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Abstract 

Sommeijer, B.P., W. Couzy and P.J. van der Houwen, A-stable parallel block methods for ordinary and 
integro-differential equations, Applied Numerical Mathematics 9 (1992) 267-281. 

In this paper we study the stability of a class of block methods which are suitable for integrating ordinary and 
integro-differential equations on parallel computers. A-stable methods of orders 3 and 4 and A(a)-stable 
methods with a > 89.9° of order 5 are constructed. On multiprocessor computers these methods are of the 
same computational complexity as implicit linear multistep methods on one-processor computers. 

1. Introduction 

Many algorithms for numerically solving initial-value problems for ordinary differential 
equations (ODEs): 

dy(t) 
~ =f(t, y(t)), y(t0 ) =yo, (1.1) 

or Volterra integro-differential equations (VIDEs): 

d: ~t) = f ( t' y ( t)' { k ( t' x' y ( x)) d x) ' (1.2) 

are based on implicit linear multistep methods (LM methods), in particular on backward 
differentiation methods (BDF methods). The main reason for their popularity is the relatively 
low computational effort per step, at least when compared with other suitable methods for stiff 
equations, such as implicit Runge-Kutta methods. However, the BDFs have one serious 
disadvantage: they are subject to the so-called "second Dahlquist barrier", which says that the 
order cannot exceed two if the method has to be A-stable. Thus the higher-order BDFs lack 
the property of A-stability. This means that if a high-order formula is selected (dictated by 
accuracy considerations), then it may happen that-for certain types of stiff ODEs or VIDEs
the algorithm encounters stability problems which usually results in a dramatical degradation of 
the performance. To circumvent this behaviour it is highly desirable to have A-stable methods 
of high order without increasing the computational effort per step. 
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It is our aim to construct such methods. They are most easily formulated as so-called block 
methods. Block methods can be considered as a set of simultaneously applied linear multistep 
methods to obtain several numerical approximations within one application. Numerous block 
methods have been proposed in the literature including high-order A-stable ones (see e.g. 
Watts and Shampine [16]). However, these implicit methods require in each application an 
amount of work which by far exceeds the computational effort required by a BDF. In recent 
papers (cf. e.g. Chu and Hamilton [3]), block methods have been given which solve the huge 
implicit relations on a parallel computer which indeed significantly reduces the computational 
costs. However, all these techniques follow the approach of predictor-corrector iteration, 
which in fact restricts their application to nonstiff problems. 

Like Chu and Hamilton, we will employ parallelism to obtain the aforementioned goals. We 
shall construct A-stable methods of orders three and four, and A(a)-stable methods of order 
five with a ~ 1T /2. Furthermore, by carefully segmenting the total work per step into a few 
subtasks of approximately equal computational length, these methods require an amount of 
work which is very similar to what a BDF requires when implemented on a uni-processor 
machine. In Section 5.3 we will see that a high degree of parallelization is obtained. Since the 
implicit relations are solved by a Newton-type process (as is the case in BDF implementations) 
rather than a predictor-corrector fashion, the property of A-stability is preserved. 

In Sections 2 and 3, we present the construction of block methods for ODEs, in Section 4, 
block methods for VIDEs employing these block ODE solvers are discussed, and in Section 5, 
numerical experiments are reported. The way of construction is based on extremely simple 
tools: firstly, certain order-conditions are imposed such that a number of parameters are left 
free, and secondly, a numerical search over the free parameters is carried out to give the 
method the optimal stability characteristics. So far, we did not succeed in developing more 
sophisticated search techniques by analytical means. 

2. Parallel block methods for ODEs 

In order to simplify the formulas, we present the derivations of the block methods for scalar, 
autonomous ODEs. The extension of these methods to systems of ODEs, and therefore also to 
non-autonomous equations, is straightforward. 

The block methods studied in this paper are a direct generalization of the implicit one-step 
method 

Yn+ I= ayn + hbf(Yn) + hdf(Yn+I), n = 0, 1, ... , 

where h is the stepsize and Yn an approximation to y(tn). By introducing block vectors 

T 
Yn + I := ( Y n, I' · · · ' Y n ,k) ' C := ( C I , ..• , Ck) T, Ck = 1, 

(2.1) 

(2.2) 

where Yn,i denotes a numerical approximation to the exact solution value y(tn + c;h), and 
assuming that (1.1) is a scalar equation, we can define the block method 

(2.3) 

where A, B and D are k-by-k matrices. Here we use the convention that for any given vector 
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v = ( v), f(v) denotes the vector with entries f( vi ). This method can be considered as the block 
analogue of (2.1). A characteristic of these methods is that, unlike conventional block methods 
based on linear multistep methods, the block point vector c is allowed to have k - 1 non-integer 
components. In order to start the method, one needs the initial vector Y0 , which requires, in 
general, as many starting values as there are distinct values cj (j = 1, ... , k ). Notice that the 
last component of Yn + 1 contains the step point value y n + 1• Furthermore, we remark that, in 
general, Yn,i =I= Ym,i' even if n + ci = m + ci. 

The method (2.3) is suitable for direct use on parallel computers if the matrix D is diagonal, 
since such a form uncouples the various components as far as implicitness is concerned; the 
corresponding methods will be called parallel block methods. Using k processors, each 
processor has to evaluate a component of f(Yn) and to solve a system of equations whose 
dimension is that of the system of ODEs (1.1). If Newton's method is used for solving the 
system of equations, then each processor needs the Jacobian matrix I - hdjjaf ;ay and its 
LU-decomposition. Either the various processors have to compute the data they need them
selves, or one may consider the use of additional processors for computing the Jacobian 
matrices and their LU-decompositions. Let us consider the second strategy. As soon as the 
additional processors have completed an update of the matrix af jay and computed the 
LU-decompositions of the k matrices I - hdiiaf ;ay, then the first k processors can replace 
their data by the new data. However, usually the computational job of computing Jacobian 
matrices and LU-decompositions is so substantial that the speed of updating may not be great 
enough. In such cases, the use of matrices D with equal diagonal elements is recommendable, 
because then the Jacobian matrices I - hdjjaf jay are all identical, so that only one instead of 
k decompositions are required. Therefore, methods where D is of the form dl, I being the 
identity matrix, have some advantage. 

If D is a full matrix, then the block method is not directly suitable for use on parallel 
computers. However, (2.3) allows the application of an iteration process that has a high degree 
of parallelism. This iteration method is of the one-level form 

[I -hC Of~:·) l yu+" - hEf(YU+ ") 

=AYn + hBf(Yn) -hC af~:n) Y(j) + h[D -E]f(YU)), 

where C and E are suitable iteration matrices. There are several possibilities for choosing 
these matrices in order to achieve parallelism and to preserve stability. We mention: (i) C 
diagonal and E = O (linear diagonal iteration), (ii) C = 0 and E diagonal (nonlinear diagonal 
iteration), and (iii) C = D, E = O combined with diagonalization of C (diagonalized Newton). 
A survey of properties of diagonal iteration in the case where (2.3) corresponds to Runge-Kutta 
methods can be found in [10]. The diagonalized Newton process was proposed by Lubich [12]. 
In passing we remark, that one might also consider higher-level iteration methods. For 
example, the "pipeline" iteration proposed by Feldstein [5] fits into the family of three-level 
iteration methods. 

In a forthcoming paper, we will study the above iteration process if the matrix D in (2.3) is a 
full matrix. In this paper we always assume that D is diagonal. 
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The conditions for pth-order consistency for methods of the form (2.3) are extremely simple 
and read (cf. [9]) 

C1 = 0, j = 0, 1, ... , p. 

C0 ==Ae-e; C1 :=A(c-e) +Be+De-c; (2.4) 

C1 ==A(c-e)1 +J[B(c-e)J-l_Dci- 1]-ci, j=2,3, ... , 

where e denotes the vector with unit entries and where powers of vectors are meant to be 
componentwise powers. 

In order to compare the components of these vectors with the error constants corresponding 
to conventional linear multistep methods, we introduce the normalized error vectors [8] 

cj 
E.==----

1 j!(B+D)e' 
(2.5) 

where the division of vectors is meant componentwise. When a linear k-step method is written 
in the form (2.3) with c = ( -k + 2, ... , -2, -1, 0, l)T, then the last component of E1 equals 
the normalized error constant of the linear k-step method. Since these block methods are in 
fact a composition of k conventional linear multistep methods, the theory developed for the 
latter class of methods (see Henrici [8] or Hairer, NQ!rsett and Wanner [7]), is to a large extent 
also applicable in the case of block methods. In particular, this theory can be used to determine 
the order of convergence of the block methods, that is the behaviour of Yn+i -Y(t,,+ 1) == 
'.y(t" + c1h), y(tn + c2h), ... , y(tn + h))T for h ~ 0 and tn = nh fixed (see also the paper by 
Cooper [4]). 

3. Stability 

The (linear) stability of block methods can be investigated by applying the method to the test 
equation y' = ,.\ y. This will lead to a recursion of the form 

M(z)== [I-zD]- 1[A +zB], z==A.h. (3 .1) 

M will be called the amplification matrix and its eigenvalues the amplification factors. Here we 
observe that, by requiring the elements of the diagonal matrix D to be positive, the matrix 
I - zD is nonsingular for all z on the negative real axis. Therefore, in the sequel we will assume 
that the (diagonal) elements of D are positive. 

In our stability analysis we shall use the following result on the power of a matrix N (cf. [15, 
p. 65]). 

(3.2) 

where II· II and p(N) are the spectral norm and radius of N and where all diagonal 
submatrices of the Jordan normal form of N which have spectral radius p(N) are at most 
q-by-q. If p(N) < 1 or p(N) = q = 1, then we call N power bounded. 

Following the familiar stability definitions used for RK and LM methods, we shall call the 
region where the amplification matrix M( z) is power bounded, the stability region of the block 



B.P. Sommeijer et al. /A-stable parallel block methods 271 

method. If the stability region contains the origin, then the method is called zero-stable. The 
region where II Mn II tends to zero will be called the strong stability region. If the (strong) 
stability region of a block method contains the left half plane, then the block method is called 
(strongly) A-stable. Furthermore, if the amplification matrix of an A-stable method has 
vanishing eigenvalues at infinity, then the method is called L-stable. For some methods (i.e., 
the BDF methods) a less demanding definition of stability is more appropriate. Therefore the 
notion of A(a)-stability has been introduced. The angle a defines a wedge in the left half plane 
and the method is stable if z lies inside this wedge. This is, however, a rather crude way to 
describe the stability region, since for the higher-order BDF methods the part of the left half 
plane which is not included in the stability region is a small lobe near the imaginary axis. To 
provide more detailed information on the stability region, we introduce two additional parame
ters leading to the notion of A(a, {3, y )-stability: 

Definition 3.1. A method is said to be A(a, {3, y)-stable if (i) its region of stability contains the 
infinite wedge { z: - a < 1T - arg( z) < a}, 0 < a ~ 'IT /2, and all points in the non positive half 
plane with I z I > {3, and (ii) 1 + y is the maximum value of the spectral radius of M( z) when z 
runs through the region of instability lying in the nonpositive half plane. 

Note that A( 'IT /2, 0, 0)-stability implies A-stability. The degree of instability of the method is 
measured by y. 

If we set A = D =I and B = 0 in (2.3), then the method reduces to a set of k completely 
uncoupled one-step methods of the backward Euler type, each advancing the solution from 
tn-i + c;h to tn + c;h (i = 1, 2, ... , k ). Evidently, these k formulas can be efficiently imple· 
mented on a k-processor machine (in fact, they could equally well run on k separat( 
computers). Such methods have excellent stability properties (e.g., the property of L-stability), 
but are only of first order. However, by using full matrices A and B, that is the k formulas of 
the block method share the same information from the previous step, the order can be 
considerably increased. In the next two subsections, we investigate for k = 2 ("two-dimensional 
block methods") and k = 3 ("three-dimensional block methods") to what values the order can 
be raised while preserving the favourable stability properties of backward Euler (stability plots 
may be found in [14]). 

3.1. Two-dimensional block methods 

First we consider the case k = 2 and choose the coefficient matrices of the form 

T c=(c,l). (3.3) 

Imposing the conditions for second-order consistency we can express the entries of the matrix 
B in terms of the five free parameters c, a 1, a 2 , d 1 and d 2 : 

j = 1, 2, (3.4a) 
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where c 1 = c and c2 = 1. The components Cij of the vectors C; (i;;;. 3) are given by 

cij = (1 - ~i)(c -1)iaj + icJ- 1dj + iicAcj - 2dj)(c -1);-z - cJ, j = 1, 2. 

An elementary calculation shows that C3j vanishes if 

and that C4j also vanishes if, in addition, 

c c-2 
d = d, = . 

I 2( C + 1) ' - 2( C - 3) 

(3.4b) 

(3.4c) 

The characteristic equation of the amplification matrix in (3.1) can be written in the form 

p ((, z ) == det [A + zB - ((I - zD)] 

(
a 1 + bnz - ((l -d 1z) 

= det 
llz + bz1Z 

(3.5) 

We shall determine the z-region where this polynomial has its roots ' within the unit circle, 
that is, the region of strong stability. In addition, we should impose the condition of zero-stabil
'ty, i.e., the condition that the two eigenvalues a= 1 and a = a1 - a2 of A are on the unit disk 
hose on the unit circle being simple, i.e., 

(3.6) 

A further restriction on the range of the free parameters is obtained by imposing the "stability 
at infinity" condition. By this we mean that the roots of the polynomial P((, oo) are on the unit 
disk (which is of course anyhow a necessary condition for A-stability). By virtue of the Hurwitz 
criterion we obtain (recall that d1 and d2 are assumed to be positive) 

(3.7) 

3.1.1. Second-order methods 
If we are satisfied with second-order accuracy, then we may choose the free parameters aj 

and dj in (3.4a) such that the matrix B vanishes while preserving the property of A-stability. 
For example, if c = 0 then the method is equivalent with the familiar two-step backward 
differentiation formula generated by 

A= ( ~l 
3 l)' 3 

B= (~ ~), D= (~ ~)' 3 
(3.8) 

3.1.2. Third-order methods 
Third-order accuracy is achieved by choosing C31 = C32 = 0, leaving us with three free 



B.P. Sommeijer et al. /A-stable parallel block methods 273 

parameters for monitoring the stability of the method. We find 

c(c 2 - 3c + 6d1) 

a1 = 
( c -1)3 

3c+l2d2 -6cd2 -5 
a2= (c-1)3 

c 2 - 2cd - c 2d b = I 1 

11 ( c - 1 )2 

c-2cd -d 
b = I I 

12 ( c - 1 )2 
(3.9) 

2 - 5d2 - c + 2cd2 
b =-------

21 (c-l)2 
( c - 2)2 - d 2( c 2 - 6c + 8) 

b = ----------
22 ( c - 1)2 

leaving c, d 1 and d 2 as the free parameters. Taking into account the conditions of zero-stability 
and "stability at infinity" (conditions (3.6) and (3.7)), we performed a numerical search in the 
(c, d 1, d 2)-space. It turned out that the regions of A-stable (c, d1, d 2)-values are so small that 
A-stable points and strongly unstable points are close together, that is, a small perturbation of 
these values causes the method to violate the A-stability conditions. For example, the values 

c = 0.917387, di= 0.319523, d2 = 0.347067, (3.10) 

generate such a "marginally" A-stable method. There is, however, an alternative approach. It is 
easily verified that putting a 2 = C32 = 0 yields methods providing third-order approximations at 
the step points tn and second-order approximations at the points t,, +eh. It turns out that in 
the space of free parameters the regions of A-stable methods are larger so that it is easier to 
find A-stable methods by a numerical search. For example, we found the A-stable, third-order 
method 

147 
220 

50 
- 33 

lli) 220 

23 ' 
66 

(3 .11) 

with the normalized error vectors E 3 """(0.19, O)T and E 4 ~ (0.20, -0.017)T. The amplification 
factors at the origin equal 0 and 1, and the maximal amplification factor at infinity is ~ 0.94. 

3.1.3. Fourth-order methods 
Fourth-order accuracy for both components is obtained by choosing C31 = C32 = C41 = C42 = 

0. Alternatively, replacing C41 = 0 by a 2 = 0, reduces the order of the first component to 3, 
without affecting the order of the second component. In both approaches we are left with one 
free parameter for monitoring the stability of the method. Unfortunately, the stability regions 
of these fourth-order methods are rather limited and do not even allow for A( a)-stability. Thus, 
in the class (3.3) the fourth-order methods seem to be of no interest. 

3.2. Three-dimensional block methods 

For k = 3 we expect to find A-stable methods of order four and we may hope for A( a)-stable 
methods of order five. These two cases will be investigated in the following subsections. 
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3.2.1. Fourth-order methods 
Let us choose the matrix A such that a;3 = 1 - a; 1 - a;2 , i = 1, 2, 3, so that C0 vanishes. The 

vectors Ci vanish for j = 1, 2, 3, 4 if the entries b;1 and di satisfy the linear systems 

1 1 1 bi! c;-a;1(c 1 -l)-a;2 (c2 -l) 

c1-l c2 -l 0 C; b;2 Hcf-ail(c1 -1)2 -a;i(c2 -1)2] 

(c1-1)2 (c2 -1)2 0 2 
C; b;3 H cj - ail(c1 -1)3 - ai2(c2 - 1)3] 

3 3 0 c3 d; ±[ ci- a; 1(c 1 -1)4 - an(c2 - 1)4] (c1-l) (c2-l) l 

i = 1, 2, 3. (3 .12) 

This shows that there is a family of fourth-order block methods with eight free parameters: an, 
a;2 (i = 1, 2, 3), c 1 and c2• 

In order to ensure zero-stability, we require that A has its two parasitic eigenvalues within 
the unit circle. Writing the characteristic equation of A in the form(?; - 1)(?; 2 + q0 ?; + r 0 ) = 0, 
we find that we have zero-stability if 

r 0 <1, 

(3.13) 

Taking this constraint into account, we performed a numerical search over the free parameters 
to obtain the A-stable method 

a-l 1 3 5. 13. 43 15161 29. 43. 83 

2 2 _2_"_ 
25 ·32 ·11 211. 32. 5 

A= I 1 1 B= 
-73 -467 -7. 37 

2 -2 
' 2. 32 . 7 z.33 .7 2. 31 ·13 

-1 I 3 5. 16069 54419 41927 
2 2 z11. 32. 7 25 ·33 ·5·7 211. 31 

u. 1303 
(3.14) 

29 . 5. 11 
0 0 

D= 0 
277 

0 c = (5, 13/4, l)T 
2. 32 . 13 

0 0 
16001 

29 ·32 ·5 

with normalized error vector E5 == (0.13, 0.27, 0.075)T. Its amplification factors at the origin are 
0, ~ and 1, and at infinity the maximal amplification factor is == 0.92. 

The above direct search method is rather expensive, and therefore we also applied an 
alternative approach where 

m k 

L: L: I JL;j ll/;, (3.15) 
i= I }= 1 

was minimized over the free parameters b.2 and d. (i = 1 2 3) c 1 and c2 Here k = 3 the q .. 
l l ' ' ' • ' ' l] 

are control parameters and JL;1, j = 1, ... , k, denote the eigenvalues of the amplification matrix 



B.P. Sommeijer et al. /A-stable parallel block methods 275 

M(z) defined in (3.1) with zi running through a set of m points lying on the imaginary axis. In 
this way we found the A-stable method 

( 2820 -183 -1037] r-398 -92 -177] A = 16100 - 7100 -3423 12123 ' B = 4~0 6282 -92 2143 ' 
-1020 -1607 4227 1098 272 507 

D-t(~ 
0 

~l· 8 c=(3,5,l)T (3.16) 
0 

with normalized error vector E5 ::::: (3.67, 0.19, 0.064)T. At the origin the amplification factors 
are 0.81, 0.81 and 1, and at infinity the maximal amplification factor is ::::: 0.37. 

3.2.2. Fifth-order methods 
Along the same lines as we constructed the fourth-order method (3.16), we proceeded with 

the fifth-order case. Now only five free parameters are available, say di (i = 1, 2, 3), c 1 and c2 • 

Imposing the constraint (3.13), we found a few A(a, {3, y)-stable methods which may be 
considered as A-stable in most practical applications. 

We mention the A(a, {3, y)-stable method with a= 89.9988°, f3::::: 0.16 and y = 2.6 · 10-6 

generated by 

- 0.37354856915573 
0.45636214490330 

- 71.558907928027 

1.3772028209449 
0.58957191150098 

69.945110840701 

- 0.0036542517891531 l 
-0.045934056404276 ' 

2.6137970873262 

- 0.089579683013023 
0.037434812789650 

-18.279469309687 

( 
0.261 

D= 0 
0 

0 
0.581 
0 

0 l 0 ' 
0.832 

- 0.020791477924637 
0.78549538208108 

-29 .674965823418 

(
-2.747] 

c = -~.122 

0.0023118793010643 l 
0.024702269787981 ' 

- 1.6401568285440 

(3.17) 

with normalized error vector E 6 ::::: (0.007, 0.0038, -0.015)T. At. the origin the amplification 
factors are 0.92, 0.92, and 1, and at infinity the maximal amplification factor is ::::: 0.993. 

Finally, we present the A(a, {3, y )-stable method with a ::::: 89.98°, f3 ::::: 0.30 and y = 6.9 · 10-5 

generated by 

( 
0.58694824150708 

A= 73.394943213338 
1.3881897627759 

-0.042737729478577 
2.5499812910344 

-0.0035265226034516 

0.45578948797150 l 
- 74.944924504372 ' 

( 
0.78434821208875 

B = -30.332265183768 
- 0.012761141648945 

0.023439431423946 
-1.5938561820999 

0.0022604702667178 

( 
0.57487 

D= 0 
0 

0 
0.83102 
0 

0 l 0 ' 
0.2618 

( 
1.6153 l 

c = i.7871 

- 0.38466324017241 

0.033345158796322 l 
-18.934741340575 ' 
-0.092097195902230 

(3.18) 
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Table 1 
Normalized error vectors and values of a, f3 and y 

Method Order p EJ+1 a f3 y 

BDF3 3 (0, 0, -i-) 88.4° 1.94 0.046 

(3.11) 3 (0.20, - 0.017) 90° 0 0 

BDF4 4 (0, 0, 0, t) 73.2° 4.72 0.191 

(3.14) 4 (0.13, 0.27, 0.075) 90° 0 0 
(3.16) 4 (3.67, 0.19, 0.064) 90° 0 0 

BDF5 5 (0, 0, 0, 0, -);) 51.8° 9.94 0.379 

(3.17) 5 (0.007, 0.0038, - 0.015) > 89.9° 0.16 0.0000026 
(3.18) 5 (0.004, - 0.016, 0.007) > 89.9° 0.30 0.000069 

and with normalized error vector E6 ::::: (0.004, -0.016, 0.007)T. At the origin the amplification 
factors are 0.88, 0.88 and 1, and at infinity the maximal amplification factor is :::::: 0.89. 

3.3. Survey of method characteristics 

We conclude with a survey of the parameters a, f3 and y characterizing the stability regions 
of the block methods derived in this paper (see Definition 3.1) and compare them with those of 
the BDFs (details about the BDF methods can be found in [6]). In Table 1 these values are 
listed. In addition, we give the normalized error vectors defined in (2.5) of all methods. For a 
uniform presentation, we first formulated the BDFs as block methods. We recall that a k-step 
13DF method can be cast in the form (2.3) with block point vector c = (2 - k, ... , -1, 0, l)T. 

Finally, we remark that a k-step, kth-order BDF requires k starting values, independent of 
its formulation, whereas the block methods of this paper need only 2 (for p = 3) or 3 (for 
p = 4, 5) starting values. 

4. Application to Volterra integro-differential equations 

Consider the initial-value problem for VIDEs given by (1.2). The most straightforward way of 
solving numerically this problem replaces the integral term in (1.2) by a quadrature formula and 
integrates the resulting ODE by some ODE integrator. This "direct quadrature" method will 
be indicated by DQ method. The stability of DQ methods strongly depends on the quadrature 
formula used for approximating the integral term, particularly if the VIDE in (1.2) is stiff. For 
example, DQ methods using Gregory quadrature formulas become easily unstable (see, e.g., 
[1]). 

A more stable approach is based on the approximation of the integral term by converting it 
into a differential equation and by integrating this differential equation by an ODE solver. For 
that purpose, we introduce the function 

z(t, s) == {k(t, x, y(x)) dx, 
to 

( 4.1) 
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and we write the initial-value problem (1.2) in the form 

dy(t) 
dt=f(t, y(t), z(t, t)), y(t0 )=y0 • (4.2a) 

The method now consists of the application of an ODE solver to the initial-value problem 
(4.2a), where the values of z(t, t) needed by the ODE solver are obtained by integrating the 
initial-value problem 

az( t, s) 
_a_s_ =k(t, s, y(s)), z(t, t 0 ) =0 ( 4.2b) 

from s = t 0 until s = t. This method still belongs to the class of DQ methods, however, it uses a 
special quadrature formula derived from an ODE solver. If the ODE solver is an LM method 
(p, <r), then the quadrature formula is called (p, <r)-reducible (cf. [13]). Similarly, we shall call 
the DQ method (p, <r )-reducible if both initial-value problems (4.2a) and (4.2b) are solved by 
the same LM method (p, <r ), and (A, B, D)-reducible if (4.2a) and ( 4.2b) are solved by the 
same block method (2.3) generated by the matrices A, B and D. 

Let us consider the stability of (A, B, D)-reducible DQ methods. Following the usual 
stability analysis of VIDE solvers (cf., e.g., [2, 13]), we shall consider stability with respect to the 
basic test problem 

dy(t) t 
-- =ty(t) +YJj y(x) dx, y(t0 ) =y 0 • 

dt 111 
(4.3) 

Using the representation (4.2) and writing z(t, t) = z(t), this problem can be represented in the 
form 

dy(t) 
-- = gy(t) + YJZ(t), y(t0 ) = Y0 , 

dt 

dz(t) 
-- = y(t), z(t0 ) = 0. 

dt 

Application of the block method (2.3) to each of these equations yields the recursions 

Yn+ I =AYn + hB[gYn + 71Zn] + hD[ gyn+ 1 + 71Zn+ t], 

Zn+I =AZ,, +hBY,, +hDYn+I· 

( 4.4) 

(4.5) 

We shall show that (4.5) is algebraically equivalent with the recursion obtained by applying (2.3) 
to the system (4.4). Writing (4.4) in the form 

d (g -u(t) = 
dt 1 ~ )u(t), 

the block method (2.3) takes the form 

u(t) == (y(t) ), 
z( t) 

U,, + 1 =A o U,, + hB a f ( U,,) + hD a f ( U,, + 1), 

T 
un+I == (Y,,,1, zn,I; ... ; Yn,k' 2 n,k) ' 

(4.4') 

(4.5') 
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with y . and z . denoting the components of the (column) vectors Yn + 1 and Z n + 1 used in 

(4.5), ;~d wher;1ihe tensor products A 0 Un and B 0 f(Un) are defined according to 

T 
AoUn:=(a 1Yn, a1Zn; ... ; akYn, akZn), 

T 
B 0 f( Un):= ( b1(gYn + 71Z,,), b,Yn; ... ; bk(gYn + 71Zn),bkYn) ' 

with a and b. denoting the jth row vectors of the matrices A and B, respectively. It is now 

readil/ verified that by reordering the equations occurring in ( 4.5 ') such that the first, third, 

fifth, ... equations come first and the second, fourth, sixth, ... equations come next, we obtain 

the recursions ( 4.5). 

Hence, if A and µ, denote the eigenvalues of the Jacobian matrix associated with (4.4'), then 

the recursion (4.5) is stable if both hA and hµ, are in the stability region of the block method 

(2.3). The corresponding region of (hg, h271)=(hA+hµ,, -h2Aµ.)-values will be called the 

stability region of the (A, B, D)-reducible DQ method. Furthermore, if this stability region 

contains the set {(hg, h277): g < 0, 71 < O}, then the DQ method is called A 0-stable. The 

preceding considerations can be summarized in the following theorem which generalizes a 
result for LM methods originally given by Brunner and Lambert [2]. 

Theorem 4.1. Let S be the stability region of the block method (2.3) generated by the matrices A, 

Band D, and let y andµ, be defined by,.\+µ.= g, ,.\µ. = -77. Then the set {(hg, h 277): h.\ ES, 

hµ, ES} defines the region of stability of the (A, B, D)-reducible DQ method. 

From this theorem it follows that the (A, B, D)-reducible DQ method is A 0-stable if, and 

only if, the generating block method (A, B, D) is A-stable. Thus, the use of the block methods 

constructed in this paper avoids the so-called "second Dahlquist barrier" which applies to 

A 0-stable (p, a )-reducible DQ methods for YID Es (cf. [13, Theorem 5]). 

5. Numerical experiments 

5.1. Accuracy test 

To verify the order of the various methods we integrated the test problem proposed by Kaps 
[11]: 

dyl - ( -1) -l 2 
dt - - 2 + E Y1 + E (Y2) ' 

0<(t<(T, (5.1) 

with exact solution Y1 = exp(-2t) and y 2 = exp(-t) for all values of the parameter£. In Table 

2, we have listed the values .1, where L1 denotes the number of correct decimal digits at the 

endpoint (i.e., we write the maximum norm of the error at t = T in the form 10-"1). In all 

~xperiments the theoretical order of the method is shown for sufficiently small values of h (if p 

1s the order of the method, then, on halving the step size, the value of L1 should increase by 
:::: 0.3p). 
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Table 2 Table 3 
Values of .1 for (5.1) with T = 1, t: = io-s Values of .1 for (5.2) with T = 100, a= 10 

Method p h Method p h 
1 l l 1 l l 4 2 l 1 1 1 
4 8 Tii 32 64 TI8 5 5 5 TO 20 40 

BDF3 3 2.8 3.7 4.6 5.5 6.5 7.4 BDF3 3 2.0 2.9 3.9 * * 4.9 
(3.11) 3 2.8 3.6 4.4 5.2 6.1 7.0 (3.11) 3 2.1 2.8 3.4 4.0 4.6 5.3 
BDF4 4 3.4 4.7 5.9 7.1 8.4 9.6 BDF4 4 2.2 * * * 2.9 8.2 
(3.14) 4 3.8 5.2 9.5 7.9 8.9 10.0 (3.14) 4 2.8 4.0 4.9 5.8 6.8 8.0 
(3.16) 4 3.1 3.9 4.8 5.9 7.1 8.2 (3.16) 4 1.6 2.7 3.8 4.9 5.8 6.8 
BDF5 5 4.0 5.6 7.2 8.7 10.2 12.0 BDF5 5 -0.l * * * 8.5 10.3 
(3.17) 5 2.6 4.0 5.5 7.3 9.2 10.3 (3.17) 5 1.2 2.0 3.4 4.7 6.2 7.6 
(3.18) 5 4.7 5.4 6.4 7.7 9.2 10.1 (3.18) 5 2.9 3.9 5.1 6.4 7.6 8.6 

5.2. Stability test 

We tested the stability of the methods by integrating a problem in which the Jacobian matrix 
has purely imaginary eigenvalues: 

dyl 
- = -ay 2 + (1 +a) cos(t), 
dt 

dy2 
- =ay 1 - (1 +a) sin(t), 
dt 

y 2(0) = 1, 0 ~ t ~ T, 

with exact solution y 1 = sin(t) and y 2 = cos(t) for all values of the parameter a. 

(5.2) 

In Table 3 the results are listed for T = 100. Values of L1 corresponding to stepsizes that are 
theoretically unstable are underlined and overflow is indicated by * . The unstable results of 
the BDFs is in agreement with their regions of instability indicated in Table 1 (the phe
nomenon that BDF5 becomes stable again for sufficiently small h is due to the fact that its 
imaginary interval of instability is given by i[0.71, 9.94]). 

Next, we show that the "almost" A-stable fifth-order methods (3.17) and (3.18) behave as 
A-stable methods in practice. We performed experiments for a= 1 and a= 4 with h = ~: for 
a = 1 both integration processes are theoretically unstable, and for a = 4 the processes are 
stable. In Table 4 the results are listed for increasing length of the integration interval: these 
results clearly show that both methods perform perfectly stable for a = 1. 

Table 4 
Values of .1 for problem (5.2) for h = i 
Method a = 1: theoretically unstable 

T= 10 T= 100 

(3.17) 3.6 3.8 
(3.18) 4.5 4.3 

T = 1000 

3.6 
4.8 

a = 4: theoretically stable 

T=lO 

4.0 
5.4 

T= 100 

3.9 
5.4 

T = 1000 

3.9 
5.4 
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Table 5 
Values of L1 for problem (5.3) at T = 10 

Method Order p a= 1 a= 10 

h-1 -2 h=l. 4 h=k h =~ h =± 
BDF3 3 5.7 6.8 7.9 6.0 6.9 
(3.11) 3 5.5 6.5 7.3 5.4 6.5 
BDF4 4 5.4 7.0 8.3 6.5 8.1 
(3.14) 4 6.0 8.3 9.1 6.4 8.6 
(3.16) 4 5.2 6.2 7.2 6.7 7.9 
BDF5 5 5.1 7.2 8.9 6.1 8.2 
(3.17) 5 2.5 5.2 7.2 2.9 5.3 
(3.18) 5 6.0 6.9 8.2 6.8 8.5 

5.3. Volterra integro-differential equation 

Consider the initial-value problem 
2 

d y ( t) = _ 1 + at ( 1 + t) + ~ ln ( 2 + 2 t ) + a 1 d x ' 
dt (l+t)2 y(t) 2+t la1+(l+t)y(x) 

h=k 

7.8 
7.3 
9.4 

10.9 
8.5 
9.9 
7.5 
9.3 

y(2)=t, 2~t~T, a>O (5.3) 
with exact solution y(t) = 1/(1 + t). For a= 1, this problem has been discussed in [2]. From 
the expressions 

af a (2+2t) 
g== ay = - y2(t)ln 2+t' 

at ak 1 + t 
YJ == --- =-a 

az ay (1 + (1 + t)y) 2 

it follows that (5.3) is stable if t > 0 and y ~ 0. Furthermore, we see that in the vicinity of the 
exact solution we have g:::::: -a(l + t) 2 and 77:::::: -a(l + t), so that the stiffness of this problem 
increases with a and t. For example, if a= T = 10, then an A 0-stable method is highly 
desirable. 

Table 5 lists results for various methods and values of the stepsize h. Notice that the results 
for the stiff problem (a= 10) are not less accurate (even more accurate) than the results for the 
nonstiff problem (a = 1), showing that stiffness does not cause any problem. Similar to the 
ODE case (cf. Table 2), the method (3.14) performs very accurately, whereas (3.17) is 
significantly less accurate. 

5.4. Performance test on the ALLIANT FX / 4 

Finally, we tested the methods (3.11) and (3.18) on the ALLIANT FX/4 by integrating the 
problem (5.1) of Kaps. In Table 6, we have listed timings on P processors and the rate of 

Table 6 
Timings (in seconds) for problem (5.1) at T = 1 with E = 10- 3 and h = 2~6 

Method 

(3.11) 
(3.18) 

k 

2 
3 

p = 1 

0.43 
0.66 

P=2 

0.23 
0.45 

P=3 

0.23 
0.25 

P=4 

0.25 

Efficiency rate 

0.93 
0.88 
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efficiency of a k-processor method, i.e., the execution time on one processor divided by k times 
the execution time on k processors. These results show that the gain factor is close to its 
optimal value. 

From Table 6 we conclude that the performance is close to its optimum, that is, the gain 
factor obtained for a k-processor method is almost equal to k. Table 6 also lists timings in 
cases where methods have the disposal of one more processor (i.e., k + 1) than the number 
(i.e., k) they are designed for. We see that this additional processor is not utilized, since the k 
processors (concurrently) solve the k implicit relations and the extra processor is idle. As 
mentioned before, it could have been exploited for updating the Jacobian matrix, but in this 
test we did not include such a technique. 

It should be noted that the efficiency rate is slightly dependent on implementation strategies, 
such as how accurately the nonlinear systems are solved. For example, it may happen that the 
first (or any other) implicit relation requires less Newton iterations than the other implicit 
relations (e.g., because of a more accurate initial approximation); in such cases this first 
processor will be idle for some time, which of course, has a bad influence on the efficiency rate. 
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