
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

The Propositional Formula Checker HeerHugo

Jan Friso Groote, Joost P. Warners

Software Engineering (SEN)

SEN-R9905 January 31, 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301667125?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9905
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

The Propositional Formula Checker HeerHugo

Jan Friso Grootea,b Joost P. Warnersa,c

a CWI
P.O. Box 94079, 1090 GB, Amsterdam, The Netherlands

e–mail: JanFriso.Groote@cwi.nl, Joost.Warners@cwi.nl

b Computing Science Department, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

c Department of Technical Mathematics and Informatics, Faculty of Information Technology and Systems
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

ABSTRACT

HeerHugo is a propositional formula checker that determines whether a given formula is satisfiable or not. Its

main ingredient is the branch/merge rule, that is inspired by an algorithm proposed by St̊allmarck, which is

protected by a software patent. The algorithm can be interpreted as a breadth first search algorithm. HeerHugo

differs substantially from St̊allmarck’s algorithm, as it operates on formulas in conjunctive normal form and it is

enhanced with many logical rules including unit resolution, 2–satisfiability tests and additional systematic reasoning

techniques. In this paper, the main elements of the algorithm are discussed, and its remarkable effectiveness is

illustrated with some examples and computational results.

1991 Mathematics Subject Classification: 03B05, 68Q20, 68T15

1991 Computing Reviews Classification System: F.0, F.2, F.4

Keywords and Phrases: Satisfiability, Propositional logic, Theorem proving.

Note: The second author is supported by the Dutch Organization for Scientific Research (NWO) under grant

SION 612-33-001.

1. Introduction

The satisfiability problem of propositional logic (SAT) is considered important in many dis-
ciplines, such as mathematical logic, electrical engineering, computer science, operations re-
search etc. It was the first problem shown to be NP–complete [3], which means that it is
considered unlikely that an algorithm exists that can solve any instance of SAT in polynomial
time. It may be noted though that several subclasses of SAT exist, which allow a polynomial
time algorithm, such as 2SAT and HornSAT [1, 7]. Over the years, many algorithms for
solving satisfiability problems have been developed; for a comprehensive overview the reader
is referred to [15]. The algorithms can basically be subdivided into two categories. Firstly,
there are the complete algorithms; such algorithms find one or all satisfying solutions or
prove that the formula under consideration is a contradiction. Examples of such algorithms
are (variants of) the Davis–Putnam procedure (which we refer to as DPLL algorithms) [6, 5]
and binary decision diagrams (BDDs) [2]. Secondly, there are incomplete algorithms. These
search for a satisfying assignment; if one is found, the formula is solved. Unfortunately, such
methods are not able to prove a formula contradictory. These methods include various kinds
of local search [25, 14, 13].

2

In this paper, an implementation of a complete algorithm, called HeerHugo, is described.
The initial purpose of this implementation was to validate correct operation of the Vital Pro-
cessor Interlocking unit guarding the safety of all operations at the Dutch railway stations
in Hoorn–Kersenboogerd and Heerhugowaard (see also [9, 12, 21]); hence the name of the
solver. For this practical application HeerHugo turned out to be very effective and so it was
decided to test HeerHugo’s strength on other kinds of SAT problems as well.

HeerHugo is inspired by an algorithm proposed by St̊allmarck1, which can be interpreted as
a breadth first search algorithm, with several enhancements (see also [26, 16, 33]). The actual
algorithms implemented in HeerHugo differ substantially from St̊allmarck’s algorithm, as it
operates on formulas in conjunctive normal form (CNF) and incorporates many logical rules
that are more or less common in theorem proving. It seems to us that the breadth first search
type algorithm is largely overlooked in the literature on practical satisfiability solving. The
DPLL method [5], which seems to be the most widely used, is in fact a depth first search
algorithm. It appears that for many classes of formulas breadth first search is substantially
more effective than depth first search, especially for instances stemming from real–life ap-
plications; on the popular (at least for research purposes) difficult random 3SAT instances
[22] depth–first search seems more effective. The effectiveness of HeerHugo is mainly due to
its reasoning strength. Based on (nested) assumptions conclusions are drawn that are subse-
quently added to the formula; such conclusions include not only truth values of propositions,
but also the equivalence of sets of variables. Note that implementations of DPLL algorithms
that are enhanced with ‘intelligent backjumping’ techniques (such as SATO [36]), appear to
have a comparable reasoning strength.

Besides being a complete algorithm for determining satisfiability, breadth first search can
be applied as preprocessing technique to substantially reduce the size of the formula under
consideration by restricting the number of nested assumptions. If during this process the
empty clause is not derived, one could decide to switch to a DPLL or other algorithm.

This paper is organized as follows. In the next section we deal with the preliminaries and
notation. HeerHugo is able to handle propositional formulas with all the well known con-
nectives. It first translates a formula to a formula in conjunctive normal form, maintaining
satisfiability, by introducing auxiliary variables. This transformation is briefly described in
Section 3.1. Subsequently various simple inference rules are applied to simplify the formula
under consideration as much as possible; these are specified in Section 3.2. The way the
breadth–first search is carried out is discussed in Section 3.3. In the subsequent subsections
some complexity issues and possible enhancements are mentioned. Section 4 and 5 are con-
cerned with the description of HeerHugo’s actual performance. Some specific effects of the
simple inference rules are discussed, and a number of computational results are given. We
conclude with a discussion in Section 6. In Appendix A it is explained how HeerHugo 2.0
can be obtained and used.

Acknowledgements Thanks go to Marc Bezem for helping to track some references, and to
Bert Lisser and John Tromp for their comments on an earlier version of this manuscript.

1St̊allmarck’s prover is protected by a software patent [27].

2. Preliminaries and Notation 3

2. Preliminaries and Notation

Let us start with introducing some notation. Let P = {p, p0, p1, p2, . . . , q, r, . . . } be the
set of atomic propositions or variables. Each proposition can be either true or false. We
have a number of connectives: ¬ (‘not’ or ‘negation’), ∨ (‘or’ or ‘disjunction’), ∧ (‘and’ or
‘conjunction’), → (‘implication’) and ↔ (‘equivalence’ or ‘bi-implication’). Furthermore, a
literal is an atomic proposition or its negation. Let L = {l, l0, l1, l2, . . . } be the set of literals.
Propositional (sub)formulas are denoted by Φ and ψ. An example of a propositional formula
Φ is

Φ = (p0 ↔ ¬p1) ∨ ((¬p0 → p2) ∧ (p1)).

The satisfiability problem of propositional logic is to assign truth values to the propositions,
such that the formula Φ evaluates to true, or to prove that no such assignment exists. If the
formula is true for each assignment to the variables, it is called a tautology, while if it is false
for each assignment it is said to be a contradiction. Otherwise it is said to be satisfiable.

In this paper, the satisfiability problem is studied in conjunctive normal form (CNF). A CNF
formula consists of a conjunction of disjunctions, where each of the disjunctions is called a
clause, in notation:

Φ =
n∧
k=1

Ck,

where each clause Ck is of the form ∨
i∈Ik

li,

with li a literal. The length `(Ck) of a clause is defined as the number of distinct literals
occurring in its minimal representation, i.e. tautological clauses have length zero, and doubled
occurrences of identical literals in the same clause are reduced to a single occurrence. A CNF
formula in which the maximum clause length is equal to ` is referred to as an ≤ `CNF formula.
In particular, ≤2CNF formulas are solvable in linear time [1], while ≤3CNF formulas are in
general NP-complete [3].

Note that the↔ and→ operators can be eliminated using the well known De Morgan’s laws
[4] to obtain a CNF formula. In general, this cannot be done efficiently; i.e. transforming an
arbitrary formula to CNF using these laws requires a number of operations that is exponential
in the length of the formula. However, using auxiliary variables, any formula can be put into
the (≤3)CNF format in linear time, maintaining satisfiability. This transformation is used
by HeerHugo. It is described in the next section.

3. Algorithms and rules

We describe how HeerHugo is working in four parts. The first part describes how an arbitrary
formula can efficiently be transformed to a conjunctive normal form, where clauses contain at
most 3 literals. In the second section we describe efficient (mainly linear) operations that can
be carried out on the conjunctive normal form to reduce the number of distinct propositions
that occur in it. In the third section we describe St̊almarck’s branch and merge rule, which
is required to make the system complete. Subsequently, the way new clauses are derived
is discussed, some complexity issues are addressed and finally the inclusion of additional
satisfiability tests is mentioned.

4

3.1 Transformation to ≤3CNF
We describe a linear transformation of any formula Φ to ≤3CNF form, i.e. formulas in con-
junctive normal form with at most 3 literals per clause. This transformation is believed to
be first described by Tseitin [29] and therefore we refer to it as the Tseitin translation. The
original formula allows a satisfiable assignment if and only if its transformed ≤3CNF counter-
part allows a satisfiable assignment. More precisely, any satisfying assignment of the original
formula can be extended to a satisfying assignment of the associated ≤3CNF formula. Note
that if the original formula is a tautology, the resulting CNF formula is merely satisfiable;
it is easy to see that (unless P=NP) no polynomial time transformation to CNF preserving
tautology exists, since the tautology problem on CNFs is easy. Note that proving a formula
to be a tautology is equivalent to proving the negation of its transformed counterpart to be
a contradiction.

Take an arbitrary formula Φ. Introduce for any subformula ψ of Φ a new proposition pψ,
except if ψ is itself an atomic proposition. First construct the following formula:

pΦ ∧
∧

ψ ∈ Sub(Φ)
ψ ≡ ψ1 ⊕ ψ2

(pψ ↔ (pψ1 ⊕ pψ2)) ∧
∧

ψ ∈ Sub(Φ)
ψ ≡ ¬ψ1

(pψ ↔ ¬pψ1).

Here Sub(Φ) is the set of subformulas of Φ, and ⊕ denotes one of the binary connectives.
Obviously, the number of subformulas is linear in |Φ|, and since each of the logical expressions
involved can be expressed in at most 4 clauses the transformation is linear in the size of the
formula.

Note that to obtain a slightly more concise formulation, the equivalence operators may be
replaced by implications [34]. Thus satisfiability is maintained, but in case the original
formula is satisfiable, the resulting formula allows more satisfiable solutions.

For completeness, we give an example of the result of transforming a ‘triple’ (pψ ↔ pψ1 ∧pψ2)
and a formula (pψ ↔ ¬pψ1) to ≤3CNF form. We obtain (¬pψ∨pψ1)∧(¬pψ∨pψ2)∧(pψ∨¬pψ1∨
¬pψ2) and (pψ ∨ pψ1) ∧ (¬pψ ∨ ¬pψ1), respectively. One of the differences between HeerHugo
and St̊almarck’s satisfiability checker is that the latter works with so-called ‘triples’, formulas
of the form p ↔ q ⊕ r, whereas HeerHugo operates on the larger ≤3CNF formulas, which
allows for more logical rules to be applied.

3.2 Simple rules
From now it is tacitly assumed that we consider ≤3CNF formulas. In order to simplify
a formula, a number of transformations is simultaneously applied. By simplification of a
formula we mean in general the removal of propositions and clauses, or the addition of short
clauses (i.e. clauses that are likely to contain useful information). The transformations are
described in the following paragraphs.

Unit resolution Unit resolution is motivated by the occurrence of clauses of length one in
the formula. Such clauses are called unit clauses. It relies on the obvious observation that a
literal occurring in a unit clause must be true in any satisfying assignment (if any). In the
unit resolution phase, all unit clauses are found, and the corresponding literals are set to true.

3. Algorithms and rules 5

Subsequently, the truth values are propagated through the formula. During this process new
unit clauses can emerge, or a contradiction can be found. The procedure is repeated until
either a contradiction is found or no unit clauses remain. All unit resolution steps can be
applied in linear time [7]. It is interesting to note that unit resolution is complete for Horn
formulas, or propositional Prolog programs. These are formulas in conjunctive normal form
(without a restriction on the clause length) where each clause contains at most one positive
literal.

Removal of implication cycles The second simplification procedure is motivated by the oc-
currence of clauses of length two. If the maximum clause length is equal to two the formula
under consideration can be solved in linear time [1]. Moreover, by considering a 2CNF
subformula of a larger formula, it is possible to reduce the problem size, using this algorithm.
Clauses of length two can be viewed as implications, i.e. p ∨ q is equivalent to ¬p→ q and
¬q → p. Such implications can form a cycle, for example p→ q, q → ¬r and ¬r → p. Clearly,
all literals in such a cycle are equivalent, and henceforth can be given the same name. This
observation yields a complete linear time algorithm for 2CNF formulas [1]. Obviously, if the
2CNF subformula is found to be contradictory, the full formula is a contradiction as well.

Classical Davis–Putnam rule One of the earliest rules in propositional reasoning is proposed
in [6]. We refer to this rule as the classical Davis–Putnam rule. It can be formulated for a
proposition p as follows. Given a CNF of the form

Φ = (p ∨ ψ) ∧ ψ′,

where p does not occur in ψ′ (and ψ). (Note that ψ and ψ′ both denote ≤3CNF formulas.)
Basically, for every occurrence of ¬p in ψ′ we can substitute ψ, maintaining all satisfying
assignments. When carrying out this substitution it is easy to obtain a CNF again, but
auxiliary propositions must be introduced to maintain ≤3CNF. Moreover, if both p and ¬p
occur, the resulting ≤3CNF is considerably larger than the original. This is basically the
motivation for Davis, Logemann and Loveland’s modification of the original Davis–Putnam
algorithm [5]. Their (depth–first search) algorithm is currently one of the most widely used
algorithms for solving SAT problems.

In HeerHugo the classical Davis–Putnam rule is carried out only when the formula reduces
in size, or when there is a limited growth. Just before applying the branch/merge rule (see
below) to a proposition p, it is investigated whether it can be fruitfully applied. In this
respect we mention two special cases:

• When ¬p does not occur in ψ′, then the Davis–Putnam rule implies that (p ∨ ψ) can
be discarded. This is called monotonic variable fixing (also known as the pure literal
rule).

• Another interesting case is when p occurs exactly once, in a clause of length 2, while ¬p
occurs arbitrarily often. For example, this clause has the form p ∨ q. According to the
Classical Davis–Putnam rule all occurrences of ¬p may be substituted by q, reducing
the number of propositions and thus the size of the formula.

HeerHugo is facilitated to immediately (i.e. while applying unit resolution) detect whether
one of these special cases of the Classical Davis–Putnam rule can be applied.

6

Subsumption and ad hoc resolution HeerHugo constantly changes its set of clauses by re-
moving and adding clauses (see also the next section). Whenever a clause is added, it is
checked whether a similar clause exists. For example, if a clause C1 ≡ p∨ q∨ r is added, then
the set of clauses is checked for the occurrence of a clause C2 of any of the forms listed in
Table 1, and the corresponding action is taken. The actions are motivated by subsumption,
i.e. C2 → C1, or resolution, i.e. (C1 ∧ C2) ↔ C3 for some clause C3 which is subsequently
added. If no such clause C2 is present, C1 is simply added. Obviously, if p, q and/or r appear
with negations, the obvious dual actions are taken. Similarly, in case a clause of the form

C2 Action
p ∨ q ∨ r do not add C1

p ∨ q ∨ ¬r do not add C1, remove C2 and add p ∨ q
p ∨ ¬q ∨ r do not add C1, remove C2 and add p ∨ r
¬p ∨ q ∨ r do not add C1, remove C2 and add q ∨ r
p ∨ q do not add C1

p ∨ ¬q do not add C1, add p ∨ r
¬p ∨ q do not add C1, add q ∨ r
p ∨ r do not add C1

p ∨ ¬r do not add C1, add p ∨ q
¬p ∨ r do not add C1, add q ∨ r
q ∨ r do not add C1

q ∨ ¬r do not add C1, add p ∨ q
¬q ∨ r do not add C1, add p ∨ r

Table 1: Actions following the derivation of a ‘new’ clause C1 ≡ p ∨ q ∨ r.

C1 ≡ p ∨ q is added and a clause C2 of any of the forms listed in Table 2 is present, the
corresponding actions are taken. Again, if no such C2 is present, C1 is simply added. The
dual cases, where p and/or q are negated, are left to the reader.

C2 Actions
p ∨ q do not add C1

p ∨ ¬q do not add C1, remove C2 and add p
¬p ∨ q do not add C1, remove C2 and add q
¬p ∨ ¬q do not add C1, remove C2 and set p ≡ q
p ∨ q ∨ r remove C2

p ∨ q ∨ ¬r remove C2

p ∨ ¬q ∨ r remove C2, add p ∨ r
p ∨ ¬q ∨ ¬r remove C2, add p ∨ ¬r
¬p ∨ q ∨ r remove C2, add q ∨ r
¬p ∨ q ∨ ¬r remove C2, add q ∨ ¬r

Table 2: Actions following the derivation of a ‘new’ clause C1 ≡ p ∨ q.

3.3 A branching scheme: The branch/merge rule
After applying all rules from the previous section, it might be that no contradiction has been
derived. In this case a branch/merge rule is adopted. This rule stems from [26] where it is
called the dilemma rule, and appears to be surprisingly effective in proving formulas. We
actually believe that the success of the St̊almarck prover should be solely attributed to this
rule, since its other aspect (namely the handling of triples), is a slightly enhanced variant

3. Algorithms and rules 7

of unit resolution, which is completely subsumed by all rules mentioned previously. The
branch/merge rule is depicted in Figure 1. It must be interpreted as follows. Starting with

s s︸ ︷︷ ︸

Φ ∧ ¬p Φ ∧ p
Φ

C¬p Cp

Φ ∧ (C¬p ∩Cp)

Figure 1: Illustration of the branch/merge rule.

a ≤3CNF formula Φ, the proof is split in two parts. In the first part, the assumption ¬p is
added to Φ. Using the simple rules a set of conclusions C¬p is drawn. A conclusion can have
any of the following forms:

• A certain proposition does or does not hold; q or ¬q.

• Two propositions are, or are not equivalent; q ↔ r or q ↔ ¬r.

After exhaustively applying the simple rules, C¬p contains all such conclusions. Subsequently,
C¬p is made closed in the following way. It is checked whether C¬p contains the conclusion
that both q and ¬q must hold, for some proposition q. If this is the case an inconsistency has
been derived; then C¬p is made to contain the set of all literals, as well as all (in)equivalences
between literals (since out of a contradiction anything can be concluded). Otherwise, for
all conclusions of the form q, an equivalence ¬p ↔ q is added to C¬p. Subsequently, the
transitive closure of bi–implications is determined. I.e. if ¬p ↔ q and q ↔ r are in C¬p,
¬p↔ r is added. In the same way, Cp is constructed by assuming p and adding it to Φ.

After exploring both branches, the intersection of C¬p and Cp is calculated, and each fact in
the intersection is added to Φ. Calculating this intersection as well as the transitive closure
can be done in linear time in the number of conclusions. When the intersection is not empty,
the simple rules are applied to simplify Φ∧ (C¬p ∩Cp). Note that if one of the branches lead
to a contradiction, the conclusions of the other branch are all in the intersection.

HeerHugo applies the branch/merge rule for every proposition in turn, leading to a diagram
of shape (b), shown in Figure 2. The branch/merge is repeatedly applied to all propositions
in sequence until the stage is reached where for all propositions the intersection of C¬p and
Cp is empty. This means that applying the rule to any proposition does not lead to any
new facts. In this case the branch/merge rule is applied in a nested way (see (c), Figure 2).
First, at level one, a single proposition is set to true and false, and under this assumption,
the branch/merge rule is applied to all other propositions, until no new facts can be derived.
Then a next proposition at level one is chosen.

It may be noted that a less powerful variant of the branch/merge rule is known as single
lookahead unit resolution. This is a polynomial–time algorithm for solving extended Horn

8

(a)

...

(b)

...

......

......

(c)

Figure 2: Schematic illustration of the application of simple rules (a), the branch/merge rule
(b) and the nested branch/merge rule (c).

formulas [24]. It is also incorporated in several implementations of general DPLL–based
branching algorithms (e.g. [8]) for detecting possible variable fixings and early closing of
branches; it does not take into account equivalencies of variables.

A note on adding ‘expensive’ clauses It can happen that after assuming a literal p to be
true , assuming the validity of a literal q leads to a contradiction. In this case we have
derived p ∧ q → false, which is equivalent to the clause ¬p ∨ ¬q. We consider such a clause
expensive, because we may have searched for quite a while before finding it. Furthermore, it
is considered useful, since it is a concise fact. Therefore, such a clause is added to the formula.
This is also done when the nested assumption of three propositions leads to a contradiction.
We have also experimented with adding a clause ¬p ∨ q (¬p0 ∨ ¬p1 ∨ q) if we derive q under
the assumption p (assumptions p0 and p1). We found a degradation of performance, due to
the fact that many redundant clauses were generated in this way.

3.4 Including satisfiability tests
As may be clear from the description of the algorithm so far, it is basically a form of applying
resolution [23], and thus it is particularly suited for proving contradictory formulas. In order
to make it effective for satisfiable formulas as well, it is necessary to include satisfiability
tests. These look, guided by some heuristic, for a satisfying assignment of the formula. If
such an assignment is found, the formula is proven satisfiable and the search can be cut
short. Typically, a satisfiability test should be applied at each level of the search. We have
experimented with two types of satisfiability tests:

• The first is based on the gradient of polynomial transforms of CNF formulas [20]. Es-
sentially, a proposition is chosen and set to true if its number of unnegated occurrences
is higher than its number of negated occurrences, otherwise it is set to false. Subse-
quently the simple rules are applied, and a next proposition is chosen, until either a
contradiction is found, or a satisfiable assignment is constructed.

• The other is a weighted variant of a greedy local search algorithm [25]. Starting from a
random assignment, variables are ‘flipped’ (set from true to false or vice versa), such that

4. Detecting structure in formulas 9

the weight of satisfied clauses increases. If no improving ’flip’ is identified, the weights
of the unsatisfied clauses are increased until an improving flip comes into existence.
In this way, ‘difficult’ clauses are getting large weights and thus are more likely to be
satisfied in the end. This process is repeated until either a satisfiable assignment is
constructed, or the maximum number of flips is exceeded.

It may be noted that for many satisfiable formulas the local search algorithm is sufficient for
finding a model quickly. Thus it tends to obscure HeerHugo’s performance; therefore we did
not make use of it in the computations in Section 5.

3.5 Some complexity issues
If a formula can be proven to be a contradiction using simple rules only (as in (a)), it is said
to be in hardness class 0. If a formula is proven contradictory using the application of the
branch/merge rule on level 1 (as in (b)), it is said to be in hardness class 1. Similarly, a
formula that can be proven using i nested applications of the branch/merge rule, but cannot
be proven using i− 1 nested applications, is said to be in hardness clas i [26]. If application
of simple rules is linear (which is the case in St̊allmarck’s prover, and almost in HeerHugo)
bounds on the lengths of proof size and search for a contradictory formula Φ in hardness class
h can be derived [26].

O((3|Φ|)h+1) length of a proof to refute Φ
O((3|Φ|)2h+1) length of the proof search to refute Φ

2h lower bound on the proof length of Φ

Here |Φ| denotes the size of the formula Φ. It should be noted that the number of propositions
occurring in Φ is a better measure than its size, except in constructed cases where large
formulas contain an extremely low number of propositions.

The hardness class of a formula gives a very good intuition for the provability of a formula.
A formula in hardness class 0 can without problem contain 106 propositions, whereas the
refutability of a formula with 100 propositions in hardness class 3 is doubtful. Moreover, it
appears that formulas belonging to a certain kind of application, have a typical hardness class
associated with them. However, there also formulas of which the hardness class increases with
size. E.g. prime number tests and the pigeon hole formulas appear to range over all classes.

It is worthwhile to note that the hardness class very much depends on the nature of the
simple rules. We have observed that by increasing the strength of the simple rules, formulas
shifted down from higher to lower hardness classes. As far as we know the relation between
hardness classes and the nature of the simple rules has never been investigated.

Finally, the hardness classes appear to be related to the notion of hierarchies of polynomially
solvable SAT problems as first introduced by Gallo and Scutellá [10]. It is however a different
notion, since the hardness class is not a static property of a formula (as it depends on the
simple rules that are applied). Moreover, it is not defined for satisfiable instances.

4. Detecting structure in formulas

In this section we show how HeerHugo detects and employs certain kinds of structure in a
formula. Maybe such observations lead to relating rules and algorithms to certain patterns
in formulas, which may lead to better understanding of proof search in propositional logic.

10

4.1 Identification and removal of identical subterms
Suppose we start with a formula (not yet in CNF) and this formula contains identical sub-
terms, i.e. the subformula q ⊕ r occurs twice. Assume that the identical subformulas are
assigned auxiliary propositions p0 and p1. It is easy to verify that for any operator, using
simple rules and the single level branch/merge rule, it is concluded that p0 ↔ p1. In this way
the equivalence between all pairs of equal subterms is detected. For example, if ⊕ ≡ ∧, we
find in the ≤3CNF formula 6 clauses that are equivalent to p0 ↔ (q ∧ r) and p1 ↔ (q ∧ r).
Now if for example q is considered in a branch/merge step, it is derived assuming ¬q that
¬p0 and ¬p1. Assuming q, it is derived that p0 ↔ r and p1 ↔ r. So, taking the intersection
of these results, we find that p0 ↔ p1.

In case the translation is used where implication arrows are used instead of bi–implications
in the translation to ≤3CNF, a similar effect occurs, but only if the simple Classical Davis
Putnam rules are being applied.

4.2 Identification and removal of similar propositions
Suppose the propositions p and q occur in a similar way; more precisely, Φ can be expressed
as

Φ ≡ (p ∨ ψ) ∧ (¬p ∨ ψ′) ∧ ψ′′

≡ (q ∨ ψ) ∧ (¬q ∨ ψ′) ∧ ψ′′′.

Using the branch/merge rule, monotonic variable fixing and subsumption and ad hoc resolu-
tion, the system detects that p and q can be made equivalent without violating satisfiability.
Assume using the branch/merge rule that p holds; then ψ′ is derived. This means that using
ad hoc resolution the subformula (¬q ∨ ψ′) is proven superfluous. This implies that q only
occurs positively. So, using monotonic variable fixing q is set to true. In particular p ↔ q.
Similarly, assuming ¬p, leads to the conclusion p↔ q as well. So, HeerHugo concludes that
p and q may be assumed to be equivalent in this case.

5. Computational experience

The most common way to compare the efficiency of implementations of propositional checkers
is by applying the tool to a set of benchmarks. In this section we provide computational
results on various classes of benchmarks. All results are obtained on an Silicon Graphics
PowerChallenge R10000 (195 Mhz R10000 CPU, 1MB secondary cache, Irix6.2) with sufficient
main memory. Times reported are the wall clock times (in seconds) reported by HeerHugo
to solve the formulas.

5.1 Safety at railway stations
The initial purpose of HeerHugo was to solve a collection of formulas expressing the safety
of operations at the Dutch railway stations in Heerhugowaard (see also [21]). A method of
expressing safety criteria for railway stations as a propositional formulas is developed and
discussed in [9]. Here we only give a brief outline. Given the layout of a railway station
(i.e. the infrastructure of the railroads, the position of the signals and level crossings etc.), a
number of requirements is formulated (in terms of propositional formulas) to protect trains
from colliding or derailing. Furthermore, a set of assignments is given that correspond to
situations (i.e. positions of trains, red/green signals etc.) that may occur given the current

5. Computational experience 11

time table. For each of these assignments all safety criteria must be satisfied at any time.
So, denoting by Φ0, . . . ,Φn the assignments at n + 1 sequential moments in time, and by
R a particular safety criterion, it must hold that (Φ0 ∧ . . . ∧ Φn) → R is a tautology, or
equivalently, its negation is a contradiction. Even for small stations such formulas can grow
quite large. Initially, it was attempted to solve the resulting formulas using BDDs [11], but
unfortunately it appeared that these could not handle the instances heerhugo* associated
with Heerhugowaard railway station. Ultimately, it turned out that HeerHugo solves them
with ease. In Table 3 the results of HeerHugo on a number of benchmarks2 are given. Given
are the size of formula after transformation to ≤3CNF and after the application of exhaustive
search at various levels; m gives the number of propositions and n gives the number of clauses.
It is indicated at which level the formulas was decided to be contradictory or satisfiable.

≤3CNF level 0 level 1
name m n m n m n time

h-k1 660 1197 361 788 SAT 1
h-k2 624 1140 FALSE 1
h-k3 645 1190 FALSE 1
h-k4 593 1074 FALSE 1
heerhugo2 8353 18175 5225 13942 SAT 13
heerhugo3 8351 18173 5223 13937 FALSE 5
heerhugo4 8574 18669 5339 14284 FALSE 4
heerhugo5 6286 13496 3922 10210 SAT 15

Table 3: HeerHugo results railway station instances.

5.2 Prime numbers
In this section we consider the problem of proving or disproving that certain numbers are
prime. This benchmark has a few advantages over others. It is easy to generate arbitrarily
large formulas that are either satisfiable, or contradictory. Moreover, it can easily be predicted
whether a formula is satisfiable or not; the numbers are so small that using conventional means
it is easy to check whether the numbers are prime.

The idea behind generating these formulas is the following. Given a number b represented
as a binary vector. We search for a factorization of b, i.e. we search for numbers f0 and f1

which are strings of propositions of the same length as b such that f0 · f1 = b and f0, f1 > 1.
Here · is the standard binary multiplication on numbers. The multiplication is given by
introducing propositions sij for intermediate results and intermediate carries cij. The core of
the multiplication is given by the following formulas. At the boundaries of the multiplication,
these formulas are simpler, for instance because carries are known to be 0.

si+j,j ↔ (ci+j−1,j−1 ↔ (si+j,j−1 ↔ (pi ∧ qj))),
ci+j,j ↔ ((ci+j−1,j−1 ∧ si+j,j−1) ∨ (ci+j−1,j−1 ∧ pi ∧ qj) ∨ (si+j,j−1 ∧ pi ∧ qj)).

In Figure 4 results are listed of applying HeerHugo to some of these formulas. We list the
number to be checked for primality. Given are the size of formula after transformation to

2These formulas, and the prime–formulas of the next section, can be obtained by contacting one of the
authors.

12

≤3CNF and after the application of exhaustive search at various levels; m gives the number
of propositions and n gives the number of clauses. It is indicated at which level the formulas
was decided to be contradictory (i.e. b is prime) or satisfiable. Considering the results, we

≤3CNF level 0 level 1 level 2
b m n m n m n m n time

112 451 1000 114 360 SAT 1
113 451 1000 94 305 FALSE 1
257 742 1673 195 636 FALSE 2

4711 1540 3535 453 1476 190 732 SAT 9
47161 2328 5384 741 2408 316 1221 FALSE 61

655379 3630 8450 1243 4046 546 2095 FALSE 1181
655381 3630 8450 1259 4097 548 2107 SAT 139

3476734 4389 10241 1585 5129 712 2727 SAT 367
3476741 4389 10241 1529 4966 701 2701 FALSE 13810

58697731 6123 14339 2125 6881 1015 3904 807 3618 ∗914869
58697733 6123 14339 2141 6932 1018 3930 SAT 558

Table 4: HeerHugo results on prime number benchmarks. ∗This instance was found a con-
tradiction at level 3.

conclude that the hardness class of the prime–formulas increases with b. Furthermore, the
table gives a good indication of HeerHugo’s ability to reduce the size of the formulas. It may
be stressed that the search at level 0 and 1 takes up little time; yet, the reduction in problem
size is substantial.

5.3 DIMACS benchmarks
The best known set of SAT benchmarks is the DIMACS suite [28]. It contains instances stem-
ming from practical applications, as well as constructed hard instances. We used HeerHugo to
solve a subset of these instances. Most of these instances are fairly hard for DPLL algorithms
(see the various results in [18]). Many of the DIMACS benchmarks are satisfiable, and thus
rather easily solved by local search methods3; so the main interest lies in the unsatisfiable
formulas. Note that all the DIMACS instances are already in CNF; yet, HeerHugo applies
the transformation to ≤3CNF anyway (even if the problem is already in ≤3CNF format).

We solved the following instances:

• The bf* and ssa* formulas (which stem from practical applications); results are in
Tables 5 and 6. For each problem are listed the original size of the problem (m refers
to the number of variables, n to the number of clauses), the size after transforming to
≤3CNF, the sizes after the search at the levels 0 (i.e. the application of simple rules),
1 and 2. It is indicated at which level the problem was solved, and the total time it
required.

• We also ran the dubois* and pret* instances, which are similar constructed 3CNF
instances. These are very hard for DPLL algorithms but polynomially solvable by a
special purpose algorithm [31]. HeerHugo solved each of the dubois* instances within

3This observation does not hold for the notorious par32* instances. These have only been solved making
use of their special structure [32].

5. Computational experience 13

a second; they were all found to be contradictory at level 1. For the pret* instances
HeerHugo requires up to 30 seconds. These were found to be contradictory at level 2.
The par8* and par16* instances contain large subformulas with similar structure as
the above mentioned instances (see also [32]). The smaller of these (par8*) are found
to be satisfiable at level 1 or 2 within a second. For the larger ones a search at level 3
is required which takes several hours. HeerHugo did not succeed in solving the par32*
formulas.

• Finally, we solved the aim* instances. These are constructed 3CNF instances, both
satisfiable and contradictory, with 50 to 200 variables. HeerHugo did not encounter
any trouble in solving these; each of the instances was solved in fractions of seconds.
Almost all instances are in hardness class 1 or lower. A few are in hardness class 2, but
even these are solved within a second.

original ≤3CNF level 0 level 1
name m n m n m n m n time

ssa0432–003 435 1027 2798 3398 115 272 FALSE 1
ssa2670–130 1359 3321 9083 11044 546 1289 FALSE 4
ssa2670–141 986 2315 6223 7551 379 899 FALSE 3
ssa6288–047 10410 34238 97832 121659 FALSE 16
ssa7552–038 1501 3575 9748 11821 437 1112 SAT 4
ssa7552–158 1363 3034 8189 9859 241 552 SAT 2
ssa7552–038 1363 3032 8184 9852 285 661 SAT 3
ssa7552–038 1391 3126 8415 10149 421 1003 SAT 3

Table 5: Results on the ssa* instances.

original ≤3CNF level 0 level 1 level 2
name m n m n m n m n m n time

bf0432–007 1040 3668 10613 13240 536 1985 175 519 FALSE 35
bf1355–075 2180 6778 19289 23886 789 2593 FALSE 7
bf1355–638 2177 4768 19257 23847 887 2803 FALSE 6
bf2670–001 1393 3434 9403 11443 495 1181 FALSE 2

Table 6: Results on the bf* instances.

Considering the above results we conclude that HeerHugo is very effective in solving certain
types of instances, where other algorithms (including DPLL–like algorithms) require consid-
erable amounts of time. On the other hand, when applied to random 3SAT formulas on
the threshold (especially unsatisfiable ones), HeerHugo is in general not successful when the
number of nested assumptions is restricted to 2. Typically, at level one the ≤3CNF formula
is reduced again to the original one, while going one level further does not yield any new
conclusions. Obviously, increasing the number of nested assumptions will eventually lead to
a correct answer, but this requires substantial computation times. We also observed that
HeerHugo has trouble solving large satisfiable formulas like the DIMACS ii* instances. The
transformation to ≤3CNF increases the size of the formulas, and HeerHugo has to do a lot
of time–consuming reasoning before the formulas reduce to a more manageable size.

14

6. Concluding remarks

The construction of HeerHugo, and its predecessors (a tool based on normal forms of proofs
and a tool using binary decision diagrams (see also [11])) as well as experience with the first
order theorem prover otter [35] led to the observation that there is hardly any fundamental
understanding of proof search in propositional logic. Attempts at obtaining a deeper under-
standing that we are aware of can be found in [17] where it is tried to clarify the effects of
different branching rules, while there also exists a wealth of probabilistic results (see for an
overview [15]); unfortunately, these rely on assumptions on the distribution of the formulas.
This makes these results, which are very interesting from a theoretical viewpoint, difficult
to apply and interpret when it comes to understanding practical satisfiability solving. The
same holds for the results on proof lengths [19, 30]; the existence of a short proof in some
proof system, does not at all guarantee that a reasonably short proof will be found in an
automated way.

Our experiences with HeerHugo and other solvers, clearly show that the current level of
understanding how proofs can be found efficiently in practice is low; it is based mainly on
computational experience, rather than on any theoretical foundations. Without truly under-
standing why, it appeared to be possible to achieve considerable improvements in performance
for formulas in higher hardness classes. Rather typically the performance doubled with almost
every round of improving HeerHugo. We expect that it is possible to double performance of
HeerHugo in a similar way a few more times. The reason for this is that the logical rules
and search algorithms that we use are quite standard; all can be found somewhere in the
literature, and other existing efficiently implementable rules are not applied yet. We did not
(yet) compare the rules with each other in order to remove redundancies in search; nor do
we use any heuristics for finding the best propositions to branch on.

By applying HeerHugo to a number of well known benchmarks, we have concluded that it
is a powerful complementary approach to solve SAT problems, that seems to be particularly
effective on formulas with a lot of structure, especially those stemming from real–life ap-
plications; see also [12]. Such formulas appear to be almost always in hardness class 2 or
less, and thus efficiently solvable by HeerHugo. The efficiency with which HeerHugo solves
structured instances should be attributed to its reasoning strength. Rather than just doing
a lot of guessing, HeerHugo derives as many facts as possible from increasingly complex as-
sumptions. Thus a lot of structure is recognized and subsequently exploited. As opposed to
HeerHugo, standard implementations of DPLL (depth–first search) algorithms are less suited
to exploit structure. When such implementations are enhanced with intelligent backjumping
techniques, their reasoning strength increases [36]. It appears that for efficiently solving many
classes of formulas exploiting structure is of the utmost importance.

Even when HeerHugo does not manage to solve a formula at level 2 or lower, it is able to
substantially reduce the size of the formula during the search. Subsequently, the reduced for-
mula could be solved by another solver that might be better suited for that particular type
of formulas. In this sense HeerHugo can be used as a preprocessing tool, which is especially
useful for contradictory formulas.

On the other hand, many formulas that are difficult for HeerHugo, for example random 3SAT
instances and large satisfiable formulas, are often rather easily solved by a depth–first DPLL

6. Concluding remarks 15

approach or even by a greedy local search algorithm. Thus it appears that satisfiability
solving has become an art of choosing the right algorithm for the right instance.

A Using HeerHugo

Version 0.2 of HeerHugo is designed to have an extremely simple input/output behaviour, in
order to guarantee that it can be used on any computer platform. An input formula must
be in Ain and output will appear in a file called Aout. HeerHugo will also write progress
information in Aout, which can be used for monitoring purposes. HeerHugo can be obtained
by anonymous ftp from ftp://ftp.cwi.nl/pub/jfg for experimental purposes. Note that
HeerHugo 0.2 is experimental software, and, although it appears to work correctly, may
contain flaws. HeerHugo comes with a README file explaining the use of several flags,
options and constants. In the file Ain a formula can be written using the operators ->
(implication), & (and), | (or) ~ (negation) and <-> (bi-implication). Elementary propositions
can be denoted by a sequence of letters and digits. Brackets can be used. A line starting
with an % is taken to be a comment. The following expression is a correct input:

% This is an example input file for HeerHugo 2.0
% containing sufficient facts to derive that Jan and Gijs
% do not have the same birthday
(13April <-> JanBirthday) &
(27September <-> GijsBirthday) &
(~13April | ~27September)

16

References

1. B. Aspvall, M.F. Plass, and R.E. Tarjan. A linear–time algorithm for testing the truth of
certain quantified boolean formulas. Information Processing Letters, 8(3):121–123, 1979.

2. R.E. Bryant. Graph–based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, C–35(8), 1986.

3. S.A. Cook. The complexity of theorem proving procedures. In Proceedings of the 3rd
annual ACM symposium on the Theory of Computing, pages 151–158, 1971.

4. D. Van Dalen. Logic and structure. Springer–Verlag, Berlin, 3rd edition, 1994.

5. M. Davis, M. Logemann, and D. Loveland. A machine program for theorem proving.
Communications of the ACM, 5:394–397, 1962.

6. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of
the ACM, 7:210–215, 1960.

7. W.F. Dowling and J.H. Gallier. Linear–time algorithms for testing the satisfiability of
propositional Horn formulae. Journal of Logic Programming, 1(3):267–284, 1984.

8. O. Dubois, P. Andre, Y. Boufkhad, and J. Carlier. SAT versus UNSAT. In Johnson and
Trick [18], pages 415–436.

9. W.J. Fokkink. Safety criteria for the vital processor interlocking at Hoorn–
Kersenboogerd. In Proceedings 5th Conference on Computers in Railways – COM-
PRAIL’96, Volume I: Railway Systems and Management, pages 101–110. Computational
Mechanics Publications, 1996.

10. G. Gallo and M.G. Scutellá. Polynomially solvable satisfiability problems. Information
Processing Letters, 29:221–227, 1988.

11. J.F. Groote. Hiding propositional constants in BDDs. Formal Methods in System Design,
8:91–96, 1996.

12. J.F. Groote, J.W.C. Koorn, and S.F.M. van Vlijmen. The safety guaranteeing system at
station Hoorn-Kersenboogerd (extended abstract). In Proceedings 10th IEEE Conference
on Computer Assurance (COMPASS’95), pages 57–68, Maryland, 1995.

13. J. Gu. Local search for the satisfiability (SAT) problem. IEEE Transactions on Systems,
Man and Cybernetics, 23(4):1108–1129, 1993.

14. J. Gu. Global optimization for satisfiability (SAT) problem. IEEE Transactions on
Knowledge and Data Engineering, 6(3):361–381, 1994.

15. J. Gu, P.W. Purdom, J. Franco, and B.W. Wah. Algorithms for the satisfiability (SAT)
problem: a survey. In D. Du, J. Gu, and P.M. Pardalos, editors, Satisfiability problem:

References 17

Theory and applications, volume 35 of DIMACS series in Discrete Mathematics and
Computer Science, pages 9–151. American Mathematical Society, 1997.

16. J. Harrison. St̊allmarck’s algorithm as a HOL derived rule. In J. von Wright, J. Grundy,
and J. Harrison, editors, Proceedings of TPHOLs’96, volume 1125 of Lecture Notes in
Computer Science, pages 221–234, 1996.

17. J.N. Hooker and V. Vinay. Branching rules for satisfiability. Journal of Automated
Reasoning, 15(3):359–383, 1995.

18. D.S. Johnson and M.A. Trick, editors. Cliques, Coloring and Satisfiability: Second DI-
MACS implementation challenge, volume 26 of DIMACS series in Discrete Mathematics
and Computer Science. American Mathematical Society, 1996.

19. J. Kraj́ıcek. Bounded arithmetic, propositional logic, and complexity theory, volume 60
of Encycplodia of Mathematics and its Applications. Cambridge University Press, 1996.

20. H. Van Maaren, J.F. Groote, and M. Rozema. Verification of propositional formulae by
means of convex and concave transforms. Technical Report 95–74, Faculty of Technical
Mathematics and Informatics, Delft University of Technology, Delft, The Netherlands,
1995.

21. J. Mertens. Verifying the safety guaranteeing system at railway station Heerhugowaard.
Master’s thesis, University of Utrecht, Utrecht, The Netherlands, 1996.

22. D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT problems.
In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92),
pages 459–465, San Jose, CA, 1992.

23. J.A. Robinson. A machine–oriented logic based on the resolution principle. Journal of
the ACM, 12:23–41, 1965.

24. J.S. Schlipf, F.S. Annexstein, J.V. Franco, and R.P. Swaminathan. On finding solutions
for extended Horn formulas. Information Processing Letters, 54:133–137, 1995.

25. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI-92), pages 440–446, San Jose, CA, 1992.

26. G. St̊allmarck. A proof theoretic concept of tautological hardness. Incomplete manuscript,
1994.

27. G. St̊allmarck. System for determining propositional logic theorems by applying values
and rules to triplets that are generated from boolean formula. United States Patent
number 5,276,897; Swedish Patent 467 076; European Patent 0 403 454; Canadian Patent
2,018,828, 1994.

28. M.A. Trick. Second DIMACS challenge test problems. In Johnson and Trick [18], pages
653–657.

29. G.S. Tseitin. On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic, part 2:115–125, 1968. Reprinted in
J. Siekmann and G. Wrightson (editors), Automation of reasoning vol. 2, Springer–Verlag
Berlin, 1983.

18 References

30. A. Urquhart. The complexity of propositional proofs. The Bulletin of Symbolic Logic,
1(4):425–467, 1995.

31. J.P. Warners and H. Van Maaren. Recognition of tractable satisfiability problems through
balanced polynomial representations. Accepted for publication in Discrete Applied Math-
ematics.

32. J.P. Warners and H. Van Maaren. A two phase algorithm for solving a class of hard
satisfiability problems. Technical Report SEN-R9802, Centre for Mathematics and Com-
puter Science (CWI), Amsterdam, The Netherlands, 1998. Accepted for publication in
Operations Research Letters.

33. F. Widebäck. St̊allmarck’s notion of n-saturation. Technical Report NP–K–FW–200,
Logikkonsult NP AB, Sweden, 1996.

34. J.M. Wilson. Compact normal forms in propositional logic and integer programming
formulations. Computers and Operations Research, 17(3):309–314, 1990.

35. L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning. McGraw–Hill, 1992.

36. H. Zhang. SATO: An efficient propositional solver. In Proceedings of CADE–97, 1997.

