
Transition Systems and Dynamic Semantics

Tim Fernando
fernandoCcwi.nl

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract. Transition systems over first-order models, first-order theories,
and families of first-order models are constructed and examined in relation
to dynamic semantics (more specifically, DPL, DRT and Update logic). Going
the other direction, :first-order models are extracted from transition systems,
bringing full circle the connection between static and dynamic notions. Only
states computationally accessible from an initial state (with minimal infor
mation content) are considered, motivating the introduction of an internal
notion of proposition on which the concept of an update is analyzed.

Key words and phrases: transition system, bisimulation, dynamic semantics,
first-order logic, updates.
Note: This work was funded by the Netherlands Organization for Scientific
Research (NWO project NF 102/62-356, 'Structural and Semantic Parallels
in Natural Languages and Programming Languages'). The author is grate
fully indebted to J. van Benthem, J. va.n Eijck, C. Gardent, M. Kracht, W.
Meyer-Viol and K. Vermeulen for helpful discussions and to CWI for refuge.

As described in van Benthem [4], there is a growing interest in developing a certain
broad conception of logic as the processing of information. A particularly important
theme to emerge in work on natural language semantics loosely labelled "dynamic
semantics" (important examples of which include Kamp [13], Heim [12], Groenendijk
and Stokhof [9], and Veltman [20]) is to locate the essence of a proposition in the
set of transitions between states (or contexts) that it induces. The present paper
analyzes a link uncovered in Groenendijk and Stokhof [9] between these sets of
transitions and programs in dynamic logic (see, for example, Harel [11]). The key
notion studied is that of a ''transition system", the basic thesis being that a good
deal of what makes dynamic semantics "dynamic" are constructions that can be
fruitfully understood against a background of "static" notions from first-order logic.

Identifying the set of transitions effected by a proposition with a program, a
transition system is defined, relative to a collection II of programs, to be a triple
(S, { ~ }?rell, so} consisting of a non-empty set S of states, a family of binary relations
~ ~ S X Son the states (meant as the interpretation of 7r), and an initial state so E
S. The "dynamic" shift in perspective on propositions is analyzed below in terms
of transition systems built from first-order models, families of first-order models,
and first-order theories, in accordance with dynamic logic. In each case, an initial
state so with minimal information content is isolated, and the states considered are
restricted to those accessible from so by a finite sequence of programs. This simple
move is shown to have rather far reaching consequences.

233

(i) It is exploited in the technical arguments of sections 1 and 3 (some of the details
of which are relegated to the Appendix) to exhibit a certain duality between
static and dynamic notions.

(ii) It forms the basis for the introduction in section 4 of an internal notion of
proposition employed in an account of updates.

The reader familiar with the relevant formal systems will find that (i) relates to DPL
(Groenendijk and Stokhof [9]) and DRT (Kamp [13], Heim [12]), while (ii) reconsiders
Update logic (Veltman [20]), proposing, in particular, a "syntactic" treatment of
might. Along the way, the growth of information between partial states is investigated
(section 2), and a view of discourse interpretation as consisting, in part, of the
construction of a first-order theory is developed.

1 Transition systems over first-order models

Given a first-order signature(= vocabulary= set of non-logical symbols)1 L (with
equality) and a countable set X of variables, dynamic logic associates with every fi.rst
order £-model M = (!Ml, ...) a transition system [M] whose states map finitely
many variables from X to objects in the universe !Ml of M. The collection of pro
grams 71' involved are given by

over atomic £-formulas 'P with variables x from X. As it turns out, the combination
of * and ..., leads to various complications that are best dealt with by confining '" to
the Appendix, since " has as yet found no applications in the systems of dynamic
semantics to be considered below: So, let Ih be the collection of programs 71' without
an occurrence of". The initial state of [M] is the empty valuation 0, from which the
remaining states - valuations a., (3, ... from a (non-empty) finite subset of X into
IM I - can be obtained through a sequential composition of "random assignments"
x :=?.More precisely, writing [7r]M for the relations~ of [M], define

a.[<p?]Mf3 iff a.= f3 and M F= ip[a.]
a.[x :=?]M.8 iff a.= f3 except possibly at x, and x E domain(f3)

a.[7r1; 7r2]M.8 iff ai[7r1]M'i' and "}'[7r2]Mf3 for some"}'

ai[7r1 + 7r2]Mf3 iff ai[7r1]M.8 or ai[7r2]Mf3
ai[...,7r]Mf3 iff ai = f3 and there is no "(for which a.[7r]M'i' .

Note that if ai is related to itself by the test [<p?], then a must be defined on all
the variables in 'P· This leads to a certain partiality in that, for instance, it is not
the case that for some ai, 0[x = x?]Mai (or, 0[x =f. x?]Mai). Also, because of closure
under negation ...,71' (written as such in Groenendijk and Stokhof [9], but known more

1 Certain basic notions from model theory are taken for granted in what follows; definitions
can be found in the initial sections of Keisler [16].

234

traditionally as the test [7r]l. ?), tests for arbitrary first-order £-formulas (on X) as
well as modal formulas built from programs can be defined, following

(cp&1/J)? = cp?; 'lj;?

[7r] cp? = --.(7rj -i(cp?))

3xcp? = -.-.(x :=?; cp?) .

Our first theorem, however, depends only on the inclusion of atomic tests and random
assignments among the programs.

Theorem 1. For (finite or) countable L-models Mand N, M ~ N iff[M] ~ [N].

The key to the proof of Theorem 1 (which along with other proofs for this section
can be found in the Appendix) lies in the notion of a partial isomorphism set from M
to N (see, for example, Keisler [16]), which enables an isomorphism between Mand
N to be built "back and forth". This notion, in turn, corresponds to an equivalence
between [M] and [N], which can be defined more generally for any two transition
systems over a set II of programs as follows. A bisimulation (Park [18]) between

7f
(S, { ~ }7ferr, so) and (S', \-+1}7ferr, s0) is a relation R <; S x S' such that whenever
s Rs', then for every 7r E II,

7f 7f
Vt ;:._ s 3t' <-1 s' tRt' and Vt' -' s' 3t ;:._ s tRt' .

,..
(S, { ~ }7fen, so) and (S', {-+'}7ferr, s0) are bisimilar, written

,..
(S,{~},..err,so)::::: (S',{-+'}7ferr,s~),

if there is a bisimulation between them relating so to s0. Now, the predicate

[M] - [N]

can be added to the list of equivalent predicates in Theorem 1.

Theorem 1 states that no information is lost in the passage from a countable
first-order model M to its transition system [M]. A more abstract (i.e., information
decreasing) analysis better suited to bring out the first-order character of M is
provided by the following standard construction on transition systems, applied to
[M]. For every 7r E IIL, let

and

The states of the new transition system [M] are the non-empty sets s,..,M for some 7r E
nL, the initial state being {0} (i.e., S~(:z::=?),M). The interpretation of 1r under [M]
is [7r]M, making the transition system deterministic in that the transition relations
are partial functions.

235

Example. Suppose L includes two constants 0 and 1, Mis an £-model interpreting
0 as 0 and 1as1, and fr is the non-deterministic program x := 0 +x := 1 (or, to be
more precise, x :=?; (x = O? + x = 1 ?)). Then

0 ['rr]M a iff a= {(x, O)} or a= {(x, l)}
{0} [7r)M s iff s = {{(x, O)}, {(x, l)}} .

Note also that s1'1o,M [7r]M s1ri,M does not imply that 71'1 = 7ro; 11' (although the
converse holds). Take 71'0 to be -.(x :=?), 71'1 to be y :=?,and 11' to be (x = O)?+y :=?.

The next theorem should be contrasted with Theorem 1, recalling that over
infinite first-order models, isomorphism is typically a much stronger property than
elementary equivalence =L (as a consequence, for instance, of compactness).

Theorem 2. For L-models Mand N, the following are equivalent.

1. M:LN.
2. [M] ~ [N].
3. [M] ~ [N).

Theorem 2 suggests that a transition system be built directly from a first-order
theory, rather than a single first-order model. Before proceeding on to such con
structions, we pause to consider how information grows between partial states.

2 Partiality of states and information growth

Intuitively, the initial states 0 and {0} of [M] and [M) respectively have no infor
mation content - at least when compared with the other states. More formally, 0 is
the least [M]-state under the subfunction partial order~' whereas {0} is a minimal
[M)-state under the so-called "Smyth pre-order" :$ with respect to ~

s S s' iff V/3 Es' 3a Es a~ f3 •

The partial order ~ on [M]-states exposes the "expansive" character of random
assignments which more complicated programs can inherit.2 The move from finite
valuations in [M] to accessible sets of finite valuations in [M) captures the "elimina
tive" character of tests cp? without discarding the partial order on finite functions.
Thus, a program can increase information two ways - expansively and eliminatively.
This is not to say, however, that information can never be lost after the execution
of a program.

2 The idea of treating states as partial objects is, of course, hardly novel, going back

at least to Goldblatt [8]. A particularly rich structure is introduced in Vermeulen [21],
where states range over sequences (recording the values assigned to variables), and an
explicit "downdating" program construct is added to provide the possibility of destroying

information. The present paper is concerned with a more primitive notion of program

variable.

236

Applied to an [M]-state already defined on x, the random assignment x :=?
destroys information. To protect information while allowing for the possibility of its
expansive growth, it is convenient to introduce a guarded assignment

x:=*

defined as

x = x? + -.(x = :c?); x :=? ,

the idea being to assign a value to x iff no value has so far been assigned to it.
Guarded assignments are examples of monotone programs - i.e., programs 11" such
that for every L-model M and [M]-states a, (3 a[7r]Mf3 implies a s; (3. Note that
every 11" E Ih can be made monotone by guarding random assignments.

Turning to the second dimension of information growth, call a program 7r elimi
native if whenever a[7r]Mf3, it follows that a= (3; whence, for such 11", s[7r]Ms1 implies
s1 ~ s. Note that tests are eliminative, whereas random (or guarded) assignments are
not. Eliminative programs are those programs that can be characterized (statically)
by propositions. The point is that every program 7r has a.n eliminative approximation
..,...,11" that can be constructed from what van Benthem (4) calls modes from (static)
propositions to (dynamic) procedures, and projections going the opposite direction.
Assuming a notion of proposition closed under program-la.belled modalities (i.e., (7r}
and (7r]), compose the projection 11" 1-+ (7r}T (where T is, say, 3x :c = :c) with the
mode cp 1-+ cp?, where

a[cp?]Mf3 iff a = (3 a.nd M f= cp[a) .

This yields the map 7r 1-+ (7r)T?, where

a[(7r}T?]Mf3 iff a= (3 and there is a 'Y such that a[7r]M'Y
iff o:[-i-i7r]Mf3 .

Observe that (7r} T? (i.e., ...,...,?r) is semantically equal to 7r if 7r is eliminative, while
(<,o?} T is logically equivalent to <p.

3 From semantic evaluation to semantic construction

Two important formalisms associated with dynamic semantics a.re DPL (Groe
nendijk and Stokhof (9]) and DRT (Kamp (13), Heim [12)). For our present pur
poses, it suffices to describe DPL roughly (and a bit incorrectly) as a subsystem of
(predicate) dynamic logic subsumed by the *-free programs of section 1, and DRT
as a formalism for analyzing the processing of natural language discourse. Hence,
whereas the transition systems of section 1 might be associated with the former, it
is more natural, for the latter case, to build transition systems out of more partial
information - partial information that might be embodied by families of first-order
models, or by possibly incomplete theories-, and to extract first-order models from
such transition systems. These are presently taken up, in turn.

-"" _______ ----------

237

3.1 Deterministic transition systems induced partially

Given a family M of first-order £-models, form the transition system [M] from the
transition systems [M], for M E M, as follows. The states of [M] are non-empty
sets of the form

{(M, s.,,.,M) I M E M and s1f,M =/= 0}

for 7r E Ih. Call the set above, provided it is non-empty, s ... ,.M· The initial (M]-state
is Bi-,.M where 1r is -.x :=?. The interpretation (7r].M of 7r under (M] is defined by

By Theorem 2,

(t) if 'l:/M EM 3M' EM' M =L M' and "IM' EM' 3M EM M =L M' then

[M] +-> [M'] .

The converse of (t), however, fails, a counter-example to which will be supplied after
presenting an alternative characterization of [M] in terms of the set ThM of all
£-sentences true in every model of M.

Given a consistent £-theory T, define the following transition system [T]. Let s'lr
be

{ (X0 , 7fi) I X 0 is the set of variables E X occurring in 7r, and

for every £-model N and {3: Xo---> INI, 0[7r]Nl'.3 iff NI= v)({3]}.

(It is possible to defines"' without referring to, or quantifying over, L-models N; see
Lemma A~ of the Appendix.) [T]-states are non-empty sets of the form

{(Xo,7/i) Es" I 'l/J is consistent with T},

for 7r E Ih. Call the set above, provided it is non-empty, s7r,T, and let the initial
[T]-state si-,T be that induced by i = -.(x :=?). The interpretation [7r]T of 7r under
[T] is defined by

The definition above was formulated carefully in order to accomodate the possibility
of non-monotonicity (i.e., revision in X) as well as partiality (again, due to X).
(Readers familiar with DRT might compare [T] with DRS's.) Without requiring any
essentially new ideas for its proof,3 Theorem 2 admits the following generalization.

Theorem 3. For families M and M' of L-models, the following are equivalent.

1. ThM = ThM' .
2. [ThM] ~ [M'] .
3. [M] ~ [M'] .
4. [M] +-+ [M'] .

3 More specifically, appeal :first to Lemma A~ to prove [ThM] <:::! [M], and then show, as
in Proposition B~, that the only bisimulation on [M] is equality.

238

5. [ThM] +-+ [M'] .

Returning now to (t), a counter-example is provided by taking L to consist of
a single binary relation, M to be the family of all finite linear orders, and M' to
be M together with an infinite linear order constructed, by compactness, to satisfy
ThM.

3.2 First-order models from transition systems

To complete the duality between static notions (first-order models, £-formulas <p,
and = L) and dynamic notions (transition systems, programs 7r, and +-+), first-order
models are extracted from transition systems below. Thus, transition systems are
shown to serve a dual role: a semantic one related to truth (building on first-order
models), and also a constructive one (building first-order models).

Recall (or consult, for example, Keisler [16]) that the usual proof for the com
pleteness theorem of first-order logic consists of the steps

(1) expand the language with (Henkin) witnesses, and
(2) complete a consistent Henkin theory (Lindenbaum's theorem),

followed by a quotient construction over constants. The first step corresponds to the
expansive growth of information in a state, and the second, to eliminative growth.

Proposition 4. There is a sequence {7r;}i<w of monotone programs such that for
every L-theory T and countable L-model N, the following are equivalent

1. There is a map f from X onto INJ such that for every n < w, there is a (Xo, '!/J) E
s.,,.0 ; ••• ; ... ,,,T for which 'ljJ is true in N, relative to f.

2. N is a model ofT.

Furthermore, given a countable L-model M, there is a sequence { 7rf! h<w of mono
tone programs such that for every L-model N, the following are equivalent.

l'. There is a map f from X onto INJ such that for every n < w, there is an a C f
such that 0[7rtt1; ... ; 7r!1°]Na.

2'. N~M.

Proof. Fix a well-ordering on X, and an enumeration { 1/li}iEw of all £-formulas with
variables from X. For every such £-formula cp, let 7r'P be

Xo := *i · · · i Xk := *; cp?

where x 0 , ... , x1c are cp's free variables (enumerated according to the fixed ordering).
For every i < w, define a program -ft-; inductively as follows.

Let x be the least variable in X not occuring in irj for j < i. If 1/Ji = 3.y'ljJ,
then for the least variable x' different from x or any variable occuring in 'ljJ
or ij for j < i, define 1r; to be

x := *; 7r.p[:c'/y].

Otherwise (i.e., 1/Ji is not existential), let 71-; be

x ==* i1r,P;.

239

(The assignments x :=*are inserted so that INI = {f(x) Ix EX}.) Now, for i < w,
let 71"; be the program

which not only decides the truth of 1/;; but also specifies a witness if tP• is existential
and tests successfully. That is, running the programs 1t"i (in sequence i = 0, 1, ...)
over a countable £-model N yields (at the limit) a consistent, complete theory with
witness set X, where each element of JNI is the value of some variable in X.

Constructing { 7rf hew is similar, except that it is carried out relative to an
enumeration {m;}iew of JMI so that the choice between 11-i and -,?i"; is determined
instead by the truth or falsehood of tf;; relative to the finite part of f built at stage
i. -1

4 Updates and an internal notion of proposition

As an analysis of the notion of an update at the propositional level, Veltman [20]
presents the following system of Update logic, denoted U below. Fix a set A of propo
sitional variables (written p, .. .). A world w is a subset of A, and an information
state u is a set of worlds. An update A is generated according to

A ::= p I ,...., A I A/\ B I AV B I might A I A; B

and induces a total function on information states as follows

u [p] = { w E u I p E w} for p E A
u[rvA] = u - u[A]

u[A /\ B] = u[A] n u[B]
u[A V BJ= u(A] U u[B]

u[might A]= u if u[A] =f. 0
= 0 otherwise

u[A; B] = (CT[A))[B] .

(1)
(2)

(3)
(4)

Note that for every CT and A, CT[A] s;; CT, and that 0 is an "absurd" information state
from which there is no chance of recovery. Hence, instead of interpreting updates as
total functions on a set of information states that includes an absurd one, updates can
be taken to be partial functions on a set of non-empty (i.e., non-absurd) information
states. From this point of view, might A is "static" in that it can only relate identical
states, whereas other programs may relate distinct states.

But what is the intuition behind the notion of an information state above? An
information state is a set of worlds, which in turn can be regarded as functions from
A to a set of two truth values. In fact, total valuations - in view of clauses (1)
and (2) and the fact that the powerset 2A of A corresponds to the function space
from A to a two-element set. Observe that the defined transitions are "static" in
that the worlds in the states do not change: they either persist unaltered through
the transition or drop out. Ignoring the might-clauses (3) and (4) for the moment,

240

the updates can be understood as perfectly ordinary eliminative tests, assuming,
that is, that the worlds they act on are total. Take away this assumption - i.e.,
make the worlds (= valuations) finite -, and the question arises as to how an
update behaves on a partial world [sic) in which the truth of the proposition (being
updated) is undecided. It is important to address this question because, from the
point of view of computational practice, total valuations certainly have no priority
over finite ones.4 An account based on total valuations must demonstrate that it
faithfully models the reality of finite valuations. And as far as the reality of finite
valuations is concerned, an update must not only be able to test, but (in the absence
of information about the proposition being updated) also stipulate (i.e., establish).
That is, we are led to a different conception of updates, which, as we will however
see, strips away some of the mystery in might.

4.1 A "dynamic" reconstruction of propositional updates

An account of U within the framework of section 1 can be giv0n based on the Boolean
algebra 2 over {O, 1}, with L = {O, 1} and the set X of variables equal to the set A
of propositional variables of U. A map ·"" from updates A to programs A"" E II L is
defined as follows. For p E A, the corresponding program p"" must test if p is true,
asserting it to be the case if its truth has not been previously determined. That is,
define

P,,, = P := * ; p = 1? .

Extend the translation to might by defining

(might A)""= -,-.(A") (= (A"")T?) ,

which is to say that (might A)" checks that a transition through A" is possible,
without actually making such a transition. 5 In particular, (might p)"" does not assert
that p is true, only that p has not been determined to be false. Next, rather than
setting (AV B)u to ((A"")T V (B")T)? (which yields a static update), define

(AVB)"=A"+B"",

and, to preserve the commutativity of A, let

(A A B)" =A"; B"' + B"; A"

4 Total valuations arise as convenient abstractions from finite valuations. The idea of mod
elling a finite function as the set of its total extensions not only tends to confuse elim
inative with expansive information growth, but also replaces a perfectly finite object
with one that is two times infinite: an infinite set of infinite objects. It is perhaps naive
to expect that the foundational complications involved in this "reduction" will forever
remain buried, even as extensions to richer contexts (for example, predicate formalisms)
are considered. At the propositional level, however, it is quite understandable that the
expansive growth of information should be overlooked, given the absence of the notion
of a program assignment.

5 Recall that .., applies to programs, and should be distinguished from the negation "' in
(2) that operates on propositions.

241

instead of simply A"; Bu, which we reserve for (A; B)u

(A; B)" =Au; B".

As for (,...., A) u, a treatment of falsehood F symmetric with truth T suggests defining
(simultaneously with the above) the "negative" translation Au as follows

Pu = p := * ; p = O? for p E A
(A /\ B)u = A,, + Bu
(AV B).., =A..,; B.., + B,,; A.., ,

the point being to take

(.-vA)u =Au

("-'A)"= A

The laws of double negation and de Morgan then hold (as in U)

For completeness, set

("'"'A)"= A"
("-'(A/\ B))" = (rvA v fVB)u

(rv(A v B))" =("'A/\ ""'B)".

(might A)...,= -.(A") (=-.((might A)"))

(A; B).,,, =A..,+ (might A)"; B,, .

(5)
(6)

Equation (6) respects the sequential order in ";", as well as a principle of minimal
change exemplified in the definition above of (AV B)" as A" + Bu, rather than
A"+ B" +Au; B" + B"; Au. The treatment by (5) of might is static, although it is
plausible to equate (might A)u with the dynamic assertion Au. That is, the update
"it is not the case that it might rain" can be construed not only as a test but
as possibly establishing the truth of "it does not rain" .6 This would, however, run
counter to the fact (in U) that 2A[,....,(might p)] = 0. As defined, the translation .u is
faithful to U in a sense to be described shortly. Note that implicit in (5) is a dual
must for might given by

(must A)u =-.(Au)

(must A) ... = -.-.(Au) .

Let IP be the subset {Au I A is an update} of lh, and, viewing 2 as an L
model, form, relative to IIu, the transition systems [2] and [2] described in section
1. (So, [Au]2 is the interpretation under [2] of Au; [2]-states are non-empty sets of
finite valuations from A into {O, l} accessible from {0} by some A"; and [A"h is

6 Indeed, replacing the Boolean algebra 2 by a structure with at least 3 elements (see
section 4.2), K. Vermeluen has suggested a dynamic definition of (might At analogous
to A" and A,,, but neither testing that A is true nor testing that A is false.

242

the interpretation under [2] of A".) Also, associate with U the transition system U
relative to nu whose state set is

{2A} U {a I a# 0 and 2A[A] ==a for some update A},

and whose initial state is 2A. (Recall that 2A is the information state with the least

information content.) Define the interpretation ~u of A" in U by

u ~u u' iff a[A] = u'

for all U-states a and a'. While an isomorphism between [2] and U is out of the
question - contrast the effects of the update pV "'p on {0} and 2A -, a bisimulation
is not. Towards this end, associate with every [2]-state o: the information state
u a = { w I o: C w }, where a world w (in the sense of U) is identified with its
characteristic function from A to 2.

Proposition 5. For every update A and every [2]-state o:, there is a finite number
of [2]-states /31 , ... , f3n such that for every [2]-state f3 and every world w,

a[Au] 2 /3 iff (3 = /3; for some i E {l, ... , n}

w E a0 [A] iffw 2 /3; for some i E {l, ... , n} .

Proof. Proceed by induction on A simultaneously with a version for Au (i.e., ("' A)u).
4

Observe that 0[Au]2a does not follow from Vw 2 a w E 2A[A]; a counter-example
is provided by A = p V ,..._, p. On the other hand, Proposition 5 implies

Corollary 6. For every [2]-state a, and every update A,

3/3 o:[Au]2,8 iffu0 [A] # 0.

In particular, the IP-transition systems [2] and U are bisimilar - i.e., [2] ~ U via

{({0}, 2A)} U {(s, a) I 3 update A s.t. {0}[A ..]2s and 2A ~u a} .

A distinction is drawn in van Eijck and de Vries [5] between an update A being
"acceptable" and "accepted" in an information state a. A is acceptable in a if u[A] #
0 and accepted if u[A] =a. Corollary 6 relates directly to the former notion. As for
the latter, the possibility that a program A" is not eliminative suggests weakening
the relation of equality (used in the definition of "accepted") to the so-called "Egli
Milner pre-order" ~ on the subset relation ~

s ~ s' iff Va E s 3,8 E s' o: ~ ,8 /\ V /3 E s' 3o: E s a ~ f3 .

243

4.2 Prospects: from truth values to propositions

The analysis of propositions above can be generalized to structures other than the
Boolean algebra 2, working with a language L consisting of the unary relation sym
bols T, F and D (for truth, falsehood and determinateness of truth, respectively).
The idea is to replace p = 1 by T(p), p = 0 by F(p), and p = p by O(p), redefining
p :=*to

D(p)? + -i(D(p)?); p :=? .

The L-theory with the axiom

T{x) V F(x) :J D(x)

can, according to the reader's taste, be expanded by various symbols, and extended
by suitable axioms. For example, constants 0 and 1, a unary function symbol,.;,,, and
binary function symbols A., V might be added together with the axioms

T(,.;,,x):: F(x)
T(x'Vy) = T(x) v T(y)
T(xA.y) = T(x) /\ T(y)

T(l)

F(,.;,,x):: T(x)
F(x\ty) = F(x) /\ F(y)
F(xAy) = F(x) v F(y)
,.;,,o = i

Rather than adding the axiom x = 0 V x = 1 for bivalence, however, the move
that is being suggested here is one from internalizing truth values in the L-model M
to internalizing propositions. Indeed, the rudimentary L-theory above must, for the
predicate case, be enriched to provide an account of the formation of a propositional
object from a relation plus an appropriate tuple of arguments, where a relation
need not be identified with the set of tuples satisfying it. (Note that in this case,
propositions would live along side other objects in the first-order model. In other
words, DPL and Update logic can be accomodated within the *-free fragment of
dynamic logic, provided the language L is expanded to describe an internal notion
of propositions.) There is something unmistakably intensional (or syntactic) about
these internal propositions. Furthermore, their introduction into the object level is
somewhat disturbing, given that an external notion of proposition is already at hand
(at the meta-level). These two notions cannot, in general, be expected to coincide,
in view of Tarski's theorem on the undefinability of truth (see also Montague [17],
Aczel [1] and Turner [19]). The question arises as to which notion of proposition to
use for analyzing updates. Appealing again to the finiteness in the computational
picture underlying dynamic logic, the author is inclined to choose the internal notion
not only because, being internal, it is more managable but also because the external
notion (given by a first-order model) is total and, furthermore, extensional. Various
reasons have been given (see, for instance, chapter 4 of Barwise [2]) to resist the
identification of a proposition with the collection of (total) worlds in which it is
true. 7 A somewhat persuasive case against the external notion of proposition may

7 Returning to the matter of the undefi.nability of truth, an argument against the totality
of worlds can be based on the Liar's paradox, as analyzed in Barwise and Etchemendy
[3], and studied from a "dynamic" perspective in Groeneveld [10).

244

also be based on the logical intractability of a predicate version of U, in which a
world is a model of some first-order theory T. In terms of transition systems, the
idea is that U, lifted to first-order logic and relativized to a first-order theory T, is
essentially the transition system [T] described in section 3.1 above (and identified in
Theorem 3 with [M] for a set M of models whose common theory is T), extended
with programs might <p so that for the initial [T]-state so,

s0 [might 'P]T s iff s =so and 3s' so [<p?]T s'

iff s = so and <p is consistent with T .

The problem is that most interesting first-order theories T are undecidable, whence,
in contrast to the propositional case U, the predicate "<p is consistent with T" is, in
general, not r.e. (in <p). Hence, neither the accepted nor the acceptable updates of
this predicate system are axiomatizable.

5 Discussion

The duality between static and dynamic notions established above rests on a careful
analysis of the growth of information between partial states. (Observe, for instance,
that all of Theorems 1, 2, and 3, Propositions 4 and 5, and Corollary 6 use the finite
ness of valuations heavily.) This is not merely an incidental feature of the present
paper, but is its fundamental premise: the computational processes necessitated by
the partial character of information are central to the dynamic conception of logic
described in van Benthem [4]. (The reader is asked not to fret over the restrictions
to the dynamic conception that the term "computation" might suggest, to construe
the term broadly if wished, but to keep in mind that logically tractable conceptions
are usually based on some coherent notion of construction.) Thus, as tempting as it
may be, for instance, to "simplify matters" by passing from the finite valuations a
of [M] to the total valuations used in DPL (as well as Harel [ll]), the claim that
the choice between finite and total valuations is immaterial to the logic involved is
not only, under a trivial reading, false (- compare the effect of the test x = x? on
finite valuations versus total valuations -)8 , but assumes an understanding of ''the
logic" that we simply do not have, while ignoring a feature of reality (i.e., finiteness)
to which we are bound. The distinction between the finite and the infinite is funda
mental to foundational studies; and as formalisms are extended, the foundations on
which our ideas lie must bear greater weight. To what extent the semantic picture

8 It is true enough that programs might be restricted to those of the form 'if, where 1f

is 7r preceded by guarded assignments to variables in X occuring in 7r. (For example,
x =? is x := *; x = x?.) With respect to such programs, transition systems built from
finite valuations are, the author expects, bisimilar to corresponding transition systems
based on total valuations (generalizing Corollary 6). It would remain then to show that
the map from 7r to 'if provides an interpretation of the "logic" of total valuations within
the "logic" of finite ones. (Similarly, replacing random assignments by guarded ones is
a plausible first step towards an interpretation of first-order intuitionistic logic within
the formalism of section 1.) This interpretation would reinforce the feeling (suggested
already by the reality of mechanical computation) that the latter is foundationally prior,
but so what? In reply, the reader is referred back to section 4.

245

of update logic can, for instance, be supported or developed in its predicate form is
called to question in section 4. Looking at the matter theoretically, the expansive
growth of information exposed by finite valuations allows the range of possibilities
reduced by eliminative programs to be widened, while clearly staying within the
scope of first-order logic, the formulas of which have an arbitrary finite number of
variables.

A notable omission in the analysis above concerns the concept of inference, typ
ically codified in a logical formalism. An analysis of a particular notion of inference
presupposes a certain minimal familiarity with the underlying semantic structures.
Just what this "minimal familiarity" is is a somewhat personal matter that is rather
difficult to spell out, and should perhaps not be imposed universally. Suffice it to
say that the work above was carried out with a view towards acquiring (for the au
thor) just that familiarity, the assumption being that transition systems grounded
in computation are "the underlying semantic structures." A particular outcome of
this work that the author plans to develop and study further is the translation from
propositions to programs described in section 4. How the various notions of infer
ence surveyed in van Benthem [4) look under this translation and how the logical
formalisms worked out in van Eijck and de Vries [6], (5) can be adapted for this
purpose are two natural questions to consider. Intuitively, what is different about
this translation from, say, Groenendijk and Stokhof [9), and Veltman [20) is that the
program to which a proposition A translates can do one of two things: test that A is
true (semantic evaluation), or establish that A is true (semantic construction). (This
dual function is not a new idea, but occurs in the analysis of discourse referents in,
for instance, Karttunen [14) and Heim [12).) A closer study of the transition sys
tems (T} and [M] restricted to the translations of propositions may be worthwhile,
especially in relation to DRT and Update logic.

Lastly, notice that a basic limitation of the approaches above is that the states
considered are "static." Visser [22] disputes the idea that "a state is something
static", suggesting instead that "states find their natural home within the saturated
unsaturated distinction" (p. 4). Indeed, the notions of a transition system and a
bisimulation are commonly applied in computer science to states that are decidedly
dynamic. The interested reader is referred to Fernando [7) for relations between that
tradition and dynamic logic (the basis of dynamic semantics, as understood above).

References

1. Peter Aczel. Frege structures and the notions of proposition, truth and set. In The
Kleene symposium. North-Holland, Amsterdam, 1980.

2. Jon Ba.rwise. The situation in logic. CSLI Lecture Notes Number 17, Stanford, 1989.
3. Jon Ba.rwise and John Etchemendy. The liar: an essay on truth and circularity. Oxford

University Press, Oxford, 1987.
4. Johan van Benthem. Logic and the flow of information. In Proc. 9th International

Congress of Logic, Methodology and Philosophy of Science. North-Holland, Amsterdam,
to appear.

5. J. va.n Eijck and F.J. de Vries. A sound and complete calculus for update logic. Tech
nical Report CS-R9155, Centre for Mathematics and Computer Science, 1991.

246

6. J. van Eijck and F.J. de Vries. Dynamic interpretation and Hoare deduction. Journal
of Logic, La.ngv.age and Information, 1, 1992.

7. Tim Fernando. Comparative transition system semantics. Manuscript, 1992.
8. Robert Goldblatt. Axiomatising the logic of computer programming. LNCS 130.

Springer~ Verlag, Berlin, 1982.
9. J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy,

14, 1991.
10. Willem Groeneveld. Dynamic semantics and circular propositions. University of Am

sterdam, ITLI Prepublication Series, LP-91-03, 1991.
11. David Hare!. Dynamic logic. In Gabbay et al, editor, Handbook of Philosophical Logic,

Volume 2. D. Reidel, 1984.
12. Irene Heim. The semantics of definite and indefinite noun phrases. Dissertation, Uni

versity of Massachusetts, Amherst, 1982.
13. J.A.W. Kamp. A theory of truth and semantic representation. In Formal methods in

the study of language. Mathematical Centre Tracts 135, Amsterdam, 1981.
14. Lauri Karttunen. Discourse referents. In J. McCawley, editor, Notes from the Linguis

tic Underground, Syntax and Semantics 7. Academic Press, New York, 1976.
15. H. Jerome Keisler. Forcing and the omitting types theorem. In M. Morley, editor,

Studies in model theory. The Mathematical Association of America, 1973.
16. H. Jerome Keisler. Fundamentals of model theory. In J. Barwise, editor, Handbook of

Mathematical Logic. North-Holland, Amsterdam., 1977.
17. Richard Montague. Syntactical treatments of modality, with corollaries on re:O.exion

principles and finite axiomatizability. Acta Phil. Fennica., 16, 1963.
18. David Park. Concurrency and automata on infinite sequences. In P. Deussen, editor,

Proc. 5th GI Conference, LNCS 104. Springer-Verlag, Berlin, 1981.
19. Raymond Turner. Truth and Modality for Knowledge Representation. Pitman, London,

1990.
20. F. Veltman. Defaults in update semantics. In H. Kamp, editor, Conditionals, Defaults

and Belief Revision. Edinburgh, Dyana deliverable R2.5.A, 1990.
21. C.F.M. Vermeulen. Sequence semantics for dynamic logic. Technical report, Philoso

phy Department, Utrecht, 1991.
22. Albert Visser. Actions under presuppositions. Technical report, Philosophy Depart

ment, Utrecht, 1992.

Appendix

This appendix presents the technical details behind section 1 (and a bit more),
building on the notation introduced there.

Theorem 1. For countable £-models M and N, the following are equivalent.

1. M ~ N.
2. [M] ~ [N].
3. [M] =:_ [N].

Proof. Only 3 => 1 is not clear. But the definition of [11']M has been arranged so
that a bisimulation between [M] and [N] is a partial isomorphism from M to N
(see, for example, Keisler [16]): 0R0, and whenever 0t.R/3,

(i) domain(a)= domain(/3) (using tests "x = x?"),

247

(ii) (M,a) and (N,/3) satisfy the same atomic formulas (using tests for all atomic
£-formulas on X), and

(iii) for x EX - domain(a),

Vm E IMI 3n E !NI a U {(x, m)} R {3 U {(x, n)}

and Vn E INI 3m E IMI a U {(x, m)} R {3 U {(x, n)}

(using random assignments x :=?).

Thus, an isomorphism can be built "back and forth" between enumerations of IMI
and IN!. --l

Given an L-model M, it is natural to ask whether [M] is a "reduced" transi
tion system representation of M in the sense that the only bisimulation on [M] is
equality. This is the case for L-models M all of whose elements are definable (e.g.,
({O, 1, ... }, +, x, 0, l}). On the other hand, countable counter-examples are also easy
to find; take M, for instance, to be the rationals under their usual ordering. Then
for any x E X, any two [M]-states with (the same) domain { x} are related by a
bisimulation. In particular, it follows from Theorem 1 that (for this instance of M)
there is no L-model N such that [N] is the reduced form of [M].

Before turning to Theorem 2 and *-free programs, let us note that* has a certain
computational basis that--. lacks, and that the preference for--. over* in the present
paper is due solely to the fact that * has so far not found applications to natural
language. From the point of view of dynamic logic, however, it is certainly interesting
to consider the set II* of programs 7r given by

Without program negation --., it becomes convenient to add more tests, and to
let r.p above range over a set iJJ(L, X) of £-formulas (with free variables from X)
that includes all atomic £-formulas, and is closed under conjunction, renaming of
variables, and existential quantification. For completeness, let us state the definition

where 7ro is 3x x = x?, and 7rk+l is 7rk; 1r.

Lemma A. Let M be an L-model, 7r be a program in II*, and a be an [M]-state with
domain Xo such that 0[7r]Met· Then there is a formula tPM,a,11' E iJJ(L, Xo) satisfi.ed
by M,a such that for all L-models N and valuations f3: Xo - IN! satisfying1/JM,a.,1r•
0[7r]N/3·

Proof. Using the semantic clauses for + and · *, extract a finite sequence 7r1; 7r2; ... ; 7r,.
of tests and assignments that

(i) is given by (=> of) the semantic derivation of 0[7r]Mo:, and
(ii) satisfies the following condition (by *'): for every L-model N and [N]-state {3,

0[7r1; ... ; 'lrn]N/3 implies 0[7r]N/3 .

248

Then, for i = 1, ... n, let [0 be the set { xi, . .. , Xk;} of variables in Xo mentioned in
11"1 ; ... ; 11"i, and let xi, ... , zt, be fresh variables, the intuition being that x; represents
the value of :c; after 11'i is executed. Now, appealing to the closure properties of
q;(L, X), let 1/JM,a,'I< be

3xi · · · 3xli · · · 3xi · · · 3xk,. /\ x; = xj & /\ cp; ,
1:s;;9,. l<i::s;n

where for 1 < i ~ n, "Pi relates :i:f-1, .•. , xt~1 to xi, ... , xi; after the execution of
11"i· -j

Call formulas satisfying the requirements for 1/JM,a,1r in Lemma A (11", M)-records
of a. Given L-models M and N, write M =!li(L) N when they satisfy the same
sentences in !j(L, 0). Now, form the transition system [M]. from [M] as [M] was,
but with lh replaced by n •.
Lemma B. Assume M =!li(L) N, and {0}[1r]Ms, {0}[7r]Ns', where 11" E II •. Then for
every 11"1 E II.,

Proof. By symmetry, it is enough to prove one direction of the bi-conditional. In fact,
it suffices, again through an appeal to symmetry, to show (assuming M =!li(L) N,
{0}[7r]Ms and {0}[11'']Ms) that whenever 0[11']N.B, then 0[1r']H,B.9 So suppose 0[1r]NP·
Call domain(.B) Xo, and let

!li(Xo,11"1):={-iPEq;(L,Xo) J 3M'3a:Xo-..JM'J ,,Pisa(11'',M')-recordofa}

e(N,J3) := {O I N F 8[.B] and (}or-,(} E q;(L,Xo)}.

If we can demonstrate the consistency of

e(N, P) u {v !P(Xo, 7r1)} ,

then we can conclude that 0[11'']N.B through an application of Lemma A. But by
the General Omitting Types Theorem given in p. 108 of Keisler [15], we need only
observe that for every finite piece L1 c 8(N, ,B), the conjunction

is satisfied by M relative to some a : X0 -.. JMJ (since M =4l(L) N), which in turn
satisfies some 1/J E !V(Xo, 11"1) (by Lemma A) since {0}[11']Ms 3 a and {0}[7r']Ms. -l

Theorem C. For L-models Mand N, the following are equivalent.

1. M :4l(L) N.
2. [M]. ~ [N] •.
3. [M]. !::!. [N] ...

9 The point is that the (asymmetric) condition {0}[7r]Ns' is used only after establishing
0(7r]N,8 iff 0[7r1)N,8.

249

Proof. 3 => 1 follows from the inclusion in II of tests for all of ~(L). 2 => 3 is trivial
(since ~ always implies +-+). All that remains is 1 => 2. Let RM,N be the relation

{(s, s') I 371" {0}[7r]Ms and {0}[1r]Ns'} .

It suffices to show that RM,N : [M]. ~ [N]*, assuming M =!ll(L) N. Proceed as
follows.

1. From Lemma A conclude that RM,N relates {0} to {0}. (For example, if 0[1r]Ma:,
then as M =!ll(L) N, N F 3xtfJM,a," and so for some /3, 0[7r]N,8.)

2. Moreover, by Lemma B, RM,N defines a function from [M]*-states to [N].-states.
3. Writing f for that function, the bi-conditional

so[1r]Ms1 iff f(so)[1r]Nf(s1)

follows from the (easily established) fact that

so[7r; 11"1]Ms1 iff 3s2 so[7r]Ms2 and s2[7r1]Ms1 .

Two defects with the duality given in Theorem Care worth pointing out. First, the
requirement that iP(L, X) be closed under existential quantification cannot simply be
dropped by modelling the effect of existential quantification via random assignment
(i.e., defining 3x<p? as "x :=?; <p?") since tests have no side-effects, whereas random
assignments affect the assignment of a value to a variable. Second, the II.-transition
system [M]. is never "reduced": the [M].,-state generated by x :=?is different from
that generated by

x :=? + (3x x = x ?) ,

even though they are related by a JI.,-bisimulation. Both defects can be corrected by
closing either iP(L, X) under modalities labelled by programs (i.e., forming formulas
[7r]<p), or (equivalently) the collection JI .. of programs under negation -.. But then
Lemma A breaks down (as does Theorem C) - the program

x :=?; ([while x > 0 do x := x - l]O = 1)?

discriminates between standard and non-standard models of arithmetic. (As sug
gested by the use of an omitting types argument in Lemma B, infinitary logic is not
far behind.)

Thus, to stay within first-order logic, .., must be introduced only if " is dropped.
Replacing JI .. by IIL, Lemma A can be strengthened (using the finite bound on the
non-determinism of programs) to

Lemma A~. Given a program 7r E II L, and a fi.nite subset Xo of X, there is
an £-formula 1/Jx0 ,.,. with free variables in Xo such that for every L-model N and
f3 : Xo -+ INI,

0[7r]Nf3 iff N F t/Jx0 ,,.[/3] •

250

Proof. Rather than reducing a program 1r to a sequence of primitive steps (as in
the Kleene normal form theorem), a simpler reduction (in the manner of Tarski's
inductive definition of satisfaction) is possible, because (in contrast to Lemma A)
the bi-conditional holds. Sequential composition forces us, however, to work with an
arbitrary initial state a (instead of simply 0). Accordingly, strengthen the induction
hypothesis on 7r as follows: for every finite subset Xo of X and every X' ~ Xo, there
is an L-formula XX',Xo,,.. with free variables from the disjoint union X' + Xo of X'
and Xo, and an L-formula 9xr,,.. with free variables from X' such that for every
L-model N, o:: X'-+ INI, and (3: Xo-+ IN!,

a[1r]N,8 iff N F XX',Xo,,..[o: + f3]
there is no/ such that o:[1r]N'Y iff N f= 9xr,,..[a] .

For the first bi-conditional, the trick is to record an un-corrupted copy of X' in
X' + Xo (so as to be able to store relevant conditions on the initial state a:) before
executing ?r. Note that for every 7r, there is a finite set X,.. such that if o:[7r]N'Y
then domain(/)- domain(a::) ~ X,... This pushes through the argument not only for
sequential composition, but also for the second bi-conditional. That is, Bx',1r can be
constructed by taking a conjunction of formulas of the form -dx XX',X1 ,.,.. for finitely
many X1 's. -j

We might now proceed as before, proving ~-versions of Lemma B and Theorem C
(where <P(L, X) is the set of all £-formulas on X). Instead, however, let us observe
that under Ih, the states generated by x :=? and by x :=? + 3x x = x? are no
longer bisimilar since -i(x = x?) E Ih. In fact,

Proposition B~. If R is a bisimulation on [M] and sRs' then s = s'.

Proof. Assume R is a bisimulation on [M] and sRs1• Choose 1r and 1r1 that give s
and s', respectively (i.e., {0}[1r]Ms and {0}[?r']Ms'), and let X1 be a finite subset of
X containing all variables of X occuring in 7r or 7r1• For every subset X 0 of X1, let
7rx0 be the program

/\ x=x?;-i(x1=x1?); -i(x2=x2?); ... ; -i(xk=xk?),
:z:EXo

where X1 -Xo = {x1, ... , :ck}, and fix L-formulas t/Jx0 ,,.. and tPXo,1r' given by Lemma
A~, with free variables from Xo. Observe that since sRs' (where Risa bisimulation),
it follows from Lemma A~ that for every X0 ~ X1 ,

and

That is, for every Xo ~ X1, 1/;x0 ,.,,.1 and 1/lx0 ,,.. a.re satisfied by the same L-models M
and functions from Xo to IMI, whence s = s' (again by Lemma A~). -j

Hence, a bisimulation R between [M] and [N] must be an isomorphism (since RoR-1

is a bisimulation on [M]), and a ~-version of Theorem C can be proved by showing

251

3 => 2 => 1 => 3 (rather than following the direction 3 => 1 => 2 => 3 in the proof
above of Theorem C).

Theorem 2. For L-models Mand N, the following are equivalent.

1. M::L N.
2. [M) ~ [N].
3. [M) !:! [N).

Remark (for readers familiar with the model-theoretic notions involved). Prof. van
Benthem has suggested replacing in Theorem 1 M ~ N by M is partially isomor
phic, or L00w-equivalent to N. Under this modification, the assumption that M
and N are countable can be dropped. Futhermore, the parallel with Theorem 2 can
then be strengthened by bringing in the algebraic characterization of =L as being
so-called ''finitely isomorphic" - a weakened version of partially isomorphic, also
having a "back-and-forth" clause, that yields a finite variable hierarchy described,
for example, in section 6 of van Benthem [4). On the other hand, some may find the
countability assumption in Theorem 1 (occurring also in Proposition 4) harmless,
and a reasonable price for securing an isomorphism. Moreover, the very process of
constructing (back-and-forth) an isomorphism is instructive, albeit standard.

This article was processed using the U.TEJX macro package with LLNCS style

