
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Resolution and binary decision diagrams cannot simulate each
other polynomially

J.F. Groote, H. Zantema

Software Engineering (SEN)

SEN-R0009 April 30, 2000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301667121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R0009
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Resolution and Binary Decision Diagrams
cannot Simulate each other Polynomially

J.F. Groote1;2 H. Zantema1;3

JanFriso.Groote@cwi.nl hansz@cs.uu.nl

1: CWI, P.O. Box 94.079, 1090 GB Amsterdam, The Netherlands

2: Department of Mathematics and Computing Science,

Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

3: Department of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

ABSTRACT

There are many di�erent ways of proving formulas in proposition logic. Many of these can easily be character-

ized as forms of resolution (e.g. [12] and [9]). Others use so-called binary decision diagrams (BDDs) [2, 10].

Experimental evidence suggests that BDDs and resolution based techniques are fundamentally di�erent, in the

sense that their performance can di�er very much on benchmarks [14]. In this paper we con�rm these �ndings

by mathematical proof. We provide examples that are easy for BDDs and exponentially hard for any form of

resolution, and vice versa, examples that are easy for resolution and exponentially hard for BDDs.

2000 Mathematics Subject Classi�cation: 03B05, 03F20

1998 ACM Computing Classi�cation System: F.0

Keywords and Phrases: Resolution, Binary Decision Diagrams

Note: Work carried out under project SEN2

1. Introduction

We consider formulas in proposition logic: formulas consisting of proposition letters from some set P ,
constants t (true) and f (false) and connectives _, ^, :,! and$. There are di�erent ways of proving
the correctness of these formulas, i.e., proving that a given formula is a tautology. In the automatic
reasoning community resolution is a popular proof technique, underlying the vast majority of all
proof search techniques in this area, including for instance the well known branch-and-bound based
technique named after Davis-Putnam-Loveland [5] or the remarkably e�ective methods by St�almarck
[12] and the GRASP prover [9].
In the VLSI and the process analysis communities binary decision diagrams (BDDs) are popular

[2, 10]. BDDs have caused a considerable increase of the scale of systems that can be veri�ed, far
beyond anything a resolution based method has achieved. On the other hand there are many examples
where resolution based techniques out-perform BDDs with a major factor, for instance in proving
safety of railway interlockings ([7]). Out-performance in both directions has been described in [14].
However, benchmark studies only provide an impression, saying very little about the real relation

of resolution and BDDs. The results may be in
uenced by badly chosen variable orderings in BDDs

2

or non optimal proof search strategies in resolution. Actually, given such benchmarks it can not be
excluded that there exist a resolution based technique that always out-performs BDDs, provided a
proper proof search strategy would be chosen. So, a mathematical comparison between the techniques
is called for. This is not straightforward, as resolution and BDDs look very di�erent. BDDs work on
arbitrary formulas, whereas resolution is strictly linked to formulas in conjunctive normal form. And
the resolution rule and the BDD construction algorithms appear of a totally dissimilar nature.
Moreover, classical (polynomial) complexity bounds cannot be used, as the problem we are dealing

with is (co-)NP-complete. Fortunately, polynomial simulations provide an elegant way of dealing with
this (see e.g. [16]). We say that proof system A polynomially simulates proof system B if for every
formula � the size of the proof of � in system A is smaller than a polynomial applied to the size of the
proof of � in system B. Of course, if the polynomial is more than linear, proofs in system A may still
be substantial longer than proofs in system B, but at least the proofs in A are never exponentially
longer. It is self evident that for practical applications it is important that the order of the polynomial
is low. If it can be shown that for some formulas in B the proofs are exponentially longer than those
in A we consider A as a strictly better proof system than B. It has for instance been shown that
`extended resolution' is strictly better than resolution [8], being strictly better than Davis-Putnam
resolution [6]; for an extended overview of comparisons of systems based on resolution, Frege systems
and Gentzen systems we refer to [16].
We explicitly construct a sequence of biconditional formulas that are easy for BDDs, but exponen-

tially hard for resolution. The proof that they are indeed hard for resolution is based on results from
[15, 1]. The reverse is easier, namely showing that there is a class of formulas easy for any reasonable
form of resolution, even only unit resolution, and exponentially hard for BDDs. For a suitable class
of formulas including pigeon hole formulas we prove that the BDD approach is exponentially hard. It
was proven before in [8] that for the same pigeon hole formulas resolution is exponentially hard for
every strategy.
We start with preliminaries on OBDDs in Section 2. In Section 3 we prove that OBDD proofs

are exponential for pigeon hole formulas and related formulas. In Section 4 we prove that OBDD
proofs are polynomial for biconditional formulas. In Section 5 we present our results on resolution.
In Section 6 we present the our main results in comparing resolution and OBDDs. Finally, in Section
7 we describe some points of further research.

Acknowledgment. Special thanks go to Oliver Kullmann and Alasdair Urquhart for their help with
lower bounds for resolution.

2. Binary Decision Diagrams

The kind of Binary Decision Diagrams that we use presupposes a total ordering < on P , and therefore
are also called Ordered Binary Decision Diagrams (OBDDs). First we present some basic de�nitions
and properties as they are found in e.g. [2, 10]. An OBDD is a Directed Acyclic Graph (DAG) where
each node is labeled by a proposition letter from P , except for nodes that are labeled by 0 and 1. From
every node labeled by a proposition letter, there are two outgoing edges, labeled `left' and `right', to
nodes labeled by 0 or 1, or a proposition letter strictly higher in the ordering >. The nodes labeled
by 0 and 1 do not have outgoing edges.
An OBDD compactly represents which valuations are valid, and which are not. Given a valuation

� and an OBDD B, the � walk of B is determined by starting at the root of the DAG, and iteratively
following the left edge if � validates the label of the current node, and otherwise taking the right
edge. If 0 is reached by a �-walk then B makes � invalid, and if 1 is reached then B makes � valid.
We say that an OBDD represents a formula if the formula and the OBDD validate exactly the same
valuations.
An OBDD is called reduced if the following two requirements are satis�ed.

1. For no node its left and right edge go to the same node. It is straightforward to see that a node
with such a property can be removed. We call this the eliminate operation.

3

2. There are no two nodes with the same label of which the left edges go to the same node, and
the right edges go to the same node. If this is the case these nodes can be taken together, which
we call the merge operation.

Applying the merge and the eliminate operator to obtain a reduced OBDD can be done in linear time.
Reduced OBDDs have the following very nice property.

Lemma 1 For a �xed order < on P, every propositional formula � is uniquely represented by a reduced
OBDD B(�;<), and � and are equivalent if and only if B(�;<) = B(;<).

As a consequence, a propositional formula � is a contradiction if and only if B(�;<) = 0, and it is a
tautology if and only if B(�;<) = 1. Hence by computing B(�;<) for any suitable order < we can
establish whether � is a contradiction, or � is a tautology, or � is satis�able. If the order < is �xed we
shortly write B(�) instead of B(�;<). We write #(B(�)) for the number of internal nodes in B(�).
The main ingredient for the computation of B(�) is the apply-operation: given the reduced OBBDs

B(�) and B() for formulas � and and a binary connective � 2 f_;^;!;$g as parameters, the
apply-operation computes B(��). For the usual implementation of apply as described in [2, 10] both
time and space complexity are O(#(B(�)) � #(B())). If B(�) is known then B(:�) is computed
in linear time simply by replacing every 0 by 1 and vice versa; this computation is considered as a
particular case of an apply-operation. Now for every � its reduced OBDD B(�) can be computed by
recursively calling the apply-operation. As the basis of this recursion we need the reduced OBDDs for
the single proposition letters. These are simple: the reduced OBDD for p consists of a node labeled
by p, having a left outgoing edge to 0 and a right outgoing edge to 1. By maintaining a hash-table for
all sub-formulas it can be avoided that for multiple occurrences of sub-formulas the reduced OBDD
is computed more than once.
By the OBDD proof of a formula � we mean the recursive computation of B(�) using the apply-

operation as described above. If � consists of n boolean connectives then this proof consists of exactly
n calls of the apply-operation. However, by the expansion of sizes of the arguments of apply this
computation can be of exponential complexity, even if it ends in B(�) = 0. As the satis�ability
problem is NP-complete, this is expected to be unavoidable for every way to compute B(�). We give
an explicit construction of formulas for which we prove that the OBDD proofs are of exponential size,
independently of the order < on P . In [3] it was proved that representing the middle bits of a binary
multiplier requires an exponential OBDD; this function is easily represented by a small circuit, but
not by a small formula, and hence does not serve for our goal of having a small formula with an
exponential OBDD proof.

3. Pigeon hole formulas

In this section we prove lower bounds for OBDD proofs for pigeon hole formulas and related formulas.

Definition 2 Let m;n be positive integers and let pij be distinct variables for i = 1; : : : ;m and
j = 1; : : : ; n. Let

Cm;n =

m̂

i=1

(

n_
j=1

pij); Rm;n =

n̂

j=1

(

m_
i=1

pij); Rm;n =
^

j=1;::: ;n;1�i<k�m
(:pij _ :pkj);

CRm;n = Cm;n ^ Rm;n PFm;n = Cm;n ^ Rm;n:
In order to understand these formulas put the variables in a matrix according to the indexes. The

formula Cm;n states that in every of the m columns at least one variable is true, the formula Rm;n
states that in every of the n rows at least one variable is true, and the formula Rm;n states that in
every of the n rows at most one variable is true. Hence if Cm;n holds then at least m of the variables
pij are true and if Rm;n holds then at most n of the variables pij are true. Hence if m > n then

4

PFm;n is a contradiction. Since this reasoning describes the well-known pigeon hole principle, the
formulas PFm;n are called pigeon hole formulas. Note that PFm;n is in conjunctive normal form. In
[8] it has been proved that for every resolution proof for PFn+1;n the length is at least exponential in
n. Here we prove a similar exponential lower bound for OBDD proofs, which is of interest in itself
since pigeon hole formulas are widely considered as benchmark formulas. For the main result of the
paper however we get better results by using similar lower bounds for CRm;n instead since the size
of CRn;n is quadratic in n while pigeon hole formulas have cubic sizes. The contradictory formula in
the main result is p ^ (:p ^ CRn;n).
Our proof of these lower bounds has been inspired by the proof from [14] that every OBDD for

CRn;n has a size that is exponential in
p
n, which we improve to a size that is exponential in n. First

we need two lemmas.

Lemma 3 Let � be a formula over variables in any �nite set P. Let < be a total order on P. Let
k < #P. Write IB = f0; 1g. Let f� : IB#P ! IB the function representing �, in such a way
that the smallest k elements of P with respect to < correspond to the �rst k arguments of f�. Let

A � f1; : : : ; kg. Let ~z 2 IBk. Assume that for every distinct ~x; ~x0 2 IBk satisfying xi = x0i = zi for all

i 62 A there exists ~y 2 IB#P�k such that f�(~x; ~y) 6= f�(~x0; ~y). Then #B(�;<) � 2#A.

Proof: There are 2#A di�erent ways to choose ~x 2 IBk satisfying xi = zi for all i 62 A. Now from
the assumption it is clear that by �xing the �rst k arguments of f�, at least 2

#A di�erent functions
in the remaining #P � k arguments are obtained. All of these functions correspond to di�erent nodes
in the reduced OBDD B(�;<), proving the lemma. 2

Lemma 4 Let m;n � 1. Consider a matrix of n rows and m columns. Let the matrix entries be colored
equally white and black, i.e., the di�erence between the number of white entries and the number of

black entries is at most one. Then at least (m�1)
p
2

2 columns or at least (n�1)
p
2

2 rows contain both a
black and a white entry.

Proof: If all rows contain both a black and a white entry we are done, so we may assume that at
least one row consists of entries of the same color. By symmetry we may assume all entries of this
row are white. If also a row exists with only black entries, then all columns contain both a black and
a white entry and we are done. Since there is a full white row, we conclude that no full black column
exists. Let r be the number of full white rows and c be the number of full white columns. The number
of entries in these full white rows and columns together is mr+ cn� cr, and the total number of white
entries is at most mn+1

2 , hence

mn+ 1

2
� mr + cn� cr = mn� (m� c)(n� r):

Assume the lemma does not hold. Then m� c < (m�1)
p
2

2 and n� r < (n�1)
p
2

2 , and

mn+ 1

2
� mn� (m� c)(n� r) > mn� (m� 1)

p
2

2
� (n� 1)

p
2

2
= mn� (m� 1)(n� 1)

2

from which we conclude m+ n < 2, contradiction. 2

Theorem 5 For m � n � 1 and for every total order < on P = fpij ji = 1; : : : ;m; j = 1; : : : ; ng
both time and space complexity of the OBDD proofs of both CRm;n and PFm;n is
(1:63n). Moreover,
#B(CRm;n; <) =
(1:63n).

Proof: The last step in the OBDD proof of PFm;n is the application of apply on B(Cm;n; <) and
B(Rm;n; <).

5

We prove that #B(CRm;n; <) � 2
(n�1)

p
2

2 and that either B(Cm;n; <) has size at least 2
(m�1)

p
2

2 or

B(Rm;n; <) has size at least 2
(n�1)

p
2

2 . Since m � n and 2
p
2
2 > 1:63, then the theorem immediately

follows.
Let P< � P consist of the bnm2 c smallest elements of P with respect to <, and let P> = P n P<.

hence elements of P> are greater than elements of P<. We say that row j = fpij ji = 1; : : : ;mg is
mixed if i; i0 exist such that pij 2 P< and pi0j 2 P>; we say that column i = fpij jj = 1; : : : ; ng is
mixed if j; j0 exist such that pij 2 P< and pij0 2 P>.
From Lemma 4 we conclude that either at least (n�1)

p
2

2 rows are mixed or at least (m�1)
p
2

2 columns
are mixed. For both cases we will apply Lemma 3 for k = bnm2 c. We number the elements of P from
1 to mn such that the numbers 1; : : : ; k correspond to the elements of P<.
Assume that at least (m�1)

p
2

2 columns are mixed. In case all columns are mixed, separate one
of them and consider it to be non-mixed. For every mixed column �x one element of P< in that
column; collect the numbers of these elements in the set A. For i = 1; : : : ; k de�ne zi = 1 for i
corresponding to matrix elements in non-mixed columns and zi = 0 for i corresponding to matrix
elements in mixed columns. Choose ~x; ~x0 2 IBk satisfying ~x 6= ~x0 and xi = x0i = zi for all i 62 A.
Then there exists i 2 A such that xi 6= x0i. Now let ~y = (yk+1; : : : ; ymn) be the vector de�ned by
yj = 0 if j 2 P> corresponds to a matrix element in the same column as i, and yj = 1 otherwise.
Interpret the concatenation of ~x and ~y as an assignment to f0; 1g on the matrix entries. Non-mixed
columns contain only the value 1, and every mixed column contains at least one value 1, except for
one column which consists purely of zeros if and only if xi = 0. Since we forced at least one column
to be considered as non-mixed and containing only the value 1, every row contains at least one value
1. Hence fCRm;n

(~x; ~y) = fCm;n
(~x; ~y) = xi, and similarly fCRm;n

(~x0; ~y) = fCm;n
(~x0; ~y) = x0i. Since

xi 6= x0i we obtain fCm;n
(~x; ~y) 6= fCm;n

(~x0; ~y) and fCRm;n
(~x; ~y) 6= fCRm;n

(~x0; ~y). Now by Lemma 3 we

conclude that #B(Cm;n; <) � 2#A � 2
(m�1)

p
2

2 and #B(CRm;n; <) � 2#A � 2
(m�1)

p
2

2 � 2
(n�1)

p
2

2 .

For the remaining case assume that at least (n�1)
p
2

2 rows are mixed. The required bound for

#B(CRm;n; <) follows exactly as above by symmetry. It remains to prove the bound for #B(Rm;n; <).
For every mixed row �x one element of P< in that row; collect all these elements in the set A. De�ne
zi = 0 for all i = 1; : : : ; k. Choose ~x; ~x0 2 IBk satisfying ~x 6= ~x0 and xi = x0i = zi = 0 for all i 62 A.
Then there exists i 2 A such that xi 6= x0i. Now de�ne ~y = (yk+1; : : : ; ymn) by choosing yj = 0
for all but one j, and yj = 1 for one single j for which i and j correspond to matrix elements in
the same row. This is possible because i corresponds to an entry in a mixed row. Since in every
other row at most one value is set to 1 all corresponding clauses in Rm;n are true. The only clause
in Rm;n that is possibly false is the one corresponding to i and j. We obtain fRm;n

(~x; ~y) = :xi and
fRm;n

(~x0; ~y) = :x0i. Since xi 6= x0i we have fRm;n
(~x; ~y) 6= fRm;n

(~x0; ~y). Now by Lemma 3 we conclude

that #B(Rm;n; <) � 2#A � 2
(n�1)

p
2

2 . 2

Note that we proved that either Cm;n or Rm;n must have an OBDD of exponential size. However,
for each of these formulas seperately a properly chosen order may lead to small OBDDs. Indeed, if

pij < pi0j0 () (i < i0) _ (i = i0 ^ j < j0)

then #B(Cm;n; <) = mn and if

pij < pi0j0 () (j < j0) _ (j = j0 ^ i < i0)

then #B(Rm;n; <) = mn and #B(Rm;n; <) = 2(m� 1)n, all being linear in the number of variables.

4. Biconditional formulas

An interesting class of formulas are biconditional formulas consisting of proposition letters, bicon-
ditionals ($) and negations (:). Biconditionals have very nice properties: they are associative,

6

� $ ($ �) � (� $) $ �, commutative, � $ � $ �, idempotent, � $ � � t and satisfy
�$: � :(�$).
For a string S = p1; p2; p3; : : : ; pn of proposition letters, where letters are allowed to occur more

than once, we write

[S] = p1 $ (p2 $ (p3 � � � (pn�1 $ pn)) � � �):
It is not di�cult to see that [S] is a tautology if and only if all letters occur an even number of times
in S.
A formula of the shape [S] or :[S] for a string S in which every symbol occurs at most once, is called

a biconditional normal form. Using the above properties it is easy to show that for every biconditional
formula there exists a logically equivalent biconditional normal form.
The BDD technique turns out to be very e�ective for biconditional formulas. We show that for any

biconditional formula its OBDD proof has a polynomial complexity. For any biconditional formula
�, we write j�j for the size of �, �(�) for the number of variables occurring in � and �odd(�) for the
number of variables that occur an odd number of times in �.
It is useful to speak about the OBDD of n formulas, �1; : : : ; �n. This OBDD is a single DAG with

up to n root nodes. The notion reduced carries over to these OBDDs. In particular, if �i and �j are
equivalent, then the ith and jth root node are the same. Again the size of a DAG is de�ned to be the
number of its internal nodes.
We have the following lemma, showing that each reduced OBDD for a biconditional formula is

small.

Lemma 6 Let � be a biconditional formula. Any reduced OBDD for � and :� has size 2�odd(�).

Proof: First �x an arbitrary ordering < on the proposition letters. Note that there is a biconditional
normal form that is equivalent to �. As by Lemma 1 the reduced OBDD of � and are the same,
we can as well construct the OBDD of . Moreover, �odd(�) = �odd().
We prove the lemma by induction on �odd().

� �odd() = 0. As is a biconditional normal form, it does not contain any proposition letter,
and hence is either equivalent to true or false. So, the reduced OBDD of � and :� does not
contain internal nodes at all, and has size 0.

� �()odd = n + 1. Consider the �rst letter in the ordering < that occurs in and let it be p.
The OBDDs for and : look like:

� pB

�
�
�	

@
@
@R�

J
J
J

B [1=p]

�
J
J
J

B [0=p]

� pB:
�

�
�	

@
@
@R�

J
J
J

B: [1=p]

�
J
J
J

B: [0=p]

Here [v=p] is the formula where v has been substituted for p. Clearly, as p occurs an odd time in
 , [0=p] � : [1=p] and [1=p] � : [0=p]. So, the reduced OBDD of [0=p], : [1=p], [1=p] and
: [0=p] is the same as the OBDD of [0=p] and : [0=p]. Using the induction hypothesis, the size of
this OBDD must be 2n. The reduced OBDD for and : adds two new nodes. So, the size of the
reduced OBDD of and : is 2n+ 2. This equals 2�odd() + 2, �nishing the proof. 2

7

Theorem 7 Let < be an ordering on the proposition letters.

� The complexity of the corresponding OBDD proof for any biconditional formula � is O(j�j3).
� The complexity of the corresponding OBDD proof for [S] or :[S] for any string S of proposition
letters is O(j[S]j2).

Proof: The OBDD proof for � consists of O(j�j) applications of apply applied on reduced OBDDs of
sub-formulas of �. By Lemma 6 each of these reduced OBDDs has size O(j�j). Since the complexity of
apply($; B;B0) is O(#B�#B0) and the complexity of apply(:; B) is O(#B) for every apply operation
the complexity is O(j�j2), yielding O(j�j3) for the full OBDD proof for �.
For the OBDD proof for [S] or :[S] only applications of apply($; B;B0) occur with #B = 1, giving

the complexity O(#B0), yielding O(j[S]j2) for the full OBDD proof. 2

5. Resolution

Resolution is a very common technique to prove formulas. Contrary to the BDD technique, it is
applied to formulas in conjunctive normal form (CNF), i.e. formulas of the form

^
i2I

_
j2Ji

lij

where I and Ji are �nite index sets and lij is a literal, i.e. a formula of the form p or :p for a proposition
letter p. Each sub-formula

W
j2Ji lij is called a clause. As ^ and _ are associative, commutative and

idempotent it is allowed and convenient to view clauses as sets of literals and CNFs as sets of clauses.
The resolution rule can be formulated by:

fp; l1; : : : ; lng f:p; l01; : : : ; l0n0g
fl1; : : : ; ln; l01; : : : ; l0n0g

where p is a proposition letter and li, l
0
j are literals. A resolution proof of a set of clauses F is a

sequence of clauses where the last clause is empty and each clause in the sequence is either taken from
F , or matches the conclusion of the resolution rule, where both premises occur earlier in the sequence.
Such a resolution sequence ending in the empty clause is called a resolution refutation, and proves
that the conjunction of the set of clauses is a contradiction.
In case one of the clauses involved is a single literal l, by this resolution rule all occurrences of the

negation of l in all other clauses may be removed. Moreover, all other clauses containing l then may
be ignored. Eliminating all occurrences of l and its negation in this way is called unit resolution. All
practical resolution proof search systems start with doing unit resolution as long as possible.
In order to apply resolution on arbitrary formulas, these formulas must �rst be translated to CNF.

This can be done in linear time maintaining satis�ability using the Tseitin transformation [13]. A
disadvantage of this transformation is the introduction of new variables, but it is well-known that
a transformation to CNF without the introduction of new variables is necessarily exponential. For
instance, it is not di�cult to prove that for

(� � � ((p1 $ p2)$ p3) � � � � � � $ pn)

every clause in a CNF contains either pi or :pi for every i. Since one such clause of n literals causes
only one zero in the truth table of the formula, the full CNF contains 2n�1 of these clauses to obtain
all 2n�1 zeros in its truth table. Hence without the introduction of new variables every CNF of this
formula is of exponential size. More general for every biconditional formula � without the introduction
of new variables every CNF consists of at least 2�odd(�)�1 clauses each consisting of at least �odd(�)
literals.
The Tseitin transformation works as follows. Given a formula �. Every sub-formula of � not

being a proposition letter is assigned a new letter p . Now the Tseitin transformation of � consists of

8

� the single literal p�;

� the conjunctive normal form of p $ (p 1 �p 2) for every subterm of � of the shape = 1� 2
for a binary operator �;

� the conjunctive normal form of p $:p 1 for every subterm of � of the shape = : 1.
Here p i is identi�ed with i in case i is a proposition letter, for i = 1; 2. It is easy to see that this
set of clauses is satis�able if and only if � is satis�able. Moreover, every clause consists of at most
three literals, and the number of clauses is linear in the size of the original formula �.
It is not di�cult to see that after applying the Tseitin transformation to a CNF, by a number of

resolution steps linear in the size of the CNF, the original CNF can be re-obtained. By a resolution
proof for an arbitrary formula we mean a resolution proof after the Tseitin transformation has been
applied.
We now give a construction of strings Sn in which all letters occur exactly twice by which :[Sn] is

a contradiction, and for which we prove that every resolution proof of :[Sn] is very long. Although
the construction is somewhat involved, we think that simpler constructions do not su�ce. In [16] for
instance it was proved that :[p1; p2; : : : ; pn; p1; p2; : : : ; pn] admits a resolution proof that is quadratic
in n.
For a string S and a label i we write lab(S; i) for the string obtained from S by replacing every

symbol p by a fresh symbol pi. For a string S of length n�2n we write ins(n; S) for the string obtained
from S by inserting the symbol i after the (i � n)-th symbol for i = 1; 2; : : : ; n. We de�ne

S1 = 1; 1; and

Sn+1 = ins(n; lab(Sn; 0)); ins(n; lab(Sn; 1));

for n > 0. For instance, we have

S1 = 1|{z}; 1|{z};

S2 = 10; 1|{z}; 10; 2|{z}; 11; 1|{z}; 11; 2|{z};

S3 = 100; 10; 1| {z }; 100; 20; 2| {z }; 110; 10; 3| {z }; 110; 20; 4| {z }; 101; 11; 1| {z }; 101; 21; 2| {z }; 111; 11; 3| {z }; 111; 21; 4| {z } :

Clearly Sn is a string of length n�2n over n�2n�1 symbols each occurring exactly twice. The string Sn
can be considered to consist of 2n consecutive groups of n symbols, called n-groups. In the examples
S1, S2 and S3 above the n-groups are under-braced. Write gn;k to be the k-th n-group in Sn, for
n > 1 and 1 � k � 2n.

Lemma 8 Let A � f1; 2; : : : ; 2ng for any n > 0. Then there are at least min(#A; 2n � #A) pairs
(k; k0) such that k; k0 2 f1; 2; : : : ; 2ng, k 2 A, k0 62 A and gn;k and gn;k0 have a common symbol.

Proof: We apply induction on n; for n = 1 the lemma clearly holds. Let m0 = #fk 2 Ajk � 2n�1g
and m1 = #fk 2 Ajk > 2n�1g. Say that (k; k0) is a matching pair if k 2 A, k0 62 A and gn;k and gn;k0

have a common symbol. If k; k0 � 2n�1 then by construction gn;k and gn;k0 have a common symbol
if gn�1;k and gn�1;k0 have a common symbol. If k; k0 > 2n�1 then by construction gn;k and gn;k0

have a common symbol if gn�1;k�2n�1 and gn�1;k0�2n�1 have a common symbol. Hence by induction
hypothesis there are at least min(m0; 2

n�1�m0) matching pairs (k; k
0) with k; k0 � 2n�1 and at least

min(m1; 2
n�1�m1) matching pairs (k; k

0) with k; k0 > 2n�1. Since by construction gn;k and gn;k+2n�1

9

have a common symbol for every k = 1; 2; : : : ; 2n�1, there are at least jm0�m1j matching pairs (k; k0)
with jk � k0j = 2n�1. Hence the total number of matching pairs is at least

jm0 �m1j+min(m0; 2
n�1 �m0) + min(m1; 2

n�1 �m1):

A simple case analysis shows that this is at least min(m0 +m1; 2
n�m0 �m1) = min(#A; 2n �#A).

2

Essentially this lemma states the well-known fact that for any set A of vertices of an n-dimensional
cube there are at least min(#A; 2n �#A) edges for which one end is in A and the other is not. It
is applied in the next lemma stating a lower bound on connections between separate elements of Sn
rather than connections between n-groups.

Lemma 9 Let n > 0 and let B � f1; 2; : : : ; n � 2ng. Let X � f1; 2; : : : ; n � 2ng2 consist of the pairs
(i; j) for which i 2 B and j 62 B and for which either ji� jj = 1 or the i-th element of Sn is equal to
the j-th element of Sn. Then

#X � min(#B; n � 2n �#B)

2n
:

Proof: Assume that #B � n � 2n�1, otherwise replace B by its complement. Let A be the set
of numbers k 2 f1; : : : ; 2ng for which all elements of the corresponding n-group gn;k correspond to
elements of B, i.e., f(k�1)�n+1; : : : ; k �ng � B. Let m1 = #A. Let m2 be the number of n-groups
for which none of the elements correspond to elements of B, i.e., m2 = #fk 2 f1; : : : ; 2ngjf(k � 1) �
n + 1; : : : ; k � ng \ B = ;g. Let m3 be the number of remaining n-groups, i.e., n-groups containing
elements corresponding to both elements of B and outside B. Clearly n �m1 � #B � n � (m1 +m3).
Each of the m3 remaining groups gives rise to a pair (i; j) 2 X for which ji� jj = 1. Hence #X � m3.
Now assume that m1 > m3. Since n�m1 � #B � n�2n�1 we have m1 = #A � 2n�1. By Lemma 8

we obtain at least m1 pairs (k; k
0) such that k 2 A, k0 62 A and gn;k and gn;k0 have a common symbol.

For at least m1�m3 of the corresponding n-groups gn;k0 none of the elements correspond to elements
of B. Since gn;k and gn;k0 have a common symbol for every corresponding pair (k; k0) this gives rise
to at least m1 �m3 pairs (i; j) 2 X for which the i-th element of Sn is equal to the j-th element of
Sn. Hence in case m1 > m3 we conclude #X � m3 + (m1 �m3) = m1.
We conclude

#X � max(m3;m1) � m1 +m3

2
� #B

2n
:

2

Theorem 10 Every resolution proof of :[Sn] contains 2
(2n=n) resolution steps.

Proof: Let Sn = p1; p2; : : : ; pn2n ; note that for every i there exists exactly one j with pi = pj and
i 6= j. Introduce distinct help symbols q0; q1; q2; : : : ; qn2n�1. Now the Tseitin transformation of :[Sn]
consists of

� the single literal q0;

� the conjunctive normal form of q0 $:q1;
� the conjunctive normal form of qi $ (pi $ qi+1) for every i = 1; 2; : : : ; n � 2n � 2;

� the conjunctive normal form of qi $ (pi $ pi+1) for i = n � 2n � 1.

This set of clauses is exactly the same as �(G; f), where � is Tseitin's graph construction [13] also
described in [15, 16, 1] for the graph G = (V;E) where V = f�1; 0; 1; 2; : : : ; n�2n�1g and E consists
of the edges

10

� (i; i+ 1) for i = �1; 0; 1; 2; : : : ; n � 2n � 2,

� (i; j) for n2n > j > i > 0 and pi = pj ,

� (i; n � 2n � 1) for i with pi = pn2n ,

and the charge function f : V ! f0; 1g is de�ned by f(�1) = 0, f(0) = 1 and f(i) = 0 for i > 0. The
observation that these sets of clauses coincide essentially goes back to [11].
The expansion e(G) of an undirected graph G = (V;E) is de�ned to be the smallest number

#f(v; v0) 2 Ej(v 2 B ^ v0 62 B) _ (v 62 B ^ v0 2 B)g
for some B � V satisfying 1

3#V � #B � 2
3#V . For our graph G = (V;E) the edges (v; v0) satisfying

(v 2 B^v0 62 B)_(v 62 B^v0 2 B) correspond to pairs (i; j) as occurring in Lemma 9 up to a constant
part of V . Hence by Lemma 9 we obtain e(G) =
(#V=2n) =
(2n). In [1] the following two results
were proved:

� Every resolution proof of �(G; f) involves clauses with at least e(G) literals.

� If a contradictory CNF on m variables of bounded clause size admits a resolution proof of length
s, then it also admits a resolution proof only involving clauses of size O(

p
m log s).

Hence,
p
n � 2n � log s � c � 2n for some c > 0, from which we conclude s = 2
(2

n=n).
2

By using expander graphs it would be possible to prove the existence of contradictory biconditional
formulas of size �(n) such that every resolution proof contains 2
(i) resolution steps. However,
expressed in the size of the formula this improvement is only logarithmic compared to Theorem 10,
while the construction of the formula is much more complicated.

6. The main result

We now have collected su�cient observations to come to our main result saying that the binary
decision diagram technique is polynomially incomparable with any reasonable proof search technique
based on resolution.

Theorem 11 � There is a sequence of contradictory formulas �i of size �(i log2 i) (i � 0) for
which every OBDD proof has time and space complexity O(i2 log4 i), and for which each resolu-
tion proof requires 2
(i) resolution steps.

� There is a sequence of contradictory formulas i in CNF of size �(i2) (i � 0) that is proven
in O(i2) steps using only unit resolution, and for which every OBDD proof has time and space
complexity
(1:63i).

Proof:

� Take the formulas �i to be :[Sn] from Theorem 10, where n is the smallest number satisfying
i � 2n

n . Then the size of �i is �(n � 2n) = �(i log2 i), while by Theorem 10 every resolution

proof requires 2
(2
n=n) = 2
(i) resolution steps. By Theorem 7 every OBDD proof has time and

space complexity O((n � 2n)2) = O(i2 log4 i)1.

� Let i be p ^ (:p ^ CRi;i). These formulas have size �(i
2). An OBDD proof of i contains an

OBDD proof of CRi;i as one of its recursive calls; this takes time and space complexity
(1:63i)
by Theorem 5. It is easy to check that after applying the Tseitin transformation on i only unit
resolution leads to a refutation in a number of steps linear in the size of i.

2

1By a careful analysis using the speci�c structure of the formula :[Sn] this can be improved to O(i2 log3 i).

11

7. Further research

In this paper we have shown that any technique based on a reasonable form of resolution is essentially
di�erent from the standard OBDD technique to prove formulas. However, many questions remain,
such as:

1. Is there a natural strengthening of the resolution rule that allows to simulate the construction of
OBDDs polynomially by resolution? A good candidate is extended resolution (see e.g. [4]) where
it is allowed to introduce new proposition letters de�ned in terms of existing ones. In [4, 8] it
has been shown that extended resolution has a much stronger proving power than resolution.

2. On the other hand, there are modi�cations of the OBDD-technique by which for every formula
� the contrived example p^ (:p^�) can be handled e�ciently, for instance the lazy strategy as
described in [17]. How do these modi�cations of the OBDD-technique relate to resolution?

3. We have shown that biconditional formulas have short OBDD proofs, and after the Tseitin
transformation they may require long resolution proofs. One can wonder whether contradictory
conjunctive normal forms exist having polynomial OBDD proofs and requiring exponentially long
resolution proofs. The Tseitin transformation of our biconditional formulas will not serve for
this goal: OBDD proofs of these transformed biconditional formulas appear to be of exponential
length.

12

References

1. Ben-Sasson, E., and Wigderson, A. Short proofs are narrow { resolution made simple. In
Proceedings of the 31st Annual ACM Symposium on Theory of Computing (1999), pp. 517{526.

2. Bryant, R. E. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers C-35, 8 (1986), 677{691.

3. Bryant, R. E. On the complexity of VLSI implmentations and graph representations of boolean
functions with application to integer multiplication. IEEE Transactions on Computers 40, 2
(1991), 205{213.

4. Cook, S. The complexity of theorem proving procedures. Proceedings of the 3rd annual ACM
symposium on the Theory of Computing (1971), 151{158.

5. Davis, M., Logemann, G., and Loveland, D. A machine program for theorem proving.
Communications of the ACM 5 (1962), 394{397.

6. Goerdt, A. Davis-Putnam resolution versus unrestricted resolution. Annals of Mathematics and
Arti�cial Intelligence 6 (1992), 169{184.

7. Groote, J. F., van Vlijmen, S. F. M., and Koorn, J. W. C. The safety guaranteeing
system at station Hoorn-Kersenboogerd. In COMPASS-95, proceedings 10th annual Conference
on Computer Assurance (1995), IEEE, pp. 57{68.

8. Haken, A. The intractability of resolution. Theoretical Computer Science 39 (1985), 297{308.

9. Marques Silva, J. P., and Sakallah, K. M. Grasp { a new search algorithm for satis�ability.
Tech. Rep. CSE-TR-292-96, University of Michigan, Department of Electrical Engineering and
Computer Science, 1996.

10. Meinel, C., and Theobald, T. Algorithms and Data Structures in VLSI Design: OBDD |
Foundations and Applications. Springer, 1998.

11. Reckhow, R. On the lengths of proofs in the propositional calculus. PhD thesis, University of
Toronto, 1975.

12. St _almarck, G., and S�aflund, M. Modeling and verifying systems and software in proposi-
tional logic. In Safety of Computer Control Systems (SAFECOMP '90) (1990), B. Daniels, Ed.,
vol. 656, Pergamon Press, pp. 31{36.

13. Tseitin, G. On the complexity of derivation in propositional calculus. In Studies in Constructive
Mathematics and Mathematical Logic, part 2 (1968), pp. 115{125. Reprinted in J. Siekmann and
G. Wrightson (editors),Automation of reasoning vol. 2, pp. 466-483.,Springer{Verlag Berlin, 1983.

14. Uribe, T. E., and Stickel, M. E. Ordered binary decision diagrams and the Davis-Putnam
procedure. In First conference on Constraints in Computational Logic (1994), J.-P. Jouannaud,
Ed., vol. 845 of Lecture Notes in Computer Science, Springer, pp. 34{49.

15. Urquhart, A. Hard examples for resolution. Journal of the ACM 34, 1 (1987), 209{219.

16. Urquhart, A. The complexity of propositional proofs. The Bulletin of Symbolic Logic 1, 4
(1995), 425{467.

17. van de Pol, J. C., and Zantema, H. Binary decision diagrams by shared rewriting. Tech.
Rep. UU-CS-2000-06, Utrecht University, Department of Computer Science, 2000. Available via
http://www.cs.uu.nl/docs/research/publication/TechRep.html.

