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HITRODUCTION TO GEOMETRICAL l1ETHODS FC~ THE THEOR'f OF LINEAR 
SYSTEMS 

• 
C. Byrnes, Mi Hazewinkel, C. Martin, and Y. Rouchaleau 

In this joint totally tutorial chapter we try to discuss 
those definitio~s and results from the areas of mathematics whic~ 
have already proved to be important fGr a n~raher of problems in 
linear system theory. 

Depending o~ his knowledge, mathenatical expertise and inter
ests, the reader can skip all or cert~in parts of this chapt~r 0. 
Apart frorr. the join-c section, the be:s~c fonctiort of this cnap"'.:er 
is to provide tre reader oft.his ·m1ur1e with e::ough r~adily .wa'.i
able background material so that ne c?n urder~tand t~os~ parts of 
the fo110Wing chr.pters ;·1hicn tiuilc en tr·i::--for a :;:athcmatica1 
system theorist perna9s not to:~lly standard--hasic mat~rial. 
The jo'lr~t section is different ~n n;ture; it 3t:mpts +.o exr1 iaifo 
some of the ideas anr:i prob1em5: wr.ich "''=re (and are) prominent ·:n 
cldssica1 algebraic gecn;etry a'1d to ~d.e :::l~ar thdt mJr.y of the 
problen1s no"' c.crfrontins vs in 1ir1ear s_ystem theory ']1·e sirni1ar 
in nature if ~ot in detail. Thus w~ houe to trdnsmit some int~i
tian why one can indeed ~x~€~~ tha~ th! too~s a~d Jhilcsophy Jf 
a19ebraic geometry wili oe" fruit.fol in dealir;g ~.'ith the '.'onni::i-

a.able array of probl2ms of cont;;1.1rora:-y rnthe'1at1ca1 syste:1 theo.·~·· 
~This section can, of ccurse, be skip~ed ~ithout enjangering o~c's 

chances of under·standir:g the rema.ir;dP.c cf this chapter ar.d the 
following cnapters. 

The contents o~ this introd~ctary ch~?ter ara: 

l. Hist0ricu.l preLde. So;'.;e prG~:le:!1s o7 c1 a.ssica'. <3.lge":r-ai..: 
geometry. 

1.1 Plan~ algcbrhic c~rves 

C. I. Pyme~ ar.d t:. I: :t:a··:i,.1, C··:.ur:o.:!''"''r.iZ ,H~:;.rJdi ;C:,; tire T1a·cry of! int"·,r s.--·s,er:·~ .... l·B·j 
Ccpyngf•t ·l,,i 1}1S'' uy D Rtide! }':,t.,:f~·.ltmgC•J1r,r•"f1.}. 
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2. 

3. 

1.2 Riemann surfac~s and fields of mero~orphic func
tions 

1. 3 Invariants 

i1odules over Noetheriar. rings and prir~c::ipal ideal 
domains 

2.1 Noetheria~ ri~gs and modules: fun~amental results 
2.2 Examples of NoGther~3n rings 
2.3 0'1 duality and the strjcture t'f ri;o0ules over 

Noetherian rings 
2.4 Modules over a principal ideal domain 

Differentiable manifolds, vector bundles and Grassman-~ 
nians 

3.1 Differentiable manifolds 
3.2 Partitions of unity 
3.3 Vector bundles 
3.4 On homotopy 
3.5 Grassrnannians and classifying vector bundles 

4. Varieties, vector bundles, Grassmannians and Intersec
tion theory 

4.1 Affine space and affine algebraic varieties 
4.2 Prnjective space, projective varieties, quasipro

jective varieties 
4.3 Grassmann manifolds, algebraic vector-bundles 
4.4 Intersection theory 

5. Linear algebra over rings 

Surjcctivity of. linear transformations. 
lemma 
Injectivity of linear transforr.1ations. 
Tx = y. Localizatiofi. 

Nakayama .. 

Solving 

5. l 

5.2 

5.3 Structure of 1inear transformations. The Quillen
Suslin theorem (formerly the Serre conjecture) 

l. SOME PROBLEMS OF CLASSICAL ALGEBRAIC GEQr1ETRY 

The purpose of this section is to give Jn$ight into certain 
of the problems and achievements of 19th century algebraic geome
try, in a historical perspective. It is our hope that this per
spective, which for several reasons is limited, will go some of 
the distance towards explaining some natural interrelations 
bet\veen algebraic geometry and analysis, as well as a natural con
nection bet>t1een algebraic georrtetry and linear system theory. 
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1.1 Piane aigebraic curves 

To be'.}ir., ;-ier:·,ars tlie most r:;r·imitive object~ of a1gebraic 
geo::ietry are varie:.ies, c=.g., plan;; curves in a: (say the vari
ety defined by t~e equation y = x'), a~d the most primitive rela
tions are those of incidence, e.g., the intersection of varieties. 
T0 fix the ideas, let us consider the prcb1ern of d~scribing all 
rlane curves in CL and the problem of describing their intersec
tions. Since an~ two distinct irreducible (i.e., the polynomial 
f(x,y), whose 1ccus is t~e curve, is irreducible) curves inter
sect in finitely many points, the first problem of describipg such 
ar. intersection is to compute the number of such points in terms 

~f the two curves. 

Now, whenever one speaks of a scheme for the d2scription or 
:!ossification of objects, such as olar.e curves, one has in mind 
~ certain notion of equivalence. And, quite often. this involves 
the rations of transformation. For example, if SL(2,[) is the 
group of ~ x 2 :iiatrice5 with determinant 1, then g E SL(Z,il:) 
acts on (II:'. by linear change of variables and it has been known 
since thP introduction of Cartesian coordinates that a linear 
change of coordinbtes leaves the degree of a curve invariant. 
Tn~t is, if f(x,y) is homogeneous, then 

(1.1.1) 

has the same degree as f. So, for homogeneous f, we may begin 
tl1e classification scheme by fixing the degree. Now any f which 
is nomogeneous of degree l is a 1 i near functi ona 1, and these 
are well understood. If f is homogeneous of degree 2, then 
one can check that the discriminant 

• 6(f) = b2 - 4ac, 

where 
f(x,y) = ax2 + bxy + cy2 

is invariant under SL(2,!I); i.e., 

for all g E SL(2,(I) • (l.1.2) 

This explains, in part, why the discriminant is so important in 
analytic geometry, but there really is a lot more to the story. 
F~r·st of all, (1.1.2) asserts that the discrimina~t of f, A(f)~ 
is the same regardless of the choice of coordinates used to 
express f (provided we allow only volume preserving, orienta
tion p2ese2ving changes of coordinates). But this is also true 
for ~,A + 3, etc. In 1801, Gauss [2,4] proved an important 
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res..,.lt: L:.1'!?:; rol2norn...,:a.: -iYL a, b, c. nl:itJ;-z ·i.~ ·2~;:'.J'1.:..,{:J.r:t· un<le1, 
r' ' -, [) • ~ • 7 • / T' + • ' ' 11 ri l tk 3 :L,.:., ;,.s a po1unc:'11,rz/, -z,n '"• r:a." 1s, 1et. , -eri0 e ·1e -
c1:1<.r~sional <.:pace of qu;:idratic for·ms fo 2 1;.:;~--;:;t;l<:::;, 1et R denote 
:r.e 1·i!~9 of polynrn;·,i?."is or, V (i.e., polyncn;ials in a,b,c) and 

<: L I 7 "' ~~t R- _,_,~J denote the subring of inv~ri~nt ps1ynomials, i.e., 
:::-,p J.Jlyoom~als satisfying (1. i.2). 

1. l. 3 lht::orem (Gauss). -----
RSL(2,lt) a: [t1] uni, 

~ 0 ·: i,erz fg ·- 12 for 3017!6 g E SL(2,lt). l 

Thus, Gauss clo.ss~fies hc;:10geneous 
:-.r.r: table: 

f(x,y) 

: .J" ,\( f l) 6{f 2) /, ~ 

of degree 2 by 

Quadratic Form Complete Invariant 

f s.t. ~(f) I o 6(f) 

• 
r a 

rank of f = j 
1_h/2 

b/2) (l.1.4) 
f s.t. ll(f) 0 

l. J 

Cle3r·ly, the saine kind of question is equany important for homc
gen~Jus forms of degree r, in n ?·2 variables. In 18~5, 
Cayley posed the general problem, in the same notation as above 
[2]: 

1. 1.5 Coyley's Problem: Describe the alqebra RSL(n,~) as 
1 • ·.;.z "b1 . RSL(n,l!J p• • l t d ex;ii,t.c:.~ y as possi.· ~e; e.g., -z,s j Pnte y genera e 

b;j some 1'.nva.J:'iant& 61, ••• ,!:i.9,? 

Now, the case n = 3 is particularly relevant for our dis-. 
cussion of plane curves. For, one may always "homogenize" a . 
polynomial, and this process allows one to express the number of · 
points of intersection of 2 plane curves in a beautiful formula, 
due to B~zout. Returning to our example, 

x ::: { ( x .y) : y = x2} ' 
to homogenize f(x,y) = y-x2 is to substitute x/z, y/z 
x,y and then to clear denominators with ~he result being 
homogeneous polynomial 1(x,y,z) ~ yz - x satisfxing 

f(x,y,1) = f(x,y) • 

for 
the 

(l.1.6) 

Geometrically, since 1(x,y,z) is homogeneous th~ locus of f. 
contains the line connecting ~ny nonzero solution with the origin. 
Indeed, the intersection of f(x,y,z) = 0 with the plan z = l 



s 

is given b.Y the zcrc2s of f, as in (l.1.6), and the focus of 
:c contains <ill lin;~s thrc.1~ql: this curve. Hm~gver, ther.::: is more, 
t~e line (0,y,0) ~lso lie~ in the locus of f. 

Next, if one considers the Drojective plane 

1P2 = {lines thru 0 in ~ 3 } 

then, by nornogeneity, the 1ocus of' f is a collection of points 

• ·n F 2 --one for each of the po~nt~. in f(x,y) = 0 and one more, 
.ne line (0,y,0), which may be regarded as the point at oo. 

To r.ake this more precise, 1-,e g~ve "horr:ogeneous coordinates" to 

a point PE P 2; i.e., regarding P as a line in !t3 , choose 
some non-zero (x,y,z) E P noting that any other choice 
(x' ,_y' ,z') is a non-zero r.iultiple of (x,y,z). The equivalerice 
class [x,y,x] is called "homogeneous coord·inates 11 for P and 
to ch2ck membership of P0 = [x0 ,y0 ,x 0] in the locus of a homo-

geneous f(x,y,z) it is enough tc eva)uate f(x 0 ,y0 ,z0). 

As an example of these ideas ·in control theory, consider the 
transfer function 

11 

T( s) ::: 
sj 
J_J 
52 

(1.1.7) 

arid the coprime factorization 

• [~'.~)1 " [ ~;2] 
D(s)j 

(1.1.8) 

Now, for an arbitrary s E [, (1.1.8) is a po1nt in [ 3 - {O} 
although T(s) does not determine this point canonically. Rather, 
T(s) determines the line through 

~s depicted below: 
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': !(2)_ - - ~ (0,1,0) :::: F~~l 
\.0( 0) 

~ > 

/ Y 

(1.1.9) 

Since T(""') U, T extends to a map of the extenr:!ed complex 
plane 

T : lt U { <X>} = 'P l -+ p2 

And one easily checks, using 
{1.1.8), that T(CU{oo}·j is 
viz., the lo~us of f(x,y,z) 
is the space of lines in Y, _, 
easily computed, under T · 
T: 

the homogeneous coordinates in 
the curv2 defined in our exgrnpleA 
= yz - x • Moreover, if pi c:lPL 
(1.1.9), then Fl n T(iIU{oo} is 

it is the set sing(T) of poles of 

(l.1.11) 

and t!ius consists of one point of multiplicity 2, (see Profes
sor Martin's lectures for the geometr~ of a general transfer 
foncti on). 

1.1.12. Theorem (B~zout [9]). If X , x2 c:l'2 are irreducible 
c:urvee of degree d1, d2 , then., coun!ing multiplicities, 

#(Xl n x2) = dl • d2 

We shall prove this in the case where x2 is a line -P1• e 
By a change of coordinates in tt3, x2 corresponds to the set 
of lines in the plane z = 0. And, by a change of notation, 
if x1 is the locus of f{x,y,z}, homogeneous of degreed, 
then Euler's relation is 

Intersecting f(x1,x2,x3) = 0 with x3 = 0 gives the equa

tion, of degree d, 

2 af 
d • ~ axi • x. - .0 

1 
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defining, counting Multiple roots, d lines in the (x1,x2) 
µlane. 

2 
l.l.14. P.er.iark. P provides a mudel for a (non-Et•c1idean) 

~2or:ietry, where the puints are just the points of lP 2 an·j the 

i;r.es are j11st the 1oci of linear furictiona1s on a: 3, i.e., 

planes in [ 3• Thus, for example, 2 distinct points P,,P2 
regarded as lines in a3 determine a line 1'1 in P 2, I viz. 

7 

the pla~e in E3 spanned by P1 and P2 • Moreover, any 2 lines 
2 I 1 n 1P intersect in a point. 

1.2 Riemar·n Surfaces ard Fields of Meromorphic Functions 

Thus, by homogenizing curves in a:2, we take a 1ct of the 
nystery out of the points at 00 • Indeed, one can give a beauti
fJ1 expression for the intersection number of 2 curves. Plane 
projective curves also arise in potential theory and in the ca1-
c Li 1 us. 

In two papers published in 1869 [l], H. A. Schwartz consid
ered the prcblem of finding, for purposes of solving Oirichlet 
problems, conformal maps of bounded regions to the unit disk or, 
Pquiva1ently, to the upper half p1ane. Fnr example, Schwartz 
considers the problem of finding a conformal map of the unit 
square or.to the upper half plane, .ye, where f !71aps 3 corners 

f 

~(l,1~---
A P l 

s 
(1.2 •. 1) 

t0 poir.ts 0, l, A ~nd the 4th corner to m. In particular f 
is meromorphic, as it should be, for f can be extended to a 
~oubly periodic function on [, by the Schw1rtz Reflection Prin
ciple. Actually, it is easier to construct a holomorphic map 
g:J't' .... S. The Schwartz-Christoffel formula applies in this case 
to give the elliptic integral 

(l.2.2) 
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:: .• :!'1 ;ntegrals huci a:re.=:dy bee.1 the subject of deep reseurch by 
:;:.~nr,, Euler, Gous~ .. Arel, Jacobi and others, being first encount
""'·~c jn the ccr·1putr.i:for: of tl-ie arclength of an e11ip:e. In parti
:~:.'!:", ::ulet" 'Fili shc:v .. ti1.:!t eiliptic integrals, such as (1.2.2), 
~;:.:.:~fj· adc!itio~ for::iulae 

g(P) + g(Q) = g(R) 

w~ere R is a rational function of P and Q, 
~·:r:iiliar trigono'T1ctric c.ddition formulae gotten 
:he 1engtns of arcs on a circle. Indeed, there 
t1c ideas underlying (l.2.3) too. 

(L2.3) 

generalizing the 
from considering 
are group theore-

That is, cor-sider :he meromorphic function f (cf. {1.2. l)
~~ich inverts g. As ~e have noted f extends to a doubly 
;i:::1·iodic meron1oi·phic function on (t and hence to a meromorphic 
f;.m::ti0n on t:·1e torus, or more properly the elliptic curve, 

$ = ~/{n + im1 , n, m E ll. , 

gotten by identifying the (oriented) horizontal edges of the unit 
square and by identifying th2 (oriented) vertical edges. One 
therefore has a nontrivial meromorphic fLnction, 

f:8-+!t 

and a h0lor1orphic 1-form on 8, 

dz 

(l.2.4) 

(1.2.5) 

which turns out to be invariant under multiplication on the group 
It. This can also be seen from the method of substitution appli~ 

tc the integral (~.2.2). That is, substitute y2 = 4z(l-z2) an~ 
consider integrating dz/y over paths defined on the algebraic 

curve, i = 4z{l-z2). Homogenizing this cur·1e \-1e obtain 

y2x = 4z(x2 - z2) , (1.2.6) 

and hence a cubic curve X c"P2• One can see a beautifu1 geome-
tric definition of the group law on X: choose 2 points P1 , P2 
on X and consider tile line t(e=!l' 1) in 1' 2 which they deter
mine. By B~zout' s Theorem, !1, intersects X in a third point. 

P3 = (P1 • P2)-l ! Moreover, dz/y is an invariant holomorphic 

1-form on X and from this one may obtain (1.2.3). However, 
more is true; X ad.nits a non-constant meromorphic function 



~:::·iv::::: F:-or;, ci:>./y, v::.:. f. In f:ict, the field of meromorphic 
f~nctic1s or \ is e2sily seen tc be [(y,z) w~ere y and z 
-::: re12ted cis above. Again 1;sing ti;e form dz/y and a forr,1u1a 
·.::1:=;.ting the deg~-ee of X to i~hc top:;1oqy of X ane may shuw 
:nJt X ~ ~ as c~~plex manifolds! 

f:s:'.1<1l'k. r~s a s!:etcl1 fJf the prcioF, one sees 
:nat ->.---,-5 a ntmsirq:Jl;or cu'.lic in ·r2 tnat X 
c:~nected a~d thus i~tegrRl~ f dz/y where y 

y 

from the 'fact 
is not sin1ply
is a clcsed path 

~,r, X are not necessarily 0, al though the proper forn: c,f Cauchy' s 
rneore~ is still valid; viz., if v 1 ~ y 2 (are homologous) 

t~s~ t~e path integrals taken over ~ 1 ,y 2 are equ~l. And, 

~1thou9h X is not si~ply-connected, one knows that there is a 
~~sls {y 1 .~ 2 } for tne closed curves on X modulo homology. 
j~,us there are two basic "periods" of dz/y, 

~~.m~, if 

J dz 
y y 

1 

P E X 
0 

and f dvz 

Y2 , 
(1.2.7) 

is the identity (or any point) then one might 
consider the quantities 

for a 11 
number, 
end r 

PE X. This q~antity is not a 't1ell-defined complex 
as the integral depends on the choice of path. If y 
are 2 paths joining P0 and P, then 

J dz - r i~ 
y y Jy y 

is an integral around a closed path, based at P0 , on X and 
is therefore (by Cauchy 1 s Theorem) an integer combination of the 
periods (l.2.7). Thus, if A is the lattice in [ generated 
by the periocis (l.2.7) one has an isomorphism 

X -+ [/A = 8 , defined via 

(1.2.8) 

To conclude the remark, if one inst~ad cons~dered integrals with 



~ r:.c:-;c1ai ir.te'.}r'?.11d (er, more generaily, of the form 
i1/___ 2 l 

d:/v':.--; ::.: + b ) V~·' curve X in 1P turns out to be f> , as 
"cor~t:: "; P2, 1·1:1ich ~s simoly connected, 1~hi1e tr1e -'.'"orm dz/y 
:s • :=-:-_:,-~.~·::.ni:: anti the u~'.Jc! residue calculus a;.;i:.-lies. This 
exo~~lrs :~e eJse with w~1ch ~atioral inteyra1s may b2 cctlculated 
as ~e~· ~s lhe relativ2 d~fficulty involveJ in calc~la~ing ellip
~i\: ~ritegrt~1Sc 

5·-~~-~::irizing, one has the in-t:ercannection bet1~een elliptic 
cun'es, ::::o:-cJlex tori, arod certain fields of meror.1::iq•:1ic functions. 
T~is is~ sJe:ial case of what has been properly referred [7] to 
<F ":'.,:: c •. ;.;::ii;g synthesis." That is, one may corsider three • 
~or-al'.y ~;st~nct classes of objects: non-singular projective 
rur~es {of any degree), complex compact manifolds cf dimension 1, 
an~ fie~~~ of meromorphic functions. Then, the amazing synthesis 
1s t'1at 2ny one of ti1ese objects determines the other two. 
Sc her.:,:;. t i ea 11 y, 

{ n811-singular } {compact, coriplex } 
a!gebraic curves ...-4---P~ manHolds of dim l, i.e., 
~ Riemaco surfaces 

{ fields of transce~} 
degree l over ~ (l.2.9) 

Ihe deeper part of this correspondence is that from an abstract 
Rie~ann s~r~ace S one may recover the embedding of S into 
~roj~ctive space and the equations defining this curve, or equi
vale~tly, that one may construct the field of meromorphic func
tions on S. Above, the meromorphic function f on the curve 6 
was constructed ·-,1ia potential theory, i.e., in orc!er to solve the 
Dirichlet oroblem. As Riemann demonstrated \Jith liberal use of • 
the "Jiricnlet principle," such transcendental techniques can be· 
used to construct non-trivial meromorphic functions on an arbi
trary Rhomann surface. Briefljt, the intuition runs as follov1s. 

First of all (and we will consider analytic equivalence in 
1.3), a compact Riemann surface is topologically a sphere with 
g ha1c:2s, where if the surfnce is given a~ a curve of degree 
d in F the genus g is given by (d-l)(d-2)/2. Thus, the 
elliptic curve 8 has genus (3-1)(3-2)/2 = 1 and is a sphere 
Hith l har.dle, i.e., a torus. 

Next, a meromorphic function f on S has as many poles 
as zervE:S. Where f = u +iv is analytic, u and v satisfy 
laplace's equation in light of the Cavchy-Rierr.ann equations. 
Therefore, f gives rise to a time-invariant flow with inessential 
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s'·~;·:-!1~-j-t-ics ·Jn S wh~re u" consc. defines the eL1u·;potrntia1 
:""·"' 0 ' anJ v = co:1st. defines the lines of fr,r,:e. Cr;m:i.:rsely, 
~i~~.~n~ 1 s ic~~ was to con3t~uct such an f by regarding, intui
·.·>:e-. .J, S "s a ~"-n-:'"e:cc rracc ot ,; co1:ductive 1c«Ht::ri2l and bv 
:-~;,:ii:J ~!12 ;;c1::s c>" a ::-:.tte1·y at ei:1Ch pl)]e-ze•·o pair of. f." 
-,- ~ S r·a~. GC. J1,F1 >: S0~~·2•!"J.c i:_ G:Cl'e preci Se by a l'll1d1 ff:G!"e careful 
:~~:f~~tio~ ~f ~ and an apc~Jl ·to tne 2irichl2t principle. 
:r.~:2:1, tn~ a;·r:::~ct:'.io•1 of mo·Jern nii•:.1011ic ti:e 1Jry to the (Rie-

"' :-?.xh) :1:.;est.icn of exister.ce of mero:nor·i:ihic functions on S 
·-- ont: oi '..i;e r;:.:;t b<?J11tiful sidF·s of ctho "a:'·czin0 synthesis." 
·c:- c. ;c,or;:: ci1.C:•,3i~:::"'i account of the ir1t1:itive discussion hinted 
at aoove, b2 sure to browse in F. Klein's book [ ]. 

• Iri closing this s·0 :.tion, we v1ct1ld like tc :na.ke contact \'lith 
wh::.t is C'erh::ps a 1r.0re familiar descriDtion of a Riemann surface, 
,-,;:.as a b1·i!.ncn-od r:over of tre extended coni;:i'ex plane jpl For 
c::.i•~•"J 1 e:, a:_ ie:i s·~ the_ finite po.d of t:he Ri cn'c:nn su1·face of the 
~elation yi = ~z(J-zi) can be obtained Dy forming the branch 
cu~s between -1 and 0 and l and +00 and sewing two coµ~es of the 
~1a.n less thEse cuts rogether in the appropriate fa.s~ion. One 
can g·.:t a•, the 1~hc1:e t<iernnn surf2ce rnore easi1y by considering 

the ;raph of ~he relatlon "y2_= 4z(1-~ 2 ). Explicitly, introduce 
h·~1:'n9eneous co:~·dnator~ (L.Y,/J,~z,z]1, etnd ~orno<JP.nize t11e re1a
tic.11, (istJining the cL1rve 0' 

2 _3 _2 -2 2 
y z - 4y z ( z - z ) (1.2.10) 

- .,.",1 ,, -.-. l. H t '"h , t '"h 1n r .- .O\.;ever, vie ge rnore " an JUS '~ .e curve 

6"c1.P 1 >:10 1 , .. 1e also obi:ain 2 rational functions on It 

prcj l : <f __, p l , 

wh~c~_are, of cou~·se, the al~c:braic functions .Y 
-~ R1err.c.nr sur"ace 8 of y = 4z(l-z2). Notice 

exhibits .Ji' as a 2-fold cover of IP 1 , bi"anched 
z · = 0, ± 1 , and 00 • 

and z, on 1 
that y: c, -> lP 

at tne 4 points 

This is, at the vet'Y least, reminiscent of root 1oci. That 
is, for a scalar transfer function T(s) one rnay regdrd. as in 
(1.1.7) etc., T(s) as a branched cover of the Riemann spheres 

1 1 T:l' __,p' 

3S depict2d below 
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{l.2.11) 

-ir _.. !~c:rs, :::he ~·s denote T ,ro) arid the x 1 s denote the motion • 
of tr2 clo~ed-laop root loci, as a function of -1/k toward the 
aper 1Jc2 z~roes--one finite real zero and a branched zero at oo, 

IrJe~c, i~r A scalar gain K = kl and square multivariable 
tr2nfer fLnction T(s), an extension of these ideas has been 
0i·:en ~.Y :. .• :~:icF<:rlane and I. Post!ethlvaite. 

El:~;:::le ~9:. Consider the trctnsfer function 

7(s) 

( s-1 
I 
l -6 

s l 
s-2 

and the scaldr output gdin 

In order to study the locus of roots of the closed-loop charac
teristic colynomial (see Professor Byrnes 1 s 12ctures), it is 
en·Jugh to study the 1ucu~ of roots of det(I + kT(s)) or, set- .1111111 

ting k = -1/g, the Riemann surface X defined by ~ 

0 = det(gI-G(s)) = g2 -trG(s)g + det G(s). 

Clearing denominators, one obtains 

0 = f(s,g) = (l.25)(s+l)(s+2)g2 

'2 -) 4 0 - ~ S-j g ·t S = 

leading to the algebraic functions 

_ (2s-3) ± ./l - 24s 
g ± (s) - (2.5)(s+l)(S~ 



fn this way, one has 

x 

u 
x 

s/ \g 
lPl 1Pl 

l : x -7 "P is 
end at 

2. 2-sheei:ed cov2r of :•; 1, 
as dep~cted below. S = cc·> 

r_c"' •Jraph ( g+) ---

g 

----2---
Y_-= grupr, (g_) 

13 

branched at 

(l.2.12} 

~ow the study of root loci, is the study of the loci of s on 
A~ fat~ each fixed real positive gain k -- i~e., for each fixed t re3.i negative •;alue of g = -1/k. Thus, the root locus is simply 
t~e arc on X given by g-1 (negative real axis) and to see 
tnis concretely it's 9erhaps easiest to study the pair of arcs 
~ 1 ,Y 2 g~ven by s(g- (negative real axis)). On the 2 copies 
X,, X of the s-pl0ne, branched a: s ~ 1/24, s = =, one sees -:-

:~at these loci st2rt at the open loop ooles, s = -1, s = -2 
~'·C mo·1e to °"• the only open looµ zero, as follows (note g± 
1~ real iff s is real and s < 1/24. 
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yl 

.&XXXXXJ( ~-=-~>;,;, 
-2 l/24 

/_-~--

{l .2.13) 

Thus Yz moves, as 0 < g < 00 , from th2 pole-2 on X+ to the 
branch point "'• ;-:hi le 

the branch point 1/24, 
on X . We can describe 
for 

x 

moves from the role -1 on to 

xi- u x 
('.hanges s~1eets, moving to w 

topologically as a sphere, 

~XXXX 
A_2 XX 

.t.-1 YzX 
x x 

x 
x 
x Y1 
x_.,, -1/7: 

\\ 
\ xxxxx 

\ 

x 

x 
x 
x 
x 

' 

X 

x 
x 

x 

00 

(l.2.14) 



(a) for G $ k -:: 1.25, t"ie closed loop $ystem is 
asymptotica11y ~:able. 

(b) for 1.25 s ~ s 2.5, the system is unstable with one 
pole (0n ~~) in the left-b21t olane. 

'-

(c) for 2.5 < k < y the S}:,tcm is stable. 

IS 

~~c:.t~. Branched covers of Fn by complex manifolds of dime11-
si 2n n play a role in tr2 stuty of root lot~c, ~~en one allbws 
art.·~ tr::i ry· gains I~; see Pi-ofessc;r Byrnes 1 s lectures. 

~·l.:•w, ther"e is an .;lten1ate !"~1ute ::o representing a plane 
c•Jrve as a branch~d cover of 1Pl, 1·ec.a11 that one may homogenize 
and projectivize, o~tainin~ the alaebraic curve X in p2 

• r • d 2 · ( 2 2' " - . ( 1 2 9' Th h . ;:en n2. Dy y x - i+z x - z / = •..1, as i ;-i • • 1. en c oos mg 

'\fYv line 1P 1 end a point P not on l1 1 or X, the branched 

Co-v"r Orr .,.,l i's Q1)ttnn b'·' a " ' . . II b d p , 1- ,. , centra 1 proJ2ct1on 'ase at • 
Th<i t is, c;y Bezou-i: 1 s Tneo-;..em any line £ through P intersects 

X in 3 coints (counting multiplicity) and P1 in a single 
pJint ard therefo:e defines a function, 

1 
f : x ~ lP (1.2.15) 

w~ich send~ these three points to the corresponding point on F 1 

One may :::a1cuiate that there are 6 branch points on 1P 1 for which 
multiplicities occur in 9.llX, where £. joins t!'le branch point 
to P. [This is as it should be, for pl ~ s2 is simply con
nected and therefore does not ddmit a non-trivi~l connected 
coveriGg space.] Note that f has the form f(x) = 

.[q(x),p(x)] in homogeneous Loordinate~ and thus corresponds to 
the coprirne factot'ization of meromorphic function f "' q/p on 
x. 

the projective 

plane iP2 

x 

X, e cubic curve 

~a line 1'1 
L---·----~--

(1.2.16) 
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1.3 Invilt'~.Jnts 

In the final part of this section, vie 1~.rnt to return to 
Cayley's Problt:m, e~pecia1ly the qL1.:;st1on of finitr; r.eneration s·. in -
of the ring of invariants R Lln,~.. Set the ~otation: v n,r = 

{r-t>i degree forns ·;n n-variablr0s}, R is the ring of polynomials 

on vn,r' and SL(n,!r) acts on (tn and therefore on vn,r by 

composition. f E R is said to b~ invariant under SL(n,[) if, 

and only if, (1.1.2) holds ar:d S(n,r) denotes RSL(n,ti:). ~~ow, 
for n == 2 tr1e 2xplicit structure of 5(2,r) is known for 
~ = 2, ..• ,8. the case r = 2 bein; Gauss's Theorem, while the 
case r -= 3 h'.lS only recently (1964) obtained by Shioda. Gord. 
and later Clenscn and Gordan, was able to prove that the ring of 
SL(2,[) invariants is finitely generated for all r. 

Remark. Part of this orcblem is rather straightforward; i.e., 
H~= I.: >O R, is gndin9 of R into homogeneous poly11omials m._ m 
of degree m, then since SL(2,II) acts on 

tra ns forina. t i cns SL(2,lt) acts on each R • m 

V,., ~ by linear 
'-•' 

In fact, this action 

ls the symnetr~c tensor representation of SL(2,II) on the space 

.'./'in(.:P 2(a 2)) of symmetric tensors. The invariants in Rm cor

res;:iond to the subspace of .:1' 171 (Y' 2q 2)) 011 1vh;ch SL(2,0:) act5 
as the identity and this representation can be decomposed as in 
ti"ie Clebc,ch-·Gorda'1 formula. Mo:--eover, the action of SL(2,!t) on 
v?,r is just the standard irreducible representation of dimen-

sion r+l. This eJ'.plains, for example, the absence of any 
invariants of degree 1 in the r-ing It[~]. It is now, however, 
a proof thdt ' generates 5(2,2). It should be remarked that 
for n > 2, the action of SL(n,[) on R is the object of study 

in the ''first r.iain theorem of invariant t~eory" [2]. e. 
Now, in 1892 David Hilbert proved that S(n,r) is finitely 

generated and, even better, gave a proof that revolutionized com
mutative algetra •. Hef.ore sketching a proof, we \'/ould like to 
point out the conn2ction witn the construction of moduli (or param
et2r) spa(;es--i n this case, -::he modui i space of homogeneous forms. 
That is, one is interested (as in the case of constructing the 
space of syste~s) in regarding Vn r/SL(n,[), the set of equi
valence classes of forms modulo a ~pecial linear change of coordi
nates, as a variety or as a manifold in a natural 1~ay, viz., so 
that the map 

(l.3.1) 
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i5 d~g~braic or smooth. First Jf ali, the orbits must be closed 
1n '/ ;:is they are the inverse images of t.he closed point<; of n,r 
\' /Si (n,fJ). Se-::ond, if n , r V n t./ SL ( n, [) 

' 
is an affine 'lal'iety, 

tt·;t:re 1' 1 CJSt be enough funct~ons 

f:V /SL(n,[) ~ [ n,r (1.3.2) 

to s>:;:i31·ate p,yi;~i:.s ar:d, moreover, :his alciebra of such f's must 
be f'nitely-·Cji'1l':Tated. Such f's arr, nov1e·1r:"', ir~v;iriant oolyno
mials on V since . in (l.3.1) is :i.ssumed ~o bi:: algebraic. n,r 

1-hus, tvn necessary conditions for a>"'i affine quotient to exist 
-:: re: 

(a) all orbits are closed 

(b) RSL(n,Q) S(n,r) is finitely-qenerated. 

ilot.; ce t 1 ~a t if one had, instead, a compact group G acting on a 
vector space V, then (a) \'IOUld be trivial, vmerec:s by "averaging 
over- G" Oiie can always construct en0ugh G-inv:.:ri::.nt functions 
to separate orbits. In fact, the exist~nce of a rrcces3 for aver
~gi~g over SL(n,[J underlies the validity of Hi~bert's Theorem. 
This fac:: 1·1as t:rcu~ht out quite clearly by fic'Jil:a, 11ho gave satis
fac~ory answers to Hilbert's l4th Pro~le~. which is a natural 
gener~1izition of Cayley's Problem. 

1.3.3. F1eorem (Hilbert). 
n "1:.ci a. ff r • -., 

at:.,, 
S ( r1 ,r) fr fi'litely-generate:l for 

Sketc~_Qf__f_!uof_ (fro:n [8]). One fil'st of all has the Hilbert 
basis tneorem: each ideal of ~' the ring of polynomials on lfn r' is finitely genented--for· a proof of this fact, one may 
refer to Chapter 2, Theorem 2.9. Next, one introdtices the Reynolds 
ap2rators (i.e., averaging over SL(n,[)): if V is an SL(n,t)-
~odule, then the submodule vSL(n,cr) of invariants has a unique 
Sl..(n,IJ)-invariant complement VSL(n,[)' .n.lternatively, one has 
a projection 

R: V -~ V SL ( n '(1) ( l. 3. -4) 

c01;i.r;iuting with the action of SL(n,!!). R -is called the Reynolds 
operator, and could be represe~ted symbolically in a seductive 
(but formal) v-1ay, 

RV = f gv dg. 
SL(n,[) 



!S \( I: .\?X\l'IN K''..L ET AI... 

By tiniqueness, one may deduce "Lhat, fer an idea i of 
RS L ( ri , [ ) c ( ) = _, n,r , 

(R/IR)SL(n~rt) ~ RSL(~.[)/I (1.3.5) 

Tita t is, 
RSL('.1,0C) 

I~ IR is ar injec:i0n of the lattice of ideals of 
into tr.e lattice of ideals of R. Hence, RSL(n,[) 

is ~oetheriar1, by the Hilbert Basis T~eorem. In ~articular, the 
l·{;.e,·.l ~,. RSL(n,[) o~," ,.,SL(n,[) . r· .. l t d . 
~ - -m>O m (\ is in11::e y genera_e , say 

bf x1 , •.• ·\~· One nex.t proves by inductic,n that mono:nials in 

tne x.'s generate eacr, hcr;io~er.eous piece RmS,L(ri,(t) and therefo. 
-L· i(I') -

R~ ~~,. is finitely generated over [. 

It should be emohasized that Hilbert's proof preceded and 
to a large extent motivat2d the introduction of chain conditions 
in:o ririg theory and it should be remarked that the oet0iled struc
ture of S(2,6) ~as the subject of E. Noether's thesis. 

Finally, one rather interesting and tractable case is n 2, 
r = 4. Here, it is k~own [8] that S(2,4) = IT[P,Q], where 
deg P = 2, deg Q ~ 3. In fact, if f(x,y) = a0x4 + a1x3y + 

2 2 3 4 a?x y + a~xy + a.y E V9 4, then Q is d2fined via 
~ ~ ~ ~. 

al/4 a2/6 

a2/6 a3/4 

a3/4 3 4 

(1.3.6) 

viz. 2s the determinant of a Hankel matrix! Moreover, the 
SL(2,'.L) i:lction on the space of 3x3 non-singular Hankels can 
be obtained i~ terms of control-theoretic scaling actions on the 
space of Hankel, as in Professor Brockett's 1ecture. ~low, the 
structure of S(2,4) (indeed of S(2,2g+2)) is also of interest 
in Riemann surface theory. _That is, &ny e~lipti:_ cu~ve 8 i~ a 
2--sheeted branched cover, v11th 4 branch points or P. In th1s 
way, the moduli space of elliptic curves can be represented as 
the ~oduli space of 4 unordered points on pl, up to equivalence 
unde1· projective auto~orphisrns, i.e., the group GL(2,C)/{a.I~ 
actiilg or. li!'les ir. (!. Notice, however, that 4 lines in ([ 
determine, up to a multiplicative constant, a homcgenecus quartic 
polynomial f(x,y), i.e., a point t E V7 4, while projective 
equivalence corresponds to equivalence mo~~lo GL(2,[) ~ SL(2.~). 
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1~ t~~s w~y. ~n analysis of the i* = t~Id} action on v 2 , 4/SL(2~~: 
;eads to tn~ ronstru~tion of the (rnoduli) space of all ~1liptic 
: ,!"',•:''>. By '.:GLi?1tinJ dir;12ils·icns O;"!e sees th,n such il sp:icc must 

' "p Li : r."' n s ' {\ '1 l f'o ,~ d: ', {1' * - 1 d- tl d r I' o' 0,, IT' 11 I) Q "] -- 1 n 1' s '·.:.~- 1,1,._ l~I ·) 1, l,1J .,., - I · \... "'··~• \J.._' - • ,,I 

-.'>' s ter<e cf this onr cc:rarnete;· farnil y of ell 1 pth: cu1-ves (these 
·:__:r:·, out tu be points in !::I iilustrates tr.e fa:::t that th•:re are 
>)0 r:ary c0nf0rrally- dbti:1ct yet tof•olc']ic<ll:,- equivalE11t Riernnn 
'~rfaces. h fact, Riemann asst:rted that. there are 3~-3 parar:i
c•:ers vihir:h cJescribe all Riemann surfaces of genus g > l. /mother 
1·.ic.e ex-cension by "~un1ford of the 1-1ork of Hilbert and ilagata encbles 
er''=, fer e>--a1~µ:e, to constril,__t such r1cd1Jli spaces and therefore to 
socak about their dimension • • \·ie reme:r!< that such problems arise frer;uently in control 
~reory; for exarn~lr, in the construction of moduli and canonical 
fo!'.T:S for lir.ear dynan:ical syster;is. Her·r::, one might ask, for 
rixe~ n, m, and o and for an arbitrary minimal triple (F,G,H) 
cir th~se air.oe'isior,s: do tii<:re exist canonical forr.is (FC,GC'HC) 

for the action of G~(n), via chanqe nf basis in the state space, 
such U,at th'? entries of (!\,Gc,Hc) urc: algebraic in (F,G,H)? 

Since the entries of (FC,GC,HC)' as it wer~, are invariant func

ti01s (fer this S~(n) action) one mi9ht ask in ourticular for 
an explicit 1escription of the ring of invariants. A description 
\'f the functions f(F,G,11), invar"iant under the Gt(n) action 
er: r,1ixeo tensors (F), 'Jectors (G), and co-vectors (H), is 
well-kno~r classically [5]; viz. the rin? of such f's is gener
ated by t;1e entries of the matrices, HF G! However, it turns 
out that, becaJse of the geometry of the moduli space 
{(F,G,HJ}/GZ(n)--or, equivalently the geometry of the correspond
ing space of Hankel natrices--neither algebraic, nor even contin
uous canonical fonns exist (see Professor liazewinkel's lectures). 
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0ne of the fun~anenta 1 steps in t~0 study of aut0mata and 
linear s_,-ster:; tne:: . .i·~· i: thc: il'trud•,ction of reduced, or minimal, 
··.:c..iizations. T:1ese are c:}ubly i;iterestin:J, sinct: trey are 
:,r~.:iue up tc.• is0;110rphis1;1 and lead to an ir;1::1lerientatic)11 of the 
:;ystem usir:g b ;ninimun1 nuinber of certJin cor11ponents. 

We all know that 1n order to carry "Ut s~ch a reducticn one 
;:;·ist take th2 °.u'~set of thi:: state sp3ce consistirig of the reach
.~::!e st.:;.tes. f...s V.'<~ s•1all see v11·1en \'ie study the realization 
;.r:.:o;·:,1 cf linear systems, t~1e size of t.t1e realization is directly 

~iatt:ed :o tne ;1urimer of g2nc:rators of th(~ state module. If vie, 
~;::r.::f·::ire, l::elien~ in the interest and applicability of linear 
~~~els witn coeff:cients belonging to a ring--and there is good 
i"eoson to· do so--i~ is vital to know over vihict-. rinas tnis redu.:
i:ion vocess \\ill lead to a physical!y r~alizable system (i.e., 
or:e 11itl: a fin~te1y generated statP module) cir, even better, to 
3 sm~1l~r system (i.e., one with a 5tate module having fewer 
genera tor·s). 

?.l Noet.hc:ri8n Rirqs and t1odu1es: runda;'~ental Results 

.. ' l :· .. j ,,. . 

Let 1' be a cor::mutil'~ivc rin9. 

Q_efinit!_o_r:_. A mo.:f:de 1·1 ?,f iJ.:::ethzr:an if 8Vcry subrr:oJule 
-(.s j':';!ite::lJ gcnero.ted. 

It follows, of course, that M itself is finitely generated. 
Since a ring can be viewed as module over itself, its submodules 
t2ing the ideals, (2.1) subsumes the following 

'2.2.2 Definition. Ji Ping R is Noethe1°i,-:.n if evPi'y 'Zdeal is 
-·-· ,. ; + C> l :;-;;:.ne 1'-,::;t nri" - -~v- ·;; uc· _,,... "'"• 

We sh<!l 1 fir"t prove some elementary properties of tioetherian 
modules, then show how they relate ta Ncetherian rings; we shall 
after~ards prove that a lot of the state modules we shall find in 
syster,1 theory fall into this category. 

"irst of all, there is a characterization avJilab1e for 
'ioi::!:heriar: modules. 

2. 1. 3 Theorem. A ;nodule M is !l0ctherian if, and only if, 
::::~q:1~: st~1·ict Zy {.ncrea.sing [.)equ.en~e Q .f .. su.brn<1clu 'Les 

:..£' .. f ~n.i te. 
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Procf. ~s s f':e fir'.O t of a 11 thJt r;1 ; c; Noe the ri a :i; thei1 
the sub<:1,.:dule ~; = 1) N. cf i1 1s finitei"' oellerated, and these 1 1 J ..> 

gen::rators 
llll of :--i. 

11:: ~ il orre of the !·L 's. whi eh is thert:fore equal to l -

Cc1'':c!·s·,i;, let n be a subr1odule of M, S the set of 
its fi:iite1_y ;er::o··ater1 submo'1ules; S is not empty, since it 
cent.Ji! s -~i.:·. L::t us show that it r.cs a maxillial element: 
ind22d, since S 1s non-empty, we car. choos2 <J. submodu1e N ·fn 

0 
S; if it is rot mFxir:iai, it is contained in a strictly 1a~·ger 
sui)module :;, , 1·.ni<:f·, is itself eittier maxi;11a1 or conU1ined in a 

' 
strict 1 y lar9et· subrnodu1e N,~· etc., ••• ; the: chain thus con- 4 
struct2d ~eir~ finite by 3Ssumption, 
::ie,•t. Sut -_,-,'s ~'.a>~imul element r:1ust 
we would add a~2~her generator of N 
a ·1 ar~::!' fi nit-= ly ge;iera t:ed submodul e 
i~1 S, hence fir,ite1y generated. 

s contains a maximal ele-
be N itself, for othE-rvli se 
to it, thereby constructin9 
of N. N is' therefore, 

This orcp~rty, very usefu1 in practice, is called the 
;.:;-~t""-,!..:::~;:~·=- .:-=:.~:-.,: ~~::J::l.-itior.. (or A.C.C.). 

2. 1 • 4 Le:.-.r.~a. :::<o :;u.?:?,c.!:1Zes c.nd quotier:!; mo,ii!~es o • .t' a !{(v::th.e~·
:;:~·>:d ?Z1>es l102t.he1-iian. 

Proof. He 1·e1ation il c M for submodules being transitive, 
the ca-se for sc;tm::lules follows directly f:or.i the definition of 
iloe:heria.11:c•dules (2.1.1). 

Let l = M/M, and L0 c L1 c... be a strictly increasing 

sequence cf s~~~-0dules of L; let M0 c M1 be a sequence 

o1 ~epresentative elements of the equivalence clesses in M 
(i.2., Li'"' i\/N); it ~5 strictly increasing. M being tloether1 

ia~ by ~ssu~otio", (2.1.3) im~lies that the sequence is finite. 
So tne orig~nal sequence {L.} is finite too, and L is 
Noetherian. 1 

·rhi s ienma has a converse: 

2. 1 • S Lerrna. 2:.t:;-:::;:;,-se z.Je lr1.aue thr>ee mo1.u les and module homomo:t'-

L q ·~ h " h ' . k h p·::.o~s ""1, ... 11 sue. r:;n2t. 1m g = er , 
c~1: :e.: ,:;,i e.::::le;:; se:;uencaj. 'i'hen if both L 
ian, 8-C -: s M. 

(we thus have what is 
an.d. f1 ar>e Noether-

Pi-oof. let L' = im g, tJ' = im h. (l.4) ·implies that L1 , 

iso~11t.irp!""!TC to a ouotie!'lt ~iodulr= of L, and N', being a sub
m0dule of ~. are both Noetherian. We can write an exact 



0 ... L I .... ~·i .... i'j I .... 0 

Let M' c M be a 5u~moJ~le of M; we must show th~t 
'·c, "i;:itely g2nerated. \le h.:iv2 ari e:<.:H.::: sequence 

'" ;'I 

.:·nd L' n r1' and M';M' n :.•, subr::ociL;lr:s respectively of L' 
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ii', are !·k:etherian; they are, thc;·r::~orP, fi,:itely generated, 
~u say :~.·1 and fn.l respectively·. 
~J - i . J . • Let 

x (! . ' 
. .} j J 
· n. ' in . J" 
~E:rr'lF.:-1 of 

x bf! an elemerit of r1'; its image in 
xj E R. lf {nj} Jcsignates a set of 

M', then the eleme.1t X. - f.xj nj of 

the Jrojection M' ... H'/M' n L'. 

M' /~·1' n L' is 
pre-images of 

M' is in the 

Since cne seq~ence 
t.i(:in :_ 1 11 t1' --)> M1 , so 

is exact, it is in th2 image of the inj.::c
x - ix. ri.:: 'Y c1., and J J "- i 

-
~ = Zy. £. + Zx. n. 

] I J J 

1s, therefore, generated by ui,iij}' \'ihich is a finite se:. 

2. 1 • ? i~oro 11 a ry_. A f-!,ni te di"'ect c:w:• oj' !i:Jet h<n'ian modules is 
.• ::..- .:1",-:· .. (,:,_,_;;:--..~ .. 

FrooF. It follows directly froffi (2.1.5) by induction on the 
r'ur;beTOf"direct summar.ds. 

~~2 are now in a pcs i ti on fo prove the important 

M 

Froof. It follows directly fro~ definition 2.1.l that a 
\:ier.heriai1 !'i'lojule is finitely genera~ed. C•)nversely. let M 
a ~in!tely ~e~erated module; we have an exact sequence 

be 

\·:he~2 F is the free R-module built on a set of generators of 
/:; ' is therefore a finitely genErai:ed free r:iociule over a 
:;:::i,:theriar. ring, henr.e, by (2.1.7), a Noetherian module. M, 
be1 9 a quotient of a Noetherian module, is itself Noetherian 
t; 2.1.4) (note that this also implies that ri is tloetherian, 
~e~ ~ finitely generated). 
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I!'l rarticular, the state module of a finite diinensional 
lir:·:>,.:ir system, bein<; firiitely grner•)ted, vlill be ~loetherian when
ever the ring i~ Noetherian. lt becomes now urg2nt to exhibit 
so::1:? '!oethr.riar rings, and to show that a large nu111ber of the 
rings we encounter in syste~-theoretic applicJtions fall indeed 
in that c~tegory. 

2.::-.·1 Q§finition. A ?Pi>;::Jipa.7, ;dr::.aZ ::,;0·nc~in (P.I.D.) is an 
::n :!..~;Paz rio··.-.·1i·i~ ::r~ '..Jhic;z eaeh iJeaZ is "J..."'l"in:Ji.EE!:_ I· .. {. e. is geneT'-.. 
:~t;;.~: l-:1 .:::: si:-::;Zr: ele""ent). 

Since ea~h ideal in a P.I.D. ha~ a s1ngie generator, a P.I.~ 
is an exa~p1e Jf a Noetherian ring; so ll, for example, is · 
Noetherian; and so is a field, of course. We can greatly enlarge 
tiie c1a::;s by using tne follow'ing: 

2. 2. 2 Hi 1 ber Lj3a. s i.?__ The_?_c.em. A ;:-::i Zynomial r>·ir:.2 in f7'.-hitely 
.'1a.1·~y :..tn~: ... zoz.J?'z.s ove1J a !.;oeth.:."'r~fa,z 21in.g is a.Zsv Noetl"APfan. 

Proof. Since R[x 1, .••• xn] ~ R[x1, ••• ,xn_1] [xn], it is 

clear by induction that we n22d on1y consider the case of polynom
i:i.1 riw:i in a single indHerrninate R[x]. 

Let be an idcjl in R[x], and Ai the set of leading 

coefficients of po 1ync:nia1 s of degree 
ideal, f,i is an ideal too; furthermore, 
so 

in I. Since is an 
f(x) E I~ xf(x) EI, 

A0 c Al c: ••• 

R being Noetherian, this sequence of ideals beco~es eventually 
constant; let A be the rnax~mal element fer this chain. By • 

n ~ 
a second application of the Noetherian assumption, we get that 
each A; is genei-c: ted by il finite set of generators {ai j}, 

leading coefficients of a set of polynomials {f .. } of degree 
lJ 

in I. 

Let us shcw that these polynomials 

consider an arbitrary polynomial g(x) 

I ' ffi 9tXJ = gmx + ••• + g1x + g0 

{f i j} 

in I: 

generate I • and 

We shall see th~t there exists a linear combination h(x) of 
the fii(x) such that 9(>.) - h(x) be of strictly 1m·1er degree 
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g~x). thereby estahlishinr; the desired i·esult by indu::tion: 
.t., is the maximal ideal in the chain, g EA«= A , so Since n m m n 

gm = l_: rj dnj 
J 

{ 
m-r,(}2r. f .(x)) 

x J nJ · 
h( x) - " ( -- £..., fj fmj x) 

if m > n 

othen~i se 

is of degrte m and has leadir.g coefficient g -m· 
.1inear combination over R[x] 

h(x) has strictly lowe~ degree. 

f f I '·I 0 the ijlXJ S, 

Thus 

and 

h(x) is 

g (x) -

Polyn~~ial rings over fields or over the inte~ers are there
to~·e :ioe theri .:in. 

2.3 On Duality_and2~Structure of_r·:odu_les O\'er Noetherian _Rings 

As a~ ex21·cise in maki;1g use of the ~;oether~an assumption, 
let :.is estab1 ish tv10 interesting re:-ults abot:t No2the1·ian modules. 
T~e f~rst one will be a struc~ure theorem analogous in spirit to 
rhe Jorcan-HBlder theorem ror groups (after all, groups are but 
~,2.ju]es over the Noetherian ring 71. !) The second will give us 
2~ inuoduction to du.;1ity theory us2ful for future lectures in 
s_1s t'=m th,;ory. 

2.3. l Theorem. Let. R be a Noethel'ia": r1:na and M a finitely 
~~·''''" r>c::ted S:;.wdu Ze. · '11ien. there: is ci sequ..ano~ of submodules 

0 = M0 c: 1'41 c ... c M 

41ir:.-,(z that fer eaoh i t.he module M./t\_ 1 is isomoriphfo to 
·'./pi• ~Jherie Pi is a pi>ime ·ideal of I<. 

Proof. Let S be the set of submodules of M for which 
··1e freo:.·er.i holds. \le can select out of S a sequence of 
:,tr~ctly increasing elcme1:ts 

Ey the Noet~erian assumpticn, such a sequence is necessarily 
;h~te and encs \'Jith a maxim~ element, say ~1. If M ~ M, 

r r 
:ner1 1·1e are clone. Otherv.iise, let us shm~ thnt N = M/Mr contains 

-'.! su~rc1odul e i so!ilorphi c to R/p fo~ some prime ideal p. 

This wil1 be achieved by a second use of the Noetherian 
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assumption. 3ut fi~st note tb~c for a mod~le t contain a sub
rnodul2 iso~orrni~ to R/p is cquivJlent to say ~1 l~at p is 
:1e '4nni bi 12 tc" of :;');;v? e1ei~1ent x of the r:ori.J r. (i. e., 
f" {r E: Rirx = o:;): ti:e map 

• ,__, rx 

v;hich sr:11cs ?. o.1to the cyclic submoduic: ge1;21·eted by x 
fr:r kt:rne1, henc2 r':at cyc1ic subn1odule is isor101·pr:ic t:o 
coirversel~', if tr.e mcrlule co::tains a co~y of R/p, tht:n 
the annihilator of its gsrlf:r'iltor. 

has 
R/p; 
p is 

p 

Let, th~refore. r be the family of i de.:< ls other th3n R e 
~hich annihilat2 ~~ements of N, and, once again, let I be a 
~,,,.\i1r·al ele1r.ent :..,f " Let us ~rove that is prime. Say x 
i~ the element in ~ annihilated by I; then, if ab EI . but 
b ~I, ox I O; any element in I Rnnihilates x, hence bx 
toe, sc contains the a.1 nihilator of bx and is equal to it, 
bein•:;: a rnaY.ima1 e1er.;ent in F. 3ut ao EI"-"> abx" 0: a anni-
~ilates bx, hence is in I. is therefore prime. 

We:: can 1101-1 rer,;rn to the rnain line C;f H.2 aryument: 
N ~ M:Mr cont~~n: a s0t~odulc iso~orµhic to R/p. which corre-

spends to a submorl~le N1 of M containing 
~!I ,'M 
" I 't be isomorph~c to R/p; the sequence 

0 = M c M c , . . c Ml' c: N I 
0 i 

~1 ond such that r 

~' th2refore a strict!y increas1ng sequence in S, contradicting 
tlit: :7:a x i 111a l i t y c f tl • 

r 

2.3.2 Definition. Thq d:A.a.7, t1 of a wdu~g 
1"s -:::tie S6t of rro:f.c...Z.e-l:omonoi'["h·z'.sms fi'Om M 

M avel" a l"ing 
into R. 

As lon~ as we 1irnit ourselves to free Modules over an inte
gral dorr.ain: the theory remains the same as that of vector-space 
duality: the dual of a finitely generated free module is a 
fi,1it2ly generated free .110dule of same rank, and the proofs are 
the same. \·iher. the module is not free any:nore, the issue, of 
course, bec~nes different; we however still h3ve: 

2. 3. 3 Theorem. Ler; R be c. Noethervz'.an integral domain, M a 
fi:;{:;e;Zy Jene1'Li:;e,i R-mcdidg. Th,:;n M* {.s finitC3Zy generated as 
L-::'>; R-r,odu Za tco. 

Proof. 11, bc:ir,g finitely genercited, is a quotient of a 
fin;i:e1vaenerateJ fre>t.: rr;odule L. But Hem (·,R) is a contra
variant left exact f~nc~or. Hence 
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L ~ ~ ~ 0 • 0 ~ M* ~ L* 

i~J ~* i~ a sub-module of a finitely generated free module. 
1:: ;;:;·;01·1-: froJT. the tJcctherian assumption 2nd (2.-1.8) that M* 
::; .:: :i:etherian module, hence finitely gi::nei·ated. 
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p_e_f_i_il i t i u r.. '1.'f'-..e f2'u. Z Z d·'i.:':!.:::.?~-si c>~ o J~ '2 -Ping R 7..S the !R.ngth 
r. :: ::t.~ ~-t"ni~~:c·s t, cfiai n 

R 

2.3.:1 pefini~i_or. Let R bs a fi;:ir.c1.l! Jer:.e1"-~:::e~:l ~iZ~;ebY'a ove~ 
: ~-:.~.,;, k (i.e., a: q~<c.-;tier..t o./" a poldn.Jr~;·i~Z .i"ai:na ol'er kJ, 

.. ~~::~:..";i: ~a ·i~se7 .. -.. ~v: -::11.'t..i:a(r!.,~i! .:io ..... '7u.in. Let K ~e ·t;~ q~!ctier:t 
... i ..... ..:.. ~ .. ;:t::i-: t:irs -::11.:.&.ns.-::~~1t:..fc1'!ce?. ·d-ao~ee o . .r R -Z.J tne di.menci.on oj 

-~ .;.:.~ .... ::.::-:~·:;011 -spa..;e c:;cp k. 

!_.qt M [Jg a.n ~-'710,~;-~;.;;. f.'e ah.:::.ZZ s-:1.y that 
e:cist3 c pr(\}r?.(:;t. i ~'8 r..;so ?-iAtt~Qn. o . .f M 

o~? ~ .•. -~P,~P ~M~o n , o 

3y a projective module is meant a module P 1-1hich is corn-

~1crncnted in a free module, i.e., one for wnich there exists a 
'Pn c.i:1ng 

~.1 ""' p El Q 

ere ;.~ is free. Note that a module i:; j)l'Ojectivr: if, and only 
, . , it may be rea 1 i zed as the image of a projection operator 

M ~ p 

cef1r.ed on a free rnouule. 
:··,r.itely g2nE:ratr::d, then 
J~1~, frei::. 

One can check that if P is itself 
M may be taken to be finitely generated 

2.~.7 Theorem. In the ea:ae cf polynomial T'ings Mera fieZ.d, 
<: :;;z~'='"' Yi::>t-Zuns of' dimension -:ire equivalent. 

~e,erk. In particular, a polynomial ring has finite Krull dimen
sT(\i,~ f-l"Jwever, Ne9ata has given an e:,ample of a Noctherian ring 
;·~t~1 :r,fir.it2 Krui! dir.1ensior.. 
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les Gver a Principal l_deal Domain 

he ring not OPly is Noetherian but is a P.I.D., the~ 
3..J' even mrJre about the generators of .:i. submod•1le: 

~· Everr, submo:!.uZe of a .~'1.'.1i.~te;~1' ~-:e1::J1•ated f1•ee 
:;::.,a ·P.I.D. R ie a fr'ae R-rnodule. (-;:Ju,. J ... inite?.y gen
s:i."'1::t<-on is nc-t 11eces.;:;1i'1:' but makes t:z2 proof sh?T'ter>). 

J: :..et l be a fre~ 1nociule, {e;} a basis for L, I • 

corresponding coordinate functions. Let M be a sub-
L. The image of M in R by projectit)n P; is an 

n which is pri ncipa 1 '"" by assumptio1, say Ra;. Let 
41 

element of M such that p. (m.) - ai (if a; -- 0 take 

us ShO\'/ thctt 
.a. let fn I 
l l 

rdinate, hence 

.hermore, the 

l l 

{mi} generates M: 

I:ri'·';; then m - 01 1 

is o. 
lm.}'s are free: . l 

if m E M 

projects 

2:r.m. = 0 => p. (Lr.m.) ·= 0 => r.a. = 0, Vi 
11 l 11 11 

and 
to 0 on 

is different from 0 for m. t- 0, 
l 

i t f o li ows that 

!fini ti on. An e Zement m t 0 in M -:,s said to have • 
:f th~T'e e:rists r 1- 0 in R such that rm = O. If no• 
:.n M has toP.sirm, then 11 is aaZled torsion-fraee. 

~- A _finitely genarated fopsion-Pree module M oveP 
·uZ domain R .can be embeddeC. in a finitely gener>ated 
-1.l.e, 

Jf, Let K be the quotient field of R, and let 
:i. 0 } be generators of M. Let {b1, ••• ,bx) be a basis 

vector space M 0 R. K over K. Then 

a 1. = .L;(r .. /s .. )b. r .. ,s .. E R 
1J 1J J lJ lJ 

be a corr.ion Flulti p 1 e of the Then 



"· .... ,, 
li·;e:rlv ind 1'~ende11t over 
c:,n':J ns M. 

F?\ .. ~: 12,: --"~\·:::.::ez~~ ... :~;:_,,~e:·.-:~·,._',.~ ~- P~Ji d:- .... ~-ic P\1 .. P:.1J.e 
·~ ... .,.f."'1~ct:~. 

f.-:,•~f_. TI-:'.~ is a direct cr-n::.;·y~ience of 2.4.3) ::rnd \2.4.1). 

TnE= tini~t?1y 0er.P~"'JtPd ;-~s~~:,.~in;Jtion ;'.l (f't.~·..:ia1. lPJeed, 
:---~- ~" A ~ en t 

.~ n.;t fn~e. 
field V. rif R is .:i tJrsion fret; R-r.1ojule, but 

T~~ struct:.Are tt~eor~m ·se (·Stab1 ist1ed for ~Joet.herian rings 
" 1 5\.' ':akcs c mJre ;;o,..s!'ful form: 

~ .. .:J: R be '" !:._r.;..'"':. _ f;er: t:;··:~J _~":\;~·'#;r.::~y ,7(:.?:~Pated 
R :.s -:.s ...: :: ... - 1::.: d :~r~~-'!·,; Si<..~~ ,J.i ..... .i:;i<.b-rriJJ~1.Z.es 

Tr;e str·JCt:l~e thesrer:i for fini-cely-gerierated 1rodule<; over a 
C'.I.2. ~:: ·;e··y rcwcrf.;1 in stur1yi11~ tr.e algsbril of linear maps 
~''-1, Gf .:o~rse, linear syst:e1;1s Jefin ... :ri on 51.:ch rrod11les. Suppose~ 
• ~·.- E:, that~~= 1vish to study the linear systefll 

x(t+l) Ax(t) + Bu(t) 

Cx(t) y( t) 

e:~en: 'J E Er.i) y E ll(p), x E. M 
~,,;p~· ll. Of course, (A,8,C) 1vc 
'.c (2.4.7) i~ o~servable, then M 

.•• r-'ervaoility implies that r1 m<':y 
~s2rvations, ir the direct sum 

?l (p) 
.<P, 1:: 

(2.4.7) 

a finitely-generated module 
c;ssurn2d to be ZZ-lir.ear n1aps. 
is necessarily free. For, 
be i~bedded, by s0ccessive 

~--.. j, ti1erefore, has no non-.zero torsion eler.1ents. 

As c. si::cor.d i'!iustration, ccinsider an R-lineilr map 

2 ~hich is a orojection, i.e. P = P. If R is a field, then it 
is a si9,;i"icant f.:ict in :inear aigebra that one 1r.ay choose a 

' I ;si·s o"', "', \n., i-.. , • "' P , ' t t th. ~ " so Lat tne ~alnx O• ', 1,1tn respec o lS 
asi:;, nas orh1 i's and t)'s on the d1-:,,or.:il anc 8's elsew:1ere. 
•,is i::; r:nt tri.;e for all R, b:.it ~'le '.:an g~J'2 a proof if R is 
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a P.I.O. For, consider M == P(R(n}} c: R{n) it is finitely gen

erated, as the image of R(n), and has no torslon, so M must 
be free and one can choose a basis: 

over "R 

Fcrti.;nately, one can actually extend this basis, since the s?J.me 
staterr.ents a?"P. va 1 id for N = i1na~e ( I-P) and N n r1 = (O}, 
N + M = R(n). 

This basi: result is c.lso true for polynomial rings over a 4 
field but is a ;nucn deeper result ti1an one might ffrst suspect--
it used to be known as the Serre conjecture, ~nd has been proven 
bj· Quillen and Suslin. 

As a final observation, we suppose given a R-linear map 

T: R(n) -+ R(i) 

ard ask whether T is injective. Passing to the fraction field 
K of R, one has an extended K-1inear map 

TK: R(n) ®R K-+ R(~) ®R K 

TK: K(n)-+ K(R.) 

or simply 

a K-l~neJ.r map of K-vector spaces, v1here the question is answered 
qt;ite .~c:sily. Since a nor1-zero e1e1nent of t1 is zero in M ®R K 

or-ly if it is .1 torsion elefllent, for a map of free modules over a 
F.I.D., T is injective if, and only if, TK is injective. 4 
2.4.S ~xamp1~. Consider T: "l1.-+ "l1., T(z) = 2z. Then 
T: ~ ~ ~ is both injective and surjective, while T itself is 
only injective. 
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-:"Us sect-:t)ri chsc•155r,5 fi:-$.t so:~~ of the elements of the 
c"t~:.,:·:, ('..: d;ff-?r.:=n:iat··1e Ci,rnifolds, thC:r~ (!i:,c:..:sses th?.t powerful 
t:;J·, "~z..1·titio;1S of unit/ and then pr'OCC:Pds to sa.:.: ,3 few things 
.:::::-·:.;~. '-''='·-~'._.:;r bundles. One p,wticul.;r family of 1~;lir.ifclds, the · 
~,..:o;'i·::-;rcri ::.(1;1ifolrls, have pr·oved t·.:. bi: very important in linear 
s::st.c;;;-. V'eory and one parcicular vector bundle over the manifolds 
::r.j--:iys a similar status. The li:st ~:.·;J alno~t telegraphic ~ubsec
:~:ns are intended to indicate that t~is pnero~enon is not pe:u
'i:lr LO syst.-?rn theory: th:2S'2 m.:inifolds and t:undles play an 
€c:..;21ly d·is~inguished role in c~:e 9en~ral theory of vector bundles 

ll·:se1f, a feH 1·1hL.:h may ne~p to understana the re.le they play 
,n system theory. 

There are many books and and le:t~r! notes in which the 
t>.eO!")' of 'f,anifolds and vect.::ir bundl2s is clearly explained. 
<itr:: o~ the present 1·iriter's favoritt::s are: 

~1. F. Atiyah, r'.-~l:.z:!'~:. Harvard Lecture Motes, Fa11 
1964. ( Pt.:b l i shed by Benjamin) 

5. Helgaso!l, D·if;'eP.mtic.Z .~·:c"1.;ti'~1, Ur? 1ro:1ps and 
S!J:nwlria sp:::.aes, Acad. Pr .• 1978. (on press) 

F .. Hir~ebruch, .fnt'f'od:i.cticn to t:1,e theor:1 ot' t 1eato1• 
i.nmd'les and R-t.heorb, Lectures at the University 
of Ar:1s terdam and Bonn. University of Alr.s terda111, 
1965. 

D. Husemol1er, p7'bre bundler,, McGraw-Hill, 1966. 

J. \i. r1i l nor, ,J. D. Stas heff, Chca•.:wte'f'i s ;;·~a 
Princet0n University Press, 1974. 

clo.sees, 

111,ihe last one 
introductory 

named :s especially recor.imencted. 
1 ev"= l reccrnmcnded 

Finally at a more 

L. Auslander, R. E. ~1acKenzie, ~ntr>o..·:z.tatio•: to d~ffer
t?11.t-Z.at7..e manifoi..is, Dover (repi·int) 1977. 

J.1 Differentiable Manifolds 

.:: .. 1.1 Definition (Differentiable maps). Let U c'Rrn and 
'.':::: Pn be upen subsets. A mapping r.: U ~ V is differentiable 
~f t~e coordinates yi{O(x)) of ~(x) are dlffe~entiahle func-

. f ( · ) 11 y,m · l LJere a function ccns ·o x" ;( 1, ••• ,x E Jc•· , 1 = , ••• ,n. r 
m 

is said to be differentiable if all parti31 derivatives of all 
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ordo:r-:. exist and are rnr.tinu0us. Th.:-: diffei·entiat;le l'lapping cp _, 
if ~t is l-1, nr~t::i end if cp • is a1sc' diffcrer.tiable. 

j, :.2 L.:e+·initior; (er.arts). Let M be c. riausdcrff t0i:;ol:;gical 
s~;:i.::e. -~\n-~-~2,,; ~::;z,a·~ on r-'. is a oair {LI,;,) ccns~sti11g of an 
G,0 en subsei: U of M an::: a h·:•rn0ornorpn·;sm if of 1J c,nto scne 

or:ii::n s:_1bset o'. an Rm; th-: number m i 3 called the di·12nsion 
of tht2 chart. 

3.;.1 Llefinition(Differentiable1r.anif01ds). Let M bea 
ri:: ~;::lorf f spacC .I!.. i:i:.-·:·.?.:·n;t:·::,~bZ.e s:-2>:1..:.~::i·c on M consists of •. · 
a collection cf cpen charts (u 1 .~ 1 ), i E I such that the 

following conditions arc satisfied 

U U1. = M 
i I 

for a 11 i ,j E 

(3.1.4) 

, 
the 111appi ng i>- • <ti~':<ti.(U. n U.) .... 

J 1 1 1 J 

is a diffeornorphisrn. (3.l.5) 

The coliection (U.,4,_), i E: I is maximal with 
1 1 

respect tu properties (3.l.4) and (3.l.5) (3.1.6) 

:.. :.:·.-~-'e1'e'<ri- .. io:q r;~;z:._"'c7,}. is a Hausdorff tc•pological space 
tcgether with a diff~renti~b1e structure. 

Locally it is ju~t like Rn, but globally 1ot. The charts 
p·21·rnit us to do (locaily) r:alrnlus anc! analysis as usual. It i.s 
pc.ssi'.:>1e that one and tne sar,,e topological space admits severa~ 
inequivalent differe~Liable structures where inequivalent means 
"rion diffeG'TlOr!lhic"--a notion which is defined below in 3.2. 

If M is connEcted as a topological space, all the charts 
(U~.~~) necessarily have the s~me diraension which is then also 

' ' 
(by definition) the di~ension of the differentiable manifold M. 

Often a differentiable structure is defined by giving a 
C::)ilection 0f charts (U .• ~.) such that only (3. l.4) and (3.1.5) 

l 1 

are satisfied. Then there is a unique larger collection of 
c~arts such that also (3.1.6) holds. (Easy exercise.) 

3.1.7 Example: The circle. Consider the subset of ~2 defined 
by 
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(3. 1.8} 

t.eL u. 
I 

. ~ 11 
i_ X f ":> IX f (0,--1)}, f c l I ·,xE.:-;x I (0,1)}. 

Rl . 

b . ( I Xl 0 u -> ~ 1 
Y ~l xl ,xz' "' r-;-x-z an <Pz : 2 

These are both nomeornorphisms. The 

ii;verse of (~l is given bj the formula X>-> (x1,x2) with 

2x l - x 2 
= and the inverse of by the x l 

2 l- ' ' X2 --z- . lj)2 very 
X · I 1 + x 

is given 
-1 by x -+ x and h2nce is a diffeomorphism, so 

do indeed define a differentiable and 

s 1 • 

3.1. 9 Trivial Example: Fn It:se1f. Let M = Fn and define a 

cha:t (U,qi) by U = M =l<n, 'P =identity r.iap:U->Fn. This 
one e!~c.ent collection of charts satisfies, of cour'se, (3.l.4) 
aid (3.1.5), and hence defines a differentiable structure on R". 
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3. l. lG C:)nStructinq ';'ff,-.r,-:r1ti.Jr12 r;·0nifo'tds l. £r11b::dded 1riani-
fo 1 J,;. 7,~~~xiii:'.ple~<,t~;::-c:--ilTCJ_, f,:-a-C-e_s_o_n_e--1.Jay in ~:i11CrlaTfte-r:-
E;~riTL;b-11? r:anifo1ds tifi::en <.rise. f·iarnel_v the topolo:ic~l sp.1c2 M 

·is given c;s a ":,!~'!Doth" s 1Ji.1:;et of sone 1.Rn and ti:e tii'."ferer.tiable 

structure is induced fron th~ natJr~l differenti~hle structure of 

Fn. Indeed, apart from a factor 2 the maps 61 and ~ 2 of 
exa:nple 3.1.7 above arise by projecting the circle frc111 (0,-1) 

onto the 1 i ne x2 = 
(0,1) onto the line 

? 
in l<'- and by projectin9 the circle from 

. ·o2 • ~2 = in n • ·. 

Abstractly a smooth1J en·b2dded diffr:rc:ntiable mar.·i fold of 
d~n.ension m is a subset Mc: lRn \for some n) such that for 

each x E '1 ther2 is a di7ferentiable map ~:V -.-Rn defined on 

some open subset V c~m such that 

·jJ maps V hor.1eor•;c·rohicaily onto some 

open nei ghborho:Jd U of x (' ~~. M ) 

for e3ch y E ·: the rr.atri x ~-(y) , 
Jj'j 

=l, ••. ,n, j=l,. . .,m has rank m. 

(3.1.li) 

(3.l.12) 

It is not difficult to prove (using th~ implicit function 

thecre~) that the pairs (U,~-l) for varying x now define a 
differentiable structure on M; i.e., that these ~airs consti
tute a col1ectie;n of charts 1.vhich satisf.J' (3.1.4) (3.1.5). 
lr:versely it is a treot'Ci'l (l·ihitney) that every differentiable 
manifold with J countable basis arises in this way (up to diffeo-
morphi sm). e 
3.1.13 Constructin_g_diffe:rentiab1emilnHolds 2. Gluini. 
A secor;d-"';ery-rre~uently used-rr.e':TiOd ot o5tc~Tr,ing adlf, erentiable 
m,:i'1ifol•J ~s by a gluing procedure. Suppose that we have for each 
i in some index set I (oft~n a finite set) some open set 

u. c~~. Suppose moreover that for 

are defined open subsets u .. cu. 
1 J l 

morphism 1J .• : U .. ~ U... Suppose 
1J lJ j1 

compatibility conditions held 

each i ,j E I, i f j, there 

and Uji c Uj and a diffeo

rnore over that the following 

u .. = u., 
11 1 

4 .. = identity for all 
1 1 

E I 

and for all i ,j,k E I 
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. - j ( . . 
U .. n i.°'· . 1 1J.kJ c U"k 

1 J 1 .J J. I . 
and on 

u i .i n :t i ~ ( u .i k ) • 

.. l ) 
(3.l,14) 

( •: o t e t ha t t !i i s i 111p 1 i r:: s t h:: t ti . . = :t . . • The r. w2 d 2 f i n e a 
. lJ Jl 

·.0::ioi•Jgical space t1 by taking the disjoint ur.ion U!U; and 

~t:i:.:r, i(j2ntifying x EU. with y CU iff y = cµ .. (x), 
1 J 1 J 

x E 1_: .. , y E UJ. 1 .• lj 

(3.·'.li+). Let ~-1 

4'·~2tiPnt topology, 
j us t d c fi n ed . 

Ti:is is 2n equi 1.1alence relatior. because o·f 

be the topological space U!~./- with the 
1 

where ~ denotes the equivalence relation 

!.et s.: U. ->U!U. -+U!U./N be the obvious map. Supf'\ose 
'1 1 1 1 ~ 

i:ha~ M is f:ousdorf-:" (this is not. automatically t~e case), then 
the (Ui.~i) are a collection of charts satisfying (3.l.4) and 

(3.1.5) so that they define~ differentiable structure en M. 

~'. ~ .15 f!_?_!:'.f'..le: re:il n-dimensiuna_J..EJj~s;tiv~_~ce, Let 

I = \C•,l, ••. ,n} and for each i EI let U; = R 1!, and for each 

i E I let <J. 1. : u .. 1 _, 1-\n+l be the t:moeddinq a. (x 1, •• ,x ) = 
- l n 

r i " 1 x x ' L l <> l t" ·d . · t f ·IRn t 1 by 1,',, ••• ,r..,,; 1.1 , .•• , 1. ai .. ,,proor .. 1ndeso 
, 1 . n ' . n+ l 

0,1, ••• ,n. Thus ~.J..(U.)-= ty= ~'./ , ••• ,y ~ E'R' IY· = l}. 
i i o n· 1 

' ... - I 4 . d d .c· U -lv ' V Le-:: i,1 \: , r J an e.1ne .. as v. ... wnere .. = 
: " .- n+ l , . - '. J _, , J . , - , J 
,;, c. 'R IY· - l, y. t O}, and define cp ••• U .. -+ u .. a::. the 

1 j lJ 1J J 1 

· -1 V 'V . J f" d b 9ompos1te aj • i;,ij • 1P;, 1·1here 1j,1j: ij _,. ji is re 1112 y 

t:ij(y0 , ••• ,yn) (yj 1y0 , ••• ,yj1yn). (Note that indeed 

;·~/V 1.J.) = V .. , so that rp • . (U .. ) "'U ..• 
- Jl 1J lJ Jl 

The compatibility conditions (3.1.14) holJ and the topologt
~~l space M is Hausdorff. Thus then gluing data define a 
1:1;:-;,~,·entiable r.1anifo~d v1hich is denoted 1i- 11 (iR) and called real 
r-dinE~sional projective space. 

Consider the differ·entiable manifold X = "Rn+\{O}. For 

each y EI, y = (y0 , ••. ,yn) choose an such that Y; ~ O. 

i~:N define Tr:X -d'"CR) by assigning to y the i::quivalence 
. -1 -1 -1 -1 -1) 

c:.~ss of ~i (yoyi , •• ..,yi-lyi ,:,yi·r<1Yi ,. • .,y1/i . Note that 
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~(v) does nut depe~d on the choice of i. It is now an easy 
cx~~cise to c~eck thftt J(y) = n(y:) if and only if there is an 
.\ f 0 such that Yj = \y i, i = 0, ••. ,n. Thl!s, the const,..uction 
above ~efines as a d~fferentiable Manifold ~tructure on the 5et 
of all 1ines through the origin of Rn+l. 

3. 1.16 Grassmanr:i_ mar.i folds_. Let l s k < n, k ,n El~. Then '9k,n 
is by defir1ition tr:e s~t of all k-di~11Gnsionai subspaces of Rn. 
This set can be given a diffc~entiable manifold structure ln a 
~anner rather similar to the one ~sed above in (3.l.15). For 
explicit ~etails see section 4 of this chapter. 

3.1.17 Morphisms of ri<inifoljs: diff£_:.ent:!_9bleI'..2.F:Qi~gs. Let 
.:11d N be t1"0 diff2rent·iaoie manifolds. Let (Ui,.pi' and 

(';.i, 1;1j) be collections of charts for r1 an-:! tl respectively 
such that (3.1.4) and {3.1.5) hold. A map •!·: M--. tl is a 
,._,i•;-h-:srrr c.~· d~f_f'e;re:r..t-!..1ble ncmijoZ.ds or a .liff'€;•entiabte 
""~'!'··;·:;i;:J if for all i EI, j E J the map 

-1 _, 
4lj • ~ • ~i :·~i(Ui fl <P '(Vj)--. o/Vj) 

is a differentiable m~p in the sense of 3.1.l above. A differen
tiable napping ~ which is 1-1 and cnto and such that •-1 is 
also a c'lifferentiable mappin'] is r:alied a dif;'e,?710P~hism. 

3.1.1!'.l Exan~. Gi'le X = 'Rn+\{O} the differentiable st.ruc• 
tu:-e defined by the one element collection of charts U = X, _ 
.: = identity. Then 11: X -+lPn('R) as defined in example 3.1.15 
abo'le is a differenti2ble mapping. 

3.1.19. Differentiable map an-9_g_luing data. Supoose the two 
differentiabie manifolds M and N ha'le been obtained by meanse 
of the proc~dure discussed above in 3.1.13 from the local pieces 
ll; and patching data 1··. (resp. local pieces Vk and patching 

. 1.1 
data ~k 1 ). Then a frequently used method of specifying a differ-
entiable m.:;p a: M--. N is as follows. For each i and k let 
there be given an open sub~~t Uik c u1 and a differentiable map 
(in the sense of 3.1.1) 

u u.k = u. 
k 1 1 

Suprose that the following compatibility condition holds where 
aµpropd ate 

a.~ • $ .. 
J"' . 1 J (3.l.20) 



i ,e. if n E U1.k and y f U. 0 and qi .. (n) = y, then 
J '· 1 J 

-:-:ik. (n) E \'~, aj 9_(y) E V2 :ir.d iµk:::.(aik(n)) = uj.1:. Ud. Then the 
'ii<: cor18ine to define a differe1Uable mc.p :::. : M .... N as is 

ec.s j ly checked. 

. ? 
o; : u1 = R .... lR-, ·· 1 

P 1(f<) as defined in 3.l.15 
as follows 2 

r 2x 1 - x ] 

xo .... l~~ +o l • x~ ;;-

x .... (1 x~~i ' • ? 
I l/+1 x-+1 

l 2 l 

Recall that u10 = {x0 E ~lx0 t O}, 

tnat the gluing map qi10 is given by 

cn2ck that on u10 

u01 = {x 1 E Rix1 1 O} and 

-l m10(x0 ) x0 • And we 

( zx·· l -2 1' 
-1 x - I aocJi-10( xo) 

I 0 0 
ao(xo ) 1--- -:::.-2-

ix -2 + l .)(0 + 1 J l 0 

= [- 2x0 ' ~x~] = a (x ) 
l + x- ' l + x2 1 0 

0 0 

so that the comoatibility condition (3.1.20) is fulfilled. and 
•the 0; ,c,1 do indeed combine to define a differenti 3.b1e map 
• Q_ 2 1 l 2 

::ir: 1P'(x) -+'R. Note that o.(P (lR)) = S o: {(x1 ,x 2) E"R ! 
x~ + x~ = l}. The map a is also 1-1 and surjective onto s1 

·~nd the inverse map o.-l: s1 -+P1{R) is a!so differentiable~ 
T~us a induces a Jiffeomorph1srn of J>1 (TI) with the circle s1. 

2.1.22. Products. I.et M and N be differentiable manifolds 
of dirxnsion m"-and n respectively. Then the Cartesian product 
~.~ ''.~ has a natural differentiable structure defined as follOl'IS. 
Let (Ui '~;), i E I be a collection of open charts for M such 

thc:.t (3. l.4) and (3.1.5) hold; and let (V .,ijJ.). j E J be a . J J 
similar collection for N. Then the open sets Ui x Vj, i E I, 
j E J ccvu the top0logical space M><N and the maps <P; and 
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t;J. cornbi ne to def in~ a homeomorphi sm cp. x tj1. : U. x V. -i. 
J 1 J 1 J 

<:>i(U) x •Jij(Vj) '-=Rm x "Rn. This defines a collection of charts 

(Ui x Vj,<;ii x ljlj). i EI, j E ,J which satisfies (3.1.4) and 

(3.1.5) and hence de7ines a differentiable structure on 11 x N. 

If both M and N are embedded manifolds, cf. 3.1.10 abcv!, 
r s r s r+s . say, ~1 c"R, N c:R, then MxN clR xl{ :: R · is naturally 

again an embedded 1na1~ifold. 

If both M and N are obtained by a local pieces and gluin~ 
data construction M x N cari be described in a similar way. I:-id~~-4 
if (U. ,U .. ,q; .. ) describe M and ( 1/k,V 1, 0 ,1jJk9.) the manifold 1; 

1 1 J 1 J ~.... • 
tn.:n M N ~s described by the local pieces and gluing data 
{!Ji xVk, uij ;(Vu., <l\j XtjJkt). 

3.1.23. Example. F 1(R) xP1("R). According to the recipe above 

P1(R) x P1{R) is obtained by gluing together four local pieces 

u1 x v1 = R x R, u1 x V0 :: R x F, U0 x v1 "R x R, 

U xV ::RxR 
0 0 

by means of the following ·six diffeomorphsims (and their inverses) 
_1 

id x 1J>10: Ul :.. VlO ... Ul x VOl' (xo,yo) -+ (xo,yo,) 

cp 10 x id: u10 x v1 ... u01 x v1, (x0 ,y0 ) ... (x;1,y0 ) 

4>1ox$10:U10xV10 ... uOi xVOl' (xo,yo)-+(x~l,y~l) 
) ( -1 -1) 

<1>10 x tJ!o1 : ulO x vol ... uol x v10• <xo,yl ... xo ,y, 

<1>10 x id: UlO x VO ... UOl x VO' (xo,y1) ... (x~ 1,yl) 

idx~·10: UO x VlO ... UO x V01' (xl,yo) ... <x,,y~l) 

let us use this description to define a morphism a :J>1(R) x P1{R) 

-+ 1'3(R) as follows. Recall that lP\R) is built out of four 

pieces W; = R3, i :: 0,1,2,3; cf. 3. 1.15. We define a by 
means of the maps 
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Ct.1 : u, x v1 --. w3 , (xo,yo} .... (xoyc:,xo,yo) 

(l2 : u 1 x v0 .... w2 , {xo,yl) .... (xo,xoy1,y1) 

0.3: uo x v1 --. w1, ( x 1 ,y 0} .... (yo,xlyo,xl) 

-l4: uo x v .... w 
0 o' ( xl ,y 1) .... (yl ,xl ,xly1) 

It is nmv easy 
are satisfied . 

to check that the compatibility conditicns 3.1 .. 20 
For example that a 2·(id x ~10 ) ~ x32 • a 1 is 

• 1:.Jstrated by the diagram below {there x32 is the gluing 
diffeomorphism w32 .... w23 of 3.1.15 above and we use (for ccnven
irnce) the e:11bedding Wi -.F4 which we c:.lso used in 3.1.15). 

a. 
{xo,yo) ,...i ( \/o•xo,yo) ..... (xoyo,xo,yo,l) 

The morphism c:onstructed above in such painful detail is a very 
v:e1i knovm one. If we view i'n(lR) as the set of a11 lines through 
the origin in Rn+l, i.e. as equivalence classes of points in 

n+ l 1 1 
~ under the equivalence relation (x0 , ..• ,xn) - {x0 , ••. ,xn) 
if~ ~l I 0 such that x~ = ~xi' i = O, ••• ,n, then 

e: P 1(R) xR1(R) -.J>3(R) is induced by ((x0 ,x1),(y0 ,y1})-+ 

{x0y0 ,\,Y1 ,x1y0 ,x1y1 ) and from this the explicit local pieces 
de~cription above is easily deduced. 

3,1.24. Sutrnanifolds. let M be a differentiable manifold of
~imensio~ n. A subset N c M is a submanifold of dimension 
p -;;; n if ~here exists for every x E N an open chart 9: U-+ Rn 

such that ~(x) = 0 a~d the V = {x E U!*p+l(x) = ••• = 
cn(x) = O} together with the restriction of ~ to V (as a 
Gap to IRP) form a system of open C~iarts for N. The differen
tiable mJnifold N is said to be a l'CQul.ar> s;.1bT'1a•iifokl of M 
~7 for every x ~ M there is a U as above such that moreover 
V = N n U. (V as above). 
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An c:xarnp!e is s1 = {(x,x...,\lx~ + .. 2 = , , c n2 Th" · 
it:. l "2 '· r. lSlSJ. 

l--~91Jc1· ·r -11hm-n1"fo 1 d n:·x" -,· \ .'--.t .. "--'"cl '. \:- ,o:...: se: vove tris.1 This winding line 
\111u-1 irrat1or1al i:·inmng cn'.]1e) or, a '·rvu' is 2n "'·'ilc:ple nf a 
nonregular ~ub1;ia~~fold. (The torus ·1,_ 1s the differentiable 

manifold S x S. and P. can b<> sr:::r: a-; a S'Jbset of S l x S l 
( 2.;i l: 2T1 iat 

by mapping t to e , e ), ,:.._ irrational; note that the 
? 

in::i1;cec topoloci:; on R from thjs iriiecticn into TI.. is not the 
original topolog~' of R N c:: M ~~ ~1 re~ular s~brr,anifJld-the 
~ n1~uced topology on l~ is indee;.i original ;:opolu'J}' (belonging 
tc tile cifferentiab1e structure) of r·L 

3. l.25. Jl.nalvtic manifolds. Similarly t::1 differentiabl-2 mani- • 
fclds one can define .::.•'.J.Zytie m::.:z~fa!.ia by replacing evi:;rywhere 
differentiable niap by analytic rnao. Thus an a1alytic manifold 
is locally lil<e "Rm ar.ci ~he local coc-.rdinate transition mapping 

-1 
,;.ij • ;;,i , cf. 3.1.3, are analyt'ic, i.e. they admit (local1y) 

cor.vergent power series expansions. 

To define cor.yiZe::: "1c:n1'.fcZ::.s repiace 'R by a: evetvv<herc and 
require thilt the coordinilte transitinn map;)ings .p. • ~-:-1" are 
holon:orphic. J 1 

3.2. Partitions of unity 

A powerful and often used tool in differential topology are 
partitions of unity. 

3.?..l Some defir,itions and facts from general topolog_y. Recall 
tliat a co·Jering {U., i E I} of a topological space X is said 
to be locctlly finit~ if for every x E X there is an open neigh
bourho~d V containing x such tha~ t.Ji n V t_iti for only fi~~-
~any 1. Recall also tr.at a topolog1cal space is ?a~acompact ir 
every covering admits a locally fir.ite refinement. A space is 
•:0r>~'-1z if for all clos·ed A,B c X there are open U,V c X .su.::h 
that Ac U, B c V and U n V = ~. A locally compact Hausdorff 
space with countable base is paracompact and every pa raco1npact 
s oace ~ s norma 1. 

3.2.2. Co!lvention. l~e shall assume frorr r.ow on that every dif
f~rentiable manifold is paracompact. This is not automatically 
the case, though it is not easy to construct counterexample~. If 
'•1 is built up out of countably rnc:ny U; cF.fTl by a local pieces 

~nd oluing data procedure as in 3. 1.13 above it is automatically 
c;aracompact (by the remarks made above). Thus i:-iar,ifolds like 
sp~eres, projective space, Grassmannians are all paracanpact. 
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r1 be a. rn.r>a:::~"'P·:.r.ct d·-tfj,?-:-·e•;.z:i<_J1le rr.anifold 
be a loaa.i:)j .~·,.··:fte cp"'n co1.;pp·ing of M. 

Supp('.fl.) c U. 
l l 

"-fx'>O "i ' I -
for a 11 x E M 

l:r;i.(x) 
i l 

for all x E M 

(3.2.4) 

(3.2.~) 

(3.2.6) 

Here Supp(6) is the closure of the set of all x E M such 
t'-.at ~lx) t- 0. Note that in the suin (3.2.6) for all x there 
a;·::, o~. 1 y finiteiy man; s~ch that Gi;(x) f. 0 (be::::ause the 

covering is locally f~nite and because of (3.2.6)) so that this 
SL.'iil makes sense. 

3.3 Vect01·bundles 

2.3.1 Def·inition (reai '.'ecr:or bundles) •. l\n n··di11~nsional real 
ve..:tor ~ufidlc-over a to-po!ogical spc:ce !'. is a topolog:1cal space 
E tofJE::ther with a continuous map rr: E ..... X .(ca1led the projectfon 
on ;:) such that 

For each x f X, TI- 1(x) is (equ~rped \'lith J structure 
of) a real n~dimensional vector space (J.J. 2) 

For every x E X 
of x such that 
U x 'Rn, 

there is an open neigbbcrhood 
n-l(u) is isomorphic to 

u 

(3.3.3) 

where with this last phrase we mean that there is a homeomorphism 

~, : rr - l ( U) ..... U x Rn such that the fo 11 owing di a gram cornrnutes 

___ <P ___ _, 

id 

where Pi is the projection onto the first factor, and such 

t:hat moreover rjl: rr- 1{x) ..... {x} x Rn is an isoftlorphism of vector 
x f:: U, (Y.here, of course, {x} x1Rn is qiven the vectorsoace 
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stn;cture <:.nsrnr; frc:m identifyinc; {x} x lRn \';ith Rn in the 
obvious way). ~ 

The vectorso0ce 71-l(x) ~ E is called the fi~2~ uf the vec
tor t:.;.-1d le over x ari•.i is o ftcri ci.:: no i:ed c '-x. 

3.5.~ Examf'._]e (trivial bundle). E 
projecfron on-·the f-:rst v-ector-:- X x 'Rn 2.i. X, where n is 

2. 3.5 ~_xarnple_tTan,Jent bundl<: of s2). C 'd -2 ons1 er ~ = 
J ( , • I 2 2 .;.. 2 --_----------. -
ltx 1,x2 ,x 3)1x 1+x 2 x3 = 11 and ccns1der · s2 v .,,.,3 th b 1n ~ ~ , e su space 

c. defined h; • E (3.3.6) 

and dc;fi'le by (x,v) <-+ x. For each fixed x E E the 
- l ' ) set -;; tx = E 

x consists of all v satisfying the equation 

x1v1 + x2v2 ,. x3v3 = ~· Now give Ex the vectorspace structure of 

this sub:;p.1ce of ~. \-Je check that property (3.3.3} holds. Let 
•) 

xES .... ,thenat10astoneofthe x. is'fO, say, x1• Let 
2 1 ) l 

U = {x ES lx1 '} O}. ~hv'I define q,: U x ~ .... -+ 71- (X) by 

(x,(w1 ,\';2))..., (x,(-x1(x2 ,w1 +x3w2),w1w2)). This qi is an iso

morphism as required in (3.3.3). 

3.3.7 Homohlorphisms of vector bundles. Let n: E-+ X, n 1 :E 1 -+ X 
be t~~o vector bundi~s ovE:r X. A homomorphism of vector bundles 
is a conti;iuous map ::p: E-+ E' such that the following diagram 
comrnutes 

<j> 

E E' • 
~/· 

x 
anc such that the induced map <)ix : Ex -+ E~ are homornorphi sms of 

vector spaces. The homomorphism ::p is called an isomo1'phism if 
the maps E -.. E' are all isomorphisms. x x 

Thus, for exarnp1e, the map cti in (3.3.3) above is an iso
morphism of the vector bund 1 e n : n-1 ( U) -• U vJit h the bund 1 e 

p1 : ll x 'Rn ... U. A vector bundle which is isomoqihic to one as 

in example 3.3.4 is called trivial.. 
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.::.J.2 Co•1::;tructi~vectoi· bundles 1: 11:::al pieces a1~d q1uinq 
·- -~ ~l ope-l-'ty~-(3.3. 3) ShCJ\\ISt~ha·~ eve\:y--:;;-;,-C-i;D-;:--L)UJ)cre·r:·a.n- be -
~~:.-::.-61ned (u'.) to isomorphism) by g1uing tri•Jiai bund~2<> together. 
'.1; oetai~ this goes as follows. Let X be a topo109ical :;pace 
nd {Uij' i E ! a~ open (Overing of X. Su~pose we have for 

~acn i,j EI ~ continuous map 

G'-.: U- i1 u. __,. G9, CR) 
1 J I J n 

(3.3.9) 

~,·here Gr. CR) is the (Lie) group of all invertible reil~ n x n 
• .,.~~r" ces n ., '''-' .... l • 

~Je M'ti require the <t· - • 
lJ 

to be compatible in the following 

.:;,_ .(x) = I , t~1e n x n unit matrix for all n E:: U1. l 1 ri 

(3.3.10) 

qi, (x)t. .. (x) ,_ dJ.k(x) for a1l x E IJ 1. fl UJ. i1 Uk 
J K 1 J 1 

FrJm these data we can construct a vector bundle 
fo1lov1s. hl:e ti'?. disjc,int union U!U. x. Rn. Now 

1 
equivalence relation - as follows. The element 
is equiv;;i1ent to (y,\~) e U: x Rn if x == y in 

J 
~ij(x)v ~ w. Let E = U!Ui x Rn/- and let n be 
(x,v) __,. x. The local trivialization maps required 
given by U. ~ F" c u!U. x R"-+ E, and these also 

1 1 

E 

x 

over x 
define an 

(x,v) E u. 
1 

and 

induced by 

in (3.3.3) 
define the 

as 

x R11 

are 

vec-
• torspace structures on the fibres. 

3. 3. 1 2 ~.xa::i!.2J.E_. Consider lP 1 (R) as the set of a 11 lines through 
zero in ~2 • i.e. as the set of al~ ratios (x0 :x1), x0 ,x1 ER 

(x0 ,x1) i (0,0). Let U0 = {x f "P (R) jx0 "I O}, u1 = 

::xElPl("R)jx1 tO}. Cefine ,t01 :U0 nu1 ... Gi1(R) by qi(x0 :x 1) 

= xi~x~. Set ~ 10 = ~0 ~ and the compatibi1ity conditions (3.3.ll) 
hold. Let E be the resulting vector bundle. We claim that E 
is nontrivial. Indeed suppose E 

be an isomorphism :p: E -+F1("R) xR 

tions and hence there would be a map 
s(x' "' ,-1rx 1) which satisfies 

) \jJ ' ' 

were trivial, then there would 
compatible with the projec

s :F1("R)-+ E defined by 



;r • s == id { 3.3. i3) 

and \vhich is morec.,v 1:!r such th.:it s(x) ; 0 E Ex for all x. Now 

li0 = {(1:x1)ix1 CR;, u1 = {(x0 :l)lx0 CR}. From the construc

<:ior of E 11e kn0\'1 that a ma;:> s satisfying (3.3.13) is given 
bJ t1·J(, functions f 1 : x1 -+ f 2(x1). f 0 : "·o -• f 0 (;.; 0 ) such that 

-1 .. ,-1) more)V"=r x1 f 1 l x1) "' f 0 x1 . fer x1 t- 0. The requirement 

s{x)t-O vx r1eans t:1at fi(x;) 10 V'xi. Hence by continuity f 1(): 

has ~ne 5ame sign for al! x1 and f {x ) has the sar1e sign for 
11 To..,• ' • • Cbl Q • -1 I ) ( -1 a . x0 • ..is, 11owever, 1s rncomi:;at1 e 1'11th x1 f 1 ~x 1 = f 0 x1 i41 

A picture ~f this bundle is the so-called M6bius band 

e r l - f- -~ -'--./ __;------:? ' ~ 
' 

>--,,-\ 
-..1 · 1------- \- ·\ '- ' ' I , j • -..... ..... 1-1--f-.: ---

---). 

where ~ is the projection on the central circle. (The MHbius 
band is obtained by tdking a rectangular strip of paper twisting 
lt around once and gluing the ends together (as indicated be1owJ. 

t- ---------- - --r 
3.3.14 Linear constructions. Linear algebra or more precisely 
the category of finite dimensional vector spaces has many con
stn:nions which ass1gn a ne·11 vector space to a set cf one or more 
old vector spaces. Such a functor T is called continuous if the 
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2ssociatec! ma::i T: Horn(V,W)-. Hom(T(V),-f(i1)) is continuous,. 
,;nece f:.1 s~m;ilicity W:! have taken a ccvari::nt functor in one 
variable. ThEse construct~ons extend to constructions for vector 
:',;r;c!i•:s ~.y ,;ir:~:-1" perfonr:~r.g the co.1struction pofotv,rise for every 
~-il:Jrr-. ; nu::; qivsn two vector bundles E ,F over X one nas 
e.y. ;:;•e :1ew vector bundles 

E@ c:: the di r'0Ct sum of E and F ' , 

E 0 F, the tensor product of E and F 

Ho:i•( E, F), the: bundle over x where fibre over x • is Hofil(Ex,Fx) 

E*, the dual bundle over X whose fibre over x is 
Hom( Ex ,R) 

)i(E), the i-th exterior power of X 

~ sl~ilar re~~rk holds with respect to the n1tur~l isomorphisms 
uf l:r.or algebrd. So cn2 has e.g. Hom(E,F) "°' E* ®F. 

?.3.15 Sections. Let ~ be vector bundle over X. A continu
ous .;e(]tT-?•: of E is a continuous ma.p s: X-+ E such that 
~ • s = idX. The set of sections fonns a vector space (pointwise 
addition and scalar multiplication) which is denoted rE or 
1\E;X). 

In example 3.3.12 we showed t~at for 1every section s of 
the t10bius band bund1e there is an x E 1P (R) such that s(x) = 0 
chus proving that this b1;nd1e is nontrivial. (/1.. trivial bur.dle 
clearly has sections which are everywhere nonzero. Exercise: 
Let E be an n-dimensional vector bundle over X. S~ppose that 

--here are n continuous sections s 1, ••• ,sn such that 
s1(x), ••• ,sn(x) are linearly independent vectors in Ex for all 
x·E X. Prove that E is trivial.) 

It is worth noting that 
vector b0ndle homomorphisms 
~~erc~se: Prove this.) 

rHom(E,F} is the vector space or 
E-+ F (cf. 3.3.14 and 3.3.7; 

3.3:16 i::xan'ple. Tan.£.§:;_'lt ~t>nd1e of a·manifold. Let M be an 
rn-d1mension2l differentiable manifold. Ler-TU_i .<P), i E I be 

a collection of charts such that (3.1.4),(3.1.5) hold. We now 
cor.struct a bundle over M by the local pieces and patching 
d~t3 descriptions of 2.3 above. To this end define 

t- . : U. n U. -+ GX. (R) 
1 J 1 J n 
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by the formula 

?· .(x) = .T(·~- • qi-:" 1)($.(x)} 
l] J 1 l 

where the symbol on the right is the Jacobian matrix of the dif
feomorphi sm ~.; • •Pil evaluat<?d at ,p.(x). Note that the com
patibility conaition (3.3.11) follows from th8 chain rule. 

The fibre of this bundle over x EH is called the t~ngent 
space of M and x and is denoted T M. 

x 
The bundle i~self is denoted TH-+ M, or simply TM. We 4 

can view the \.;hole bundle TM-• M as obtained by a local p;eces 
and gluing data procedure as follows. 

Consider the open pieces ~CU;)• i EI (where the Ui are 
as above). tlm'I consider the pieces 

<;·.(U.)x"Rn, iEI 
1 1 

and we write an element of this set as a 2n-tuple 

(x1•···•xn,al, ••• ,an)T 

The total space TM of the tangent bundle of M is now obtained 
by glufog together the ·~(U.) x lRn by means of the iso111orphisms 

l 

1>;j: 'f;(U; n Uj) x 'Rn-+ <t>/U; n uj) x -Rn 

(x,a)-+ ((~. • ~J: 1 )(x), J($ 1. • ~: 1 )(x)(a)) 
l . l 

These identifications are compatible with the projections . 

$1{U;) x "Rn _., 4'; (Ui) , (x,a) -+ x • 

and thus the who1e bundle TM -+ M is described. 

Note that these considentions make it clear that TM is 
itself a differentiable manifold and that n: TM .... M is a differ
entiuJle map. We can thus speak of differentiable sections. 

3.3.17 Vector fields. Let TM .... H be the tangent bundle of a 
differentiable manifold M. A differentiable section (cf. 3.3.15 
above) of this bundle is called a vector field. 1n terms of local 
oieces ar~ gluing data such a se~tion thu~ is given by differen
tiable functions 
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a(i): q,.(U.)-+ Rn 
l 1 

(the local pieces of the sect~on are then given by ~-(U.)-+ 
1 1 

4-1 

~ i ( U i ) ': ~ n , x -> ( x , a ( i )( x ) ) • fhcn functions must then satisfy 

:~e compatibility condition 

~(~j • ~i 1 )(x)(a(i)(x)) = 

~ ~ ~r Derivations. Let A be an algebra over a field K. 
•-r~;,~- K ="R--c;r:[ if desired.) A de1•1'.vati~m of A is a K-

1rnear map 0: A-• A, such that D(fg) = f(Dg) + (Of)g • 

3.3.21 Vector fields as derivat~ons. Let M be a differentiable 
.,;:i:1i fol daridTer-sT~be-Tlie ri r.9-of d ifferer.-t:i able functio11s 
on M. Let s be a differentiable sc-c:ion of the tangent bundle 
n; .... M. ~le claim that s defines a oer'ivation of S(M). Indeed 
:~t s be given by the function s(i): ,p.(U.) -+'Rn. A differen-

1 1 
!iable function on M can be viewed as a collection of functions 
f ( i ) : 9 ( U i ) -> R , f ( i ) f ·,:pi 1 , s a t i sf yin g the c ompa t i b ii i ty 

c::;ndition 

~Jw define the collection of functions 
furrrula 

( .'{) ~ r·)') af(i) () <:•f(i) (")() g l J x = L.- s \ l \ x . --- x = --- s l x 
k=l k Cl>\ ::ix 

.here s(i)(x)k is the k-th component of column vector s(i)(x), 

df ( i) . r 3f (; ) ( , a f { i) ( ) 1 
J:<d ---ay- 1 s the row vector l axi x, , ••• , ax;;- x J. We now 

r.l~im that the g(i) 
l~~eed from (3.3.22) 

for (~j • ~; 1 )(x)) 

af(j) ( ,) 
Cly ) 

Therefore 

satisfy the compatibility condition (3.3.22). 
we find by the chain rule that (writing y 



•18 

g(j )(y) ~f(j) I \{ ) 
= -- ay'- S\J, S 

of( i) ( ) ·( -1) . ) = -~ x ~· 4'; • ":-j tY 

= g(i)(x) 

C. BYR!'iES ET AL. 

( .-1,.) (')(' J cf'j •'+"! JlX S 1, XJ 

because or(rp. • ~~ 1 )(y) .;(~. • 4>~ 1 )(x) = I and the compatibility 
1 J J 1 · n 

relation (3.3. 18). Inversely every dP-riv~tion defines a vector 
field. 

3.3.24 The lie bracket. Let o1,o2 be two derivations of an 

algebra ove1~ R (or ci.ny other- field). Then (a.s easily checked) e 
[01,02] = 0102 - 0201 

is again a derivation. Now let s1,s2 be vector fields on a 
differentiable manifold M, with corresponding derivations o 1 ,o~. . l 

Then the vector field corresponding to the derivation [c1,o2] is 

denoted by [s 1 ,s 2J is called the Lie bmc'i<.;:.t of the vector fields 
s1 and s2. The vector fiela [s 1,s2J can be calculated in 
terr.1s of local pieces as follows: Let s1 and s2 be given 
locally by the functions s2(i),s 1(i): cpi(U1) ... Rn. Then 

[s1,s2j is given by the functions 

a ( i) : i ( Ui ) Rn, 

a(i)(x) = (,rs 1(x)(x)s2(i)(x)) - (Js2(i)(x)s1(i)(x)) 

which in slightly less precise notation can be written 

3.3.26 Exercise. Check that the a(i) of (3.3.25) satisfy the 
compatib1Tit_y relation {3.3.18) and that the derivation operator 
defined by these a(i) according to (3.3.23) is indeed the deri
vation o1o2 - o2o1• 

• 

3.3.27 Constructi:ig hori~om0rphisms by local pieces and patching 
data. Let E and F be two vector bundles over a topological 
space X, both given in terms of local pieces and gluing data. 
Then often. a homomorphism E -+ F is easiest dE:scl"i bed in terms 
of local pieces too. Suppose for simplicity that the local pieces 
describing_ E ar.d F are with respect to the same covering U;. 



-.t . • : 1; . n u . .... G" CR '1· 1JJ . . • u n u . ·-> Gr, (R) 
· i J i J ·· n • ' J · i J 1n 

th20 a homomorphism a: E...,. F is unique described by a family 
of 1r:aps 

.eh that for al 1 1,j E: 

"' .. ( x) .l'.. ( x) ,. , J . 1 ~ 
(3.3.22) 

::;. 3.29 ~1-~trics. If V is a vector space, let O(v) be the vec
:cr s~1 ac·~;rar1 q~;adrCJ. tic for;-;1s on V. ·:his is an example of a 
::c1!tinucCJs fonc:or· in tf,e st:nse of 3.3.14 a:::.ove. Thus gi•1en a 
·;2ctoi· bw·1dlc E over X there is an ass,;ciated v0ctor bundle 
Q(E) whose fibre over x is the spdc~ Q(Ex) of all quadratic 
forms ·:in i:.- A r~e-:t•Z.1: on E is nO\'/ tl section s of Q( E) such Lx• 
that ~(x) is positive de~inite for ail x EX. 

In more down to earth tenns this means the following. Let 
E be built out of trivial pieces with respect to the covering 
U.. Let ,,, .. : U. n U . ...,. G::. (!R) b~ the nlui nq maps. Then a 

1 "'"lJ l J n · "' · 
metric on E consists of contiGuous maps 

p 
n 

s. : u ..... p 
1 1 n 

is the spar::e of all positive definite quadratic forr.1s 
such that 

1.'. . ( x) s . ( x) qi .. ( x) = s . ( x) 
Tlj J lJ 1 

(3.3.30} 

for a 11 x E: U. n U., where the upper T denotes "transpose." 
1 J 

It rema.ins to shcw that evr:ry vector bundle over suitable, 
say, oar~ccmpact or compact, spaces admits a metric. This goes 
as follows. Let the covering {Ui\ be locally finite and let 
t~·i} be a partition of unity with respect to {Ui}. For each 
i E: I crwose soro,e positive definite form Q. and define 

l 

_,p () _ "\:"'(• , )T)-1.;, (·)n,;, ( }-1 s. : u. . "' s. x - "-4 't'k · l x ' ·,,.,~ x '~k'' . x J J '' J k J " KJ 
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1'.!ote tll.:it ti1e E:-;.:r-?ssio•1 on the r ~•it hJ'id side as a convei-se 
1i n·.:a 1- <:t_1:.: ·j n :1 tier. c:f :ios iti ve def r, i te quaci:-a t i: forms is pos i-
t i ve .jefin t_c_j, ,':":-;::: nia~pings <;J .sfy tr1e cc~1pdibility condi-
t:ior. (3 . .i. u; .;nd rc.:r.ce d~fine a metric. 

3. 3. ) l _5_L~ t:_":iund ~~; a ri::l _'._-;•; o': i eQ_t__2'.:11_c_l_e_s~i_-5?_ ~:lj_c_e5..l_s_u_!!1Xr.a nds. Let 

E ~ X be a v<::ctor bt.:ndle. A s~,Z:;.'.-:•i:~~I.," is ~ s•Jbset F c: E such 
that the restriction of ~ to F mdkes F a vector bund~e ~nd 
suchthat F4E i<::ahomomorphisniofvectorbunales. If F~E 
is i:' sc1bbu11dle wt":':'::": consider the union u E /F \~ith the induced 

x x' x 
tooclog;. There is a natural proje:tion onto X defined by E IF x' x 
E: v .... :•. a11ci usir.; :he o]vious quotient 
on C: 1 F the r.::s•J1t ~s a vector bundle 

x' x 

vect:)r space structures • 
ovei- X which is called 

a ou::-:;,"c.;r;.-c 'h:.t~ .. :~~-~-c. ar·~ ~ s denoted E/F .. 

No\'1 1et F c::: be a subbundle. Let s be a metric on E. 
Fer each x E X let G = {v E: E l<v F > O} where <, >x 

)-'. X I ' X X 

denates the inner orodJct on E de:ined by s(x). Then uG 
x - n 

is a subvector bun~12 ~f E and E = Fa G so that every sub
bund1e ;s a dir-.;ct: SJ'.1i:1.J.nd. ;...nalocpusly ifo.: E-+ F is a hornomor-
chi:,m of vEcto1- bun~le:~. such ti1at C: -+ F is suriect~ve for all x x ~ 

x, then there ex~sts a vector bundle homcmorphism S: F __. E 
Sl .C;l ~~ ~t ~ " ·- i· rl 

I • t..11..:.i. 11 • ~ - UF• 

~.3.32 Finite 1ereration of vector bundles. 
2.n m-di nJCrJ". i C rl~ l If eC tor-m;nd 1 E-OVer·a COr.1pact 
{Uiii = (l, ••• ,n)} t..0 a finite open covering 

Let n : E --> X be 
space X. Let 
of X such that 

t 

be 

is trivial ovc:r all U.. Fer each 
-1 1 

rn sections of " (U.) __. U. such that for 
l 1 

let s .. : u. 
l J 1 
all x 

n-1(x) ver. turs s. _(x), u = : , •• .,m forr.i a basis for 
lJ 

No1-1 iet {$;} be a partition of unity with respect to 

we claim that the maps 

(defined by 

,µ. s .. , i E I, j = 1 , .•• ,m 
l l J 

~.s .. (x) = ~,.(x)s .. (x) 
1 1J 1 lJ 

if 

-· EI u. 
E U. 1 the 

l 
E • x ... 

U.. Then~ 
l 

if x ~ Ui) are cont~Puous sections and are such that for each 

x E: x th.:: 

thi:re is an 

' . \I ) t E \~isij''x genera e x· 
i such that qi. (x) -f 0 

0 10 

Ir.deed for each 

and then the 

Qi (x)<P; /x). u = 1, ... ,m generate Ex. 
0 0 

x E X 



51 
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I rtieeC .,.,-r: 
;:~:~re ~:>:ists ~ 

h3VE sefn a~ove thJt ~f E ~ X is a ve~tor bu~dle, 

-': x 

-Jrir:i J',Jrjecti ve 
3.~.21) 11so '' 

41 ~, r.i rp n• :.r..bc.r -.f sr._>.' j·1' ov,·,s r <; '··cr'1 t'ia'--- v - V ~ • ~ l • • • • >. r .>U I '.. 

siener"tf~ E x tcr all x. tlc'd clefi ne 

c,(x 1(a 1 , ••• ,2 )) 
' r 

• I ) T'-= La;S;\X. ·1en 

is a hor.i0111or;:ihis1n Jf vector t:un:~ies (exercise) 
rni:lkin'.j E a ouutient of X x -P' (anrl hence by 
direct su;n,,;and • 

• 2 .• 3. 31: Differentiable bundles. A differentiable vector bundle 
~s a ·.·r!~-torSurv:ile --:::-; E -::-r-such t:iat f:,X arP differentiable 
·~<;r;·; fo!ds and " is a di fferentiablc mapping. Jlnalytic b1rndles 
~r~ ~~fined si~ilarly. An ex~mple Gf a differentiable bundle 
is the tangent bundle TM - M of a differentiable Dani fold. 

3.3.3S l'ectcir b1;ndles and r•·ojcctive ,;1 11dules. Let M be a 
d; t f 2 "'2 niTable-l!~n i r r, 1 d:-1 r1en- --e;\~-'.T je rio t'e:; the l'i 119 of ci; -::-ttr
ent i a bi e funct-icns on M (µPinu·:isc: multiplication and addition). 
~:0\·1 i:::t E -• M be c: ci~ffc··entic:d .. 12 vector bund:e over M. Let 
'-;: M -· E be a ciffe»cnti;,blc see.cicL: :if !:: ilnd f E S(M). Hen 
rJr a·i ~ rn E M, f(:n)s(m1 E. E is »1211 defi~1er! a,1d this makes 

fTi 
th~ vector space of all differ~ntiable sections a module over the 
ring S{M). By 3.3.33 and 3.3.31 (or 1ather their di:f~ro~tiable 
anal0~ues (wh~ch also hold) then msdules are direct summand of 
free: mocuies (the mcdule of s•.:ctions of M xR'-+ t1 is, of course, 
S(i'i)r) and hence the:i modules are projective ;nodules. Thus giv
iPQ JS a correspondence between differentiable vector bundles 
over M and finitely yenerat2d projective modules over S(M). 

• Sirnnarly vector bundles over a suitai:Jle tooolJgical space 
X cor1·t:spond to f'i ni tely genE.rated project·i ve :;1odu1e:; over the 
riT1g of contint,;ous functions on X and in algebraic geom~try 
algebriac vEctor bundles over an af&ine variety Spec(R) cor
resaond to finitely generated pi·oJective r:iod1Jles over R. 

3. 3. 36 l~Eil.1 back construgi on~-- (Constructing vector bundles 
2). Let ": E""' X be a vectcir bundle anrl let f: Y-+ X -be a 
continuous mao. Consider 

E1 = {(e,y) E Y x Ejrr(e) = f(y)} 

Thei-e is a natural prnje;:tion n' : E' -• Y defined by n{e,y) y. 
fJr a fixed y E Y we have 

f(y)} = Ef(y) x {y} 
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1·1'°1ich vie 9i·1e the vectr.r sp.} e structur:o of E , , . Then 
- ' : f 1 .... Y is a '/ec tcr ~und e over Y v1hi eh 1 f V h I led the p~All
t:ac~ of E alon<J f a::d 1m eh is denoted f·E. 

I 
!n words f"E is the vector bundle over Y whose fibre 

c~er J E Y is the fibre of E over f(y). 

If E is obtained by patchino cogether local ~rivial pieces 
·-:,ver i.J., E I by rneans of gl u·; ng data 

l 

,:; . . : U . n U . ... G ;, tlR ) 
1 J i J m • 

t':2r. f!E ~s cbta~nqd by p'.ltching together trivial pieci::s over e 
~:i,c. open subsets f- 11L\), i EI by 111eans of the gluing data 

l , f qi •. 
f-· (U) n f- 1 (Uj) .... ui n uj .].J GQ.m(lR). 

Fn:i::1 both descri pt~ ons it 1 s obvious that if g : Z -.. Y is 
r:;r.cther continuc;us map ti'":~n 

(3.3.37) 

3.3.38 Su·:.jl!:__r~..:~-~'25.i·'.S_i_'.:2._VPr~ing_ct c_Q.~_tj~Ol!S_~· Let E--> M 
a:-,o ' .... r1 to t· .. ;o 'it:».: to1· bunrll es and let f : M ... U be a conti nu-
2~~~ ~.1-~p .. 
f:E_,.;: 

A t\mcl2 n:or~'hisrn co';e\·ing f is a condn~ous map 
such th.:it the fol10»1i119 diagram ~s commut.ative 

E 

I 

I 
+ 
M 

f 
F 

l 
f 

and such that the induced maps fx: Ex .... Ff(x) are homomorphisms • 
of vector spaces. There is an obvious 1-1 correspondence between 
bundle mor-;:ihis.r.s E ... -= covering f and homomorphisms of vector 
bundles over M from E to f!F. (Exercise) 

By ~ow it s~~~1~ be obvious how to describe a bundle morphism 
covering a concin~J~s map in terms of local pieces and gluing data 
(Exercise) 

3.3.39 .ExiJnple (J.\C,:"bi;:ins). Let M and N be differentiable 
manifolds of di~2ns~0r: m and n, f: M .... N a differentiable 
map. let (U. ,;. ; .::.-.: 0f. ,<Ji.) be coordinate charts for M and 

l l l 1 -1 
N c>nd suppose tliat "'(Ji) c Vi. Let f(i) == tJi; • f • 4·; 



. ( \1 ' -.c·n 
~ i y i J , ..... • 

Rt::ca!l (cf. 3. 3. '~) 

Define 

that the t11ngent bund1es 

together th2 ~ 1 (Ui) x l<m 

df( i) : ~,· (U 1.) :'Rm .... 1;. (V ) x ;:~n 
1 ' 1 

~Y the formula 

(x,v) 4 (f(i)(x),.~(i)(x)(v)) 

~~te th~t this is co~pat~b1e with the gluing data fnr TM and 
"'r; s0 that tf1e df(1) c.ornbine to define a Ji~fere;1tiabl~ map 

:Jf : TM ~ TN 

8t·ic:1 is (c!::lviousiy) .;, morphis'n 07 hundles c:ivering f. The 
induu:·d maps 

d f : T )1 _, T f ( ) N x " x 
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~sea~ l"'d the diffffer1tia1 of f at x E '·1. 
i..l1e1;is::: 1 ·12s ::..pE:o SJt>sets of l~ni dno Fn then 

If M and ~l are 
df : nm .... ·Rn is 

x 
<jiven lly the Jacobian >1iatrix of f at x. 

3.-~.-tO Subrnar.ifolds (2). Let M,N be differentiable rr:anifolds. 
i\ differcnt]ablernapping f: ~i 4 n is 1°Sf:'<7·.i· at x if dfx 

f~Js r::nk ciax(m,n). The manifold M i~ a subrnanifold of fl if 
:~c.: N set theoret1cally, dirP M :;; dim N and tl1E: inc1usion 
M ~ N is a regular differentia~le m~p. 

3.4 On Homotopy 

J.Ll.l Oefir.iticns. Two continuous ~aps f,g: X .... Y are called 
i;c:;otor::-a-11 the-re exists a continuous map F: X x [0,1]-+ Y 
such tnat F(x,0) = f(x), F(x, l) == g(x) for all x E X. 

For t E [O,l], 1et Ft(x) = F\x,t). Then the intuitive 

~~· i c t1Jre is that f can be continuously deformed into g via the 
F., 0 :5 t s 1 ) (Fo = fl Fl = g). 

... 

. 4.2 Them·em. Let 1': E--> X b2 ,, 1Ject01° bun:'!.Le a.nd let 
, g : Y ::--x b2 i:L.':" h1noto;--ic co,.., t;{;",0us r;:o.ps. '!hen the pu llback 
:.£r..C~es f ! E and g .. E .:.::cc ino:;;o~ph:.~ over' Y. 



Cr2ssin::ir.;i F;.nifolds. of n-----~---------

di;i''t:r1slc!·1c1 l :; 1it·vect0r s~1a..:~s 

set ::if :i 1 1 n ,, (n+k) rn:t:'ic.t::s of rank 

Let 

n. 
be the 
natural 

,,,fn•k) n+k 
i::a ;1 Tf ' __,. (' !"];: '" \~r. i r: h ass i g n 'S t :::i an n · ( r: + k) •'Et] u n J \ ' 1 

. d. . , . ~ .Rn+k. r:;atri x "~ ot r<;nk n the n-· imens i cna 1 suDspace o. 
11:+k s;:ia;;r,e.:.! o_v th2 rows of /\. w2 Qive 1.: 'R" 1 the quotient ~ 'n i , 

topology. There is a natunl differ"entiable rn;iifold structure 
on G \·1i1icr is d.::scrioed in detail in section 4 of this • n ,n-t k 
i11troduc'~iGr1 (in t:P.nns of local pier::es ,:ii1d 9luing data). 

-h · t , c. -Id' G ,10 n+k, G (Rn+k+l) 1 .. ere 1 s a r.a ura, em1;8L a1g Ek : ri\" , c... 
. , d L • nnx(n+k) 10nx(n~k+J\ h' dn l incJce ~.v tne rnao n · • ~ n • w 1ch a ds a co umn · reg reg 
af .:er-os tc ar, n < (n+k) matrix A of rank 11. We 1et 

aenote the inductive limit space lim G (Rn+k). The _, n space 
I:'. 

ea~ perfectly we11 be seen as the spJce of all n-dimensional vec
tor ~ubspaces cf IR'' = {(x 1 ,x2 ,x3 , ... )jx 1 ER, all but finitely 

n. -, arc'>. zero}. 

3.5.2 The "univers3J_'.'._bun_d1e ; 11 • Define 
~ l'1 ~k n+k c; n = {( x , ·1) € G n (R ) x R I v E x } ( 3. 5. 3) 

There ; s a na tura 1 projer::-Li on F,n -> G11 ("Rn+k) defi r.ed by 

(x,1) ~ x and ~t is easily seen that this makes ~n into a 

vectcr· b,.:ndle whose fibre over x E Gn(1Rn+k) "is" the vector • 
sµac.e x. A description of ':his v0c tor bundle fo tenns of local 
p1eces and gluing data can be found in section 3.4.5 of Professor 
Hazewinkel's lectures in this volume. 

3.5.4 Exercise (easy). Let sk : G (Rn+k) ... G ("Rn+k+ 1 ) be the 
n n 

3.5.l and let ~ and ;• be the n n 
in 3.5.2 over Gn(Rn+k) and 

; 11 • (This also justifies 

embedding described above in 
universal bundles as described 

' n+:<;+l- . l T Gn,R ) respective y. .hen 
the notation used). 

3.5.5 Classifying vector bundles. Let a: X--> G. (Rn+k) be a 
' .,,..., I • • . ' fl ! _n con-::inuo•~s mc.p. 1nen trns 91ves a vector bLr::ile c.-:, over X 

and hornotupic maps give rise to iso~orphic vector bundles. 
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Me>r:•:v~r if k is big enough (and X co:npact) all vector 
t>undl,_s .:,,·:r x are (u::i to iso.n0rr:: i:;;i1) cbtained i this \'lny. 
The , •.i:: ·> ~- , r t 1 c r~ \: h i c ti a •;, s i g n s a m 3 p i n to '> G<'12 r; ra s s • i'<l =~ n rna n i f 01 d 
W (1 b·,,H.J"::: u·:0r /; goes ctS fo1lo·,.1s. 1,1-:t r. -+ X OC a V<?Ctor 
bun<fJ,_. 1i1':1. t,1·?re i~ ar~ r E l'1 and a surject.ivt" <1.JL'01,1orphism 
o( 1 1.:c t.ur· rj·.:rd!es ; : X ,, Rr' ... E ( c.f. 3. J. 33 abQV5). !low defin0 
f( x) t·J ;,~ the n-cimE.nsi ona 1 S\.i)scace of t:{ consist ii;g of a 11 
vecr:.ors \-1•,~ch are ;:;rthogonal to the h·rnel of ex :l{ ·-+ tx. 

;r:r:2 t'f'n!crks fc.rr.1 the hwr: hones of the c·iass1fying theorem 
, . .,,et.or· ::.~·ndles 1:hich ~,:ates thctt over suHaJ1e scaces X 

L',C.nJ is tht: set of •wmotcpy class2s of ccntir,'ICJS maps 
l ... r, 

n 
-= r:. trt·,· ar.d ·8here B IX) is the s1::t cf ~~"morphism ··n' I" I' 

classes ac ~--d1me~sio~a1 vector bundles over X. ~oughly one can 
s:iy 'c.hc:•. it' (;'l('. l:riows t,ie n-di:-:1ensrnr.al urriversal vectcr hvndle 
~ wer ;, (R1'Tk), k 1arge, that one kr.01<s Jll n-dimensional 'r: ;") 
·:c::tcr h1;1dl2s. 
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4. V/\RIETrES, VECiOR B1JNDLES, G:~}~.ss~t4WlI.>iilS P.ND TNTt.:<SECfION 
TH CORY 

Jn th·is clJJptei' 1:? will defi~e son1e •Jf the basi::. ideas and 
u!Jjccts neL'ded for th1: :ipnlication of alqeor.:i::: ]2un<etry in sys
tc:rns theur'.'" The r.Mterial pa~··ai1els tne 02veix·;~·,er:t :;f differ-· 
~ntidl tooology uevelope~ in sectio~ 3. We ~111 cescribe the con
c2nts of affine sµaLe, affine v2rieti~s, ~r~aj~rtive sf~dces ard 
c;·ojective varit~ties. The Grassr.-,.'On~.ian ;c1i:0:iifolds 1,,·;]1 be ..:Je·Jelooed 
with scme care ~nd tne ~arious re~resentations that have pro~en ~o 
:J';'::'iu1 in linea.· syster.is thP.ory wi1l be givei1. 

Affine Sp~c~s anJ Affine Algebraic V~rieties 

Let ~ be an al~ebraically clos~d Field ffcr our purposes 
1~.:.: CM~ a:;·10st al'.~ays assume "!:hat ;: is tne fie'.d of co:nµlex num
h2rs [ \. Let ":n denote t:1e point se:t of n-tupl es. Vie say 
that a subset X of kn is c:2s21 if there are finitely many 
o~lyno:nials g1(x 1, .•. ,x ). •.• g (x 1, ... ,;.:) s1ich that X :c: n m m 
f, C ·"·- ('' - - g (x) - 0'1 Th. + f l' 1 ' t ~ ,,_ -:: ': • !:l 1 ·' 1 - • • • - - • 1 • e s e ~ o . a. . 1 c o s e u s e s 

I m 
defines J topology on ~n. called the Zariski torJlogy. (The 
f~ct that this is a tcoolcgy is nontrivial--a consequence of the 
Hilbert Basic Theorem). A closed SJb.:;et X c :Jl is giv'2n the 
lnduc2d topology dnd is calle~ an affin'2 alg0braic set. 

Let g(x 1, •.• ,'<) be 

{x E X:g(x) 1 O}. Clearly 
basis for th2 topology of 

a polynomial and define a set X g 
the sets Xg are open and form a 
X. A regular function on X is a g 

function f with aomain X and ran~e k .:;uch that f can be g 
>ffitten as n(x)/grn(>:) for some polynomial h and all x. So 
f is represented ':ly a ratior.al function having no poles on x9• 

Let U be an arbitrai·y open set in X and f a map from U to 
k. Since U is open, it's the union of X 's and we say that g 
f is regular if the restrict~on of f to each X is regular. g 
This sequence appears over and over in geometry. We define some
tning simole, then build an object fro~ the simple things and 
extend the definition. 

A closed algebrai: set X c k" along with its regular func
tions on open sets is n affine algebraic variety. An open sub
set of v together ~i h the ring of regular f~nctions is called 
a quasi-affine algebra c variety. In the special case that 
X = k" the affine var ety is denoted by An--the affine space of 
dirr<.::nsion n. 

• 
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. n rn 
!..et UcXc;,~ ... arid Vc:Yc,1\' be::ipensubsetsofaffine 

·;5;-iAtH,s X- .:inl:f Y. A map -9 fror.i U to V is a morphism 
ii 
u to V if there exist m regular functicns g1 , ••• ,grn 

sef~ned on U such tf-iat g(x) = (g(x 1), ••• ,g(xn)). 

In ~·O''"t;cJLH', the "coordir.rtte ring" Rx of fonctions regu

lar on all of X r.iay be thought of in the follm'1irig seemirg1y 
co~·-~i··,c::e-ccpend~nt 1-1ay. If X c;An is an .::iffine algebr:i.ic set, 
:.hen Rx consists of the ring cf function.; wbich are restrictions 

to X cf polynomials a~ An. The puint is that tne ring RX is 

lltn':nnsic, i.e., independent of the ~c>rticular prt:sentation 

I. •.:;Ar;. Tnus, Rx contains not only X as an abstract object 

!Hilbert Nullstellensaty) but also a11 possible embeddings of X 

in affin2 space. For X =/An, R.X = k[x 1,, • .,xn] which is 

No2therian, since k is, by the Hilbert Basis Theorem (2.2.2). 

~·1 ure generaily, X c/An gives rise to o.n alqebra honi0morphism, 
restriction, 

P v : ~: [ x l ' ••• , x J _, RX ,., n 
(t\.l.l) 

~hich exhibits Rx as a quotient of 

~Y le~rna 2.1.5, Rx is Noe~herian. 

k r · 1 Th f Lx 1,_ •• .,XnJ· ,ere ore, 

In this light, it is inter-

esting to examine the g2ometric content of the ascending chain 
co:1diti'.)n. For aff-ine space /A", any subvariety X c/An, gives 
rise to ar: idei11 IX, 'Jiz. the kerrie1 of Px 

ker Px = {f E k[x 1 , ••• ,xnJjflx = O} (4. 1.2) 

•:3y tr,e ni1bert Basis Theorem, Ix= (f1 , ... ,fm) and one sees 

that X is in fact defined by the equations 

~'oreaver, 
if x c y 
'.Jn ideais 

. ~ n 07 /I.., 
variety 

f ( x) = • = f ( x) ·= 0 
l · · m 

(4.1~3) 

this correspondence reverses inclusion; that is to say, 
then Iy c Ix. Therefore, the ascending chain condition 

implies the descending chain condition on subvarieties 

This is true, by similar reasoninj, for any affine 
z. 

4.1.4 Theorem. r: Z 
e:'"~':; cit::3'Ji;nding chain 
__ ... Z ti:?rr:1.:n.ates. 

is ar: ar'.f:'.ne al<::.:.br>cic ".Ja:t'Letu, then 
z1 :::::> z?" :::::> ••• :::::>. l :::::> • • • of ~;i.bVaY'ieties 

~ rn • 
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It. 0ne c.:ir:siJers i:h:: S;Jecial case in -..r.ich 
Li-l by im~0s~'~9 Jn additioG8l a·i~eb'.~eic 

f.\'z) -= 0, 
l . 

C BY!'.l\ES l'T AL. 

Z; is obte:ined 
constraint 

t..2 Prcijectivc space, proj>:>ctive v.:rieties, c:nd r,uas-i-projective 
va ri et~ es 

,:.<;ain let 7· b0 c:n algebr·:iicalb closed field. DefinP. an 
, . .n+l "~ ·1 -· . i'ff e : ·, i """ 1 e '.l c e r f' . a t l on on r: \ \ :.., , ••• , 0 ) . de T1 ni n g x ~ y 

ther2 is a \ E ~ sue~ that \x ~ y. Oe~ote the poi~t set of 

quiva le1'C" c 1 a:ses by 1Pn(k). Recall that a 'Jolvnomial g is 
1«uc::::·_:e.1.=:0Js ii the:·e is an integer ;n such that" g(h) = \fng(x) 

fo:· al~ x. \Jc: say th,1t. a s•Jbset X of 'P~·\.-:) is clo.>ed if 
t.r.er·p ',.:::a t·;.,,·,."' SP• •)' .. t''"'"'l""··er"'O"S nc]··r"'";ais g n - - -1< · • • l. - - l.. ' l !...,.di l:~ .C: .•U ~ , :J llJ'I~, , 1 ) •,.a) :Jm 

~ "' ri t '", , .'l r .,. =- ! : x 1 ;::- 1 ~· n ( f' '; · " l ( ' 1 = = c I ;., = O ' "o ""e • h ·· t ~ - - • · l J - " · • ? , "J • • • :J:;i , A · • I; c I.. 0 

t><·:iuc;c G" !1:cc.c;c:r~eity g(x) = 0 irnp'!ies 'g(·~x) = O and hence 
·~E de"in:11on is wel1 fo~Gded. The set of clcsed sets defines 
" t:::~ioL~y :;r-. :; and this topoiuc;y is also referreJ to as the 
Z&ris~i Tr70logy. 

i~e Prcjective spaces can be devel0ped ~ore prosaically, if 
. is u., as J comri3ct dif~ereritiable man~fold. Let V be 
~·1 n a:· ccnsic!ered as a vectc.r spil.:e over- 0:. Let 1P"(t!) denote 
t~~ set of one dimensional 5ubspaces of V. We define open sets 

:n P"(l) a~ follows. Let W be a subspace of V of dimension 
n and let U = U E'Pn(!!):i'.. n W = {01}. We say that U is 

open ~n P"(I) and we let F"([) have the topology generated 
by the ~·s. This definiti0n coin~ic!es with the previous defini
tion for if W is of dimension n then W is the kernel of a 
r:0n-2ffc l~ne:ar fu:ictional and hence is the zero set of a homo
g·:rie:o~is p0ly'1oinial. The other direction is n:ore difficult. 

We wi 11 see lat~r when ~1e dis:::uss the Grassri1annian manifolds 
t~at the U's ca'l be idertified with !he affine spaces [ 11 exhib-

itln9 Pn(rr) as a co~plex ~anifold. F 1(a) can be identified 

,1 t'1 Rie1-:i .. rnn spheY"c: or with the rea·1 sphere s2 . In a later sec
t,_ .. '.·': •• ill develof:- ti;..: Crassm,rnnians wHh n1oi-e det<:i1. We will 
a ~c sho\'1 that P"(it) is ::..ompact as a manifold in "LfH' m?.nii'old 
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~,_··;.oiogy ~:ote th11: the 7ariski topology is zi subtopo~cgy of 
ere manifold tooolo9y. 

- , . , t .t: lPn, - .) i ] , . t . 1. 0si:~d :;u0se s c.1 1 .. \.:c arc .::a· co oroJec 1ve 
2n::i ~f v is a;i c>pen subset of a projective var"ety 
.:~ cJ.i 1 V a q:.;asi-projer:ti .;e 1/3.riety. 

vJrieties 
X then 

We need to extend the definition of regular functions to 
y·cjective varieties. tiote that vie !iuVl n ,_ l ''car1onical 11 

._ . . c ,, n . t 10n (- · 0 c · · ( ' e::Jt:Gdi ngs c, /K ir: o ir r:). e 1 ir:e .:ii x1 , ... ,xn' 
_, - O)l ~· · . . . h L·,x 1 .... ,x 1_p1,xi, ... ,xn .J' 1ne map J; is continuous wit 

;-2s;Ject to the Z<:triski topology and the imagE: of ' is an open 
- ,,n(-· i· .Ji 

sJ~s~t or P ~) ~1t coincides with the open sets defined in the 
C:ra.:isxanni0n setup). 

Le"<:. X be a proji::ccive variety cont::ine~ in 1'n~K.) and 
1-:::t U be an oper. subset of X. The si::t j-:- (X) c.;A is closed 

l -
for 22ch ~nd j~ 1 (LlJ is an open subset of j~l(x). A reguldr 

funr::tinn f -C1·0 1r1 U to k. is deT'ine·i to be a map s:Jch that the 
1 J i 

cc;n;::osite 111ap fru:r: .ii' (LI) -> U-> .1~ is a reguh.r function on 

Jj'(U) for all i. 

Morpt-.isms bet~1een q1121si-prnjective varietiPs are defined 
sir.:i1arly. First let U be a quusi-projectivc variety such that 
U ~ X ~Fn(k) and let V be a quasi-affine v1riety defined by 

\' c Y c:. /Am. fl. morphism f from U to V is a rnap such that 
:he!"e arc regular functions f-1 •••• ,frl from u. to k such 
t;-!c'.: f(x) = ( f.1 (x), •. _ ,f (x) for ad x E: U. Now let W be m 
quc.si-p:·ojective and defiried by ~Jc Z c1Pm(k). I\ r.1orphisrn f 
frofTI u to w is a map from U to 1r .. ~, th tne fol lc1-1ing, 
;:-r0perties. Gefine W. by W. = \~ n j.VAm). Let U. = f- 1 (\.1.). 

) l l l 1 
The map f is a morphism iff for each the induced map from 
U \ I . - j ('' ) ,,m . h. . t th . ff . . ; .... '; .... 2; 1,i <::1.-; is <l morp ism in,o .e o,uas1-a me 
~ariet~ j~l(wi). One can easily show that the identity maps are 

>:':1rphisms and that the C')i'lposition of morphisms is a morphism. 
Tnus we hav~ defined a category whose objects are quasi-projective 
~arietiPs and whose morphisms are regular maps. Denote the cate
;ory by qpSch(k). 

Let; 
spec if i ea 

:nwst embed 

U c. X c fa. 11 be a quasi-affine variety and 1 et X be 
by-the-·polynor:.ials g.(x" ••• ,x) i = 1, ... ,m. We 

" 1 Jr n k 
Y. i1S a .: :osed subset or some 'P • Tc do this 1t1e 
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i nt•·odu..::e homogeneous coo•·dinates and let g10,x1 , ... ,xn) be 

thP c.Jrresponding homogeneous polynomial. Let x" be the zer0 
f · h "' · , . ....n set o t e 9; 1 .... = ., ••• ,m rn ll"'. Then j 0 embeds X :is an 

or:;en ;ubset of X a11c! henca j 0 embeds U as a.1 open subset 

cf X . Thus each quasi-affine variet' can be identified with 
a qu.:isi-projective variety. " 

Let U t:= X ::_/An and V:;: Y c/An' be quasi-affine varieties. 
Ti1<~ set X ·< Y is easily seen to fo an 11lgebraic subset of 

/,:.n+m by identifying it with the set {(x1 , ••• ,xn,yl .... ,ym}: 

g 1 (y) "'0 i = l,. .• ,m, fi(x) = 0, i = 1, .• .,r.}. The reader 

snc•ul d ccnvince himself that the topology of X x Y is r.ot the 
pr::,duct topology. {Exami;1e, for exJ.mple, the Zariski closed sets 

2 
in P... as compared to closed sets in the product topology of 

l r. 1 0! Th ,.j .f. "" U '{ • . Y d h t::. • ...... ., , e pro ... uc ... se~ x 1s open 1n X x an ence 
L, ~ is also qu<lsi-affine. 

ties 
In order to show that the product of quasi-projective varie-
3dmits a quasi-proje~tive structure we ~ust wcrk a bit harder 

Let 
Fn :-: 

~11 (k) and lPm(k) be given ·Jnd consider the point set 

Fm. Let ll = (n+l)(n:+l) -1. Let the coordinate-sin 1PN be 

given by w .. , i = l, •• .,n+l 
n m 1 JN ) 

j = 1 , .•• ,m+ 1. Define 

~-:-P x J> -• P by ~(x,y = ( ••• ,w .. , ••• ) 
lJ N 

Th~ i rnage of dJ is r. closed subse:t of lP 

W- ,\"Jk; i ,k 1, ••• ,n+l j , Q, = l ,. •• ,m+ 1 

where 

given 

and 

w .. = x.y .. 
1 J 1 J 

by wijwki : 

4> is one to 
1 .... .J n m 

one. We give iP x ]J the projective variety structure of its 

i rnag2 in 1PN. Now let Uc X and V c Y be quasi-projective 
then U x V is given the structure of -.p(U x V). A useful result 
a oout products and morphisms is the Closed Graph Theorem for 
a 1 gebraic varieties. 

4. 2. 1 Theore,!!!.. A function f f':i:'Or:7 an algebraii:! va.riety X to 
~r: ~•Z:.<if.::..,:i.ic variety Y is a morphism iff the gr>aph of f is 
~ l-ose::! in X x Y. 

A topological space X is called r>edzwib7..e if X can be 
written as a union of closed subsets x1 u x2 with x1 'f X and 

x 2 :f X. The space X is called i'"f'1•ad.w:dble if X is not reduc

ible. If u::: X is an open subset of the topological space X 
and 0 = X (where the bar denotes topological closure) then X 



61 

!s 1rr!"du•:iLle L" cr.c! only if U is irreducible ~:::~c1'!ent.11·y). 
,. ~:u2.si-;.-:r0jec.tive va~i2'.:y X is :;ai~ tJ ~''° irre<:!:;cible if the 
t;ncerl;in::i '>pace is ir:--eduLible, Let X !:le a:: affine v.:u-iety and 

~i:-J thP. 7:-algebra of re'"'='Ul"r fur1ct1v-r'<=_. / · t · ,;rl·t· • u _ , ,~01~ wise a~ul 1on 
·:r;l-: ~:!ult'plication) 01 X, then "nr- "c"iiy rhPCk" U:·t X is 
>r·.:uucible iff A(Y.) nas no zer; di~i-~m·s.- {r'f" f~~ E A[X] 
.::··!': r.:~ identica1l1 zei·o on X and f(x)g(x) ::. C.• f'.:.r all x E x~ 
Af =[x E: Ajf(x) = ')}, Xg = {i.: t. Xig(:<) ;; o: c:re c.-1::i~ed subsets 

cf 'l satisfy~ng X = Xf u X~, Xf 'f x, \i 'f X.) U::>ing this we 
<,.»_e that the affine spaces ,I.A~ are · -' ·i.,· T b ""h · · 1rr2c.uci..1e. hen y ._ e rern.::in:s 
,n3ce dbcve \·1e see that open subsP.ts 0f /An ~rE frre.:iucible and 

P"(k) and its 0pen subset5 are irreduc1ble. 

If X i~ an irreducible variety and Uc X is open, then 
0 X. (If U were not equal to X then 0 u (X-U) = X would 
5ho~ X to be reducio1e.) For irreducible varieties we have 
~ey! 1 s ir~eiever:y principle. Let U be an open sub~et of an 
~rr~ducible (qu~si) 3ffine variety Y c~". and 5uppose that 
f(x, •..• ,x~) is a po1ynomi3l uver k such that f(x) = 0 f0r . .. 
al~ x E IJ, then f(x).::: 0 for ail x EX. Irideed f(x) = 0 

d?fines a closed sub~et V of A" an~ we hav2 by hyp8thesis 

Jc Y, hence X c 0 c? V. Similarly if U is 2~ open subset 
of an irreducib1e (quasi) projective variety X cP"(~) and 
g(x) is a hornogeneous polynomial in x0 ,. .. ,x 0 such that 

g(x) = O for a1 l x E li, then g(x) = O ror all x E: x. 

us .• 
1 

Let X be a variety and suppose X 
We say the union is irrectundant iff 

S, = S .• We r.ave the followinq theorem 
I J . 

is the ~nion of sets 
Si c S j imp 1 i es 

..-_4 ? 2 Theoi·em E,J-.., .. a1nebv.,..,.· .... ''c.,.,.-·-+-·1 ..... , the Jf"·£nite -irredu.nd,1Y1.t ... • '- ~ _!.,;__ ___ • ~ t;.. il V::J .._ '-" .... ~ 1.-• ...... .:.• ... .;:. 

;,miun of' i~·reducibZe oZ.Osed varieites. The decomposition is unique 
ur to pepr:r.,c.tation. 

Th~ proof of Theorem 4.2.2 follows the following line. Sup
p0se V = w1 u w2 where w1 and w2 are closed varieties. If 

the assertion is false for V then it is fals2 for w1 or w2• 

ll.pµly"ir1g the theorem again ~1e produce a sequerice w1 => 1~ 3 => w4 •••• 

The sequence is infinite decreasing and hence corresponds to an 
i~finite increasinQ secuer.se of ideals in the coordinatP. ring. 
S~ r.ce U:e coo,..di nate ring is Noetheri :in we have a contradiction 
ar;d hencc: V can be \vritten as a firite union of irreducible 
clcsed subvarieties. The 11niqueness of th? deccmposition can be 
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shown as follows: Suppose V ~ UW. and 
l 

V = IJV. then 
1 

V. = U(i~. n V.) and since v. ·,s frrc::ducibie 
J 1 J J 

V,=~l.nV. 
~· l J 

for some j. On the otner ha~d. W. = \"1. n V, 
1 1 "' 

for scme k and 
hence V . = 

J 
between the 

1/ = 1,1 
'k .. i thus there is a one to on2 correspondence 
W.'sand 

1 

let V be irre~Jcible. Then the coordinate ring is an 
integrc1 dcr:iain <ind \>1e can define its field of fractions Kx. 

Now Kx is a vector spice over k and hence has a dimension n. 
The n~m~er ~ = dim ~ is the transcendence degr2e of v We J x - ''x • ~ 
cefbt: the degN~e r.; F to be the number dim K • In section x 
2.3 tris is discussed ft.'rther. We comnent here that the dime:n
s ion cf the tangent soace at a n?n-:i1:::_~vZa2• p-J1'.1:t x is the same 
as the degree of V. Tnis can b2 discovered by considering tne 
ring of derivations of the coordinate ring and considering the 
derivations as vector fields as in section 3.3.21. 

4.3 Algebraic Vector Bundles 

In 4,3.1 and 4.3.3 we review some of the material developed 
in 3.3 in the algebraic geometric ::;ettir.g. In tr.e remaining sec
tion5 1'ie study the relationshiµ between subvarieties of a variety 
X ad vecto~ bundles or, X. 

4.3.1 '.Je!'"ini tior. ~~traic v2ctor bun~. An aigebraic vector 
bunC.le of aimt::nsion n over a {quasi-orojective) variety X con
sists of a surjective morphism of va,..ieties TI: E-+ X and an 
n-dimensional k-vector space structure on each 'IT- 1(x) c E, x E X 
such that for every x E X there exists an open nyighborhood n 
x E: Li c X :rnd an isomcrphism (of val"ieties) 9: TI- (U) ~ U xfA' 
\-1hi eh s;;:ti sfi es 

(i) Pu~= rrjU, where nJn-1(u) is the restriction 

of r. : £ -+ X to ·rr - 1 ( U) • 

(ii) forevery yEU, <j>:rr-1(y)-+yxfll,n isalinear 
n isomorphism of k - vector spaces where y x /A 

is given the obvious k. - vector space structure. 

We shall often write Ex for n-1(x); Ex is called the 
fibre of E at x. 



l_2t E 2 alg'?braic vector bundles 
~he var·; ety x. A honornorphi s~n •; : E1 -> E2 of ·•ector 

L;undies over X 1s a mot-phism cl;:E1 -. E2 such thilt TT 21; = rr 1 
and such that t'0 e i r.duced maps dix : E1 x .... E2x arp k-1 i near 

hor:.omorphisms of the k-vectol" spaces Elx into the k-vector 

s;Jaces Ezx· /'; homomorphism of vector ::iundles 'Ji: c: 1 -+ E2 
ar. isarnorphism of vectcr bundl2s if there is a no:1:0morphism 

such that ~~ = lE • ~~ 
l 

15 

i'.;.3.2 Ce:'initior". (alai:>braic sectic~. /'l. s12ction of the alge

braic vector bund.J<; E 2i X is a morr.,hism s: X ·-> E such that 
~s = lx. Giving a section of E-+ X is equivalent to giving 

a homomorphism of the trivial cne dim::nsiona1 vector bundle 
1 ii .., . l X x ;A· ..... X into E .... ,\. The corre<:prinoence is as fol 01Js: 

1 
L::::t s 1 : X -• X x/;'\.' be the section Y.'->(x,l) then cp--. t)Js 1 
establishes a one-one onto ccrrespond0nce between homomorphisms 

X .. "l - . t· X E .;, . ,...,,~ ..... c anc sec ions -+ • 

~.2.3 fatc;hi~~desr:ripti_on of t>undles and bundle homo
~1orp!1j;rr.s 
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The definition of vector bundle in 4.4.l says that every 
a1gebr0ic vector bundle over a variety X can be described (e.g. 
o~ta1n2d) ~Y the following data 

( i ) a (finite) covering {U } of X by open sets a 
u c: x 
a 

for every a a trivial bundle Ua x An over U 
~ 

(iii) for every a and B an isomorphism of trivial 
vector bundles 

q; B : ( U n u6) x An .... ( U 0 n U ) x /An 
a a µ c• 

where tne isomorphisms rpa~ are required to satisfy 
the conditions 
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for every x E U n U0 n U 
a µ Y 

where '~ ,,{x) is th~ isomorphism x x/An--. x xJAn 
0'.:j 

induced by $~s • 

We 11ote that qivinry a~ isomorphism ;f; ,, : (U n Ua)x /An 
o.p . a µ 

(U;3 n U) x ;t/1 is i:quiv3lent to giving a rnorphism Ua n US-> 

S?. i·1here Gr. is the quasiaffine algebraic variety over k 
n n 

"~·i th nonzero detenninant. 

L(;t E1 and E2 be two a19ebraic vector bundles over the 

variety X obtained by gluing together trivial bundles U xJAn 
m a ' 

resp. U~ ~~,where {Ua} is an open covering of X (We can 

take t~1e sar;ie co-..12ri ng for E1 and E2 by taking if necessary 

to com.::on ref i riemer. t of tv10 open coverings) • 

) i 2 Let .p08 and ctio.8 be the glui11g isomorphisms for E1 and 

E~ respectively. A homomorphism ~: E1 ~ E2 can now be describet 

as fol lm·;s: tii consists of horr.omorphisms 1J! : U x /An-+ iJ x ;Am 
a a a 

of trivial bundles such that for every a and S we have 

for all x E Ua n u8 

Note that giving a r.omornorphfsm w : U x /An --. u x j!\m 
a a a 

is e~uivalent to giving a morphism U -+ M(m,n), where M(m,n) a 
is the affine algebraic: variety of all m x n mc;.tri::es \vith coef
ficients in k. 

Let E" l X bt? an algebraic vector bundle u'Jer the variety 
X and let f: Y -+ X be a morphism of varieties. We are going 
to construct a vector bJndle f!E over ~. The so-called pull
back (along f) of E. Su?po~e E is given by patching data 
~· _: U n U(j--> GQ,, ·then f!E over 4i is given by the patching 
u~ ~ µ n f 

data f-l(u ) n f-1(ua) ~ u n u0 ... G! • 
a µ a µ n 

Similarly ~f ljJ: E1 -+ E2 is J homomorphism of vector 

bundles given by the local homomorphisms 1determined by 1norphisms 
ij; : U -+ M(m,n), then we define f! 1J!: f·E 1 4 f!E 2 by means of 

0. a I -1 f 
morphisms (f"1j1) : f (U)..:. U -+ M(m,n). 

a a a 
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Suppos2 l c :< is an irreducible subv":lr-:ety of an irreduc
i0le quasi-~roj~ctive variety X and for simplicity assume 

codim(Z) = dim X - dim Z = l • 

I~ X is smooth, e.o. if X is an open subspace of an 
alg~bre:ic sub111anifold of -pn(a:), then Z maj be local1v defined 
2s ~h2 zeroes of ii single ilnalytic function. i1ore fcrmally, we 
1;"·1y cov:;r tne 11~anifold X by charts such that on each U 

0. 

II z n u = f- 11 0) 'i 3 5) 
Q ci ~ \. t. . 

for f u -· (t C:r'l analytic function. 
c~ a. 

A ce~tral qu~stion ir the classification of subvarieties 
o~ a ·~iv2n v::inety X is whethe1· each codirnension 1 subvariety 
Z may be defined JS tt·e lo-::us of a si~1qle algebraic or analytic 
function f. Ne~, the ~ascripticn (4.3.5) of Z leads to the 
·.:'.ata 

f If, : 1J n U -4 it - {O} 
C( j.:., a. B 

(4.3.6) 
But since 9(,_$ gBY = gc-.y' (4.3.6) itself ccnstitutes the local 

~icce-'3 J.nd gZuing dar:c. ·(sr::.t?. 3.3.8) for an analytic rank l vector 
~undle, or pr~ferably an analytic line bundle 

(4.3.7) 

~creover, the descript~on (4.3.5) also yields an an&1ytic section 
• of the ~ine bundle L. viz. s is given on each Ua by 

s :U .... u x(I a. (1 C1. 

(4.3.8) 

Sy (~.3.5), Z arises as the zeroes of the section s. In parti
cular, Z arises as the zeroes of a globally defined analy~ic 
function f if, and only if, L is trivial. [We remark that, 
~Ith more work (see [4], Chaµ. III) one may show that in (4.3.5) 
tne U may be taken to be Zariski open and the f to be regu-a a 
lar alsebraic functions.] As ~n example, it is fairly easy to 
sho~ that an algebraic line bundle L 4An an affine space is 
(algebraically) trivial. 
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N0w, ~ore generally, consider a subvariety Z of X with 

codim(Z) =dim X - dim Z r ~ 1. 

,~.gain, one 

functiors 

rnJy cover 
1 r 

f ,. .. 'f 

x by {U } 
a 

for which th2re exist su~table 

such t:1at 
(1 C-1. 

. l ' ) z n U = {z'f \Z ~ 
rt I U 

fr(z) = O} • 
a (4.3.5) 1 

And, on eacr, intersection L! n u 
(t B 

one has 

;:i I: i = .. f" 
'CJ . glJ ~ ,_, 

J 

(provided w2 choose the Fj generation for th2 ideal of analytic 
a 

functions on U vanishing on Z n U ), leading to the data 
a a 

fU } a cover of X, g CJ = (g .. ) 
· a af-' lJ Ua n US ~ G£(r,~) 

(4.3.6) 1 

Nw, (..i.3.6) 1 9ivcs the local 1)ieces c:nd gluing data for an 
analytic r2nk r vector bundle 

v ~ x, 

which i:; trivial if and only if V is definable as the c0111mon 
zeroes of r globally defined analytic functions on X. In a 
less restrictive setting, if Z is the (complete) intersection 
of r hypersurfaces z. in X, 

r , 

Z = n Z; 
i = l 

then 
r 

V""' C9 L; 
i "'l 

In particular, one is naturally led to the study of algebraic and 
geo~etric invariants of vector bundles on X from quite simple 
considerations involving subvarieties and their intersections or 
from studyir.g the soluticn set to a system of simultaneous alge
braic equations. 

In the next section vie will consider the Grassrnann variety 
of p-p·1anes in n-space, developing tile algebraic analogues of 
sections (3.5). In (4.5) some of the basic tools for intersection 
tneory on milnifolds ~Jill be briefly reviewed. 
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Let V he a finite dimensional vector space of dimen~fon n 
civer the co:r,plex numbers anrj let G (V) be the set of ali p-p 
ciime~sional suhspaces of V. The set G (V) admits a manifold p 
structur0 with the follo~ing ch~rts. Write V = U e W with 
U E G lV) and WE G (V). For A E L(U,W) define U = p n-p r~ 
-'u+~u:u EU}. The metp Ai-+ UA is a one-to-one ma;:; from L(U,W) 
intc GP(~). It is not onto for we can describe the set of UA 1 s 
a~ exactly those elements of G (V) that have zero intersection p 
with H. Let SW" {'JA:/', E L(U,\.i)}. If a basis for U and W 

is chas~n so that A has a matrix representation 
~rith th2 1ro.p that takes UA ontc the matrix r~ 

rha•t. As W ran9es over all complements of U 
for-ma cuver for G (V). If "''J is the rnao from p ., 
ar Easy cd1culation shows that 

ther1 Su along 
is a s u ita L; le 

the sets SW 
SW to L(U,W) 

wnere n .... , and are the unique matrices such that Au = 
A1u + A2u with A1u EU and A2u E w1• The mapping is defined 
whenever A E ~W2 (sw 1 n SW~) and being rational it is differen-

-::iab1e. The sets s14 with the maps ti\i form an atlas for the 
r;ianifcld. 

4n important fact about these charts is that SW is an 
open dense subset of G (V). In fact even more is tru~ because p 
of the fact that the complement of SW is the subspaces that 
intersect W. This imp1ies that the complement is algebraic and 
hence that S\~ is Zariski open. The mapping th'lt send A to 
Li. is thus an embedding of L(U,W) into G (V) as an open 

1\ p 
dP.nse subset. 

Let St(V) be the group of all linear automorphisms of V • 
. n..r.y youp of automorphisms of V <1cts naturally on Gp(V) by 

linear transformation of subspaces. Let a be ar.y element of 
G£(V) and partition a as 



1·: :1 ere :, 1 1 ::. L ( U , U) , 

~aps the sJbspace UA 
''a E: L ( ~J 'U) ' .:i. 21 
to th2 subspace 
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f': L ( \J '\~) • 

et(UA) = {(:t11 +a12A)u + ((;( 21 +rt22 .'l.)u: u EU}. 

The space ~(UA) is in SW iff (a11 ~ n12A)-l exists and in 

tl-iat case 

Th~ G~(V) Jction thus Jets locally as a generalized linPar 
freic':i0na: tl'.onsfonnation. The lcical behavior of the action is 
v:: r)· f 6 :'"!l i 1 i a r. 

:~ c~e other h~nd, given any two p dimensional subsµaces U 
"'" "' ::.ere is a 1hc:c: auto~wt;:;!lism that maps U onto W. 
TrJs the 3~tion is transitive a~d we have that G (V) is the 

p 
h0~:oger-2cus space G~(V)/H for some H. Let U he: a fixed ele
me1it c.t G (V) and ~J an arbitrary compierr:ent. The isotropy p 
subgroup of U is just those transformations with n21 = 0 • 
Thus ~e can count dimensions either by the homogeneous space or 
by the chart. 

If we select on V a positive definite bilinear form we 
cnoose i 11 each subsp:;ce U an orthcnorma 1 basis and extend it 
tc basis of V by t'.1e Gram-Schmidt process. This shows that thE 
group of C'rthonormal mat:·ices acts tra,1sitively 011 G (V) and 

p 
thus G (V) is C'Jmpact since O(n) is compact. This also p 
imp1ies that GP(V) is projective variety. 

Let U E Gp(V) tht:n each basis of U determines an n x p 

matrix B of rank n. Furthermore if B1 and s2 are such 

riat!'ices there is an p x p matri~ P invertible matrix such 
that B1 = BzP. Conversely if s1 and B2 are r. >' p matrices 

of rank o and there exists a P such s1 = B2P the column 

space of s1 is the col~mn space of B2• We have established 
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'.:nJ: t~1e'.1· C'~':-to· cne correspcndence betv:ern the c:bits of Gi'.(p) 
::i:.:ci;;'] c.n r.xp mat.'i:.:es of rank p ana the G (V). The 

'., i p 
_, k d' t f + . 8 . .... !" 1 . ·, ~ d t ;..iv::. .ei- coor ·1r1a 2s o a rna"nx i~ cne 1-t.:.:pie or e er-

! p I 
:-:-.ir.ants of p >< p sub:-:-:ati·ices o~ 8. It i::; ·E~sy co see that if 
s1 = s2P then Plucker coordinates cf B1 is scalar m~1tiple 

cf t~e Plucker c0ordinates of 87• fn~s we cJn asscc~ate with 
.. I 1l' 

each point in G (V) 
p 

a line in [ 1 P'. It can be ~hown, of 
c2urse, that ~istinct points nap onto distinct lines and 
tr.e ~r)2dd~ng satis:'ies c. hc,::::::geneou.=; aigebraic ec;uation 
:•en.::e G (If\ is an il·Jgebraic sc:bset of 

rJ r ) 

that 
and 

-:-nus, 

. I nj-1 
·lp 

p 

G { V) 
p is a projective algebraic variety. 

:he •:;rc:ssr.1.3n1-.ic>n rr.anifolds carry a natural algebraic vector 
bJndle that can be ciescribcd as follows. Let 

1 = {(\,v): (x,u) E G (V) "'V and v E: x}. . . p 

., i:; a su'.wuiety of G11 (V) x '/ and c3;: ~,e s!'ovm ty the methods 
of 4.3.l to be an algebraic vectn~ bundle where the p1·ojectian 
- · n--. l\/ 1/) is ::rnto the first co0t·dir1Jto. It can be shm-:n thc.t 
this bundle possesses no sections, but t~1e•"e is n<} particularly 
~~lightening proof av3i1able. 

However. if we construct the dual bundle n* 
are ~lie spJces duG.1 t·J t:1e fibres of :-i. Then ri* 
comp.l':'.11-.cnt of sections. For let V hdV8 a basis 

by 

an algebraic innerproduct. Define a section 
s.(x.)(y) = <y,e.> where x E G (V'1 and y l . . . l p' 
linearly independent as sections for consider 

;._ihose fibres 
has a full 

e1, ••• ,en 

s; of n* 
x. The s.'s 

1 

i~n]·ies +hdt ),x e = r, r- • .. 11 £_.JI..; i ..... 

%nt. Every holornorphic 
hi~ation of the si's. 

and hence th8t t~e s;'s are indepen

secticn can be written as a linear corn-

The question whether n or 
G IVl depen~s so~ewhat on one's p \ ' 
~erential geometers consider n 
;eometers prefer ri*. 

n* ~s the natural bundle an 
background. Traditionally dif-

to be natural and algebraic 
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4.5 Intersections of Subvarieties and SubmJnifolds 

Consider 2 subvarieties 
gen2ous functions 

defined by homo-

of d•?gress d, a rid d2' r2spectivc:ly. Bezout's Theorem (l.1.12) 
I 

asserts that, unless f l' f 2 hc-, ve a co,1r11on factor. the number of 
points in x 1 n X2 counted with multiplicity is given by 

( 4.5. l) • (L 1. 12) was proved in the spEcial case d1 = 1; that is, where 
X, is a line in F2• We offer a second proof in this case 

I 

which relies on the "principle of conservation of nurnber. 11 

~ow, if f 2 is the product 
dz 

f 2:x,y,z) = n ~.(x,y,z) 
i = 1 1 

(4.5.2) 

cf pairwise independent linear functionals of (x,y,z), then 
x, is the union ot a1 distinct l~nes in p2; i.e. x2 is 
recucible as 

d2 
i x,, = u X2 (4.5.2)' 

L i = 1 

However, if x1 and x2 contain no common irreducible factors, 
then 

But, 

#(X 1 n X~) 
sine~ each pair of distinct lines in P 2 intersect in a unique 
point. 

Consider the case where f 2 is not a product as in (4.5.2). 
The space V(d ) of homogeneous polynomials of degree d2 in 
(x,y,z) is a ~inite dimensional vector space. In particular, 
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i-:- may be joined t::i a ;:J:J1yno1nial 

~ath not p0ssin~ th~ough the 0 
t'ie: path 

., 
L, satisf1ing (.1.5~2) by a 

l.. 

µolynornia1. Indeed, consider 

c vd • (4.S.3) 
2 
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T0is defcrmation from f 2 to 
~ion of x2 to a union cf d2 

f2 also gives rise to a deforma-
lines: 

"f'"' ·x ("' - x A2' '-) . 2 v I - 2 ' 
du2 x; Xz(l) ~- 2 

i=l 

.Pie ptincip1E. of conservation of number asserts that 

It 

C'll<?. may 

(provided it re~ains finite), and therefore 
dz 

""(X n X ) 
l 2 L E( x1 n x~) d,, 

L 

8ezout 1 s Theorem for x1 a :ine. Jf 

reiterate the above 2rgum2nt defanGing 
-· d l ; 

lines, say x1 ~ u x~. anJ app~aling 
j=1 l 

(4.5.4) 

deg x1 = ct1 > 1, 

xl to a union 
to the basic 

r· r i n c i p 1 e , i.e. 
d 

" ( xj #(Xl n X2) ;;(x1 n v ) "' 2.-: n .x 2} ,\ ') 
" l L i -= l I 

d t l r #(X~ n x i) :: dld2 . 
j = 1 i = l 

·1 2 

Now, t~e successful application 0f the principle of conser
vation of ncm~ber reposes on the introduct,ion cf an equivalence 
relation on submanifolds or su~varieties (of a fixed dimension) 
so that appropriate defornatio~s of a submanifold do not change 
the equiva1ence class of the submanifold and so that intersection 
r.•_;::ib~rs, etc. depend only on the equivalence class. In the 
pr0of of B~zout 1 s Theorem offered above, such deFormations were 
aff0:ted by a continuou~ change in the coefficients of defining 
<:c;uations Jnd t11e basic principle arnounts rn the continuous 
aeµend2nce of the roots on the coefficients on a defining equa
tion. Such a program may be carried out in principle for general 
·:c.:·ietics, but is far he:yond the scope of these notes. The more 
e1P~e11~ary topological approacn employs the equivalence relations 
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il<::fined by 11or.ology and homotopy und vie list sc.ri1e of the basic 
t'2S•J~ ts beiov:. For i"l a sn1ooth manifold of c!imens·;on n. and 
fJr each r, 0 s r s n, one introduces the r-th homn1~gy sro0p 
of ii, ;;ith integer co~fficie.YCs in !l. (:)r ?J.. 2), denoted by 

'i 1 1-1·77) ')r i-i r,r1,·7J..2). Each SL:binar.ifold ri c r1 detC1'min2s a 1 r ~ ·'..... r , 
[tiJ EH U·~;ZZ); for example, for M ~-P 2 (tt) it is knm·m that r 
the only nonzero homology groups are 

H, (r1; ll) "'" ll ([P]) 
'-

H.,(t1; 71.) "" ll ([X1]) 
L 

deg x 

H (tl· !I. 1 
4' ' ! "" ll = ( [P2 J) 

Jr; this context, intersection of 2 submanifolds Xd ,Xd cF~(a) 
1 2 

of Jim.::1,sion 2 (ov:::r ft) is deterrni~1ed b; [Xd ] ,[Xd ] in a 
1 2 

bi; inear :nan01er. Thus tre inter-section theory in B~zout's 
";"'heJi'c:r. amount to the eva1uation o7 the bilinear form 

in qenPral, let ~ 
fold. For ecch integer 

he a orientable connectPd compact rnuni
n, let 

denote the cohomology and homology vector spaces (with the real 
nu::1b2rs F- as coefficients. 

For each pair (j,k) of integers, there is a bilinear 
riappi ng 

(4.5.5) 

called thecupp1°oduc-=.. If u)1 EHJ(M,P.), w2 EHk(M,1<), the 

w1 u w2• In particular for k = m-j it maps 

(4.5.6) 

4.5,7 Poincare Duality Theorerno I'he bilinear '710.pping (4.5.6) is 
n:md.egcne::.'c.te. Ir: ;>~r::ic-,.<lw>, it i1i.enti;'i..es Hrn-J (M,"R) with the 

d:ia.Z v-:>ctor space of Hj ( M ,R), and fr!.er;ti • .c-ies Hm-j ( M ,"R) with 
H/M,R). 



The •:up--tjroduct (4.5.5) on c0h0r.iology then tr<Jnsforms 
(: .. n::ier tnis P0incc1re dua1ity isomorphism betvJeen l;ornology and 
~ohon;o'..-ir]y) ·:nto an alrjebraic oper'at.ion 011 hc;~~ology--the 7,nte"f'·-
2.:.:-:~.·· .. ; pai:·ing. If 

j ~ k = m • 

and :i 0 l.t~) is identified 1t1ith P, the intr.:-:'~ect{u;: or,eration 

cefines a bilinear map 

H j ( M ,l< ) x H k ( M ,l< ) -. iR 

-- ri. E: Hj(f-'i,'R), 8 E Hk(i1,'R), the real rournber 

.~·:s'.gn<:::d t::: (..J.,C) be t~1e operation is called the h;ter>sect~:cY'7. 
· .. C"'.~·e" of :h2 t-.10 ho;noloCjy classes a,S. 

Ti1° above c!efini tion of "ini:erSc'ction r."mber'' is conc.,:ptua1ly 
•,-.?r/ si:c1ple, 0;1ce on•.' U!ldersta:1Js basic h01.1clogy thPor_y. To be 
:Js2fJ1, it 1:1u~t bt: suoplernenterj by a :-:1ethocl. of c'.:irnputi11g it in 
;;:o:·e f~c·iliar geJrnftric terrrs, fer a suit'lbl}· 1'q211e1·ic" situcition. 
Gifrerentiable ~anifcld tneory offers such a possibility. 

L~t N,~· be compact orientable manifbld~, with fixed orien
tation s0~h tnat 

dim M = dim N + dim N' 

Tr.e spaces H11 (N,"R), r:n,(N',"R) have canonical generators 

(n = di:n Ii, n' = difll N'), which are called the funJa.""1entaZ 
;-,_-,nolx,·,, .:lr:isses of tr.~ manifolds, denoted by hN ,hw Let 

-

0

- q·:N-+M, q:,':N 1 ->M 

be t110 .:.:ontinuous rr;aps, and let 

~e the i~age of these fundamental cycles in the homology of M. 
The i nt2r~ecti on 

; [ t * ( h n ) , ,;i * ( riN 1 ) J 
is ea 11 ed the inte1'section nwnbei• o F the maps :jl ,Q', denoted by 
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tin·., suppose that ?,:~' 
0.' 

are C r1aps. let p EN', p' C N' 
b:::: t:.110 ;>oi nts st.;ch that 

':P~P) "'o'(p') 

The 1i1aps are said to i.nt.;;;•3ect ~-n gencF0l. [-<Js1'.-t:i.n; at this point 
if 

(4.5.8) 

I r 1 ' q denot:es the tang.::nt vectrn· space to M at n • 
'i ' 

di:ji denotes 

tn" ;.,duu~d linear maps on tangent vecto;·s.) • NG\~, fixing <rn orientction for N means that it makes sense 
v:i!en 3 );isis for ea·..:h tangent sp11ce ·is "positively" or "negatively" 
oriented. Let us say that ~(N) and ~'(N') meet at ~(p) in 
a posit~ve way if 4.5.8 is satisfied, and if putting together a 
rositive1y oriented basis for N and N', provides a positively 

D p 
oricnt2cbasisfor M 1 . q: \ p) • 

Otherwise (and if they meet in general 

posi:',rn) they are saic to n:cet at 6(p) 

Supoosc that q(rl) and i;,'Ul') meet in general position 
J~ eacn ~oint of intersection. Then 

i(rp.t;i') :: I: + 1 • (4.5.10) 
pE~Ul)nqi' (N') 

Here, the sign + or - is chosen according to whether the submani~ 
F0lds meet in a positive or negative way. 

Determinirig the 01-~entations of the intersections is often 9 
a:; obstacle to determining the intersection number using formula 
(4.S.10). \·!Orkin:; in the categories of co'TTple::.: c.naZytic instead 
of r~~~ ma~ifold removes this obstacle. The manifold M has a 
c:J>-;;Ze.::: r:c.niPoZd. struct;,i..:-e if a set of coordinate cnarts is given, 
sEfting 1..:p coordinates in '(;? 111 , with the transition r:iaps between 
tt1e charts giver. by comp!ex analytic fonctions. A map Q: N-+ M 
!:l2t1-.;een comµ·iex rnanifo1ds is compl~x if it is given, in terms of 
ccmplex cr~rts, by co~plex analytic functions. A submanifold 
~: N-+ i·1 is said to be complex if the map is complex. 

Such a complex structure on '11anifold ~, determines an 
orientation for the manifold M. In tenns of this orientation, 
t\-10 comµlex subrnunifolds ah1ays meet z.Jiti: T'0sit1'.ve or:.ei1tation. 
Thus, tne sum en the right-hand side of (4:5.10) only involves 
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:· :<S B ~}"<-i. f f1 'Ji'! rt i CU] a!', i ( Q, "jJ 1 ) {s e::;·;d l t.(c tiztJ nc<"ribet' of 
·.·:":_':'sc .. ,:;·£:·:.:; o:· ... fd? subr,1aw.'.fo7.d:.. <f1(N). ,~·'01'), prnvided they 
;-~2t ·in t:;'2'1E:"a1 ~osition. 

Her,:; is th'.'! situation of greatest ·irnportan:e in algebraic 
9eo:netry. 

M"P(ll:) n 

~hE complex r,r:;jective space, of 1'ea7 din;0nsion 2n. It is the 
JUOtient o~ IJ:n+l \(0) under the dilation group. rp(r;), :±i(N') 

?S 

• re S 1JbSE.'LS determined by n::-122::.;•;uZc.:l', irreducible algebraic sub
~E:ts of M. P"(a) is a complex ~anifold, and the algebraic sub-., 
sets are complex submanifolds. For n = 2, this, of course, is 
j0st Bfzout's Thea~em which we proved by purely algebraic 
;.1.:;thods ~t the beginning of this secti0n. 

[!J Griffitf-,s, P.A., a1;d hdams~ J. Q.: 1974, Topics in 
.. i~~-;:e!-::"l~ ... ~·_:: cvi·:i .. :...,.~::LI1 tic Ge::,~"";.;t1·t~, trirn:et0n Univer~;ity Press 
:1athc:natical t~otes, Vol. 13, Pt'incetor;, tLJ. 

[2] Gr·iffith, P. :i. •• ar~d Harris, J.: 1978, P-::-i.nc·~ple3 of Alge
O"!''(J.i:J Cw"!c-::.riJ, New York: Wiley. 

[? .1 Mumford, D. : l 97 6, !.. !uebrc.ic Ceorr.P. tr'y I: Co11p Zex Projective 
v'ul"if:r.:ies, Spri nger-Ver1 ag, New York. 

[4J S'10farevitch, I. R.: 1974, Basic Al-?cbmio Geometry, 
Sprinyer-Verlag, New York. 
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5. LINEAR ALGEG~; OVER RINGS 

The soluticn of linear equations, AX= B, and more ~enerall: 
tr·,e s~i·u(rnre of R---!ir.E:S.r transformations on R-1r.Gdules ;·~quires 
us,::·, the end, 'o fr,t,·cduce .:md st:udj qL,ite a few auxiliary 
i:1:::,:P1~ts 1·1hich :)n2 ericc~.rntE:r-s in only C! s~rnp·lified form over fields. 
We b~;in with criterion for surjectivity and injectivity of an R
:~r~ear- transforrnation 

T : M -~ N 

of finitely-gener2ted R-modu1es. These nrr alv1ays important e 
prJDer:ies to study, ~ut particular use of these may be made in · 
stud:,·ing questions of reachability and obse~·vability. 

5.1 Surjectivity of Linear Transformations, Nakayama 1 s lemma 

Je consider an R-linear map 

(5.l.l) 

a~d would like to reduc~ our questions to a similar question 
:y:e;· a fie;d. However, ilS E1'amp1e 2.4.8 sf101>1s, even 1~hen R is 
a r;c, passing to tne fraction field K gives us only some of 
~1-,e infom?..tion ·:1e desire, viz. TK is surjective if, and only 
if, the cokernel N/T(H) is a torsion module. 

Set max(R) = {m!m c R 
me raax(R) if, and only if, 
is surjective, then so is 

f: 1-1/niM -> N/mN 

i s a maxi ma 1 i deal of 
R/m is a fi2ld. If 

R}, so that 
T in (5.1.l) 

(5.1.2) 

5.1.3 Theorem. T in (5.1.l) ;,s sUP,foc:tina if, and only if, 
t.'1 (5.1-:2Tissurjqctiv"' f.:>!' all m E max(R). 

For example, T: "ll.. ->"ll.. mapping z to 2z gives rise to 
the map, 

o r: ll 12?Z .... lll 2?Z , 

1vhich fails to be surjective. Similariy 

T :R[x,y] -• F[x,y] 

Tf = (x2 + /)f 

fails to b;:; surjective, since T "var:ishes at the origin." 
That ~s, if m = {fif(O,O = O} , then T induces the 0 map c 

'· -
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O = f :R[x,y]/ri0 ..... R[x,y]/rn0 

Pr0of of 5.1.3. The examples above hint at an important 
sJecfalcase, let g En and define T9 : R-+ R by T9(f) = gf. 
~hen T is surjective if, and only if, g is a unit in R. g 
That is, g is a unit if, and only if, g is a unit in R/m 
fJr ali m. For, g is a unit if, and only if, g ~ m for 
any 111 E max(R). Considt-r, or. the othi::r hand, those gE n m 

mEmr:.x ( R) = Jac(R) --tr.e Jacobson radical of R • 

g E Jac(R) if, and only if, 1-gf is a unit for 

all f E R • 
If g E Jac(R), then 1-fg ~ I mod(m), for all m, and is therefore a uni'.: of R. Suppose that 1-fg is always a unit, but that 
g ~ m, for some m; i.e., that (g) + m = R. Then, for some 
f E R, h E rr, we h~ve the equation 

fg + h "' l , or i1=l-fg, 

i;;plying m = R. 

Ne>:t consider T: M -> M and surpose there exists an ideal 
(if F: such that 

TM c IM , 

then there exists a relation 
n 

Tn + ·"' Tn-i £....,, r i 0 , with r1 EI. r 'or, if 

i=l 

{x 1, ••• ,x0 } generates M, consider 
n 

Tx 1. L:a .. x. , a .. EI • 
j=l 1 J J 1J 

II Equivolenti;(O .. T(x.) - a .. x.) 
j=I 1J J 1J J 

n 
L(0 .. T - a .. )x. = 0. 
j=l 1J 1J J 

0 , or 
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~i 1::·af:1e;:·'s Ruie, det(C. .. T - ~- .} annihilates dll x EM 
1 J l J 

~nd ~s ~nerefore th2 0 ~nJom0rphism. 

I ;i pa !'t i c u l a r , if T = ~ one has, setting 

If IM = M, then there exists r E R such that 

( i) r = 1 r;;od 

(ii) rM = 0 • (5.1.4) 

I ;= Fi~ = M, for c. 11 ~E.r.:ax(~). then M = (0). 

For, supp0se 0 f x E. M. Consi':ier the idea 1 

."1nn(x) = ( ·~ '. E R\rx = 0} c R 

Sin~e x t 0, Ann(x) I R and therefore, Ann(x) cm for some 
~- By ~;pothesis, there exists r E R satisfying 

,. :: 1 mod m, and rx 0 • 

aut, the second equation asserts r E Ann(x) cm, contrary to 
the first. 

rt is now an easy consequence tbat T is sur·jective if, 
and or1y if, T: M/mM ·-> ~~/rrN is surjective, fer all m, for all 
or t:1e above upplies to the module N/ir.iage T. 

5.~.5 co,ol~. [4] In particular, if one considers the 
linear system, 

x(t+l) = Ax(t) + Bu(t) (5.1.6} 41 
defined o·.fer R, theri (5.1.6) is reachable, in the sense that the 
columns of (B,AB, ••• ) span the state module, if and only if 

x(t+l) = Ax(t) + Bu(t) (5, l.6) I 

is reachable over R/m, for all rn E max(R). 

Along the way, we have also developed enough algebra to 
prove ~he "f:.indamental Theorem of Commutative Algebra," 

5. i . 7 Nakayama 1 s lerana. If M is finite Zy ge•1emted ove!' 
R,Ic,Js.c(R) anidealof R such that IM=M, then M=(O). 

Prcof. From (5.1.~) one has an r ER such that 
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r ::: 1 !llOd I and rM = (0) • 

The first equation asserts that (1-4) E Jac(R) and, by (3.3), 
r is a unit. The second eq~ation now a;serts that M = (0). 

79 

1his is especially useful when the rin0 R in question has 
only one maximal ideal, say m. (~,m) is said to be a local 
ring--for example, t~e ring of formal power series ~[[x 1 , ••• ,xN]] 

is a 1ocal ring with m = i:fjthe constilnf:. term off is O}, and 
the ring of germs at 0 of analvtic functions in RN is a local 
ring, contained in R[[x1, •.. ,xN)]. 

If R is local, then Jac(R) = m and we have 

5.; .8 Nakayarna. 1~Lerrma. If M is f~nii:ely geneY-ated ovel" R, 
w.i mM = 0, then M = O. In p1wtiaul.ai·, {x1, ••• ,xN} gc:nel"ates 

M i;~, and on.Zu i_.&"", {x1 •••• ,xN} gen.el"ates M/mM. 

Local rings will arise rather naturally when we study 
inject~vity of R-linear maps in the next section. 

5.2 Injectivity of Linear Transformations, Solvability of TX Y, 
Localizations 

In order to study injectivity as well ac; a µarticular equa
tion rx = y. we introduce a refinement bf the idea of ttevaluat
inf T» at the point m E max(R), viz. expanding T locally at 
m.. For m E: mcix(R). denote the ring of fractions of R, with 
der.omir,ators in R\rn, by R01 (sec [1], p. 36). Thus Rm 

•:onsists of equi·1alence classes of pairs (f,g). f ER, g E R\m, 
thought of as fra~tions f/g. Two pairs are equivalent if there 
exist~ r E R\m such that 

(fg - fg)r = O , 

that is, if the corresponding fractions are equal, and pairs 
are added and multiplies as fractions. As an exercise, one may 
check that [(f ,g)] is invertible in Rm if, and only tf, 
f E R-m. Therefore, each ideal of R is contained in 
{ [f • g] If E: m} • m 

5.2. l Ler.ma. 

{[f,g]lf E m}. 

R is a ZoaaZ T'ing, t.Jith unqiue maximal ideal. m 

If M is an R-modu1e, then or.e can fonn the module of frac
tions. which is a module over the ring Rm. And, R-linear map 
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T : M -+ tl i ndw.::es an R-1 i tiear m.:ip 
the set-up we need. 

T : M ... N • m m m This is exactly 

5.2.2 I._heor~m. '!'l;e equation Tx = y has a sol!~tion x f. R\ 111 , 

fer a ~iv.m y E R( £.), if c..-t'l.d oily if, the equation 

haa a so ZiA. t·i.on o;;c1• R ' m for all m E max (R). 

Proof. We need only prove sufficiency, set 

= {r E R!Tx = ry has a solution over R} • 

If the ideal I = R, we're done, and if I ~ R then cm, 
for some maximal ideal m of R. Fix such an m and choose a 

solution x E: R(n) to equation (::l.11). By clearing denomina-
m -1 

tars, ~hich lie in R-m, one has r ER such that ~ = r x, m 
x defined over R, and 6n s ER such that t = rs _ 1 mod m. 
Therefore, 

T( tx) = sy 

and s E I c m, contrary tc assumption. 

Re;:1a1·ks l. If R01 is Noetherian, then the so1ubil ity of (5.2.3) 

..:an be further reduced, first to the case of a comp 1 ete l oca 1 rJ& 
and finally [2] to t~e case of a lo~al Artinian ring, viz. to t~ 
solution of (5.2.3) over R/mk, for each k ~ l. 

2. If \'le consider the question of surjectivity, then 
TheOi·em 5.2.2, together with Nakayama's Lemma, implies Theorem 
5.1.3 for free (or even projective) state modules. One need not, 
ho\'1ever, make such hypothesis on M. Indeed, one can show [l]: 

Theorem 3.12. Let T: H-+ N, then 

(. I T is su1'jectii1e ~ T : M -+ tl is surjective, for i., I m rn m 
al-l m. 

(ii) T is in.j eetiva ~ T :M -+N is iY.jec:tive, for m m m 
all m. 
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: .. 3 fhe Stnct.:re of U·1ear- ir.:nsfcrn1ations, The Suslin-Ouil!en Th2;:ir2r.;-:------------------------------- · 

~Jc nov1 turn to the structure of linear trdnsforr.iations 

T:M~M, 

If 7 is not invertible, is M iso~orph~c to a direct sum of 
kernel with imaqe T? In Examp1e 4.B, image T can never 
be complemented in ._ll, so 1·1r. m11st r~fine our question. If 
i11:'1~e T is ccr;ple:nented in M, i.e., is the irnilge of a projec
tion, can we find a basis for image T and complete this, with 
c. ba:;is tor ker T, to :'ind a basis for f1? The first ::ondition 
is satisfied, for exampl~, whPn T itself is a projection and, 
age.in, we are led to the question: 

(SQ l) Is eve.ry projectiun P: R(n) ~ R('d) 

diagonalizable? 

Suppose, on the otfier n:rnd, that T is invertible. l·ihat 0fot:s 
the f1rst colu~n of T lock like? Clear (2,4)+ cannot be the 
first cnlL•mn of an invertib1e TE t·1 2(LZ). Indeed, by the classi-
cal expansion of a determinant into a linear combination of 
cofacto~s one sees that the existence of r; E R such that 

n 
r:·a.r. = un"it of R 
i::; 1 i l 

is a necessary condition that 

I 

of an invertible matrix. By dividing ~f necessary, one may assume 
n 

)_ a.r. = l , V=i 1 l 

that is, (a 1 , ... ,an} is unimodular. If ? is a rank l projec
tion such that image P is free, then by choosing (a1 , ..• ,an) 
to be a generator of image P one might attempt to follow the 
standard linear algebra route for constructing a T such TPT-1 
is diagonal. That is, we construct T by setting (a 1, .. .,an)+ 
as the first row and complete T tc an invertible matrix (by 
adding the basis vectors for ker T). Thus we are led to ask 

(SQ 2) Is every unimodular vector (a1 , ••• ,an) the 
first column of an ir.vertible matrix? 
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For n = 1,2, (SQ 2) is trivially aris1vered, in the c;ffirma
tive. for any co~~utative ring R. 

? 
5.3.1 f_x_~!!2fl~.· Consider R "C(s-) ring of continuous, real-
valued functions on ~ne 2-sph2re, an~ consid~r ~he free R module 
M, of rank 3, of F3-valued functions en Si. Let L c M be 
tf:e R-submodule of those functions 1-1hicii point in!_ the normal 

direction, so that L is spanned ~y tne unimodular vector 

( ) t h 2 · 2 + 2 l Th t h t h 1· = x ,y, z , w ere x r y z • ..:n v can no ue . e 
first rO\~ of a unirr,ojular :natrix or, equivalently, if P: M-+ L 
~s tne proJection on !., ker P does not admit a basis. In 
fr.tct, to exnibit .,, E ker P such that w(x,y,z) t- 0 is to find. 

a nowhere zero vector field on s2, which is well-kncwn to be · 
r.c·ntrary to fact. 

Tht.;s, the fact that one cannot "comb the hair on a. tennis 
ball," has consiaerdble impact on the linear algebra over 

R = C(S 2). w~ note that (SQ 1) is equivalent to the more familiar 
form of these questions. 

(SQ 3) 
over· R 

Is every finitely-generat~d projective module 
necessctrily free? 

The connection between (SCi 3) and "co1;1bing the hair on a 
tennis i:lal1 11 ca1; be made mo~e precise, since the module ker P 
of tangent vector fields S is the (finitely-generated, projec-
tive) :nodule of continuous sections of a certain vector bundles 

on s2, viz. the tangent bundle. 

Set R = lt[x1, .. .,x!l]' then R(l) as a module over R is 

simply the modl.!ie of algebruic, scalar valued functions on /AN __ a 
~hich may be regarded as the module of algebraic section of the ~ 
trivial line bundle 

N N 
/A x(t-+/A 

On the other hand, if rr: V -+JAN is a vector bundle, then the 

additive group r(/AN;V) is ar. R-module, v1ith multiplication 

f E 'R, y E 1(.,1\N;V) defined pointwise 

fy(p) = f(p)y(p) 

in the fiber ~- 1 (p). If V is trivial, of rank m, then 

r('.AN;V) °" R(m). And, we have already noted the converse, for 
the case m = 1. ~areover, any homomorphism V ~ W induces. 
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Thus, we have a corres;rnndence: 

such that 

{vector bundles o~ ~N} ~ {m0dules over R} 
(5.3.2a) 

{hornc1norphisro1s of vector bundles} -• {homomorphism of 
modules}. 

• (5.3.2b) 

• 

~oreovcr, this correspondence gives an equivalence 

itrhial vector bund1es} -.... {free modules over R} 

(5,3,3a} 

{hcirnOinorphisms of trivial 
vect0r bundles} 

{hrnnomorphisms of 
free modules} 

I~ particular, if a trivial vector bun~le V of rank m splits 

'i w ""',, 
" = l "' fj2 

into 2 subbur.dles, then the homomorphism 

'.;atisfying P2 = p 
1 1 

c0rresponds to a projection op2rator 

P1 : R(m) ~ R(m) (5.3.4)' 

with image P1 -::.< f(/.l'i.N;~J 1 ), a finitely-generated projective R-

module. And, conversely, each finitely generated, projective 
module gives rise to some subbundle w1 of a trivial bundle, by 
definition. Now, it can be shown that every vector bundle W 
is a direct surr;mand in some triv~al bundle V and thus the eJut-
valence (5.3.3) extends to an equivalence · 

{vector bundles} 

{homomJrphisms of 
vector bundles} 

{finitely generated, projective 
modules} (S. 3.Sa) 

{homomorphisms of finitely, 
generated projective modules} 

(5.3.5b) 
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Thus, trivia 1 ity of a vector bundle is equivalent to freeness 
cf its n1odule of sec<:ions, bringir.g us to ask, for R = U:[x 1 , •.• xN] 

(SQ It) Is ev.:::ry vector bundle on ;;/l trivial? 

This que~tion W6S raised by J-P. Serre and settled, in the 
affirmative, by A. S:Js·1~n and D. Quillen [5], [3]. 

5.3. ti Tht::orem (SQ) fo!' R = k(x 1, .. .,xfl], e:.J.::1•y finitel'd 3~n-

1:m:t~-: pi'ojeetive .'"1·-xi:i?..a is fi•ce; :;h:::.t is, (SQl), •. , ,(SQ4) hold 
; ... c.J.~ R. 

We will find all of thes~ forms of Suslin-Quillen quite 
us2ful. 

Thus, by extending these ideas we se2 th~t there e~ists 
projective, but not free, mod~les defined over R = C(S ). By 
using the line bu:-id1e over S derived from the Mobius band, 
this is .:ilsc true fo1· C(Sl). These facts lie at the heart of 
the non-existence of ccntinuous canonical forms for realizations, 
which is, of course, a question of linear algebra with parameters 
(see Professor Hazewinkel's lectures). 

It is some1vhat deeper that.(SQ2) fails to holtl for R = Hc0 (D), 
this calculi1tion comes from certain topological non-triviality of 
the space, max(H"°(lJ)), as in (SQ4). 
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