
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Verification of Temporal Properties of Processes in a Setting
with Data

J.F. Groote, R. Mateescu

Software Engineering (SEN)

SEN-R9804 May 31, 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301667109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9804
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Veri�cation of Temporal Properties of

Processes in a Setting with Data

J.F. Groote
y
and R. Mateescu

?

CWI y ?

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

Department of Mathematics and Computing Science, Eindhoven University of Technologyy

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

E-mail: jfg@cwi.nl, mateescu@cwi.nl

Abstract

We de�ne a value-based modal �-calculus, built from �rst-order formulas, modalities, and �xed point op-

erators parameterized by data variables, which allows to express temporal properties involving data. We

interpret this logic over �CRL terms de�ned by linear process equations. The satisfaction of a temporal

formula by a �CRL term is translated to the satisfaction of a �rst-order formula containing parameterized

�xed point operators. We provide proof rules for these �xed point operators and show their applicability

on various examples.

1991 Mathematics Subject Classi�cation: 68M99, 68N99

1991 Computing Reviews Classi�cation System: D.2.1, D.2.4, D.3.1

Keywords and Phrases: Mu-Calculus, Process Algebra, Speci�cation, Temporal Logic, Veri�cation

1 Introduction

In recent years we have applied process algebra in numerous settings [4, 13, 17]. The �rst lesson we

learned is that process algebra pur sang is not very handy, and we need an extension with data. This

led to the language �Crl (micro Common Representation Language) [18]. The next observation was

that it is very convenient to eliminate the parallel operator from a process description and reduce it to

a very restricted form, which we call a linear process equation or linear process operator [3]. Such an

elimination can be done automatically [5, 15] and generally yields a compact result, of the same size

as the original system description. For proving equations of the form speci�cation=implementation, a

proof methodology has been developed [19] and has been applied to numerous examples (see e.g. [4,

13, 16, 26]) that all have in�nite or unbounded state spaces.

An obvious question that has not been addressed thus far is whether the linear process format can

also be employed in proving temporal logic formulas. In this paper we provide a way of doing so that

roughly goes as follows. First we extend the modal �-calculus [21] to express properties about data.

This means that the actions in diamond and box modalities may contain data parameters, boolean

expressions on data may be included, quanti�cation over data is allowed, and minimal and maximal

�xed points can also be parameterized with data. A typical example of temporal property expressed

in this logic is�
�Y (n:N):9m:N: ha(m+ n)iY (m+ n)

�
(2)

describing the states from which an in�nite sequence of actions a(i0) a(i1) a(i2) � � � can be performed,

1

2 PRELIMINARIES 2

where 2 � i0 � i1 � i2 � � � �. Another example of formula is

8i:N:[a(i)](i > n)

which says that whenever an a(i) action can be performed, i must be larger than n.
The second step is to prove that a given linear process satis�es such a temporal formula. To

achieve this, we �rst transform both the process and the temporal formula to a �rst order boolean

formula containing �xed point operators. This approach is similar to the model-checking algorithms

in [2, 28, 1], where a formula of standard �-calculus (i.e., without data) and a �nite state automaton

are combined to form a set of �xed point boolean equations, which can be solved in linear time,

provided that the formula is alternation free. In our setting, this transformation applies to the full

logic (formulas of arbitrary alternation depth), is purely syntactical, and in many cases can be carried

out by hand, as both the linear process and the temporal formula are generally quite small.

In order to solve the boolean formulas that we obtain in this way, we introduce a set of proof rules for

the �xed point operators (the rules for connectives and quanti�ers are well known). These proof rules

have been devised such that they allow to approximate the �xed point (sub)formulas. The rules are

symmetric, enabling either to prove, or to refute the �xed point formulas. Having such approximation

rules available is important for proving correctness of systems. For instance, determining exactly the

set of reachable states in a distributed system is often extremely hard. Therefore, this set of states

is generally approximated via a sequence of invariants. Now, if we can approximate a maximal �xed

point and then show that such an approximation is valid in the initial state, we know that the maximal

�xed point holds in the initial state too. The approximation of minimal �xed points is slightly more

complex, capturing the fact that the property expressed by a minimal �xed point formula will be

reached in a �nite number of steps. These approximation rules re
ect, in a way, the proof principles

for safety and liveness properties discussed in [22].

We included a simple example and a slightly more elaborate one, in order to show how the proof

method that we propose can be used. We have also successfully applied the method to verify a dis-

tributed summing protocol [16], but due to space limitations we have not included it in this paper. All

these examples are quite promising, as they show that our method leads to straightforward arguments

of validity of the temporal formulas.

Other approaches to prove temporal properties involving data that we are aware of [25, 9] use

tableau-based methods, often directed towards decomposing the property over the system. The ap-

proach we adopt here is di�erent, being intended to facilitate manual veri�cation in the natural

deduction style (see also [20]), and therefore it is interesting to see how the methods compare. We

have not yet investigated this in depth, but we already observed that the examples treated in [25, 9]

appear much smaller than for instance the distributed summing protocol.

The paper is organized as follows. Section 2 de�nes the linear �Crl processes and their models.

Section 3 gives the syntax and semantics of the extended �-calculus that we propose, together with
examples of temporal properties. Section 4 presents the veri�cation method, i.e., the translation

into �rst-order boolean formulas and the proof rules for extremal �xed points. Section 5 shows the

application of this method on an in�nite-state linear �Crl process. Finally, Annex A contains the

soundness proofs for the rules associated to the �xed point formulas.

2 Preliminaries

We de�ne below the notions of data expression, linear process, and labelled transition system (Lts),

over which the temporal logic formulas will be interpreted.

2.1 Expressions

The set Exp of data expressions is de�ned over a set DVar of data variables and a set Func of functions.

Each data variable x 2 DVar has a type D and each function f 2 Func has a pro�leD1�� � ��Dn ! D,

2 PRELIMINARIES 3

where D1; : : : ; Dn are the argument types of f and D is its result type. We write Val for the domain

containing all the values belonging to the types D. The expressions e 2 Exp are de�ned by the

following grammar:

e ::= x j f(e1; : : : ; en)

The set of variables occurring in an expression e is noted var(e).
We de�ne the domain DEnv = DVar! Val of data environments. A data environment " 2 DEnv

is a partial function mapping data variables into values of their corresponding types. The support

of an environment ", noted supp("), denotes the set of variables that are assigned a value in Val by

". An environment mapping the variables x1; : : : ; xn respectively to the values v1; : : : ; vn is noted

[v1=x1; : : : ; vn=xn]. The environment having an empty support is noted []. The overriding of " by
[v1=x1; : : : ; vn=xn] is the data environment de�ned as follows: ("[v1=x1; : : : ; vn=xn])(x) = if 9i 2
[1; n]:x = xi then vi else "(x).
The semantics of data expressions is given by the interpretation function [[:]] : Exp! DEnv! Val,

de�ned inductively below. For an expression e and a data environment " such that var(e) � supp("),
[[e]] " denotes the value of e in the context of ":

[[x]] "
def
= "(x)

[[f(e1; : : : ; en)]] "
def
= f([[e1]] "; : : : ; [[en]] ")

We assume that the domain Bool = ftt;�g of boolean values is prede�ned, together with the usual

operations ^, _, :, and !. Boolean expressions are denoted by the symbol b.

2.2 Linear processes

Linear processes share the advantage with Ltss that it is a simple straightforward notation, suitable

for further analysis of processes in either automatic or manual form. But they do not share the most

important disadvantage, namely the exponential blow-up which is caused by the parallel operator

(see [5]). As we are interested in devising analysis methods for realistic distributed systems, it is clear

that Ltss are not satisfactory. Therefore, we use the linear processes, of which we give a de�nition

below.

Let Act be a set of actions, which may be parameterized by data values.

De�nition 2.1. Let Act � Act[f�g be a �nite set of actions and D and Da be data types. A linear

process over Act and D is de�ned by an equation of the following form:

X(x:D) =
X
a2Act

X
xa:Da

a(ea)�X(e0a) / ba . �

where x is a parameter of type D, and for each action a 2 Act, xa is a variable of type Da, ea and

e0a are expressions of type Da and D, respectively, and ba is an expression of type Bool, such that

var(ea) [var(e0a) [var(ba) � fx; xag. The initial state of process X may be speci�ed by giving an

initial value v0 2 D for x. 2

A linear process expression must be read as follows. If a process is in state x, then it can perform

actions a(ea) provided a value of xa in Da can be found such that ba holds. In such a case, the process
ends up in a state e0a.
For simplicity, we allow at most one data parameter for any action a 2 Act (we assume that � has

a dummy parameter) and for each linear process X . Using pairing and projection, the formalization

can be straightforwardly used with multiple parameters.

3 TEMPORAL LOGIC 4

2.3 Transition systems

We consider a linear �Crl process X as in De�nition 2.1. According to the operational semantics of

�Crl [18], the transition system modelling a linear process is de�ned as follows.

De�nition 2.2. The transition system of a linear process is a quadruple M = (S;L;!; s0), where:

� S
def
= fX(v) j v 2 Dg is the set of states;

� L
def
= fa(va) j a 2 Act ^ va 2 Dag is the set of labels;

� !
def
= fX(v)

a(v0

a
)

�! X(v0) j a 2 Act ^ 9va 2 Da:([[ba]] [v=x; va=xa] ^ v
0

a = [[ea]] [v=x; va=xa] ^ v
0
=

[[e0a]] [v=x; va=xa])g is the transition relation;

� s0
def
= X(v0) 2 S is the initial state.

The de�nition of the initial state of the process is not mandatory, unless there are properties of X
that must be explicitly veri�ed on X(v0). 2

3 Temporal logic

The temporal logic we consider is based upon an extension of the modal �-calculus [21] with data

variables, quanti�ers and parameterization, in order to express properties involving data. The choice

of the �-calculus as basic formalism is motivated by its expressiveness, since it allows straightforward

encodings (see [12]) of dynamic logics as Pdl [14], branching time temporal logics as Ctl [6], as

well as (more involved) translations (see [8]) of temporal logics containing linear time modalities, like

Ptl [23] or Ctl
�
[11]. Other similar value-based formalisms extending the modal �-calculus have

been used in the framework of symbolic transition systems [25] and of the polyadic �-calculus [9].
The logic we propose here contains a set AForm of action formulas and a set SForm of state

formulas, whose syntax and semantics are de�ned below. To simplify the notations, we implicitly

consider throughout this section a transition system M = (S;L;!; s0), over which the formulas are

interpreted.

Action formulas The action formulas � 2 AForm are de�ned by the following grammar:

� ::= a(e) j tt j :�1 j �1 ^ �2 j 9y:D:�1

where a 2 Act, e 2 Exp, and y 2 DVar is a data variable of type D. The usual derived operators are

de�ned as follows: � = :tt , �1 _ �2 = :(:�1 ^ :�2), �1 ! �2 = :�1 _ �2, 8y:D:� = :9y:D::�.
Data variables are bound by quanti�ers in the usual way. The set of free data variables occurring in

an action formula � is noted fdv(�).
The semantics of action formulas is given by the interpretation function [[:]] : AForm! DEnv! 2

L
,

de�ned inductively below. Given an action formula � and a data environment " such that fdv(�) �
supp("), [[�]] " denotes the set of labels satisfying � in the context of ":

[[a(e)]] "
def
= fa([[e]] ")g

[[tt]] "
def
= L

[[:�1]] "
def
= L n [[�1]] "

[[�1 ^ �2]] "
def
= [[�1]] " \ [[�2]] "

[[9y:D:�1]] "
def
= 9v 2 D: [[�1]] "[v=x]:

3 TEMPORAL LOGIC 5

State formulas The state formulas ' 2 SForm, built over the set AForm of action formulas and

over a set PVar of propositional variables, are de�ned by the following grammar:

' ::= b j Y (e) j :'1 j '1 ^ '2 j h�i'1 j 9y:D:'1 j
�
�Y (y:D):'1

�
(e)

where b 2 Exp is a boolean expression, Y 2 PVar is a (parameterized) propositional variable,

� 2 AForm is an action formula and y 2 DVar is a data variable of type D. The derived boolean opera-
tors and the 8 quanti�er are de�ned as usual. The box modal operator and the maximal �xed point op-
erator are de�ned respectively as [�]' = : h�i :' and (�Y (y:D):')(e) = :(�Y (y:D)::'[:Y=Y])(e),
where '[:Y=Y] denotes the syntactic substitution of Y by :Y in '. In the sequel, we let � range over

f�; �g.
Data variables are bound by quanti�ers and by parameterization, and propositional variables are

bound by �xed point operators, in the usual way. The sets of free data variables and free propositional

variables of ' are noted fdv(') and fpv('), respectively. A formula ' is said closed if fdv(') = ; and
fpv(') = ;.
We assume that state formulas are syntactically monotonic, i.e., for each �xed point formula

(�Y (y:D):')(e), every free occurrence of Y in ' falls under an even number of negations. Any

syntactically monotonic formula ' can be converted in Positive Normal Form (Pnf for short) by

pushing the negations down to its atomic subformulas and (if necessary) by �-converting it such that

there is no variable Y having both free and bound occurrences in '. A closed formula in Pnf does

not contain any negated occurrences of propositional variables. In the sequel, we consider only state

formulas in Pnf.

We de�ne the domain PEnv = PVar! (Val! 2
S
) of propositional environments. A propositional

environment � 2 PEnv is a partial function mapping propositional variables to functions from the data

domains of the parameters to sets of states of the transition system. The support, bracketed notation,

and overriding of propositional environments are de�ned in the same way as for data environments.

The semantics of state formulas is given by the interpretation function [[:]] : SForm ! PEnv !
DEnv! 2

S
, de�ned inductively below. For a state formula ', a propositional environment �, and a

data environment " such that fpv(') � supp(�) and fdv(') � supp("), [[']] �" denotes the set of states
satisfying ' in the context of � and ":

[[b]] �"
def
=

�
S if [[b]] "
; otherwise

[[Y (e)]] �"
def
= (�(Y))([[e]] ")

[['1 _ '2]] �"
def
= [['1]] �" [[['2]] �"

[['1 ^ '2]] �"
def
= [['1]] �" \ [['2]] �"

[[h�i']] �"
def
= fX(v) 2 S j 9v0 2 D:9a 2 Act:9va 2 Da:

X(v)
a(va)
! X(v0) ^ a(va) 2 [[�]] " ^X(v0) 2 [[']] �"g

[[[�]']] �"
def
= fX(v) 2 S j 8v0 2 D:8a 2 Act:8va 2 Da:

(X(v)
a(va)
! X(v0) ^ a(va) 2 [[�]] ")! X(v0) 2 [[']] �"g

[[9y:D0:']] �"
def
= fX(v) 2 S j 9v0 2 D0:X(v) 2 [[']] �("[v0=y])g

[[8y:D0:']] �"
def
= fX(v) 2 S j 8v0 2 D0:X(v) 2 [[']] �("[v0=y])g���

�Y (y:D0
):'
�
(e)
��
�"

def
=

�
���"

�
([[e]] ")���

�Y (y:D0
):'
�
(e)
��
�"

def
=

�
���"

�
([[e]] ")

where ��" : (D
0 ! 2

S
)! (D0 ! 2

S
); ��"

def
= �F :D0 ! 2

S :�v0:D0: [[']] (�[F=Y])("[v0=y]).

4 VERIFICATION 6

It is straightforward to check that, for state formulas in Pnf, every functional ��" associated to

a �xed point (sub)formula is monotonic over D0 ! 2
S
. Since the underlying lattices D0 ! 2

S
are

complete, it follows from Tarski's theorem [27] that every ��" functional has a unique minimal �xed

point ���" and a unique maximal �xed point ���".

3.1 Example

We describe a simple in�nite state process, together with some temporal properties, in order to

illustrate the techniques presented in here. In Section 4.3 we will translate the temporal formulas and

in Section 4.5 we will prove the validity of the quanti�ed boolean �xed point formulas that we have

obtained this way. The example is given by the following linear process equation, describing a slot

machine:

X(v:N; b:Bool) = s � X(v + 1;:b) / :b . � +P
m:Nw(m) � X(v �m;:b) / b ^m � v . �

The parameters v and b denote the current amount of money and the current state of the machine,

respectively. When b equals �, a user can activate the machine by inserting a coin (action s); after-
wards, b becomes tt and the machine will deliver the money m won by the user (action w(m)). The

initial state of the system is X(v0;�), for some �xed v0 � 0. (Actually, the linear process above

allows a user to collect any amount of money he wants, but for the sake of the example we do not

complicate the slot machine description in order to avoid this.)

We are interested in the temporal properties below.

1. A basic liveness property is that, for any amount of money l 2 N, the machine can potentially

deliver it to a user:

'1
def
= �Y: hw(l)i tt _ htti Y

2. A stronger liveness property would be that, for any amount of money l 2 N, the machine must

eventually deliver it:

'2
def
= �Y: htti tt ^ [:w(l)]Y

3. A safety property is that every l 2 N won in a w(l) action cannot exceed the initial amount of

money v0 of the machine, updated with the p and r money that have been inserted and won by

users since the initial state of the system, respectively:

'3
def
=

�
�Y (p; r:N):8l:N: [w(l)] (l � v0 + p� r ^ Y (p; r + l)) ^ [s]Y (p+ 1; r)

�
(0; 0):

Clearly, '1 and '3 are valid for X , but '2 does not hold.

4 Veri�cation

The veri�cation problem consists to check whether a transition system M (given by a linear �Crl
process) satis�es a given temporal formula '. Two di�erent cases are usually distinguished: global

veri�cation, consisting to decide if all the states of M satisfy ', and local veri�cation, consisting to

decide if one particular state (e.g., the initial state s0) ofM satis�es '. Both instances of the problem
can be reduced to the satisfaction of a boolean formula expressed in a �rst-order logic extended

with �xed point operators. We �rst de�ne the language of boolean formulas, next we describe the

translation of a model M and a formula ' into a boolean formula, and �nally we provide sound proof

rules allowing to reason about the �xed point operators.

4 VERIFICATION 7

4.1 Boolean formulas

We de�ne the syntax and semantics of the set BForm of boolean formulas, which will be used as an

intermediate formalism for veri�cation purposes. The boolean formulas 2 BForm, built over a set

BVar of boolean variables, are de�ned by the following grammar (given directly in positive form):

 ::= b j Z(e) j 1 _ 2 j 1 ^ 2 j 9z:D: 1 j 8z:D: 1 j
�
�Z(z:D): 1

�
(e) j

�
�Z(z:D): 1

�
(e)

where b 2 Exp is a boolean expression and Z 2 BVar is a (parameterized) boolean variable. The data

and boolean variables are bound in a manner similar to the state formulas '. The sets of free data
variables and free boolean variables occurring in are noted fdv() and fbv(), respectively. As for
the state formulas, we use only one data parameter for the boolean �xed point formulas; using pairing

and projection, the formalizations could be easily extended to multiple parameters.

We introduce the domain BEnv = BVar ! (Val ! Bool) of boolean environments. A boolean

environment � 2 BEnv is a partial function mapping boolean variables to predicates over the domains

of the data parameters. The support, bracketed notation, and overriding of boolean environments are

de�ned in the same way as for propositional environments.

The semantics of boolean formulas is given by the interpretation function [[:]] : BForm! BEnv!
DEnv! Bool, de�ned inductively below. For a boolean formula , a boolean environment �, and a

data environment " such that fbv() � supp(�) and fdv() � supp("), [[]] �" denotes the truth value

of in the context of � and ":

[[b]] �"
def
= [[b]] "

[[Z(e)]] �"
def
= (�(Z))([[e]] ")

[[1 _ 2]] �"
def
= [[1]] �" _ [[2]] �"

[[1 ^ 2]] �"
def
= [[1]] �" ^ [[2]] �"

[[9z:D:]] �"
def
= 9v 2 D: [[]] �("[v=z])

[[8z:D:]] �"
def
= 8v 2 D: [[]] �("[v=z])���

�Z(z:D):
�
(e)
��
�"

def
=

�
�	�"

�
([[e]] ")���

�Z(z:D):
�
(e)
��
�"

def
=

�
�	�"

�
([[e]] ")

where 	�" : (D ! Bool)! (D ! Bool); 	�"
def
= �G : D ! Bool:�v:D: [[]] (�[G=Z])("[v=z]).

The functionals 	�" associated to the �xed point boolean formulas being monotonic, and the un-

derlying lattices D ! Bool being complete, it follows from Tarski's theorem that each functional 	�"

has a unique minimal �xed point �	�" and a unique maximal �xed point �	�".

4.2 Translation of the veri�cation problem into boolean formulas

Consider the following linear �Crl process:

X(x:D) =
X
a2Act

X
xa:Da

a(ea)�X(e0a) / ba . �

As we precised in Section 2.3, the states of the corresponding transition system are identi�ed with

terms of the form X(v), where v 2 D. We assume that the data variables used in the temporal

formulas are disjoint from those used in the linear process.

According to the interpretation of state formulas, a state X(v) satis�es a formula ' in the context

of a propositional environment � and of a data environment " if and only if X(v) 2 [[']] �". As we will
show, this is equivalent to the fact that a boolean formula Tr(') is true in the context of a boolean

4 VERIFICATION 8

environment Tr(�) and of "[v=x], where the translations Tr(') and Tr(�), which take the process

X as an implicit parameter, are de�ned below.

Given � 2 PEnv, the boolean environmentTr(�), whose support is supp(Tr(�))
def
= fZY (x:D; y:D

0
) j

Y (y:D0
) 2 supp(�)g, is de�ned as follows:

�
Tr(�)

�
(ZY)

def
= �v:D; v0:D0:

�
X(v) 2 (�(Y))(v0)

�
for each ZY 2 supp(Tr(�)).
The translation Tr(') is de�ned inductively below:

Tr(b)
def
= b

Tr(Y (e))
def
= ZY (x; e)

Tr('1 _ '2)
def
= Tr('1) _Tr('2)

Tr('1 ^ '2)
def
= Tr('1) ^Tr('2)

Tr(h�i')
def
=

_
a2Act

9xa:Da:
�
ba ^ (a(ea) j= �) ^ Tr(')[e0a=x]

�

Tr([�]')
def
=

^
a2Act

8xa:Da:
�
(ba ^ (a(ea) j= �)) ! Tr(')[e0a=x]

�

Tr(9y:D0:')
def
= 9y:D0:Tr(')

Tr(8y:D0:')
def
= 8y:D0:Tr(')

Tr((�Y (y:D0
):')(e))

def
= (�ZY (xY :D; y:D

0
):Tr(')[xY =x])(x; e)

Tr((�Y (y:D0
):')(e))

def
= (�ZY (xY :D; y:D

0
):Tr(')[xY =x])(x; e)

where the predicate a(ea) j= �, expressing that an action a(ea) satis�es an action formula � 2 AForm,

is de�ned inductively as follows:

a(ea) j= a0(e0)
def
= a = a0 ^ ea = e0

a(ea) j= tt
def
= tt

a(ea) j= :�
def
= :(a(ea) j= �)

a(ea) j= �1 ^ �2
def
= (a(ea) j= �1) ^ (a(ea) j= �2)

a(ea) j= 9y:D:�
def
= 9y:D:(a(ea) j= �):

The following lemma states some auxiliary technical properties necessary for showing the correctness

of the Tr(') translation.

Lemma 4.1. The following properties hold:

1. For all a 2 Act, ea 2 Exp, � 2 AForm, and " 2 DEnv such that var(ea) [fdv(�) � supp("):

[[a(ea) j= �]] " =
�
a([[ea]] ") 2 [[�]] "

�
:

2. For all a 2 Act and ' 2 SForm:

fdv(Tr(')) � (fdv(') [fxg) n fxag:

3. For all 2 BForm, e 2 Exp, x 2 DVar, � 2 BEnv, and " 2 DEnv such that var(e) [fdv() �
supp("):

[[[e=x]]] �" = [[]] �("[[[e]] "=x]):

4 VERIFICATION 9

Proof. Straightforward, by structural induction on � (property 1), on ' (property 2), and on
(property 3). 2

The following proposition expresses the relation between a linear process X , a state formula ', and
the corresponding boolean formula Tr(') obtained after translation.

Proposition 4.2. Let X(x:D) be a linear process as de�ned above and let ' be a state formula.

Then, for any � 2 PEnv and " 2 DEnv such that fpv(') � supp(�) and fdv(') � supp("):

[[']] �" =
�
X(v) 2 S j [[Tr(')]]Tr(�)("[v=x])

	
:

Proof. By structural induction on ', using Lemma 4.1. 2

Using the result above, we can now restate the veri�cation problem of a closed state formula ' by a

linear process X in terms of the satisfaction of a boolean formula Tr('). The global model-checking
problem, consisting to verify that the formula is satis�ed by every state of the process, becomes:

8v:D:(X(v) 2 [[']] [][])$ by Proposition 4.2

8v:D: [[Tr(')]]Tr([])([][v=x])$ by de�nition of Tr(�)

8v:D: [[Tr(')]] [][v=x]$ by de�nition of [[:]] �"

[[8x:D:Tr(')]] [][]:

(Note that we can use empty environments whenever the formulas are closed w.r.t. the corresponding

variables.) The local model-checking problem, consisting to verify that the formula is satis�ed by the

initial state of the process, becomes:

X(v0) 2 [[']] [][]$ by Proposition 4.2

[[Tr(')]]Tr([])([][v0=x])$ by de�nition of Tr(�)

[[Tr(')]] [][v0=x]$ by de�nition of [[:]] �"

[[8x:D:(x = v0)! Tr(')]] [][]:

Using the standard proof rules for �rst-order logic, together with the rules for minimal and maximal

�xed point operators given in Section 4.4, we have the basic tools available for proving the boolean

formulas above.

4.3 Example (continued)

We continue the example from Section 3.1 by giving the translations of the formulas '1, '2, and '3.

So, to establish the validity of these formulas we must prove, respectively:

1.

�
�Z(v:N; b:Bool):(b ^ l � v) _ (:b ^ Z(v + 1;:b)) _ 9m:N:(b ^m � v ^ Z(v �m;:b))

�
(v; b);

2.

�
�Y (v:N; b:Bool):(:b! Z(v + 1;:b)) ^ 8m:N:((b ^m � v ^m 6= n)! Z(v �m;:b))

�
(v; b);

3.

�
�Z(p; r; v:N; b:Bool):8l;m:N:((b^m � v^m = l)! (l � v0+p�r^Z(p; r+l; v�m;:b)))^(:b!

Z(p+ 1; r; v + 1;:b))
�
(0; 0; v; b).

4 VERIFICATION 10

4.4 Proof rules

As shown in Section 4.2, the veri�cation of a data-based temporal logic formula on a linear �Crl
process can be reduced to the satisfaction of a �rst-order formula containing �xed point operators.

We provide here proof rules associated to the minimal and maximal �xed point operators. These

rules can be naturally used in conjunction with some proof system for �rst-order logic (e.g., Gentzen's

natural deduction system [7]) in order to prove the validity of �xed point boolean formulas.

We �rst de�ne some auxiliary notations. Consider a �xed point formula �Z(z:D): 1 representing

a predicate over D, and let 2 2 BForm such that fbv(2) � fbv(1) and fdv(2) � fdv(1). The

application of 1 on 2 is de�ned as follows:

 1[2]
def
= 1[2[e=z]=Z(e)]

Intuitively, 1[2] is obtained by substituting all the occurrences of Z(e) in 1 by 2, in which all

occurrences of z have been replaced with the actual parameter e. The conditions on the variables of

 2 ensure that no free variables of 2 become bound in 1[2]. Also, whenever fdv(2) = fzg, we will
write 2(e) for 2[e=z]. The application k times of 1 on 2, noted

k
1 [2], is de�ned as follows:

 0
1 [2]

def
= 2;

k+1
1 [2]

def
= 1[

k
1 [2]]

Using these notations, the proof rules for minimal and maximal �xed point operators are given below:

LfpUp
8k � 0:(2(k)! k1 [�])

(9k � 0: 2(k))! (�Z(z:D): 2)(z)
GfpUp

 2 ! 1[2]

 2 ! (�Z(z:D): 1)(z)

LfpDn
 1[2]! 2

(�Z(z:D): 1)(z)! 2

GfpDn
8k � 0:(k1 [tt]! 2(k))

(�Z(z:D): 1)(z)! (8k � 0: 2(k))

where 2(k) means that the variable k, denoting a natural number, occurs free in 2. Intuitively, the

rules LfpUp, GfpUp and LfpDn, GfpDn allow to approximate the extremal �xed points towards

satisfaction and towards refutation, respectively. The following proposition states the soundness of

these rules.

Proposition 4.3. The rules LfpUp, LfpDn, GfpUp, and GfpDn de�ned above are sound w.r.t.

the semantics of the boolean formulas 2 BForm.

Proof. Given in Annex A. 2

4.5 Example (continued)

We show the use of the rules given above by proving the formulas given in Section 4.3. We consider

the three formulas separately. We give the proof of these formulas in extreme detail, such that every

reasoning step can be understood.

1. For the �rst case we let 1
def
= (b^ l � v)_ (:b^Z(v+1;:b))_9m:N:(b^m � v^Z(v�m;:b)).

In order to apply the rule LfpUp we must �nd some 2(k). We propose 2(k)
def
= k > if (l �

v; j:bj; 2(l� v)�j:bj). Here, if (b; x; y) equals x if b holds and y otherwise; jbj equals 1 if b holds
and 0 otherwise. (Intuitively, k denotes the minimal number of steps necessary to reach a w(l)
action, starting from any state of the system.) Note that the left hand side in the conclusion of

LfpUp becomes 9k � 0:(k > if (l � v; j:bj; 2(l � v)� j:bj)), which is a tautology. So, if we can

prove the premises of LfpUp we have shown that the temporal formula '1 is valid in all states

of X(v; b).

5 APPLICATION 11

The premise of LfpUp has become 8k � 0:(k > if (l � v; j:bj; 2(l�v)�j:bj)! k1 [�]). We prove

this premise by induction on k. For k = 0 this holds vacuously, because the left hand side of the

implication equals falsum. For k = k0 + 1, we must prove: k0 � if (l � v; j:bj; 2(l� v)� j:bj)!
(b ^ l � v) _ (:b ^ k

0

1 [�](v + 1;:b)) _ 9m:N:(b ^m � v ^ k
0

1 [�](v �m;:b)). This is done by
making a few case distinctions:

� Suppose b holds and l � v. Clearly, the statement above is true, as the �rst disjunct of the
right hand side trivially holds.

� Now, suppose b holds and l > v. We want to show that the third disjunct holds. As b holds
by assumption, it su�ces to show that 9m:N:(m � v ^ k

0

1 [�](v �m;:b)). Take m = 0.

The proof obligation reduces to k
0

1 [�](v;:b). This is implied by the induction hypothesis,

because (2(k
0
))(v;:b) = k0 > 2(l� v)� 1, which is equivalent in this case to the left hand

side k0 � 2(l � v) of the implication.

� We still must consider the case where :b. We show that the second disjunct holds in this

case. We must prove that k
0

1 [�](v+1;:b). The left hand side of the implication becomes

k0 � if (l � v; 1; 2(l�v)�1), which is easily seen (by distinguishing between the cases l � v,
l = v + 1, and l > v + 1) to imply (2(k

0
))(v + 1;:b) = k0 > if (l � v + 1; 0; 2(l� v) � 2).

So, the proof obligation follows from the inductive hypothesis.

This �nishes the proof of the �rst temporal formula.

2. We show that this formula does not hold in any state of X . Let 1 be the body of the �Z

formula. We apply LfpDn, taking 2
def
= � . The left hand side 1[2] of the premise looks like

(:b ! �) ^ 8m:N:((b ^m � v ^m 6= n) ! �), which is equivalent to �. Thus, the �xed point

formula is false for all v 2 N and b 2 Bool.

3. We show that this formula is satis�ed by the initial state of the system. Let 1 be the body of

the �Z formula. We must prove that (v = v0 ^ b = �) ! (�Z(p; r; v:N; b:Bool): 1)(0; 0; v; b)
for all v 2 N and b 2 Bool. We solve this by showing a slightly stronger property, namely that

(v = v0+p�r)! (�Z(p; r; v:N; b:Bool): 1)(p; r; v; b), which implies the above boolean property
by instantiating v, b, p, and r with v0, �, 0, and 0, respectively. We apply GfpUp, taking

 2
def
= (v = v0+ p� r). The premise of GfpUp reduces to (v = v0+ p� r)! (8l;m:N:((b^m �

v ^m = l)! (l � v0 + p� r ^ v �m = v0 + p� r � l)) ^ (:b! v +1 = v0 + p+ 1� r)), which
is easily seen to be a tautology. Hence, the initial state X(v0;�) satis�es '3.

5 Application

We present here a more involved veri�cation example using the methodology described in Section 4.

Consider the following linear process Q(q) describing a queue q:

Q(q) =
P

d:Dr(d) �Q(in(d; q)) + s(toe(q)) �Q(untoe(q)) / jqj > 0 . �

Data elements d 2 D are inserted in Q via r(d) actions and are delivered by Q via s(d) actions. The j:j
operator returns the number of elements in a queue. The in function inserts an element into a queue,

the untoe function eliminates the element which was inserted �rst into a queue, and the toe function
returns that element. We assume that the domain D has at least one element. The concatenation of

two queues q1 and q2 can be described by the linear process below:

Q(q1; q2) =
P

d:D r(d) � Q(in(d; q1); q2) / tt . � +
� � Q(untoe(q1); in(toe(q1); q2)) / jq1j > 0 . � +

s(toe(q2)) � Q(q1; untoe(q2)) / jq2j > 0 . �

5 APPLICATION 12

The initial state of this process is Q(nil ;nil), where nil is a function returning an empty queue. In

the following paragraphs we present the description and veri�cation of several safety and liveness

properties of the process Q.

Property 1. The essential safety property of the system is that every sequence of elements inserted

in Q will be delivered in the same order. This can be neatly expressed using a �xed point operator

parameterized by a queue q storing all the elements that have been inserted in Q but not yet delivered:

'1
def
= (�Y (q):8d0:D: [r(d0)]Y (in(d0; q)) ^ [s(d0)] (jqj > 0 ^ toe(q) = d0 ^ Y (untoe(q))) ^

[:9d1:D:(s(d1) _ r(d1))]Y (q)

)(nil)

This formula captures exactly the desired behaviour of the system: the two concatenated queues must

behave as a single queue. (Note the presence of the quanti�er in the action formula of the last box

modality, in order to express that an action is di�erent from any s(: : :) or r(: : :) action.) We verify

'1 in the initial state Q(nil ;nil) of the system. This translates as follows:

8q1; q2:(q1 = nil ^ q2 = nil) ! (�Z(q1; q2; q):8d0:D:8d:D:(d0 = d! Z(in(d; q1); q2; in(d0; q))) ^

((jq2j > 0 ^ d0 = toe(q2))! (jqj > 0 ^ d0 = toe(q) ^

Z(q1; untoe(q2); untoe(q)))) ^

(jq1j > 0! Z(untoe(q1); in(toe(q1); q2); q))

)(q1; q2;nil)

Let 1 be the body of the �Z formula. To show the boolean formula above, we prove a slightly

stronger property, namely that (q1 + q2 = q)! (�Z(q1; q2; q): 1)(q1; q2; q) for all q1, q2, and q, where

q1 + q2 denotes the concatenation of q1 and q2. We use the rule GfpUp, taking 2
def
= (q1 + q2 = q).

The premise 2 ! 1[2] of GfpUp reduces to the following three implications:

1. 8d0; d:D:(q1 + q2 = q ^ d0 = d)! (in(d; q1) + q2 = in(d0; q));

2. 8d0:D:(q1+q2 = q^jq2j > 0^d0 = toe(q2))! (jqj > 0^d0 = toe(q)^q1+untoe(q2) = untoe(q));

3. 8d0:D:(q1 + q2 = q ^ jq1j > 0)! (untoe(q1) + in(toe(q1); q2) = q).

These properties can be easily shown using an appropriate axiomatization of the queue operators.

Now, by instantiating q to nil, and since (q1 = nil ^ q2 = nil) ! (q1 + q2 = nil), this implies that

(q1 = nil ^ q2 = nil)! (�Z(q1; q2; q): 1)(q1; q2;nil) for all q1 and q2. Hence, Q(nil ;nil) satis�es '1.

Property 2. A simple liveness property (which also implies deadlock freedom) is that every datum

d0 2 D can be potentially inserted in Q by an action r(d0):

'2
def
= �Y: hr(d0)i tt _ httiY

The veri�cation of '2 in all the states of Q translates to the following boolean formula:

8q1; q2:(�Z(q1; q2):9d:D:(d = d0) _ 9d:D:Z(in(d; q1); q2) _

(jq1j > 0 ^ Z(untoe(q1); in(toe(q1); q2))) _ (jq2j > 0 ^ Z(q1; untoe(q2)))

)(q1; q2)

We write 1 for the body of the �Z formula. Since the disjunct 9d:D:(d = d0) is trivially true, 1

reduces to tt and, by applying the rule LfpUp with 2(k) = tt , it follows that (�Z(q1; q2): 1)(q1; q2)
is valid for all values of q1 and q2. Hence, '2 holds in all states of Q.

5 APPLICATION 13

Property 3. A more involved liveness property is that every datum d0 which is inserted in Q by an

action r(d0) will be eventually delivered by an action s(d0):

'3
def
= [r(d0)]�Y: htti tt ^ [:s(d0)]Y

The veri�cation of '3 in all the states of Q translates as follows:

8q1; q2:8d:D:d = d0 ! (�Z(q1; q2):8d:D:Z(in(d; q1); q2) ^

(jq1j > 0! Z(untoe(q1); in(toe(q1); q2))) ^

((jq2j > 0 ^ toe(q2) 6= d0)! Z(q1; untoe(q2)))

)(in(d; q1); q2)

Let 1 be the body of the �Z formula. Observing that 1[�] = � , the rule LfpDn leads to

(�Z(q1; q2): 1)(q1; q2) ! � for every q1 and q2. Then, the whole boolean formula reduces to

8d:D:d 6= d0, which is obviously false. Hence, '3 does not hold in any state of Q. This happens

because one can always insert data elements into Q (see formula '2 above) and, under an unfair

scheduling of actions (but see next paragraph), the process may never deliver an element, letting q1
and q2 grow unboundedly.

Property 4. We may express the formula '3 by taking into account only the execution paths which

are fair w.r.t. the action s(d0), i.e., those paths which cannot in�nitely often enable s(d0) without
executing in�nitely often an s(d0)-transition:

'4
def
= [r(d0)] �Y1: [:s(d0)]Y1 ^ �Y2: hs(d0)i tt _ httiY2

The formula '4 speci�es that after d0 has been inserted in Q, as long as it has not yet been delivered,

it is still possible to deliver it. This is an action-based instance of the fairness operator proposed

in [24], where it was shown that it expresses the reachability on fair paths.

The veri�cation of '4 in all the states of Q translates as follows:

8q1; q2 : (�Z1(q1; q2):8d:D:Z1(in(d; q1); q2) ^

(jq1j > 0! Z1(untoe(q1); in(toe(q1); q2))) ^

((jq2j > 0 ^ toe(q2) 6= d0)! Z1(q1; untoe(q2))) ^

(�Z2(q1; q2):(jq2j > 0 ^ toe(q2) = d0) _

9d:D:Z2(in(d; q1); q2) _

(jq1j > 0 ^ Z2(untoe(q1); in(toe(q1); q2))) _

(jq2j > 0 ^ Z2(q1; untoe(q2)))

)(q1; q2)

)(in(d0; q1); q2)

Let 1 be the body of the �Z1 formula. We show the boolean formula above by proving a slightly

stronger property, namely that d0 2 q1 + q2 ! (�Z1(q1; q2): 1)(q1; q2) for all q1 and q2, where 2
denotes the membership of an element in a queue. (Having shown this, the validity of the boolean

formula above follows by instantiating q1 with in(d0; q1), since d0 2 in(d0; q1) + q2 is trivially true.)

We apply the rule GfpUp on 1, taking
0

1

def
= d0 2 q1 + q2. The premise 1[

0

1] reduces to the

following four implications:

A PROOFS 14

1. (d0 2 q1 + q2)! (8d:D:d0 2 in(d; q1) + q2);

2. (d0 2 q1 + q2 ^ jq1j > 0)! (d0 2 untoe(q1) + in(toe(q1); q2));

3. (d0 2 q1 + q2 ^ jq2j > 0 ^ toe(q2) 6= d0)! (d0 2 q1 + untoe(q2));

4. (d0 2 q1 + q2)! (�Z2(q1; q2): 2)(q1; q2)

where 2 is the body of the �Z2 subformula. The �rst three properties follow easily from an

axiomatization of the queue type. We show the last property using the rule LfpUp, by taking

 0

2(k)
def
= d0 2 q1 + q2 ^ 2jq1j+ jq2j � k (intuitively, k denotes the minimal number of steps in which

an element d0 already present in Q can be delivered). Note that the left hand side in the conclusion

of LfpUp becomes 9k � 0:(d0 2 q1+ q2^2jq1j+ jq2j � k), which is trivially equivalent to d0 2 q1+ q2.
We show the premise 8k � 0:(0

2(k) ! k2 [�]) of LfpUp by induction on k. For k = 0 this holds

vacuously, because 0

2(0) is false. For k = k0 + 1, we must prove that (d0 2 q1 + q2 ^ 2jq1j + jq2j �

k0 + 1)! k
0+1

2 [�]. We distinguish two cases:

� jq1j > 0. We show that the left hand side of the implication above implies the disjunct jq1j >

0^ k
0

2 [�](untoe(q1); in(toe(q1); q2)) of
k0+1
2 [�]. The �rst conjunct is true by assumption. The

second conjunct is implied by the inductive hypothesis, because: (a) d0 2 q1 + q2 ! d0 2
untoe(q1) + in(toe(q1); q2), and (b) 2juntoe(q1)j+ jin(toe(q1); q2)j = 2jq1j+ jq2j � 1 � k0.

� jq1j = 0. This implies that jq2j > 0, because d0 2 q1 + q2 by hypothesis. If toe(q2) = d0,

then the disjunct jq2j > 0 ^ toe(q2) = d0 of k
0+1

2 [�] is true. If toe(q2) 6= d0, the disjunct

jq2j > 0 ^ k
0

2 [�](q1; untoe(q2)) of
k0+1
2 [�] follows from the inductive hypothesis, because: (a)

d0 2 q1 + untoe(q2), and (b) 2jq1j+ juntoe(q2)j = 2jq1j+ jq2j � 1 � k0.

This concludes the proof that all the states of Q satisfy '4.

A Proofs

We provide in this annex the proof of Proposition 4.3, which states the soundness of the deduction rules

LfpUp, LfpDn, GfpUp, and GfpDn associated to the minimal and maximal �xed point operators.

We start by giving a lemma that relates the semantics of an application 1[2] with the semantics of

the boolean formulas 1 and 2.

Lemma A.1. Let �Z(z:D): 1 be a �xed point formula and let 2 2 BForm such that fbv(2) �
fbv(1) and fdv(2) � fdv(1). Then, for every � 2 BEnv and " 2 DEnv such that fbv(1) � supp(�)
and fdv(1) � supp("):

[[1 [2]]] �" = [[1]] (�[�v:D: [[2]] �("[v=z])=Z])":

Proof. Straightforward, by structural induction on 1. 2

The following lemma, which relates the semantics of the iterative application k1 [2] with the semantics

of 2 and the functional associated to 1, will be useful in showing the soundness of the LfpUp and

GfpDn rules.

A PROOFS 15

Lemma A.2. Let �Z(z:D): 1 be a �xed point formula and let 2 2 BForm such that fbv(2) �
fbv(1) and fdv(2) � fdv(1). Let � 2 BEnv and " 2 DEnv such that fbv(1) � supp(�) and

fdv(1) � supp("). Then, for all k � 0:

�v:D:[[k1 [2]]]�("[v=z]) = 	1
k
�"(�v

0
:D: [[2]] �("[v

0=z]))

where	1�"
def
= �G : D ! Bool:�v:D: [[1]] (�[G=Z])("[v=z]) is the functional associated to �Z(z:D): 1.

Proof. By induction on k, using also Lemma A.1.

� k = 0:

�v:D:[[0
1 [2]]]�("[v=z]) = by de�nition of k1

�v:D:[[2]]�("[v=z]) = by de�nition of 	1
k
�"

	1
0
�"(�v

0
:D:[[2]]�("[v

0=z]):

� k = k0 + 1:

�v:D:[[k
0+1

1 [2]]]�("[v=z]) = by de�nition of k1

�v:D:[[1[
k0

1 [2]]]]�("[v=z]) = by Lemma A.1

�v:D: [[1]]

�
�[�v0:D:[[k

0

1 [2]]]�(("[v=z])[v
0=z])=Z]

�
("[v=z]) = by de�nition of 	1�"

	1�"

�
�v0:D:[[k

0

1 [2]]]�("[v
0=z])

�
= by inductive hypothesis

	1�"

�
	1

k0

�"(�v
0
:D: [[2]] �("[v

0=z]))
�
= by de�nition of 	1

k
�"

	1
k0+1
�"

�
�v0:D: [[2]] �("[v

0=z])
�
:

2

We are now able to prove Proposition 4.3.

Proof of Proposition 4.3. We only show the soundness of the rules GfpUp and LfpUp, the proofs

of the rules LfpDn and GfpDn being their dual counterparts, respectively. Let �Z(z:D): 1 be a

�xed point formula and let 2 2 BForm such that fbv(2) � fbv(1) and fdv(2) � fdv(1).

� Rule GfpUp. We must show that the following implication holds:

8�:8": [[2 ! 1[2]]] �"! 8�:8": [[2 ! (�Z(z:D): 1)(z)]] �" (1)

where fbv(1) � supp(�) and fdv(1) � supp("). Let � 2 BEnv and " 2 DEnv having appropri-

ate supports. We consider the functional 	1�"
def
= �G : D ! Bool:�v:D: [[1]] (�[G=Z])("[v=z])

associated to the �Z(z:D): 1 formula, and we de�ne the function G2�"
def
= �v:D: [[2]] �("[v=z])

associated to 2. Assuming that the left hand side of (1) is true, we �rst show that G2�" !
	1�"(G2�"). Let v 2 D.

G2�"(v) = by de�nition of G2�"

[[2]] �("[v=z])! by assumption

[[1[2]]] �("[v=z]) = by Lemma A.1

[[1]] (�[�v
0
:D: [[2]] �(("[v=z])[v

0=z])=Z])("[v=z]) = by de�nition of G2�"

[[1]] (�[G2�"=Z])("[v=z]) = by de�nition of 	1�"�
	1�"(G2�")

�
(v):

A PROOFS 16

From G2�" ! 	1�"(G2�"), since 	1�" is monotonic and (D ! Bool) ! (D ! Bool) is a

complete lattice, Tarski's theorem implies that:

G2�" ! �	1�" (2)

For all � 2 BEnv and " 2 DEnv, whose supports satisfy the appropriate conditions, we obtain:

[[2]] �" = by de�nition of G2�"

G2�"("(z))! by (2)�
�	1�"

�
("(z)) = by de�nition of [[:]] �"

[[(�Z(z:D): 1)(z)]] �"

which is equivalent to the right hand side of (1).

� Rule LfpUp. We must show that the following implication holds:

8�:8":[[8k � 0:(2(k)! k1 [�])]]�"! 8�:8":[[(9k � 0: 2(k))! (�Z(z:D): 1)(z)]]�" (3)

where fbv(1) � supp(�) and fdv(1) � supp("). Let � 2 BEnv and " 2 DEnv having appropri-

ate supports. The functional 	1�" associated to the �Z(z:D): 1 formula is de�ned as usual. We

also de�ne the function G2�"
def
= �l:N:�v:D: [[2(k)]] �("[l=k; v=z]) associated to 2(k). Assuming

that the left hand side of (3) is true, we �rst show that G2�"(l) ! 	1
l
�"(�v

0
:D:�) for all l � 0.

Let v 2 D.

�
G2�"(l)

�
(v) = by de�nition of G2�"

[[2(k)]] �("[l=k; v=z])! by assumption

[[k1 [�]]]�("[l=k; v=z]) = by de�nition of k1

[[l1[�]]]�("[v=z]) = by Lemma A.2�
	1

l
�"(�v

0
:D:�)

�
(v):

Since 	1�" is monotonic, it is simple to show, by induction on l, that 	1
l
�"(�v

0
:D:�) ! �	1�"

for all l � 0. Together with the property 8l � 0:(G2�"(l) ! 	1
l
�"(�v

0
:D:�)) shown above, this

implies:

�
9l � 0:G2�"(l)

�
! �	1�" (4)

For all � 2 BEnv and " 2 DEnv, whose supports satisfy the appropriate conditions, we obtain:

[[9k � 0: 2(k)]] �" = by de�nition of [[:]] �"

9l � 0: [[2(k)]] �("[l=k]) = by de�nition of G2�"

9l � 0:
�
G2�"(l)

�
("(z))! by (4)�

�	1�"

�
("(z)) = by de�nition of [[:]] �"

[[(�Z(z:D): 1)(z)]] �"

which is equivalent to the right hand side of (3).

2

REFERENCES 17

References

[1] H. R. Andersen. Model checking and boolean graphs. Theoretical Computer Science, 126(1):3{30,

1994.

[2] A. Arnold and P. Crubill�e. A linear algorithm to solve �xed-point equations on transition systems.

Information Processing Letters, 29:57{66, 1988.

[3] M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In B. Jonsson and J.

Parrow, editors, Proceedings CONCUR'94, Uppsala, Sweden, LNCS 836, pp. 401{416, Springer

Verlag, 1994.

[4] M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding window protocol in �CRL.
The Computer Journal, 37(4):289{307, 1994.

[5] D. Bosscher and A. Ponse. Translating a process algebra with symbolic data values to linear format.

In U.H. Engberg, K.G. Larsen, and A. Skou, editors, Proceedings TACAS'95, Aarhus, Denmark,

BRICS Notes Series, pages 119{130, University of Aarhus, 1995.

[6] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite-state concurrent

systems using temporal logic speci�cations. ACM Transactions on Programming Languages and

Systems, 8(2):244{263, 1986.

[7] D. van Dalen. Logic and Structure. Springer Verlag, 1994.

[8] M. Dam. Ctl
�
and Ectl

�
as fragments of the modal �-calculus. Theoretical Computer Science,

126(1):77{96, 1994.

[9] M. Dam. Model checking mobile processes. Information and Computation, 129:35{51, 1996.

[10] R. De Nicola and F. W. Vaandrager. Action versus state based logics for transition systems.

Proceedings Ecole de Printemps on Semantics of Concurrency, LNCS 469, Springer Verlag, 1990.

[11] E. A. Emerson and J. Y. Halpern. \Sometimes" and \Not Never" revisited: on branching versus

linear time temporal logic. Journal of the ACM, 33(1):151{178, 1986.

[12] E. A. Emerson and C-L. Lei. E�cient model checking in fragments of the propositional mu-

calculus. Proceedings of the 1st LICS, pp. 267{278, 1986.

[13] L.-�A. Fredlund, J.F. Groote and H. Korver. Formal veri�cation of a leader election protocol in

process algebra. Theoretical Computer Science, 177:459{486, 1997.

[14] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of

Computer and System Sciences, 18, pp. 194{211, 1979.

[15] J.F. Groote. A note on n similar parallel processes. In S. Gnesi and D. Latella, editors, Second

International ERCIM Workshop on Formal Methods for Industrial Critical Systems, pp. 65{75,

Cesena, Italy, 1997. (See also Report CS-R9626, CWI, Amsterdam, 1996).

[16] J.F. Groote, F. Monin and J. Springintveld. A computer checked algebraic veri�cation of a dis-

tributed summing protocol. Computer Science Report 97/14, Department of Mathematics and

Computer Science, Eindhoven University of Technology. 1997.

[17] J.F. Groote and J.C. van de Pol. A bounded retransmission protocol for large data packets. A

case study in computer checked veri�cation. In M. Wirsing and M. Nivat, Editors, Proceedings of

AMAST'96, Munich, LNCS 1101, pp. 536{550, Springer Verlag, 1996.

REFERENCES 18

[18] J.F. Groote and A. Ponse. The syntax and semantics of �CRL. In A. Ponse, C. Verhoef and

S.F.M. van Vlijmen, eds, Algebra of Communicating Processes, Workshops in Computing, pp. 26{

62, 1994.

[19] J.F. Groote and J. Springintveld. Focus points and convergent process operators. A proof strategy

for protocol veri�cation. Technical Report 142, Logic Group Preprint Series, Utrecht University,

1995. This report also appeared as Technical Report CS-R9566, Centrum voor Wiskunde en In-

formatica, 1995.

[20] A. Kindler, W. Reisig, H. V�olzer, and R. Walter. Petri net based veri�cation of distributed

algorithms: an example. Formal Aspects of Computing, 9:409{424, 1997.

[21] D. Kozen. Results on the propositional �-calculus. Theoretical Computer Science 27, pp. 333{354,

1983.

[22] Z. Manna and A. Pnueli. Adequate proof principles for invariance and liveness properties of

concurrent programs. Science of Computer Programming 32:257{289, 1984.

[23] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems, volume I:

Speci�cation. Springer-Verlag, 1992.

[24] J-P. Queille and J. Sifakis. Fairness and related properties in transition systems | a temporal

logic to deal with fairness. Acta Informatica, 19:195{220, 1983.

[25] J. Rathke and M. Hennessy. Local model checking for a value-based modal �-calculus. Technical
Report 5/96, School of Cognitive and Computing Sciences, University of Sussex, 1996.

[26] C. Shankland. The Tree Identify Protocol of IEEE 1394. Unpublished technical report, University

of Stirling, 1998.

[27] A. Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c Journal of Mathe-

matics 5, pp. 285{309, 1955.

[28] B. Vergauwen and J. Lewi. A linear algorithm for solving �xed-point equations on transition

systems. Proceedings of the 17th Colloquium on Trees in Algebra and Programming CAAP '92

(Rennes, France), LNCS 581, pp. 322{341, Springer Verlag, 1992.

