
Applied Numerical Mathematics 9 (1992) 267-281
North-Holland

267

A-stable parallel block methods for ordinary
and integro-differential equations

B.P. Sommeijer, W. Couzy and P.J. van der Houwen
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, Netherlands

Abstract

Sommeijer, B.P., W. Couzy and P.J. van der Houwen, A-stable parallel block methods for ordinary and
integro-differential equations, Applied Numerical Mathematics 9 (1992) 267-281.

In this paper we study the stability of a class of block methods which are suitable for integrating ordinary and
integro-differential equations on parallel computers. A-stable methods of orders 3 and 4 and A(a)-stable
methods with a > 89.9° of order 5 are constructed. On multiprocessor computers these methods are of the
same computational complexity as implicit linear multistep methods on one-processor computers.

1. Introduction

Many algorithms for numerically solving initial-value problems for ordinary differential
equations (ODEs):

dy(t)
~ =f(t, y(t)), y(t0) =yo, (1.1)

or Volterra integro-differential equations (VIDEs):

d: ~t) = f (t' y (t)' { k (t' x' y (x)) d x) ' (1.2)

are based on implicit linear multistep methods (LM methods), in particular on backward
differentiation methods (BDF methods). The main reason for their popularity is the relatively
low computational effort per step, at least when compared with other suitable methods for stiff
equations, such as implicit Runge-Kutta methods. However, the BDFs have one serious
disadvantage: they are subject to the so-called "second Dahlquist barrier", which says that the
order cannot exceed two if the method has to be A-stable. Thus the higher-order BDFs lack
the property of A-stability. This means that if a high-order formula is selected (dictated by
accuracy considerations), then it may happen that-for certain types of stiff ODEs or VIDEs
the algorithm encounters stability problems which usually results in a dramatical degradation of
the performance. To circumvent this behaviour it is highly desirable to have A-stable methods
of high order without increasing the computational effort per step.

0168-9274/92/$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

268 B.P. Sommeijer et al. /A-stable parallel block methods

It is our aim to construct such methods. They are most easily formulated as so-called block
methods. Block methods can be considered as a set of simultaneously applied linear multistep
methods to obtain several numerical approximations within one application. Numerous block
methods have been proposed in the literature including high-order A-stable ones (see e.g.
Watts and Shampine [16]). However, these implicit methods require in each application an
amount of work which by far exceeds the computational effort required by a BDF. In recent
papers (cf. e.g. Chu and Hamilton [3]), block methods have been given which solve the huge
implicit relations on a parallel computer which indeed significantly reduces the computational
costs. However, all these techniques follow the approach of predictor-corrector iteration,
which in fact restricts their application to nonstiff problems.

Like Chu and Hamilton, we will employ parallelism to obtain the aforementioned goals. We
shall construct A-stable methods of orders three and four, and A(a)-stable methods of order
five with a ~ 1T /2. Furthermore, by carefully segmenting the total work per step into a few
subtasks of approximately equal computational length, these methods require an amount of
work which is very similar to what a BDF requires when implemented on a uni-processor
machine. In Section 5.3 we will see that a high degree of parallelization is obtained. Since the
implicit relations are solved by a Newton-type process (as is the case in BDF implementations)
rather than a predictor-corrector fashion, the property of A-stability is preserved.

In Sections 2 and 3, we present the construction of block methods for ODEs, in Section 4,
block methods for VIDEs employing these block ODE solvers are discussed, and in Section 5,
numerical experiments are reported. The way of construction is based on extremely simple
tools: firstly, certain order-conditions are imposed such that a number of parameters are left
free, and secondly, a numerical search over the free parameters is carried out to give the
method the optimal stability characteristics. So far, we did not succeed in developing more
sophisticated search techniques by analytical means.

2. Parallel block methods for ODEs

In order to simplify the formulas, we present the derivations of the block methods for scalar,
autonomous ODEs. The extension of these methods to systems of ODEs, and therefore also to
non-autonomous equations, is straightforward.

The block methods studied in this paper are a direct generalization of the implicit one-step
method

Yn+ I= ayn + hbf(Yn) + hdf(Yn+I), n = 0, 1, ... ,

where h is the stepsize and Yn an approximation to y(tn). By introducing block vectors

T
Yn + I := (Y n, I' · · · ' Y n ,k) ' C := (C I , ..• , Ck) T, Ck = 1,

(2.1)

(2.2)

where Yn,i denotes a numerical approximation to the exact solution value y(tn + c;h), and
assuming that (1.1) is a scalar equation, we can define the block method

(2.3)

where A, B and D are k-by-k matrices. Here we use the convention that for any given vector

B.P. Sommeijer et al. /A-stable parallel block methods 269

v = (v), f(v) denotes the vector with entries f(vi). This method can be considered as the block
analogue of (2.1). A characteristic of these methods is that, unlike conventional block methods
based on linear multistep methods, the block point vector c is allowed to have k - 1 non-integer
components. In order to start the method, one needs the initial vector Y0 , which requires, in
general, as many starting values as there are distinct values cj (j = 1, ... , k). Notice that the
last component of Yn + 1 contains the step point value y n + 1• Furthermore, we remark that, in
general, Yn,i =I= Ym,i' even if n + ci = m + ci.

The method (2.3) is suitable for direct use on parallel computers if the matrix D is diagonal,
since such a form uncouples the various components as far as implicitness is concerned; the
corresponding methods will be called parallel block methods. Using k processors, each
processor has to evaluate a component of f(Yn) and to solve a system of equations whose
dimension is that of the system of ODEs (1.1). If Newton's method is used for solving the
system of equations, then each processor needs the Jacobian matrix I - hdjjaf ;ay and its
LU-decomposition. Either the various processors have to compute the data they need them
selves, or one may consider the use of additional processors for computing the Jacobian
matrices and their LU-decompositions. Let us consider the second strategy. As soon as the
additional processors have completed an update of the matrix af jay and computed the
LU-decompositions of the k matrices I - hdiiaf ;ay, then the first k processors can replace
their data by the new data. However, usually the computational job of computing Jacobian
matrices and LU-decompositions is so substantial that the speed of updating may not be great
enough. In such cases, the use of matrices D with equal diagonal elements is recommendable,
because then the Jacobian matrices I - hdjjaf jay are all identical, so that only one instead of
k decompositions are required. Therefore, methods where D is of the form dl, I being the
identity matrix, have some advantage.

If D is a full matrix, then the block method is not directly suitable for use on parallel
computers. However, (2.3) allows the application of an iteration process that has a high degree
of parallelism. This iteration method is of the one-level form

[I -hC Of~:·) l yu+" - hEf(YU+ ")

=AYn + hBf(Yn) -hC af~:n) Y(j) + h[D -E]f(YU)),

where C and E are suitable iteration matrices. There are several possibilities for choosing
these matrices in order to achieve parallelism and to preserve stability. We mention: (i) C
diagonal and E = O (linear diagonal iteration), (ii) C = 0 and E diagonal (nonlinear diagonal
iteration), and (iii) C = D, E = O combined with diagonalization of C (diagonalized Newton).
A survey of properties of diagonal iteration in the case where (2.3) corresponds to Runge-Kutta
methods can be found in [10]. The diagonalized Newton process was proposed by Lubich [12].
In passing we remark, that one might also consider higher-level iteration methods. For
example, the "pipeline" iteration proposed by Feldstein [5] fits into the family of three-level
iteration methods.

In a forthcoming paper, we will study the above iteration process if the matrix D in (2.3) is a
full matrix. In this paper we always assume that D is diagonal.

270 B.P. Sommeijer et al. /A-stable parallel block methods

The conditions for pth-order consistency for methods of the form (2.3) are extremely simple
and read (cf. [9])

C1 = 0, j = 0, 1, ... , p.

C0 ==Ae-e; C1 :=A(c-e) +Be+De-c; (2.4)

C1 ==A(c-e)1 +J[B(c-e)J-l_Dci- 1]-ci, j=2,3, ... ,

where e denotes the vector with unit entries and where powers of vectors are meant to be
componentwise powers.

In order to compare the components of these vectors with the error constants corresponding
to conventional linear multistep methods, we introduce the normalized error vectors [8]

cj
E.==----

1 j!(B+D)e'
(2.5)

where the division of vectors is meant componentwise. When a linear k-step method is written
in the form (2.3) with c = (-k + 2, ... , -2, -1, 0, l)T, then the last component of E1 equals
the normalized error constant of the linear k-step method. Since these block methods are in
fact a composition of k conventional linear multistep methods, the theory developed for the
latter class of methods (see Henrici [8] or Hairer, NQ!rsett and Wanner [7]), is to a large extent
also applicable in the case of block methods. In particular, this theory can be used to determine
the order of convergence of the block methods, that is the behaviour of Yn+i -Y(t,,+ 1) ==
'.y(t" + c1h), y(tn + c2h), ... , y(tn + h))T for h ~ 0 and tn = nh fixed (see also the paper by
Cooper [4]).

3. Stability

The (linear) stability of block methods can be investigated by applying the method to the test
equation y' = ,.\ y. This will lead to a recursion of the form

M(z)== [I-zD]- 1[A +zB], z==A.h. (3 .1)

M will be called the amplification matrix and its eigenvalues the amplification factors. Here we
observe that, by requiring the elements of the diagonal matrix D to be positive, the matrix
I - zD is nonsingular for all z on the negative real axis. Therefore, in the sequel we will assume
that the (diagonal) elements of D are positive.

In our stability analysis we shall use the following result on the power of a matrix N (cf. [15,
p. 65]).

(3.2)

where II· II and p(N) are the spectral norm and radius of N and where all diagonal
submatrices of the Jordan normal form of N which have spectral radius p(N) are at most
q-by-q. If p(N) < 1 or p(N) = q = 1, then we call N power bounded.

Following the familiar stability definitions used for RK and LM methods, we shall call the
region where the amplification matrix M(z) is power bounded, the stability region of the block

B.P. Sommeijer et al. /A-stable parallel block methods 271

method. If the stability region contains the origin, then the method is called zero-stable. The
region where II Mn II tends to zero will be called the strong stability region. If the (strong)
stability region of a block method contains the left half plane, then the block method is called
(strongly) A-stable. Furthermore, if the amplification matrix of an A-stable method has
vanishing eigenvalues at infinity, then the method is called L-stable. For some methods (i.e.,
the BDF methods) a less demanding definition of stability is more appropriate. Therefore the
notion of A(a)-stability has been introduced. The angle a defines a wedge in the left half plane
and the method is stable if z lies inside this wedge. This is, however, a rather crude way to
describe the stability region, since for the higher-order BDF methods the part of the left half
plane which is not included in the stability region is a small lobe near the imaginary axis. To
provide more detailed information on the stability region, we introduce two additional parame
ters leading to the notion of A(a, {3, y)-stability:

Definition 3.1. A method is said to be A(a, {3, y)-stable if (i) its region of stability contains the
infinite wedge { z: - a < 1T - arg(z) < a}, 0 < a ~ 'IT /2, and all points in the non positive half
plane with I z I > {3, and (ii) 1 + y is the maximum value of the spectral radius of M(z) when z
runs through the region of instability lying in the nonpositive half plane.

Note that A('IT /2, 0, 0)-stability implies A-stability. The degree of instability of the method is
measured by y.

If we set A = D =I and B = 0 in (2.3), then the method reduces to a set of k completely
uncoupled one-step methods of the backward Euler type, each advancing the solution from
tn-i + c;h to tn + c;h (i = 1, 2, ... , k). Evidently, these k formulas can be efficiently imple·
mented on a k-processor machine (in fact, they could equally well run on k separat(
computers). Such methods have excellent stability properties (e.g., the property of L-stability),
but are only of first order. However, by using full matrices A and B, that is the k formulas of
the block method share the same information from the previous step, the order can be
considerably increased. In the next two subsections, we investigate for k = 2 ("two-dimensional
block methods") and k = 3 ("three-dimensional block methods") to what values the order can
be raised while preserving the favourable stability properties of backward Euler (stability plots
may be found in [14]).

3.1. Two-dimensional block methods

First we consider the case k = 2 and choose the coefficient matrices of the form

T c=(c,l). (3.3)

Imposing the conditions for second-order consistency we can express the entries of the matrix
B in terms of the five free parameters c, a 1, a 2 , d 1 and d 2 :

j = 1, 2, (3.4a)

272 B.P. Sommeijeret al. /A-stable parallel block methods

where c 1 = c and c2 = 1. The components Cij of the vectors C; (i;;;. 3) are given by

cij = (1 - ~i)(c -1)iaj + icJ- 1dj + iicAcj - 2dj)(c -1);-z - cJ, j = 1, 2.

An elementary calculation shows that C3j vanishes if

and that C4j also vanishes if, in addition,

c c-2
d = d, = .

I 2(C + 1) ' - 2(C - 3)

(3.4b)

(3.4c)

The characteristic equation of the amplification matrix in (3.1) can be written in the form

p ((, z) == det [A + zB - ((I - zD)]

(
a 1 + bnz - ((l -d 1z)

= det
llz + bz1Z

(3.5)

We shall determine the z-region where this polynomial has its roots ' within the unit circle,
that is, the region of strong stability. In addition, we should impose the condition of zero-stabil
'ty, i.e., the condition that the two eigenvalues a= 1 and a = a1 - a2 of A are on the unit disk
hose on the unit circle being simple, i.e.,

(3.6)

A further restriction on the range of the free parameters is obtained by imposing the "stability
at infinity" condition. By this we mean that the roots of the polynomial P((, oo) are on the unit
disk (which is of course anyhow a necessary condition for A-stability). By virtue of the Hurwitz
criterion we obtain (recall that d1 and d2 are assumed to be positive)

(3.7)

3.1.1. Second-order methods
If we are satisfied with second-order accuracy, then we may choose the free parameters aj

and dj in (3.4a) such that the matrix B vanishes while preserving the property of A-stability.
For example, if c = 0 then the method is equivalent with the familiar two-step backward
differentiation formula generated by

A= (~l
3 l)' 3

B= (~ ~), D= (~ ~)' 3
(3.8)

3.1.2. Third-order methods
Third-order accuracy is achieved by choosing C31 = C32 = 0, leaving us with three free

B.P. Sommeijer et al. /A-stable parallel block methods 273

parameters for monitoring the stability of the method. We find

c(c 2 - 3c + 6d1)

a1 =
(c -1)3

3c+l2d2 -6cd2 -5
a2= (c-1)3

c 2 - 2cd - c 2d b = I 1

11 (c - 1)2

c-2cd -d
b = I I

12 (c - 1)2
(3.9)

2 - 5d2 - c + 2cd2
b =-------

21 (c-l)2
(c - 2)2 - d 2(c 2 - 6c + 8)

b = ----------
22 (c - 1)2

leaving c, d 1 and d 2 as the free parameters. Taking into account the conditions of zero-stability
and "stability at infinity" (conditions (3.6) and (3.7)), we performed a numerical search in the
(c, d 1, d 2)-space. It turned out that the regions of A-stable (c, d1, d 2)-values are so small that
A-stable points and strongly unstable points are close together, that is, a small perturbation of
these values causes the method to violate the A-stability conditions. For example, the values

c = 0.917387, di= 0.319523, d2 = 0.347067, (3.10)

generate such a "marginally" A-stable method. There is, however, an alternative approach. It is
easily verified that putting a 2 = C32 = 0 yields methods providing third-order approximations at
the step points tn and second-order approximations at the points t,, +eh. It turns out that in
the space of free parameters the regions of A-stable methods are larger so that it is easier to
find A-stable methods by a numerical search. For example, we found the A-stable, third-order
method

147
220

50
- 33

lli) 220

23 '
66

(3 .11)

with the normalized error vectors E 3 """(0.19, O)T and E 4 ~ (0.20, -0.017)T. The amplification
factors at the origin equal 0 and 1, and the maximal amplification factor at infinity is ~ 0.94.

3.1.3. Fourth-order methods
Fourth-order accuracy for both components is obtained by choosing C31 = C32 = C41 = C42 =

0. Alternatively, replacing C41 = 0 by a 2 = 0, reduces the order of the first component to 3,
without affecting the order of the second component. In both approaches we are left with one
free parameter for monitoring the stability of the method. Unfortunately, the stability regions
of these fourth-order methods are rather limited and do not even allow for A(a)-stability. Thus,
in the class (3.3) the fourth-order methods seem to be of no interest.

3.2. Three-dimensional block methods

For k = 3 we expect to find A-stable methods of order four and we may hope for A(a)-stable
methods of order five. These two cases will be investigated in the following subsections.

274 B.P. Sommeijer et al. /A-stable parallel block methods

3.2.1. Fourth-order methods
Let us choose the matrix A such that a;3 = 1 - a; 1 - a;2 , i = 1, 2, 3, so that C0 vanishes. The

vectors Ci vanish for j = 1, 2, 3, 4 if the entries b;1 and di satisfy the linear systems

1 1 1 bi! c;-a;1(c 1 -l)-a;2 (c2 -l)

c1-l c2 -l 0 C; b;2 Hcf-ail(c1 -1)2 -a;i(c2 -1)2]

(c1-1)2 (c2 -1)2 0 2
C; b;3 H cj - ail(c1 -1)3 - ai2(c2 - 1)3]

3 3 0 c3 d; ±[ci- a; 1(c 1 -1)4 - an(c2 - 1)4] (c1-l) (c2-l) l

i = 1, 2, 3. (3 .12)

This shows that there is a family of fourth-order block methods with eight free parameters: an,
a;2 (i = 1, 2, 3), c 1 and c2•

In order to ensure zero-stability, we require that A has its two parasitic eigenvalues within
the unit circle. Writing the characteristic equation of A in the form(?; - 1)(?; 2 + q0 ?; + r 0) = 0,
we find that we have zero-stability if

r 0 <1,

(3.13)

Taking this constraint into account, we performed a numerical search over the free parameters
to obtain the A-stable method

a-l 1 3 5. 13. 43 15161 29. 43. 83

2 2 _2_"_
25 ·32 ·11 211. 32. 5

A= I 1 1 B=
-73 -467 -7. 37

2 -2
' 2. 32 . 7 z.33 .7 2. 31 ·13

-1 I 3 5. 16069 54419 41927
2 2 z11. 32. 7 25 ·33 ·5·7 211. 31

u. 1303
(3.14)

29 . 5. 11
0 0

D= 0
277

0 c = (5, 13/4, l)T
2. 32 . 13

0 0
16001

29 ·32 ·5

with normalized error vector E5 == (0.13, 0.27, 0.075)T. Its amplification factors at the origin are
0, ~ and 1, and at infinity the maximal amplification factor is == 0.92.

The above direct search method is rather expensive, and therefore we also applied an
alternative approach where

m k

L: L: I JL;j ll/;, (3.15)
i= I }= 1

was minimized over the free parameters b.2 and d. (i = 1 2 3) c 1 and c2 Here k = 3 the q ..
l l ' ' ' • ' ' l]

are control parameters and JL;1, j = 1, ... , k, denote the eigenvalues of the amplification matrix

B.P. Sommeijer et al. /A-stable parallel block methods 275

M(z) defined in (3.1) with zi running through a set of m points lying on the imaginary axis. In
this way we found the A-stable method

(2820 -183 -1037] r-398 -92 -177] A = 16100 - 7100 -3423 12123 ' B = 4~0 6282 -92 2143 '
-1020 -1607 4227 1098 272 507

D-t(~
0

~l· 8 c=(3,5,l)T (3.16)
0

with normalized error vector E5 ::::: (3.67, 0.19, 0.064)T. At the origin the amplification factors
are 0.81, 0.81 and 1, and at infinity the maximal amplification factor is ::::: 0.37.

3.2.2. Fifth-order methods
Along the same lines as we constructed the fourth-order method (3.16), we proceeded with

the fifth-order case. Now only five free parameters are available, say di (i = 1, 2, 3), c 1 and c2 •

Imposing the constraint (3.13), we found a few A(a, {3, y)-stable methods which may be
considered as A-stable in most practical applications.

We mention the A(a, {3, y)-stable method with a= 89.9988°, f3::::: 0.16 and y = 2.6 · 10-6

generated by

- 0.37354856915573
0.45636214490330

- 71.558907928027

1.3772028209449
0.58957191150098

69.945110840701

- 0.0036542517891531 l
-0.045934056404276 '

2.6137970873262

- 0.089579683013023
0.037434812789650

-18.279469309687

(
0.261

D= 0
0

0
0.581
0

0 l 0 '
0.832

- 0.020791477924637
0.78549538208108

-29 .674965823418

(
-2.747]

c = -~.122

0.0023118793010643 l
0.024702269787981 '

- 1.6401568285440

(3.17)

with normalized error vector E 6 ::::: (0.007, 0.0038, -0.015)T. At. the origin the amplification
factors are 0.92, 0.92, and 1, and at infinity the maximal amplification factor is ::::: 0.993.

Finally, we present the A(a, {3, y)-stable method with a ::::: 89.98°, f3 ::::: 0.30 and y = 6.9 · 10-5

generated by

(
0.58694824150708

A= 73.394943213338
1.3881897627759

-0.042737729478577
2.5499812910344

-0.0035265226034516

0.45578948797150 l
- 74.944924504372 '

(
0.78434821208875

B = -30.332265183768
- 0.012761141648945

0.023439431423946
-1.5938561820999

0.0022604702667178

(
0.57487

D= 0
0

0
0.83102
0

0 l 0 '
0.2618

(
1.6153 l

c = i.7871

- 0.38466324017241

0.033345158796322 l
-18.934741340575 '
-0.092097195902230

(3.18)

276 B.P. Sommeijer et al. /A-stable parallel block methods

Table 1
Normalized error vectors and values of a, f3 and y

Method Order p EJ+1 a f3 y

BDF3 3 (0, 0, -i-) 88.4° 1.94 0.046

(3.11) 3 (0.20, - 0.017) 90° 0 0

BDF4 4 (0, 0, 0, t) 73.2° 4.72 0.191

(3.14) 4 (0.13, 0.27, 0.075) 90° 0 0
(3.16) 4 (3.67, 0.19, 0.064) 90° 0 0

BDF5 5 (0, 0, 0, 0, -);) 51.8° 9.94 0.379

(3.17) 5 (0.007, 0.0038, - 0.015) > 89.9° 0.16 0.0000026
(3.18) 5 (0.004, - 0.016, 0.007) > 89.9° 0.30 0.000069

and with normalized error vector E6 ::::: (0.004, -0.016, 0.007)T. At the origin the amplification
factors are 0.88, 0.88 and 1, and at infinity the maximal amplification factor is :::::: 0.89.

3.3. Survey of method characteristics

We conclude with a survey of the parameters a, f3 and y characterizing the stability regions
of the block methods derived in this paper (see Definition 3.1) and compare them with those of
the BDFs (details about the BDF methods can be found in [6]). In Table 1 these values are
listed. In addition, we give the normalized error vectors defined in (2.5) of all methods. For a
uniform presentation, we first formulated the BDFs as block methods. We recall that a k-step
13DF method can be cast in the form (2.3) with block point vector c = (2 - k, ... , -1, 0, l)T.

Finally, we remark that a k-step, kth-order BDF requires k starting values, independent of
its formulation, whereas the block methods of this paper need only 2 (for p = 3) or 3 (for
p = 4, 5) starting values.

4. Application to Volterra integro-differential equations

Consider the initial-value problem for VIDEs given by (1.2). The most straightforward way of
solving numerically this problem replaces the integral term in (1.2) by a quadrature formula and
integrates the resulting ODE by some ODE integrator. This "direct quadrature" method will
be indicated by DQ method. The stability of DQ methods strongly depends on the quadrature
formula used for approximating the integral term, particularly if the VIDE in (1.2) is stiff. For
example, DQ methods using Gregory quadrature formulas become easily unstable (see, e.g.,
[1]).

A more stable approach is based on the approximation of the integral term by converting it
into a differential equation and by integrating this differential equation by an ODE solver. For
that purpose, we introduce the function

z(t, s) == {k(t, x, y(x)) dx,
to

(4.1)

B.P. Sommeijer et al. /A-stable parallel block methods 277

and we write the initial-value problem (1.2) in the form

dy(t)
dt=f(t, y(t), z(t, t)), y(t0)=y0 • (4.2a)

The method now consists of the application of an ODE solver to the initial-value problem
(4.2a), where the values of z(t, t) needed by the ODE solver are obtained by integrating the
initial-value problem

az(t, s)
_a_s_ =k(t, s, y(s)), z(t, t 0) =0 (4.2b)

from s = t 0 until s = t. This method still belongs to the class of DQ methods, however, it uses a
special quadrature formula derived from an ODE solver. If the ODE solver is an LM method
(p, <r), then the quadrature formula is called (p, <r)-reducible (cf. [13]). Similarly, we shall call
the DQ method (p, <r)-reducible if both initial-value problems (4.2a) and (4.2b) are solved by
the same LM method (p, <r), and (A, B, D)-reducible if (4.2a) and (4.2b) are solved by the
same block method (2.3) generated by the matrices A, B and D.

Let us consider the stability of (A, B, D)-reducible DQ methods. Following the usual
stability analysis of VIDE solvers (cf., e.g., [2, 13]), we shall consider stability with respect to the
basic test problem

dy(t) t
-- =ty(t) +YJj y(x) dx, y(t0) =y 0 •

dt 111
(4.3)

Using the representation (4.2) and writing z(t, t) = z(t), this problem can be represented in the
form

dy(t)
-- = gy(t) + YJZ(t), y(t0) = Y0 ,

dt

dz(t)
-- = y(t), z(t0) = 0.

dt

Application of the block method (2.3) to each of these equations yields the recursions

Yn+ I =AYn + hB[gYn + 71Zn] + hD[gyn+ 1 + 71Zn+ t],

Zn+I =AZ,, +hBY,, +hDYn+I·

(4.4)

(4.5)

We shall show that (4.5) is algebraically equivalent with the recursion obtained by applying (2.3)
to the system (4.4). Writing (4.4) in the form

d (g -u(t) =
dt 1 ~)u(t),

the block method (2.3) takes the form

u(t) == (y(t)),
z(t)

U,, + 1 =A o U,, + hB a f (U,,) + hD a f (U,, + 1),

T
un+I == (Y,,,1, zn,I; ... ; Yn,k' 2 n,k) '

(4.4')

(4.5')

278 B.P. Sommeijer et al. /A-stable parallel block methods

with y . and z . denoting the components of the (column) vectors Yn + 1 and Z n + 1 used in

(4.5), ;~d wher;1ihe tensor products A 0 Un and B 0 f(Un) are defined according to

T
AoUn:=(a 1Yn, a1Zn; ... ; akYn, akZn),

T
B 0 f(Un):= (b1(gYn + 71Z,,), b,Yn; ... ; bk(gYn + 71Zn),bkYn) '

with a and b. denoting the jth row vectors of the matrices A and B, respectively. It is now

readil/ verified that by reordering the equations occurring in (4.5 ') such that the first, third,

fifth, ... equations come first and the second, fourth, sixth, ... equations come next, we obtain

the recursions (4.5).

Hence, if A and µ, denote the eigenvalues of the Jacobian matrix associated with (4.4'), then

the recursion (4.5) is stable if both hA and hµ, are in the stability region of the block method

(2.3). The corresponding region of (hg, h271)=(hA+hµ,, -h2Aµ.)-values will be called the

stability region of the (A, B, D)-reducible DQ method. Furthermore, if this stability region

contains the set {(hg, h277): g < 0, 71 < O}, then the DQ method is called A 0-stable. The

preceding considerations can be summarized in the following theorem which generalizes a
result for LM methods originally given by Brunner and Lambert [2].

Theorem 4.1. Let S be the stability region of the block method (2.3) generated by the matrices A,

Band D, and let y andµ, be defined by,.\+µ.= g, ,.\µ. = -77. Then the set {(hg, h 277): h.\ ES,

hµ, ES} defines the region of stability of the (A, B, D)-reducible DQ method.

From this theorem it follows that the (A, B, D)-reducible DQ method is A 0-stable if, and

only if, the generating block method (A, B, D) is A-stable. Thus, the use of the block methods

constructed in this paper avoids the so-called "second Dahlquist barrier" which applies to

A 0-stable (p, a)-reducible DQ methods for YID Es (cf. [13, Theorem 5]).

5. Numerical experiments

5.1. Accuracy test

To verify the order of the various methods we integrated the test problem proposed by Kaps
[11]:

dyl - (-1) -l 2
dt - - 2 + E Y1 + E (Y2) '

0<(t<(T, (5.1)

with exact solution Y1 = exp(-2t) and y 2 = exp(-t) for all values of the parameter£. In Table

2, we have listed the values .1, where L1 denotes the number of correct decimal digits at the

endpoint (i.e., we write the maximum norm of the error at t = T in the form 10-"1). In all

~xperiments the theoretical order of the method is shown for sufficiently small values of h (if p

1s the order of the method, then, on halving the step size, the value of L1 should increase by
:::: 0.3p).

B.P. Sommeijer et al. /A-stable parallel block methods 279

Table 2 Table 3
Values of .1 for (5.1) with T = 1, t: = io-s Values of .1 for (5.2) with T = 100, a= 10

Method p h Method p h
1 l l 1 l l 4 2 l 1 1 1
4 8 Tii 32 64 TI8 5 5 5 TO 20 40

BDF3 3 2.8 3.7 4.6 5.5 6.5 7.4 BDF3 3 2.0 2.9 3.9 * * 4.9
(3.11) 3 2.8 3.6 4.4 5.2 6.1 7.0 (3.11) 3 2.1 2.8 3.4 4.0 4.6 5.3
BDF4 4 3.4 4.7 5.9 7.1 8.4 9.6 BDF4 4 2.2 * * * 2.9 8.2
(3.14) 4 3.8 5.2 9.5 7.9 8.9 10.0 (3.14) 4 2.8 4.0 4.9 5.8 6.8 8.0
(3.16) 4 3.1 3.9 4.8 5.9 7.1 8.2 (3.16) 4 1.6 2.7 3.8 4.9 5.8 6.8
BDF5 5 4.0 5.6 7.2 8.7 10.2 12.0 BDF5 5 -0.l * * * 8.5 10.3
(3.17) 5 2.6 4.0 5.5 7.3 9.2 10.3 (3.17) 5 1.2 2.0 3.4 4.7 6.2 7.6
(3.18) 5 4.7 5.4 6.4 7.7 9.2 10.1 (3.18) 5 2.9 3.9 5.1 6.4 7.6 8.6

5.2. Stability test

We tested the stability of the methods by integrating a problem in which the Jacobian matrix
has purely imaginary eigenvalues:

dyl
- = -ay 2 + (1 +a) cos(t),
dt

dy2
- =ay 1 - (1 +a) sin(t),
dt

y 2(0) = 1, 0 ~ t ~ T,

with exact solution y 1 = sin(t) and y 2 = cos(t) for all values of the parameter a.

(5.2)

In Table 3 the results are listed for T = 100. Values of L1 corresponding to stepsizes that are
theoretically unstable are underlined and overflow is indicated by * . The unstable results of
the BDFs is in agreement with their regions of instability indicated in Table 1 (the phe
nomenon that BDF5 becomes stable again for sufficiently small h is due to the fact that its
imaginary interval of instability is given by i[0.71, 9.94]).

Next, we show that the "almost" A-stable fifth-order methods (3.17) and (3.18) behave as
A-stable methods in practice. We performed experiments for a= 1 and a= 4 with h = ~: for
a = 1 both integration processes are theoretically unstable, and for a = 4 the processes are
stable. In Table 4 the results are listed for increasing length of the integration interval: these
results clearly show that both methods perform perfectly stable for a = 1.

Table 4
Values of .1 for problem (5.2) for h = i
Method a = 1: theoretically unstable

T= 10 T= 100

(3.17) 3.6 3.8
(3.18) 4.5 4.3

T = 1000

3.6
4.8

a = 4: theoretically stable

T=lO

4.0
5.4

T= 100

3.9
5.4

T = 1000

3.9
5.4

280 B.P. Sommeijer et al. /A-stable parallel block methods

Table 5
Values of L1 for problem (5.3) at T = 10

Method Order p a= 1 a= 10

h-1 -2 h=l. 4 h=k h =~ h =±
BDF3 3 5.7 6.8 7.9 6.0 6.9
(3.11) 3 5.5 6.5 7.3 5.4 6.5
BDF4 4 5.4 7.0 8.3 6.5 8.1
(3.14) 4 6.0 8.3 9.1 6.4 8.6
(3.16) 4 5.2 6.2 7.2 6.7 7.9
BDF5 5 5.1 7.2 8.9 6.1 8.2
(3.17) 5 2.5 5.2 7.2 2.9 5.3
(3.18) 5 6.0 6.9 8.2 6.8 8.5

5.3. Volterra integro-differential equation

Consider the initial-value problem
2

d y (t) = _ 1 + at (1 + t) + ~ ln (2 + 2 t) + a 1 d x '
dt (l+t)2 y(t) 2+t la1+(l+t)y(x)

h=k

7.8
7.3
9.4

10.9
8.5
9.9
7.5
9.3

y(2)=t, 2~t~T, a>O (5.3)
with exact solution y(t) = 1/(1 + t). For a= 1, this problem has been discussed in [2]. From
the expressions

af a (2+2t)
g== ay = - y2(t)ln 2+t'

at ak 1 + t
YJ == --- =-a

az ay (1 + (1 + t)y) 2

it follows that (5.3) is stable if t > 0 and y ~ 0. Furthermore, we see that in the vicinity of the
exact solution we have g:::::: -a(l + t) 2 and 77:::::: -a(l + t), so that the stiffness of this problem
increases with a and t. For example, if a= T = 10, then an A 0-stable method is highly
desirable.

Table 5 lists results for various methods and values of the stepsize h. Notice that the results
for the stiff problem (a= 10) are not less accurate (even more accurate) than the results for the
nonstiff problem (a = 1), showing that stiffness does not cause any problem. Similar to the
ODE case (cf. Table 2), the method (3.14) performs very accurately, whereas (3.17) is
significantly less accurate.

5.4. Performance test on the ALLIANT FX / 4

Finally, we tested the methods (3.11) and (3.18) on the ALLIANT FX/4 by integrating the
problem (5.1) of Kaps. In Table 6, we have listed timings on P processors and the rate of

Table 6
Timings (in seconds) for problem (5.1) at T = 1 with E = 10- 3 and h = 2~6

Method

(3.11)
(3.18)

k

2
3

p = 1

0.43
0.66

P=2

0.23
0.45

P=3

0.23
0.25

P=4

0.25

Efficiency rate

0.93
0.88

B.P. Sommeijer et al. /A-stable parallel block methods 281

efficiency of a k-processor method, i.e., the execution time on one processor divided by k times
the execution time on k processors. These results show that the gain factor is close to its
optimal value.

From Table 6 we conclude that the performance is close to its optimum, that is, the gain
factor obtained for a k-processor method is almost equal to k. Table 6 also lists timings in
cases where methods have the disposal of one more processor (i.e., k + 1) than the number
(i.e., k) they are designed for. We see that this additional processor is not utilized, since the k
processors (concurrently) solve the k implicit relations and the extra processor is idle. As
mentioned before, it could have been exploited for updating the Jacobian matrix, but in this
test we did not include such a technique.

It should be noted that the efficiency rate is slightly dependent on implementation strategies,
such as how accurately the nonlinear systems are solved. For example, it may happen that the
first (or any other) implicit relation requires less Newton iterations than the other implicit
relations (e.g., because of a more accurate initial approximation); in such cases this first
processor will be idle for some time, which of course, has a bad influence on the efficiency rate.

References

[1] H. Brunner and P.J. van der Houwen, The Numerical Solution of Volterra Equations, CWI Monograph 3
(North-Holland, Amsterdam, 1986).

[2] H. Brunner and J.D. Lambert, Stability of numerical methods for Volterra integro-differential equations,
Computing 12 (1974) 75-89.

[3] M.T. Chu and H. Hamilton, Parallel solution of ODE's by multi-block methods, SIAM 1. Sci. Statist. Comput. 8
(1987) 342-353.

[4] G.J. Cooper, The order of convergence of general linear methods for ordinary differential equations, SIAM 1.
Numer. Anal. 15 (1978) 643-661.

[5] A. Feldstein, Oral communication at the International Conference on the Numerical Solution of Volterra and
Delay Equations, Arizona State University, Tempe, AZ (1990).

[6] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood
Cliffs, NJ, 1971).

[7] E. Haircr, S.P. Norsett and G. Wanner, Soluing Ordinary Differential Equations I. Nonstiff Problems (Springer,
Berlin, 1987).

[8] P. Henrici, Discrete Variable Methods in Ordinary Differential Equations (Wiley, New York, 1962).
[9] P.J. van der Houwen and B.P. Sommeijer, Block Runge-Kutta methods on parallel computers, Report

NM-R8906, Centre for Mathematics and Computer Science, Amsterdam (1989); also: Z. Angew. Math. Mech.
(to appear).

[10] P.J. van der Houwen and B.P. Sommeijer, Parallel ODE solvers, in: Proceedings International Conference on
Supercomputing, Amsterdam (ACM Press, New York, 1990) 71-81.

[11] P. Kaps, Rosenbrock-type methods, Bericht Nr. 9, Inst. fiir Geometric und Praktische Mathematik der RWTH
Aachen (1981).

[12] C. Lubich, Oral communication at the International Conference on the Numerical Solution of Volterra and
Delay Equations, Arizona State University, Tempe, AZ (1990).

[13] J. Matthys, A-stable linear multistep methods for Volterra integro-differential equations, Numer. Math. 27
(1976) 85-94.

[14] B.P. Sommeijer, W. Couzy and P.J. van der Houwen, A-stable parallel block methods, Report NM-R8918,
Centre for Mathematics and Computer Science, Amsterdam (1989).

(15] R.S. Varga, Matrix Iteratii•e Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1962).
(16] H.A. Watts and L.F. Shampine, A-stable block implicit one-step methods, BIT 12 (1972) 252-266.

