ECONOMETRIC INSTITUTE

INTRODUCTION TO GEOMETRICAL METHODS FOR THE THEORY OF LINEAR SYSTEMS

C. BYRNES M. HAZEWINKEL

C. MARTIN and Y. ROUCHALEAU

REPRINT SERIES no. 273

This article appeared in " Geometrical Methods for the Theory of Linear Systems", D. Reidel Publ. Comp.,1980.

ERASMUS UNIVERSITY ROTTERDAM,

P.O. BOX 1738, 3000 DR. ROTTERDAM THE NETHERLANDS.

IMTRODUCTION TO GEOMETRICAL :METHODS FGR THE THEORY OF LINEAR SYSTEMS
C. Byrnes, M. Hazewinkel, C. Martin, and Y. Rouchaleau

In this joint totally tutorial chapter we try to discuss those definitiors and results from the areas of mathematics which. have already proved to te important fur a number of problems in linear system theory.

Depending on his knowledge, mathematical expertise and interests, the reader can skip all or certain parts of this chapter 9. Apart from the joint section, the basic function of this chapter is to provide the reader of this volurie whth erolali readily ava!lable background material so that fe can understand trose parts of the following chapters whin buile on tris--for a mathenatical system theorist permaps not totelly stancard--hasic material. The joint section is different in ristura; it ateerpts to explain some of the ideas and problems which were (ard are; prominent in classical algobraic ofonietry and to meke claar thit many of the problems now confrontilig us in linear system: theory are similar in rature if rot in detail. Thus wove to trarisint some intui. tion why one can irdeed zayer that the tools and ohilusophy of algebraic geometry will be fruitful in dealirg with the formidable array of problems of contemorary mathematical systen theofy. This section can, of course, be skirfed without eidangering ore's chances of urderstandirig the remairder of this shapter and the following chapters.

The conterits of this introdactory chapter ara:

1. Historical predude. Some protems of classica? algebraic geometry.

1.1 Plane algetriic curves

1

1.2 Riemann surfaces and fields of meromorphic functions
 1.3 Invariants

2. Modules over Noetheriar rings and principal ideal domains
2.1 Noetheriar rings and modules: fundamental results
2.2 Examples of Noetherian rings
2.3 On duality and the stracture of mojules over Noetherian rings
2.4 Modules over a prircipal ideal domain
3. Differentiable manifolds, vector bundles and Grassmannians
3.1 Differentiable manifolds
3.2 Partitions of unity
3.3 Vector bundles
3.4 On homotopy
3.5 Grassmannians and classifying vector bundles
4. Varieties, vector bundles, Grassmannians and Intersection theory
4.1 Affine space and affine algebraic varieties
4.2 Projective space, projective varieties, quasiprojective varieties
4.3 Grassmann manifolds, ālgebraic vector-bundles
4.4 Intersection theory
5. Linear algebra over rings
5.1 Surjectivity of linear transformations. Nakayama' lemma
5.2 Injectivity of linear transformations. Solving Tx = y. Localizatior:
5.3 Structure of linear transformations. The QuillenSuslin theorem (formerly the Serre conjecture)

1. SOME PROBLEMS OF CLASSICAL ALGEBRAIC GEOMETRY

The purpose of this section is to give insight into certain of the problems and achievements of 19 th century algebraic geometry, in a historical perspective. It is our hope that this perspective, which for severāl reasons is limited, will go some of the distance towards explaining some natural interrelations between algebraic geometry and analysis, as well as a natural connection between algebraic geometry and linear system theory.

1.1 Plane aigebraic curyes

To begin, perians the most primitive objects of algebraic geometry are varieties, e.g., plare curves in \mathbb{d}^{2} (say the variety defined by the equation $y=x^{2}$), ard the most primitive relations are those of incidence, e.g., the intersection of varieties. To fix the ideas, let us consider the probien of describing all plane curves in σ^{-}and the problem of describing their intersections. Since any two distinct irreducible (i.e., the pulynomial $f(x, y)$, whose iocus is the curve, is irreducible) curves intersect in finitely many points, the first problem of describing such ari intersection is to compute the number of such points in terms of the two curves.

Sow, whenever one speaks of a scheme for the description or alossification of objects, such as plane curves, one has in mind a certain notion of equivalence. And, quite often, this involves the nozions of transformation. For example, if $S L(2, \mathbb{C})$ is the group of 2×2 natrices with determinant 1 , then $g \in S L(2, \mathbb{I})$ arts on \mathbb{T}^{2} by linear change of variables and it has been known since the incroduction of Cartesian coordinates that a linear change of coordinates leaves the degree of a curve invariant. inat is, if $f(x, y)$ is horiogeneous, then

$$
\begin{equation*}
f^{g}(x, y)=f\left(g^{-1}\binom{x}{y}\right) \tag{1.1.1}
\end{equation*}
$$

has the same degree as f. So, for homogeneous f, we may begin the classification scheme by fixing the degree. Now any f which is nomegeneous of degree ? is a linear functional, and these are well understood. If f is homogeneous of degree 2 , then one can check that the discrimiriant

$$
\Delta(f)=b^{2}-4 a c
$$

where

$$
f(x, y)=a x^{2}+b x y+c y^{2}
$$

is invariant under $S L(2, \mathbb{C}) ;$ i.e.,

$$
\begin{equation*}
\Delta(f)=\Delta\left(f^{g}\right), \quad \text { for all } g \in S L(2, \mathbb{d}) \tag{1.1.2}
\end{equation*}
$$

This explairis, in part, why the discriminant is so important in analytic geometry, but there really is a lot more to the story. First of all, (1.1.2) asserts that the discriminart of $f, \Delta(f)$, is the same regardless of the choice of coordinates used to express f (provided we allow only volume preserving, orientation preserving changes of coordinates). But this is also true for $\Delta^{2}, \Delta^{2}+3$, etc. In 1801, Gauss [2,4] proved an important
 $\left\{L_{1}, \mathbb{Z}\right)$ is a polincmial $i n a$. Trat is, let V denote the $3-$ cumarional space of quadratic forms in 2 variables, let R denote tre ring of polynomiais or y (i.e., polynomials in a, b, c) and iet $R^{\text {Sl. }(2, \mathbb{U})}$ cenote the subring of invariant pelynomials, i.e., the polynonitals satisfying (1.1.2).
1.1.3 Theorem (Gauss). $R^{S L(2, \mathbb{C})}=\mathbb{T}[\Delta]$ ana, $i_{4}^{*} \Delta\left(f_{1}\right)=\Delta\left(f_{2}\right)$ $\neq 0$ then $f_{1}^{g}=\hat{f}_{2}$ for sume $g \in S L(2, \mathbb{C})$.

Thus, Gauss clāssifies horogeneous $f(x, y)$ of degree 2 by tie table:

Quadratic Form		Complete Invariant
f s.t. $\Delta(f) \neq 0$	$\Delta(f)$	
f s.t. $\Delta(f)=0$	rank of $f=\left(\begin{array}{cc}a & b / 2 \\ h / 2 & c\end{array}\right]$	

Clearly, the same kind of question is equally important for homogensuus forms of degree r, in $n \geq-2$ variables. In 1845, Cayley posed the general problem, in the same notation as above [2]:
1.1.5 Cayley's Problem: Describe the algebra $\mathrm{R}^{\mathrm{SL}(\mathrm{n}, \mathbb{C})}$ as explicitly as possible; e.g., is $R^{S L(n, \mathbb{L})}$ finitely generated b_{i} some invariants $\Delta_{1}, \ldots, \Delta_{0}$?

Now, the case $n=3$ is particularly relevant for our discussion of plane curves. For, one may always "homogenize" a poiynomial, and this process allows one to express the number of points of intersection of 2 plane curves in a beautiful formula, due to Bezout. Returning to our example,

$$
x=\left\{(x, y): y=x^{2}\right\},
$$

to homogenize $f(x, y)=y-x^{2}$ is to substitute $x / z, y / z$ for x, y and then to clear denominators with the result being the homogeneous polynomial $f(x, y, z)=y z-x^{2}$ satisfying

$$
\begin{equation*}
\tilde{f}(x, y, l)=f(x, y) . \tag{1.1.6}
\end{equation*}
$$

Geometrically, since $\tilde{f}(x, y, z)$ is homogeneous the locus of \tilde{f} contains the line connecting any nonzero solution with the origin. Indeed, the intersection of $f(x, y, z)=0$ with the plan $z=1$
is given by the zerces of f, as in (1.1.6), and the locus of \Rightarrow contäins all lines though this curve. However, there is more, the line $(0, y, 0)$ also lies in the locus of \tilde{f}.

Next, if onc considers the projective plane

$$
\mathbb{P}^{2}=\text { (1ines thru } 0 \text { in } \mathbb{C}^{3} ;
$$

then, by nomogeneity, the locus of \tilde{f} is a collection of points in F^{2}.-one for each of the puints in $f(x, y)=0$ and one more, the line $(0, y, 0)$, which may be regarded as the point at ∞. To make this more precise, we give "homogeneous coordinates" to a point $P \in \mathbb{p}^{2}$; i.e., regarding P as a line in \mathbb{C}^{3}, choose some non-zerc $(x, y, z) \in P$ noting that any other choice ($x^{\prime}, y^{\prime}, z^{\prime}$) is a non-zero muitiple of (x, y, z). The equivalence class $[x, y, x]$ is called "homogeneous coordinates" for P and to chack membership of $P_{0}=\left[x_{0}, y_{0}, x_{0}\right]$ in the locus of a homogeneous $f(x, y, z)$ it is enough to evailiate $f\left(x_{0}, y_{0}, z_{0}\right)$.

As an example of these ideas in contrcl theory, consider the transfer function

$$
\begin{equation*}
T(s)=\binom{\frac{1}{s}}{\frac{1}{s^{2}}} \tag{1.1.7}
\end{equation*}
$$

and the coprime factorization

$$
\left(\begin{array}{l}
N(s) \tag{1.1.8}\\
-- \\
D(s)
\end{array}\right)=\left(\begin{array}{c}
s \\
-1 \\
\hdashline s^{2}
\end{array}\right)
$$

How, for an arbitrary $s \in \mathbb{C},(1.1 .8)$ is a point in $\mathbb{C}^{3}-\{0\}$ although $T(s)$ dces not determine this point canonically. Rather, $T(s)$ determines the line through

$$
\binom{N(s)}{D(s)}
$$

as depicted below:

Since $T(\infty)=U, T$ extends to a map of the extended complex plane

$$
\begin{equation*}
T: \mathbb{C} \cup\{\infty\}=\mathbf{P}^{1} \rightarrow \mathbb{P}^{2} . \tag{1.1.0}
\end{equation*}
$$

And one easily checks, using the homogenecus coordinates in (1.1 .8), that $T\left(C \cup\{\infty)^{\circ}\right)$ is the curve defined in our example, viz., the locus of $f(x, y, z)=y z-x^{2}$. Moreover, if $\mathbb{p} 1 \subset \mathbb{P}^{2}$ is the space of lines in Y, (1.1.9), then $\mathbb{P}^{1} \cap T \mathbb{C} \cup\{\infty\}$ is easily computed, under $T^{-!}$it is the set $\operatorname{sing}(T)$ of poles of T:

$$
\begin{equation*}
T^{-1}\left(T(\mathbb{T} \cup\{\infty\}) \cap \mathbb{P}^{1}\right)=\sin g(T) \tag{1.1.11}
\end{equation*}
$$

and thus consists of one point of muitiplicity 2, (see Professor Martin's lectures for the geometry of a general transfer function).
1.1.12. Theorem (Bezout [9]). If $X_{1}, X_{2} \subset \mathbb{P}^{2}$ are irreducible sumes of degree d_{1}, d_{2}, ther, counting multiplicities,

$$
\#\left(x_{1} \cap x_{2}\right)=d_{1} \cdot d_{2}
$$

We shall prove this in the case where x_{2} is a line \mathbb{P}^{\prime}. $B y$ a charige of coordinates in \mathbb{a}^{3}, x_{2} corresponds to the set of lines in the plane $z=0$. And, by a change of notation, if X_{1} is the locus of $f(x, y, z)$, homogeneous of degree d, then Euler's relation is

$$
\begin{equation*}
f\left(x_{1}, x_{2}, x_{3}\right)=d \cdot \sum_{i=1}^{3} \frac{\partial f}{\partial x_{i}} \cdot x_{i} \tag{1.1.13}
\end{equation*}
$$

Intersecting $f\left(x_{1}, x_{2}, x_{3}\right)=0$ with $x_{3}=0$ gives the equation, of degree d,

$$
d \cdot \sum_{i=1}^{2} \frac{\partial f}{\partial x_{i}} \cdot x_{i}=0
$$

(iefinirg, counting multiple roots, d lines in the $\left(x_{1}, x_{2}\right)$ plane.
1.1.14. Femark. p^{2} provides a model for a (non-El:clidean) geometry, where the points are just the points of p^{2} and the iires are just the ioci of linear functionais on \mathbb{t}^{3}, i.e., planes in \mathbb{C}^{3}. Thus, for example, 2 distinct points P_{p}, P_{2} regarded as lines in G^{3} determine a line p^{1} in p^{2}, viz. che plane in τ^{3} spanned by P_{1} and P_{2}. Moreover, any 2 lines in F^{2} intersect in a point.

1.2 Riemain Surfaces ard Fields of Meromorphic Functions

Tinus, by homegenizing curves in \mathbb{C}^{2}, we take a ict of the mystery out of the points at ω. Indeed, one can give a beautiidi expression for the intersection number of 2 curves. Plane projective curves a?so arise in potential theory and in the ca?cijus.

In two papers puolished in 1369 [1], H. A. Schwartz considered the problem of firding, for purposes of solving Dirichlet problems, conformal maps of bounded regions to the unit disk or, equivalently, to the upper half plane. For example, Scinwartz considers the problem of finding a conformal map of the unit square orito the upper half plane, \mathscr{H}, where f maps 3 corners

to points $0,7, \lambda$ and the 4 th corner to ∞. In particuTar f is meromorphic, as it should be, for f can be exiended to a doubly periodic function on \mathbb{C}, by the Schwartz Reflection Principle. Actually, it is easier to construct a holomorphic map $g: \mathscr{H} \rightarrow S$. The Schwartz-Christoffel formula applies in this case to give the elliptic integral

$$
\begin{equation*}
g(P)=\int_{P_{0}}^{P} \frac{d z}{\sqrt{4 z\left(1-z^{2}\right)}} \tag{1.2,2}
\end{equation*}
$$

S.an integrals had aiready been the subject of deep research by Ezenn, Eiler, Gouss, Atel, lacobi and others, being first encount$\because \because=$ in the corputatior of the arclength of an ellipse. In parti: far, Euler nad shoun that eiliptic integrals, such as (1.2.2),

$$
\begin{equation*}
G(P)+G(Q)=g(R) \tag{1.2.3}
\end{equation*}
$$

where R is a rational function of P and Q, generalizing the Eniliar trigonometric adition formulae gotten from considering the ?engths of arcs or a circle. Indeed, there are group theoretic iceas underlying (1.2.3) too.

That is, corisider the meromorphic function f (cf. (1.2.1) which inverts 9 . As we have rioted f extends to a doubly neriodic meronorphic function on \mathbb{C} and hence to a meromorphic function on the torus, or more properiy the elliptic curve,

$$
\mathscr{E}=\mathbb{E} /\{n+i m\}, \quad n, m \in \mathbb{Z},
$$

gotten by identifying the (oriented) horizontal edges of the unit sưuare and by identifying the (oriented) vertical edges. One therefore has a nontrivial meromorphic function,

$$
\begin{equation*}
f: \mathscr{E} \rightarrow \mathbb{I} \tag{1.2.4}
\end{equation*}
$$

and a holonorphic l-form on \mathscr{E},

$$
\begin{equation*}
\frac{d z}{\sqrt{4 z\left(1-z^{2}\right)}} \tag{1.2.5}
\end{equation*}
$$

which turrs out to be invariant under multiplication on the group *. This can also be seen from the method of substitution applied to the integral (i.2.2). That is, substitute $y^{2}=4 z\left(1-z^{2}\right)$ and consider integrating $d z / y$ over paths defined on the algebraic curve, $y^{2}=4 z\left(1-z^{2}\right)$. Homogenizing this curve we obtain

$$
\begin{equation*}
y^{2} x=4 z\left(x^{2}-z^{2}\right) \tag{1.2.6}
\end{equation*}
$$

and hence a cubic curve $x \subset \mathbb{P}^{2}$. One can see a beautifur geometric definition of the group law on x : choose 2 points P_{1}, P_{2} on x and consider the line $\varepsilon\left(\simeq \mathbf{p}^{1}\right)$ in \mathbb{p}^{2} which they determine. By Bezout's Theorem, ℓ intersects x in a third point, $P_{3}=\left(P_{7} \cdot P_{2}\right)^{-1}$! Moreover, $d z / y$ is an invariant holomorphic 1-form on x ard from this one may obtain (1.2.3). However, more is true; X adnits a non-constant meromorphic function

ṫrived from di?/y, viz. f. In fact, the field of meromorphic functions on x is easily seen to be $\mathbb{C}(y, z)$ where y and z -re related as above. Again using the form $d z / y$ and a formila -rleting the degree of x to the topology of x one may show こrat $x \simeq \mathscr{E}$ as complex manifoids!
that $\frac{\text { erark. As a sketch of the proof, one sees from the fact }}{x}$ is nunsingalar cubic in ph that x is not simplycornected ard thus integrals $\int_{\gamma} d z / y$ where γ is a closed path on X are not necessarily 0, although the proper forni of Cauchy's Theorem is still valid; viz., if $\gamma_{1} \sim \gamma_{2}$ (are homoiogous)
) ther the path integrals taken over γ_{1}, γ_{2} are equal. And, Ethough y is not simply-cornecter, one know's that there is a sasis $i_{1}, \gamma_{2}^{\gamma_{2}}$ f for the ciosed curves on X modula homology. Thus there are two basic "periodis" of $d z / y$,

$$
\begin{equation*}
\int_{\gamma_{1}} \frac{d z}{y} \quad \text { and } \quad \int_{\gamma_{2}} \frac{d z}{y} \tag{1.2.7}
\end{equation*}
$$

Sow, if $P_{0} \in X$ is the identity (or any point) then one might consider the quantities

$$
\int_{P_{0}}^{P} \frac{d z}{y}
$$

for all $P \in X$. This quantity is not à well-defined complex number, as the integral deperas on the choice of path. If γ end \tilde{y} are \hat{c} paths joining P_{0} and P, then

$$
\int_{\gamma} \frac{d z}{y}-\int_{\tilde{\gamma}} \frac{d z}{y}
$$

is an integrai around a closed path, based at P_{0}, on X and is therefore (by Cauchy's Theorem) an integer combination of the periods (1.2.7). Thus, if Λ is the lattice in \mathbb{C} generated by the periocis (1.2.7) one rias an iscmorphism

$$
\begin{align*}
& X \rightarrow \mathbb{U} / \Lambda=\mathscr{E}, \quad \text { defined via } \\
& P \mapsto\left(\int_{P_{0}}^{P} \frac{d z}{y}\right) \quad . \tag{1.2.8}
\end{align*}
$$

To coriclude the remark, if one instead considered integrals with

ב raticnai integrand (or, more generaily, of the form $a=/ \sqrt{Z^{2} ; a z+b}$; the curve x in p^{2} turns out to be $p l$, as a conir ir p^{2}, wich is simply connected, while the corm $d z / y$ is :eroromit and the ucua residue calculus applies. This Exitars tre ease with which rational inteyrais may be calculated as wel as ine relative difficulty involves in calculating elliptic ir.tegrals.

Sgrarizing, one nas the interconnection between elliptic curves, comolex tori, è rid certain fields of meromorphic functions. This is a special case of what has been properiy referred [7] to as "Ere cascilig synthesis." That is, one may corsider three For-all distinci classes of objects: non-singular projective Cures (of any degree), complex compact manifolds of dimension 1 , and fieits of meromorphic functions. Then, the amazing synthesis is that any one of these objects determines the other two. Schematically,

The deepsr part of this correspondence is that from an abstract Rienann suriace S one may recover the embedding of S into projective space and the equations defining this curve, or equivaler.tiy, that one may construct the field of meromorphic functions on S. Above, the meromorphic function f on the curve \mathscr{E} was constructed via potential theory, i.e., in order to solve the Dirichlet problem. As Riemann demonstrated uith liberal use of the "Diricnlet principle," such transcendental techniques can be used to construct non-trivial meromorphic functions on an arbitrary Riemann surface. Briefly, the intuition runs as follows.

First of all (and we will consider analytic equivalence in 1.3), a compact Riemann surface is topologically a sphere with 3 hand? ${ }^{5}$, where if the surface is given as a curve of degree d in P^{2} the genus g is given by $(d-1)(d-2) / 2$. Thus, the elliptic curve \mathscr{E} has genus $(3-1)(3-2) / 2=1$ and is a sphere with 1 handle, i.e., a torus.

Next, a meromorphic function f on S has as many poles as zerues. Where $f=u+i v$ is analytic, u and v satisfy Laplace's equation in light of the Cauchy-Riemann equations. Therefore, f gives rise to a time-invariant flow with inessential
sing!ianitios on S where $u=$ const. defines the equipotentiat Ean = and $v=$ coist. defines the ines of force. Comversely, \therefore :-nan's icen bis to comstruct such an f by regarding, intui... - ive.j, 5 as a suriace made of a comductive material and by -iABug the potes of a hattery at each pole-zerc pair of f. $r: s$ car Démanf somemet more precise by a much more careful cosariotion of s ard an appeal to the Jirisflet princifle. insed, the apolication of mosern harmonis theory to the (hie-arn-foch) a'iestion $u \vec{T}$ existence of meromorpric functions on S \therefore one of the nost beantiful siafs of the "arazing synthesis." -a a more deta ? at àove, be sure to biowse in F. kiein's book [].

In closing this soction, we would like to make contact with what is perhaps a rore familiar descriotion of a Riemann surface, wiz. as a brancnud cover of the extended complex plane ipl. For anample, atziedse the finite part of the Riemann surface of the \because elation $y^{2}=\hat{4} 2(1-z \dot{C})$ can be obtained by forming the branch cuts between -1 and 0 and 1 and tw and sewing two copies of the f?ar less these cuis together in the appropriate fasnion. One can get ai the whole Riemann surface more sasily by considering the Graph of the relation $y^{2}=4 z\left(7-z^{2}\right)$. Explicitly, introduce homoneneous cosrdinators ($[y, y],\{z, \bar{z}]$), and honogenize the relaticn, obtaining the curve \mathbb{E}

$$
\begin{equation*}
y^{2} \tilde{z}^{3}-4 \tilde{y}^{2} z\left(\tilde{z}^{2}-z^{2}\right) \tag{1.2.70}
\end{equation*}
$$

in $y^{1} \times P^{1}$; However, we get more than just the curve

$$
\left.\operatorname{prcj}_{1}: \mathscr{E} \rightarrow \mathbf{P}^{1}, \quad \operatorname{proj}_{2}: \mathscr{E} \rightarrow p\right]
$$

which are, of cou:se, the algebraic functions y and z, on
Riemann surface \& of $y^{2}=4 z\left(1-z^{2}\right)$. Notice that $y: \varepsilon^{2} \rightarrow \mathbb{P}^{\prime}$ exhibits \mathcal{R}^{x} as a 2 -fold cover of \mathbb{P}^{1}, branched at the 4 points $z=0, \pm 1$, and ∞.

This is, at the very least, reminiscent of root loci. That is, for a scalar transfer function $T(s)$ one may regard, as in (1.1.7) etc., $T(s)$ as a branched cover of the Rieniann spheres

$$
T: p^{1} \rightarrow p^{1}
$$

is defictad below

(1.2.11)

Here, the A's denote $T^{-i}(\infty)$ and the x 's denote the motion of ine closed-loop root loci, as a function of $-1 / k$ toward the open loon zeroes-one finite real zero and a branched zero at ∞. iruesc, ior a scalar gain $K=k I$ and square muitivariable tranier function $T(s)$, an extension of these ideas has been given by \dot{A}. :iacfarlane and I. Postiethwaite.

Example $[9]$. Consider the transfer function

$$
T(s)=\frac{1}{(1.25)(s+1)(s+2)} \quad\left(\begin{array}{cc}
s-1 & s \\
-6 & s-2
\end{array}\right)
$$

and the scalar output gain

$$
K=\left(\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right)
$$

Ir order to study the locus of roots of the closed-loop characteristic eolynomial (see Professor Byrnes's lectures), it is enough to study the locus of roots of $\operatorname{det}(I+k T(s))$ or, setting $k=-l i g$, the Rienann slirface x defined by

$$
0=\operatorname{det}(g I-G(s))=g^{2}-\operatorname{tr} G(s) g+\operatorname{det} G(s) .
$$

Clearing denominators, one obtains

$$
\begin{aligned}
0=f(s, g)= & (1.25)(s+1)(s+2) g^{2} \\
& -(2 s-3) g+\frac{4}{5}=0
\end{aligned}
$$

leading to the algebraic functions

$$
g \pm(s)=\frac{(2 s-3) \pm \sqrt{-24 s}}{(2.5)(s+1)(s+2)}
$$

In this way, one has

$$
\mathbb{p}^{1} \quad \begin{array}{ll}
x & p^{1} \\
j &
\end{array}
$$

frow the study of root loci, is the study of the loci of s on \dot{x}, for each fixed real positive gain k-- i.e., for each fixed reai regative value of $g=-1 / k$. Thus, the root locus is simply the arc on x given by g^{-1} (negative real axis) and to see tris concretely it's perhaps easiest to study the pair of arcs \because, γ_{2} given by $s\left(g^{-1}\right.$ (nagative real axis)). On the 2 copies \ddot{x}_{\div}, x_{Z} of the $s-p l a n e$, branched at $s=1 / 24, s=\infty$, one sees that these loci start at the open loop poles, $s=-1, s=-2$ ir.d move to a, the only open loop zero, as follows (note $g_{ \pm}$ is real iff s is real and $s<1 / 24$.

(1.2.13)

Thus γ_{2} moves, as $0<g<\infty$, from the pole -2 on X_{+}to the branch Doinc ∞, wile γ_{i} moves from the pole -1 on X_{+}to the brancin point $1 / 27$, where γ_{i} changes sneets, moving to w on X_{-}. We can describe $X=X_{+} U X_{-}$topologically as a sphere,

(1.2.14)
one now easily finds the regions of stability:
(a) for $5 \leqslant k=7.25$, the closed loop system is asymptotica?ly stable.
(5) for $1.25 \leq k \leq 2.5$, the system is unstable with one pole (on ? ? in the left-belt blane.
(c) for $2.5<k<x$, the system is stable. Eemark. Eranched covers of p^{n} by complex manifolds of dimenSien n play a role in tre study of roct locuc, when one allows artituary gains k; see Professor Byrnes's lectures.

Now, there is an alternate rolite to representing a plane curve as a branched cover of $p 7$, recall that one may homogenize and projectivize, obtaining the algeoraic curve x in p^{2} Efined by $y^{2} x-4 z\left(x^{2}-z^{2}\right)=0$, as in (1.2.9). Then choosing any line p^{l} and a point p not on p^{i} or x, the brariched cover of p is gutten by a "central projection" based at P. That is, by Bezout's Theorem any line ℓ chrough P intersects x in 3 boints (counting milutiplicity) and p^{1} in a single point ard therefore defines a function,

$$
\begin{equation*}
f: X \rightarrow \mathbb{F}^{l} \tag{1.2.15}
\end{equation*}
$$

witich sends these three points to the corresponding point on \mathbb{P}^{1}. One may calculate that there are 5 branch points on \mathbb{P}^{1} for which multiflicities occur in $\ell n X$, where \hat{i} joins the branch point to P. [This is as it should be, for $p] \cong s^{2}$ is simply connected and therefore does not admit a non-trivial connected coverirg space.] Note that f has the form $f(x)=$
$[q(x), p(x)]$ in homogeneous coordinates and thus corresponds to the coprime factorization of meromorphic function $f=q / p$ on x.
the projective plane ip^{2}

1.3 Invariants

In the final part of this section, we want to return to Cayley's Problem, especially the question of finite generation of the ring of invariants $R^{S L(n, T)}$. Set the nutation: $V_{n, r}=$ ir-th degree foms in n-variables), R is the ring of polynomials on $V_{n, r}$, and $S L(n, \mathbb{C})$ acts on \mathbb{Q}^{n} and therefore on $V_{n, r}$ by composition. $f \in R$ is said to be invariant under $\operatorname{SL}(n, \mathbb{C})$ if, and only if, (1.1.2) holds arid $S(n, r)$ denotes $R^{S L}(n, \mathbb{C})$. Now, for $n=2$ the expicicit structure of $S(2, r)$ is known for $\because=2, \ldots, 8$, the case $r=2$ being Gauss's Thsorem, while the case $r=3$ was only recently (1964) obtained by Shioda. Gord and latar Clebscn and Gordan, was able to prove that the ring of SL(2, I) invariants is finitely generated for all r.

Remark. Part of this problem is rather straightforward; i.e., if $R=\Sigma_{m \geq 0} R_{m}$ is grading of R into homogenecus polynomials of degree m, theri since $\operatorname{SL}(2, \pi)$ acts on $V_{2, r}$ by linear transfornaticns $S L(2, \mathbb{C})$ acts on each \mathbb{R}_{m}. In fact, this action is the symmetric tensor representation of $S L(2, \mathbb{Q})$ on the space $\mathscr{F}^{m}\left(\mathscr{S}^{2}\left(a^{2}\right)\right)$ of symmetric tensors. The invariants in R_{m} correspond to the subspace of $f^{m}\left(f^{2}\left(\mathbb{T}^{2}\right)\right)$ on which $S L(2, \mathbb{C})$ acts as the identiry and this representation can be decomposed as in the Clebscn-Gordan formula. Moreover, the action of $\operatorname{SL}(2, \mathbb{C})$ on $v_{?, r}$ is just the standard irreducible representation of dimension $r+1$. Tris explairs, for example, the absence of any invariants of diegree) in the ring $\mathbb{T}[\pm]$. It is now, however, a proof that is generates $S(2,2)$. It should be remarked that for $n>2$, the action of $S L(n, \mathbb{C})$ on R_{m} is the object of study in the "first main theorem of invariant theory" [2].

Now, in 1892 David Hilbert proved that $S(n, r)$ is finitely generated and, even better, gave a proof that revolutionized commutative algetra. Before sketching a proof, we would like to noint out the connection with the construction of moduli (or parametar) spaces--in this case, the moduit space of homogeneous forms. That is, one is interested (as in the case of constructing the space of systems) in regarding $V_{n, r} / S L(n, \mathbb{L})$, the set of equivalence classes of forms modulo a special linear change of coordinates, as a variety or as a manifold in a natural way, viz., so tnat the map

$$
\begin{equation*}
\pi: V_{n, r} \rightarrow V_{n, r^{\prime}} S L(n, \mathbb{Q}) \tag{1.3.1}
\end{equation*}
$$

is digobraic or smooth. First of ali, the orbits must be closed in $V_{n, r}$ as they are the inverse images of the closed points of $V_{n, r^{\prime}} S_{i}(n, \mathbb{d})$. Second, if $V_{n, r^{\prime} S L(n, \mathbb{U})}$ is an affine variety, there must be enough functions

$$
\begin{equation*}
f: \forall_{n, r} / S L(n, \mathbb{t}) \rightarrow \mathbb{I} \tag{1.3.2}
\end{equation*}
$$

to separate points and, moreover, this algebra of such f's must be finitely-genereted. Such f's are, however, invariant dolynomials on $V_{n, r}$ since π in (1.3.1) is assumed to be algebraic. Dhus, two necessary conditions for an affine quotient to exist
(a) àll orbits are clused
(b) $R^{S L(n, \mathbb{Q})}=S(n, r)$ is finitely-generated.

Notice that if one had, instead, a compact group f_{2} acting on a rector space V, then (a) would be trivial, whereas by "averaging over $G^{\prime \prime}$ one can always construct enough G-inveriant functions to separate orbits. In fact, the existerice oi a process for averaging over $S L\left(r_{i}, \mathbb{E}\right)$ underlies the validity of Hilbert's Theorem. This fact was brought out quite clearly ty lizgata, who gave satisfactory ariswers to Hilbert's l4th Problem, which is a natural gerierailization of Cayloy's Problem.
1.3.3. Theorem (Hildert). $S\left(r_{1}, r\right)$ is finitely-generatei for ait n ज्ट aII r.

Sketch of Pruof (from [8]). One first oi all has the Hilbert basis theorem: each ideal of R, the ring of polynomials on is finitely generated--for a proof of this fact, one may refer to Chapter 2, Theorem 2.9. Next, one introduces the Reynolds operators (i.e., averagirig over $\operatorname{SL}(n, \mathbb{C})$): if V is an $\operatorname{SL}(n, \mathbb{C})-$ module, then the submodule $V^{S L(n, \mathbb{C})}$ of invariants has a unique $S(n, \pi)$-invariant complement $V_{S L}(n, \mathbb{I})^{\circ}$ Alterna乞ively, one has
a projection

$$
\begin{equation*}
R: V \rightarrow V^{S L}(n, \mathbb{C}) \tag{1.3.4}
\end{equation*}
$$

commuting with the action of $\operatorname{SL}(n, \mathbb{T})$. R is called the Reynolds operator, and could be represerited symbolically in a seductive (tut formal) way,

$$
R V=\int_{S L(n, \mathbb{C})} g v d g .
$$

By uniqueriess, one may deduce that, for I an ideai of $R^{S L(n, \mathbb{C})}=S(n, r)$,

$$
\begin{equation*}
(R / I R)^{S L(n, \mathbb{U})} \simeq R^{S L(n, \mathbb{C})} / I \tag{1.3.5}
\end{equation*}
$$

That is, $I \rightarrow I$ is an injection of the lattice of ideals of $R^{S L(n, \mathbb{C})}$ into the iattice of icicals of R. Hence, $R^{S L}(n, \mathbb{C})$. is Noetheriaft, by the Hilbert Basis Theorem. In farticular, the ideul $I_{m>0} R_{m}^{S L(n, \mathbb{C})}$ of $R^{S L(n, \mathbb{C})}$ is finitely generated, say by x_{1}, \ldots, x_{6}. One next proves by induction that monomials in the $x_{i}^{\prime} s$ generate each homogereous piece $R_{m}^{S L(n, \mathbb{a})}$ and therefon $R^{s L(n, \pi)}$ is finitely gerarated over \mathbb{C}.

It should be emphasized that Hilbert's proof pireceded and to a large extent motivated the introduction of chain conditions into ring theory and it should be remarked that the detailed structure of $S(2,6)$ vias the subject of E. Noether's thesis.

Finally, one rather interesting and tractable case is $n=2$, $r=4$. Here, it is known [8] that $S(2,4)=\pi[P, Q]$, where deg $P=2, \operatorname{deg} Q=3$. In fact, if $f(x, y)=a_{0} x^{4}+a_{1} x^{3} y+$ $a_{2} x^{2} y^{2}+a_{3} x y^{3}+a_{4} y^{4} \in V_{2,4}$, then Q is dafined via

$$
Q(f)=\operatorname{det}\left(\begin{array}{ccc}
a_{0} & a_{1 / 4} & a_{2 / 6} \tag{1.3.6}\\
a_{1 / 4} & a_{2 / 6} & a_{3 / 4} \\
a_{2 / 6} & a_{3 / 4} & a_{4}
\end{array}\right)
$$

viz. as the determinant of a Hankel matrix: Moreover, the SL($2, \pi)$ action on the space of 3×3 non-singular Hankels can te obtained ir terms of control-theoratic scaling actions on the space of Hankel, as in Professor Brockett's lecture. Now, the structure of $S(2,4)$ (indeed of $S(2,2 g+2)$) is aiso of interest in Riemann surface theory. That is, any elliptic curve \mathscr{E} is a 2.-shested branched cover, with 4 branch points of pl. In this way, the moduli space of elliptic curves can be represented as the inoduli space of 4 unordered points on $p l$, up to equivalence under projective automorphisms, i.e., the grotip $G L(2, C) /\{\alpha I\}$ acting on lines in \mathbb{T}^{2}. Notice, however, that 4 lines in \mathbb{C}^{2} determine, up to a multiplicative constant, a homcgenecus quartic polynomial $f(x, y)$, i.e., a point $f \in V_{2,4}$, while projective equivalence corresponds to equivalence modulo $G!(2, \mathbb{I}) \supset \operatorname{SL}(2, \mathbb{I})$.

In unis wey, an analysis of the $I^{*}=$ \{iid action on $V_{2,4} / S L(2, t$. ieads to the ronstruction of the (moduli) space of all eiliptic arres. By counting dimensions one sees that such a space must ave dmension ?, for din $\mathbb{C}^{*}=$? and tr.deg. $\mathbb{C}[P, Q]=$ l. This wistence of this one parameter family of elliptic curves (these :ur:i cut to be points in filitustrates the fact that there are - Go many confurrally distinct yet topologicolly equivalent fienann curfaces. in fact, Riemann asserted that there are 3 g-3 paranEvers wirh describe all Riemann surfaces of genus $g>1$. Another rice extenstion by Mumford of the work of Hilbert and Nagata enables cre, for example, to constriut such modili spaces and therefore to speak about their dimersion.

We remark that such problems arise frequently in control treory; for example, in the construction of moduli and canonical forms for linear dynamica! systems. Here, une might ask, for fixed n, m, and p and for an arbitrary minimal triple (F, G, H) of these dimensioris: do there exist cancnical forms ($F_{C}, G_{C}=H_{C}$) for the action of $G \ell(n)$, via change of basis in the state space, such that the entries of $\left(F_{C}, F_{C}, H_{C}\right)$ are aigebraic in (F, G, H) ? Since the entries of $\left(F_{C}, G_{C}, H_{C}\right)$, as it were, are invariant functions (for this $\mathrm{g} \ell(\eta)$ action) one might ask in particular for an explicit jescription of the ring of invariants. A description of the functions $f(F, G, H)$, invariant under the Glín) action or: rixed tensurs (F), vectors (G), and co-vectors (H), is well-known classicaliy [5]; viz. the ring of such f's is generated by the entries of the matrices, $H F^{9} G$! However, it turns out that, because of the geometry of the moduli space ($(F, G, H)!/ G 2(n)$--or, equivalently the geometry of the corresponding space of Hankel ratrices.--neither algebraic, nor even continuous canonical forms exist (see Professor liazewinkel's lectures).
[1] Birkoff, G.: A source Book in Classival Analysis, Harvard University Press.
[2] Dieudonre, J. A.: La theorie des invariants au $X I X \in$ siecie, Sem. Bourbaki, no. 395.
[3] Dieudonne, J. A.: 1974, The hiatorical deveiopment of alEeviraic geometry, Aner. Math. Monthly, October, 827-866.
[4] Gauss, K.: 1801, Disquisitions Arithneticae.
[5] Gurevich, G. B.: 1964, Poundations of the Theory of AlaeDexic Inverarts, P. Noordhoff, Groningen, The Netherlands.
 Stein Intajucis, Dover.
[7] Munford, D.: i975, cioves ad Pheir diacotions, Univ. of Michigan fress.
[8] Mumford, D., and Suminen, K.: 1970, Fratazuetion =0 the

[3] Postlethwate, J., and MacFarlane, A. G.: 1970, \therefore complex
 Eediack sucoms, Lecture Notes in Cortroi and Information Sciences, Vol. 12. liew York: Suringer-Verlay.
[10] Walker, R.: 1978, Algebraic Cumes, Gracuate Texts in Matnematics, Springer-Verlag.
2. MUDULES OVE? NOETHERIAH PIMSS AMD PRINCIPAL IDEAL DOMAINS
one of the fundamerta! steps in thn study of automata and ? incar system theory i= the introduction uf reduced, or minimal, Gailzations. These are doubly interesting, since they are uriaue up to isomorphisin and lead to an imolementation of the system using a minimum number of certain components.

We all know that in order to carry out such a reduction one Wrst take the subset of the state space consisting of the reachable states. As vie shall see when we study the realization thenty of linear systems, the size of the realization is directly ilated to the number of generators of the state module. If we, Aerefore, believe in the interest and applicability of linear rodels witr coofficients beionging to a ring-and there is good reason to do so-it is vital to know over which rings this reduztion process will lead to a physically realizable system (i.e., ore with a finitely generated state module) or, even better, to a smailer system (i.e., one with a state module having fewer generàtors).

2.1 Noetherian Rings and Modules: Fundamental Results

Let q be a commutadive ring.
O. 1.1 Definition. A module M is iloetherian if every submoulute解 M is finitely generated.

It follows, of course, that M itself is finitely generated. Since a ring can be viewed as module over itself, its subnodules baing the ideals, (2.1) subsumies the following.
?2.2 Definition. A ring R is Noetherian if every ideal is irvitelig generated.

We shall first prove some elementary properties of Noetherian medules, then show how they relate to Noetherian rings; we shall afterwards prove that a lot of the state modules we shall find in system theory fall into this category.

First of all, there is a characterization available for dontherian modules.
2.7. 3 Theorem. A moiule M is Nostherian if, and only if, wes stivetiy increasincs sequence of submocules

$$
N_{1} \subset N_{2} \subset \ldots \subset N_{i} \subset M,
$$

is finite.

Proci. issure first of all that M is Noetherian; then the sumodule $\because=N_{i}$ of H is finitely generated, and these generators lie in one of the N_{j} 's, which is therefore equal to all of iv.

Conversely, let it be a submodule of M, S the set of its finitely sererated subrionules; S is not empty, since it contairs ù. Let us show that it rus a maximal element: indeed, since 5 is non-emipty, we can choose a submodule N_{0} in S; if it is rot meximai, it is contained in a strictiy larger submodule i $^{\prime}$, which is itself either maximal or contäined in a strictly larger submoduie S_{2}, etc., the chain thus constructed reing finite by assumption, S contains a maximal element. Dut tios :aximal element must be N itself, for otherwise we would ada arather generator of N to $i t$, thereby constructing a larger finitely generated subnodule of N. N is, therefore, in S, nence firitely generated.

This property, very usefu? in practice, is called the

Proof. The relation $H \subset M$ for submodules being transitive, the case for surmodules follows directly from the definition of Woetherian modules (2.1.1).

Let $L=M / M$, and $L_{0} \subset L_{1} \subset \ldots$ be a strictly increasing sequence of subriodules of L; let $M_{0} \subset M_{1} \ldots$ be a sequence of representative elements of the equivalence classes in M (i.e., $\left.i_{i}=H_{i} / \mathcal{N}\right)$; it is strictly increasing. M being Noetheriar by assumption, (2.1.3) implies that the sequence is finite. So the original sequence $\left\{L_{i}\right\}$ is finite too, and L is Noetherian.

This iemma has a converse:
2.1.5 Lerma. Ewpose we have three modules and module homomorprisms $L \mathcal{G} \| \xrightarrow{h}$ Nuch that im $g=k e r n$ (we thus have what is caivean on exace sequence;. Then if both L and if are Noetherian, so is 14.

Proof. Let $L^{\prime}=i m g, H^{\prime}=i m h .(1.4)$ implies that L^{\prime}, isomurphic to a oubtient module of L, and N^{\prime}, being a submedule of N, are both Noetherian. We can write an exact
seruance

$$
0 \rightarrow L^{\prime} \rightarrow N_{i} \rightarrow N^{\prime} \rightarrow 0 .
$$

Let $M^{\prime} \subset M$ be a submodule of M; we must show that M^{\prime} :s fintely generated. He have an exac: sequence

$$
0 \rightarrow L^{\prime} \cap M^{\prime} \rightarrow M^{\prime} \rightarrow M^{\prime} \text { 活 }^{\prime} \cap L^{\prime} \rightarrow 0
$$

Ans $L^{\prime} \cap M^{\prime}$ and $M^{\prime} M^{\prime} \cap I^{2}$, summodules respectively of L^{\prime} and i', are Ncetherian; they are, thertfore, finitely generated, by say $y_{i} ;$ and $\left\{n_{j}\right\}$ respectively.

Let x be an element of ! 1^{\prime}; its image in $M^{\prime} / M^{\prime} \cap I^{\prime}$ is $x_{j} n_{j} \quad x_{j} \in R$. lf $\left\{\bar{n}_{j}\right\}$ designates a set of pre-images of inj in M^{\prime}, then the elemont $x-\sum x_{j} \bar{n}_{j}$ of M^{\prime} is in the kernei of the projection $M^{\prime} \rightarrow H^{\prime \prime} M^{\prime} \cap L^{\prime}$.

Since trie sequence is exact, it is in the image of the injection $L^{\prime} n M^{\prime} \rightarrow M^{\prime}$, so $x-\sum x_{j} \bar{\Pi}_{j}=\Sigma y_{i} \varepsilon_{i}$, and

$$
\ddot{i}=\Sigma y_{i} \ell_{i}+\Sigma x_{j} \bar{n}_{j} .
$$

$1 \because \quad$ is, therefore, generated by $\left\{\varepsilon_{i}, \bar{n}_{j}\right\}$, wich is a finite set. 2.1.7 Corollary. A finite direct sur of loethemian modules is $\therefore=0$ rani.

Froof. It follows directly from (2.1.5) by induction on the nuriber of direct summarids.
ive are now in a position to prove the important
D.1.8 Theorem. Let R be a Hoetnerian ming. Then a module M is Wethenian i_{f}, and only if, it is finite i! gererated.

Froof. It follows directily from definition 2.1.7 that a :ostherian module is finitely generated. Conversely, let M_{i} be a initely cenerated module; we have an exact sequence

$$
0 \rightarrow N \rightarrow F \rightarrow M \rightarrow 0
$$

Where F is the free R-module built on a set of generators of i; F is therefore a finitely generated free module over a Dotherian ring, nence, by (2.1.7), a Notherian module. M, beirig a quotient of a Noetherian module, is itself Noetherian ty (2.1.4) (note that this also implies that in is Noetherian, nerce finitely generated).

2.2 Examples of Noetherian Rings

In particular, the state module of a finite dimensional lirair system, being finitely generated, will be Hoetherian whenever the ring is Noetherian. It becomes now urgent to exhibit some Noetheriar rirgs, and to show that a large number of the rings we encounter in syster-theoretic applications fali indeed ir that category.
2.C.1 Efinition. A Prinoipat rdeai romain (F.f.D.) is an シñavai atue. Ey a simgio elerent).

Since each ideal in a P.I.D. has a singie generator, a P.I. is ar. exampie of a Noetherian ring; so \mathbb{Z}, for example, is Woetherian; and 50 is a field, of course. We can greatly enlarge the ciess by using the following:
2.2.2 Hilbert Basis Theorem. A polynomial rina in firitely lary un mown over a liotherm ping is also hoetrorion.

Proof. Since $R\left[x_{1}, \ldots, x_{n}\right]=k\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$, it is clear by induction that we nasd oniy consider the case of polynomial ring in a single incterminate $R[x]$.

Let I be an ideal in $R[x]$, and A_{j} the set of leading coefficients of polyncmials of degree i in I. Since I is an ideal, A_{i} is an ideal ton; furthermore, $f(x) \in I \Rightarrow x f(x) \in I$, so

$$
A_{0} \subset A_{1} \subset \cdots
$$

R being Noetherian, this sequence of ideals becomes eventually constant; let A_{n} be the maximal elenent for this chain. By a second application of the Noetherian assumption, we get that each A_{i} is generaied by a finite set of generators $\left\{a_{i j}\right\}$, leading coefficients of a set of polynomials $\left\{f_{i j}\right\}$ of degree i in I.

Let us show that these poljriomials $\left\{f_{i j}\right\}$ generate I, and corisider an arbitrary polyncmiai $g(x)$ in I :

$$
g(x)=g_{m} x^{m}+\ldots+g_{1} x+g_{0}
$$

We shall see that there exists a linear combination $h(x)$ of the $f_{i j}(x)$ such that $g(\lambda)-h(x)$ be of strictly lower degree
than $g^{\prime}(x)$, thereby establishimg the desired result by induction: Since A_{n} is the maximal ideal in the chain, $g_{m} \in A_{m} \subset A_{n}$, so

$$
\begin{aligned}
g_{m} & =\sum_{j} r_{j} d_{n j}, \\
n(x) & = \begin{cases}x_{j} \in r_{1}\left(\sum r_{j} f_{n j}(x)\right) & \text { if } m>n \\
\sum_{j} f_{m j}(x) & \text { otherivise }\end{cases}
\end{aligned}
$$

is of degrec m and has leading coefficient g_{m}. Thus $h(x)$ is - linear combination over $E[x]$ of the $f i j(x)^{\prime} s$, and $g(x)-$ $n(x)$ has strictly lower degree.

Polynonial rings over fields or over the integers are therefore ivetherian.

2.3 On Duality and the Structure of Modules over Notiherian Rings

As an exercise in makiag use of the Noetherian assumption,
let us establish two interesting results abo!it Noetherian modules. The first one will be a struczure theorem analogous in spirit to the jorcan-Hblder theorem ror groups (aiter all, groups are but Codules over the Noetherian ring ZI!) The second will give us an introduction to duality theory useful for future lectures in system theory.
2.3.1 Theorem. Lat. R be a Noetherian ring and M a finitelis rnarated \mathfrak{k}-inodule. . Then there is a sequence of submodules

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M
$$

Proof. Let S be the set of submodules of M for which
ae trevrom hoids. We can select out of S a sequence of strictly increasing elemerts

$$
0=M_{0} \subset M_{1} \subset \ldots \subset M_{r} \subset \ldots
$$

Ey the Noetrerian assumption, such a sequence is necessarily ;inite and encs with a maximai element, say M_{r}. If $M_{r}=M$, nort we are done. Otherwise, let us show that $N=M / M_{r}$ contains a Subrodule isomorphic to R / p for some prime ideal p.

This :ill be achieved by a second use of the Noetherian
assumption. But first note that for a modvie to contain a submodule isororphiz to R/p is equivalenc to saving that p is the amihilator of stome elemerit x of the modile (i.e., $F=\{r \in R \mid r x=0!):$ the map

$$
r \mapsto r x
$$

which sends $?$ Gito the cyclic submodule generated by x has p for kerne!, herce rhat cuciic submodule is isomorpric to R/p; conversely, if tre module contains a copy of Rip, then p is the annihilator of its generator.

Let, therefore. \ddot{r} be the family of ideais other than R which annibilate elements of $i v$, and, once again, let I be a maxiral elerent if $\quad{ }^{\circ}$. Let us frove thãt i is prime. Say x is the element in is annihilated by I; then, if abe I but b\& I, $D x \neq 0$; any element in I anninilates x, hence $b x$ toc, so I contains the amrihilator of $b x$ and is equal to it, being a maxima ? elerient in F. But ab E I $\Rightarrow a b x=0$: a annirilates $b x$, hence is in $I . I$ is therefore prime.

We can now return to the main line of the argument: $N=M_{1}^{\prime M}$, consisns a submodule isomoruhic to R/p, which corresponds to a submodule N^{\prime} of M containing M_{r} and such that ir/M, be isomorphic to R / p; the sequence

$$
0=M_{0} \subset H_{i} \subset \ldots \subset M_{r} \subset N^{\prime}
$$

is therefore a strictiy increasing sequence in S, contradicting the maximality cí M_{r}.
2.3.2 Definition. The duai M of a modube M over a ring $i s$ the set uf moziule-homomorpitisms fiom M into R.

As lons as we iimit ourselves to free modules over an integral domain, the theory remains the same as that of vector-space duality: the dual of a finitely generated free module is a finitely generated free module of same rank, and the proofs are the same. When the module is not free anymore, the issue, of course, becomes different; we however still have:
2.3.3 Theorem. Let R be a Noetheman integrai domain," Ma finiteciug anerated R-madule. Then M^{*} is finitoly generated as \imath^{2} : R-roduze too.

Proof. il, beirg finitely generated, is a quotient of a finitely generated fref module l. But Hom (\circ, R) is a concravariant left exact functor. Hence

$$
L \rightarrow M^{M} \rightarrow 0 \Rightarrow 0 \rightarrow M^{*} \rightarrow L^{*}
$$

zri $\because *$ is a submodule of a finitely generated free module. A. Bow: from the Noctherian assumption and (2.1.8) that N* :s a inetherian module, hence finitely generated.
2.3.4 Definition. The 登iti Cimonsion of a ring R is the length r. \because nenest chain

$$
p_{0} \subset p_{1} \subset \ldots=p_{n} \neq R
$$

(Sin inais in R (infinite if theve is no manai chain).
U. 3 Definition Let R be a finito? aremand ingebra over $\therefore \because$ k (i.e., a gutient of a potenomial ping over k),

 \therefore as a rasoor-spaue cyer k.
 id(M) $\leq i=$ there exista a proigetive neso?ution of M

$$
0 \rightarrow P_{n} \rightarrow \ldots \rightarrow P_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0
$$

By a projective module is meant a module P which is comFiomented in a free module, i.e., orie for wnich there exists a spliteing

$$
M \simeq P \oplus Q
$$

Wre \because is free. Note that a module is projective if, and only it may be realized as the image of a projection operator

$$
M \rightarrow P
$$

cefired on a free module. One can check that if P is itself :riftely generated, then M may be taken to be finitely generated an free.
2.3.7 Theorem. In the case of polynomial rings over a field, \therefore the notions of dimension arc equivalent.
Reck. In particular, a poiynomial ring has finite Krull dimenSan. However, Negata has given an example of a Noctherian ring $\because t h$ irfinite Krult dimensior.

les Cver a Principal Ideal Domain

ne ring not oniy is Nontherian but is a P.I.D., then aj' even more about the generators of a submodule:
eorem. Event submadule of a finitet gererated free ar.I.D. R is a fise R-madule. Give finitel.y gensumbtion is not necescary but makes the proof shorter).
f. Let L be a free module, $\left\{e_{i}\right\}$ a basis for L, corresponding coordinate functions. Let M be a subL. The image of M in R by projection p_{i} is an n, which is principal by assumption, say R_{i}. Let eiement of M such that $p_{i}\left(n_{i}\right)=a_{i}$ (if $a_{i}=0$ take
us show that $\left\{m_{j}\right\}$ generates M : if $m \in M$ and $i^{a_{i}}$ let $m^{\prime}=\sum r_{j} l_{i}$; then $m-m^{\prime}$ projects to 0 on rdinate, hence is 0 .
hermore, the $\left\{m_{i}\right\}$'s are free:
$\sum r_{i} m_{i}=0 \Rightarrow p_{i}\left(\sum r_{i} m_{i}\right)=0 \Rightarrow r_{i}{ }^{a}=0, \forall i$
is different from 0 for $m_{i} \neq 0$, it foliows that
?finition. Ar element $m \neq 0$ in M is said to have there exists $r \neq 0$ in R such that $r m=0$. If no in M has toision, then M is called torsion-free.
mma. A finitely generated torsion-free moc̉ule M over "al domain R can be embedded in a finitely generated ile.
jf. Let K de the quotient field of R, and let $\left.\overline{a_{n}}\right\}$ be generators of M. Let $\left\{b_{1}, \ldots, b_{\ell}\right\}$ be a basis vector space $M \theta_{\mathrm{K}} \mathrm{K}$ over K . Theli

$$
a_{i}=\sum\left(r_{i j} / s_{i j}\right) b_{j}, \quad r_{i j}, s_{i j} \in R
$$

be a comsion multiple of the s_{ij} 's. Then

$$
\left\{b, / s, \ldots, b_{q} / s\right\}
$$

-ang lifearly indpandent over K genorates a free p-module \because :on contains M.
 $\because \therefore \therefore \therefore$, is free.

Propf. This is a direct consequence of (2.4.3) and (2.4.1).
Eang. The finttely geremated assumption is crucial. Indeed, Su zutient field K of R is a torsion free R-module, but s nut free.

The structure theorem ese established for Noetherian rings c?se takes à more powerful form:
 Rif,$~ p$ pume.

The structure theorem for finicely-generated modules over a F.l.d. is very powerfal in studying the aigebra of linear maps zrs, of course, linear systems defined on such nodules. Suppose, or example, that we wish to study the linear system

$$
\begin{align*}
x(t+1) & =A x(t)+E u(t) \\
y(t) & =C x(t) \tag{2.4.7}
\end{align*}
$$

wnere $u \in \mathbb{Z}^{(m)}, \quad y \in \mathbb{Z}^{(p)}, \quad x \in M$ a finitely-generated module aen \mathbb{Z}. Of course, (A, B, C) we assumed to be \mathbb{Z}-linear maps. If (2.4.\%) is coservable, then M is necessarily free. For, seervability implies that 11 may be imbeded, by successive Inservations, ir the direct sum

$$
\stackrel{\infty}{i=1}_{\infty}^{\infty} \mathbb{Z}(p)
$$

and, therefore, has no non-zero torsion elements.
A's à second illustration, consider an R-linear map

$$
P: R^{(n)} \rightarrow R^{(n)}
$$

wich is a orojection, i.e. $P^{2}=P$. If R is a field, then it is a significant fact in linear algebra that one may choose a basis of $R^{(n)}$ so that the mairix of P, with respect to this easis, nas only l's and n's on the diasoral and a's elsewhere. Tits is not true for all R, but we can give a proof if R is
a P.I.D. For, consider $M=P\left(R^{(n)}\right) \subset R^{(n)}$ it is finitely generated, as the inage of $R^{(n)}$, and has no torsion, so M must be free and one can chouse a basis:

$$
\operatorname{span}\left\{x_{1}, \ldots, x_{r}\right\}=M, \quad \text { over } R
$$

Fortunately, one can actually extend this basis, since the same statements are valid for $N=$ imace (I-IP) and $N \cap M=(0)$, $N+M=R^{(n)}$.

This basic result is also true for polynomial rings over a field but is a mucn deeper resuit than one might first suspect-it used to be known as the Serre conjecture, and has been proven b.: Quillen and Suslin.

As a firial observation, we suppose given a R-linear map

$$
T: R^{(n)} \rightarrow R^{(l)}
$$

ard ask whether T is irijective, Passing to the fraction field K of R, one has an exterded K-linear map

$$
\begin{aligned}
& T_{K}: R^{(n)} \otimes_{R} K \rightarrow R^{(l)} \otimes_{R} K \text {, or simply } \\
& T_{K}: K^{(n)} \rightarrow K^{(l)}
\end{aligned}
$$

a K-linear map of K-vector spaces, where the question is ariswered quite easily. Since a nori-zero element of M is zero in $M \otimes_{R} K$ orly if it is a torsion element, for a map of free modules over a F.I.D., T is injective if, and only if, T_{K} is injective.
2.4.5 Example. Consider $T: \mathbb{Z} \rightarrow \mathbb{Z}, T(z)=2 z$. Then $T: \mathbb{Q} \rightarrow \mathbb{Q}$ is both injective and surjective, while T itself is only injective.

This section discisses first some of the elements of the treju difforentiatle ranifolds, ther cimousses that powerful toj" "partitions of unity" and then proceeds to saj a few things adot voctor bundies. One particular family of manifolds, the ress" en manifulds, have proved to be very important in linear susteni theory and one parcicular vector bundle over the manifolds Er.joys a similar status. The last two almost telegraphic subsecBons are intended to indicate that tris prenomenon is not pezuliar in system theory: these manifolas and burdles play an ecjally distinguished role in the general theory of vector bundles Eself, a feat wioh may neip to understand the role they play in systemi theory.

There are many books and and lecture notes in which the theory of manifolds and vector bundles is clearly explained. sume of the present writer's favorites are:
M. F. Atiyah, K, Harvard Lecture Notes, Fall 1964. (Published by Eenjamin)
S. Helgason, Ditienential nometm, tio groups and symnetric spaces, Acad. Pr., i978. (on press)
F. Hirzebruch, Introduction to the theory of vesto burdies and K-theorg, Lectures at the University of Amsterdam and Bonn, University of Ansterdam, 1965.
D. Husemoller, Pibre Dundles, McGraw-Hill, 1956.
J. U. Milmor, J. D. Stasheff, Characteristio closses, Princeton University Press, 1974.

The last one named is especially recommerided. Finally at a more introductory level recommended

1. Auslander, R. E. Mackenzie, Introustion to differenitiable manifolds, Dover (repiint) 1977.

3.: Differentiable Manifolds

$\therefore .1 . i$ Definition (Differeritiable maps). Let $U \subset \mathbb{R}^{m}$ and $\because=P^{n}$ be upen subsets. A mapping $\ddagger: U \rightarrow V$ is differentiable if the coordinates $y_{i}(f(x))$ of $\phi(x)$ are differentiable functions of $x=\left(x_{1}, \ldots, x_{m}\right) \in U \subset \mathbb{R}^{m}, \quad i=1, \ldots, n$. Here a function is said to be differentiable if all partial derivatives of all
orders exist and are cortinuous. The differentiatle mapping ϕ if it is $1-1$, onto and if ϕ^{-1} is also diffcrentiable.

3,1.2 Uefinition (Charts). Let M be a Hausdorff tofological space. in aer on is a pair $(1, t)$ consisting of an open subser U of M and a homemorphism $\&$ of U ento some open subset of an R^{m}; the number m is called the dimension of the chart.
3. ․ 3 Definition (Differentiable ranifulds). l.et M be a Heusdorff space. A $\dot{u} \dot{\sim}$ a collection of epen charts $\left(U_{i}, \phi_{i}\right)$: $i \in I$ such that the following conditions are satisfied

$$
\begin{equation*}
{ }_{i}^{U} U_{i}=N \tag{3.1.4}
\end{equation*}
$$

for all $i, j \in I$ the mapping $\phi_{j} \cdot \phi_{i}^{-1}: \phi_{i}\left(U_{i} \cap U_{j}\right) \rightarrow$

$$
\begin{equation*}
{ }_{j}\left(U_{i} \cap U_{j}\right) \text { is a diffeomorphism. } \tag{3.1.5}
\end{equation*}
$$

The collection $\left(U_{i}, \phi_{i}\right), i \in I$ is maximal with
respect to properties (3.1.4) and (3.1.5) (3.1.6)
A Anerevitibje maniciz is a Hausdorff töpological space together with a differentiible structure.

Localiy it is just like R^{n}, but globaliy not. The charts permit us to do (locaily) calculus and analysis as usual. It is possibie that ore and the sarie topological space admits several irequivaient differeniiabie structures where inequivalent means "non diffecmornhic"--a notion which is defined below in 3.2.

If M is connected as a topological space, all the charts $\left(U_{i}, \dot{\psi}_{i}\right)$ nccessarily have the same dimerision which is then also (by definition) the dimension of the differertiable manifold M.

Ofter a differentiable structure is defined by giving a collection of charts $\left(U_{i}, w_{i}\right)$ such that only (3.1.4) and (3.1.5) are satisfied. Then there is a unique larger collection of criarts such that also (3.1.6) holds. (Easy exercise.)
3.7.7 Example: The circle. Consider the subset of \mathbb{R}^{2} defined by

$$
\begin{equation*}
s^{1}=\left\{\left(x_{1}, x_{2}\right) x_{3}^{2}+x_{2}^{2}=1\right\} \tag{3.1.8}
\end{equation*}
$$

Lei $u_{1}=\left\{x \in s^{1} \mid x \neq(0,-1)\right\}, u_{2}=\left\{x \in S^{1} \mid x \neq(0,1)\right\}$.

R^{1}
Now define $\phi_{1}: U_{1_{1} \rightarrow R_{1}}$ by $\phi_{1}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{1+x_{2}}$ and $\phi_{2}: U_{2} \rightarrow R^{i}$
by $\dot{\psi}_{2}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{1-x_{2}}$. These are both homeomorphisms. The inverse of o_{1} is given by the formula $x \mapsto\left(x_{1}, x_{2}\right)$ with $x_{1}=\frac{2 x}{x^{2}+1}, \quad x_{2}=\frac{1-x^{2}}{1+x^{2}}$ and the inverse of φ_{2} by the very similar formula: $\quad x \rightarrow\left(x_{1}, x_{2}\right), \quad x_{1}=\frac{2 x}{1+x^{2}}, \quad x_{2}=\frac{x^{2}-1}{1+x^{2}}$

The map $\phi_{2} \cdot \phi_{1}^{-1}: \dot{\phi}_{2}\left(U_{1} \cap U_{2}\right)=\mathbf{R}^{l} \backslash\{0\} \rightarrow \phi_{2}\left(U_{1} \cap U_{2}\right)=$ $\left.P^{\prime} \backslash 0\right\}$ is given by $x \rightarrow x^{-1}$ and hence is a diffeomorphism, so that $\left(U_{1}, \neq 1\right)$ and $\left(U_{2}, *_{2}\right)$ do indeed define a differentiable structure on S^{l}.
3.1.9 Trivial Example: \mathbb{R}^{n} Itself. Let $M=\mathbb{R}^{n}$ and define a chart (U, ϕ) by $U=M=\mathbb{R}^{n}, \phi=$ identity map $: U \rightarrow \mathbb{R}^{n}$. This one element collection of charts satisfies, of course, (3.1.4) and (3.1.5), and hence defines a differentiable structure on R^{n}.
 entiabie ranifolds ofren arise. Namely the topological space M is given as a "smocith" subset of some \mathbb{R}^{n} and the differeritiable structure is induced from the natiril differentiable structure of F^{n}. Indeed, apart from a factor 2 the maps ϕ_{1} and ϕ_{2} of example 3.1.7 anove arise by projecting the circle from $(0,-1)$ orito the ifine $x_{2}=1$ in \mathbb{R}^{2} and by projecting thie circle from $(0,1)$ onto the line $x_{2}=i$ in R^{2}.

Abstractly a smoothly enbedded differentiable manifold of diriension m is a subset $M \subset \mathbb{R}^{n}$ (for some n) such that for each $x \in M$ there is a differentiable map $\psi: y \rightarrow R^{n}$ defined on some open subset $\forall \subset \mathbb{R}^{m}$ such that

$$
\begin{align*}
& \text { ifaps } v \text { honeomorphically onto some } \\
& \text { open neighoornooa } U \text { of } x \text { in } M \tag{3.1.1i}\\
& \text { for eaci } y \in \because \text { the matrix }\left(\frac{\partial \psi i}{\partial y}(y)\right), \\
& i=1, \ldots, n, \quad i=1, \ldots, m \text { has rank. m. } \tag{3.1.12}
\end{align*}
$$

It is not difficult to prove (using the implicit function theoren) that the pairs $\left(\mathrm{J}, \psi^{-1}\right)$ for varyirig x now define a differentiatle structure on M i i.e., that these pairs constitute a collection of charts which satisfy (3.1.4) (3.1.5). lnversely it is a theorem (whitney) that every differentiable manifolid with a countable vasis arises in this way (up to diffeomorphism).
3.1.13 Constructing differentiable manifolos 2. Gluing.

A second bery fre?uently used method of obtaining à differentiable manifold is by a gluing procedure. Suppose that we have for each i in some index set I (often a finite set) some open set $u_{i} \subset R^{m}$. Suppose moreover that for each $i, j \in I$, $i \neq j$, there are defined open subsets $U_{i j} \subset U_{i}$ and $U_{j i} \subset U_{j}$ and a diffeomorphism $\uparrow_{i j}: U_{i j} \rightarrow U_{j i}$. Suppose more over that the following compatibility conditions hold

$$
\begin{aligned}
& U_{i i}=U_{i}, \quad \phi_{i j}=\text { identity for all } i \in I \\
& \text { and for all } i, j, k \in I
\end{aligned}
$$

$$
\begin{gather*}
u_{i j} \cap{ }_{i, j}^{-i}\left(u_{j k}\right)=u_{i k} \text { ard } \phi_{j k} \cdot \phi_{i j}=\phi_{i k} \text { on } \\
u_{i, j} \cap \psi_{i j}^{-i}\left(u_{j k}\right) . \tag{3.1.14}
\end{gather*}
$$

(Sote that this implies that $\phi_{i j}=\frac{-1}{-1}$). Then we define a topoiugical space 11 by taking the disjoint urion $u!U_{i}$ and inen identifying $x \in U_{j}$ with $y \in U_{j}$ iff $y=\phi_{i j}(x)$, $x \in U_{i j}, y \in U_{j i}$. This is an equivalence relation because of (3.3.14). Let $: 4$ be the topolugical space U!L' $/ \sim$ with the Satient iopology, where \sim denotes the equivalence relation just defined.
l.et $\phi_{i}: U_{i} \rightarrow U!U_{i} \rightarrow U U_{i} ; \sim$ be the obvious map. Suppose that M is housdorfi (this is not automatically the case), then the $\left(U_{i},{ }_{i}\right)$ are a collection of charts satisfying (3.1.4) ard (5.?.5) so that they define e differentiable structure on M.
$\therefore . i .15$ Examie: real n-dimensional projective sjace. Let $i=\{0,1, \ldots, n\}$ and for each $i \in I$ let $U_{i}=\mathbb{R}^{1!}$, ard for each $i \in I$ let $\alpha_{i}: U_{i} \rightarrow \dot{K}^{n+1}$ be the emoedding $a_{i}\left(x_{1}, \ldots, x_{n}\right)=$ $\left(x_{1}, \ldots, x_{i}, 1, x_{i+1}, \ldots, x_{n}\right)$. Label the courdinates of R^{n+1} by $0, j, \ldots, n$. Thus $a_{i}\left(u_{i}^{n}\right)=\left\{y=\left(y_{0}, \ldots, j_{n}^{\prime}\right\} \in \mathbb{R}^{n+1} \mid y_{i}=1\right\}$. Let $i, j \in I, \quad i \neq j$ and define $u_{i j}$ as $a_{i}^{-1} V_{i j}$ where $v_{i j}=$ $\left\{y \in R^{i+1} \mid y_{i}=1, y_{j} \neq 0\right\}$, and define $\phi_{i j}: U_{i j} \rightarrow U_{j i}$ as the composite $x_{j}^{-1} \cdot \psi_{i j} \cdot \phi_{i}$, where $\psi_{i j}: v_{i j} \rightarrow V_{j i}$ is defined by $\psi_{i j}\left(y_{0}, \ldots, v_{n}\right)=\left(y_{j}^{-1} y_{0}, \ldots, y_{j}^{-1} y_{n}\right)$. (Note that indeed $\forall_{i j}\left(V_{i j}\right)=V_{j i}$, so that $\phi_{i j}\left(U_{i j}\right)=U_{j i}$.

The compatibility conditions (3.1.14) hold and the topological space M is Hausdorff. Thus then giuing data define a cifiarentiable manifold which is denoted rri(R) and called real r-dimensional projective space.

Consider the differentiable manifold $x=\mathbb{R}^{n+1} \backslash\{0\}$. For each $y \in x, y=\left(y_{0}, \ldots, y_{n}\right)$ chonse an i such that $y_{i} \neq 0$. iow define $\pi: x \rightarrow \mathbb{P}^{n}(R)$ by assigning to y the equivalence cliss of $x_{i}^{-1}\left(y_{0} y_{i}^{-1}, \ldots, y_{i-1} y_{i}^{-1}, ?, y_{i}, r_{0} y_{i}^{-1}, \ldots, y_{11}^{y_{i}^{-1}}\right)$. Note that
$\because(v)$ does not depend on the choice of i. It is now an easy exercise to check that $x(y)=\pi\left(y^{:}\right)$if and only if there is an $\therefore \neq 0$ such that $y_{i}^{\prime}=i y_{j}, i=0, \ldots, n$. Thus, the construction above defines as a differentiable manifold structure on the set of all lines through the origin of R^{n+1}.
3.1.16 Grassmann manifolds. Let $1 \leq k<n, k, n \in N$. Then $\mathscr{B}_{k, n}$ is by definition the set of all k-dimensional subspaces of R^{n}. This sec can be given a differentiabie manifold structure in a ranner rather similar to the one used above in (3.1.15). For expilcit details see section 4 of this chapter.
3.1.17 Morphisms of manifolis: differentiable marpings. Let enf N be tivo differentiabie manifolds. Let $\left(U_{i}, \phi_{i}\right)$ and $\left(i_{j},,_{j}\right)$ be collections of charts for M and N respectively such that (3.1.4) aná (3.1.5) hold. A map d: $M \rightarrow i$ is a \cdots nesm of differentixble manifolds or a differentiable ソrevis; if for all $i \in I, j \in J$ the map

$$
\phi_{j} \cdot \phi \cdot \phi_{i}^{-1}: \phi_{i}\left(u_{i} \cap_{1} \phi^{-1}\left(V_{j}\right) \rightarrow \phi_{j}\left(V_{j}\right)\right.
$$

is a differentiable map in the sense of 3.1 .1 above. A differentiable mapping ϕ which is $\overline{T-1}$ and ento and such that ϕ^{-1} is also a differentiable mapping is called a diffeomophitism.
S.1.18 Example. Give $x=\mathbb{R}^{n+1} \backslash\{0\}$ the differentiable structure defined by the one element collection of charts $U=X$, . $\theta=$ identity. Then $\pi: X \rightarrow \mathbb{P}^{n}(R)$ as defined in example 3.l.15 above is a differentiable mapping.
3.1.19. Differentiable map and gluing data. Supose the two differentiabie manifolds M and N have been obtained by means of the procedure discussed above in 3.1.13 from the local pieces u_{i} ard patching data ${ }_{7}{ }_{i . j}$ (resp. local pieces V_{k} and patching data $\left.\psi_{k i}\right)$. Then a frequentiy used method of specifying a differentiable map $a: M \rightarrow \mathbb{N}$ is as follows. For each i and k let there be given an open subset $U_{i k} \subset U_{i}$ and a differentiable map (in the sense of 3.1.1)

$$
\alpha_{i k}: U_{i k} \rightarrow V_{k}, \quad U_{k} U_{i k}=U_{i}
$$

Juppose that the following compatibility condition holds where appropriate

$$
\begin{equation*}
{ }_{i k \ell} \cdot \alpha_{i k}=\alpha_{j 2} \cdot \phi_{i j} \tag{3.1.20}
\end{equation*}
$$

i.e. if $n \in U_{i k}$ and $y \in U_{j \ell}$ and $\phi_{i j}(n)=y$, then $\sim_{i k}(n) \in V_{k}, \alpha_{j \ell}(v) \in V_{\ell}$ and $\psi_{k i}\left(\alpha_{i k}(n)\right)=\alpha_{j k}\left(K_{i}\right)$. Then the \therefore ik. conbine to define a differentiable map a: $M \rightarrow$ is as is easily checked.
3.1.21 Exame?e. Consider pl(q) as defined in 3.1 .15 above. !:cw defirie a: ipl(R) $\rightarrow R^{2}$ as follows

$$
\left.\begin{array}{l}
\alpha_{1}: U_{1}=\mathbb{R} \rightarrow \mathbb{R}^{2}, \quad x_{0} \rightarrow\left(\frac{2 x_{0}}{\left.\frac{1-x_{0}^{2}}{x_{0}^{2}+1}, \frac{-x_{0}^{2}}{x_{0}^{2}+1}\right)}\right. \\
\alpha_{0}: U_{0}=\mathbb{R} \rightarrow \mathbb{R}^{2}, \quad x_{i} \rightarrow\left(\frac{2 x_{2}}{x_{2}^{2}+1}, \frac{x_{1}^{2}-1}{x_{1}^{2}+1}\right.
\end{array}\right)
$$

Pecall that $U_{10}=\left\{x_{0} \in R \mid x_{0} \vec{f} 0\right\}, U_{01}=\left\{x_{1} \in R \mid x_{1} \neq 0\right\}$ and that the gluing map ϕ_{10} is given by $\Phi_{10}\left(x_{0}\right)=x_{0}^{-1}$. And we check that on U_{10}

$$
\begin{aligned}
\alpha_{0} \phi_{10}\left(x_{0}\right)=\alpha_{0}\left(x_{0}^{-1}\right) & =\left(\frac{2 x_{0}^{-1}}{x_{0}^{-2}+1}, \frac{x_{0}^{-2}-1}{x_{0}^{-2}+1}\right) \\
& =\left(\frac{2 x_{0}}{1+x_{0}^{2}}, \frac{1-x_{0}^{2}}{1+x_{0}^{2}}\right)=\alpha_{1}\left(x_{0}\right)
\end{aligned}
$$

so that the combatibility condition (3.1.20) is fulfilled, and the α_{0}, c_{1} do indeed cumbine to define a differentiabie map $\alpha: \mathbb{P}^{l}(\mathbb{R}) \rightarrow \mathbb{R}^{2}$. Note that $\alpha\left(\mathbb{P}^{1}(\mathbb{R})\right)=S^{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}\right\}$ $\left.x_{1}^{2}+x_{2}^{2}=1\right\}$. The map α is also $1-1$ and surjective onto S^{1} and the inverse map $\alpha^{-1}: S^{1} \rightarrow \mathbb{P}^{1}(R)$ is aiso differentiable. Thus α induces a diffeomorphism of P^{\prime} (R) with the circle $S^{\text {I }}$.
3.1.22. Products. l.et M and N be differentiable manifolds of dimension m and n respectively. Then the cartesian product ? \because. i has a natural differentiable structure defined as follows. Let $\left(U_{i}, \dot{\varphi}_{i}\right)$, $i \in I$ be a collection of open charts for M such that (3.7.4) and (3.1.5) hold; and let $\left(V_{j}, \psi_{j}\right), j \in J$ be a similar collection for N. Then the open sets $U_{i} \times V_{j}, i \in I$, $j \in J$ cover the topological space $M \times N$ and the maps ϕ_{i} and
ψ_{j} combine to define a homeomorphism $\phi_{i} \times \psi_{j}: U_{i} \times V_{j} \rightarrow$ $\dot{\phi}_{i}\left(U_{i}\right) \times \psi_{j}\left(V_{j}\right)=\mathbb{R}^{m} \times \mathbb{R}^{n}$. This defines a collection of charts $\left(U_{i} \times V_{j}, \oint_{i} \times \psi_{j}\right), i \in I, j \in J$ which satisfies (3.1.4) and (3.1.5) and hence defines a differentiade structure on $M \times N$.

If both M and N are embedded manifolds, cf. 3.1.10 abcio, say, $M \subset \mathbb{R}^{r}, N \subset \mathbb{R}^{s}$, then $M \times N \subset \mathbb{R}^{r} \times \mathbb{R}^{s}=\mathbb{R}^{r+s}$ is naturally again an embedded manifoid.

If both M and N are obtained by a local pieces and gluing data coristruction $M \times N$ can be described in a similar way. Inder. if $\left(U_{i}, U_{i j}, \psi_{i j}\right)$ describe M and $\left(V_{k}, V_{k \ell}, \psi_{k \ell}\right)$ the manifold ; tnen $M N$ is described by the local pieces and gluing data $\left(y_{i} \times V_{k}, U_{i j} \times V_{k \ell}, \phi_{i j} \times \psi_{k \ell}\right)$.
3.1.23. Example. $\mathbb{P}^{1}(R) \times \mathbb{P}^{1}(\mathbb{R})$. According to the recipe above $\mathbb{P}^{\prime}(\mathbb{R}) \times \mathbb{P}^{\top}(\mathbb{R})$ is obtained by gluing together four local pieces

$$
\begin{aligned}
U_{1} \times V_{1}=R \times R, U_{1} \times V_{0}=R \times R, \quad U_{0} \times V_{1} & =R \times R, \\
U_{0} \times V_{0} & =R \times R
\end{aligned}
$$

by means of the following six diffeomorphsims (and their inverses)

$$
\begin{aligned}
& i d \times \psi_{10}: U_{1} \times v_{10} \rightarrow U_{1} \times v_{01}, \quad\left(x_{0}, y_{0}\right) \rightarrow\left(x_{0}, y_{0}^{-1}\right) \\
& \phi_{10} \times i d: U_{10} \times v_{1} \rightarrow U_{01} \times v_{1}, \quad\left(x_{0}, y_{0}\right) \rightarrow\left(x_{0}^{-1}, y_{0}\right) \\
& \phi_{10} \times \psi_{10}: U_{10} \times v_{10} \rightarrow U_{01} \times v_{01},\left(x_{0}, y_{0}\right) \rightarrow\left(x_{0}^{-1}, y_{0}^{-1}\right) \\
& \phi_{10} \times \psi_{01}: U_{10} \times v_{01} \rightarrow U_{01} \times v_{10},\left(x_{0}, y_{1}\right) \rightarrow\left(x_{0}^{-1}, y_{1}^{-1}\right) \\
& \phi_{10} \times i d: U_{10} \times v_{0} \rightarrow U_{01} \times v_{0}, \quad\left(x_{0}, y_{1}\right) \rightarrow\left(x_{0}^{-1}, y_{1}\right) \\
& i d \times \psi_{10}: U_{0} \times v_{10} \rightarrow U_{0} \times v_{01}, \quad\left(x_{1}, y_{0}\right) \rightarrow\left(x_{1}, y_{0}^{-1}\right)
\end{aligned}
$$

Let us use this description to define a morphism $\alpha: \mathbb{P}^{1}(\mathbb{R}) \times \mathbb{P}^{1}(\mathbb{R})$ $\rightarrow \mathbb{P}^{3}(\mathbb{R})$ as follows. Recall that $\mathbb{P}^{3}(R)$ is built out of four pieces $W_{i}=\mathbb{R}^{3}, i=0,1,2,3 ; c^{f}$. 3.1.15. We define α by means of the maps

$$
\begin{aligned}
& \alpha_{1}: u_{1} \times v_{1} \rightarrow W_{3},\left(x_{0}, y_{0}\right) \rightarrow\left(x_{0} y_{0}, x_{0}, y_{0}\right) \\
& \alpha_{2}: u_{1} \times v_{0} \rightarrow W_{2},\left(x_{0}, y_{1}\right) \rightarrow\left(x_{0}, x_{0} y_{1}, y_{1}\right) \\
& \alpha_{3}: u_{0} \times v_{1} \rightarrow W_{1},\left(x_{1}, y_{0}\right) \rightarrow\left(y_{0}, x_{1} y_{0}, x_{1}\right) \\
& \alpha_{4}: u_{0} \times v_{0} \rightarrow W_{0},\left(x_{1}, y_{1}\right) \rightarrow\left(y_{1}, x_{1}, x_{1} y_{1}\right)
\end{aligned}
$$

It is now easy to check that the compatibility conditions 3.1.20 ire satisfied. For example that $\alpha_{2} \cdot\left(\right.$ id $\left.\times \psi_{10}\right)=x_{32} \cdot \alpha_{1}$ is Hustrated by the diagram below ithere x_{32} is the gluing diffeomorphism $W_{32} \rightarrow W_{23}$ of 3.1 .15 above and we use (for convenience) the eabedding $W_{i} \rightarrow R^{4}$ which we also used in 3.1.15).

$$
\begin{aligned}
& \left(x_{0}, y_{0}\right) \xrightarrow{\infty} \underset{i}{(}\left(x_{0} y_{0}, x_{0}, y_{0}\right) \leftrightarrow\left(x_{0} y_{0}, x_{0}, y_{0}, 1\right) \\
& \downarrow i d \times \psi_{10} \quad\left[x_{32} \quad\right] \\
& \left(x_{0}, y_{0}^{-1}\right) \stackrel{\alpha_{2}}{\rightarrow}\left(x_{0}, x_{0}^{y_{0}^{-1}}, y_{0}^{-1}\right) \rightarrow\left(x_{0}, x_{0} y_{0}^{-1}, 1, y_{0}^{-1}\right)
\end{aligned}
$$

The morfhism constructed above in such painful detail is a very weil known one. If we view $\mathbb{P}^{n}(\mathbb{R})$ as the set of all lines through the origin in $\mathbb{P}^{\mathrm{n}^{n+7}}$, i.e. as equivalerice classes of points in p^{n+1} under the eqidivalence relation $\left(x_{0}, \ldots, x_{n}\right) \sim\left(x_{0}^{1}, \ldots, x_{n}^{1}\right)$ iff $\quad \exists \lambda \neq 0$ such that $x_{i}^{\top}=\lambda x_{i}, i=0, \ldots, n$, then

$$
\mathbb{P}^{\prime}(R) \times \mathbb{R}^{1}(R) \rightarrow \mathbb{P}^{3}(\mathbb{R}) \text { is induced by }\left(\left(x_{0}, x_{1}\right),\left(y_{0}, y^{\prime}\right)\right) \rightarrow
$$

$\left(x_{0} y_{0}, x_{i}, y_{1}, x_{1} y_{0}, x_{1} y_{1}\right)$ and from this the explicit local pieces description above is easily deduced.
3.1.24. Submanifolds. Let M be a differentiable manifold of cimensior n. A subset $N \subset M$ is a submanifold of dimension $F \leq n$ if there exists for every $x \in N$ an open chart $\phi: U \rightarrow \mathbb{R}^{n}$ such that $\phi(x)=0$ and the $v=\left\{\left.x \in U\right|_{p+1}(x)=\ldots=\right.$ $\theta_{n}(x)=0$) together with the restriction of ϕ to V (as a map to \mathbb{R}^{p}) form a system of open chiarts for N. The differentiable manifold N is said to be a reguitar submanifozd of M $i f$ for every $x \in M$ there is a U as above such that moreover $V=N$ aU. (V as above).

An examp?e is $s^{\}}=\left\{\left(x_{1} x_{2}\right) \mid x_{1}^{2}+x_{2}^{2}=1: \subset \mathbb{R}^{2}\right.$. This is a regular summanifold Exe:cise: frove this.) This windirg line (with irrational wincing angle) on a truc is on exanple of a
nonregular submanifold. (The torus it is the differentiable nonregular subnanifold. (The torus T^{2} is the differentiable manifold $S^{l} \times S^{l}$ and P can be sean as a subset of $S^{l} \times S^{l}$ by mapping t to ($e^{2 i j t}$, $e^{2 \pi i \alpha t}$), a irrational; note that the inalued topology on F from this injection into T^{2} is not the original topology of $\mathbb{R} . \mathbb{N}=M$ is a rejular submanifold the induced topology on Ti is indees original icpologj' (belonging to the differentiable structure) of N.
3.1.25. Analytic manifolds. Similayly to differertiable manifolds one can define waletic maibiofs by repiacing everywhere differentiable map by analytic mac. Thus an analytic manifold is iocally like K^{m} arci ihe local coordinate transition mapping $\psi_{j} \cdot i_{i}^{-1}$, cf. 3.1.3, are analytic, i.e. they admit (locally) corvergent power series expansions.

To define compier manifoide repiace R by \mathbb{U} everywhere and require that the coordinate transitinn mapsings $\phi_{j} \cdot \phi_{i}^{-1}$ are helon:orphic.

3.2. Partitions of unity

A powerful and often used tool in differential topology are partitions of unity.
3.2.? Some defiritions and facts from general topology. Recall that a covering $\left\{U_{j}, i \in I\right\}$ of a topological space X is said to be locally finite if for every $x \in X$ there is an open neighbourhood V containing x such that $U_{i} \cap V \neq \phi$ for only finit many i. Recall also that a topological space is paracompact if every covering admits a locally finite refinement. A space is nomat if for all closed $A, B \subset X$ there are open $U, V \subset X$ such that $A \subset U, B \subset V$ and $U \cap V=\phi$. A localiy compact Hausdorff space with countable base is paracompact and every paracompact space is normal.
3.2.2. Convention. We shall assume from now on that every differentiable manifold is paracompact. This is not automatically the case, though it is not easy to construct counterexamples. If 4 is built up out of countably many $U_{i} \subset F^{m}$ by a local pieces and gluing data procedure as in 2.1.13 above it is automatically baracompact (by the remarks made above). Thus marifolds like spreres, projective space, Grassmannians are all paracompact.
3.2.3 Theorem. Lei M be a parasompact difjerentiuble manifota

\therefore Ars that all \bar{U}_{i} are compac: Wher there exists a collection $\left.\because \forall_{i} \mid i \in I\right\} \quad O_{i}$ disferentiabie fumsions on 11 such that

$$
\begin{align*}
& \operatorname{Supp}\left(p_{i}\right) \subset U_{i} \tag{3.2.4}\\
& {f_{i}}_{i}(x) \geq 0 \quad \text { for all } x \in M \tag{3.2.5}\\
& \sum_{i} \phi_{i}(x)=1 \quad \text { for all } x \in M \tag{3.2.6}
\end{align*}
$$

rere $\operatorname{Supp}(0)$ is the closure of the set of all $x \in M$ such triat $c(x) \neq 0$. Note that. in the sum (3.2.6) for all x there $a:=0$ or.ly finitely many i such that $\phi_{i}(x) \neq 0$ (beaause the covering is locally finite and because of (3.2.6)) so that this sim miales sense.

3.3 Vectorbundles

2.3.1 Definition (reai yector bundles). An n-dimonsional real
vector Sundle over a topological spece , is a topological space
E tonether with a continuous map $\pi: E \rightarrow X$. (called the projection
on $\%$) such that

$$
\begin{align*}
& \text { For each } x \in x, \pi^{-1}(x) \text { is (equipped with a structure } \\
& \text { of) a real } n \text {-dimerisional vector space } \tag{3.3.2}
\end{align*}
$$

For every $x \in X$ there is an open neighberhood U of x such that $\pi^{-1}(U)$ is isomorphic to $U \times \mathbb{R}^{n}$,

Where with this last phrase we mean that there is a homeomorphism $\rightarrow \pi^{-1}(U) \rightarrow U \times R^{n}$ such that the following diagram commutes

where p_{1} is the projection onto the first factor, and such that moreover $\phi: \pi^{-1}(x) \rightarrow\{x\} \times \mathbb{R}^{n}$ is an isonorphism of vector $x \in U$, (where, of course, $\{x\} \times \mathbb{R}^{n}$ is qiven the vectorspace
strlicture arising frem identifying $\{x\} \times \mathbb{R}^{n}$ with \mathbb{R}^{n} in the obvious way).

The vectorsbuce $\pi^{-1}(x)<E$ is called the fige of the vector buidle over x and is often danoted E_{x}.
3.3.4 Example (trividi bundlo). $\quad E=X \times R^{n} \rightarrow X$, where π is projection on the first vector.
3.3.5 Example (Tangent bundle of s^{2}). Consider $s^{2}=$ $\left\{\left(x_{1}, x_{2}, x_{3}\right) \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ and consider in $S^{2} \times R^{3}$ the subspace E defined by

$$
\begin{equation*}
E=\left\{(x, v) E S^{2} \times \mathbf{R}^{3} \mid x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=0\right\} \tag{3.3.6}
\end{equation*}
$$

and define $\pi: E \rightarrow S^{2}$ by $(x, v) \rightarrow x$. For each fixed $x \in E$ the set $\pi^{-1}(x)=E_{x}$ consists of all v satisfying the equation $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}=0$. Now give E_{x} the vectorspace structure of this subspace of 로 3. We check that property (3.3.3) nolds. Let $x \in S^{2}$, then at leasi one of the x_{i} is $\neq 0$, say, x_{1}. Let $U=\left\{x \in S^{2} \mid x_{1} \neq 0\right\}$. Now define $\phi: U \times \mathbb{R}^{2} \rightarrow \pi^{-1}(x)$ by $\left(x,\left(w_{1}, w_{2}\right)\right) \mapsto\left(x,\left(-x_{1}\left(x_{2}, w_{1}+x_{3} w_{2}\right), w_{1} w_{2}\right)\right)$. This ϕ is an isomorphism as required in (3.3.3).
3.3.7 Homanorphisms of vector bund!es. Let $\pi: E \rightarrow X, \pi^{\prime}: E^{\prime} \rightarrow X$ be two vector bundies over χ. A homomorphism of vector bundles is a continuous map $\phi: E \rightarrow E$ such that the following diagram comates

and such that the induced map $\Phi_{x}: E_{x} \rightarrow E_{x}^{\prime}$ are homomorphisms of vector spaces. The homomorphism ϕ is called an isomorphism if the maps $E_{x} \rightarrow E_{x}^{\prime}$ are all isomorphisms.

Thus, for examite, the map ϕ in (3.3.3) above is an isomorphism of the vector bundle $\pi: \pi^{-1}(U) \rightarrow U$ with the bundle $P_{1}: \| \times R^{n} \rightarrow U$. A vector bundle which is isomorphic to one as in example 3.3.4 is called triviaz.
 Fianed (un to isomorphism) by gluing trivial bundles together. In oetai? this goes as follows. Let x be a topological space nd $\left\{U_{i}\right\}, i \in I$ ar. open rovering of X. Suppose we have for each i,j $\in I$ a continuous map

$$
\begin{equation*}
U_{i j}: U_{i} \cap U_{j} \rightarrow G \ell_{n}(R) \tag{3.3.9}
\end{equation*}
$$

where $G_{i n}(\mathbb{R})$ is the (Lie) group of all invertible real $n \times n$ ratrices.

We now require the $\uparrow_{i j}$ to be compatible in the following sense

$$
\begin{aligned}
& \phi_{i j}(x)=I_{n}, \text { the } n \times n \text { unit matrix for all } n \in U_{i} \\
& \phi_{j k}(x) \phi_{i j}(x)=\phi_{i k}(x) \text { for all } x \in J_{i} \cap U_{j} \cap U_{k}
\end{aligned}
$$

From these data we can construct a vector buridie E over X as foilows. Tare the disjcint union $U!U_{i} \times R^{n}$. Now define an equivalence relation \sim as follows. The element $(x, v) \in U_{i} \times \mathbb{R}^{n}$ is equivalent to $(y, w) \in \cup_{j} \times \mathbb{R}^{n}$ if $x=y$ in x and $\phi_{i j}(x) V=w$. Let $E=U!U_{j} \times R n / \sim$ and let π be induced by $(x, v) \rightarrow x$. The local trivialization maps required in (3.3.3) are given by $U_{i}>\mathbb{R}^{r_{1}} \subset U!U_{i} \times \mathbb{R}^{n} \rightarrow E$, and these also define the vectorspace structures on the fibres.
3.3.12 Examr,le. Consider $\mathbb{P}^{1}(\mathbb{R})$ as the set of all lines through zero in \mathbb{R}^{2}, i.e. as the set of all ratios $\left(x_{0}: x_{1}\right), x_{0}, x_{1} \in \mathbb{R}$ $\left(x_{0}, x_{1}\right) \neq(0,0)$. Let $U_{0}=\left\{x \in \mathbb{P}^{1}(\mathbb{R}) \mid x_{0} \neq 0\right\}, \quad \|_{1}=$ $\left.\{x \in \mathbb{P}](\mathbb{R}) \mid x_{1} \neq 0\right\}$. Eefine $\boldsymbol{D}_{01}: U_{0} \cap U_{1} \rightarrow G Q_{1}(R)$ by $\phi\left(x_{0}: x_{1}\right)$ $=x_{1}^{-?} x_{0}^{1}$. Set $\phi_{10}=\phi_{01}^{-1}$ and the compatibility conditions (3.3.11) hold. Let E be the resulting vector bundle. We claim that E is nontrivial. Indeed suppose E were trivial, then there would be an isomorphism $\ddagger: E \rightarrow \mathbb{P}^{1}(\mathbb{R}) \times \mathbb{R}$ compatible with the projections and hence there would be a map $s: P^{1}(R) \rightarrow E$ defined by $s(x)=\psi^{-1}(x, 1)$ which satisfies
and which is morecver such that $s(x) \neq 0 \in E_{x}$ for all \%. Now $U_{0}=\left\{\left(1: x_{1}\right) \mid x_{1} \in R_{i}, U_{1}=\left\{\left(x_{0}: 1!\mid x_{0} \in R\right\}\right.\right.$. Fram the construction of E we know that a map s satisfyirig (3.3.13) is given i.j twi functions $f_{1}: x_{1} \rightarrow f_{2}\left(x_{1}\right)$, $f_{0}: x_{0} \rightarrow f_{0}\left(x_{0}\right)$ such that morezver $x_{1}^{-1} f_{1}\left(x_{1}\right)=f_{0}\left(x_{1}^{-1}\right)$ for $x_{1} \neq 0$. The requirement $s(x) \neq 0 \quad \forall x$ means that $f_{i}\left(x_{i}\right) \neq 0 \forall x_{i}$. Hence by continuity $f_{\gamma}(x$. nas the same sign for all x_{1} and $f_{c}\left(x_{0}\right)$ has the same sign for all x_{0}. This, however, is incompatible with $x_{1}^{-1} f_{p}\left(x_{1}\right)=f_{0}\left(x_{i}^{-1}\right)$ A picture uf this bundle is the so-called Möbius band

where π is the projection on the central circle. (The Möbius band is obtained by taking a rectangular strip of paper twisting it around once and gluing the ends together (as indicated below).

3.3.14 Linear constructions. Linear algebra or more precisely the category of finite dimensional vector spaces has many constructions which assign a new vector space to a set of one or more old vector spaces. Such a functor T is called continuous if the
associated map $T: \operatorname{Hon}(V, W) \rightarrow \operatorname{Hom}(T(V), T(W))$ is continuous, mere for simplicity we have taken a covariarit functor in one verieble. These constructions extend to constructions for vector sudies sy simal: performirg the construction pointwise for every fibre Tinus yiven two vector bundles E, F over X one has e.y. the new ventor bundiles
$E \notin F$, the direct sum of E and F
$E \otimes F$, the tensor product of E and F
Hon' (E, F), the bundle over X where fibre over x is $\operatorname{Hom}\left(E_{x}, F_{x}\right)$
E^{*}, the dual bundle over x whose fibre over x is $\operatorname{HiOm}\left(E_{x}, R\right)$
$\lambda^{i}(E)$, the $i-t h$ exterior power of x
\therefore similar renark holds with respect to the naturel isomorphisms of linear algebra. So one has e.g. $\operatorname{Hom}(E, F) \approx E * \otimes F$.
$\therefore 3.15$ Sections. Lei E be vector bundle over \therefore. A continuous sectior of E is a continuous map $s: X \rightarrow E$ such that $\because \cdot s=i d_{X}$. The set of sections forms a vector space (pointwise addition and scalar multiplication! which is denoted Γ e or I(E;X).

In example 3.3.12 we showed that for every section s of the Möbius band bundle there is an $x \in \mathbb{P}^{l}(\mathbb{K})$ such that $s(x)=0$ chus proving that this bund?e is nonirivial. (A trivial bundle clearly has sections which are everywhere nonzero. Exercise: Let E be an n-dimensional vector bundle over x. Suppose that finere are n continuous sections s_{p}, \ldots, s_{n} such that $s_{7}(x), \ldots, s_{n}(x)$ are linearly independent vectors in E_{x} for all $x \in X$. Prove that E is trivial.)

It is worth noting that $\operatorname{FHom}(E, F)$ is the vector space of vector bundle homomorphisms $E \rightarrow F$ (cf. 3.3.14 and 3.3.7;
Exercise: Prove this.)
3.3.16 Exanple. Tancent bundie of a manifold. Let M be an m-dimensional differentiable manifold. Let $\left(U_{i}, \phi_{i}\right)$, $i \in I$ be a collection of charts such that (3.1.4), (3.1.5) held. We now conseruct a bundle over in by the local pieces and patching data descriptions of $\Xi .3$ above. To this end define

$$
\phi_{i j}: U_{i} \cap U_{j} \rightarrow G \ell_{n}(R)
$$

by the formula

$$
i_{i j}(x)=e^{-i}\left(\psi_{j} \cdot \phi_{i}^{-1}\right)\left(\phi_{i}(x)\right)
$$

where the symbol on the right is the Jacobian matrix of the diffeomorphism $\hat{j}_{j} \cdot p_{i}^{-1}$ evaluated at $p_{i}(x)$. Note that the compatibility conation (3.3.11) follows from the chain rule.

The fibre of this bundle over $x \in$ il is called the tangent space of M and x and is denoted $T_{x} M$.

The cundle $i \pm s e l f$ is denoted $T M \rightarrow M$, or simply $T M$. We carl view the whole bundle $T M \rightarrow M$ as cobtained by a local pieces and gluing data procedure as follows.

Consider the open pieces $\phi\left(U_{i}\right)$, $i \in I$ (where the U_{i} are as above). Now consider the pieces

$$
\varphi_{i}\left(U_{i}\right) \times \mathbb{R}^{n}, \quad i \in I
$$

and we write an element of this set as a $2 n$-tuple

$$
\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{n}\right)^{\top}
$$

The total space $T M$ of the tangent bundle of M is now obtained by glding together the $\dot{\psi}\left(U_{i}\right) \times \mathbb{R}^{n}$ by means of the isomorphisms

$$
\begin{aligned}
& \phi_{i j}: \alpha_{i}\left(U_{i} \cap U_{j}\right) \times R^{n} \rightarrow \phi_{j}\left(U_{i} \cap U_{j}\right) \times \mathbb{R}^{n} \\
& \left.(x, a) \rightarrow\left(\left(\phi_{i} \cdot \phi_{j}^{-1}\right)(x), \quad \underset{\left(\phi_{j}\right.}{ } \cdot \phi_{i}^{-1}\right)(x)(a)\right)
\end{aligned}
$$

These identifications are compatible with the projections.

$$
\phi_{i}\left(U_{i}\right) \times \mathbb{R}^{n} \rightarrow \phi_{i}\left(U_{i}\right), \quad(x, a) \rightarrow x
$$

and thus the whole bundle $T M \rightarrow M$ is described,
Note that these considerations make it clear that TM. is itself a differentiable manifold and that $\pi: T M \rightarrow M$ is a differentiable map. We can thus speak of differentiable sections.
3.3.17 Vector fields. Let $T M \rightarrow M$ be the tangent bundle of a differentiable manifold M. A differentiable section (cf. 3.3.15 above) of this bundle is called a vector field. in terms of local pieces ard giuing data such a section thus is given by differentiable functions

$$
a(i): \phi_{i}\left(U_{i}\right) \rightarrow R^{n}
$$

(:he local pieces of the section are then given by $\phi_{i}\left(U_{i}\right) \rightarrow$ $\therefore_{i}\left(U_{i}\right) \times x^{n}, x \rightarrow(x, a(i)(x))$. Then functions must then satisfy ine compatibility condition

$$
\begin{equation*}
e^{\prime}\left(\phi_{j} \cdot \phi_{i}^{-1}\right)(x)(a(i)(x))=a(j)\left(\phi_{j} \cdot \phi_{i}^{-1}(x)\right) . \tag{3.3.18}
\end{equation*}
$$

$\therefore \overline{3}$ © Derivations. Let A be an algebra over a field K. Take $K=\mathbb{R}$ or \mathbb{a} if desired.) A derivation of A is a $K-$ limear map $D: A \rightarrow A$, such that $D(f g)=f(D g)+(D f) g$.
3.3 .21 Vector fields as derivations. Let M be a differentiable manfold and let $S(M)$ be the ring of differentiable functions oil M. Let s be a differentiable seztion of the tangent bundle $\mathrm{T}: \rightarrow \mathrm{M}$. We claim that s defines a derivation of $S(M)$. Indeed IOt s be given by the function $s(i): \phi_{i}\left(U_{i}\right) \rightarrow \mathbb{R}^{n}$. A differentiable function on M can be viewed as a collection of functions $\hat{f}(i): \phi\left(U_{i}\right) \rightarrow R, f(i)=f \cdot \phi_{j}^{-1}$, satisfying the compatibility condition

$$
\begin{equation*}
f(j)\left(\phi_{j} \cdot \phi_{i}^{-1}(x)\right)=f_{i}(x), \quad x \in \oplus_{i}\left(u_{i} \cap u_{j}\right) \tag{3.3.22}
\end{equation*}
$$

? ${ }^{\prime}$ w define the collection of functions $g(i): p\left(U_{i}\right) \rightarrow \mathbb{R}$ by the furmuia

$$
g(i)(x)=\sum_{k=1}^{n} s(i)(x)_{k} \frac{\partial f(i)}{\partial x_{k}}(x)=\frac{\partial f(i)}{\partial x} s(i)(x)
$$

Shere $s^{\prime}(i)(x)_{k}$ is the k-th component of colurin vector $s(i)(x)$, and $\frac{\partial f(i)}{\partial x}$ is the row vector $\left(\frac{\partial f(i)}{\partial x_{i}}(x), \ldots, \frac{\partial f(i)}{\partial x_{n}}(x)\right\}$. We now Claim that the $g(i)$ satisfy the compatibility condition (3.3.22). inceed from (3.3.22) we find by the chain rule that (writing y for $\left.\left(\phi_{j} \cdot \phi_{i}^{-1}\right)(x)\right)$

$$
\frac{\partial f(j)}{\partial y}(y)=\frac{\partial f(i)}{\partial x}(x) \quad z^{r}\left(\phi_{i} \cdot \phi_{j}^{-1}\right)(y)
$$

Therefore

$$
\begin{aligned}
g(j)(y) & =\frac{\partial f(j)}{\partial y} s(J)(y) \\
& =\frac{\hat{a}(i)}{\partial x}(x)=\left(\phi_{i} \cdot \dot{\phi}_{j}^{-1}\right)(y) \quad J\left(\phi_{j} \cdot \psi_{i}^{-1}\right)(x) s(i)(x) \\
& =g(i)(x)
\end{aligned}
$$

because $\quad I\left(\phi_{i} \cdot \stackrel{\Phi}{\psi}_{j}^{-1}\right)(y) e^{\prime}\left(\phi_{j} \cdot \phi_{i}^{-1}\right)(x)=I_{n}$ and the compatibility relation (3.3.18). Inversely every derivation defines a vector field.
3.3.24 The Lie bracket. Let D_{1}, D_{2} be two derivations of an algebra over R (or any other field). Then (as easily checked)

$$
\left[D_{1}, D_{2}\right]=D_{1} D_{2}-D_{2} D_{1}
$$

is again a derivation. Now let s_{i}, s_{2} be vector fields on a differentiable manifold M, with corresponding derivations D_{1}, D_{2}. Then the vector field corresponding to the derivation $\left[\mathrm{C}_{1}, \mathrm{D}_{2}\right]$ is denoted by $\left[s_{1}, s_{2}\right]$ is called the Lie bracket of the vector fields s_{1} and s_{2}. The vertor fiela $\left[s_{1}, s_{2}\right]$ can be calculated in temas of local pieces as follows: Let s_{1} and s_{2} be given locally by the functions $s_{2}(i), s_{1}(i): \phi_{i}\left(u_{i}\right) \rightarrow \mathbb{R}^{n^{2}}$. Then $\left[s_{1}, s_{2}\right]$ is given by the functions

$$
\begin{aligned}
& a(i): i_{i}\left(U_{i}\right) \quad \mathbb{R}^{n}, \\
& a(i)(x)=\left(e^{r} s_{1}(x)(x) s_{2}(i)(x)\right)-\left(\dot{d} s_{2}(i)(x) s_{p}(i)(x)\right)
\end{aligned}
$$

which in slightly less precise notation cari be written

$$
\frac{\partial s_{1}(i)}{\partial x} s_{2}(i)-\frac{\partial s_{2}(i)}{\partial x} s_{1}(i)
$$

3.3.26 Exercise. Check that the $a(i)$ of (3.3.25) satisfy the compatibility relation (3.3.18) and that the derivation operator defined by these $a(i)$ according to (3.3.23) is irdeed the derivation $D_{1} D_{2}-D_{2} D_{1}$.
3.3.27 Constructing homomorphisms by local pieces and patching data. Let E and F be two vector bundles over a topological space X, both given in termis of local pieces and gluing data. Then often, a homomorphism $E \rightarrow F$ is easiest described in terms of local pieces too. Suppose for simplicity that the local pieces describing E and F are with respect to the sane covering U_{i}.
iThis can dlwiys be assured by takiny a common refinement of the coverings defining E and F.) lot $\mathbb{R}^{m \times n}$ we the space ot $m \times n$ autices, let E and F be described by

$$
\Psi_{i j}: U_{i} \cap U_{j} \rightarrow G_{n}\left(R j, u_{i j}: U_{i} \cap U_{j} \rightarrow G_{i n}(R)\right.
$$

then a homomorphism $\alpha: E \rightarrow F$ is unique dessribed by a family of maps

$$
a_{i}: \|_{i} \rightarrow \mathbb{R}^{m \times n}
$$

ch that for all $i, j \in i$ and $x \in ソ_{i} \cap U_{j}$

$$
\begin{equation*}
\psi_{i j}(x) x_{i}(x)=a_{j}(x) \psi_{i j}(x) \tag{3.3.22}
\end{equation*}
$$

3.3.29 Mretrics. If V is a vector space, let $Q(v)$ be the vecEor space rif all quadratic forms on V. ihis is an example of a continuous functor in the sense of 3.3 .14 above. Thus given a vector bundle E over x there is an assiciated vector bundle Q(E) whose fibre over x is trie space $\hat{Q}\left(E_{x}\right)$ of all quadratic forms on E_{x}. A metrici on E is now a section s of $Q(E)$ such that $s(x)$ is positive definite for ail $x \in X$.

In more down to earth terms inis means the following. Let E be built out of triviai pieces witn respect to the covering U_{i} Let $\Psi_{i, j}: U_{i} \cap U_{j} \rightarrow G_{n}(\mathbb{R})$ be the gluing maps. Then a metric on E consists of contiruous maps

$$
s_{i}: U_{i} \rightarrow P_{n}
$$

Tere P_{n} is the spare of all positive definite quadratic forms on R^{n} such that

$$
\begin{equation*}
{ }_{\phi^{\dagger}}^{T}(x) s_{j}(x) \phi_{i j}(x)=s_{i}(x) \tag{3.3.30}
\end{equation*}
$$

for all $x \in U_{i} \cap U_{j}$, where the upper T denotes "transpose."
It remains to show that every vector bundle over suitable, say, baracompaci or compact, spaces admits a metric. This goes as follows. Let the covering $\left\{U_{i}\right\}$ be locally finite and let $\left\{\forall_{j}\right\}$ be a partition of unity with respect to $\left\{U_{i}\right\}$. For each
$i \in I$ choose some positive definite form q_{i} and define

$$
s_{j}: U_{j} \rightarrow P_{n}, s_{j}(x)=\sum_{k}\left(\psi_{k j}(x)^{T}\right)^{-1} \psi_{k}(x) Q_{k} \phi_{k j}(x)^{-1}
$$

（ Oote that the e：oression on the rigit hand side as a converse linear combination of Dositive defirite quadratia forms is posi－ tive definite）．Tr：ese mafpings sutisfy the compatibility condi－ tion（j．j．â，und ronce define a metric．

3．3．31 Sutbundiej and nuotient bundes are direct summands．Let $E \xrightarrow{T} X$ be a vector Sundle．A subinaibe is a subset $F \in E$ such that the restiriction of π to F makes F a vector bundie and such that $F \leftrightarrow E$ is a homomorpinism of vector bundles．If $F \leftrightarrow E$ is a subbundie we cin consider the union $U_{x} E_{X^{\prime}}{ }^{\prime} x$ with the induced topclogy．There is a natural projection onto x defined by $E_{x^{\prime}} / F_{x}$ $\epsilon \quad \forall \rightarrow x$ and usirg the obvious quotierit vector space structures on $\ddot{E}_{x}{ }^{\prime} \bar{F}_{x}$ the resilit is a vector bundle over x which is called a auこさicur busife aria is denoted E／F．

Now let $F \subset E$ he a subbundle．Let s be a metric on E ． For each $x \in X$ let $G_{x}=\left\{v \in E_{x}\left|<v, F_{x}\right\rangle_{x}=0\right\}$ where $\left.<,\right\rangle_{x}$ denotes the inner orodact on E_{x} defined by $s(x)$ ．Tren UG is a subvector bundie of E and $E=F 巴 G$ so that every sub－ bundle is a direce suramad．Andlogously if $\alpha: E \rightarrow F$ is a homomor－ chism of vector bunfles such that $\bar{E}_{x} \rightarrow F_{x}$ is surjective for all x ，then there exists a vector bundle homomorphism $\beta: F \rightarrow E$ slicin that $a \cdot B=i d_{F}$ ．

3．3．3？Finite lereration of vector bundlas．Let $\pi: F \rightarrow X$ be an m－dimensicna \bar{i} vector oundle over a coripact space x ．Let $\left\{u_{j} \mid i=(1, \ldots, n\} j\right.$ te a finite open covering of x such that E is irivial over all U_{i} ．For each i let $s_{i j}:\left.U_{i} \rightarrow E\right|_{U_{i}}$ be in sections of $\pi^{-1}\left(U_{i}\right) \rightarrow U_{i}$ sucn that for all $x \in U_{i}$ the verturs $s_{i j}(x), u=7, \ldots, m$ form a basis for $\pi^{-1}(x)=E_{x}$ ． Now let $\left\{\ddagger_{i}\right\}$ be a partition of unity with respect to U_{i} ．Then we claim that the maps

$$
\phi_{i} s_{i j}, \quad i \in i, \quad j=1, \ldots, m
$$

（defined by $\dot{\phi}_{i} s_{i j}(x)=\hat{b}_{j}(x) s_{i j}(x)$ if $x \in U_{i}, \quad \phi_{i} s_{i j}(x)=0$ if $x \in U_{i}$ ）are continuous sections and are such that for each $x \in X$ the $\left(\phi_{i} s_{i j}\right)(x)$ generate E_{x} ．Irdeed for each $x \in X$ there is an i_{0} such that $\phi_{i_{0}}(x) \neq 0$ and then the $\phi_{j_{0}}(x) \phi_{i_{0}}(x), u=1, \ldots, m$ generate E_{x} ．

Irdeed we have seen above that if $E \rightarrow X$ is a vector bundle, there \#xists a firite number of sections ${ }^{5}$, \ldots, s, such that
tie $\varepsilon_{0}(x), \ldots, s_{r}(x)$ generate E_{x} for all x. Now define
$\therefore x: \mathbb{R}^{r} \rightarrow E \quad b_{j}^{\prime} \quad a_{i}\left(x_{1}\left(a_{\eta}, \ldots, a_{r}\right)\right)=\dot{z a} s_{i}(x)$. Then
$\therefore: x \times R^{r} \rightarrow E$ is a hommorphish of vector bundies (exercise) ard surjective making E à cuotient of $X \times \mathbb{R}^{1}$ (and hence by E.3.2i) also a direct sumband.
3.3.3: Differentiabie bundles. A differentiable vector bundle is a vestor buncle $\because: E \rightarrow$ such that E, X are difforentiable manifoids and π is a differentiable mapping. Analytic bundes Ere defined similarly. An eximple of a differentiable bundle is the cangent bundie $T M \rightarrow M$ of a differentiable manifold.
3.3.35 bector bundes and projective modules. iet M be a differentiable minfid. Then SIM denotes the ring of differentiable functions on M (pnintwise multiplication and addition). : iow let $E \rightarrow M$ be a differentidile vector bundle over M. Let $s: M \sim E \quad d \in$ a differcritiabic section of E and $f \in S(M)$. Then for ait $m \in M, f(m) s(m) \in E_{m}$ is well defined and chis makes the vector space of all differentiable sections a module over the ring $S(M)$. By 3.3.33 and 3.3.31 (or rather their differentiable anaiogues (which aiso hold) then modules are direct summand of frec mocuies (the module of sections of $M \times \mathbb{R}^{r} \rightarrow M$ is, of course, $\left.S(i f)^{r}\right)$ and hence then modules are projective modules. Thus giving is a cerrespondence between differentiable vector bundies over M and finitely generated projective modules over $S(M)$.

Similarly vector bundles over a suitable tocological space x correspond to finitely generated projective modules over the ring of continuous functions on X and in algebraic geometry algebriac vector burdles over an affine variety $\operatorname{Spec}(R)$ correspond to finitely generated projective modules over R.
3.3.35 The pullback construction. (Constructing vector bundles 3). Let $\pi: E \rightarrow X$ be a vector bundle and let $f: Y \rightarrow X$ be a continuous map. Consider

$$
E^{\prime}=\{(e, y) \in Y \times E \mid \pi(e)=f(y)\}
$$

There is a natural projection $\pi^{\prime}: E^{\prime} \rightarrow Y$ defined by $\pi(e, y)=y$. for a fixed $y \in Y$ we have

$$
\left(\pi^{\prime}\right)^{-1}(y)=\{(e, y) \mid \pi(e)=f(y)\}=E_{f(y)} \times\{y\}
$$

winch we give the vector space structurs of E fiy. Then $-1: F^{\prime \prime} \rightarrow Y$ is a vectci bunde over Y whicn fíyjalled the pullback of E along f and unich is denoted f ! E.
in words $f^{!} E$ is the vector bundle over Y whose fibre roer $f \in Y$ is the fibre of E over $f(y)$.

If E is obtained by patching cogether iocal trivial pieces over u_{i}, $i \in I$ by means of gluing data

$$
\phi_{i j}: U_{i} \cap_{j} U_{j} \rightarrow G \chi_{m}(\mathbb{R})
$$

then $f^{!} E$ is obtained by patching together trivial pieces over the onen subsets $f^{-i}\left(U_{i}\right)$, $i \in I$ by means of the gluing data

$$
f^{--1}\left(U_{i}\right) \cap f^{-i}\left(U_{j}\right) \stackrel{f}{\rightarrow} U_{i} \cap U_{j} \xrightarrow{\phi j} G \ell_{m}(\mathbb{R})
$$

Fron both descriptions it is obvious that if $g: Z \rightarrow Y$ is aricther continuous map then

$$
\begin{equation*}
(f \cdot g)^{\prime} E=g^{!}\left(f^{!} E\right) \tag{2.3.37}
\end{equation*}
$$

3.3.38 Bundie morohisms covering a continuous map. Let $E \rightarrow M$ ard $F \rightarrow$ th to tio vector bund les and let $f: M \rightarrow$ if be a continu-气us irp. A tuncle morphism covering f is a continuous map $\tilde{F}: E \rightarrow \tilde{F}$ such that the following diagram is commutative

and such that the induced maps $\tilde{f}_{x}: E_{x} \rightarrow F_{f(x)}$ are homomorphisms of vector spaces. There is an obvious 7 -l correspondence between bundle morphisins $E \rightarrow \mathcal{F}$ covering f and homomorphisms of vector buades over M from E to $f!F$. (Exercise)

By row it shata be obvious how to describe a bundle morphism covering a continuous map in terms of local pieces and gluing data (Exercise)
3.3.39 Example (Jicabians). Let M and N be differentiabie manifolis of dimensior m and $n, f: M \rightarrow N$ a differentiable map. Let $\left(U_{i}, \sigma_{i}\right.$ 처 $\left.\mathcal{N}_{i}, \phi_{i}\right)$ be coordinate charts for M and N and suppose that $=\left(U_{j}\right) \subset V_{i}$. Let $f(i)=\psi_{i} \cdot f \cdot \phi_{j}^{-1}$:
$\therefore\left(U_{i}\right) \rightarrow V_{i}\left(V_{i}\right)$ Recall (Cf. 3.3.15) that the tangent bundiles Th and $T V$ can be obtained by gluing together the $\phi_{i}\left(U_{i}\right) \times \mathbb{R}^{m}$ and $\mathrm{H}_{\mathrm{i}}\left(v_{i}\right) \times x_{i}^{n}$. Define

$$
d f(i): \psi_{i}\left(U_{i}\right) \times R^{m} \rightarrow \psi_{i}\left(V_{i}\right) \times \mathbb{R}^{n}
$$

by the formula

$$
(x, v) \rightarrow(f(i)(x), f(i)(x)(v))
$$

1 Wote that this is comatible with the g?uing data for $T M$ and T: su that the $d f(1)$ combine to define a differentiable map

$$
\text { If }: T M \rightarrow T N
$$

which is (obviousiy) a morphism of bundles covering f. The induced maps

$$
d f_{x}: T_{x} H \rightarrow T_{f(x)} N
$$

is cailod the differential of f at $x \in M$. If in and N are therselves open subsets of \mathbb{R}^{m} and $\mathbb{R}^{n^{x}}$ then $\mathrm{df}_{x}: \mathbb{R}^{m} \rightarrow R^{n}$ is given by the Jacobian matrix of f d x.
3.3.70 Subrarifolds (2). Let M, N be differentiable manifolds.
 has rank max(m, n). The manifold M is a submanifold of N if MCN set theoretically, $\operatorname{dim} M \leq \operatorname{dim} N$ and the inclusion $H_{i} \rightarrow$ is a regular differentiatile map.
1 3.4 On Homotopy
3.4.1 Definitions. Two continuous maps $f, g: X \rightarrow Y$ are called comovopio if there exists a continuous map $F: X \times[0,1] \rightarrow Y$ such that $F(x, 0)=f(x), F(x, 1)=g(x)$ for all $x \in X$.

For $t \in[0,1]$, let $F_{t}(x)=F(x, t)$. Theri the intuitive picture is that f can be continuously deformed into g via the $F_{t}, \quad 0 \leq t \leq 1, \quad\left(F_{0}=f_{1} \quad F_{1}=g\right)$.
3.4.2 Theorem. Let $T: E \rightarrow X$ be a vecton bundte and let $\therefore, 3: Y \rightarrow X$ be tion iymotoric coritimous maps. Then the pullback emaives $T!E$ and $G E$ ire isomorphis over Y.
3.5 ज̈rassmantans and Ciassifying Vottor Eundles
3.5.1 Crassmarin manifolds. Consider the set $\sigma_{r}\left(E^{n+k}\right)$ of $n-$ direrisionai subvector spaces of F^{n+k}. Let $K_{r e g}^{f r(n+k)}$ be the set of $a ? 1 n \times(n+k)$ metrices of rank n. There is a natural
map $R_{i \times g}^{n \times!n+k)} \rightarrow G_{n l}\left(R^{n+k} ;\right.$ wich ascigns to an $n r\left(r_{i}+k\right)$ matrix \vec{A} of rank n the n-dimensicnal subspace of R^{n+k} spanied ov the rows of A. We give $G_{n}\left(R^{n+k}\right)$ the quotient topology. There is a natural differentiable manfold structure on $E_{n, n+k}$ which is described in detail in section 4 of this Introduction (in terms of local pieces and yluing data).

There is a ratural embedding $\varepsilon_{k}: G_{n}\left(R^{n+k}\right) c G_{n}\left(R^{n+k+1}\right)$ indaced by the map $\mathbb{R}_{r e g}^{n \times(n+k)} \rightarrow \mathbb{R}_{r \in g}^{n \times(n+k+1)}$ which adds a column of reros to ar. $n \times(n+k)$ matrix A of rank n. We let G_{n} berote the inductive limit space $\lim _{\vec{k}} G_{n}\left(R^{n+k}\right)$. The space G_{n} car perfectiy well be seen as the space of all n-dimensional vector subspaces of $\mathbb{R}^{\infty}=\left\{\left(x_{i}, x_{2}, x_{3}, \ldots\right) \mid x_{i} \in R\right.$, all but finitely many n_{i} are zero\}.
3.5.2 The "universal" bundle En. Define

$$
\begin{equation*}
\xi_{n}=\left\{(x, y) \subseteq G_{n}\left(\mathbb{R}^{n+k}\right) \times \mathbb{R}^{n+k} \mid v \in x\right\} \tag{3.5.3}
\end{equation*}
$$

There is a natural projeciion $\xi_{n} \rightarrow G_{n}\left(\mathbb{R}^{n+k}\right)$ defined by $(x, y) \rightarrow x$ and $i t$ is easily seen that this makes ξ_{n} into a vectcr bundle whose fibre over $x \in C_{n}\left(\mathbb{R}^{n+k}\right)$ "is" the vector space x. A description of this vector bundle in terms of local pleces and gluing data can be found in section 3.4.5 of Professor Hazewinkei's lectures in this volume.
3.5.4 Exercise (easy). Let $\varepsilon_{k}: \hat{G}_{n}\left(R^{n+k}\right) \rightarrow G_{n}\left(\mathbb{R}^{n+k+1}\right)$ be the embedding described above in 3.5.1 and let ξ_{n} and ξ_{n}^{\prime} be the universal bundles as described above in 3.5 .2 over $G_{n}\left(\mathbb{R}^{n+k}\right)$ and $\epsilon_{n}\left(R^{n+\dot{k}+7}\right)$ respectively. Then $\varepsilon_{k}^{!} \xi_{n}^{\prime}=\xi_{n}$. (This also justifies the notation used).
3.5.5 Classifying vector bundles. Let $a: X \rightarrow G_{n}\left(\mathbb{R}^{n+k}\right)$ be a continuous map. Then this gives a vector bundle $a_{5}^{!}$over x and homotupic maps give rise to isomorphic vector bundles.

Mor:iver if k is big enough (and x compact) all vector bundles over x are (up to isomerplisin) cbtained in this way. The rons ruticr which assions a map into some frassman manifold to a bumis over x goes as follows. Let $t \rightarrow X$ be a vertor bundin. Then there is ar $r \in N$ and a surjective fomonorinism of wector bordles $:: \ddot{i} \times R^{r} \rightarrow E$ (cf. 3.3.3う above). Now define $f(x)$ to the thedimensional subscace of p^{r} consisting of all
vectors mbich are orthogonal to the kernel of $\phi_{x}: \mathbb{K}^{r} \rightarrow i_{x}$.
The e e remarks form the bare bones of the ciassifying theorem - vector tundes which states that over suitable scaces x.

$$
\begin{equation*}
\left[x, \mathscr{\varkappa}_{n}\right]=B_{n}(x) \tag{3.5.5}
\end{equation*}
$$

Were $\left[\because, G_{n}\right]$ is the set of hemoteny classes of contirious maps
$X \rightarrow G_{n}=G_{n} i K^{\alpha} ;$ ard where $E_{n}(X)$ is the set $G f$ isomorphism classes of ri.dinersioril vector bundles over x. Soughiy one can Say thet if one knows tie n-dimensiorial universal vector bundie Fr over ${ }_{\mathrm{n}}\left(\mathrm{R}^{n+k}\right)$, k large, that one knows all n-dimensional vector bundles.
4. VARIETIES, VECTOR BINDIES, GRASSMANHIHHS AND INTERSECIION THEQRY

In this chapter vi? will define some of the basic ideas ard objects needed for the apolication of algebrain zaumetry in systems theory. The material parallels the ceveloment of differ. ential topology developed in section 3 . We will eescribe the concents of affine space, affine verieties, projertive spaces and piojective varieties. The Grassmannian manifolds wil? be developed with some care and the various rearesentations that have proven so useful in linear systeras theory will be given.

A. 1 Affine Spaces and Affine Algebraic Varieties

Let \dot{F} be an algebraically closed field (for our purposes we car almost always assume that i is the fie?d of complex numbers \mathbb{L}. Let $i^{n i}$ denote the point set of n-tuples. We say thet a subset x of k^{n} is caceed if there are finitely many nolynomids $g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots g_{m}\left(x_{1}, \ldots, x_{m}\right)$ such that $x=$ $\left\{x \in x_{n}^{n}: g_{1}(x)=\ldots=g_{m}(x)=0 j\right.$. The set of all closed sets defines a topology on z^{n}, called the Zarishi tofology. (The fact that this is a todology is nontrivial--a coriscquence of the Hilbert Basic Theorem). A closed subset $X \in:=0$ is given the induced topology and is called an affine algebraic set.

Let $g\left(x_{1}, \ldots, x_{i}\right)$ te a polynonidal ard define a set $x_{g}=$ $\left\{x \in X: g(x) \neq 0 ;\right.$. Clearly the sets X_{g} are open and form a basis for the topology of x. A regular function on x_{g} is a function f with domain X_{g} and range k such that f can be written as $n(x) g^{m}(x)$ for some polynomial h and all x. So f is represented bí a rational function having no poles on X_{g}. Let U be an arbitrary oper set in X and f a map from U to K. Since U is open, it's the union of X_{g} 's and we say that f is regular if the restriction of f to each X_{g} is regular. This sequence appears over and over in geometry. We define something simole, then build an object fron the simple things and extend the definition.

A closed algebrai= set $X \subset k^{n}$ along with its regular functions on open sets is an affine algebraic variety. An open subset of X together with the ring of regular functions is called a quasi-affine algebraic variety. In the special case that $X=z^{n}$ the affine variety is denoted by \mathbb{A}^{n}--the affine space of dimension n.

Let $U \subseteq X \subseteq A^{n}$ and $V \subseteq Y \subseteq A^{m}$ be open subsets of affine värietios X and Y. A map g from U to V is a morphism fron: U to V if there exist m regular functions $\left.g_{1}, \ldots,\right]_{m}$ defined on U such that $g(x)=\left(g\left(x_{1}\right), \ldots, g\left(x_{n}\right)\right)$.

In particular, the "coordirate ring" R_{X} of functions regular on all of X may be thought of in the following seemingiy coondiate-cependent way. If $x \subset \mathbb{A}^{M}$ is an affine algebraic set, inen R_{X} consists of the ring of functions which are restrictions to X of polynomiais on \mathbb{A}^{n}. The puint is that the ring F_{X} is Ontrinsic, i.e., independent of the particular presentation $x=\mathbb{A}^{1 i}$. Thus, \tilde{R}_{x} contains not only x as an abstract object (Hibert Nullstellensaty) but also al? possible embeddings of x in affine space. For $X=A^{n}, R_{X}=k\left[x_{1}, \ldots, x_{n}\right]$ which is Noatherian, since z is, by the Hilbert Basis Theorem (2.2.2). Mure generaily, $x \subset \mathbb{A}^{n}$ gives rise to an algebra homcmorphism, restriction,

$$
\begin{equation*}
F_{y}: k\left[x_{1}, \ldots, x_{n}\right] \rightarrow R_{x} \tag{4.1.1}
\end{equation*}
$$

which exhibits R_{X} as a quotient of $k\left[x_{1}, \ldots, x_{n}\right]$. Therefore, by lema 2.1.5, R_{X} is Noetherian. In this light, it is interEsting to examine the geometric content of the ascending chain coadition. For affine space \mathbb{A}^{n}, any subvariety $x \subset \mathbb{A}^{n}$, gives rise to ari ideal I_{X}, viz. the kernel of p_{x}

$$
\begin{equation*}
\operatorname{ker} o_{X}=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]|f|_{x}=0\right\} \tag{4.1.2}
\end{equation*}
$$

By the Hilbert Basis Theorem, $I_{X}=\left(f, \ldots, f_{m}\right)$ and one sees that X is in fact defined by the equations

$$
\begin{equation*}
f_{p}(x)=\ldots=f_{m}(x)=0 \tag{4.1.3}
\end{equation*}
$$

Moreover, this correspondence reverses inclusion; that is to say, if $X \subset Y$ then $I_{Y} \subset I_{X}$. Therefore, the ascending chain condition on ideais implies the descending chain condition on subvarieties of A^{n}. This is true, by similar reasoning, for any affine variety Z .
4.1.4 Theorem. If Z is an affine alosbraic variety, then ever iessinding chain $Z_{1} \supset Z_{2} \supset \ldots \supset Z_{m} \supset \ldots$ of siabuarieties
$\because Z$ minates.
from $\begin{aligned} & \text { If one cunjiders tha special case in wich } Z \text { is obt } \\ & Z_{i-1} \text { by impasing an additional alcebnaic constraint }\end{aligned}$

$$
f_{i}(z)=0
$$

then (4.7.?) asserts that mo L can satisty infinitely nany incereadent constraints. Tho key to Tori,ditaing this notion of matecendence ? es in tre concert of direistor.
4. 2 Projective space, projuctive vatieties, and quasi-projective varieties

Sain let z be en algebraicall: closed field. Define an Ea'ivelence refation on $\left.z^{n+1} \backslash(0, \ldots, 0)\right\}$ defining $x \sim y$ iff there is a $x \in$ such that $\forall x=y$. Denote the poirt set of fuuivalence c?asses by $p^{n}(t)$. Recall that a oolynomial g is humopeneons it the:e is an integer m such that $g(\lambda x)=\lambda^{m} g(x)$ for all x. Wo say that a sibset x of $p^{\prime \prime}(i)$ is closed if there is a finite set of homogereous polynomiais g_{1}, \ldots, g_{m} such that $\because=[x] \in \mathcal{H}^{n}(r): g_{1}(x)=\ldots=g_{m}(x)=0$. Note that cocuse $\sigma_{\text {mongeneity }} g^{\prime}(x)=0$ implies $g^{\prime}(x)=0$ and hence the definition is well fourded. The set of closed sets defines a tapology on x and this topolocy is also referred to as the Zanishi Tovology.

The projective spaces can be developed more prosaically, if \therefore is i, as a comnact differentiable manifold. Let V be \mathbb{a}^{n+1} considered as a vector space over \mathbb{C}. Let $\mathbb{P}^{n}(\mathbb{a})$ denote Ire set of orie dimensional subspaces of V. We define open sets in $F^{n}(I)$ as follows. Let W be a subspace of V of dimension n and let $U=\left\{\dot{\chi} \in P^{i n}(\mathbb{C}): i \cap W=\{0\}\right\}$. We say that U is open in $\mathbb{F}^{n}(\mathbb{C})$ and we let $\mathbb{P}^{n}(\mathbb{d})$ have the topology generated by the 'J's. This definition coincides with the previous definition for if W is of dimension n then \forall is the kernel of a non-zerc linear functional and hence is the zero set of a homogencous polynomial. The other direction is more difficult.

We will see later when we discuss the Grassmannian manifolds that the \dot{j}^{\prime} s can be identified with the affine spaces \mathbb{C}^{n} exhibitiny $p^{r}(6)$ as a complex manifold. $p^{1}(\mathbb{J})$ can be identified witn Riemann sphere or with the real sphere S^{2}. In a later $s \in c-$ tion ve will develop the crassmannians with more detail. We will a?sc show that $P^{n}(t)$ is compact as a manifold in the manirold

Eonology, Note trat the 7ariski topology is a subtopclogy of ine manifold topology.

Cused subsets of $\mathbb{P}^{n}(2)$ are alited projective varieties and if v is an oren subset of a projective varicty x then . \because cail \forall a quasi-projertive variety.

We need to extend the dofinition of regular functions to projective varieties. Note that we have $n=1$ "canorical" ernbedings of A^{n} into $\mathbb{P}^{n}\left(F_{1}\right)$. Define $\dot{j}_{j}\left(x_{p}, \ldots, x_{n}\right)=$ $\left[\left(x_{1}, \ldots, x_{i-1}, i, x_{i}, \ldots, x_{n} 0\right)\right]$. The map j_{i} is continuous with respect to the Zariski topology and the image of j_{j} is an open jijset of $p^{n}(\bar{x})$ (it coincides with the open seis defined in the Crassmannian setup).

Let X be a projective variety contained in $\mathbb{x}^{n}(\bar{\kappa})$ and let U be an oper, subset of x. The set $j_{i}^{-1}(x) \subseteq A^{n}$ is closed For each i and $j_{j}^{-1}(J)$ is an copen subset of $j_{j}^{-1}(x)$. A regular function f from U to k is defined to be a map such that the composite map from $j_{i}^{-i}(11) \xrightarrow{j} j_{j} \rightarrow ?$ is a regular function on $\mathrm{j}^{-i}(\mathrm{l})$ for all i.

Morphisms between quasi-projective varieties are defined similarly. First let U be a quasi-projective variety such that $U \subseteq x \subseteq \mathbb{P}^{n}(k)$ and let V be a quasi-affine viriety defined by $\forall \subseteq Y \subseteq \mathbb{A}^{[11}$. A morphism from U to V is a map such that there äre regular functions f_{i}, \ldots, f_{m} from U to k such that $f(x)=\left(f,(x), \ldots, f_{m}(x)\right.$ for aip $x \in U$. Now let W be quasi-projective and defined by $W \subseteq \geq \subseteq \mathbb{P}^{m}(\mathcal{k})$. A morphism \hat{f} from U to W is a map from U tō W with the following froperties. Cefine W_{i} by $W_{i}=W \cap j_{i}\left(A^{m}\right)$. Let $U_{i}=f^{-1}\left(W_{i}\right)$. The map f is a morphism iff for each i the induced map from $U_{i} \rightarrow w_{i} \rightarrow i_{i}^{-1}\left(w_{i}\right) \subseteq A^{m}$ is a morphism into the quasi-affine variety $j_{j}^{-7}\left(W_{i}\right)$. One can easily show that the identity maps are rorphisins and that the composition of morphisms is a morphism. Thus we have defined a category whose objects are quasi-projective barieties and whose morphisms are regular maps. Denote the catesory by apSch(k).

Let $U \subseteq x \subseteq \mathbb{A}^{n}$ be a quasi-affine variety and let x be specified bj the polynomials $g_{i}\left(x_{1}, \ldots, x_{n}\right) i=1, \ldots, m$. We must embed x as a closed subset of some \mathbb{p}^{k}. To do this we
introduce homogenecus coordinates and let $\hat{g}_{i}\left(\lambda, x_{1}, \ldots, x_{n}\right)$ be the corresponding homegeneous polynomial. Let x^{\wedge} be the zere set of the $\hat{g}_{i} i=1, \ldots, m$ in p^{n}. Then j_{0} embeds x as in open subset of x^{\wedge} and hence j_{0} embeds U as an open surset of x^{n}. Thus each quasi-affine variet, can be identified with a quasi-projective variety.

Let $U \subseteq X \subseteq \mathbb{A}^{n}$ and $V \subseteq Y \subseteq A^{n_{1}}$ be quasi-affirie varieties. The set $X \times \bar{Y}$ is easily seen to be an algebraic subset of in $\mathrm{r}^{+\mathrm{m}}$ by identifying it with the set $\left\{\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right\}\right.$: $\left.g_{i}(y)=0 \quad i=1, \ldots, m, f_{i}(x)=0, i=1, \ldots, r_{i}\right\}$. The reader sincuid convince himself that the topology of $X \times Y$ is not the product tonology. (Examine, for example, the Zariski closed sets in A^{2} as compared to closed sets in the product topology of ?. A^{7}.) The product set $U \times Y$ is open in $X \times Y$ and hence L - \because is also quasi-affine.

In order to show that the product of quasi-projective varieties admits a quasi-projective structure we must viork a bit harder i_et $\mathbb{P}^{n}(k)$ and $\mathbb{P}^{m}(k)$ be given and consider the point set F^{n}. Let $N=(n+1)(m+1)-1$. Let the coordinates in $]^{N}$ be Given by $w_{i j}, i=1, \ldots, n+1 \quad j=1, \ldots, m+1$. Define $\rightarrow \mathbb{P}^{n} \times \mathfrak{P}^{m} \rightarrow \mathbb{P}^{N}$ by $\ddagger(x, y)=\left(\ldots, w_{i j}, \ldots\right)$ where $w_{i j}=x_{i} y_{j}$. The image of Φ is a closed subset of \mathbb{P}^{N} given by $w_{i j} W_{k \ell}=$ $w_{i}, w_{k j} \quad i, k=1, \ldots, n+1 \quad j, \ell=1, \ldots, m+1$ and \dot{m} is one to one. We give $\mathbb{F}^{n} \times \mathbb{P}^{m}$ the projective variety structure of its image in $\not P^{N}$. Now let $U \subseteq X$ and $V \subseteq Y$ be quasi-projective then $U \times V$ is given the structure of $\phi(U \times V)$. A useful result about products and morphisms is the Closed Graph Theorem for a Igebraic varieties.
4.2.1 Theorem. A function f from an algebraic variety X to ar aiee axic variety Y is a mormism iff the graph of f is cloced in $X \times Y$.

A topological space x is called reduciore if x can be written as a union of closed subsets $x_{1} \cup x_{2}$ with $x_{1} \neq x$ and $x_{2} \dot{F} x$. The space x is called irpeducibie if x is not reducible. If $U=X$ is an open subset of the topological space X and $\bar{U}=X$ (where the bar denotes topological closure) then x

Es irreducitle it ard only if U is irreduciole (Eicmentary). - ausi-projective variety x is said to be irreducible if the miderying space is irreducible, let x be an affine variety and [i] the $:-$-algebra of regliar functions (ountwise addition equaltiplication) on x, then one oasiby checks that x is areucible iff $A(x)$ nas no zero divisors. (If f,g $G A[x]$ ane rot identically zero on x and $f(x) g(x)=0$ for all $x \in x$, $\dot{\lambda}_{\bar{f}}=\{x \in \dot{x} \mid f(x)=0\}, x_{g}=\{x \in X \mid g(x)=0\}$ are ciosed subsets of. x satisfying $\left.x=x_{f}^{G} \cup X_{G}, \quad X_{f} \neq x, X_{y} \neq X_{0}\right)$ Using this we see that the affine spaces $/ A^{\eta}$ are irreducible. Then by the remaris nade abcve we see that open subsets of \mathbb{A}^{n} are irreducible and that $P^{n}(f)$ and its upen subsets are irreducible.

If X is ar irreducible variety and $U \subset X$ is open, then $\bar{J}=x$. (If J wera not equal to x then $\bar{j} 1(X-U)=x$ would show $\%$ to te reduciole.) For irreducitile varieties we have Seyl's irrelevarcy principle. Let u be an open subst of an irroducible (quasi) afrine variety $y \subset A^{n}$, and suppose that $f\left(x_{i}, \ldots, x_{i}\right)$ is a polynomial over k such that $f(x)=0$ for d! $x \in i j$, then $f(x)=0$ for ail $x \in X$. Indeed $f(x)=0$ cafines a closed subset Y of A^{n} and we nave by hypothesis $U \subset Y$, hence $X \subset \bar{U} \subset \bar{Y}=Y$. Similarly if U is an open subset of an irreducibie (quasi) projective variety $x \in P^{\prime \prime}(f)$ and $g(x)$ is a homogeneous polynomial in $x_{0} \ldots \ldots x_{n}$ such that $g(x)=0$ for all $x \in U$, then $g(x)=0$ for all $x \in X$.

Let x be a variety and suppose x is the union of sets lS_{j}. We say the union is irredundart iff $S_{i} \subset S_{j}$ implies $S_{i}=S_{j}$. We have the following theorem
4.2.2 Theorem. Every algebraic voristy ie the finite irredurant union of irreduciole oiosed varieites. The decumposition is unique ue to permatation.

The proof of Theorem 4.2 .2 follows the following line. Suppose $V=W_{1} \cup W_{2}$ where W_{1} and W_{2} are closed varieties. If the assertion is false for v then it is false for W_{1} or W_{2}. Applying the theorem again we produce a sequerice $W_{1} \supset W_{3} \supset W_{4} \ldots$ The sequence is infinite decreasing and herice corresponds to an infinite increasing sequence of ideals in the coordinate ring. Since the coordinate ring is Noetherian we have a contradiction and hence V can be written as a firite union of irreducible closed subvarieties. The uniqueness of the decomposition can be
shown as follows: Suppose $V=U W_{i}$ and $V=U V_{i}$ then $V_{j}=U\left(w_{i} \cap V_{j}\right)$ and since V_{j} is irreducitie $V_{i}=U_{i} \cap V_{j}$ for some j. On the otner hand. $w_{i}=w_{i} \cap v_{k}$ for some k and nence $v_{j}=v_{k}=d_{i}$ thus there is a one to one correspondence between the W_{i} 's and V_{i}^{\prime} s.

Let V be irreducible. Then the coordinate ring is an integrai domain and we can define its field of fractions K_{x}. Now K_{x} is a vector space over x and hence has a dimension n. The number $n=\operatorname{dim} i_{x}$ is the transcendence degree of K_{x}. We 1 define the degree of F to be the number dim K_{x}. In section 2.3 this is discussed further. We comment here that the dimension of the tangent space at a nominourar point x is the sanie as the degree of V. This can be ciscovered by considering the ring of derivations of the coordinate ring and considering the derivations as vector fields as in section 3.3.21.

4.3 Algebraic Vector Bundles

in 4.3.1 and 4.3.3 we review some of the material developed in 3.3 in the algebraic geometric settirg. In the remaining sections we study the relationship between subvarieties of a variety X ari vector bundies or X.
4.3.1 Sefinition (algetraic vector bundle). An aigebraic vector buncle of dimension $\frac{n}{\text { over a (quasi-projective) variety } x \text { con- }}$ sists of a surjective morphism of varieties $\pi: E \rightarrow X$ and an n-dimensional k-vector space structure on each $\pi^{-1}(x) \subset E, x \in X$ such that for every $x \in X$ there exists an open neighborhood $x \in\left(i \subset X\right.$ and an isomorphism (of varieties) $\phi: \pi^{-1}(U) \simeq U \times \mathbb{A}^{n}$ which suatisfies
(i) $p_{U} \phi=\pi \mid U$, where $\pi / \pi^{-1}(U)$ is the restriction of $\pi: E \rightarrow X$ to $\pi^{-1}(U)$.
(ii) for every $y \in U, \phi: \pi^{-1}(y) \rightarrow y \times \mathbb{A}^{n}$ is a linear isomorphism of k-vector spaces where $y \times A^{n}$ is given the obvious k-vector space structure.

We shall often write E_{x} for $\pi^{-1}(x) ; E_{x}$ is called the fibre of E at x.

Let $E_{1} \xrightarrow{\pi_{1}} X, E_{2} \xrightarrow{\Pi_{2}} X$ be two algebraic vector bundtes cier the variety X. A homorphism $\&: E_{1} \rightarrow E_{2}$ of vector Lundies over x is a morphism $\phi: \Sigma_{1} \rightarrow E_{2}$ such that $\pi_{2} \phi=\pi_{1}$ and such that the irduced maps $\phi_{x}: E_{1 x} \rightarrow E_{2 x}$ are $k-l i n e a r$ homomorphisms of the k-vector spaces $E_{1 x}$ into the k-vector spaces $E_{2 x}$. A homomorphism of vector bundles $\phi: E_{1} \rightarrow E_{2}$ is an isomorphism of vector bundles if there is a nomomorphism
$D^{\psi}: E_{2} \rightarrow E_{1}$ such that $\psi \phi=I_{E_{1}}$, 讪 $=I_{E_{2}}$.
4.3.2 Definition (algebraic sections). A section of the algebraic vector bundle $E \rightarrow X$ is a morphism $s: X \rightarrow E$ such that $r s=l_{X}$. Giving a section of $E \rightarrow X$ is equivalent to giving a homonorphisin of the trivial one dimensional vector bundle $x \times A^{?} \rightarrow X$ into $E \xrightarrow{\pi} X$. The correspondence is as follows: Let $s_{1}: X \rightarrow X \times \mathbb{A}^{\prime}$ be the section $x \rightarrow(x, 1)$ then $\phi \rightarrow \phi s$, establishes a one-one onto correspondence between homomorphisms $\dot{\psi} \cdot X \times A^{\top} \rightarrow E$ and sections $X \rightarrow E$.

4.2.3 Patching data deseription of bundles and bundle homonorphismis

Tre definition of vector bundle in 4.4 .1 says that every aigebraic vector bundle over a variety x can be described (e.g. obtained) by the following data
(i) a (finite) covering $\left\{U_{\alpha}\right\}$ of X by open sets $u_{\alpha} \subset X$
(ii) for every α à trivial bundle $U_{\alpha} \times \mathbb{A}^{n}$ over U_{α}
(iii) for every α and β an isomorphism of triviat vector bundles

$$
\phi_{\alpha, 3}:\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{A}^{n} \rightarrow\left(U_{B} \cap U_{\alpha}\right) \times \mathbb{A}^{n}
$$ where tne isomorphisms $\phi_{\alpha, 3}$ are required to satisfy

the conditions the conditions
(iv) ${ }_{\alpha \beta} \phi_{\beta a}=1$
(v) $\phi_{\operatorname{Sif}_{i}}(x) t_{\alpha, \beta}(x)=\phi_{\alpha, \gamma}(x)$ for every $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ where tup (x) is the isomorphism $x \times A^{n} \rightarrow x \times \mathbb{A}^{n}$ induced by $\phi_{\alpha \beta}$.
We note that giving an isomorphism $\phi_{\alpha \beta}:\left(U_{\alpha} \cap U_{\beta}\right) \times A^{n}$ $\left(U_{\beta} \cap U_{\alpha}\right) \times \mathbb{A}^{n}$ is equivalent to giving a morphism $U_{\alpha} \cap U_{\beta} \rightarrow$ $S_{n} n_{n}$ where G_{n} is the quasiaffine algebraic variety over k with nonzero determinant.

Let E_{1} and E_{2} be two algebraic vector bundles over the variety x obtained by giuing together trivial bundles $U_{\alpha} \times \mathbb{R}^{n}$, resp. $U_{C i} \times A^{m}$, where $\left\{U_{\alpha}\right\}$ is an open covering of X (We can take the same covering for E_{1} and E_{2} by taking if necessary to common refinement of two opein coverings).

Let $\phi_{\alpha \beta}^{1}$ and $\phi_{\alpha \beta}^{2}$ be the gluing isomorphisms for E_{1} and E_{2} respectively. A homomorphism $\psi: E_{1} \rightarrow E_{2}$ can now be describec as fullows: ψ consists of homomorphisms $\psi_{\alpha}: U_{\alpha} \times \mathbb{A}^{n} \rightarrow U_{\alpha} \times A^{m}$ of trivial bundies such that for every α and β we have

$$
\phi_{\alpha \beta}^{2}(x) \psi_{\alpha \alpha}(x)=\psi_{\beta}^{\prime}(x) \phi_{\alpha \beta}^{1}(x) \quad \text { for all } x \in U_{\alpha} \cap U_{\beta}
$$

Note that giving a romomorphism $\psi_{\alpha}: U_{\alpha} \times A^{n} \rightarrow U_{\alpha} \times A^{m}$ is equivalent to giving a morphism $U_{\alpha} \rightarrow M(m, n)$, where $M(m, n)$ is the affine algebraic variety of ail $m \times n$ matrices with coefficients in k.
let $E \rightarrow X$ be an algebraic vector bundle over the variety X and let $f: Y \rightarrow X$ be a morphism of varieties. We are going to construct a vector bundle $f!E$ over ϕ. The so-called pullback (along f) of E. Suppose E is given by patching data $\overbrace{\dot{U} \hat{S}}: U_{\alpha} \cap U_{B} \rightarrow G 2_{n}$, then $f!E$ over ϕ is given by the patching data $f^{-1}\left(U_{\alpha}^{\beta}\right) \cap f^{-!}\left(U_{\beta}\right) \xrightarrow{f} U_{\alpha} \cap U_{\beta} \rightarrow G \rho_{n}$.

Similarly if $\psi: E_{\gamma} \rightarrow E_{\text {? }}$ is 3 homomorphism of vector bundles given by the local homomorphisms determined by morphisms $\dot{\psi}_{\alpha}: U_{\alpha} \rightarrow M(m, n)$, then we define $f!\psi: f!E_{1} \rightarrow f!E_{2}$ by means of $\underset{\text { morphisms }}{ }\left(f^{!} \psi\right)_{\alpha}: f^{-1}\left(U_{\alpha}\right) \stackrel{f}{\rightarrow} U_{\alpha} \rightarrow M\left(m_{1}, n\right)$.

4.3.7 Subvarictips of x and algebraic vector bundies on x.

Suppose 7 c: x is an irreducible subvariety of an irreducinle quasi-frojective variety x and for simplicity assume

$$
\operatorname{codim}(Z)=\operatorname{dim} X-\operatorname{dim} Z=1 .
$$

If X is smooth, e.g. if X is an open subspace of an algebraic submanifold of $p^{n}(\mathbb{a})$, then 2 may be locally defined as the zeroes of a single analytic function. itore formally, we may cover the manifold x by charts such that on each ${ }^{1}{ }_{a}$

$$
\begin{equation*}
z \cap u_{\alpha}=f_{\alpha}^{-1}(0) \tag{4.3.5}
\end{equation*}
$$

for $f_{\alpha}: U_{\alpha} \rightarrow \mathbb{a}$ an analytic function.
A. certral question ir the classification of subvarieties of a given variety X is whether each codimension 1 subvariety z may be ciefined as the lozus of a single algebraic or analytic function f. Noiw, the description (4.3.5) of Z leads to the cata

$$
\begin{equation*}
\left\{U_{\alpha}\right\} \text { a cover of } x, g_{\sim D}=f_{\alpha} / f_{i}: \|_{\alpha} \cap U_{\beta} \rightarrow \mathbb{I}-\{0\} \tag{4.3.6}
\end{equation*}
$$

But since $g_{\alpha S} g_{B \gamma}=g_{C \gamma \gamma}$, (4.3.6; itself constitutes the locaz vieces und giuing cätc. (sfe 3.3.8) for an analytic rank 1 vector Eundle, or preferably arm analytic line bundle

$$
\begin{equation*}
\pi: L \rightarrow X . \tag{4.3.7}
\end{equation*}
$$

Moreover, the description (4.3.5) also yields an analytic section of the line bundle $L=$ viz. s is given on each U_{α} by

$$
\begin{align*}
& s_{\alpha}: U_{\alpha} \rightarrow U_{\alpha} \times \mathbb{d} \\
& s_{\alpha}(p)=\left(p, f_{\alpha}(p)\right) . \tag{4.3.8}
\end{align*}
$$

By (4.3.5), Z arises as the zeroes of the section 5 . In particular, z arises as the zeroes of a glubally defined analytic function f if, and only if, L is trivial. [We remark that, with more work (see [4], Chap. III) one may show that in (4.3.5) the U_{α} may be taken to be Zariski open and the f_{α} to be regular algebraic functions.] As an example, it is fairly easy to show that an algebraic line bundle $L \rightarrow \mathbb{A}^{n}$ an affine space is (aigecraicaliy) trivial.

Now, hore generally, consider a subvaricty Z of x with

$$
\operatorname{codim}(Z)=\operatorname{dim} x-\operatorname{dim} Z=r \geq 1
$$

Again, one may cover x by $\left\{U_{\alpha}\right\}$ for which there exist suitable functions $f_{\alpha}^{l}, \ldots, f_{a}^{r}$ such tiat.

$$
\begin{equation*}
z \cap U_{u x}=\left\{z \mid f_{\alpha}^{f}(z)=\ldots=f_{\alpha}^{r}(z)=0\right\} . \tag{4.3.5}
\end{equation*}
$$

And, on each intersection $U_{\alpha} \cap U_{B}$ one rias

$$
\stackrel{i}{B}_{i}^{B}=\sum_{j} g_{i j} f_{c i}^{j}
$$

(provided wa choose the f_{α}^{j} generation for the ideal of arialytic functions on U_{α} vanishing on $Z \cap \|_{\alpha}$), leading to the data

$$
\begin{array}{r}
\left\{U_{\alpha}\right\} \text { a cover of } x, g_{\alpha \beta}=\left(g_{i j}\right): U_{\alpha} \cap U_{\beta} \rightarrow G l(r, \mathbb{C}) \\
(4.3 .6)^{\prime}
\end{array}
$$

Now, (4.3.6)' gives the local pieces and gluing data for an analytic rark r vector bundle

$$
y \rightarrow x,
$$

which is trivial if and only if V is definable as the common zeroes of r globally defined analytic functions on X. Iria less resirictive setcing, if Z is the (complete) intersection of r hypersurfaces Z_{i} in x,

$$
z=\sum_{i=1}^{r} z_{i}
$$

then

$$
V \simeq \oplus_{i=1}^{\stackrel{r}{\oplus}} L_{i} .
$$

In particular, one is naturally led to the study of algebraic and geonetric invariants of vector bundles on X from quite simple considerations involving subvarieties and their intersections or from studying the solution set to a system of simultaneous algebraic equations.

In the next section we will consider the Grassmann variety of p-pianes in n-space, developing the algebraic analogues of sections (3.5). In (4.5) some of the basic tools for intersection theory on manifolds will be briefly reviewed.
4. 4 Srassmann lianifolds

Let V be a finite dimensional vector space of dimension n over the complex numbers and let $G_{p}(V)$ be the set of all p aimensional suhspaces of V. The set $G_{p}(V)$ admits a manifold siructure with the folicwing charts. Write $V=U \oplus W$ with $U \in \hat{u}_{j}(V)$ and $W \in G_{n-p}(V)$. For $A \in L(U, W)$ define $U_{A}=$ $\{u+4 u: u \in U\}$. The map $A \rightarrow U_{A} i s$ a one-to-one map from $L(U, W)$ intc $G_{p}(i)$. it is not onto for we can describe the set of U_{A} 's as exactly those elements of $G_{p}(V)$ that have zero intersection with W. Let $S_{W}=\left\{U_{A}: A \in L(U, W)\right\}$. If a basis for U and W is chosen so that A has a matrix representation ther S_{W} along with the map that takes U_{A} ontc the matrix A is a suitatile chart. As W ranges over all complements of U the sets S_{W} form a cuver for $G_{p}(V)$. If ϕ_{W} is the map from S_{W} to $L(U, W)$ ar, Easy caiculation shows that

$$
\psi H_{1} \cdot \operatorname{cin}_{2}^{-1}(A)=A_{2}\left(I+A_{1}\right)^{-1}
$$

where $A_{\text {? }}$ and F_{2} are the unique matrices such that $A u=$ $A_{1} u+A_{2} u$ with $A_{1} u \in U$ and $A_{2} u \in W_{1}$. The mapping is defined whenever $A \in \Phi_{W_{2}}\left(S_{W_{1}} \cap S_{W_{2}}\right)$ and teing rational it is differentiable. The sets S_{W} with the maps ϕ_{W} form an atlas for the manifold.
) An important fact about these charts is that S_{H} is an open dense subset of $G_{p}(V)$. In fact even more is true because of the fact that the complement of S_{W} is the subspaces that intersect W. This implies that the complement is algebraic and nence that \mathcal{S}_{W} is Lariski open. The mapping that send A to U_{A} is thus an embedding of $L(U, W)$ into $G_{p}(V)$ as an open dense subset.

Let $G \ell(V)$ be the group of all linear automorphisms of V. 4riy group of automorpinisms of V acts naturally on $G_{p}(V)$ by linear transformation of subspaces. Let a be ariy element of $G \ell(V)$ and partition \propto as

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

were $a_{11} \equiv L(U, U), \quad v_{12} \in L(W, U), x_{21} \in L(W, W)$. Then α raps the subspace U_{A} to the subspace

$$
\left.a\left(U_{A}\right)=i\left(x_{11}+\alpha_{12} A\right) u+\left(\alpha_{21}+a_{22} A\right) u: u \in U\right\}
$$

The space $\alpha_{A}\left(U_{A}\right)$ is in S_{W} iff $\left(\alpha_{11}+\sim_{12} A\right)^{-1}$ exists and in that case

$$
x\left(U_{A}\right)=U U_{\left(\alpha_{21}+\left(\alpha_{22} A\right)\left(\alpha_{11}+\alpha_{12} A\right)^{-1}\right.}
$$

The G:(v) action thus acts locally as a generalized linear fractiona? transformation. The lacal behavior of the action is VEry finniliar.

Sr. tre other hand, given any two p dimensional subsuaces U जnG trere is a inear automormismi that maps u onto W. Trus the action is transitive and we have that $G_{p}(V)$ is che hnmogenecus space $G i(V) / H$ for some H. Let U be a fixed ete. ment of $\epsilon_{p}(V)$ and W an arbitrary complement. The isotropy suogroup of U is just those transformations with $\alpha_{21}=0$. Thus rie can count dimensions either by the homogeneous space or by the cinart.

If we select on V a positive definite bilinear form we cnoose in each subspace U an orthonormal basis and extend it tc basis of V by tine Gram-Schmidt process. This shows that the group of crthonorma? matioices acts transitively on $G_{p}(V)$ and thus $\hat{G}_{p}(V)$ is compact since $O(n)$ is compact. This also implies that $G_{p}(V)$ is projective variety.

Let $U \in G_{p}(V)$ then each basis of U determines an $n \times p$ matrix B of rank n. Furthermore if B_{1} and B_{2} are such matrices there is an $p \times p$ matrix P invertible matrix such that $B_{1}=B_{2} P$. Conversely if B_{1} and B_{2} are $n \times p$ matrices of rank p and there exists a P such $B_{1}=B_{2} P$ the column space of E_{1} is the column space of B_{2}. We have established
triat their one-to one corresponcence between the crbits of $G(p)$ acting on $r \times p$ matirices of rarik p and the $G_{p}(V)$. The Fioker coordirates of a matrix B is the $\binom{11}{f}$-iuple of determinants of $p \times p$ submatrices of B. It is cásy to see that if $S_{1}=E_{2} p$ then Plucker coordinates of E_{1} is scaiar multiple of the Plucker cuordinates of B_{2}. , minus we can asscciate with each point in $\hat{G}_{p}(V)$ a line in $\mathbb{C}^{(p)}$. It can be shown, of course, that distinct points map onto distinct lines and that the er:bedáing satisfies à homogeneous àgebraic equation and nence $G_{p}(V)$ is an algebraic subset of

$$
p^{(n}\binom{n}{p}-1
$$

Thus, $G_{p}(V)$ is a projective algebraic variety.
The Gressmani:an manifolds carry a natural algebraic vector bunde that can be describci as follows. Let

$$
\eta=\left\{(x, v):(x, u) \in G_{p}(v) \times v \text { and } v \in x\right\}
$$

\therefore is a subvariety of $G_{p}(V) \times V$ and can be shown by the methods of 4.3 .1 to be en algebraic vectori bundle where the projection $\because: n \rightarrow(l)$ is onto the first coordinato. It can be shown that this bundle possesses no sections, but there is no particularly anlightening proof available.

However, if we construct the dual bundle n^{*} whose fibres are the spaces dual to the fibres of η. Then η^{*} has a full complement of sections. For let v have a basis e_{j}, \ldots, e_{n} and an algebraic innerproduct. Define a section s_{i} of n^{*}
| by $s_{i}(x)(y)=\left\langle y, e_{i}\right\rangle$ where $x \in G_{p}(V)$ and $y \quad x$. The s_{j} 's are linearly independent as sections for consider

$$
\left(\sum x_{i} s_{i}\right)(x)(y)=\left\langle y, \sum \alpha_{i} e_{i}\right\rangle=0
$$

implies that $\sum \alpha_{i} e_{i}=0$ and hence that the s_{i} 's are independent. Every holomorphic section can be written as a linear comhinction of the s_{i} 's.

The question whether n or r_{i}^{*} is the natural bundle on $r_{2}(V)$ deperds somewhat on one's background. Traditionally differential geometers consider n to be natural and algebraic geometers prefer n^{*}.

4.5 Intersections of Subvarieties and Submanifolds

Consider ? subvarieties X_{1}, x_{2} of $\mathrm{P}^{2}(\mathbb{I})$ defined by homo-
functions geneous functions

$$
f_{1}(x, y, z)=0, \quad f_{2}(x, y, z)=0
$$

of degress d_{1} and d_{2}, respectively. Bézout's Theorem (1.1.12) asserts that, unless f_{1}, f_{2} have a comon factor, the number of points in $X_{1} \cap X_{2}$ counted with multiplicity is given by

$$
\begin{equation*}
\dot{\#}\left(x_{1} \cap x_{2}\right)=\operatorname{deg} x_{1} \cdot \operatorname{deg} x_{2}=d_{1} d_{2} \tag{4.5.1}
\end{equation*}
$$

(1.1.12) was proved in the special case $d_{1}=1$; that is, where x_{1} is a line in \mathbb{P}^{2}. We offer a second proof in this case whicit relies on the "principle of conservation of number."

Now, if f_{2} is the product

$$
\begin{equation*}
f_{2}(x, y, z)=\prod_{i=1}^{d_{2}} \phi_{i}(x, y, z) \tag{4.5.2}
\end{equation*}
$$

of pairwise independent linear functionals of (x, y, z), then $x_{\text {? }}$ is the union of σ_{1} distirict lines in \mathbb{P}^{2}; i.e. x_{2} is reducible as

$$
\begin{equation*}
x_{2}=d_{i=1}^{u} x_{2}^{i} \tag{4.5.2}
\end{equation*}
$$

However, if x_{i} and x_{2} contain no common irreducible factors, then

$$
\#\left(x_{1} \cap_{1} x_{2}\right)=\sum_{i=1}^{d_{2}} \#\left(x_{1} \cap x_{2}^{i}\right)
$$

But,

$$
\pi\left(x_{1} \cap x_{2}^{i}\right)=1
$$

since each pair of distinct lines in \mathbb{P}^{2} intersect in a unique point.

Consider the case where f_{2} is not a product as in (4.5.2). The space $V\left(d_{2}\right)$ of homogeneous polynomials of degree d_{2} in (x, y, z) is a finite dimensional vector space. In particular,
\hat{F}_{2} may be joined to a polynomial \ddot{f}_{2} satisfying (4.5.2) by a eath not pussing thacugh the 0 polynomia?. Indeed, consider the poth

$$
\begin{equation*}
t t_{2}+(1-t) \tilde{f}_{2} \quad \subset V_{d_{2}} \tag{4.5.3}
\end{equation*}
$$

Tais deformation from f_{2} to \tilde{f}_{2} also gives rise to à deformat.ion of x_{2} to a union of d_{2} lines:

$$
x_{2}(t): x_{2}(0)=x_{2}, \quad x_{2}(1)={\underset{i=1}{d}}_{u^{2}}^{x_{2}^{i}} .
$$

The principle of conservation of number asserts that

$$
\#\left(x_{1} \cap x_{2}(t)\right)
$$

is independent of t (provided it remains finite), and therefore

$$
\begin{equation*}
\#\left(x_{1} \cap x_{2}\right)=\sum_{j=1}^{d_{2}} \#\left(x_{1} \cap x_{2}^{j}\right)=\dot{d}_{2} \tag{4.5.4}
\end{equation*}
$$

prcving E®zout's Theorern for x_{1} à iine. If $\operatorname{deg} x_{1}=d_{1}>1$, one may reiterate the above argumeni deforming x_{1} to a union of d_{1} lines, say $\tilde{x}_{1}={\underset{j}{j}=1}_{d}^{x_{j}^{j}}$, and appealing to the basic Frimciple, i.e.

$$
\begin{aligned}
\#\left(x_{1} \cap x_{2}\right) & =\#\left(\tilde{x}_{1} \cap x_{2}\right)=\sum_{i=1}^{d} \#\left(x_{1}^{j} \cap x_{2}\right) \\
& =\sum_{j=1}^{d} \sum_{i=1}^{d_{2}} \#\left(x_{i}^{j} \cap x_{2}^{i}\right)=d_{1} d_{2} .
\end{aligned}
$$

Now, the successful application of the principle of conservation of number reposes on the introduction of an equivalence relation on submanifolds or subvarieties (ot a fixed dimension) so that appropriate deformations of a submanifoid do not change the equivalence class of the submanifold and so that intersection riubers, etc. depend only on the equivalence class. In the proof of Bezout's Theoren offered above, such deformations were affncted by a continuous change ir the coefficlents of defining equations and the basic principle amounts ro the continuous cependence of the roots on the coefficients on a defining equation. Such a program may be carried out in principle for general धrietics, but is far beyond the scope of these notes. The more Gipmentary topological approacn employs the equivalence relations
aetined by homology and homotopy and we list some of the basic results beiow. For in a smonth manifold of dimension n, aind for each $r, 0 \leq r \leq n$, one introduces the r-th homn? ogy group of 11 , with integer coefficients in \mathbb{Z} (or \mathbb{Z}_{2}), denoted by $H_{r}(M ; \mathbb{Z})$ or ${i_{r}}_{r}\left(11 ; \mathbb{Z}_{2}\right)$. Each submanifold $N \subset M$ determines a [ii] E $H_{r}(M ; \mathbb{Z})$; for example, for $M=\mathbb{T}^{2}(\mathbb{U})$ it is known that the only nonzero homology groups are

$$
\begin{aligned}
& H_{0}(M ; \mathbb{Z}) \simeq \mathbb{Z}=([P]) \\
& H_{2}(M ; \mathbb{Z}) \simeq \mathbb{Z}=([X,]), \quad \operatorname{deg} x=1 \\
& H_{4}(M ; \mathbb{Z}) \simeq \mathbb{Z}=\left(\left[P^{2}\right]\right) .
\end{aligned}
$$

In this context, intersection of 2 subracnifolds $x_{d_{1}}, x_{d_{2}} \subset \mathbb{P}^{2}(a)$ of dimension 2 (over R) is determined by $\left[\begin{array}{ll}x_{1}\end{array}\right],\left[\begin{array}{l}x_{d_{2}}\end{array}\right]$ in a bilinear manner. Thus the intersection theory in Bezout's Theorer amount to the evaluation of the bilinear form

$$
i\left(\left[x_{d_{1}}\right],\left[x_{d_{2}}\right]\right)=d_{1} d_{2} .
$$

in general, let M be a orientable connected compact manifold. For each integer n, let

$$
H^{n}(M, R), \quad H_{n}(M, \mathbb{F})
$$

denote the cohomology and homology yector spaces (with the real numbers k as coefficients.

For each pair (j, k) of integers, there is a bilinear mapping

$$
\begin{equation*}
H^{j}(M, \mathbb{R}) \times H^{k}(M, R) \rightarrow H^{j+k}(M, R) \tag{4.5.5}
\end{equation*}
$$

called the oup product. If $\omega_{1} \in H^{j}(M, R), \omega_{2} \in H^{k}(M, R)$, the $\omega_{1} U \omega_{2}$. In particular for $k=m-j$ it maps

$$
\begin{equation*}
H^{j}(M, R) \times H^{m-j}(M, R) \rightarrow H^{m}(M, R)=\mathbb{R} \tag{4.5.6}
\end{equation*}
$$

4.5.7 Poincare Duality Theorem. The Litinear mapping (4.5.6) is nondeganeate. Ir paricular, it iutentives $H^{m-j}(M, R)$ with the duat iector space of $H^{j}(M, R)$, and ideritifies $H^{m-j}(M, R)$ with $H_{j}(M, R)$.

The eup－product（4．5．5）on cohomology then transforms （under this Yoincare duality isomorphism between homology and sohomol．ogy）into an algebraic operation on homology－－the inter．． ことこごに，paining．If

$$
j+k=m
$$

and $H_{0}(i i)$ is identified with R ，the inteneection operation eriines a bilinear map

$$
H_{j}(M, \mathbb{R}) \times H_{k}(M, R) \rightarrow \mathbb{R}
$$

－$a \in H_{j}(M, R), E \in H_{k}\left(i_{1}, R\right)$ ，the real number

$$
i(x, \beta)
$$

assigned to (a, ∞) be the operation is called the iritersection ：urite：of the two homolcigy classes α, β ．

The above definition of＂intersection rumber＂is conceptually iery simple，once one understands basic honiology theory．To be usefu？，it must be supplemented by a method of computing it in mo：e faniliar gemietric terms，for a suitably＂qeneric＂situation． Eifrerentiable manifcld theory offers such a possibility．

Let N，is＇be compact orientable manifolds，with fixed orien－ tation surn that
dim $M=\operatorname{dim} H \div \operatorname{dim} N^{\prime}$.
Tre spaces $H_{n}(N, R)$ ，$H_{n}\left(N^{\prime}, R\right)$ have canonical generators （ $n=\operatorname{dim} N, n^{\prime}=\operatorname{dim} N^{\prime}$ ），which are called the funiamentaz bunolase＝lasees of the mariffolds，denoted by h_{N}, h_{N} ．Let

$$
\phi: N \rightarrow M, \quad \phi^{\prime}: N^{\prime} \rightarrow M
$$

be two continuous maps，and let

$$
\phi_{*}\left(h_{N}\right) \in H_{n}(M, R), \quad \varphi_{*}\left(h_{N}\right) \in H_{n}\left(\mu_{i}, R\right),
$$

be the image of these fundamental cycles in the homology of M ． The intersection

$$
i\left[\phi_{\star}\left(h_{H}\right), \phi_{\star}\left(h_{N^{\prime}}\right)\right]
$$

is called the intersection number of the maps ϕ, ϕ^{\prime} ，denoted by

$$
i\left(\phi, \phi^{i}\right) .
$$

No: suppose that p, ψ^{\prime} are C^{∞} maps. let $p \in N^{\prime}, p^{\prime} \in N^{\prime}$ be two joints such that

$$
\phi^{\prime}(p)=\phi^{\prime}\left(p^{2}\right) .
$$

The maps are said to inemsect in generol positim at this point if

$$
\begin{equation*}
M_{\dot{\rho}}(p)=d \phi\left(N_{p}\right) \in d \phi^{\prime}\left(N_{p}^{\prime}\right) \tag{4.5.8}
\end{equation*}
$$

(1_{q} derivtes the tangent vectoi space to M at q; di denotes tne induced linear maps on tangent vectois.)

Now, fixing an orientation for N means that it makes sense wien a basis for each tancent space is "positively" or "negatively" oriented. Let us say that $\phi(N)$ and $\phi^{\prime}\left(\mathcal{N}^{\prime}\right)$ meet at $\phi(p)$ in a positive way if 4.5 .8 is satisfied, ard if putting together a fosicively oriented basis for N_{n} and N_{p}^{\prime} provides a positively oriented basis for $M_{\varphi}(p)$. Otherwise (and if they meet in general position) they are saic to meet at $\phi(p)$ in a negative way.

Suppose that. $\phi(i v)$ and $\psi^{\prime}\left(N^{\prime}\right)$ meet in general position a+ eacn boint of intersection. Then

4.5.9 Thearem

$$
\begin{equation*}
i\left(\phi, \phi^{\prime}\right)=\sum_{p \in \phi(N) \cap \phi^{\prime}\left(N^{\prime}\right)} \pm 1 \tag{4.5.10}
\end{equation*}
$$

Here, the sign + or - is chosen according to whether the submanifolds meet in a positive or negative way.

Deternining the orientations of the intersections is ofter a:i obstacle to determining the intersection number using formula (4.5.10) , Workins in the categories of complea analytic instead of reai manifold removes this obstacle. The manifold M has a sumieu munifold structure if a set of coordinate cnarts is given, setting up coordinates in \mathscr{C}^{m}, with the transition maps between the charts giver by comp?ex analytic functions. A map $\phi: N \rightarrow M$ between compiex rianifolds is complex if it is given, in terms of complex crarts, by complex analytic functions. A submanifold $0: N \rightarrow M$ is said to be complex if the map is complex.

Such a complex structure on manifold M determines an orientation for the manifold M. In terms of this orientation, two complex submanifolds always meet with rositive oriemtation. Thus, the sum on the right-hand side of (4.5.10) oniy involves
\because as sigr. In particular, $i\left(\phi, \phi^{2}\right)$ is equat to the nomber of Anecuian ot the submanfotz $\phi(N), w^{\prime}\left(1^{\prime}\right)$, provided they reet in general fusition.

Here is the situation of greatest importance in algebraic geonetry.

$$
M=P_{n}(\mathbb{C})
$$

the complex erojective space, of rear dinirnsion $2 r$. It is the juotient of $\mathbb{T}^{n+1} \backslash(0)$ under the dilation group. $\phi(i i), p^{\prime}\left(N^{\prime}\right)$ Ore subseis determined by nonsinguinu, irreducible algebraic subSets of $\operatorname{in} . P_{n}(\mathbb{d})$ is a complex marifold, and the algebraic sutsets are complex submanifolds. For $n=2$, this, of course, is just Bezout's Theorem which we proved bj purely algebraic methods at the beginning of this section.

PEsERENCES

[1] Grifitits, P. A., and Adams, J. Q.: 1974, Topice in Aigebmie ana Anolutic Gesingty, Fririceton University Press Athematical Motes, Vol. 13, Princetor, it.J.
[2] Griffith, P. A., and Harris, J.: 1978, Princivtes of Algeomaie Gometris, New York: Wiley.
[3] Mumford, D.: 1976, Alsebraic Geometry I: Complex Projective Varieties, Springer-Verlag, New lork.
[4] Snafarevitch, I. R.: 1974, Busic Alecbraic Geometry, Springer-Verlag, New York.

5. LINEAR ALGEBR: OYER RINGS

The solution of linear equations, $A X=B$, and more generall: the structure of P-lifiear transformations on R-modules requires us, in the end, to irtrcduce and study quite a few auxiliary oojerts which one encounters in only a simplified form over fields We begin with criterion for surjectivity and injectivity of an Rlinear transformation

$$
T: N \rightarrow N
$$

of finitely-generated R-inoduies. These are always imporiant properties to study, but particular use of these may be made in studjing questions of reachability and observability.
5.1 Surjectivity of Linear Transformations, Nakayama's Lemma

We consider an R-linear map

$$
\begin{equation*}
T: M \rightarrow H \tag{5.1.1}
\end{equation*}
$$

ard would like to reduce our questions to a similar question ower a fie?d. However, as Example 2.4.8 shows, even when R is a PIC, passing to the fraction field K gives us only some of the information me desire, viz. T_{k} is surjective if, and only $i f$, the cokerriel $N / T(M)$ is a torsion module.

Set $\max (R)=\{m \mid m \subset R$ is a maximal ideal of $R\}$, so that $m \in \max (R) \quad i f$, and only if, R / m is a fiald. If T in (5.1.1) is surjective, then so is

$$
\begin{equation*}
\bar{T}: M / n M \rightarrow N / m N \tag{5.1.2}
\end{equation*}
$$

5.1.3 Theorem. T in (5.1.1) is sumeicative if, and onty if, \bar{T} $i=1$ (5.1.2) is surjective for all $m \in \max (R)$.

For example, $T: \mathbb{Z} \rightarrow \mathbb{Z}$ mapping z to $2 z$ gives rise to the map,

$$
0=T: \mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathbb{Z} / 2 \mathbb{Z},
$$

which fails to be surjective. Similariy

$$
\begin{aligned}
& \Gamma: \mathbb{R}[x, y] \rightarrow \mathbb{R}[x, y] \\
& \text { Tf }=\left(x^{2}+y^{2}\right) f
\end{aligned}
$$

fails to be surjective, since T "varishes at the origin." That is, if $i_{0}=\{f \mid f(0,0=0\}$, then T induces the 0 map

$$
0=\bar{T}: R[x, y] / m_{0} \rightarrow F[x, y] / n_{0} .
$$

Proof of 5.1.3. The examples above hint at an important special case, let $g \in R$ and define $T_{g}: R \rightarrow R$ by $T_{g}(f)=g f$. Then T_{g} is suirjective if, and only if, g is a unit in R. That is, g is a unit if, ard only if, g is a unit in R / m for all m. For, g is a unit if, and only if, $g \notin m$ for any $m \in \max (R)$. Consider, on the other hand, those $g \in n \quad m$ $=\mathrm{Jac}(R)$--the Jacobson radical of R.

$$
g \in J a c(R) \text { if, and only if, l-gf is a unit for }
$$

$$
\text { all } f \in R \text {. }
$$

If $g \in \operatorname{var}(R)$, then $1-f g \equiv 1 \bmod (m)$, for all m, and is therefore a unit of R. Suppose that $l-f g$ is always a unit, but that g f mi, for some m; i.e., that $(\mathrm{g})+m=R$. Then, for some $f \in R, h \in \mathbb{r}$, we have the equation

$$
f g+h=1, \text { or } \quad i=1-f 9,
$$

implying $i n=R$.
Next consider $T: M \rightarrow M$ and suppose there exists an ideal I of F. such that

$$
T M \subset I M,
$$

then there exists a relation

$$
T^{n}+\sum_{i=1}^{n} r_{i} T^{n-i}=0, \text { with } r_{i} \in I
$$

For, if $\left\{x_{1}, \ldots, x_{n}\right\}$ generates M, consider

$$
T x_{i}=\sum_{j=1}^{n} a_{i j} x_{j}, \quad a_{i j} \in I .
$$

Equivalently,

$$
\begin{aligned}
& \sum_{j=1}^{n}\left(\delta_{i j} T\left(x_{j}\right)-a_{i j} x_{j}\right)=0, \quad \text { or } \\
& \sum_{j=1}^{n}\left(\delta_{i, j}^{T}-a_{i j}\right) x_{j}=0
\end{aligned}
$$

 and is tnerefore the 0 enciomorphism.

In particular, if $T=i$ one has, setting $r=\sum a_{i}$.
If $I M=M$, then there exists $r \in \mathbb{R}$ such that
(i) $r \equiv 1$ mod I
(ii) $r m=0$.

If $r i x=M$, for àll $m \in \max (R)$, then $M=(0)$.
For, suppose $0 \neq x \in M$. Consider the ideal

$$
A n n(x)=\{r \in R \mid r x=0\} \subset R
$$

Since $x \neq 0, \operatorname{Ann}(x) \neq R$ and therefore, $\operatorname{Ann}(x) \subset m$ for some r. By rypothesis, there exists $r \in R$ satisfying

$$
r \equiv 1 \bmod m, \quad \text { and } \quad r x=0
$$

But, the second equation asserts $r \in \operatorname{Ann}(x) \subset m$, contrary to the first.

It is now an easy consequence that T is surjective if, and on ly if, $\bar{T}: M / n M \rightarrow N / m N$ is surjective, for all m, for all of the above applies to the module N/inage T.
5.7.5 Corollary. [4] In particular, if one considers the linear systom,

$$
\begin{equation*}
x(t+?)=\hat{A} x(t)+B u(t) \tag{5.1.6}
\end{equation*}
$$

defined over R, then $(5.7 .6)$ is reachable, in the sense that the columns of $(B, A B, \ldots)$ span the state module, if and only if

$$
\begin{equation*}
x(t+1)=\bar{A} x(t)+\bar{B} u(t) \tag{5.1.6}
\end{equation*}
$$

is reachable over R / m, for all $m \in \max (R)$.
Along the way, we have also developed enough algebra to prove the "fundamental Theorem of Commutative Algebra,"
5.i.7 iiakayama's Lemma. If M is finitely generated over

Proof. From (5.1.4) one has an $r \in R$ such that

$$
r \equiv 1 \text { mod } I \text { and } r M=(0)
$$

The first eguation asserts that (1-4) $\operatorname{Jac}(K)$ and, by (3.3), r is a unit. The second equation now asserts ihat $M=(0)$.

This is especially useful when the ring $?$ in question has only one maximal ideal, say m. (R, m) is said to be a local ring--for example, the ring of formal power series $N\left[\left[x_{1}, \ldots, x_{N}\right]\right]$ is a local ring with $m=$ if|the constant term of f is 0$\}$, and the ring of germs at 0 of analytic functions in $R N$ is a local ring, contained in $R\left[\left[x_{1}, \ldots, x_{N}\right]\right]$.

If R is local, then $\operatorname{vac}(R)=m$ and we nave
5.7. 8 Nakayama's Lemma. If M is finitelz Genenated over R, wis m $\bar{M}=0$, tiven $M=0$. In particuiar, $\left\{x_{1}, \ldots, x_{N}\right\}$ generates $M \quad i=$, ani orin if, $\left\{\bar{x}_{1}, \ldots, \bar{x}_{N}\right\}$ generates M / mM.

Local rings will arise rather naturally when we study injectivity of $R-1$ inear maps in the next section.
5.2 Injectivity oi Linear Transformations, Solvability of $T X=Y$, Locelizations

In order to study injectivity as well as a particuiar equa-tion $r x=y$, we introduce a refinement of the idea of "evaluating $T^{\prime \prime}$ at the point $m \in \max (R)$, viz. expanding T localiy at m. For $m \in \max (R)$, denote the ring of fractions of R, with deromirators in R, m, by R_{m} (see [1], p. 36). Thus R_{m} eonsists of equivalence classes of pairs $(f, g), f \in R, g \in R \backslash m$, thougint of as fractions f / g. Two pairs are equivalent if there exists $r \in R \backslash m$ such that

$$
(\tilde{f g}-\tilde{f} g) r=0
$$

that is, if the corresponding fractions are equal, and pairs are added and multiplies as fractions. As an exercise, one may check that $[(f, g)]$ is invertible in R_{m} if, and only if, $f \in R-m_{1}$. Therefore, each ideal I of R_{m} is contained in $\{[f, g] \mid f \in \operatorname{m}\}$.
5.2.1 Lemma. R_{m} is a local ring, with unqiue maximal ideal $\{[f, g] \mid f \in \mathbb{m}\}$.

If M is an R-module, then one can fom the module of fractions, which is a module over the ring R_{m}. And, R-linear map
$T: M \rightarrow M$ induces an R-Tinear map $T_{m}: M_{m} \rightarrow N_{m}$. This is exactly the set-up we need.
5.2.2 Theorem. The equation $T x=y$ has a solution $x \in R^{(11)}$, fon a siven $y \in R^{(l)}$, if und aity if, the equation

$$
\begin{equation*}
T_{m} x=y \tag{5,2.3}
\end{equation*}
$$

has a solution over $R_{I f}$, for all $m \in \max (R)$.
Proof. We nesd only prove sufficiency, set

$$
I=\text { ir } \in R \mid T x=r y \text { has a solution over } R\} .
$$

If the ideal $I=R$, we're done, and if $I \neq R$ then $I \subset m$, for soins maximal ideal m of R. Fix such an m and choose a solution $\tilde{x} \in \mathbb{R}_{m}^{(n)}$ to equation (3.11). By clearing denominators, which lie in $R-m$, one has $r \in R_{m}$ such that $\tilde{x}=r^{-1} x$, x defined over R, and én $s \in R$ such that $t=r s \equiv 1 \bmod m$. Therefore,

$$
T(t x)=s y
$$

and $s \in I \subset m$, contrary to assumption.
Remarks 1. If R_{n} is Noetherian, then the solubility of (5.2.3) can be further reduced, first to the case of a coniplete local and finally [2] to the case of a local Artinian ring, viz. to solution of (5.2.3) over $\mathrm{R} / \mathrm{m}^{\mathrm{k}}$, for each $\mathrm{k} \geq 1$.
2. If we consider the question of surjectivity, then Theorem 5.2.2, together with Nakayama's Lemma, implies Theorem 5.i.3 for free (or even projective) state modules. One reed not, however, make such hypothesis on M. Indeed, one can show [1]:

Theorem 3.12. Let $T: M \rightarrow N$, then
(i) T is surjective $\Leftrightarrow T_{m}: M_{m} \rightarrow M_{m}$ is surjective, for all m.
(ii) T is injective $\Leftrightarrow T_{m}: M_{m} \rightarrow \mathbb{N}_{m}$ is irjective, for al. m .

5.3 The Struct:re of linear Transformations, The Suslin-Quillen

 Theoren.We now turn to the structure of linear transfomations

$$
T: M \rightarrow M, \quad M \simeq R^{(n)} .
$$

If \bar{i} is not invertible, is M isomorpicic to a direct sum of kerne i with imace T ? In Exampie 4.8, image T can never $b \in$ complemented in \mathbb{Z}, so we must refine our question. If imise T is complemented in M, i.e., is the image of a projectiori, can we find a basis for image T and complete this, with a basis for ker T, to find a basis for M? The first condition is satisfied, for example, when T itself is a projection and, again, we are led to the question:
(SQ 1) Is every projection $P: R^{(n)} \rightarrow R^{(w)}$ diagonalizable?

Suppose, on the other nand, that T is invertible. What does the first coluan of T lock like? Clear $(2,4)^{+}$cannot be the first cnlumn of an invertible $T \in M_{2}(\mathbb{Z})$. Indeed, by the classical expansion of a determinant into a linear combination of cofactors one sees that the existence of $r_{i} \in R$ such that

$$
\sum_{i=1}^{n} a_{i} r_{i}=\text { unit of } R
$$

is a necessary condition that $\left(a_{j}, \ldots, a_{n}\right)^{t}$ be the first column of en invertible matrix. By dividing if necessary, one may assume

$$
\sum_{i=1}^{n} a_{i} r_{i}=1
$$

that is, $\left(a_{1}, \ldots, a_{n}\right)$ is unimodular. If $?$ is a rank 1 projection sucin that image P is free, then by choosing ($a_{\Gamma}, \ldots, a_{n}$) to be a generator of image P one might attempt to follow the standard linear algebra route for constructing a T such TPT-1 is diagonal. That is, we construct T by setting $\left(a_{1}, \ldots, a_{n}\right)^{+}$ as the first row and complete T to an invertible matrix (by adding the basis vectors for ker T). Thus we are led to ask.
(SQ 2) Is every unimodular vector (a_{p}, \ldots, a_{n}) the first column of an invertible matrix?

For $n=1,2, \quad(5 Q 2)$ is trivially answered, in the affirmative, for any commitative ring R.
5.3.1 Exampie. Consider $R=C\left(s^{2}\right)=$ ring of continuous, realvalued functions or the 2-spnere, anc consider the free P module 11 : of rank 3, of \mathbb{R}^{3}-valued functions on S^{2}. Let $L \subset M$ be the R-submodule of those functions which point in \pm the normal direction, su that i is spanned $\dot{s} y$ the unimodular vector $v^{\prime}=(x, y, z)^{t}$, where $x^{2}+y^{2}+z^{2}=1$. Then v cannot be the first row of a unimodular matrix or, equivalently, if $P: M \rightarrow \dot{L}$ is the projection on !., ker P does not admit a basis. In fact, to exnibit $\quad \forall$ ker P such that $w(x, y, z) \neq 0$ is to find o nowhere zero vector field on S^{2}, which is well-known to be contrary to fact.

Thus, the fact that one carnot "comb the riair on a tennis ball," has consicerable impact on the linear algebra over $R=C\left(S^{2}\right)$. We note that $(S Q 1)$ is equivalent to the more familiar form of these questions.
(SO 3) Is every finitely-generated projective module over R necessarily free?

The connection between (SC, 3) and "combing the hair on a tennis ball" cari be made more precise, since the module ker p of tangent vector fields S^{2} is the (finitely-generated, projec~ tive) module of continuous sections of a certain vector bundles on S^{2}, viz. the tangent bundle.

Set $R=\mathbb{C}\left[x_{1}, \ldots, x_{11}\right]$, then $R^{(1)}$ as a module over R is simply the module of algebraic, scalar valued functions on $/ A^{N}-$ which may be regarded as the module of algebraic section of the trivial line bundle

$$
\mathbb{A}^{N} \times \mathbb{C} \rightarrow \mathbb{A}^{N}
$$

On the other nand, if $\pi: V \rightarrow \mathbb{A}^{N}$ is a vector bundle, then the additive group $\Gamma\left(A^{N} ; V\right)$ is ar, R-module, with multiplication $f \in R, \quad \gamma \in \Gamma\left(A^{N} ; V\right)$ defined pointwise

$$
f_{\gamma}(p)=f(p) \gamma(p)
$$

in the fiber $\pi^{-1}(p)$. If V is trivial, of rank m, then $\Gamma\left(A^{N} ; V\right) \simeq R^{(m)}$. And, we have already noted the converse, for the case $m=1$. Moreover, any homomorphism $V \rightarrow W$ induces,
by composition an R-module map $\quad \Gamma\left(A^{N} ; V\right) \rightarrow \Gamma\left(A^{N} ; V\right)$.
Thus, we have a correspondence:
ivector bundies on $\left.\mu_{n}^{!!}\right\} \rightarrow$ \{medules over R \}
slich that

> \{homcmorphisms of vector bundles\} \rightarrow $\rightarrow \begin{gathered}\text { \{homomorphism of } \\ \text { modules }\}\end{gathered}$
(5,3.2b)
Moreover, this correspondence gives an equivalence $\{t r i v i a l$ vector bundies \rightarrow \{free modules over R \}
ihamoinorphisms of trivial
vector bundles\} $\rightarrow \begin{gathered}\text { \{homomorphisms of } \\ \text { free modules \} }\end{gathered}$
In particular, if a trivial vector bundle V of rank m splits

$$
\because w_{1} \oplus w_{2}
$$

into ? subtundles, then the nomomorphism

$$
P_{1}: V \rightarrow W_{1}=V, \quad \text { satisfying } \quad P_{1}^{2}=P_{1},
$$

corresponds to a projection operator

$$
\begin{equation*}
\tilde{p}_{1}: R^{(m)} \rightarrow R^{(m)} \tag{5.3.4}
\end{equation*}
$$

with image $\tilde{p}_{1} \approx \Gamma\left(A^{N} ; W_{1}\right)$, a finitely-generated projective $R-$ module. And, conversely, each finitely generated, projective module gives rise to some subbundle W_{1} of a trivial bundle, by definition. Now, it can be shown that every vector bundle W_{T} is a diract sumand in some trivial bundle V and thus the eduivalence (5.3.3) extends to an equivalence
\{vector bundles: $\} \leftrightarrow \begin{gathered}\text { \{finitely generated, } \\ \text { modules }\end{gathered}$
(5.3.5a)
$\left\{\begin{array}{c}\text { \{homorphisms of } \rightarrow\end{array}\right.$ \{homomorphisms of finitely, vector bundles\} generated projective modules

Thus, triviality of a vector bundle is equivalent to freeness of its module of sections, bringing us to ask, for $R=\mathbb{C}\left[x_{j}, \ldots x_{N}\right]$
(SQ A) Is every vector buricie on $\mathbb{A}^{\text {N }}$ trivial?
This question was raised by J-P. Serre and settled, in the affirmative, by A. Susi!n and D. Quillen [5], [3].
5.3.6 Theorem (SQ) Fon $P=k\left[x_{i}, \ldots, x_{11}\right]$, evenis finitely genenite phojective modure is free; that is, (SQ1),...,(SOQ4) hold $\therefore c_{1}$ R.

We will find all of these forms of Suslin-(Quillen quite useful.

Thus, by extending these ideas we soe that there exists projective, but not iree, modyles defined over $R=C\left(S^{2}\right)$. By using the line bundle over S derived from the Möbius band, this is also true for $C\left(S^{l}\right)$. These facts lie at the heart of the non-existerice of continuous canonical forms for realizations, which is, of course, a question of linear algebra with paraneters (see Professor Hazewinkel's lectures).

It is somewhat deeper that. (SQ2) fails to hold for $R=4^{\circ}(D)$, this calculation comes fron certain topological non-triviality of the space, $\max \left(H^{\infty}(\mathbf{D})\right)$, as in (SQ4).

REFERENCES

[1] Atiyal, M. F., and Macdonald, I. G.: 1969, Introduction to Commutative Algebra, Addison Wesley, Reading, Massachusetts.
[?] Gustafson, W. H.: 1979, Roth's theorems over cormutative ringa, Linear Alg. \& Its Application, Vol. 23, pp. 245-251.
[3] Quillen, D.: 1976, Projective moduiles over polynomial rimge, Invent. Math. 36, pp. 164-171.
[4] Sontag, E.: 1976, Linear systems over commutative rings: A survey, Ricerche Automatica, 7, pp. 1-34.
[5] Suslin, A. A.: 1976, Projective modules over a polynomial ring are free, Dok1. Akad. Nauk., S.S.S.R. 229.

