doing this; for instance, the program Textract, which I made use 
of for [12]. As said, these are only first generation programs and much remains 
to be done, but that is not the topic of this paper. So, assume that there is a 
clean and complete 3 list T of key phrases and that we know for each phrase in 
which documents it occurs. This gives a bipartite graph (such as depicted in 
Section 5 below), with as vertices the set of terms T (depicted on the left) and 
the set of documents D (depicted on the right) with an edge between t E T 
and d E D if and only if the term t occurs in (better, has been assigned to) the 
document d. 

Given these data there are very natural metrics on both T and D. The 
distancem(t, t') between two terms is simply the number of documents which 
have t but not t' plus the number of documents that have t' but not t (Hamming 
distance). And similarly for D: the distance m(d, d') between two documents 
is the number of terms that are assigned to the first document but not to the 
second plus the number of terms assigned to the second but not to the first. For 
real life applications one needs more sophisticated versions of this construction. 
For instance by assigning weights to documents. (If two terms are assigned to 
the same very long document this implies grosso modo rather less of a relation 
than if this is the case for a short document.) 

Note that this is an easily updatable structure. Also, note that it would 
be silly to store the metrics obtained. This would take very much storage 
place. Each term has a rather short list of documents to which it has been 
assigned. That is the inverted list of the list that gives for each document its 
set of key phrases. And from these two lists it is practically trivial to calculate 
the distance between terms, or the distance between documents, if and when 
needed. 

4. IMPERFECT DATA: DIRTY DATA, HIDDEN TERMS, AND MISSING TERMS 

As indicated above, given clean and complete data it is a simple matter to 
generate suitable metrics on the given information spaces of terms and docu
ments; indeed the definition is explicitly given above. Unfortunately the data 
as currently available are far from clean and far from complete. Here I will 
briefly discuss three aspects of this matter. 

All examples come from the two large databases of mathematics STN /FIZ 
MATH (Zentralblatt fur Mathematik) and MATHSCI (Mathematical Reviews) 
and the classification scheme MSCS-1991 (Mathematical Subject Classification 
Scheme, 1991) used in these two, and my experiences with compiling the three 
large indices [10, 11, 12], and the indexing and classification work that went 
into [4, 7, 9]. 

3 I.e., no dirty data and no missing data as discussed in Section 4 below 
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q e6 hI ill eB 
Ch eb y sh ev 
Tch sch ef 
Tsch (.i) eh eff 

ew 
ow (etc.) 
(iev etc.) 
(jev etc.) 

TABLE 1. 

Chebyshev 4103 Tchebyschev 2 
Chebyshef 1 Tchebyschef 2 
Chebysheff 8 Tchebyscheff 6 

Chebychev 89 Tschebyshev 2 
Chebychef 1 Tschebyshef 1 
Chebycheff 11 Tschebysheff 3 

Chebyschev 13 Tschebyshew 1 

Chebishev 1 Tschebychev 2 

Tchebyshev 34 Tschebychef 2 
Tchebyshef 1 Tschebycheff 11 
Tchebysheff 12 Tschebyschev 3 

Tchebychev 45 Tschebyschef 5 
Tchebychef 13 Tschebyscheff 139 
Tchebycheff 216 Tschebyschew 4 
Tschebyschow O* 

TABLE 2. 

Note that the two databases mentioned have records consisting of (at best): 
author(s), title, abstract, source (bibliographic data), key phrases, classifica
tion. The full texts of the papers are not available; nor will that change in 
the foreseeable future. As to size, they consist of somewhat less than a mil
lion records with some 4 million key phrases in the case of FIZ/STN MATH 
(MATHSCI has no key phrases). 

*but occurs thus in the "Kleine Encyclopaedie der Mathematik" 
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4.1. Dirty data 
The first aspect is a familiar and obvious one: dirty data. For instance, mis
spellings (in particular of proper names), linguistic variants of terms (inver
sions, morphological variants, to some extent synonym trouble) and unusable 
key phrases (to long and/or too complicated). 

For instance, I know of 29 ways in which the name of the Russian math
ematician P.L. Chebyshev ( II.JI. Y:e6b!IneB) is rendered in the published 
mathematical literature. 

Here is the example in detail. In Table 1 each (group of) symbol(s) are 
indicated the various transcriptions that can and have been used. Between 
brackets are very rare transcription occurrences. 

Fortunately, not all possible combinations arise (it seems); but enough of 
them do in fact occur. The ones I have seen are indicated in Table 2, together 
with their frequency in the MATH database (a few years ago). 

This type of difficulty causes two kinds of problems. On the one hand, a 
user, typing in a wrong spelling, is likely to find very little or nothing of what 
he is looking for. On the other hand if he types in the correct spelling he may 
well miss an important segment of the available literature. This happens e.g. 
with the Crank-Nicolson method from numerical analysis; quite a few papers 
on the topic (some 22%) have Crank-Nicholson instead. 

Next, the matter of linguistic variants (morphological variants like singular
plural, composite words written with or without a dash, inversions, ... ) has had 
a great deal of attention in the literature, and I shall say nothing about it. 

Thirdly, there is the matter of unusable key phrases, usually rather long 
ones, which are so specific that they often apply to one document only. For 
instance "algebraic and differential invariants of smooth four dimensional man
ifolds with boundary". This one actually would be relevant for quite a few 
documents but still it needs to be broken up into several parts. 

Much can be done to handle these matters of linguistically dirty data by 
linguistic means and standard lists of names and phraseSi. Indeed for the mat
ter of proper names some impressive work has been done for the MATHSCI 
database. 

There are some pitfalls, for instance "topological algebra" and "algebraic 
topology" refer to two very different parts of mathematics, and here the same 
'identification cloud' idea that I will try to describe in Section 4.4 below might 
come in useful. 

4.2. Hidden terms 
A matter which can not be handled by purely linguistic means is that of hidden 
key phrases (terms). Let me describe a rather simple example. 

In a record that I saw recently there occurs the phrase: 
" . . . using the Darboux process the complete structure of the solutions of 

the equation can be obtained." 
At first sight it looks like there is here a natural key phrase, viz. "Dar-
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boux process", to be extracted. Presumably, some sort of stochastic process 
like "Cox process", "Dirichlet process", or "Poisson process". The context 
made that rather doubtful; the surrounding sentences did not have in them the 
kind of words one expects in a paper on stochastic matters. The proper name 
"Darboux" is also not sufficient to identify what is meant; there are two many 
terms with "Darboux" in them: "Darboux surface", "Darboux Baire 1 func
tion", "Darboux property", "Darboux function", "Darboux transformation", 
"Darboux theorem", "Darboux equation" . . . . . The various words occurring 
in the surrounding sentences settled the matter. These were typical for the 
surrounding words of the term "Darboux transformation" and typical for the 
area classified by 58F07 (one of the classifications - indeed the main one - of 
"Darboux transformation"). Thus the 'identification cloud' (see Section 4.4 
below) of the term "Darboux transformation" made it possible to extract the 
right term. What the authors meant is that repeated use of the process 'apply 
a Darboux transformation' should give all solutions. 

This is a rather simple example. It may very well happen that various 
parts of a good key phrase for a paper are scattered over several (two or three) 
sentences, and/or that only some parts of it are present, or even that no part 
of an ideal key-phrase is present in the data at hand. Several examples are 
described in detail in Section 4.5. 

4.3. Missing terms 1 
In addition to hidden terms there are frequently completely missing terms. 
Especially terms rather more general (in level of specialization) than the subject 
treated in the paper may not get mentioned at all. Thus, for example, a paper 
dealing with the" Dyer-Lashof algebra of cohomology operations" may not have 
in its record any mention of "algebraic topology" (which is the field to which 
this subject belongs). 

This also can be dealt with (semi-)automatically by considering the identi
fication cloud of (likely) more general terms and comparing these with the set 
of words and short phrases occurring in the available material. 

There are also other ways in which one may gain insight in the matter of 
missing terms, see Section 5.3 below. 

One can even do much about missing terms at the same level of specializa
tion as the paper at hand. 

These matters, hidden terms and missing terms, are of importance both 
for completing the data of existing records and for new records (automatic 
assignment of key phrases and classifications). They are also most important 
for determining the correct metrics on both term space and document space 

4.4. The identification cloud of a term 
The above, in particular the example of Section 4.2, will already have made it 
more or less clear what is to be understood by the phrase 'identification cloud'. 
Each term in the standard list of terms (key phrases) should come together 
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with a cloud (list) of words and phrases that are likely to be found in a text 
in the neighborhood of an occurrence of the term in question. This cloud will 
include the terms from the standard list closest to the given one in the metric 
of Section 3 on the information space of terms. 

These identification clouds also serve to distinguish linguistically identical 
terms from very different areas of the field of inquiry in question. E.g. "reg
ular ring" in mathematics, or the technical term "net" which has at least five 
completely different meanings in various parts of mathematics and theoreti
cal computer science. The identification cloud also serves to distinguish rather 
different instances of the same basic idea in different specializations. E.g. spec
trum of a commutative algebra in mathematics, spectrum of an operator in a 
different part of mathematics, and spectrum (of a substance) in physics or 
chemistry are distantly related and ultimately based on the same idea but are 
in practice completely different terms. 

4.5. Examples of missing terms and the uses of identification clouds 

EXAMPLE 1. 
a complete axiomatic characterization of first-order temporal logic 
of linear time. As shown in (Szalas, 1986, 1986, 1987) there is no finitistic 
and complete axiomatization of First-Order Temporal Logic of linear and 
discrete time. In this paper we give an infinitary proof system for the logic. 
We prove that the proof system is sound and complete. We also show that 
any syntactically consistent temporal theory has a model. As a corollary 
we obtain that the Downward Theorem of Skolem, Lowenheim and Tarski 
holds in the case of considered logic. 
KEYWORDS: algebra of Lindenbaum and Tarski, Boolean algebra, 
completeness, consistency, first-order temporal logic, model, proof sys
tem, semantic consequence, soundness, syntactic consequence. 

sound and complete proof system 
first order temporal logic 
axiomatization of temporal logic 
downward theorem 
finitistic axiomatization 

downward Lowenheim-Skolem theorem 

K ripke structure 

Here the available data consisted of an abstract and a list of key-phrases. In 
bold are indicated the index (thesaurus) phrases which can be picked-out di
rectly from the text. Below are five more phrases, that can be obtained from 
the available data by relatively simple linguistic means, assuming that one has 
an adequate list of standard key phrases available. For instance "first order 
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temporal logic" results from "First-Order Temporal Logic" by a simple clean
ing up, and "sound and complete proof system" is linguistically close enough 
to a phrase from the available text: "proof system is sound and complete" 
(indicated in italics). 

Then, in shadow, there is the term "downward Lowenheim-Skolem theo
rem". This one is a bit more complicated to find. But, again given an adequate 
standard list, and with "downward theorem", "Lowenheim" en "Skolem" all in 
the available text it is recognizable as a term that belongs to this document. 

Finally, in bold-shadow, there is the term "Kripke structure". There is no 
linguistic hint that this term belongs here. However, the identification cloud of 
this term, would contain many of the key phrases that occur in this document 
and that thus strongly suggests that "Kripke structure" could be an important 
term to assign to this document. 

EXAMPLE 2. 
two-dimensional iterative arrays: characterizations and applications. 
We analyse some properties of two-dimensional iterative and cellular arrays. 
For example, we show that arrays operating in $T(n)$ time can be sped up 
to operate in time $n + (T(n) - n)/k$. 

computation. Unlike previous approaches, we carry out our analyses using 
sequential machine characterizations of the iterative and cellular arrays. Con
sequently, we are able to prove our results on the much simpler sequential 
machine models. 

iterative arrays 

sequential characterizations of cellular arrays 

sequential characterizations of iterative arrays 

characterizations of cellular arrays 

characterizations of iterative arrays 

arrays of processors 

The style coding of terms is the same as in example 1 above. Here clearly the 
term "array" is very central. Given that, the term "arrays of processors" in 
a standard list, and an identification cloud for that phrase, this term can be 
recognized as belonging to this document. 

EXAMPLE 3. 
A safe approach to parallel combinator reduction. 
In this paper we present the results of two pieces of work which, when combined, 
allow us to take a program text in a functional language and produce a par
allel implementation of that program. We present techniques for discovering 
sources of parallelism in a program at compile time, and then show how 
this parallelism is naturally mapped into a parallel combinator set that we 
will define. To discover sources of parallelism in a program, we use abstract 
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interpretation. Abstract interpretation is a compile-time technique which is 
used to gain information about a program that may then be used to optimize 
the execution of the program. A particular use of abstract interpretation is in 
strictness analysis of functional programs. In a language that has lazy 
semantics, the main potential for parallelism arises in the evaluation of 
operands of strict operators. A function is strict 

Having identified the sources of parallelism at compile-time it is necessary to 
communicate these to the run-time system. In the ... 

safe evaluation in parallel 

functional programs 

optimizing the execution of a program 

evaluation in parallel 

parallelizing functional programs 

safe parallelization 

In this example the words and phrases "safe", "functional program" and "par
allel(ization)" are clearly central. Given identification clouds and standard lists 
of key phrases this leads to the extra two phrases in shadow. 

EXAMPLE 4. 
sequential and concurrent behaviour in Petri net theory. Two ways of 
describing the behaviour of concurrent systems have widely been sug
gested: arbitrary interleaving and partial orders. Sometimes the latter has 
been claimed superior because concurrency is represented in a 'true' way; on 
the other hand, some authors have claimed that the former is sufficient for all 
practical purposes. Petri net theory offers a framework in which both kinds 
of semantics can be defined formally and hence compared with each other. 
Occurrence sequences correspond to interleaved behaviour while the notion 
of a process is used to capture partial-order semantics. This paper aims at 
obtaining formal results about the 

more powerful than inductive semantics using 

of nets which are of finite synchronization and 1-safe. 

sequential behaviour in Petri net theory 

Petri net theory 

axiomatic definition of processes 

interleaving semantics 

1-saje nets 
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Here, the constituents" I-safe" and "nets" of" 1-safe nets" actually occur in the 
text. But they are so far apart that without standard lists and identification 
clouds the phrase would probably not be picked up. 

The four examples above all come from [10, 11]. They are not complete; in par
ticular, parts of index phrases that are themselves also suitable index phrases 
have not been indicated. 

I should stress, that these examples are not automatically generated. Ad
equate lists of standard phrases for this area do not yet exist; nor are there 
identification clouds for these terms. These index jobs were done by hand. 
However, I believe that I work this way myself. I am primarily a mathemati
cian and not really an expert in the areas of computer science from which these 
examples come. However, through long experience with abstracts and indices 
in this area, I do know which groups and phrases sort of belong together; i.e. 
I have some sort of identification clouds in my head and those are what I use. 
Afterwards, I checked whether the 'new' phrases did really fit. They did. 

5. SOME MATHEMATICAL PROBLEMS 

In this section I will discuss and describe some mathematical problems and 
results that come out of the information retrieval issues at hand. All these 
problems have much to do with the (semi-)automatic generation of thesauri. 
Indeed, they need to be solved to be able to do just that. 

5.1. Missing terms 2: missing centres of clusters4 

The field of mathematics is fortunate in that it has a universally used, quite 
detailed, and very valuable classification scheme, called MSCS. The current 
version is that of 1991; an update is in the making (2000). This classification 
scheme reflects the history of mathematics and how the field split historically 
into various more specialized parts; it is essentially a top-down construction. 
Whether it fits very well with the metric structure of the information space 
of terms that comes from the actual present day collection of documents, i.e. 
some such metric as defined in Section 3 above, is another matter. I rather 
suspect that it does not do that very well. 

Thus, it is certainly interesting to apply clustering techniques ([13, 14, 15, 
16] to the metric information space of terms of Section 3 and to see what kind 
of hierarchical structure is suggested by the results. I call this bottom-up clas
sification and one project in that direction (BUC'M, Bottom-Up Classification 
in Mathematics) is under way at CWI, Amsterdam. Another bottom up ef
fort is the INTAS sponsored project ERETIMA involving Yaroslav University 

4 Clustering in the sense of clustering theory; not to be confused with identification clouds, 
though the two are not unrelated; for instance, a cluster containing a given term can serve as a 
first approximation of an identification cloud for that term. However as I see it identification 
clouds will often contai~ single word terms that are useless as k~y phrases' (for humans, 
because of great generality) but can very well serve to help pinpoint what subdomain one is 
dealing with. 

104 



· .. Quarterly ----------------

and the Russian Academy of Sciences in Russia, CIS in Miinchen and CWI, 
Amsterdam. 

Suppose then that one level of clustering has been carried out and that the 
space of terms has been divided into a number of (possibly overlapping) subsets, 
called (first level) clusters. These clusters need names and very possibly one of 
the terms in the cluster is that name (or a new term (new in the sense that it 
is not as yet in the information space, not in the sense that a new term needs 
to be invented) may be needed (missing terms again). In both cases we need 
to find the centre of the cluster in terms of the its zero one coordinates labelled 
by the elements of the document space (just like the original terms themselves 
have a zero or one coordinate for each document; see Section 3 above). A 
rather simple mathematical argument shows that these centres are determined 
by majority vote. I.e. a centre has coordinate 1 for document d if the majority 
of terms in the cluster has a 1 there. Ties are broken arbitrarily and there may 
be several (candidate) centres of a cluster. (A centre is a point that minimizes 
the summed squared distances of the elements of the cluster to that point.) 

5.2. Missing terms 9: other sources of metric information 
In the case we are considering, there is, in principle, more information that can 
be used (though not in the records discussed so far). What I am alluding to is 
a technique called 'cocitation analysis' ([17]). The basic idea is that papers on 
more or less the same topic will have a tendency to refer to the same source 
papers. Thus there is a second way to determine a metric on the document 
information space. 

It will in any case be interesting to compare this metric with the one defined 
in Section 3 above. But there are also other uses one can make of it. One such 
I will describe here and it deals again with the missing term problem. consider 
again the information spaces of documents and terms, this time depicted as 
a bipartite graph, as shown on the left, with on the left terms and on the 
right documents with a term linked to a document if and only if that term has 
been assigned to that document. As in Section 3 this defines a metric on the 
space of documents. Now remove part of the terms (as indicated in Figure 1), 
together with all the links from these terms. The remaining bipartitie graph 
defines a new smaller metric. Suppose we still know the original metric on the 
space of documents (say from co-citation analysis). Can the removed terms be 
recovered? This amounts to a question of deciding when a metric is a cut metric 
and finding a cut representation of it. This matter has been studied a great 
deal but is still very far from solved, see [3]. Actually, one needs to find the 
best cut metric approximation to the function that is obtained by subtracting 
the new metric (after removal of some terms) from the original metric. 

5.9. Transfer problem 
Related to the above is the transfer problem: give a bipartite graph (as on the 
left) and a metric on one of the spaces, what is the best metric on the other space 
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given the bipartite relation. This problem has been discussed in some detail in 
[8]. Briefly the problem is to transfer metric information from document space, 
obtained e.g. through cocitation analysis as a clustering technique, to the term 
information space. 

5.4. Classification trees and networks 
There are many different clustering methods in the literature. All of them 
have some drawbacks and probably there is no such thing as a best clustering 
method. One of the simplest ones to understand and implement is single link 
clustering. An axiomatic analysis, [14], indicates that is also one of the better 
ones. 

Every clustering method, applied to the metric information space of terms, 
yields a (classification) tree. From this the question arises how to compare 
such trees and which one is the best. Each such tree determines a metric: the 
distance between two nodes, in particular two leafs, is the minimal number of 
steps needed to get from one to the other. More generally, the edges (steps) 
can have weights with all weights issueing from the same parent node equal. 
Thus a classification tree defines a second metric on the information space of 
terms. And, given a notion of distance between metric spaces, one can speak 
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about a best classification tree. One good notion of distance between different 
metrics on the same set is Lipshits distance. Here there is a rather nice theorem 
available: single link clustering is best under Lipshits distance [5, 6]. 

This does not imply that, after all, single link clustering is a good clustering 
method. The drawbacks of single link techniques, particularly the phenomenon 
known as chaining, are well known. It rather points to the idea that trees are 
not really a particularly good way to describe the structure of a field of science. 

In line with that, personally, I am rather sceptical about trees ( = classi
fication schemes) as a way of adequately describing a field of science. Trees 
are nice and there is a nice characterization of them within the class of metric 
spaces (the four point condition, cf. e.g. [2]). but they are also not flexible 
enough. For instance, I know of no good way to integrate two different hier
archical tree structures on the same set of terms (such as might be given by 
two different classification schemes). Something more general is needed like 
directed networks with a height function. These are discussed in [5]. 

5.5. Local partial order 
The main loss of information of a weak thesaurus as defined in Section 2 above 
compared to a classical thesaurus is the loss of the local partial order5 implied 
by the notions of broader (more general) and narrower (more special) terms. 
(It is not realistic to hope for a global partial order even though most literature 
on the topic sort of implies, or even assumes, that there is such a thing). 

Given complete and clean data, it may be possible to find the local partial 
order structure. The idea is that statistically the more general terms (with 
respect to a given term) should turn up more often in the same document than 
more specialistic terms. No research has so far been done on this matter (as 
far as I know). 

Of course applying clustering techniques, together with the identification 
of the centers ( = names) of clusters also defines a partial order (given by the 
resulting hierarchy or tree). 

6. STATISTICAL DYNAMICS OF INDEXES AND THESAURI 

The problem considered here, in this final section, is how a global index, a 
list of terms supposed to describe a given field of enquiry, evolves as indexing 
proceeds and, simultaneously, the field develops (at a far from trivial pace). To 
fix ideas let us think about theoretical computer science or artificial intelligence. 
In both cases an attempt was made to generate an adequate index of terms on 
the basis of a subset of the available literature [10, 11, 12]. The question arises 
how does such an index evolve chronologically (assuming, for simplicity, that 

5 Given a set X, a relation Ron it and a covering U = {Ui}iEI of X, it can easily happen 
that the relation R restricted to each U; is a partial ordering while R itself is not a partial 
order on the whole set X. Then we have a local partial ordering (relative to the covering 
U). A local partial ordering that is not a global partial ordering has intransitivity cycles 
but none of these lies entirely in one of the sets U;. 
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the indexing is also done chronologically), and, most important, how does one 
judge on the basis of these data whether the index generated is adequate for 
the field in question or not. 

Here is a very simple (naive) stochastic model for this situation and a pre
liminary analysis of it. At starting time (time zero) there is an (unknown) 
collection, K(O), of key phrases that is adequate for the field in question. In 
addition there is an infinite universe of potential terms that can be dreamed up 
by authors and others of new (important) key phrases. Thus, from the point 
of view of indexing and thesauri the field grows as: 

K(t + 1) = K(t) II B(t), 

where U stands for disjoint union and B(t) is the collection of new terms 
generated in period t. Now indexing starts. At time zero no terms have been 
identified. Let X(t) stand for the set of terms selected (found) at time t, 
X(t) c K(t). Hence X(O) = 0. A generalization would be that one starts with 
an existing thesaurus and tries to bring it up-to-date; then X(O) is a known 
subset of K(O). 

The indexing proceeds as follows. At time t a set of terms S ( t) is selected 
and added to X(t). This set S(t) consists of two parts, S(t) = A(t) u C(t), 
A(t) c K(t), C(t) c B(t), A(t) U C(t) = 0. Thus 

X(t + 1) = X(t) U S(t) c K(t + 1). 

As a rule, of course, part of A(t) is already in X(t). The main problem is to 
have criteria or estimates to decide whether eventually X(t) exhausts K(t) or 
not. For instance in the form 

x(t) 
y(t) = k(t) -+ 1, as t-+ oo, 

where x(t) is the cardinality of X(t) and similarly for k(t). The (only) basic 
observable is S(t) and deriving from that X(t). 

Let us do some rather crude average reasoning. First, let us assume linear 
growth of the field of science in question: 

k(t) = k(O) + tv 

for some constant v. Also on average u terms are selected (per period) with 
a fraction ~ coming from known stuff, and a fraction k(tk(t)(t) new terms. 
There results a recursion equation for x(t): 

x(t + 1) = x(t) + u [ 1 - ~~!n . 
Let y(t) = ~be the fraction of terms covered by the thesaurus at this time. 
Then 

u 
y(t + 1) - y(t) = k(t + 1) 

108 

(u + v)y(t) 
k(t + 1) . 



Assume that the differential equation 

, u (u + v)y(t) 
y = k(t+l) - k(t+l) 

approximates the difference equation above well enough (which is certainly the 
case). This differential equation is actually explicitly solvable and the solution 
is: 

U u(k + v)l+(u/v) 

y(t) = u + v - (u + v)[k + (t + l)v]1+(u/v)' 

where k = k(O). So 
lim = _u_ 

t-+= u + v 

and y(t) grows monotonically from 0 to the asymptotic limit value u/(u + v). 

u+v 

y(t) 

FIGURE 2. 

Of course this is quite primitive. Frequently replacing stochastic phenomena 
with averages (in a nonlinear case) does not work. So a more sophisticated 
analysis of this kind of stochastic processes - apparently a new kind - is needed, 
as well as simulations. Research on this matter is currently carried out at the 
Inst. of Mathematics and Informatics of the Lithuanian Academy of Sciences 
in Vilnius. 
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