
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Basic Theorems for Parallel Processes in Timed mu

J.F. Groote, J. van Wamel

Software Engineering (SEN)

SEN-R9808 June 30, 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301667113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9808
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Basic Theorems for Parallel Processes in Timed �CRL

Jan Friso Groote
1;2

& Jos van Wamel
1

1. CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

2. Eindhoven University of Technology

Department of Mathematics and Computing Science

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail: fjfg,josg@cwi.nl

ABSTRACT

Timed �CRL is a process algebra-based formalism for the speci�cation and veri�cation of parallel,

communicating systems with explicit time [5]. In this paper various basic results are derived, such

as theorems for basic forms, the expansion of terms with operators for parallelism, elimination

of parallelism, and commutativity and associativity of the merge and communication merge (the

operators k and j).
The interpretation of the operators, in particular the left merge, is far from trivial, and more in

general, it has to be stated that working with a time-based formalism such as timed �CRL can be

fairly complicated. Therefore we pay a lot of attention to all kinds of proof details that could enhance

the understanding { and thus facilitate the use { of the formalism.

Many basic lemmas are included, and examples are used to illustrate the intuition behind the

various results.

1991 Mathematics Subject Classi�cation: 68Q22: Parallel and distributed algorithms; 68Q45: Formal

languages; 68Q60: Speci�cation and veri�cation of programmes

1991 Computing Reviews Classi�cation System: D.2.1, D.2.4, D.3.3, F.3.1

Keywords & Phrases: Parallelism, process algebra, timed �CRL

Note: Project SEN2.1: \Process speci�cation and analysis"

1 Introduction

The relevance of timing aspects in many modern, parallel communicating systems does not need much
explanation. For instance, the correct behaviour of systems based on digitalised audio and video, such
as multimedia systems, strongly depends on time parameters, but the same also holds for more classical
time-critical systems, such as railway control systems, automatic manufacturing systems, etc.
For this reason, about ten years ago the study of explicit time in formal speci�cation languages

started to become an increasingly important topic of research. Also in the �eld of process algebra,
where we are primarily interested in ACP (Algebra of Communicating Processes, see for example [3])
and its derivatives, such as abstract �CRL (micro Common Representation Language, see for example
[7]), serious e�orts were made.
In [1] the �rst axiomatisations of real-time process algebra appeared and in [9] and [4] di�erent

versions were proposed. [9] is a state of the art work for real-time process algebra, with many se-
mantic results. In the realm of discrete-time process algebra new developments started via [2]. More
recently [10] appeared. It contains various semantic results for discrete-time process algebras without
abstraction. It may also serve as a good survey of the �eld.
A common conclusion that could be drawn from all this research is that it is possible to e�ectively

1

1 INTRODUCTION 2

axiomatise process algebras with time, but that there are usually several hard matters to be dealt
with. We mention the most important issues:

1. A framework is needed for reasoning with time parameters, including a calculus with condition-
als, (in)equalities and variable binding constructs;

2. Axiomatisation of the left merge operator k turned out to be a complicated matter. All ax-
iomatisations use additional machinery in the form of predicates and operators in order to de�ne
k properly;

3. Veri�cations turn out to get complex, even for simple systems. This may partly have been due
to a lack of systematic study and experience, but also to the relative complexity of the axiom
systems;

4. De�nition and use of abstraction and bisimulation equivalences appear to be complicated, and
therefore unpractical when applied in a setting with time;

Timed �CRL [5], or �CRLt, is a new formalism for the algebraic speci�cation and veri�cation of
processes with explicit time. Although not all of the above problems have been tackled to satisfaction
yet, we have reasons to believe that timed �CRL has certain de�nite advantages over the existing
formalisms, and that various important results from our predecessors will carry over to timed �CRL.
In the �rst place, abstract �CRL provides a variable binding construct, conditionals, and all facilities

for reasoning with processes parameterised with data terms [6]. Therefore, not much additional theory
was needed and time could be incorporated in �CRL as an abstract data type.
In the second place, some concession was made in the axiomatisation of the left merge operator. In

particular, two actions are allowed to happen at the same time and yet after each other: a,2 b,2 (a,2
stands for action a at time 2) is a terminating process in �CRLt, whereas in other formalisms it leads
to an a at time 2 followed by a deadlock at time 2.
In the third place, many veri�cations have been made in abstract �CRL, so that much experience

and techniques are already available. Much of this may easily be generalised to the timed variant. We
are con�dent this will be the case, because �CRLt was designed in such a way that when the time
parameters are removed from a speci�cation, a correct abstract �CRL speci�cation results. Actually,
the main results in this paper also point in this direction.
For speci�cation and veri�cation practice, many basic results are needed in order to get smoothly

through the usually complex calculations. This paper contains various such results. Besides a large
number of elementary lemmas, we found that all process-closed �CRLt processes (i.e. terms without
process variables) can be proven equal to terms in some basic form (Theorem 2.6), and we derived
an expansion theorem (Theorem 3.11) for calculating with terms that contain parallel operators. We
moreover have a theorem for the elimination of parallel operators from �CRLt-terms (Theorem 4.2),
and associativity and commutativity of k and j (Section 4).
A consequence of the design of the k -operator is the phenomenon of k -leaking : A process p k �,0

is not simply equal to �,0 but it can perform that part of p that is enabled at time 0. It turns out
that in all proofs involving k , and thus k, this k -leaking has to be studied as a separate case.
At the moment, a di�erent paper with three case studies in �CRLt is in progress [8]. It appears that

reasoning with our basic forms is quite natural, and moreover, that not much additional calculations
are needed once the Expansion Theorem can be applied.
Also the empty process � with the property � x = x � = x is studied. Notations using � could possibly

simplify our basic forms, and therefore the various proofs, considerably. However, addition of � to the
language will probably not be a trivial exercise.

Acknowledgements. Bas Luttik andMichel Reniers are thanked for their comments and suggestions.

CONTENTS 3

Contents

1 Introduction 1

2 Timed �CRL 3

2.1 Axioms for pCRL with time . 3
2.2 Addition of time and operators for parallelism . 5
2.3 Basic forms . 6

3 A theorem for expanding the merge operator 9

3.1 Preparatory steps . 9
3.2 Expansion of the left merge . 10
3.3 Expansion of the communication merge . 14
3.4 Expansion Theorem . 16

4 Properties of the parallel operators 17

4.1 Elimination . 17
4.2 Associativity and commutativity . 18

A Elementary lemmas 21

B A proof of the associativity of the merge operator 24

2 Timed �CRL

The axiom system pCRLt for pico CRL with time is presented. It serves as the basic framework for
our studies. The following step is to incorporate operators for parallelism and introduce �CRLt. We
work in a setting without the silent step � , and without abstraction or general operators for renaming.
We also de�ne a notion of basic forms and prove that all terms over the signature �(pCRLt) without
process variables are provably equal to basic forms.

2.1 Axioms for pCRL with time

Atomic actions are the building blocks of processes. Therefore, axiom systems in process algebra have
a set of atomic actions A as a parameter. The actions are parameterised with data, and w.l.o.g. we
may assume that all actions have exactly one such parameter. For process variables we use x; y; z; : : :,
and for process terms we use p; q; r; : : :. Choice or alternative composition is modelled by +, and
sequential composition by �, which is often omitted from expressions. We write � only in the tables of
axioms. Deadlock is modelled by �. We use a; b; c; : : : to denote elements from either A or A[f�g (A�).
Table 1 lists the `core' axioms of abstract pCRL, with A6 replaced by AT6. Axioms A1{A5 and A7

are well known from process algebra, axiom AT6 expresses that a deadlock at time 0 may always be
eliminated from an alternative composition. The

P
-operator will be explained below.

Data types in �CRL are algebraically speci�ed in the standard way using sorts, functions and
axioms (see e.g. [11]). For data sorts we use D;E; : : :, and for data variables of the respective sorts
we use d; e; : : :. Two special sorts are assumed in �CRLt: Bool and Time.
SortBool contains the constants t (\true") and f (\false"). Typical boolean variables are b; c; �; �; : : :,

and the use of booleans in process expressions may become clear from the axioms C1 and C2 for the
conditional construct / . . For sort Bool we assume connectives :;^;_;! with straightforward
interpretations, and for the construction of proofs we (implicitly) use the proof theory for �CRL [6],
which also provides a rule for structural induction on data terms. For booleans, this implies that we
may use the principle of case distinction in proofs, i.e., if a formula � holds for both b = t and b = f

2 TIMED �CRL 4

A1 x+ y = y + x SUM1
P

d:D x = x

A2 x+ (y + z) = (x+ y) + z SUM3
P

X =
P

X +Xd

A3 x+ x = x SUM4
P

d:D(Xd+ Y d) =
P

X +
P

Y

A4 (x+ y)�z = x�z + y�z SUM5 (
P

X)�x =
P

d:D(Xd�x)
A5 (x�y)�z = x�(y�z) SUM11 (8d2D Xd = Y d)!

P
X =

P
Y

AT6 x+ �,0 = x

A7 ��x = � C1 x / t . y = x

C2 x / f . y = y

Table 1: Core axioms of pCRLt

then � holds in general. As a consequence, we have to require that for the data speci�cations only
minimal models are considered.
Sort Time contains a constant 0 (\zero"), which serves as a minimal element for the total ordering

�. Axioms for �, eq (equality), min (minimum), and if (if-then-else) are listed in Table 2. A function
< is used to abbreviate terms t � u ^ :eq(t; u) to t < u, and u � t � v abbreviates u � t ^ t � u.
Typical elements of sort Time are t; u; v; : : :, and unless stated explicitly, such as in axioms withP

t:Time, Time is treated as a normal �CRL data type.
An expression of the form p[d0=d] denotes process p with data term d0 substituted for variable

d. We will always try to be clear when we want to distinguish between data variables and data
terms. Process-closed terms are terms without process variables, but possibly with bound and free
data variables.
The at operator adds time parameters to processes: p,t should be interpreted as p at time t. Table

2 contains the axioms for the at operator. In pCRLt, we have by axiom ATA1 that � =
P

t:Time �,t, so
� models the process that will never do a step, terminate or block. Processes �,t do model deadlocks
at time t. Therefore we call them time deadlocks .
We see that if a deadlock �,t occurs in a process term with � as an alternative, it vanishes:

� + �,u
ATA1
=
P

t:Time �,t+ �,u
SUM3
=
P

t:Time �,t
ATA1
= �.

In general, for n > 0 �nite sums p1 + : : : + pn are abbreviated by
P

i2I pi, where I = f1; : : : ; ng.
In �CRL, a summation construct of the form

P
d:D p is a binder of variable d of data sort D in p. D

may be in�nite. We use the convention that
P

i2; p � �,0.
In axioms SUMx distinction is made between sum operators

P
and sum constructs

P
d:D p. The

X in
P

X may be instantiated with functions from some data sort to the sort of processes, such as
�d:D:p, where variable d in p may not become bound by

P
. We also have expressions

P
d:D x, where

some term p that is substituted for x may not contain free variable d. Data terms are considered
modulo �-conversion, e.g., the terms

P
d:D p(d) and

P
e:E p(e) are equal.

FV (p) and FV (b) are used to denote the sets of free variables in process p and boolean b, respectively.
We do not formalise these concepts further.
In our calculations we work modulo associativity and commutativity of +, and we do not mention

the use of simple properties of : _ ^;!;�;min; eq and if . So axioms Timex are used implicitly, and
so are C1 and C2.
Throughout this paper the following proof principle will be of great use. The notation x � y stands

for x+ y = y (y � x stands for the same).

Lemma 2.1 (Summand Inclusion). If x � y and y � x then x = y.

Proof. By de�nition of � x+ y = y and y + x = x. So x = y + x
A1
= x+ y = y. 2

2 TIMED �CRL 5

Time1 (t1 � t2 ^ t2 � t3 = t)! t1 � t3 = t

Time2 0 � t = t

Time3 t1 � t2 _ t2 � t1 = t

Time4 (t1 � t2 ^ t2 � t1 = t)! t1 = t2

Time5 eq(t1; t2) = t1 � t2 ^ t2 � t1
Time6 min(t1; t2) = if (t1 � t2; t1; t2)
Time7 if (t; t1; t2) = t1
Time8 if (f; t1; t2) = t2

ATA1 x =
P

t:Time x,t

ATA2 �,t / t � u . �,0+ a,u = a,u

ATA3 a,t�x = a,t�(
P

u:Time x,u / t � u . �,0+ �,t)

ATB1 �,t,u = �,min(t; u)
ATB2 a,t,u = a,t / eq(t; u) . �,min(t; u)
ATB3 (x+ y),t = x,t+ y,t

ATB4 (x�y),t = x,t�y

ATB5 (
P

d:D Xd),t =
P

d:DXd,t

Table 2: Time related axioms of pCRLt, where a 2 A�

Finally, axiom ATA3 implies that successive actions have non-decreasing time parameters. A re-
markable observation is that, in this paper, we never have to apply it.

2.2 Addition of time and operators for parallelism

The axioms of �CRLt are the axioms of pCRLt, combined with the axioms in the tables 3 and 4. The
signature �(�CRLt) is as �(pCRLt), extended with the operators for parallelism and the� operator.
For communication we have a binary function , which is only de�ned on action labels . In order for a

communication to occur between actions c; c0 2 A, (c; c0) should be de�ned, and the data parameters
of the actions should match according to axiom CF. By de�nition, the function is commutative and
associative.
Concurrency is basically described by three operators: the merge k, the left merge k and the

communication merge j. The process p k q symbolises the parallel execution of p and q. It `starts'
with an action of either p or q, or with a communication, or synchronisation, between p and q. p k q
is as p k q, but the �rst action that is performed comes from p.
For the axiomatisation of the left merge k the auxiliary before operator is de�ned; p�q should be

interpreted as the process that behaves like p, provided that p can do a step before or at the moment
t0 after which q gets de�nitively disabled. Otherwise p�q becomes a time deadlock at time t0. A
small example may facilitate the understanding of the� operator. We will use various identities from
Appendix A, which is completely devoted to auxiliary lemmas.

Example 2.2. Let a; b; c 2 A and t1; t2; t3 be closed terms of sort Time. We analyse the following
term:

a,t1�(b,t2 + c,t3)
�2
= a,t1�b,t2 + a,t1�c,t3

�5;�1
=

P
u:Time a,t1,u / u � t2 . �,0+

P
u:Time a,t1,u / u � t3 . �,0

2 TIMED �CRL 6

SUM4;A:1:7
=

P
u:Time a,t1,u / u � t2 _ u � t3 . �,0

A:2:2
=

P
u:Time a,u,t1 / u � max(t2; t3) . �,0

A:5:4
= a,t1 / t1 � max (t2; t3) . �,0+ �,t1,max(t2; t3):

If t1 � max (t2; t3) then using axiom ATB1 we �nd a,t1+�,t1
ATA2
= a,t1, otherwise the above process

equals �,max (t2; t3). 2

Process p j q is as p k q, but the �rst action is a communication between p and q. Encapsulation op-
erators @H block atomic actions in H by renaming them to �. They are used to enforce communication
between processes.
The various operators of �(�CRLt) are listed in order of decreasing binding strength:

, � � f/ .; k; k ; jg
P

d:D +.

Brackets are omitted from expressions according to this convention.

ATB6 (x k y),t = x,t k y

ATB7 (x j y),t = x,t j y

ATB8 (x j y),t = x j y,t

ATB9 @H(x,t) = @H(x),t

�1 x�a = x

�2 x�(y + z) = x�y + x�z

�3 x�y�z = x�y

�4 x�
P

X =
P

d:D x�Xd

�5 x�y,t =
P

u:Time(x�y),u / u�t . �,0

Table 3: Time related axioms of �CRLt, where a 2 A�

2.3 Basic forms

We work here in a setting without recursion, in order to establish some important, basic results.

De�nition 2.3. A basic form over �(pCRLt) is a process-closed term of the form

r =
P

i2I

P
di
1
:Di

1
: : :
P

di
mi

:Di

mi

P
u:Time ai,u ri / �i . �,0+P

j2J

P
e
j

1
:E

j

1

: : :
P

e
j

nj
:E

j

nj

P
v:Time bj ,v / �j . �,0

where the ai 2 A and bj 2 A� , and the ri are also basic forms. 2

In the sequel, we will often write
P

d1;:::;dm
x for

P
d1:D1

: : :
P

dm:Dm

x, and dm for d1; : : : ; dm. By

convention
P

d0
x = x. We take care that no confusion can arise w.r.t. the sorts of the dk. For example,

if we treat
P

i2I and
P

j2J as formal summations we may abbreviate r in the above de�nition to

P
i;dimi

;u
ai,u ri / �i . �,0+

P
j;ejnj ;v

bj ,v / �j . �,0.

The above form may already be compact, but for the studies to come we need a more general format
for representing basic forms.

2 TIMED �CRL 7

SUM6 (
P

X) k x =
P

d:D(Xd k x)
SUM7 (

P
X) jx =

P
d:D(Xd jx) CF c(d) j c0(e) =

8>><
>>:

(c; c0)(d) / eq(d; e) . �
if sorts of d and e are equal;
and (c; c0) de�ned

� otherwise
SUM70 x j (

P
X) =

P
d:D(x jXd)

SUM8 @H(
P

X) =
P

d:D @H(Xd)

CM1 x k y = x k y + y k x+ x j y CD1 � j a = �

CM2 a k x = (a�x)�x CD2 a j � = �

CM3 a�x k y = (a�y)�(x k y)
CM4 (x+ y) k z = x k z + y k z DD @H(�) = �

CM5 a�x j b = (a j b)�x
CM6 a j b�x = (a j b)�x D1 @H(c(d)) = c(d) if c =2 H

CM7 a�x j b�y = (a j b)�(x k y) D2 @H(c(d)) = � if c 2 H

CM8 (x+ y) j z = x j z + y j z D3 @H(x+ y) = @H(x) + @H(y)
CM9 x j (y + z) = x j y + x j z D4 @H(x�y) = @H(x)�@H(y)

Table 4: Axioms for parallelism of �CRLt, where a; b 2 A� and c; c0 2 A

Lemma 2.4 (Representation). Basic form r given in De�nition 2.3 can be represented by

P
i;dm;uai,u ri / �i . �,0+

P
j;en;v

bj ,v / �j . �,0,

where the sequence d1; : : : ; dm contains all data variables from
S
i2Ifd

i
1; : : : ; d

i
mi
g, and e1; : : : ; en

contains all data variables from
S
j2Jfe

j
1; : : : ; e

j
nj
g.

Proof. Consider summand
P

dimi;u

ai,u ri / �i . �,0 of r, for some i 2 I .

We may assume that no variable dk or el, where k = 1; : : : ;m and l = 1; : : : ; n, occurs free in r, so
by axiom SUM1 all summations

P
dk
, with dk not already in the sequence di1; : : : ; d

i
mi
, may be added

in front of this expression. By Lemma A.4 the order of the variables may be changed to d1; : : : ; dm.
As this holds for all summands of r this lemma is proved. 2

Lemma 2.5. If p and q are process-closed terms over �(pCRLt) and q is a basic form then there is

another basic form r such that pCRLt ` p q = r.

Proof. By induction on the structure of p.

1. p � a, where a 2 A:

a q = a q / t . �,0
ATA1
=

P
u:Time(a q / t . �,0),u

A:1:2;A:2:1
=

P
u:Time(a q),u / t . �,0

ATB4
=

P
u:Time a,u q / t . �,0;

2. p � �: � q
A7
= �. Now proceed as in case 1;

3. p � p0 + p00: (p0 + p00) q
A4
= p0 q + p00 q. By induction, both p0 q and p00 q are provably equal to

basic forms. The sum of these basic forms is again a basic form;

2 TIMED �CRL 8

4. p � p0 p00: (p0 p00) q
A5
= p0 (p00 q). By induction, p00 q is provably equal to some basic form r. Again

by induction, p0 r equals some other basic form;

5. p �
P

d:D p0: (
P

d:D p0) q
SUM5
=
P

d:D p0 q. By induction there is a basic form r such that p0 q = r.
Now by axiom SUM4 and Lemma A.4

P
d:D may be put in the right place in r;

6. p � p0 / b. p00: (p0 / b. p00) q
A:1:3;A:1:4

= p0 q / b . �,0+p00 q /:b . �,0. By induction p0 q and p00 q are
provably equal to some basic forms r and r0, respectively. It su�ces to consider both subterms
separately. We only give a proof for the �rst subterm. The second follows in a similar way.

r / b . �,0
2:4;A:1:5

= (
P

i;dm;uai,u ri / �i . �,0) / b . �,0+

(
P

j;en;v
bj ,v / �j . �,0) / b . �,0

A:3:1;A:1:6
=

P
i;dm;uai,u ri / �i ^ b . �,0+

P
j;en;v

bj ,v / �j ^ b . �,0;

7. p � p0,t: p0,t q
ATB4
= (p0 q),t. By induction there is a basic form r such that p0 q = r. The proof

proceeds as follows:

r,t
2:4;ATB3;ATB5

=
P

i;dm;u(ai,u ri / �i . �,0),t +
P

j;en;v
(bj ,v / �j . �,0),t

A:1:2;A:2:1;ATB4
=

P
i;dm;uai,u,t ri / �i . �,0+

P
j;en;v

bj ,v,t / �j . �,0
ATB2;A:1:4

=
P

i;dm;u

(ai,u / eq(u; t) . �,0+ �,min(u; t) / :eq(u; t) . �,0) ri / �i . �,0+P
j;en;v

(bj ,v / eq(v; t) . �,0+ �,min(v; t) / :eq(v; t) . �,0) / �j . �,0
A4;A:1:3;A:2:3

=
P

i;dm;u

(ai,u ri / eq(u; t) . �,0+ �,min(u; t) / :eq(u; t) . �,0) / �i . �,0+P
j;en;v

(bj ,v / eq(v; t) . �,0+ �,min(v; t) / :eq(v; t) . �,0) / �j . �,0
A:1:5;A:1:6;ATB1

=
P

i;dm;u

(ai,u ri / eq(u; t) ^ �i . �,0+ �,t,u / :eq(u; t) ^ �i . �,0)+P
j;en;v

(bj ,v / eq(v; t) ^ �j . �,0+ �,t,v / :eq(v; t) ^ �j . �,0)
A:1:12;SUM4

=
P

i;dm;uai,u ri / eq(u; t) ^ �i . �,0+P
i;dm;u�,t / t � u ^ :eq(u; t) ^ �i . �,0+P
i;dm;u�,u / u � t ^ :eq(u; t) ^ �i . �,0+P
j;en;v

bj ,v / eq(v; t) ^ �j . �,0+P
j;en;v

�,t / t � v ^ :eq(v; t) ^ �j . �,0+P
j;en;v

�,v / v � u ^ :eq(v; t) ^ �j . �,0:

The second and �fth summand still have to be put in the right form. We show how this is done
for the second. By Lemma A.5.1 it is equal to

P
i;dm;u(

P
v(�,v / v � u ^ :eq(u; v) ^ �i . �,0) / eq(v; t) . �,0)

A:1:6
=
P

i;dm;u;v�,v / v � u ^ :eq(u; v) ^ �i ^ eq(v; t) . �,0,

which is a basic form.

2

3 A THEOREM FOR EXPANDING THE MERGE OPERATOR 9

Theorem 2.6 (Basic Forms). If q is a process-closed term over �(pCRLt) then there is a basic form

p such that �CRLt ` p = q.

Proof. Easy; by induction on the structure of q. The case where q � r s uses Lemma 2.5. 2

We introduce a criterion that will be used in inductive proofs.

De�nition 2.7. Let r be a process-closed term over �(pCRLt) as in De�nition 2.3. The depth jrj
of r is de�ned as 1 if I = ;, and 1 +max i2I jrij otherwise. 2

3 A theorem for expanding the merge operator

In this section we derive various results for the application of parallel operators to �CRLt terms.
All results can be used for calculating with basic forms, but also for recursively speci�ed processes,
provided that they are in the prescribed format.

3.1 Preparatory steps

We consider arbitrary �CRLt processes in the following syntactical format:

P
def
=
P

i;dm;uai,u Pi / �i . �,0+
P

i0;d0
m0 ;u

ai0 ,u / �i0 . �,0 = P 0 + P 00;

Q
def
=
P

j;en;v
bj ,v Qj / �j . �,0+

P
j0;e0

n0
;vbj0 ,v / �j0 . �,0 = Q0 +Q00.

The terms are split in subterms x0 and x00 in order to make the coming proofs a little more man-
ageable. Let i 2 I; i0 2 I 0 where I \ I 0 = ;, and j 2 J; j0 2 J 0 where J \ J 0 = ;. The sets I�; J� stand
for I [I 0; J [J 0, respectively. The vectors d�m� and e�n� stand for dm; d0m0 and en; e0n0 , respectively.

Lemma 3.1. It holds that:

P kQ = P 0 k Q+ P 00 k Q+Q0 k P +Q00 k P + P 0 jQ0 + P 0 jQ00 + P 00 jQ0 + P 00 jQ00.

Proof. Straightforward. By the axioms CM1, CM4, CM8 and CM9. 2

The term a�Q denotes the process that may do an a-step as long as Q is enabled. The following
lemma expresses this more formally.

Lemma 3.2. It holds that:

1. If 9v:Time;j�2J� :�j� = t then

a�Q =
P

e�n� ;v;t
a,t / t � v ^

W
j�2J� �j� . �,0;

2. If 8v:Time;j�2J� :�j� = f then

a�Q = a,0.

Proof. a�Q = a�(Q0 +Q00)
�2
= a�Q0 + a�Q00. We show how a�Q0 can be expanded.

a�Q0 = a�
P

j;en;v
bj ,v Qj / �j . �,0

3 A THEOREM FOR EXPANDING THE MERGE OPERATOR 10

�4;A:1:13
=

P
j;en;v

a�bj ,v Qj / �j . a��,0
�3;A:2:6

=
P

j;en;v
a�bj ,v / �j . a,0

A:1:4
=

P
j;en;v

(a�bj ,v / �j . �,0+ a,0 / :�j . �,0)
A:4;A:1:7

=
P

en;v
(a�bj ,v /

W
j2J �j . �,0+ a,0 / :

V
j2J �j . �,0)

�5;�1
=

P
en;v

((
P

t a,t / t � v . �,0) /
W
j2J �j . �,0+ a,0 / :

V
j2J �j . �,0)

SUM1
=

P
e�n� ;v

((
P

t a,t / t � v . �,0) /
W
j2J �j . �,0+ a,0 / :

V
j2J �j . �,0):

In a similar way a�Q00 can be expanded. It follows that

a�Q00 =
P

e�n� ;v
((
P

t a,t / t � v . �,0) /
W
j02J0 �j0 . �,0+ a,0 / :

V
j02J0 �j0 . �,0),

so that

a�Q0 + a�Q00 SUM4;A:1:7
=P

e�n� ;v
((
P

t a,t / t � v . �,0) /
W
j�2J�

�j� . �,0+ a,0 / :
V
j�2J�

�j� . �,0).

The following step is to distinguish various cases for the conditions in Q. Let j0; j1 2 J�.

1. (a) Assume �j0 [t0=v] = t and �j1 [t1=v] = f. (Note that these assumptions are allowed by
minimality of the model.) We continue our calculations. By SUM4 and Lemma A.5.2 the
above term equals

P
e�n�

(
P

v(
P

t a,t / t � v . �,0) /
W
j�2J� �j� . �,0+ a,0)

SUM3
=

P
e�n�

(
P

v(
P

t a,t / t � v . �,0) /
W
j�2J� �j� . �,0+P

t a,t / t � t0 . �,0+ a,0):

Again we may use SUM3. At a �rst application the third inner summand (a,0) is cancelled
by the second. At a second application the second inner summand vanishes again. Finally,W
j�2J� �j� is pushed into the innermost summation using Lemma A.3.3;

(b) Assume �j0 [t0=v] = t and that there are no j� 2 J� and v for which �j� = f. Now
a,0 /:

V
j�2J� �j� . �,0 reduces to �,0, which is cancelled by axiom AT6. Again,

W
j�2J� �j�

is pushed into the innermost summation using Lemma A.3.3;

2. Assume there are no j� 2 J�; v such that �j� = t. Consequently,
W
j�2J� �j� = f and :

V
j�2J� �j�

= t. It follows easily that a�Q = a,0.

2

3.2 Expansion of the left merge

The left merge P k Q denotes the parallel composition of P and Q, where the �rst step originates
from P . This �rst step may take place as long as Q is enabled, i.e., Q can do some bj-step. A time
deadlock occurs exactly at moment that either P or Q gets de�nitively disabled. Later we will show
that such time deadlocks can often be cancelled.
We see that process P k �,0 is not simply equal to �,0 but that it can perform that part of P that

is enabled at time 0. This must be regarded a consequence of the design of the k -operator, and we
refer to this phenomenon as k -leaking . In general, �,0's as arguments of the parallel operators are
not desirable, so in practical applications of �CRLt such cases will probably only model pathological
processes. However, in this paper k -leaking imposes extra proof obligations for formulas involving
k , and thus k.
Below, we derive these results algebraically.

3 A THEOREM FOR EXPANDING THE MERGE OPERATOR 11

Lemma 3.3. It holds that:

�,0 k Q = �,0.

Proof. By Lemma 3.2 the term ��Q has to be considered for two cases. We only consider the �rst
case; the second also has a simple proof.

�,0 k Q
ATB6;CM2;ATB4

= (��Q),0Q
3:2:1
= (

P
e�n� ;v;t

�,t / t � v ^
W
j�2J� �j� . �,0),0Q

ATB5;A:1:2;A:2:2;A:2:1
= (

P
e�n� ;v;t

�,0 / t � v ^
W
j�2J�

�j� . �,0)Q
A:1:1;SUM1;A:2:3

= �,0:

2

Lemma 3.4 (Left Merge). It holds that:

1. If 9v:Time;j�2J� :�j� = t then

P k Q =
P

i;dm;e�n� ;v;u
ai,u (Pi k Q) / u � v ^ �i ^

W
j�2J� �j� . �,0+P

i0;d0
m0 ;e�n� ;v;u

ai0 ,uQ / u � v ^ �i0 ^
W
j�2J� �j� . �,0+P

i�;j�;d�m� ;e�n� ;u;v
�,u,v / �i� ^ �j� . �,0;

2. If 8v:Time;j�2J� :�j� = f then Q = �,0 and

P k Q =
P

i;dm
ai,0 (Pi[0=u] k �,0) / �i[0=u] . �,0+

P
i0;d0

m0

ai0 ,0 �,0 / �i0 [0=u] . �,0.

Proof. P k Q = (P 0 + P 00) k Q = P 0 k Q+ P 00 k Q. We consider P 0 k Q:

P 0 k Q = (
P

i;dm;uai,u Pi / �i . �,0) k Q
SUM6
=

P
i;dm;u(ai,u Pi / �i . �,0) k Q

A:1:14
=

P
i;dm;u(ai,u Pi k Q) / �i . (�,0 k Q)

A:2:7;3:3
=

P
i;dm;u(ai�Q),u (Pi k Q) / �i . �,0 (�)

Now we may use Lemma 3.2.

1. If 9v:Time;j�2J� :�j� = t then

P 0 k Q =P
i;dm;u(

P
e�n� ;v;t

ai,t / t � v ^
W
j�2J� �j� . �,0),u (Pi k Q) / �i . �,0

ATB5;A:3:2
=P

i;dm;u(
P

e�n� ;v;t
ai,t,u / t � v ^

W
j�2J� �j� . �,0) (Pi k Q) / �i . �,0

A:3:3
=P

i;dm;u(
P

e�n� ;v
(
P

t ai,t,u / t � v . �,0) /
W
j�2J� �j� . �,0) (Pi k Q) / �i . �,0

A:5:4
=P

i;dm;u(
P

e�n� ;v
(ai,u / u � v . �,0+ �,u,v) /

W
j�2J� �j� . �,0) (Pi k Q) / �i . �,0

A:1:5;A:1:6
=P

i;dm;u

(
P

e�n� ;v
(ai,u / u � v ^

W
j�2J� �j� . �,0+ �,u,v /

W
j�2J� �j� . �,0)) (Pi k Q) / �i . �,0

3 A THEOREM FOR EXPANDING THE MERGE OPERATOR 12

SUM5;A4
=P

i;dm;u(
P

e�n� ;v
((ai,u / u � v ^

W
j�2J� �j� . �,0) (Pi k Q)+

(�,u,v /
W
j�2J� �j� . �,0) (Pi k Q))) / �i . �,0

A:1:3;ATB4;A:2:3
=P

i;dm;u

(
P

e�n� ;v
(ai,u (Pi k Q) / u � v ^

W
j�2J� �j� . �,0+ �,u,v /

W
j�2J� �j� . �,0)) / �i . �,0

SUM4;A:1:5
=P

i;dm;u((
P

e�n� ;v
ai,u (Pi k Q) / u � v ^

W
j�2J� �j� . �,0) / �i . �,0+

(
P

e�n� ;v
�,u,v /

W
j�2J� �j� . �,0) / �i . �,0)

A:3:1;A:1:6
=P

i;dm;u(
P

e�n� ;v
ai,u (Pi k Q) / u � v ^ �i ^

W
j�2J�

�j� . �,0+P
e�n� ;v

�,u,v / �i ^
W
j�2J�

�j� . �,0)

SUM4;A:1:7;A:4
=P

i;dm;e�n� ;v;u
ai,u (Pi k Q) / u � v ^ �i ^

W
j�2J� �j� . �,0+P

i;j�;dm;e�n� ;u;v
�,u,v / �i ^ �j� . �,0:

In a similar way, P 00 k Q can be derived. It follows that

P 00 k Q =
P

i0;d0
m0 ;e�n� ;v;u

ai0 ,uQ / u � v ^ �i0 ^
W
j�2J� �j� . �,0+P

i0;j�;d0
m0 ;e�n� ;u;v

�,u,v / �i0 ^ �j� . �,0:

We see that both P 0 k Q and P 00 k Q have �-summands. By axiom SUM1 we may extend the
corresponding vectors dm and d0m0 to d�m� . Now in the sum P 0 k Q+ P 00 k Q the �-summands
add up to

P
i�;j�;d�m� ;e�n� ;u;v

�,u,v / �i� ^ �j� . �,0,

which �nishes this case;

2. If 8v:Time;j�2J� :�j� = f then clearly Q = �,0, and

P 0 k �,0
(�);3:2:2
=

P
i;dm;uai,0,u (Pi k �,0) / �i . �,0

ATB2
=

P
i;dm;u(ai,0 / eq(u;0) . �,0) (Pi k �,0) / �i . �,0

A:1:3;A:2:3
=

P
i;dm;u(ai,0 (Pi k �,0) / eq(u;0) . �,0) / �i . �,0

A:1:6;A:5:1
=

P
i;dm

ai,0 (Pi[0=u] k �,0) / �i[0=u] . �,0:

P 00 k �,0 follows in a similar way.

2

We have now studied the �rst two terms of P kQ according to Lemma 3.1. By symmetry, results
for Q0 k P and Q00 k P follow in a similar way.
The following proposition is not needed for proving further results, but it may provide the reader

with some good intuition about the behaviour of the left merge. We state it without proof.

3 A THEOREM FOR EXPANDING THE MERGE OPERATOR 13

Proposition 3.5. Consider Lemma 3.4.1. Whenever there exist terms �; v0:Time such that one of

the conditions

1.
W

j�2J� �j� [v0=v] = t and u > v0 ^
W
i�2I� �i� = f, or

2. v �� � v ^ v < v0 ^
W
j�2J� �j� = t and u � v0 ^

W
i�2I� �i� = f

is satis�ed, the third summand (the �-summand) of P k Q is cancelled.

In other words, the above proposition implies that if Q can perform some action at least until (but
not necessarily including) the moment that P gets de�nitively disabled, the �-summand is cancelled.
We give two examples to further illustrate the behaviour of k . The �rst example shows that the

conditions in Proposition 3.5 do not have to be satis�ed in order to get rid of the �'s.

Example 3.6. Let p be the process that can perform an a-action before or at time 2, and q be
the process that can do a b-action at time 1. (Note that the conditions in Proposition 3.5 are not
satis�ed.) For p k q it easily follows that:

p k q = (
P

u a,u / u � 2 . �,0) k
P

v b,v / eq(v; 1) . �,0
3:4:1;A:5:1

=
P

v;ua,u b,1 / u � v ^ u � 2 ^ eq(v; 1) . �,0+P
u;v�,u,v / u � 2 ^ eq(v; 1) . �,0

A:4;A:3:3
=

P
u(
P

v a,u b,1 / eq(v; 1) . �,0) / u � 1 . �,0+P
u(
P

v �,u,v / eq(v; 1) . �,0) / u � 2 . �,0
A:5:1;A:5:2

=
P

u a,u b,1 / u � 1 . �,0+
P

u �,u,1 / u � 2 . �,0
A:3:2
=

P
u a,u b,1 / u � 1 . �,0+ (

P
u �,u / u � 2 . �,0),1

A:5:3;ATB1
=

P
u a,u b,1 / u � 1 . �,0+ �,1:

By axiom SUM3 a,1 b,1 is a summand of p k q, so by Lemma A.2.5 �,1 is cancelled. 2

The following example shows a left merge that induces a `hard' deadlock.

Example 3.7. Let

p
def
=
P

u a,u / 1 � u � 2 _ 4 � u � 5 . �,0;

q
def
=
P

v b,v / v � 3 . �,0.

We have that:

p k q

3:4:1
=

P
v;ua,u q / u � v ^ (1 � u � 2 _ 4 � u � 5) ^ v � 3 . �,0+P
u;v�,u,v / (1 � u � 2 _ 4 � u � 5) ^ v � 3 . �,0

A:3:3;A:2:2
=

P
v;ua,u q / u � v ^ 1 � u � 2 ^ v � 3 . �,0+P
u(
P

v �,v,u / v � 3 . �,0) / 1 � u � 2 _ 4 � u � 5 . �,0
A:3:2
=

P
v;ua,u q / u � v ^ 1 � u � 2 ^ v � 3 . �,0+P
u(
P

v �,v / v � 3 . �,0),u / 1 � u � 2 _ 4 � u � 5 . �,0
A:5:3;A:2:2

=
P

v;ua,u q / u � v ^ 1 � u � 2 ^ v � 3 . �,0+P
u �,u,3 / 1 � u � 2 _ 4 � u � 5 . �,0

3 A THEOREM FOR EXPANDING THE MERGE OPERATOR 14

A:1:7;SUM4
=

P
v;ua,u q / u � v ^ 1 � u � 2 ^ v � 3 . �,0+P
u �,u,3 / 1 � u � 2 . �,0+P
u �,u,3 / 4 � u � 5 . �,0

A:3:2
=

P
v;ua,u q / u � v ^ 1 � u � 2 ^ v � 3 . �,0+

(
P

u �,u / 1 � u � 2 . �,0),3+

(
P

u �,u / 4 � u � 5 . �,0),3
A:5:3;ATB1;ATA2

=
P

v;ua,u q / u � v ^ 1 � u � 2 ^ v � 3 . �,0+ �,3:

The intuition behind this expression is that a should happen between 1 and 2, and then a b before
or at time 3. Since 3 > 2 the deadlock at 3 cannot be cancelled. Actually, �,3 models the alternative
that p would `wait' to do an a-step between 4 and 5, while process q can only wait until time 3. 2

3.3 Expansion of the communication merge

We continue with the communications between P and Q. Communication between any two actions
of P and Q may take place as long as both actions are enabled. In general, time deadlocks will occur,
most of which can be eliminated right away.

Lemma 3.8 (Communication Merge). It holds that:

P jQ =
P

i;j;dm;en;u
(ai j bj),u (Pi k Qj [u=v]) / �i ^ �j [u=v] . �,0+P

i0;j;d0
m0 ;en;u

(ai0 j bj),uQj [u=v] / �i0 ^ �j [u=v] . �,0+P
i;j0;dm;e0

n0
;u(ai j bj0),u Pi / �i ^ �j0 [u=v] . �,0+P

i0;j0;d0
m0 ;e0n0 ;u

(ai0 j bj0),u / �i0 ^ �j0 [u=v] . �,0+P
i�;j�;d�m� ;e�n� ;u;v

�,u,v / �i� ^ �j� . �,0.

Proof. We give the full expansion of P 0 jQ0:

P 0 jQ0 = (
P

i;dm;uai,u Pi / �i . �,0) j
P

j;en;v
bj ,v Qj / �j . �,0

SUM7
=

P
i;dm;u(ai,u Pi / �i . �,0 j

P
j;en;v

bj ,v Qj / �j . �,0)

SUM70;A:4
=

P
i;j;dm;en;u;v

(ai,u Pi / �i . �,0 j bj ,v Qj / �j . �,0)

A:1:15;A:1:16
=

P
i;j;dm;en;u;v

((ai,u Pi j bj ,v Qj) / �j . (ai,u Pi j �,0))
/ �i . ((�,0 j bj ,v Qj) / �j . (�,0 j �,0))

A:2:f8;9;10g
=

P
i;j;dm;en;u;v

((ai,u Pi j bj ,v Qj) / �j . �,0) / �i . (�,0 / �j . �,0)
A:1:1;A:1:6

=
P

i;j;dm;en;u;v
(ai,u Pi j bj ,v Qj) / �i ^ �j . �,0

ATBf4;8;7g
=

P
i;j;dm;en;u;v

(ai Pi k bj Qj),u,v / �i ^ �j . �,0

CM7;ATB4
=

P
i;j;dm;en;u;v

(ai j bj),u,v (Pi k Qj) / �i ^ �j . �,0

ATB2;A:1:3
=

P
i;j;dm;en;u;v

((ai j bj),u (Pi k Qj) / eq(u; v) . �,min(u; v) (Pi k Qj)) / �i ^ �j . �,0

3 A THEOREM FOR EXPANDING THE MERGE OPERATOR 15

A:2:3;A:1:8
=

P
i;j;dm;en;u;v

(

(ai j bj),u (Pi k Qj) / eq(u; v) ^ �i ^ �j . �,0+
�,min(u; v) / :eq(u; v) ^ �i ^ �j . �,0)

A:2:5;A:1:5
=

P
i;j;dm;en;u;v

(

(ai j bj),u (Pi k Qj) / eq(u; v) ^ �i ^ �j . �,0+
�,u / eq(u; v) ^ �i ^ �j . �,0+
�,min(u; v) / :eq(u; v) ^ �i ^ �j . �,0)

A:1:17;ATB1;A:1:9
=

P
i;j;dm;en;u;v

(

(ai j bj),u (Pi k Qj) / eq(u; v) ^ �i ^ �j . �,0+
�,u,v / �i ^ �j . �,0)

SUM4;A:1:6
=

P
i;j;dm;en

(P
v(
P

u(ai j bj),u (Pi k Qj) / �i ^ �j . �,0) / eq(u; v) . �,0+P
u;v�,u,v / �i ^ �j . �,0)

A:5:1;ATB1;SUM4
=

P
i;j;dm;en;u

(ai j bj),u (Pi k Qj [u=v]) / �i ^ �j [u=v] . �,0+P
i;j;dm;en;u;v

�,u,v / �i ^ �j . �,0:

The processes P 0 jQ00, P 00 jQ0 and P 00 jQ00 are expanded in a similar way. The four terms with j

each lead to di�erent �-summands. Some elementary calculations show that these add up to

P
i�;j�;d�m� ;e�n� ;u;v

�,u,v / �i� ^ �j� . �,0,

which �nishes this proof. 2

In the following example we show that the term with the time deadlocks is essential.

Example 3.9. Consider the process a,1 j b,2. Straightforward application of the axioms of �CRLt
leads to:

a,1 j b,2
ATB8;ATB7

= (a j b),1,2
ATB2
= �,1.

We can also use the above lemma for communication, and then we need

(i) a,1
A:5:1
=
P

u a,u / eq(u; 1) . �,0;

(ii) b,2
A:5:1
=
P

v b,v / eq(v; 2) . �,0.

Application of Lemma 3.8 yields:

a,1 j b,2
i;ii;3:8
=

P
u(a j b),u / eq(u; 1) ^ eq(u; 2) . �,0+P
u;v�,u,v / eq(u; 1) ^ eq(v; 2) . �,0

A:2:2;A:3:3
=

P
u �,0+

P
u(
P

v �,v,u / eq(v; 2) . �,0) / eq(u; 1) . �,0
SUM1;A:3:2

= �,0+
P

u(
P

v �,v / eq(v; 2) . �,0),u / eq(u; 1) . �,0
AT6;A:5:1

= �,2,1
ATB1
= �,1:

Note that this �,1 was generated by the �-summand in P jQ. 2

3 A THEOREM FOR EXPANDING THE MERGE OPERATOR 16

3.4 Expansion Theorem

Before we can present our main result we have to derive a lemma for splitting the central �-summand.

Lemma 3.10. It holds that:
P

i�;j�;d�m� ;e�n� ;u;v
�,u,v / �i� ^ �j� . �,0

=
P

i;dm;e�n� ;v;u
�,u / u � v ^ �i ^

W
j�2J� �j� . �,0 + (D1)

P
i0;d0

m0 ;e�n� ;v;u
�,u / u � v ^ �i0 ^

W
j�2J� �j� . �,0+ (D2)

P
j;en;d�m� ;u;v�,v / v � u ^ �j ^

W
i�2I� �i� . �,0+ (D3)

P
j0;e0

n0
;d�m� ;u;v�,v / v � u ^ �j0 ^

W
i�2I� �i� . �,0 (D4)

Proof. We deriveP
i�;j�;d�m� ;e�n� ;u;v

�,u,v / �i� ^ �j� . �,0

A:1:10;A:2:2
=

P
i�;j�;d�m� ;e�n� ;u;v

(�,u,v / u � v ^ �i� ^ �j� . �,0+ �,v,u / v � u ^ �i� ^ �j� . �,0)
A:1:11;SUM4

=
P

i�;j�;d�m� ;e�n� ;u;v
�,u / u � v ^ �i� ^ �j� . �,0+P

i�;j�;d�m� ;e�n� ;u;v
�,v / v � u ^ �i� ^ �j� . �,0

A:4;A:1:7
=

P
i�;d�m� ;e�n� ;v;u

�,u / u � v ^ �i� ^
W
j�2J� �j� . �,0+P

j�;e�n� ;d
�

m� ;u;v�,v / v � u ^ �j� ^
W
i�2I� �i� . �,0

=
P

i;d�m� ;e�n� ;v;u
�,u / u � v ^ �i ^

W
j�2J� �j� . �,0+P

i0;d�m� ;e�n� ;v;u
�,u / u � v ^ �i0 ^

W
j�2J� �j� . �,0+P

j;e�n� ;d
�

m� ;u;v�,v / v � u ^ �j ^
W
i�2I� �i� . �,0+P

j0;e�n� ;d
�

m� ;u;v�,v / v � u ^ �j0 ^
W
i�2I� �i� . �,0:

By axiom SUM1 we may omit all sum operators that do not bind any variables in their arguments.
This �nishes the proof. 2

Now we can derive an expansion theorem for timed �CRL. Lemma 3.4 was derived for two cases,
the second of which should be regarded as theoretical; A sound speci�cation will generally contain no
time deadlocks. Consequently, an expansion theorem can be derived for four cases, two of which are
derived below. The other two cases follow trivially.

Theorem 3.11 (Expansion). It holds that:

1. If 9u:Time;i�2I� :�i� = t and 9v:Time;j�2J� :�j� = t then

P k Q =
P

i;dm;e�n� ;v;u
ai,u (Pi k Q) / u � v ^ �i ^

W
j�2J� �j� . �,0+ (M1)P

i0;d0
m0 ;e�n� ;v;u

ai0 ,uQ / u � v ^ �i0 ^
W
j�2J� �j� . �,0+ (M2)P

j;en;d�m� ;u;vbj ,v (Qj k P) / v � u ^ �j ^
W
i�2I� �i� . �,0+ (M3)P

j0;e0
n0
;d�m� ;u;vbj0 ,v P / v � u ^ �j0 ^

W
i�2I� �i� . �,0+ (M4)P

i;j;dm;en;u
(ai j bj),u (Pi k Qj [u=v]) / �i ^ �j [u=v] . �,0+ (M5)P

i0;j;d0
m0 ;en;u

(ai0 j bj),uQj [u=v] / �i0 ^ �j [u=v] . �,0+ (M6)P
i;j0;dm;e0

n0
;u(ai j bj0),u Pi / �i ^ �j0 [u=v] . �,0+ (M7)P

i0;j0;d0
m0 ;e0n0 ;u

(ai0 j bj0),u / �i0 ^ �j0 [u=v] . �,0 (M8)

4 PROPERTIES OF THE PARALLEL OPERATORS 17

2. If 9u:Time;i�2I� :�i� = t and 8v:Time;j�2J� :�j� = f then

P kQ =
P

i;dm
ai,0 (Pi[0=u] k �,0) / �i[0=u] . �,0+

P
i0;d0

m0

ai0 ,0 �,0 / �i0 [0=u] . �,0.

Proof. We only prove the �rst case. A proof for the second is straightforward.
We may combine the results from the lemmas 3.4.1 and 3.8. In total, two di�erent terms with time

deadlocks are involved, which are easily proven equal using the lemmas A.2.2 and A.4. The resulting
expansion is as follows:

P k Q = M1 + : : :+M8+P
i�;j�;d�m� ;e�n� ;u;v

�,u,v / �i� ^ �j� . �,0 (M9)

By Lemma 3.10 the time deadlocks in summand M9 may be distributed over the four summands
D1{D4. We consider summand M1 and show that it cancels D1. We derive

M1 +D1
SUM4
=

P
i;dm;e�n� ;v;u

(

ai,u (Pi k Q) / u � v ^ �i ^
W
j�2J�

�j� . �,0+

�,u / u � v ^ �i ^
W
j�2J� �j� . �,0)

A:1:5;A:2:5
=

P
i;dm;e�n� ;v;u

ai,u (Pi k Q) / u � v ^ �i ^
W
j�2J� �j� . �,0;

which is again M1. In a similar way it is proved that summand M2 cancels D2. By symmetry, D3 is
cancelled by M3 and D4 by M4; 2

4 Properties of the parallel operators

We prove some basic properties of the parallel operators. First we prove that they may be eliminated
from process-closed �CRLt-terms, then we show that k and j are commutative and associative for
process-closed terms.

4.1 Elimination

In this section we consider processes with parallel operators, and show that all process-closed terms
are provably equal to �(pCRLt)-terms.

Lemma 4.1. Let p and q be process-closed terms over �(pCRLt). The terms p�q and @H(p) are
provably equal to basic forms.

Proof. Easy; by induction on the structure of q and p, respectively. 2

Theorem 4.2 (Elimination). For any process-closed term q over �(�CRLt) there is a basic form p

such that �CRLt ` p = q.

Proof. (Sketch.) Let r and s be process-closed terms over �(pCRLt). We take three steps:

1. By Theorem 2.6 r and s are provably equal to some basic forms ~r and ~s, respectively. Now
using the Expansion Theorem it is easily proved by induction on the sum of depths j~rj+ j~sj (see
De�nition 2.7) that the term ~r k ~s reduces to some basic form;

2. By step 1 and the lemmas 3.4 and 3.8 r k s and r j s also reduce to basic forms;

4 PROPERTIES OF THE PARALLEL OPERATORS 18

3. By Lemma 4.1 and the steps 1 and 2 any process-closed term q over �(�CRLt) with at most
one operator from f�; @H ; k; k ; j g is provably equal to some basic form. Obviously, any term
with n + 1 operators from this set contains subterms with only one such operator, such that
after elimination of one of these, a term with n parallel operators results. By induction on n we
conclude that all these operators can be eliminated, so that q is provably equal to some basic
form p.

2

4.2 Associativity and commutativity

In this section we consider basic forms p; q and r over pCRLt of the following form:

p
def
=
P

i;dl;t
ai,t pi / �i . �,0+

P
i0;d0

l0
;tai0 ,t / �i0 . �,0 = p0 + p00;

q
def
=
P

j;em;ubj ,u qj / �j . �,0+
P

j0;e0
m0 ;u

bj0 ,u / �j0 . �,0 = q0 + q00;

r
def
=
P

k;f
n
;vck,v rk / �k . �,0+

P
k0;f 0

n0
;vck0 ,v / �k0 . �,0 = r0 + r00.

Theorem 4.3 (Commutativity). It holds that:

1. p j q = q j p;

2. p k q = q k p.

Proof. We prove the identities 1 and 2 simultaneously by induction on the sum of depths jpj + jqj.
The induction hypothesis is ~pk ~q = ~qk ~p, where j~pj+ j~qj < jpj+ jqj. The base case of the proof, where
jpj = jqj = 1 is easy, and therefore omitted. For the general case, we �rst prove p j q = q j p:

p j q = (p0 + p00) j (q0 + q00)
CM8;CM9

= p0 j q0 + p0 j q00 + p00 j q0 + p00 j q00 (�)

p0 j q0 = (
P

i;dl;t
ai,t pi / �i . �,0) j

P
j;em;ubj ,u qj / �j . �,0

3:8
=

P
i;j;dl;em;t(ai j bj),t (pi kqj [t=u]) / �i ^ �j [t=u] . �,0+P
i;j;dl;em;t;u�,t,u / �i ^ �j . �,0

A:4;i:h:;A:2:2
=

P
j;i;em;dl;t

(ai j bj),t (qj [t=u]kpi) / �j [t=u] ^ �i . �,0+P
j;i;em;dl;u;t

�,u,t / �j ^ �i . �,0:

Consider the �rst summand. By axiom CF and the commutativity of the communication function
ai j bj = bj j ai. By �-conversion t may be renamed to u and u to t. Now p0 j q0 = q0 j p0 follows readily,
and the identities p0 j q00 = q00 j p0, p00 j q0 = q0 j p00 and p00 j q00 = q00 j p00 follow in a similar way. (No
application of the induction hypothesis is needed there.) Finally, using some simple manipulations,
we may derive from (�) that p j q = q j p. Commutativity of k now follows easily:

pkq
CM1
= p k q + q k p+ p j q

4:3:1
= q k p+ p k q + q j p

CM1
= qkp.

2

Theorem 4.4 (Associativity). It holds that:

1. (pkq)kr = pk(qkr);

2. (p j q) j r = p j (q j r).

4 PROPERTIES OF THE PARALLEL OPERATORS 19

Proof.

1. See Appendix B;

2. (Sketch.) We distinguish two cases:

(a) None of the processes p; q; r equals �,0. By the axioms CM8 and CM9 we have that

(p j q) j r = (p0 j q0) j r0 + (p0 j q0) j r00 + (p0 j q00) j r0 + (p0 j q00) j r00+

(p00 j q0) j r0 + (p00 j q0) j r00 + (p00 j q00) j r0 + (p00 j q00) j r00:

We consider (p0 j q0) j r0 and compress a few steps in the analysis. First Theorem 3.8 may be
applied to p0 j q0 (see the proof of Theorem 4.3), and then the �-summand may be split in
two subterms using Lemma A.1.12 and axiom SUM4. Next, according to axiom CM8 the
communication with r0 may be distributed over the three summands. (Where necessary,
Lemma A.4 is used to modify the order of the summands.) Finally, Theorem 3.8 may be
applied again. This results in:
P

i;j;k;dl;em;f
n
;t((ai j bj) j ck),t ((pi kqj [t=u])krk[t=v]) / �i ^ �j [t=u] ^ �k[t=v] . �,0 + (R1)

P
i;j;k;dl;em;f

n
;t;v�,t,v / �i ^ �j [t=u] ^ �k . �,0+ (R2)

P
i;j;k;dl;em;f

n
;u;t (� j ck),t rk[t=v] / t � u ^ �i ^ �j ^ �k[t=v] . �,0+ (R3)

P
i;j;k;dl;em;f

n
;u;t;v�,t,v / t � u ^ �i ^ �j ^ �k . �,0+ (R4)

P
i;j;k;dl;em;f

n
;t;u(� j ck),u rk[u=v] / u � t ^ �i ^ �j ^ �k[u=v] . �,0+ (R5)

P
i;j;k;dl;em;f

n
;t;u;v�,u,v / u � t ^ �i ^ �j ^ �k . �,0 (R6)

By axiom CD1 and Lemma A.2.3 (� j ck),t rk[t=v] = �,t and (� j ck),u rk[u=v] = �,u.

By the associativity of the communication function , axiom CF and Theorem 4.4.1 R1 =
R10. A number of routine calculations give us the identities R2 = R20; : : : ; R6 = R60.
P

i;j;k;dl;em;f
n
;t(ai j (bj j ck)),t (pi k(qj [t=u]krk[t=v])) / �i ^ �j [t=u] ^ �k[t=v] . �,0 + (R10)

P
i;j;k;dl;em;f

n
;t;u;v�,t,u,v / eq(t; u) ^ �i ^ �j ^ �k . �,0+ (R20)

P
i;j;k;dl;em;f

n
;t;u;v�,t,u,v / t � u ^ eq(t; v) ^ �i ^ �j ^ �k . �,0+ (R30)

P
i;j;k;dl;em;f

n
;t;u;v�,t,u,v / t � u ^ �i ^ �j ^ �k . �,0+ (R40)

P
i;j;k;dl;em;f

n
;t;u;v�,t,u,v / u � t ^ eq(u; v) ^ �i ^ �j ^ �k . �,0+ (R50)

P
i;j;k;dl;em;f

n
;t;u;v�,t,u,v / u � t ^ �i ^ �j ^ �k . �,0 (R60)

We see that R30 � R40 and R50 � R60, so R30 +R40 +R50 +R60 = R40 +R60 = R7:
P

i;j;k;dl;em;f
n
;t;u;v�,t,u,v / �i ^ �j ^ �k . �,0 (R7)

Since R20 � R7 we have that (p0 j q0) j r0 = R10 +R7.

By commutativity of j we have that p0 j (q0 j r0) = (q0 j r0) j p0, so by symmetry it must be that
the �-summands of p0 j (q0 j r0) also add up to R7. Thus, after application of �-conversion
to R10 we may conclude that (p0 j q0) j r0 = p0 j (q0 j r0).

Associativity of the other subterms of (p j q) j r follows in a similar way, and identity with
p j (q j r) follows readily;

(b) For the various possibilities where one or more of the arguments p; q; r equals �,0 it is easily
proved that (p j q) j r = �,0 = p j (q j r).

2

REFERENCES 20

References

[1] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal Aspects of

Computing Science, 3(2):142{188, 1991.

[2] J.C.M. Baeten and J.A. Bergstra. Discrete time process algebra. In W.R. Cleaveland, editor,
Proceedings of CONCUR '92, pages 401{420. LNCS 630, Springer-Verlag, 1992.

[3] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Computer
Science 18. Cambridge University Press, 1990.

[4] W.J. Fokkink and A.S. Klusener. An e�ective axiomatization for real time ACP, Information

and Computation, 122(2):286{299, 1995.

[5] J.F. Groote. The syntax and semantics of timed �CRL. Technical report SEN-R9709, CWI,
Amsterdam, 1997.

[6] J.F. Groote and A. Ponse. Proof theory for �CRL: a language for processes with data. In D.J. An-
drews, J.F. Groote and C.A. Middelburg, editors, Proceedings of the International Workshop on

Semantics of Speci�cation Languages, pages 232{251. Workshops in Computing, Springer-Verlag,
1994.

[7] J.F. Groote and A. Ponse. The syntax and semantics of �CRL. In A. Ponse, C. Verhoef and
S.F.M. van Vlijmen, eds, Algebra of Communicating Processes, Workshops in Computing, pp. 26-
62, 1994.

[8] J.F. Groote and J.J. van Wamel. Analysis of three hybrid systems in timed �CRL. To appear as
technical report, CWI, Amsterdam, 1998.

[9] A.S. Klusener. Models and axioms for a fragment of real time process algebra. Ph.D. Thesis.
Technical University Eindhoven, 1993.

[10] J.J. Vereijken. Discrete-time process algebra. Ph.D. Thesis. Technical University Eindhoven, 1997.

[11] M. Wirsing. Algebraic speci�cation. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume II, pages 677{788. Elsevier Science Publishers B.V., 1990.

A ELEMENTARY LEMMAS 21

A Elementary lemmas

In this appendix we provide a large number of elementary lemmas needed for proving our main results.

Lemma A.1 (Laws for Conditional Expressions). It holds that:

1. x / b . x = x;

2. (x / b . y),t = x,t / b . y,t;

3. (x / b . y) z = x z / b . y z;

4. x / b . y = x / b . �,0+ y / :b . �,0;

5. (x + y) / b . z = x / b . z + y / b . z;

6. (x / b . �,0) / c . �,0 = x / b ^ c . �,0;

7. x / b _ c . �,0 = x / b . �,0+ x / c . �,0;

8. (x / b . y) / c . �,0 = x / b ^ c . �,0+ y / :b ^ c . �,0;

9. x / c . �,0 = x / b ^ c . �,0+ x / :b ^ c . �,0;

10. x / b . �,0 = x / t � u ^ b . �,0+ x / u � t ^ b . �,0;

11. �,t,u / t � u ^ b . �,0 = �,t / t � u ^ b . �,0;

12. �,t,u / b . �,0 = �,t / t � u ^ b . �,0+ �,u / u � t ^ b . �,0;

13. x�(y / b . z) = x�y / b . x�z;

14. (x / b . y) k z = (x k z) / b . (y k z);

15. (x / b . y) j z = (x j z) / b . (y j z);

16. x j (y / b . z) = (x j y) / b . (x j z);

17. �,t,u / eq(t; u) ^ b . �,0 = �,t / eq(t; u) ^ b . �,0.

Proof. By case distinction on the booleans. 2

Lemma A.2 (Simple Process Identities). It holds that:

1. �,0,t = �,0;

2. a,t,u = a,u,t;

3. �,t x = �,t;

4. a,t,t = a,t;

5. a,t x = a,t x+ �,t;

6. a��,0 = a,0;

7. a,t x k y = (a�y),t (x k y);

8. �,t j a,u x = �,min(t; u);

A ELEMENTARY LEMMAS 22

9. a,t x j �,u = �,min(t; u);

10. �,t j �,u = �,min(t; u).

Proof. Easy. 2

Lemma A.3 (Simple Laws with Sum Operators). It holds that:

1. (
P

X) / b . �,0 =
P

X / b . �,0;

2. (
P

X / b . �,0),t =
P

X,t / b . �,0;

3. (
P

X / b . �,0) / c . �,0 =
P

X / b ^ c . �,0.

Proof.

1. By case distinction on b;

2. By axiom ATB5 and the lemmas A.1.2 and A.2.1;

3. By the lemmas A.3.1 and A.1.6.

2

Lemma A.4 (Sum Permutation). Let P(d)n be some permutation of a �nite sequence of data

variables dn. It holds that:

P
P(d)

n

r =
P

dn
r.

Proof. For n = 0 or 1 the proof is trivial. For n � 2 we �rst show that two adjacent summations
may interchanged. We prove
P

dk:Dk

P
dk+1:Dk+1

p =
P

dk+1:Dk+1

P
dk:Dk

p (�)

where k = 1; : : : ; n� 1, by Summand Inclusion.
�: Consider the r.h.s. of the identity to be proved. Let e 62 FV (p).

P
dk+1:Dk+1

P
dk:Dk

p
SUM3;SUM4

=
P

dk+1:Dk+1

P
dk:Dk

p+
P

dk+1:Dk+1
p[e=dk].

Next we apply axiom SUM11, which adds
P

e:Dk

to both the l.h.s. and r.h.s. of the above equation.
Application of SUM4 and SUM1 yields
P

dk+1:Dk+1

P
dk:Dk

p =
P

dk+1:Dk+1

P
dk:Dk

p+
P

e:Dk

P
dk+1:Dk+1

p[e=dk].

By �-conversion e may be renamed to dk, which proves this case.
�: By symmetry.
It is easily understood that any two adjacent summations may change place in expressions with

n � 3: Any term
P

dn
r may be written in the form

P
dk

P
dk+1:Dk+1

P
dk+2:Dk+2

p (k = 0; : : : ; n�2), so

that (i) can be applied to the subterm
P

dk+1:Dk+1

P
dk+2:Dk+2

p in order to change the two outermost
summands.
Finally, if any two adjacent elements in a �nite sequence dn may be interchanged, any permutation

P(d)n of dn can be constructed in a �nite number of swaps. 2

A ELEMENTARY LEMMAS 23

Lemma A.5 (Sum Elimination). It holds that:

1.
P

d:D p / eq(d; e) . �,0 = p[e=d];

2. Let d 62 FV (p). If b[e=d] = t then
P

d:D p / b . �,0 = p;

3. If u � v = t then
P

t:Time �,t / u � t � v . �,0 = �,v;

(note that always 0 � v = t.)

4.
P

t:Time a,t,u / t � v . �,0 = a,u / u � v . �,0+ �,u,v.

Proof.

1. By Summand Inclusion, see [5];

2. By Summand Inclusion.

�: p
SUM1
=
P

d:D p =
P

d:D p / b _ :b . �,0
A:1:7;SUM4

=
P

d:D p / b . �,0+
P

d:D p / :b . �,0.

�:
P

d:D p / b . �,0
SUM3
=
P

d:D p / b . �,0+ p[e=d] / b[e=d] . �,0.

By assumption p[e=d] = p and b[e=d] = t, which proves the case;

3. By Summand Inclusion. First we prove �:

�,v
ATA2
= �,v + �,t / (u � t _ t � u) ^ t � v . �,0

A:1:7
= �,v + �,t / u � t � v . �,0+ �,t / t � u ^ t � v . �,0:

After applying ,t to both sides of the above equation, and by SUM11 we �nd that

P
t:Time �,v,t =

P
t:Time(�,v + �,t / u � t � v . �,0+ �,t / t � u ^ t � v . �,0),t.

Application of ATB3, SUM4 and ATA1 leads to:

�,v = �,v +
P

t:Time(�,t / u � t � v . �,0),t+P
t:Time(�,t / t � u ^ t � v . �,0),t

A:1:2;A:2:4;A:2:1
= �,v +

P
t:Time �,t / u � t � v . �,0+P

t:Time �,t / t � u ^ t � v . �,0:

�: By SUM3
P

t:Time �,t / u � t � v . �,0 � (�,t / u � t � v . �,0)[v=t]. By assumption
u � v = t, which proves the case;

4. We have that:

P
t:Time a,t,u / t � v . �,0

ATB2
=

P
t:Time(a,t / eq(t; u) . �,min(t; u)) / t � v . �,0

A:1:8
=

P
t:Time(a,t / eq(t; u) ^ t � v . �,0+

�,min(t; u) / :eq(t; u) ^ t � v . �,0)
ATA2;A:1:5

=
P

t:Time(a,t / eq(t; u) ^ t � v . �,0+
�,t / eq(t; u) ^ t � v . �,0+
�,min(t; u) / :eq(t; u) ^ t � v . �,0)

A:1:17;ATB1
=

P
t:Time(a,t / eq(t; u) ^ t � v . �,0+

�,min(t; u) / eq(t; u) ^ t � v . �,0+
�,min(t; u) / :eq(t; u) ^ t � v . �,0)

B A PROOF OF THE ASSOCIATIVITY OF THE MERGE OPERATOR 24

A:1:9;SUM4;ATB1
=

P
t:Time a,t / eq(t; u) ^ t � v . �,0 +

P
t:Time �,t,u / t � v . �,0

A:1:6;A:5:1
= a,u / u � v . �,0 +

P
t:Time �,t,u / t � v . �,0

A:3:2
= a,u / u � v . �,0+ (

P
t:Time �,t / t � v . �,0),u

A:5:3;A:2:2
= a,u / u � v . �,0+ �,u,v:

2

B A proof of the associativity of the merge operator

In the parts A, B and C we prove the associativity of k for arguments p; q; r, all not equal to �,0. In
this case we may restrict ourselves to the normal formulation of the Expansion Theorem (case 3.11.1).
In part D we consider the various �,0-cases.
The �rst part of this proof is carried out by induction on the depth jpj+ jqj+ jrj, where we assume

that jpj; jqj and jrj are at least equal to 1. As induction hypothesis we assume (~p k ~q) k ~r = ~pk (~q k ~r)
for all j~pj+ j~qj+ j~rj < jpj+ jqj+ jrj.
First the base case, where jpj = jqj = jrj = 1, has to be proved. In essence, this part of the proof is

similar to the proof given below, but with the sets I; J;K put to ;, so that no application of the i.h.
would be necessary. (No term with three parallel processes occurs at the r.h.s. of the the expansions.)
We omit this part of the proof. The general case, where jpj+ jqj+ jrj > 3 is proven below in detail.

A. Expansion of (p k q) k r. By the Expansion Theorem p k q follows easily. By Lemma A.1.7
the generalised disjunctions in the conditions may be converted to summations, and by axiom SUM1
various

P
-operators may be added. By Lemma A.4 the sums may be rearranged arbitrarily, so that

pkq =
P

i;j�;d�l� ;e
�

m� ;u;tai,t (pi kq) / t � u ^ �i ^ �j� . �,0+ (M1)P
i0;j�;d�l� ;e

�

m� ;u;tai0 ,t q / t � u ^ �i0 ^ �j� . �,0+ (M2)P
i�;j;d�l� ;e

�

m� ;t;ubj ,u (qj kp) / u � t ^ �i� ^ �j . �,0+ (M3)P
i�;j0;d�l� ;e

�

m� ;t;ubj0 ,u p / u � t ^ �i� ^ �j0 . �,0+ (M4)P
i;j;d�l� ;e

�

m� ;t(ai j bj),t (pi kqj [t=u]) / �i ^ �j [t=u] . �,0+ (M5)P
i0;j;d�l� ;e

�

m� ;t(ai0 j bj),t qj [t=u] / �i0 ^ �j [t=u] . �,0+ (M6)P
i;j0;d�l� ;e

�

m� ;t(ai j bj0),t pi / �i ^ �j0 [t=u] . �,0+ (M7)P
i0;j0;d�l� ;e

�

m� ;t(ai0 j bj0),t / �i0 ^ �j0 [t=u] . �,0 (M8)

Each main summand Mn has indices i; i0; i�; j; j0; j�, which may be combined into a single index

�n 2 �n, where n = 1; : : : ; 8. Let �
def
=
S
n=1;:::;7 �n, and �0

def
= �8. By convention, �� = � [�0.

To the summands M3 and M4 �-conversion may be applied, so that we �nally obtain the following
simple abbreviation:

pkq
abbr:
=

P
�;d�l� ;e

�

m� ;u;t~a�,t ~p� / ~�� . �,0+
P

�0;d�l� ;e
�

m� ;u;t~a�0 ,t / ~��0 . �,0:

Again the Expansion Theorem may be applied. Let d�
def
= d�l� ; e�m� ; f�n� .

(pkq)kr =
P

�;k�;d�;t;u;v
~a�,t (~p� kr) / t � v ^ ~�� ^ �k� . �,0+ (N1)P

�0;k�;d�;t;u;v
~a�0 ,t r / t � v ^ ~��0 ^ �k� . �,0+ (N2)P

��;k;d�;t;u;v
ck,v (rk k (pkq)) / v � t ^ ~��� ^ �k . �,0+ (N3)P

��;k0;d�;t;u;v
ck0 ,v (pkq) / v � t ^ ~��� ^ �k0 . �,0+ (N4)

B A PROOF OF THE ASSOCIATIVITY OF THE MERGE OPERATOR 25

P
�;k;d�;t;u

(~a� j ck),t (~p� krk[t=v]) / ~�� ^ �k[t=v] . �,0+ (N5)P
�0;k;d�;t;u

(~a�0 j ck),t rk[t=v] / ~��0 ^ �k[t=v] . �,0+ (N6)P
�;k0;d�;t;u

(~a� j ck0),t ~p� / ~�� ^ �k0 [t=v] . �,0+ (N7)P
�0;k0;d�;t;u

(~a�0 j ck0),t / ~��0 ^ �k0 [t=v] . �,0 (N8)

First we examine the summand N1 +N2:
P

i;j�;k�;d�;t;u;v
ai,t ((pi kq)kr) / t � v ^ t � u ^ �i ^ �j� ^ �k� . �,0+ (T1)P

i0;j�;k�;d�;t;u;v
ai0 ,t (qkr) / t � v ^ t � u ^ �i0 ^ �j� ^ �k� . �,0+ (T2)P

i�;j;k�;d�;t;u;v
bj ,u ((qj kp)kr) / u � v ^ u � t ^ �i� ^ �j ^ �k� . �,0+ (T3)P

i�;j0;k�;d�;t;u;v
bj0 ,u (pkr) / u � v ^ u � t ^ �i� ^ �j0 ^ �k� . �,0+ (T4)P

i;j;k�;d�;t;v
(ai j bj),t ((pi kqj [t=u])kr) / t � v ^ �i ^ �j [t=u] ^ �k� . �,0+ (T5)P

i0;j;k�;d�;t;v
(ai0 j bj),t (qj [t=u]kr) / t � v ^ �i0 ^ �j [t=u] ^ �k� . �,0+ (T6)P

i;j0;k�;d�;t;v
(ai j bj0),t (pi kr) / t � v ^ �i ^ �j0 [t=u] ^ �k� . �,0+ (T7)P

i0;j0;k�;d�;t;v
(ai0 j bj0),t r / t � v ^ �i0 ^ �j0 [t=u] ^ �k� . �,0 (T8)

Note that in the summands T3 and T4 �-conversion is applied in order to undo the �-conversion
we applied earlier to M3 and M4.
We continue with N3:

P
i;j�;k;d�;t;u;v

ck,v (rk k (pkq)) / v � t ^ t � u ^ �i ^ �j� ^ �k . �,0+ (T9)P
i0;j�;k;d�;t;u;v

ck,v (rk k (pkq)) / v � t ^ t � u ^ �i0 ^ �j� ^ �k . �,0+ (T10)P
i�;j;k;d�;t;u;v

ck,v (rk k (pkq)) / v � u ^ u � t ^ �i� ^ �j ^ �k . �,0+ (T11)P
i�;j0;k;d�;t;u;v

ck,v (rk k (pkq)) / v � u ^ u � t ^ �i� ^ �j0 ^ �k . �,0+ (T12)P
i;j;k;d�;t;v

ck,v (rk k (pkq)) / v � t ^ �i ^ �j [t=u] ^ �k . �,0+ (T13)P
i0;j;k;d�;t;v

ck,v (rk k (pkq)) / v � t ^ �i0 ^ �j [t=u] ^ �k . �,0+ (T14)P
i;j0;k;d�;t;v

ck,v (rk k (pkq)) / v � t ^ �i ^ �j0 [t=u] ^ �k . �,0+ (T15)P
i0;j0;k;d�;t;v

ck,v (rk k (pkq)) / v � t ^ �i0 ^ �j0 [t=u] ^ �k . �,0 (T16)

�-conversion was applied to T11 and T12.
N4:

P
i;j�;k0;d�;t;u;v

ck0 ,v (pkq) / v � t ^ t � u ^ �i ^ �j� ^ �k0 . �,0+ (T17)P
i0;j�;k0;d�;t;u;v

ck0 ,v (pkq) / v � t ^ t � u ^ �i0 ^ �j� ^ �k0 . �,0+ (T18)P
i�;j;k0;d�;t;u;v

ck0 ,v (pkq) / v � u ^ u � t ^ �i� ^ �j ^ �k0 . �,0+ (T19)P
i�;j0;k0;d�;t;u;v

ck0 ,v (pkq) / v � u ^ u � t ^ �i� ^ �j0 ^ �k0 . �,0+ (T20)P
i;j;k0;d�;t;v

ck0 ,v (pkq) / v � t ^ �i ^ �j [t=u] ^ �k0 . �,0+ (T21)P
i0;j;k0;d�;t;v

ck0 ,v (pkq) / v � t ^ �i0 ^ �j [t=u] ^ �k0 . �,0+ (T22)P
i;j0;k0;d�;t;v

ck0 ,v (pkq) / v � t ^ �i ^ �j0 [t=u] ^ �k0 . �,0+ (T23)P
i0;j0;k0;d�;t;v

ck0 ,v (pkq) / v � t ^ �i0 ^ �j0 [t=u] ^ �k0 . �,0 (T24)

�-conversion was applied to T19 and T20.

B A PROOF OF THE ASSOCIATIVITY OF THE MERGE OPERATOR 26

N5 +N6:
P

i;j�;k;d�;t;u
(ai j ck),t ((pi kq)krk[t=v]) / t � u ^ �i ^ �j� ^ �k[t=v] . �,0+ (T25)P

i0;j�;k;d�;t;u
(ai0 j ck),t (qkrk[t=v]) / t � u ^ �i0 ^ �j� ^ �k[t=v] . �,0+ (T26)P

i�;j;k;d�;t;u
(bj j ck),u ((qj kp)krk[u=v]) / u � t ^ �i� ^ �j ^ �k[u=v] . �,0+ (T27)P

i�;j0;k;d�;t;u
(bj0 j ck),u (pkrk[u=v]) / u � t ^ �i� ^ �j0 ^ �k[u=v] . �,0+ (T28)P

i;j;k;d�;t
((ai j bj) j ck),t ((pi kqj [t=u])krk[t=v]) / �i ^ �j [t=u] ^ �k[t=v] . �,0+ (T29)P

i0;j;k;d�;t
((ai0 j bj) j ck),t (qj [t=u]krk[t=v]) / �i0 ^ �j [t=u] ^ �k[t=v] . �,0+ (T30)P

i;j0;k;d�;t
((ai j bj0) j ck),t (pi krk [t=v]) / �i ^ �j0 [t=u] ^ �k[t=v] . �,0+ (T31)P

i0;j0;k;d�;t
((ai0 j bj0) j ck),t rk[t=v] / �i0 ^ �j0 [t=u] ^ �k[t=v] . �,0 (T32)

�-conversion was applied to T27 and T28.
N7 +N8:

P
i;j�;k0;d�;t;u

(ai j ck0),t (pi kq) / t � u ^ �i ^ �j� ^ �k0 [t=v] . �,0+ (T33)P
i0;j�;k0;d�;t;u

(ai0 j ck0),t q / t � u ^ �i0 ^ �j� ^ �k0 [t=v] . �,0+ (T34)P
i�;j;k0;d�;t;u

(bj j ck0),u (qj kp) / u � t ^ �i� ^ �j ^ �k0 [u=v] . �,0+ (T35)P
i�;j0;k0;d�;t;u

(bj0 j ck0),u p / u � t ^ �i� ^ �j0 ^ �k0 [u=v] . �,0+ (T36)P
i;j;k0;d�;t

((ai j bj) j ck0),t (pi kqj [t=u]) / �i ^ �j [t=u] ^ �k0 [t=v] . �,0+ (T37)P
i0;j;k0;d�;t

((ai0 j bj) j ck0),t qj [t=u] / �i0 ^ �j [t=u] ^ �k0 [t=v] . �,0+ (T38)P
i;j0;k0;d�;t

((ai j bj0) j ck0),t pi / �i ^ �j0 [t=u] ^ �k0 [t=v] . �,0+ (T39)P
i0;j0;k0;d�;t

((ai0 j bj0) j ck0),t / �i0 ^ �j0 [t=u] ^ �k0 [t=v] . �,0 (T40)

�-conversion was applied to T35 and T36.

B. Expansion of p k (q k r). Now we are going to derive a large number of summands from the
other term.

qkr =
P

j;k�;e�m� ;f�
n�

;v;ubj ,u (qj kr) / u � v ^ �j ^ �k� . �,0+ (U1)P
j0;k�;e�m� ;f�

n�
;v;ubj0 ,u r / u � v ^ �j0 ^ �k� . �,0+ (U2)P

j�;k;e�m� ;f�
n�

;u;vck,v (rk kq) / v � u ^ �j� ^ �k . �,0+ (U3)P
j�;k0;e�m� ;f�

n�
;u;vck0 ,v q / v � u ^ �j� ^ �k0 . �,0+ (U4)P

j;k;e�m� ;f�
n�

;u(bj j ck),u (qj krk[u=v]) / �j ^ �k[u=v] . �,0+ (U5)P
j0;k;e�m� ;f�

n�
;u(bj0 j ck),u rk[u=v] / �j0 ^ �k[u=v] . �,0+ (U6)P

j;k0;e�m� ;f�
n�

;u(bj j ck0),u qj / �j ^ �k0 [u=v] . �,0+ (U7)P
j0;k0;e�m� ;f�

n�
;u(bj0 j ck0),u / �j0 ^ �k0 [u=v] . �,0 (U8)

Each summand Un has indices j; j0; j�; k; k0; k�, which may be combined into a single index �n 2 �n,

where n = 1; : : : ; 8. Let �
def
=
S
n=1;:::;7�n, and �0 def= �8. By convention, �� = � [�0. To U3 and

U4 �-conversion may be applied, so that we have the following abbreviation:

qkr
abbr:
=

P
�;e�m� ;f�

n�
;v;u

~b�,u ~q� / ~�� . �,0+
P

�0;e�m� ;f�
n�

;v;u
~b�0 ,u / ~��0 . �,0:

B A PROOF OF THE ASSOCIATIVITY OF THE MERGE OPERATOR 27

Again the Expansion Theorem may be applied. We obtain

pk(qkr) =
P

i;��;d�;t;u;v
ai,t (pi k(qkr)) / t � u ^ �i ^ ~��� . �,0+ (V 1)P

i0;��;d�;t;u;v
ai0 ,t (qkr) / t � u ^ �i0 ^ ~��� . �,0+ (V 2)P

i�;�;d�;t;u;v
~b�,u (~q� kp) / u � t ^ �i� ^ ~�� . �,0+ (V 3)P

i�;�0;d�;t;u;v
~b�0 ,u p / u � t ^ �i� ^ ~��0 . �,0+ (V 4)P

i;�;d�;t;v
(ai j~b�),t (pi k ~q�[t=u]) / �i ^ ~��[t=u] . �,0+ (V 5)P

i0;�;d�;t;v
(ai0 j~b�),t ~q�[t=u] / �i0 ^ ~��[t=u] . �,0+ (V 6)P

i;�0;d�;t;v
(ai j~b�0),t pi / �i ^ ~��0 [t=u] . �,0+ (V 7)P

i0;�0;d�;t;v
(ai0 j~b�0),t / �i0 ^ ~��0 [t=u] . �,0 (V 8)

V 1:
P

i;j;k�;d�;t;u;v
ai,t (pi k(qkr)) / t � u ^ u � v ^ �i ^ �j ^ �k� . �,0+ (W1)P

i;j0;k�;d�;t;u;v
ai,t (pi k(qkr)) / t � u ^ u � v ^ �i ^ �j0 ^ �k� . �,0+ (W2)P

i;j�;k;d�;t;u;v
ai,t (pi k(qkr)) / t � v ^ v � u ^ �i ^ �j� ^ �k . �,0+ (W3)P

i;j�;k0;d�;t;u;v
ai,t (pi k(qkr)) / t � v ^ v � u ^ �i ^ �j� ^ �k0 . �,0+ (W4)P

i;j;k;d�;t;u
ai,t (pi k(qkr)) / t � u ^ �i ^ �j ^ �k[u=v] . �,0+ (W5)P

i;j0;k;d�;t;u
ai,t (pi k(qkr)) / t � u ^ �i ^ �j0 ^ �k[u=v] . �,0+ (W6)P

i;j;k0;d�;t;u
ai,t (pi k(qkr)) / t � u ^ �i ^ �j ^ �k0 [u=v] . �,0+ (W7)P

i;j0;k0;d�;t;u
ai,t (pi k(qkr)) / t � u ^ �i ^ �j0 ^ �k0 [u=v] . �,0 (W8)

�-conversion was applied to W3 and W4.
V 2:

P
i0;j;k�;d�;t;u;v

ai0 ,t (qkr) / t � u ^ u � v ^ �i0 ^ �j ^ �k� . �,0+ (W9)P
i0;j0;k�;d�;t;u;v

ai0 ,t (qkr) / t � u ^ u � v ^ �i0 ^ �j0 ^ �k� . �,0+ (W10)P
i0;j�;k;d�;t;u;v

ai0 ,t (qkr) / t � v ^ v � u ^ �i0 ^ �j� ^ �k . �,0+ (W11)P
i0;j�;k0;d�;t;u;v

ai0 ,t (qkr) / t � v ^ v � u ^ �i0 ^ �j� ^ �k0 . �,0+ (W12)P
i0;j;k;d�;t;u

ai0 ,t (qkr) / t � u ^ �i0 ^ �j ^ �k[u=v] . �,0+ (W13)P
i0;j0;k;d�;t;u

ai0 ,t (qkr) / t � u ^ �i0 ^ �j0 ^ �k[u=v] . �,0+ (W14)P
i0;j;k0;d�;t;u

ai0 ,t (qkr) / t � u ^ �i0 ^ �j ^ �k0 [u=v] . �,0+ (W15)P
i0;j0;k0;d�;t;u

ai0 ,t (qkr) / t � u ^ �i0 ^ �j0 ^ �k0 [u=v] . �,0 (W16)

�-conversion was applied to W11 and W12.
V 3 + V 4:

P
i�;j;k�;d�;t;u;v

bj ,u ((qj kr)kp) / u � t ^ u � v ^ �i� ^ �j ^ �k� . �,0+ (W17)P
i�;j0;k�;d�;t;u;v

bj0 ,u (rkp) / u � t ^ u � v ^ �i� ^ �j0 ^ �k� . �,0+ (W18)P
i�;j�;k;d�;t;u;v

ck,v ((rk kq)kp) / v � t ^ v � u ^ �i� ^ �j� ^ �k . �,0+ (W19)P
i�;j�;k0;d�;t;u;v

ck0 ,v (qkp) / v � t ^ v � u ^ �i� ^ �j� ^ �k0 . �,0+ (W20)P
i�;j;k;d�;t;u

(bj j ck),u ((qj krk[u=v])kp) / u � t ^ �i� ^ �j ^ �k[u=v] . �,0+ (W21)P
i�;j0;k;d�;t;u

(bj0 j ck),u (rk[u=v]kp) / u � t ^ �i� ^ �j0 ^ �k[u=v] . �,0+ (W22)P
i�;j;k0;d�;t;u

(bj j ck0),u (qj kp) / u � t ^ �i� ^ �j ^ �k0 [u=v] . �,0+ (W23)P
i�;j0;k0;d�;t;u

(bj0 j ck0),u p / u � t ^ �i� ^ �j0 ^ �k0 [u=v] . �,0 (W24)

B A PROOF OF THE ASSOCIATIVITY OF THE MERGE OPERATOR 28

�-conversion was applied to W19 and W20.
V 5 + V 7:

P
i;j;k�;d�;t;v

(ai j bj),t (pi k(qj [t=u]kr)) / t � v ^ �i ^ �j [t=u] ^ �k� . �,0+ (W25)P
i;j0;k�;d�;t;v

(ai j bj0),t (pi kr) / t � v ^ �i ^ �j0 [t=u] ^ �k� . �,0+ (W26)P
i;j�;k;d�;t;u

(ai j ck),t (pi k(rk [t=v]kq)) / t � u ^ �i ^ �j� ^ �k[t=v] . �,0+ (W27)P
i;j�;k0;d�;t;u

(ai j ck0),t (pi kq) / t � u ^ �i ^ �j� ^ �k0 [t=v] . �,0+ (W28)P
i;j;k;d�;t

(ai j (bj j ck)),t (pi k(qj [t=u]krk[t=v])) / �i ^ �j [t=u] ^ �k[t=v] . �,0+ (W29)P
i;j0;k;d�;t

(ai j (bj0 j ck)),t (pi krk [t=v]) / �i ^ �j0 [t=u] ^ �k[t=v] . �,0+ (W30)P
i;j;k0;d�;t

(ai j (bj j ck0)),t (pi kqj [t=u]) / �i ^ �j [t=u] ^ �k0 [t=v] . �,0+ (W31)P
i;j0;k0;d�;t

(ai j (bj0 j ck0)),t pi / �i ^ �j0 [t=u] ^ �k0 [t=v] . �,0 (W32)

�-conversion was applied to W27 and W28.
V 6 + V 8:

P
i0;j;k�;d�;t;v

(ai0 j bj),t (qj [t=u]kr) / t � v ^ �i0 ^ �j [t=u] ^ �k� . �,0+ (W33)P
i0;j0;k�;d�;t;v

(ai0 j bj0),t r / t � v ^ �i0 ^ �j0 [t=u] ^ �k� . �,0+ (W34)P
i0;j�;k;d�;t;u

(ai0 j ck),t (rk[t=v]kq) / t � u ^ �i0 ^ �j� ^ �k[t=v] . �,0+ (W35)P
i0;j�;k0;d�;t;u

(ai0 j ck0),t q / t � u ^ �i0 ^ �j� ^ �k0 [t=v] . �,0+ (W36)P
i0;j;k;d�;t

(ai0 j (bj j ck)),t (qj [t=u]krk[t=v]) / �i0 ^ �j [t=u] ^ �k[t=v] . �,0+ (W37)P
i0;j0;k;d�;t

(ai0 j (bj0 j ck)),t rk[t=v] / �i0 ^ �j0 [t=u] ^ �k[t=v] . �,0+ (W38)P
i0;j;k0;d�;t

(ai0 j (bj j ck0)),t qj [t=u] / �i0 ^ �j [t=u] ^ �k0 [t=v] . �,0+ (W39)P
i0;j0;k0;d�;t

(ai0 j (bj0 j ck0)),t / �i0 ^ �j0 [t=u] ^ �k0 [t=v] . �,0 (W40)

�-conversion was applied to W35 and W36.

C. Proving identity of (pkq)kr and pk(qkr). Finally it has to be proved that T1+ : : :+ T40 =
W1 + : : :+W40.
Here we tacitly apply the i.h., commutativity of k, and the properties a j b = b j a and (a j b) j c =

b j (a j b) of j , which follow from the de�nition of the communication function and axiom CF.
Fortunately, a large number of identities follows right away by inspection of the equations:

T3 =W17 T7 =W26 T27 =W21 T31 =W30 T35 =W23 T39 =W32
T4 =W18 T8 =W34 T28 =W22 T32 =W38 T36 =W24 T40 =W40
T5 =W25 T25 =W27 T29 =W29 T33 =W28 T37 =W31
T6 =W33 T26 =W35 T30 =W37 T34 =W36 T38 =W39

Four more identities have to be proven:

(i) T1 =W1 + : : :+W8;
(ii) T2 =W9 + : : :+W16;
(iii) T9 + : : :+ T16 =W19;
(iv) T17+ : : :+ T24 =W20.

We prove (i):

W1 +W2
SUM4
=

P
i;j�;k�;d�;t;u;v

ai,t (pi k(qkr)) / t � u ^ u � v ^ �i ^ �j� ^ �k� . �,0;

B A PROOF OF THE ASSOCIATIVITY OF THE MERGE OPERATOR 29

W3 +W4
SUM4
=

P
i;j�;k�;d�;t;u;v

ai,t (pi k(qkr)) / t � v ^ v � u ^ �i ^ �j� ^ �k� . �,0;

W5 +W6 +W7 +W8
SUM4
=

P
i;j�;k�;d�;t;u

ai,t (pi k(qkr)) / t � u ^ �i ^ �j� ^ �k� [u=v] . �,0
A:5:1;A:1:6

=
P

i;j�;k�;d�;t;u;v
ai,t (pi k(qkr)) / t � u ^ eq(u; v) ^ �i ^ �j� ^ �k� . �,0:

By axiom SUM4 and axiom A.1.7 W1 + : : :+W8 =

P
i;j�;k�;d�;t;u;v

ai,t (pi k(qkr))

/ ((t � u ^ u � v) _ (t � v ^ v � u) _ (t � u ^ eq(u; v))) ^ �i ^ �j� ^ �k� . �,0.

Application of the i.h. and some elementary calculations for the condition show that this term is
equal to T1. The identities (ii); (iii) and (iv) follow in a similar way. 2

D. Cases with �,0. We �nally have to study the cases where at least one of the processes p; q; r
equals �,0. We may distinguish the following cases (C stands for commutativity of k):

D:1: (�,0kp)kq = �,0k(pkq). See below;

D:2: (pk�,0)kq
C
= (�,0kp)kq

D:1
= �,0k(pkq)

C
= �,0k(qkp)

D:1
= (�,0kq)kp

C
= pk(�,0kq);

D:3: (pkq)k�,0
C
= �,0k(pkq)

C
= �,0k(qkp)

D:1
= (�,0kq)kp

C
= (qk�,0)kp

C
= pk(qk�,0);

D:4: (pk�,0)k�,0 = pk(�,0k�,0). Easy; by induction on jpj;

D:5: (�,0kp)k�,0
C
= �,0k(�,0kp)

C
= �,0k(pk�,0);

D:6: (�,0k�,0)kp
C
= pk(�,0k�,0)

D:4
= (pk�,0)k�,0

C
= �,0k(pk�,0)

C
= �,0k(�,0kp);

D:7: (�,0k�,0)k�,0
C
= �,0k(�,0k�,0).

Proof of identity D.1. By induction on jpj + jqj. As in part A of the proof we tacitly apply the
lemmas A.1.7 and A.4, and axiom SUM1.

(�,0kp)kq
4:3:2;3:11:2;A:5:1;A:1:6

= (
P

i;dl;t
ai,t (pi k �,0) / �i ^ eq(t;0) . �,0+P

i0;d0
l0
;tai0 ,t �,0 / �i0 ^ eq(t;0) . �,0)kq (�)

Here we have a tricky part of the proof; The term just obtained also has to be considered for two
cases, namely:

1. If 9i�2I� :�i� [0=t] = t then by Theorem 3.11.1 the above term equals

P
i;j�;d�l� ;e

�

m� ;u;tai,t ((pi k �,0)kq) / t � u ^ eq(t;0) ^ �i ^ �j� . �,0+P
i0;j�;d�l� ;e

�

m� ;u;tai0 ,t (�,0kq) / t � u ^ eq(t;0) ^ �i0 ^ �j� . �,0+P
i�;j;d�l� ;e

�

m� ;t;ubj ,u (qj k(�,0kp)) / u � t ^ eq(t;0) ^ �i� ^ �j . �,0+P
i�;j0;d�l� ;e

�

m� ;t;ubj0 ,u (�,0kp) / u � t ^ eq(t;0) ^ �i� ^ �j0 . �,0+P
i;j;d�l� ;e

�

m� ;t(ai j bj),t ((pi k �,0)kqj [t=u]) / eq(t;0) ^ �i ^ �j [t=u] . �,0+P
i0;j;d�l� ;e

�

m� ;t(ai0 j bj),t (�,0kqj [t=u]) / eq(t;0) ^ �i0 ^ �j [t=u] . �,0+P
i;j0;d�l� ;e

�

m� ;t(ai j bj0),t (pi k �,0) / eq(t;0) ^ �i ^ �j0 [t=u] . �,0+P
i0;j0;d�l� ;e

�

m� ;t(ai0 j bj0),t �,0 / eq(t;0) ^ �i0 ^ �j0 [t=u] . �,0:

B A PROOF OF THE ASSOCIATIVITY OF THE MERGE OPERATOR 30

By the lemmas A.1.6 and A.5.1 this may be simpli�ed to

P
i;j�;d�l� ;e

�

m� ;uai,0 ((pi[0=t] k �,0)kq) / �i[0=t] ^ �j� . �,0+ (X1)P
i0;j�;d�l� ;e

�

m� ;uai0 ,0 (�,0kq) / �i0 [0=t] ^ �j� . �,0+ (X2)P
j;d�l� ;e

�

m�

bj ,0 (qj [0=u]k(�,0kp)) /
W
i�2I� �i� [0=t] ^ �j [0=u] . �,0+ (X3)P

j0;d�l� ;e
�

m�

bj0 ,0 (�,0kp) /
W
i�2I� �i� [0=t] ^ �j0 [0=u] . �,0+ (X4)P

i;j;d�l� ;e
�

m�

(ai j bj),0 ((pi[0=t] k �,0)kqj [0=u]) / �i[0=t] ^ �j [0=u] . �,0+ (X5)P
i0;j;d�l� ;e

�

m�

(ai0 j bj),0 (�,0kqj [0=u]) / �i0 [0=t] ^ �j [0=u] . �,0+ (X6)P
i;j0;d�l� ;e

�

m�

(ai j bj0),0 (pi[0=t] k �,0) / �i[0=t] ^ �j0 [0=u] . �,0+ (X7)P
i0;j0;d�l� ;e

�

m�

(ai0 j bj0),0 �,0 / �i0 [0=t] ^ �j0 [0=u] . �,0 (X8)

By assumption at least one of the �i� [0=t] equals t, so
W
i�2I� �i� [0=t] = t. By Lemma A.5.2 we

may replace X3 +X4 by

P
j;d�l� ;e

�

m� ;t(bj ,0 (qj [0=u]k(�,0kp)) / �j [0=u] . �,0) /
W
i�2I� �i� . �,0+P

j0;d�l� ;e
�

m� ;t(bj0 ,0 (�,0kp) / �j0 [0=u] . �,0) /
W
i�2I� �i� . �,0

A:1:6
=

P
i�;j;d�l� ;e

�

m� ;tbj ,0 (qj [0=u]k(�,0kp)) / �i� ^ �j [0=u] . �,0+ (X30)P
i�;j0;d�l� ;e

�

m� ;tbj0 ,0 (�,0kp) / �i� ^ �j0 [0=u] . �,0 (X40)

The term �,0k (pkq) may be expanded according to M1 + : : :+M8 given under part A of the
proof, and Theorem 3.11.2. It turns out that, by the i.h., the resulting system is identical to
X1 +X2 +X30 +X40 +X5 +X6 +X7, which �nishes this case;

2. If 8i�2I� :�i� [0=t] = f then by commutativity of k and Theorem 3.11.2 �,0kp = �,0, so expression
(�) equals �,0k q. It is left to prove that �,0k (pk q) = �,0k q, which can be done by induction
on jqj. Again we may use M1+ : : :+M8 for pkq, and by the theorems 4.3.2 and 3.11.2 we �nd
that

�,0k(pkq) =
P

j;d�l� ;e
�

m� ;tbj ,0 ((qj [0=u]kp)k�,0) /
W
i�2I� �i� ^ �j [0=u] . �,0+P

j0;d�l� ;e
�

m� ;tbj0 ,0 (pk�,0) /
W
i�2I� �i� ^ �j0 [0=u] . �,0:

The base case of the proof, where jqj = 1, is included in the general case, where jqj � 1, which
we prove here. By assumption at least one of the �i� must be true at some time, so by Lemma
A.5.2, commutativity of k, and the i.h. we get

�,0k(pkq) =
P

j;d�l� ;e
�

m�

bj ,0 (qj [0=u]k(�,0kp)) / �j [0=u] . �,0+P
j0;d�l� ;e

�

m�

bj0 ,0 (�,0kp) / �j0 [0=u] . �,0:

Now, �,0 k p = �,0, redundant sums
P

d�l�
may be removed, and �nally, by Lemma 3.11.2 and

commutativity of k, we may conclude that this expression equals �,0kq. This �nishes the proof
of identity D.1.

2

