
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Focus points and convergent process operators

J.F. Groote and J.G. Springintveld

Computer Science/Department of Software Technology

CS-R9566 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301667103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9566
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Focus Points and Convergent Process Operators

A Proof Strategy for Protocol Veri�cation

Jan Friso Groote

Department of Philosophy� Utrecht University

Heidelberglaan �� ���� CS Utrecht� The Netherlands

jfg�phil�ruu�nl

Jan Springintveld

CWI

P�O� Box ��	
�� �	�	 GB Amsterdam� The Netherlands

js�cwi�nl

Abstract

We present a strategy for �nding algebraic correctness proofs for communication systems�
It is described in the setting of �CRL ����� which is� roughly� ACP ��� 	� extended with a
formal treatment of the interaction between data and processes�

The strategy has already been applied successfully in �
� and ����� but was not explicitly
identi�ed as such� Moreover� the protocols that were veri�ed in these papers were rather
complex� so that the general picture was obscured by the amount of details� In this paper�
the proof strategy is materialised in the form of de�nitions and theorems� These results
reduce a large part of protocol veri�cation to a number of trivial facts concerning data
parameters occurring in implementation and speci�cation� This greatly simpli�es protocol
veri�cations and makes our approach amenable to mechanical assistance� experiments in
this direction seem promising�

The strategy is illustrated by several small examples and one larger example� the
Concurrent Alternating Bit Protocol CABP�� Although simple� this protocol contains a
large amount of internal parallelism� so that all relevant issues make their appearance�

AMS Subject Classi�cation ������� ��M��� ��Q��� ��Q��� ��Q��� ��Q��� ��Q��� ��Q���
CR Subject Classi�cation ������� C����� D���
� F������ F�	���
Keywords � Phrases� Communication protocols� process algebra� protocol veri�cation�
linear process operators� ACP� �CRL�
Note� The second author is supported by the Netherlands Computer Science Research
Foundation SION� with �nancial support of the Netherlands Organisation for Scienti�c
Research NWO�� A preliminary version of this paper appeared inModels and Proofs� pro	
ceedings of AMAST workshop on Real	Time systems and Op
eration Inter	PRC �Mod�eles
et Preuves� Bordeaux� �����

� Introduction

One of the main aims of process theory is to be able to formally describe distributed systems
and to verify their correctness w�r�t� some speci�cation� In this paper� we focus on commu�
nication protocols and present a proof strategy to verify the correctness of such protocols in

�

� INTRODUCTION �

the framework of process algebra� This strategy has implicitly been used in �	
 and ���
 as
well as in a number of unpublished veri�cations� It appeared to structure and simplify the
proofs considerably� In this paper we explicitly present the strategy� We work in the theory
�CRL ���
� which is� roughly� ACP ��� �
 extended with a formal treatment of the interaction
between data and processes�
The task we set ourselves can be described as follows� An implementation of a communi�

cation protocol can be described as the parallel composition of several components C�� � � � �
Cn� These components can be receivers� senders� timers� channels� etc� They communicate
via internal actions in a set H�� resulting in internal communications in a set I�� The
speci�cation that this implementation should satisfy is given by a process Spec� Typically�
Spec de�nes a one�bit bu�er or a bidirectional queue� etc� In our process algebraic frame�
work� satisfying a speci�cation means being equal to it according to some preferred equality
relation�� Thus� in �CRL notation� we want to show that

�I�HC� k � � � k Cn�� � Spec�

Here� the �I�operator hides the communication actions in I� while the �H �operator forces the
send and read actions in H to synchronise� these operators will be explained below�
In simple cases� the equation can be proved as follows� First� �nd a guarded recursive

equation G� where guarded means that each occurrence of a recursive process variable must
be in the scope of an action� not being � � Then show that both �I�HC� k � � � k Cn�� and
Spec are solutions of this equation possibly applying some fairness principle�� Usually� G
is the expanded version of the protocol� Then the desired equality follows from RSP� the
principle stating that guarded recursive equations have at most one solution� Actually it
su�ces that the recursive equation is weakly guarded� or convergent� in the sense that there
exist no in�nite chains of unguarded occurrences of recursive process variables�
Our strategy can be seen as a considerably re�ned version of the above strategy� The re�

�nements are based on a particular format for the notation of processes� the so�called linear

process operators� This format� similar to the UNITY format of ��
 and to the precondi�
tion�e�ect notation of ���
 and ���
� enriches the process algebraic language with a symbolic
representation of the possibly in�nite� state space of a process by means of state variables
and formulas concerning these variables� Thus it combines the advantages of a compact and
easy to manipulate algebraic notation with the advantages of the precondition�e�ect style�
Instead of the principle RSP� we use the Concrete Invariant Corollary taken from ��
� that

says that if G is convergent and the processes �I�HC� k � � � k Cn�� and Spec are solutions
of G under the assumption of some invariant� then the two processes are equal in all states
satisfying the invariant� Since the invariant supposedly holds for the initial state� we are
done� We obtain G from the expanded version of the implementation by carefully renaming
internal actions to the silent step � so that the result is convergent�
Exploiting the symbolic representation of state spaces� we reduce the task of proving im�

plementation and speci�cation solutions for G to the existence of a state mapping� satisfying
certain constraints� the matching criteria� A state mapping maps states of the implemen�
tation to matching states of the speci�cation� Here� matching means that the same set of
external actions can be executed directly� The matching criteria are comparable to the de�n�
ing clauses of weak re�nements ���
� The criteria are formulated as simple formulas over
the data parameters and conditions occurring in implementation and speci�cation� Thus

� INTRODUCTION �

we reduce a large part of the correctness of the implementation w�r�t� the speci�cation to a
number of mostly trivial facts concerning data parameters and conditions occurring in im�
plementation and speci�cation� This greatly simpli�es protocol veri�cations and makes our
approach amenable to mechanical assistance� currently� our approach is being implemented
in the proof�assistant Coq ��� ��
�
The matching criteria embody an important concept� that of a focus point in the literature

sometimes called stable points�� It is often the case that states in the implementation do not
match directly with a state of the speci�cation� yet from these states a state can be reached�
after some internal computation� that does match directly with a state of the speci�cation�
To deal with this� we employ a case distinction between states in which the protocol cannot
perform internal actions� the focus points� and non�focus points� where the protocol can
perform internal actions� Focus points must match directly with states in the speci�cation�
In case the implementation is convergent� a focus point must be reached by performing �nitely
many internal actions� The set of states from which a focus point can be reached by internal
activity is called a cone� Under the assumption that there is no unbounded internal activity�
every state belongs to some cone� The state mapping maps all states of a cone to the state
corresponding to the focus point of the cone�
For distributed systems that only perform bounded internal activity� the proof strategy is

formulated as Theorem ���� For the case where the implementation can perform unbounded
activity� we provide Theorem 	��� Here one must in addition distinguish between progressing

and non�progressing internal actions in the implementation in order to guarantee convergence�
Intuitively� progressing internal steps are those that lead towards focus points� whereas non�
progressing internal actions lead away from focus points�
As shown in a number of veri�cations� the ingredients outlined above appear su�cient for

the systematic veri�cation of numerous protocols and distributed systems see e�g� �	� ��
��
The main contribution of the present paper is that it explicitly identi�es the strategy outlined
above� in the form of de�nitions and theorems� We provide an example of the veri�cation of
the Concurrent Alternating Bit Protocol with a correctness proof that consists of 	 amply
commented pages� We hope that this example provides some intuition how progressing
internal actions� state mappings� and invariants can be identi�ed�
In its present form� our strategy is not complete� in particular the speci�cation is not

allowed to contain � �steps� so these cases cannot be dealt with� Example ��� gives a counter
example to our main results in case the speci�cation is allowed to contain � �steps� We will
also give an example where a state mapping does not exist� even though implementation
and speci�cation are evidently branching bisimilar� A thorough treatment of completeness is
deferred to a future paper� Another future topic will be to exploit possible connections with
the theory of simulations�
Related work� We have incorporated several well�known and useful concepts such as

precondition�e�ect notation� invariants and simulations in an algebraic framework� leading
to a powerful methodology� The linear process format is similar to the UNITY format of ��

and to the precondition�e�ect notation of ���
 and ���
� Our state mappings are comparable
to weak re�nements� For a comprehensive treatment of re�nements and other simulation
relations� see ���
� Invariants are omnipresent in computer science� Proof strategies for
protocol veri�cation in an algebraic style appear among others in ���� ��� ��
�
Organisation� In Section �� we present the preliminaries of the theory� In Section �� we

� PRELIMINARIES 	

present a general result that formulates su�cient conditions for two processes to be equal
in the case where there are no in�nite chains of internal action in the implementation� This
result is specialised in Section 	 to the veri�cation of communication protocols that do have
unbounded internal activity� In Section �� we illustrate the proof strategy with some pos�
itive and negative examples� One of the positive examples is the Concurrent Alternating
Bit Protocol� Appendix A contains technical lemmas that are used in the paper� Finally�
Appendix B contains the �CRL axioms plus some additional axioms that are used in the
veri�cation�

Acknowledgements� A preliminary version of this paper was read by Doeko Bosscher�
Dennis Dams� Wan Fokkink� David Gri�oen� Henri Korver� Jaco van de Pol� Judi Romijn�
Alex Sellink� and Frits Vaandrager� Their comments and subsequent discussions lead to many
improvements� Example ��� is due to Frits Vaandrager�

� Preliminaries

In this section� we present some basic de�nitions� properties and results that we use in this
paper� We apply the proof theory of �CRL ���
� which is� roughly� ACP ��� �
 extended with
a formal treatment of the interaction between data and processes�

��� A short description of �CRL

The language �CRL is a process algebra comprising data ���
� We do not describe the
treatment of data types in �CRL in detail� as we make little use of it in this paper� For
our purpose it is su�cient that processes can be parameterised with data� We assume the
data sort of booleans Bool with constants true T and false F� and the usual operators�
Furthermore� we assume for all data types the existence of an equality function eq that
faithfully re�ects equality� and an if then else�function such that if b� t�� t�� equals t� if b
equals T and equals t� otherwise�
Starting from a set Act of actions that can be parameterised with data� processes are de�ned

by means of guarded recursive equations and the following operators� In Subsection ���� we
will discuss a useful variant of guarded recursive equations��
First� there is a constant � � �� Act� that cannot perform any action and is henceforth

called deadlock or inaction�
Next� there are the sequential composition operator � and the alternative composition

operator �� The process x � y �rst behaves as x and if x successfully terminates continues to
behave as y� The process x� y can either do an action of x and continue to behave as x or
do an action of y and continue to behave as y�
Interleaving parallelism is modeled by the operator k� The process x k y is the result of

interleaving actions of x and y� except that actions from x and y may also synchronise to a
communication action� when this is explicitly allowed by a communication function� This is a
partial� commutative and associative function � � Act�Act� Act that describes how actions
can communicate� parameterised actions ad� and bd�� communicate to �a� b�d�� provided
d � d�� A speci�cation of a process typically contains a speci�cation of a communication
function�

� PRELIMINARIES �

In order to axiomatise the parallel operator there are two auxiliary parallel operators� First�
the left merge k � which behaves as the parallel operator� except that the �rst step must come
from the process at the left� Secondly� the communication merge j which also behaves as the
parallel operator� except that the �rst step is a communication between both arguments�
To enforce that actions in processes x and y synchronise� we can prevent actions from

happening on their own� using the encapsulation operator �H � The process �Hx� can perform
all actions of x except that actions in the set H are blocked� So� assuming �a� b� � c� in
�fa�bgx k y� the actions a and b are forced to synchronise to c�
We assume the existence of a special action � � �� Act� that is internal and cannot be

directly observed� A useful feature is o�ered by the hiding operator �I that renames the
actions in the set I to � � By hiding all internal communications of a process only the external
actions remain� In this way we can obtain compact descriptions of the external functionality
of a set of cooperating processes� A nice example is provided in Theorem ��	 where the
external behaviour of a set of parallel processes modelling the Concurrent Alternating Bit
Protocol appears to be the same as that of a simple one place bu�er�
Another useful operator is the general renaming �f � where f � Act � Act is a renaming

function on actions� If process x can perform an action a� then �f x� can perform the action
fa��
The following two operators combine data with processes� The sum operator �d�Dpd�

describes the process that can execute the process pd� for some value d selected from the
sort D� The conditional operator 	
 describes the then�if �else� The process x 	 b
 y
where b is a boolean� has the behaviour of x if b is true and the behaviour of y if b is false�
We apply the convention that � binds stronger than �� followed by 	
 � and � binds

weakest� Moreover� � is usually suppressed� Axioms that characterise the operators are given
in Appendix B�

��� Linear process operators

We recapitulate some terminology that has been introduced in �	
� Especially the notion of
a linear process operator forms the cornerstone for the developments in this paper�

De�nition ���� A linear process operator LPO� over data type D is an expression of the
form

� � �p��d�D�
X
i�I

X
ei�Ei

cifid� ei���pgid� ei�� 	 bid� ei�
 �

for some �nite index set I� actions ci � Act � f�g� data types Ei�Di� and functions fi � D �
Ei � Di� gi � D � Ei � D� bi � D � Ei � Bool� We assume that � has no parameter��
�

We will give an example below� Note that the bound variable p ranges over processes param�
eterised with a datum of sort D� When writing I � f�� � � � � ng� we use a meta�sum notation
�i�Ipi for p� � p� � � � � � pn� the pi�s are called summands of �i�Ipi�
In �	
 an LPO is de�ned as having also summands that allow termination� We have omitted

these here� because they hardly occur in actual speci�cations and obscure the presentation
of the theory� Moreover� it is not hard to add them if so required�

� PRELIMINARIES �

LPOs are de�ned having a single data parameter� The LPOs that we will consider generally
have more than one parameter� but using cartesian products and projection functions� it is
easily seen that this is an inessential extension� Often� parameter lists get rather long�
Therefore� we use the following notation for updating elements in the list� Let �d abbreviate
the vector d�� � � � � dn� A summand of the form �ei�Ei

cifi�d� ei�� pd
�
idi� 	 bi

�d� ei�
 � in

the de�nition of a process p�d � abbreviates �ei�Ei
cifi�d� ei�� pd�� � � � � di��� d

�
i� di��� � � � dn� 	

bi�d� ei�
 �� Here� the parameter di is in the recursive call updated to d�i� This notation is
extended in the natural way to multiple updates� If no parameter is updated� we write the
summand as �ei�Ei

cifi�d� ei�� p 	 bi�d� ei�
 ��
LPOs are often de�ned equationally� We give an example of an LPO K which is a channel

that reads frames consisting of a datum from some data type D and an alternating bit� It
either delivers the frame correctly� or loses or garbles it� In the last case a checksum error ce
is sent� The non�deterministic choice between the three options is modeled by the actions j
and j�� If j is chosen the frame is delivered correctly and if j� happens it is garbled or lost�
The state of the channel is modeled by the parameter ik�

proc Kd�D� b�Bit � ik�Nat� �P
d��D

P
b��Bit rhd

�� b�i�Kd�d� b�b� �ik� 	 eqik� ��
 ��
j�K�ik� � j K�ik� � j�K	ik�� 	 eqik� ��
 ��
shd� bi�K�ik� 	 eqik� ��
 ��
sce�K�ik� 	 eqik� 	�
 �

Note that we have deviated from the pure LPO format� in the last three summands there is
no summation over a data type Ei� in the second summand j and j

� do not carry a parameter
like the � �action� and the � operator occurs� But� using axiom SUM� from Appendix B� we
can always add a dummy summation over some data type� Also� it is possible to give j and
j� some dummy argument� Finally� using axiom SUM	� the

P
�operator can be distributed

over the �� In the sequel we will allow ourselves these deviations�
Processes can be de�ned as solutions for convergent LPOs�

De�nition ���� A solution or �xed point of an LPO � is a process p� parameterised with a
datum of sort D� such that� for all d � D� pd� � �pd� �

De�nition ���� An LPO � written as in De�nition ��� is called convergent if there is a
well�founded ordering � on D such that for all i � I with ci � � and for all ei � Ei� d � D we
have that bid� ei� implies gid� ei� � d� �

For each LPO �� we assume an axiom which postulates that � has a canonical solution�
which we denote by h�i� Then� we postulate that every convergent LPO has at most one
solution� In this way� convergent LPOs de�ne processes� The two principles re�ect that we
only consider process algebras where every LPO has at least solution and converging LPOs
have precisely one solution�

De�nition ���� We assume the following two principles�

� L�RDP � For all d of sort D and LPOs � over D we have h�id� � �h�id

� PRELIMINARIES �

� CL�RSP� Every convergent linear process operator has at most one �xed point solu�
tion�� for all d of sort D and convergent LPOs � over D we have pd� � �pd� p � h�i�

�

Usually� we do not mention h�i explicitly and just speak about solutions for ��
The following general theorem� taken from ��
� is the basis for our proofs� Roughly� it says

that if an LPO is convergent in the part of its state space that satis�es an invariant I� then
it has at most one solution in that part of the state space�

De�nition ���� An invariant of an LPO � written as in De�nition ��� is a function I �
D � Bool such that for for all i � I� ei � Ei� and d � D we have�

bid� ei� 	 Id�� Igid� ei���

�

Theorem ��	 �Concrete Invariant Corollary ����� Let � be an LPO� If	 for some invariant I
of �	 the LPO �p��d��pd 	 Id�
 � is convergent and for some processes q	 q�	 parameterised
by a datum of type D	 we have

Id�� qd� � �qd�
Id�� q�d� � �q�d�

then

Id�� qd� � q�d��

To develop the theory it is convenient to work with a particular form of LPOs� which we call
deterministic� Deterministic LPOs contain� for each action a� at most one summand starting
with a� Thus deterministic LPOs can be de�ned by summation over a �nite set of actions
instead of over a general �nite index set I�

De�nition ��
� Let Act
 Act be a �nite set of actions� possibly extended with � � A
deterministic linear process operator D�LPO� over Act is an expression of the form

� � �p��d�D�
X
a�Act

X
ea�Ea

afad� ea�� pgad� ea�� 	 bad� ea�
 ��

�

The following theorem states that it is no restriction to assume that LPOs are deterministic�

Theorem ����

�� Every convergent LPO � can be rewritten to a D
LPO �� with the same solution	
provided every occurrence of an action a in � has a parameter of a unique type Da�

�� Consider convergent D
LPOs �	 � such that action a occurs both in � and in � �with
parameters of the same data type�� There exist convergent D
LPOs ��	 �� having the
same solutions as �	 �	 respectively	 such that a occurs in �� and �� in summands with
summation over the same sort Ea�

� SUFFICIENT CONDITIONS FOR THE EQUALITY OF LPOS �

This result is proved as Theorem A�	 in Appendix A� Here we just give an example� The
two summands shd� bi�K�ik� 	 eqik� ��
 � and sce�K�ik� 	 eqik� 	�
 � of the channel
K can be grouped together as

sif eqik� ��� hd� bi� ce��K�ik� 	 eqik� �� � eqik� 	�
 ��

Here we assume that ce is of the same sort as the pair hd� bi�
We end this subsection by remarking that� due to the symbolic representation of state

spaces� the parallel composition of LPOs can be computed very easily� This property is well�
known for similar formats� For LPOs� the precise formulation is given by Lemma A�� from
Appendix A� Currently� a tool set for linear processes� which handles expansion and many
other operations� is being built using the ASF�SDF meta�environment ��� �	
�

��� Internal actions

We work in the setting of branching bisimulation ���
� but provide results for weak bisimula�
tion too in those cases where they di�er� So� we generally use the following two laws�

B�� x � � x

B�� z� x� y� � x� � zx� y�

We write x � y if there exists a z such that x� z � y� It is easily veri�ed that if x � y and
y � x then x � y� Using this notation� we have the following easy fact�

Lemma ����

y � x� �x � ��x� y�

Proof� �x � �x� y�
B�
� ��x� y� � y� � ��x� y�� �

We also assume a principle of fair abstraction� in the form of Koomen�s Fair Abstraction Rule
KFAR�� The formulation below is the one valid in branching bisimulation�

pd� � i pd� � y

� �figpd�� � � �figy�

Here p represents a process that can be parameterised� y represents a process and i represents
an action�

� Su�cient conditions for the equality of LPOs

In this section� we are concerned with proving equality of solutions of LPOs � and �� The
LPO � de�nes an implementation and the LPO � de�nes the speci�cation of a system�
We assume that � �steps do not occur in the speci�cation �� We want to show that after
abstraction of internal actions in a set Int the solution of � is equal to the solution of �� In
this section we assume that � cannot perform an in�nite sequence of internal actions� but in
the next section we relax this restriction� It turns out to be convenient to consider � where

� SUFFICIENT CONDITIONS FOR THE EQUALITY OF LPOS �

the actions in Int are already renamed to � � Hence� we speak about an LPO which is
� where actions in Int have been hidden� Note that is convergent� and hence de�nes a
process� We �x the LPOs and � as follows where the actions are taken from a set Act��

 � �p��d�D��
X
a�Act

X
ea�Ea

afad� ea�� pgad� ea�� 	 bad� ea�
 �

� � �q��d�D��
X

a�Actnf�g

X
ea�Ea

af �ad� ea�� qg
�
ad� ea�� 	 b

�
ad� ea�
 �

The issue that we consider is how to prove the solutions of and � equal� This is done by
means of a state mapping h�D� � D�� The mapping h maps states of the implementation to
states of the speci�cation� It explains how the data parameter that encodes states of the spec�
i�cation is constructed out of the data parameter that encodes states of the implementation�
In order to prove implementation and speci�cation branching bisimilar� the state mapping
should satisfy certain properties� which we call matching criteria because they serve to match
states and transitions of implementation and speci�cation� They are inspired by numerous
case studies in protocol veri�cation� and reduce complex calculations to a few straightforward
checks�
In order to understand the matching criteria we �rst introduce an important concept� called

a focus point� A focus point is a state in the implementation without outgoing � �steps� Focus
points are characterised by the focus condition FC�d�� which is true if d is a focus point�
and false if not�

De�nition ���� The focus condition FC�d� of is the formula �e� �E� b� d� e� ��� �

The set of states from which a focus point can be reached via internal actions is called the
cone belonging to this focus point�
Now the matching criteria express that focus points in the state space of the implementation

must match perfectly with their h�image in the speci�cation� whereas points in a cone only
have to match indirectly� Here� a direct match means that the same set of external actions
can be executed directly requirement �� and 	� below�� with the same data parameter
requirement ��� and leading to h�related states requirement ���� If in non�focus points
a visible action can be done� then this action must also be possible in the speci�cation
requirement �� below�� But if an h�image in the speci�cation of a non�focus point s in the
implementation can perform an action� the non�focus point s need not match it directly� As
 is convergent a focus point will be reached after a �nite number of internal steps� Due to
condition �� this focus point will have the same h�image as s� and can therefore perform the
same actions� So� it is guaranteed that s can eventually mimic the step of its h�image�
The situation is depicted very schematically in Figure �� Here the dashed arrows are

internal actions � �steps� that are all directed towards the focus point� Since in a focus point
there is a perfect match between implementation and speci�cation� we can say that a focus
point is a goal of the implementation� and the internal actions in the cone which are directed
to the focus point� are progressing towards this goal� Note that as we have assumed that
 is convergent� each internal step in Figure � is directed towards the focus point� This is
a real restriction� as in general there may be loops of internal actions� for instance if data

� SUFFICIENT CONDITIONS FOR THE EQUALITY OF LPOS ��

External actions

F

Progressing internal actions

c
d

c
d

d

d

a
b

a

b
b

b

c

a

Figure �� A cone and a focus point

must be retransmitted over unreliable channels� Actions that give rise to such loops may be
considered non�progressing w�r�t� the focus point�� We will deal with them in Section 	�

Now we formulate the criteria� We discuss each criterion directly after the de�nition� Here
and below we assume that binds stronger than 	 and �� which in turn bind stronger than
��

De�nition ���� Let h�D� � D� be a state mapping� The following criteria referring to �
� and h are called the matching criteria� We refer to their conjunction by C����hd��

 is convergent ��

�e� �E� b� d� e� �� hd� � hg� d� e� ��� ��

�a � Act n f�g�ea�Ea bad� ea�� b�ahd�� ea�� ��

�a � Act n f�g�ea�Ea FC�d� 	 b�ahd�� ea�� bad� ea�� 	�

�a � Act n f�g �ea�Ea bad� ea�� fad� ea� � f �ahd�� ea�� ��

�a � Act n f�g �ea�Ea bad� ea�� hgad� ea�� � g�ahd�� ea�� ��

�

Criterion �� says that must be convergent� In e�ect this does not say anything else than
that in a cone every internal action � constitutes progress towards a focus point�
Criterion �� says that if in a state d in the implementation an internal step can be done

i�e� b� d� e� � is valid� then this internal step is not observable� This is described by saying
that both states relate to the same state in the speci�cation�
Criterion �� says that when the implementation can perform an external step� then the

corresponding point in the speci�cation must also be able to perform this step� Note that

� SUFFICIENT CONDITIONS FOR THE EQUALITY OF LPOS ��

in general� the converse need not hold� If the speci�cation can perform an a�action in a
certain state e� then it is only necessary that in every state d of the implementation such that
hd� � e an a�step can be done after some internal actions�
This is guaranteed by criterion 	�� It says that in a focus point of the implementation� an

action a in the implementation can be performed if it is enabled in the speci�cation�
Criteria �� and �� express that corresponding external actions carry the same data pa�

rameter modulo h� and lead to corresponding states�

Assume that r and q are solutions of and �� respectively� Using the matching criteria� we
would like to prove that� for all d�D� C����hd� implies rd� � qhd���
In fact we prove a more complicated result� This has two reasons� The �rst one is that

the statement above is not generally true� Consider the case where d is a non�focus point of
 � In this case� rd� can perform a � �step� Since q cannot perform � �steps� rd� cannot be
equal to qhd��� Therefore� in the setting of branching bisimulation we can for non�focus
points d only prove � rd� � � qhd��� In the setting of weak bisimulation this simpli�es to
rd� � � qhd����
The second reason why we need a more complicated result is of a very general nature� A

speci�cation and an implementation are in general only equivalent for the reachable states
in the implementation� A common tool to exclude non�reachable states is an invariant�
Therefore we have added an invariant to the theorem below�

Theorem ��� �General Equality Theorem�� Let 	 � and h be as above �recall that � does
not contain �
steps�� Assume that r and q are solutions of and �	 respectively� If I is an
invariant of and �d�D� Id�� C����hd��	 then

�d�D� Id�� rd� 	 FC�d�
 � rd� � qhd�� 	 FC�d�
 � qhd���

Proof� De�ne the LPO ! by�

! � �r��d�D�� rd 	 FCd�
 � rd�

We prove the theorem as an application of the Concrete Invariant Corollary Theorem ����
with ! as LPO� We verify the conditions of that result�
As the invariant implies that is convergent� it is straightforward to see that the LPO

�r��d�D� � !rd 	 Id�
 � is convergent too�
Using LemmaA�� and the fact that r is a solution of � it is also easy to see that �d�D��rd�	

FCd�
 �rd� is a solution of !�
It is slightly more involved to check that �d�D��qhd�� 	 FCd�
 �qhd�� is a solution of

!� After applying Lemma A��� this boils down to proving the following equation�

qhd�� 	 FCd�
 � qhd�� �
 ��d�D��qhd��
d 	 FCd�
 � ��d�D��qhd��
d

We distinguish two cases� The �rst case is where FCd� holds� We must show that

qhd�� �
X
a�Act

X
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea�
 �

� SUFFICIENT CONDITIONS FOR THE EQUALITY OF LPOS ��

We proceed as follows�

qhd�� �P
a�Act

P
ea�Ea

af �ahd�� ea�� qg
�
ahd�� ea�� 	 b

�
ahd�� ea�
 �

�	
���

�P

a�Act

P
ea�Ea

af �ahd�� ea�� qg
�
ahd�� ea�� 	 bad� ea�
 �

��
��

�P

a�Act

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea�
 �

The second case is where FCd� does not hold� Now we must show that

� qhd�� � �
X
a�Act

X
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea�
 �

First note the following Fact�

qhd�� �P
a�Act

P
ea�Ea

af �ahd�� ea�� qg
�
ahd�� ea�� 	 b

�
ahd�� ea�
 � �P

a�Actnf�g

P
ea�Ea

af �ahd�� ea�� qg
�
ahd�� ea�� 	 b

�
ahd�� ea� 	 bad� ea�
 �

��
��

�P

a�Actnf�g

P
ea�Ea

afad� ea�� qhgad� ea��� 	 b
�
ahd�� ea� 	 bad� ea�
 �

�	

�P

a�Actnf�g

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea�
 ��

The theorem now follows by�

� qhd��
z
�

� � qhd���P
a�Actnf�g

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea�
 ��
�
�

�
P

e� �E�
� qhg� d� e� ��� 	 b� d� e� �
 ��P

a�Actnf�g

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea�
 �� �

�
P

a�Act

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea�
 ��

At z� we have used Lemma ��� and the Fact stated above� At �� we have used Lemma A��
and matching criterion ��� Recall that� since FC�d� holds� there exists an e� such that
b� d� e� �� For the same reason� � � Act � this justi�es the last step� �

We can formulate a similar result in the setting of weak bisimulation semantics� which is
axiomatised by the following laws where a �� ���

T�� x � � x

T�� � x � � x� x

T�� a� x� y� � a� x� y� � ax

First� we prove the following variant of Lemma ����

Lemma ��� �Lemma ��� for weak bisimulation��

y � x� �x � �x� y

 ABSTRACTION AND IDLE LOOPS ��

Proof� �x
T�
� �x� x � �x� x� y

T�
� �x� y� �

Using Lemma ��	 rather than Lemma ���� we can prove the following adaptation of Theo�
rem ����

Theorem ��� �General Equality Theorem for Weak Bisimulation�� Let 	 � and h be as
above �recall that � does not contain �
steps�� Assume that r and q are solutions of and
�	 respectively� If I is an invariant of and �d�D� Id�� C����hd��	 then

�d�D� Id�� rd� � qhd�� 	 FC�d�
 � qhd���

� Abstraction and idle loops

The main result of this section� Theorem 	��� is an adaptation of Theorem ��� to the setting
where implementations can perform unbounded sequences of internal activity�
Recall that we are concerned with the following situation� We have an implementation�

de�ned by the LPO �� and a speci�cation� de�ned by the LPO �� We want to prove that
� is equal to �� after abstraction of internal actions in �� In the previous section� we have
shown how to prove equality of � and � which is an abstract version of �� where internal
actions� i�e� actions not in �� are hidden�
Thus our next task is to rename internal actions in � in such a way that the resulting LPO

 is convergent� i�e� does not contain � �loops� and such that a state mapping h from to ��
satisfying the matching criteria� can be de�ned�
In the previous section� we identi�ed � �steps with internal actions that make progress

towards a focus point� and so make progress in the protocol� Following this intuition� we only
rename those occurrences of actions that constitute progress in the protocol� Consider for
instance the Concurrent Alternating Bit Protocol of Section �� where a sender S repeatedly
sends a datum with an alternating bit b attached to receiver R through the channel K of
Section �� until an acknowledgement arrives via channel L� Obviously� losing or garbling the
datum in the channel K does not constitute progress in any sense� indeed� these events give
rise to an internal loop� since the sender S retransmits the datum� So these transitions are
not renamed to � � Also� the transmission of the datum by the sender is useful only when
the receiver has not yet received it� i�e� is still willing to accept data with alternating bit b�
Suppose that we have a formula � that expresses that R will accept data with alternating
bit b� Then we split this transmission into two transitions� one where the transmission is
renamed to � and the enabling condition is strengthened by the conjunct �� and one where
the transition is unchanged but the enabling condition is strengthened by the conjunct ��
It requires experience to identify progressing internal actions for particular applications�

we hope that the examples in Subsection ��� provide enough intuition�
We have seen that� when the implementation has unbounded internal behaviour� not all

occurrences of all internal actions can be renamed to � � since this would give rise to a non�
convergent LPO � Hence some occurrences of some internal actions in the implementation
remain unchanged� However� in order to apply Theorem ���� the speci�cation � and ab�
stracted implementation should run over the same set of actions� except that can per�
form � �steps� To arrive at this situation� we augment � with "idle# loops� for each internal

 ABSTRACTION AND IDLE LOOPS �	

action j that still occurs in � we augment � with a j�loop of the form j pd� 	 T
 �� As a
consequence� the augmented speci�cation is in every state able to do a j�step� In general�
the abstracted implementation is not in every state able to perform a j�step� To remedy
this we also add a j�loop to �
After these preparations� Theorem ��� yields that plus idle loops is equal to � plus

idle loops� Now by KFAR� we can abstract from these idle loops to obtain equality of
implementation � after abstraction of all internal actions� and speci�cation ��
Since the internal actions are eventually all renamed to � � we may as well rename them

�rst to a single internal action i� and add just a single idle loop an i�loop� to and �� This
considerably smoothens the presentation�

As opposed to the previous section� the main result of this section� Theorem 	��� is the
same for weak bisimulation and branching bisimulation� In the sequel� we assume that Ext
the set of external actions of ��� Int the set of internal actions of ��� and f�g are mutually
disjoint and �nite sets of actions�
First� we introduce a number of operator transformations that are instrumental in the

proof� The operator i�� is � extended with an i�loop� �Int �� is � with all actions in Int

renamed to i� iInt �� is a combination of the two�

De�nition ���� Let � be a convergent LPO over Ext � Int � f�g� Let i � Act be an action
such that i � Ext � Int � f�g� Let �Int be a renaming operator renaming the actions in Int

to i� We de�ne the following operators on LPOs�

i��
def
� �p��d�D���pd� i pd��

�Int��
def
� �p��d�D���Int �pd��

iInt��
def
� i�Int ����

�

The following theorem gives the relevant properties of these operators� It is proved in Ap�
pendix A as Theorem A��� the proof uses KFAR and CL�RSP�

Theorem ���� Let � be a convergent LPO over Ext�Int�f�g such that i � Ext�Int�f�g�
Assume that p� is a solution of �	 p� is a solution of i��	 and p	 is a solution of iInt ���
Then we have	 for all d � D�

�� � p�d� � � �figp�d��	

�� �Int p�d�� � p	d� and

�� � �Int p�d�� � � �figp	d���

The essential technical concept in this section is a pre�abstraction or partial abstraction

function �� The function � divides occurrences of internal actions in the implementation into
two categories� namely the progressing and non�progressing internal actions� In this setting�
a focus point is not de�ned in terms of � �steps� as in the previous section� but in terms of
progressing internal actions�
In order to apply Theorem 	�� below� one must provide not only an invariant and a state

mapping h� but also a pre�abstraction�

 ABSTRACTION AND IDLE LOOPS ��

De�nition ���� Let � be a D�LPO and let Int be a �nite set of actions� A pre�abstraction

function � is a mapping that yields for every action a � Int an expression of sort Bool� The
pre�abstraction �� is de�ned by replacing every summand in � of the formX

ea�Ea

afad� ea�� pgad� ea�� 	 bad� ea�
 �

with a � Int byX
ea�Ea

� pgad� ea�� 	 �a�d� ea�
 afad� ea�� pgad� ea��� 	 bad� ea�
 �

We extend � to all actions by assuming that ���d� e� � � T and �a�d� ea� � F for all
remaining actions� �

Note that if �a�d� ea� � T� the action a in the summand is replaced by � � while if
�a�d� ea� � F� the summand remains unchanged� In the remaining case� a�transitions
are divided into progressing ones renamed to �� and non�progressing ones� Observe that
D� � D��

and that convergence of �� implies convergence of ��
We rede�ne the notions convergent and focus point in a setting where there is a pre�

abstraction�

De�nition ���� Let � be an LPO with internal actions Int and let � be a pre�abstraction
function� The LPO � is called convergent w�r�t� � i� there is a well founded ordering � on
D such that for all a � Int � f�g� d � D and all ea � Ea we have that bad� ea� and �a�d� ea�
imply gad� ea� � d� Note that this is equivalent to convergence of ��� de�ned in terms of �
and �� �

The di�erence between � and �� disappears when the internal actions in Int are hidden�
This is stated in the next lemma� which is proven as Lemma A�� in Appendix A�

Lemma ���� Let � be an LPO that is convergent w�r�t� a pre
abstraction function �� Let
p be a solution of � and p� be a solution of ��� Then

�Intp� � �Intp
���

De�nition ��	� Let � be a pre�abstraction function� The focus condition of � relative to �
is de�ned by�

FC��Int��d�
def
� �a � Int � f�g �ea�Ea bad� ea� 	 �a�d� ea���

Note that this is exactly the focus condition of ��� de�ned in terms of � and �� �

In the next de�nition we de�ne the matching criteria for the case where the implementation
can perform unbounded internal activity� After an instrumental technical lemmawe formulate
the main theorem�

 ABSTRACTION AND IDLE LOOPS ��

De�nition ��
� Let �� � be D�LPOs� where � runs over Ext � Int �f�g Ext � Int and f�g
mutually disjoint� and � runs over Ext � Let h � D� � D� and let � be a pre�abstraction
function� The following � conditions are called the matching criteria for idle loops and their
conjunction is denoted by CI������hd��

� is convergent w�r�t� � ��

�a � Int � f�g �ea�Ea bad� ea�� hd� � hgad� ea��� ��

�a � Ext �ea�Eabad� ea�� b�ahd�� ea�� ��

�a � Ext �ea�Ea FC��Int��d� 	 b�ahd�� ea�� bad� ea�� 	�

�a � Ext �ea�Ea bad� ea�� fad� ea� � f �ahd�� ea�� ��

�a � Ext �ea�Ea bad� ea�� hgad� ea�� � g�ahd�� ea�� ��

�

Lemma ���� Let �	 �	 h and � as in De�nition ��� We �nd�

CI������hd�� CiInt���
�i��
�hd��

Proof� Below we show that the conditions in CiInt���
�i��
�hd� follow from the conditions in
CI������hd�� In order to see this� we formulate the conditions of CiInt���
�i��
�hd� in terms of
�� � and � directly and show how they follow�

�� We must show that iInt ��� is convergent� This is an immediate consequence of the
fact that � is convergent w�r�t� ��

�� We must prove �a � Int �f�g �ea�Ea �a�d� ea�	 bad� ea�� hd� � hgad� ea��� We
must consider a � Int as these are renamed to � if �a�d� ea� holds�� Note that this
condition is a direct consequence of condition � of CI������hd��

�� We get

�a � Int � Ext � fig �ea�Ea bad� ea� 	 �a�d� ea�� b�ahd�� ea���

In case a � Int or a is the new action i� the action a appears as i in iInt ���� In this
case b�ihd�� eb� equals T and the condition trivially holds�

In case a � Ext � this is exactly condition � of CI������hd��

	� This condition yields

�a � Int � Ext � fig �ea�Ea FC��Int ��d� 	 b�ahd�� ea�� bad� ea� 	 �a�d� ea���

In case a � Int � fig� a occurs as i in iInt ��� and iInt ��� So the conditions bid� ei�
and b�ihd�� ei� are both equal to T� If �i�d� ei� � F� we are done� if �i�d� ei� � T�
the focus condition is false and the theorem follows trivially�

In case a � Ext we have that �a�d� ea� � F and the theorem follows from condition 	
of CI������hd��

� EXAMPLES ��

�� In this case we get �a � Int � Ext � fig �ea�Ea �a�d� ea� 	 bad� ea� � fad� ea� �
f �ahd�� ea���

In case a � Int � fig� a occurs as i in iInt �� and iInt ��� As i has no parameter� this
condition holds trivially�

In case a � Ext this is exactly condition � of CI������hd��

�� The last condition is �a � Int�Ext�fig �ea�Ea �a�d� ea�	bad� ea�� hgad� ea�� �
g�ahd�� ea���

In case a � Int � fig the action a appears as i in iInt ��� and iInt��� So� g
�
i is the

identity and we must prove that hgad� ea�� � hd�� This follows from condition � of
CI������hd��

In case a � Ext this is an immediate consequence of condition � of CI������hd��

�

Theorem ��� �Equality theorem for idle loops�� Let �	 � be D
LPOs	 where � runs over
Ext � Int � f�g �Ext 	 Int and f�g mutually disjoint� and � runs over Ext � Let h � D� � D�

and let � be a pre
abstraction function� Let p and q be solutions of � and �	 respectively�
If I is an invariant of � and �d � D� Id�� CI������hd��	 then

�d�D� Id�� � �Intpd�� � � qhd���

Proof� Let p� q� p� and q� be solutions of �� �� iInt ��� and iInt ��� respectively� The
following three facts follow straightforwardly from the work done up to now�

�� � �Int pd�� � � �figp
�d�� Theorem 	������

�� � qhd�� � � �figq
�hd��� Theorem 	����� and

�� Id�� � p�d� � � q�hd�� Theorem ��� and Lemma 	����

The theorem follows straightforwardly by

� �Intpd��
��

� � �figp

�d��
�	

� � �figq

�hd���
��

� � qhd��

�

� Examples

In this section we give some examples� We begin with three simple ones� where invariants�
progressiveness of internal actions� and convergence hardly play a role� The �rst example
is an easy application of Theorem 	��� The next example shows that in some cases a state
mapping as required by Theorem ��� or Theorem 	�� does not exist� even though the processes

� EXAMPLES ��

in question are evidently branching bisimilar� The third example motivates our restriction to
speci�cations without � �steps� In Subsection ���� we present a larger example� the Concurrent
Alternating Bit Protocol� As an application of Theorem 	��� we prove the correctness of this
protocol� Here� invariants� progressiveness of internal actions and convergence make their
appearance�

Example ���� The following LPO describes a person who tosses a coin this event is mod�
eled by the internal action j�� When head turns up the person performs an external action
outhead �� when tail turns up the person tosses again� We write Sides for the sort consisting
of head and tail �

proc Xs�Sides� �P
s��Sides j Xs

�� 	 eqs� tail�
 ��
outs�Xtail � 	 eqs� head �
 �

After hiding the internal action j� this process implements the process which does nothing
but outhead ��steps� given by

proc Y s�Sides� � outhead �Y s�

Here we leave the condition T of the summand implicit� The parameter s is added to Y
for convenience� We use Theorem 	�� to prove that solutions for X and Y are branching
bisimilar� More precisely� let p and q be solutions for X and Y � respectively� we prove that
for all s � Sides� � �fjgps�� � � qs�� Here we take X for �� Y for �� fjg for Int and
foutg for Ext � First we de�ne the ��function� which determines when the internal action j
is renamed to � � The coin is tossed when s equals tail � When the side that turns up� s��
is again tail � we have a j�loop which after renaming would lead to a � �loop�� To exclude
this situation� we put �j� � eqs�� head �� The focus condition FCX�fjg��s� is now de�ned
as �s��Sides eqs� tail � 	 eqs�� head ��� which is equivalent to eqs� head �� As invariant we
simply take the always true formula T and we de�ne h � Sides � Sides by hs� � head �
Spelling out the matching criteria of De�nition 	��� we get the following proof obligations�

�� X is convergent w�r�t� �� This is easy� we let the required well�founded ordering on
Sides be given by� head � tail �

�� eqs� tail �� head � head � This formula is trivially proved�

�� eqs� head �� T� Equally trivial�

	� FCX�fjg��s� 	 T�� eqs� head �� Easy� since FCX�fjg��s� is equivalent to eqs� head ��

�� eqs� head � � s � head � Trivial� Remember that we assume that eq faithfully re�ects
equality�

�� eqs� head �� head � head � Trivial�

�End example��

Example ���� Let Y be de�ned as in Example ���� De�ne a function �ip � Sides � Sides

with �iphead � � tail and �iptail � � head no other equations hold�� Let Z be de�ned by

� EXAMPLES ��

proc Zst�Sides� � outhead �Z�ipst��

Processes de�ned by Y and Z are evidently strongly bisimilar� However� we cannot give a
state mapping h � Sides � Sides that satis�es the matching criteria� Towards a contradiction�
suppose that h exists� By criterion ��� we have hs� � �iphs��� which is clearly impossible�
We conjecture that in cases like this� one can always rewrite the implementation and

speci�cation in a simple way to branching� equivalent ones� which can be dealt with by our
strategy� In the present case� just delete the parameter st in Z�� It remains to make this
more precise� �End example��

Now we show that the restriction to speci�cations without � �steps cannot be dropped� We
present a counter example to this generalisation of Theorem ���� which also serves to refute
the same generalisation of Theorem 	���

Example ���� Let U be de�ned by

proc Ust�Nat� �
� U�� 	 eqst� ��
 ��
bU�� 	 eqst� ��
 ��
cUst� 	 eqst� ��
 �

Solutions for this LPO can be written as � b c�� Next� consider

proc V st�Nat� �
� V �� 	 eqst� ��
 ��
b V �� 	 eqst� ��
 ��
� V �� 	 eqst� ��
 ��
c V st� 	 eqst� ��
 �

We have that solutions to U and V are not in general branching or weakly� bisimilar� the
in�nite trace c� is an in�nite� trace of a solution for V � but not of a solution for U � However�
it is easy to show that the conditions of Theorem ��� are satis�ed� contradicting this result�
We de�ne a state mapping h from U to V � of type Nat � Nat � by

hst� �

�
� if eqst� ��
st otherwise

The focus condition FCU st� is equivalent to eqst� ��� It is easily seen that the matching
criteria CU�V�h are satis�ed� For convergence� take the � ordering on Nat restricted to
f�� �� �g� as the required well�founded ordering��
The question arises whether our strategy can deal with � �steps in the speci�cation at all�

Intuitively� these steps model that the speci�cation internally and invisibly makes choices� In
case the implementation is after abstraction of internal actions� equal to the speci�cation�
these choices must also occur in the implementation� Usually� they will be modeled by
internal but visible actions� An adaptation of our strategy could be to make the choices
in the speci�cation visible by replacing the � �steps by the corresponding internal actions�
Then one might prove this version of the speci�cation equal to the partially abstracted�
implementation� Thereafter� hiding the internal actions in the speci�cation yields the desired
result� �End example��

� EXAMPLES ��

L

K��
��

S ��
��

R

��
��
AR ��

��
AS

� 	
 �

� �

��

Figure �� The structure of the CABP

��� The Concurrent Alternating Bit Protocol

In this subsection we prove the correctness of the Concurrent Alternating Bit Protocol
CABP�� as an application of Theorem 	���

����� Speci�cation

In this section we give the standard description of the Concurrent Alternating Bit Protocol
and its speci�cation� The system is built from six components� The overall structure of
the CABP is depicted in Figure �� Information �ows clockwise through this picture� The
components can perform read rn� � ��� and send actions sn� � ��� to transport data over port
n� A read and a send action over port n can synchronise to a communication action cn� � ���
over port n when they are executed simultaneously� In such a case the parameters of the
send and read action must match�
We use the sort Bit with bits e� and e� with an inversion function inv and the sort Nat

of natural numbers� We assume an unspeci�ed sort D that contains the data elements to be
transferred by the protocol� The sort Frame consists of pairs hd� bi with d � D and b � Bit
b models the alternating bit�� This sort also contains two error messages� ce for checksum
error� and ae for acknowledgement error��
The channels K and L read data at port �� resp� port �� They either deliver the data

correctly via port 	� resp� ��� or lose or garble the data in the last case a checksum error ce
resp�� acknowledgement error ae�� is sent� The non�deterministic choice between the three
options is modeled by the actions j and j�� If j is chosen the data are delivered correctly and
if j� happens they are garbled or lost� The state of the channels is modeled by parameters ik
and il�

proc Kdk�D� bk�Bit � ik�Nat� �P
d�D

P
b�Bit r	hd� bi�Kddk � bbk� �ik� 	 eqik� ��
 ��

j�K�ik� � j K�ik� � j�K	ik�� 	 eqik� ��
 ��
s�hdk� bki�K�ik� 	 eqik� ��
 ��
s�ce�K�ik� 	 eqik� 	�
 �

Lbl�Bit � il�Nat� �P
b�Bit rb�Lbbl� �il� 	 eqil� ��
 ��

� EXAMPLES ��

j� L�il� � j L�il� � j� L	il�� 	 eqil� ��
 ��
s�bl�L�il� 	 eqil� ��
 ��
s�ae�L�il� 	 eqil� 	�
 �

The sender S reads a datum of sort D at port � and repeatedly o�ers the datum with a
bit attached� at port � until it receives an acknowledgement ac at port � after which the
bit�to�be�attached is inverted�

proc Sds�D� bs�Bit � is�Nat� �P
d�D r�d�Sdds� �is� 	 eqis� ��
 �

s	hds� bsi�S � r�ac�Sinv bs�bs� �is�� 	 eqis� ��
 �

The receiver R reads a datum at port 	 and if the datum is not a checksum error ce and if
the bit attached is the expected bit� it sends the datum via port � and sends via port �� an
acknowledgement ac to the acknowledgement sender AS� after which the bit�to�be�expected
is inverted� If the datum is a checksum error or the bit attached is not the expected bit� the
datum is ignored�

proc Rdr�D� br�Bit � ir�Nat� �P
d�D r�hd� bri�Rddr � �ir� 	 eqir� ��
 ��

r�ce� �
P

d�D r�hd� inv br�i��R 	 eqir� ��
 ��
s�dr�R�ir� 	 eqir� ��
 ��
s�ac�Rinv br�br� �ir� 	 eqir� ��
 �

The acknowledgement sender AS repeatedly sends its acknowledgement bit via port �� until
it reads an acknowledgement ac at port �� after which the acknowledgement bit is inverted�

proc ASb�r�Bit� �
r�ac�ASinv b

�
r�� � sb

�
r�ASb

�
r�

The acknowledgement receiver AR reads bits at port � and when the bit is the expected
acknowledgement bit� it sends via port � an acknowledgement ac to the sender S� after
which the bit�to�be�expected is inverted� Acknowledgements errors ae or unexpected bits are
ignored�

proc ARb�s�Bit � i
�
s�Nat� �

r�b
�
s�AR�i

�
s� 	 eqi

�
s� ��
 ��

r�ae� � r�invb
�
s���AR 	 eqi�s� ��
 ��

s�ac�ARinv b
�
s�b

�
s� �i

�
s� 	 eqi

�
s� ��
 �

The CABP is obtained by putting the components in parallel and encapsulating the internal
send and read actions at ports n � f�� 	� �� �� �� �g� Synchronisation between the components
is modeled by communication actions at connecting ports�
We put H � fs	� r	� s�� r�� s�� r�� s� r� s�� r�� s�� r�g�

proc CABPd�D� �
�HSd� e�� �� k ARe�� �� k Kd� e�� �� k Le�� �� k Rd� e�� �� k ASe���

� EXAMPLES ��

The speci�cation of the external behaviour of CABP uses the one�datum bu�er B� which can
read via port � if b is true� and deliver via port � if b is false�

proc Bd�D� b�Bool� �P
e�D r�e�Be�F� 	 b
 ��

s�d�Bd�T� 	 b
 �

After abstraction of internal actions� the CABP should behave as a one�datum bu�er� up to
initial silent steps� We let I � fc	� c�� c�� c� c�� c�� j� j

�g� Our goal is to prove the following
result�

Theorem ���� For all d�D we have

� �ICABPd�� � � Bd�T��

This result will be proved as Theorem ����� as an easy consequence of Theorem 	��� taking
a certain expansion Sys of CABP for �� B for �� the set I for Int � and fr�� s�g for Ext � In
the next section� we determine Sys�

����� Expansion

In this section we expand CABP to a linear process term Sys� As a preparation� we �rst
group S and AR� respectively R and AS� together� This has the advantage that we can
dispose of the parameters b�s and b�r� For ds� dr� dk � D� bs� br� bk� bl � Bit and is� i

�
s� ir� ik� il

� Nat � we de�ne�

proc SARds� bs� is� i
�
s� � Sds� bs� is� k ARbs� i

�
s�

RASdr� br� ir� � Rdr� br� ir� k ASinvbr��

Sysds� bs� is� i
�
s� dr� br� ir� dk� bk� ik� bl� il� �

�HSARds� bs� is� i
�
s� k Kdk� bk� ik� k Lbl� il� k RASdr� br� ir��

Lemma ���� For all d�D we have

CABPd� � Sysd� e�� �� �� d� e� � �� d� e�� �� e�� ���

Proof� Direct using the de�nitions� �

Lemma ��	� For all ds	 dr	 dk � D	 bs	 br	 bk	 bl � Bit and is	 i
�
s	 ir	 ik	 il � Nat 	 it holds that

Sysds� bs� is� i
�
s� dr� br� ir� dk� bk� ik� bl� il� �P

d�D r�d�Sysdds� �is� 	 eqis� ��
 ��
c	hds� bsi�Sysdsdk� bsbk� �ik� 	 eqis� �� 	 eqik� ��
 ��
c�hdk� bri�Sysdkdr� �ir � �ik� 	 eqir� �� 	 eqbr� bk� 	 eqik� ��
 ��
c�hdk� bri�Sys�ik� 	 eqir� �� 	 eqbr� invbk�� 	 eqik� ��
 ��
c�ce�Sys�ik� 	 eqir� �� 	 eqik� 	�
 ��
s�dr�Sys�ir� 	 eqir� ��
 ��

� EXAMPLES ��

c�ac�Sysinvbr�br� �ir� 	 eqir� ��
 ��
cinvbr��Sysinvbr�bl� �il� 	 eqil� ��
 ��
c�bl�Sys�il� �i

�
s� 	 eqi

�
s� �� 	 eqbl� bs� 	 eqil� ��
 ��

c�bl�Sys�il� 	 eqi
�
s� �� 	 eqbl� invbs�� 	 eqil� ��
 ��

c�ae�Sys�il� 	 eqi
�
s� �� 	 eqil� 	�
 ��

c�ac�Sysinvbs�bs� �is� �i
�
s� 	 eqis� �� 	 eqi�s� ��
 ��

j� Sys�ik� � j Sys�ik� � j� Sys	ik�� 	 eqik� ��
 ��
j� Sys�il� � j Sys�il� � j� Sys	il�� 	 eqil� ��
 �

Proof� By straightforward process algebraic calculations� using Lemma A�� and the auxil�
iary de�nitions given above� �

Now this expanded version of Sys will play the role of � as introduced in section 	� Note
however� that this LPO is not deterministic in the sense of De�nition ���� As it would decrease
readability� we have chosen not to transform Sys to a D�LPO� We have taken care that all
theorems are correctly applied to Sys�

����� Invariant

The process Sys does not behave as the bu�er for all its data states� Actually� there are cases
where it can perform an r� in succession without an intermediate s�� or two successive s�
actions without an intermediate r�� However� such states cannot be reached from the initial
state� We formalise this observation by formulating six invariant properties of Sys� The �rst
�ve invariants I�� � � � � I� state what values is� i

�
s� ir� ik� and il may have� The last invariant

I is less trivial� We �rst provide the formal de�nition of the invariant� thereafter we give an
informal explanation of I�

I� � eqis� �� � eqis� ���
I� � eqi�s� �� � eqi�s� ���
I	 � eqik� �� � eqik� �� � eqik� �� � eqik� 	��
I� � eqir� �� � eqir� �� � eqir� ���
I� � eqil� �� � eqil� �� � eqil� �� � eqil� 	��
I � eqis� ��� eqbs� invbk�� 	 eqbs� br� 	 eqds� dk� 	 eqds� dr� 	 eqi�s� �� 	 eqir� ���	

eqbs� bk�� eqds� dk��	
eqir� �� � eqir� ��� eqds� dr� 	 eqbs� br� 	 eqbs� bk��	
eqbs� invbr��� eqds� dr� 	 eqbs� bk��	
eqbs� bl�� eqbs� invbr���	
eqi�s� ��� eqbs� bl���

The invariant I can be understood in the following way� Every component can be in exactly
two modes� which we call involved and unaware�
If a component is involved� it has received correct information about the datum to be

transmitted and has the duty to forward this information in the clockwise direction� If a
component is unaware� it is not yet� involved in transmitting the datum� In particular the
sender S is unaware if there is nothing to transmit� The idea behind the protocol is that
initially all components are in the unaware mode� When the sender S reads a datum to be

� EXAMPLES �	

transmitted it gets involved� By transmitting data the components K� R� L and AR become
subsequently involved� When AR signals the acknowledgement to S by s�ac�� it is clear that
the datum has correctly been delivered� and all components fall back to the unaware mode�
The invariant simply expresses that if a component is in the involved mode all components
in the anti�clockwise direction up to and including the sender S must also be involved� With
regard to the components K and R the invariant also expresses the property that if these
components are involved� then the data that these contain must be equal to the datum of
the sender�
Below we present a table indicating in which case a component is involved� and in case it is

involved� what property should hold� It is left to the reader to check that the invariant indeed
encodes the intuition explained above� Note that AS has been omitted as its parameters do
not play a role in Sys�

Component Condition for involvement Property
S eqis� ��
K eqbs� bk� eqds� dk�
R eqir� �� � eqir� �� � eqbs� invbr�� eqds� dr�
L eqbs� bl�
AR eqi�s� ��

We write �d for the vector ds� bs� is� i
�
s� dr� br� ir� dk� bk� ik� bl� il�

Lemma ��
�

I�d � �

�
j��

Ij�d �

is an invariant of Sys�

����� Abstraction and focus points

The Concurrent Alternating Bit Protocol has unbounded internal behaviour that occurs when
the channels repeatedly lose data� when acknowledgements are repeatedly being sent by the
receiver without being processed by the sender or when the sender repeatedly sends data to
the receiver that it has already received� We de�ne a pre�abstraction function to rename all
actions in Int into � except those that give rise to loops� So�

�a��d � �

����
���

F if a � j��
eqbs� br� if a � c	�
eqbs� br� if a � c�
T for all other a � Int �

In case a � j� either channel K or L distorts or loses data� In case a � c	 and eqbs� br�
data is being sent by the sender to the receiver that is subsequently ignored by the receiver�
And in case a � c and eqbs� br�� an acknowledgement sent by the receiver to the sender is
ignored by the sender�

� EXAMPLES ��

We can now derive the focus condition FC with respect to �� FC is the negation of
the conditions that enable � �steps in Sys� This results in a rather long formula� which is
equivalent to the following formula assuming that the invariant holds��

Lemma ���� The invariant I�d � implies that

FCSys�Int���d � �
eqi�s� �� 	 eqil� �� 	 eqis� �� 	 eqik� ��� � eqir� �� 	 eqik� �� � eqik� 	�����

Lemma ���� Sys�d � is convergent w�r�t� ��

Proof� We de�ne a well�founded ordering � by means of the function f given below as
follows� �a � �b � f�a � � f�b �� where � is the usual "less than# ordering on the natural
numbers� Since � is well�founded on the natural numbers and � as can easily be checked � f
decreases with every internal step of Sys� as above� we see that � does the job�
Now we give the function f � For � � fk� lg� we let x�� x�� x	� x��

� abbreviate

if eqi�� ��� x�� if eqi�� ��� x�� if eqi�� ��� x	� x�����

De�ne fds� bs� is� i
�
s� dr� br� ir� dk� bk� ik� bl� il� by

if eqis� ��� �� �� � if eqi�s� ��� �� �� � if eqir � ��� �� �� � if eqir� ��� �� ���
if eqbr� bk�� �� �� �� ��

k � �� �� 	� 	�k��
if eqbs� bl�� �� �� �� ��

l � �� �� 	� 	�l��

�

Theorem ���� For all d � D we have

� �ICABPd�� � � Bd�T��

Proof� By Lemma ��� it su�ces to prove� for all d�D�

� �ISysd� e�� �� �� d� e�� �� d� e�� �� e�� ��� � � Bd�T��

Note that the invariant I holds for the parameters of Sys such as displayed� So we can apply
Theorem 	��� taking Sys for �� B for �� Sys� for � the set I for Int � fr�� s�g for Ext � and
I as invariant� It remains to pick an appropriate function h� this function will yield a pair
consisting of a datum of type D and a boolean� We choose h to be�

h�d � � hds� eqis� �� � eqir� �� � eqbs� br�i�

The �rst component is the datum that is read by the bu�er when eqis� �� and exported when
eqir� ��� We can take ds� because we can show that when action s�dr� happens� ds � dr�
The second component of the triple is the boolean formula that controls� in terms of the

parameters �d of Sys� whether the bu�er is enabled to read the formula is true� or enabled to
write the formula is false�� Typically� Sys is able to read when eqis� �� as the read action in
the sender is enabled� The sender is also enabled to read after some internal activity� when

A ELEMENTARY RESULTS ��

it is still waiting for an acknowledgement� but the proper acknowledgement is on its way�
This case is characterised by eqbs� br�� The same holds when the receiver has delivered
a datum� but has not yet informed the acknowledgement handler AS� In this case eqir� ��
holds�
Next� we verify the conditions of Theorem 	��� We get the following conditions omitting

trivial conditions��

�� Sys is convergent w�r�t� ��

�� a� eqir� ��� T � eqis� �� � eqbs� invbr��

b� eqis� �� 	 eqi�s� ��� eqir� �� � eqbs� br� � T�

�� eqir� ��� eqis� �� � eqir� �� � eqbs� br���

	� a� FCSys�Int���d � 	 eqis� �� � eqir� �� � eqbs� br��� eqis� ���

b� FCSys�Int���d � 	 eqis� �� � eqir� �� � eqbs� br��� eqir� ���

�� eqir� ��� dr � ds�

�� eqis� ��� eqir� �� � eqbs� br� � F�

Lemma ��� takes care of condition �� The remaining conditions are easily veri�ed� under the
invariant I� �

A Elementary results

This appendix contains some technical lemmas� which are used in previous sections� We
begin with simple properties of the 	
 operator and the

P
�operator�

Lemma A��� For all processes x� y and �open� terms of sort Bool b� b�� b� we have�

�� x 	 b
 x � x

�� x 	 b
 y � y 	 b
 x

�� x 	 b
 y � x 	 b
 � � y 	 b
 �

� x 	 b� 	 b�
 � � x 	 b�
 �� 	 b��

�� x 	 b� � b�
 � � x 	 b�
 � � x 	 b�
 �

Proof� ��� ��� ��� by induction on b� i�e� by distinguishing the cases where b equals T and
where b equals F� 	�� ��� by induction on b� and b�� �

Lemma A��� If there is some e�D such that be� holds	 then

x �
X
d�D

x 	 bd�
 ��

A ELEMENTARY RESULTS ��

Proof� Assume be� holds�

X
d�D

x 	 bd�
 �� � x 	 be�
 �� � x �
X
d�D

x� �
X
d�D

x 	 bd�
 ���

Note that in the �rst ��step we use axiom SUM�� In the second ��step� we use SUM�� The
last step can be seen as follows�P

d�D x �P
d�Dx 	 bd�
 x� �P
d�Dx 	 bd�
 � � x 	 bd�
 �� �P
d�Dx 	 bd�
 �� �

P
d�Dx 	 bd�
 ��

At the �rst step we use Lemma A����� at the second step we use Lemma A���� and at the
last step we use SUM	� Note that at the �rst two steps we also use SUM��� �

LPOs do not blow up when put in parallel� This is the content of the next lemma� taken
from ��
�

Lemma A��� Let

� � �p��d��i�I�ei�Ei
cifid� ei�� pgid� ei�� 	 bid� ei�
 � and

� � �p��d�i�I��e�

i�E
�

i
c�if

�
id� e

�
i�� pg

�
id� e

�
i�� 	 b

�
id� e

�
i�
 �

be convergent LPOs with solutions p and q� Then the parallel composition of p and q	 p k q	
is the solution of the following convergent LPO�

�p��hd� d�i�D �D� ��i�I�ei�Ei
cifid� ei�� pgid� ei�� d

�� 	 bid� ei�
 ��
�i�I��e�

i�E
�

i
c�if

�
id

�� e�i�� pd� g
�
id

�� e�i�� 	 b
�
id

�� e�i�
 ��

�i�I�i��I��ei�Ei
�e�

i�E
�

i

cifid� ei���c
�
if

�
id

�� e�i��� pgid� ei�� g
�
id

�� e�i�� 	 bid� ei� 	 b�id
�� e�i�
 �

Note that a summand of the last form is only present when cifid� ei���c
�
if

�
id

�� e�i��� is
de�ned�

Next� we give a proof of the fact that linear process operators LPOs� can be rewritten to
equivalent deterministic linear process operators D�LPOs��

Theorem A���

�� Every convergent LPO � can be rewritten to a D
LPO �� with the same solution	
provided every occurrence of an action a in � has a parameter of a unique type Da�

�� Consider convergent D
LPOs �	 � such that action a occurs both in � and in � �with
parameters of the same data type�� There exist convergent D
LPOs ��	 �� having the
same solutions as �	 �	 respectively	 such that a occurs in �� and �� in summands with
summation over the same sort Ea�

A ELEMENTARY RESULTS ��

Proof�

�� We de�ne �� as the result of iterating the following procedure� Let action a occur more
than once in �� We de�ne E � f

P
ei�Ei

afid� ei�� pgid� ei�� 	 bid� ei�
 � j � � i � ng
as the set of summands in � with action a we have n � ���

First we treat a simple case� where the formulas bid� ei� are mutually exclusive i�e�
for no i� j such that i �� j� the formula bid� ei� 	 bjd� ej� is satis�able�� De�ne E �
E� � � � � � En� For � � i � n and e � E� we let �ie� denote the i

th projection of e
yielding a term of sort Ei�� Using E and the projection functions� we represent the
summands in E by the following summand in ���X

e�E

afd� e�� pgd� e�� 	 bd� e�
 �

Here� b � D � E � Bool is given by

bd� e� � b�d� ��e�� � � � � � bnd� �ne��

and f � D � E � Da is de�ned by

fd� e� �
if b�d� ��e��� f�d� ��e��� if b�d� ��e��� f�d� ��e��� � � � � fnd� �ne�� � � ��

Similarly� we de�ne g � D � E � D from the gi functions� It is easy to check that �
�

has the same solution as ��

In general we cannot assume that the formulas bid� ei� are mutually exclusive� So we
add an extra summation over vectors of booleans to model the non�deterministic choice
between any of the alternatives�

De�ne

E � E� � � � � �En �Bool� � � � �Bool� 	z

n�� times

For � � i � n and e � E� we let �ie� denote the i
th projection of e yielding a term of

sort Ei�� and� for � � i � n� �� �ie� denotes the n� i�th projection of e yielding a
term of sort Bool�� We de�ne the summand in �� as before� but with di�erent f and g
functions� Write b�id� �ie�� for bid� �ie��	�ie�� Now we de�ne f � D � E � Da by

fd� e� �
if b��d� ��e��� f�d� ��e��� if b

�
�d� ��e��� f�d� ��e��� � � � � fnd� �ne�� � � ��

Similarly� g � D � E � D is de�ned from the gi functions� Again� it is easy to check
that �� has the same solution as ��

�� By a coding trick as in ��� we obtain that summands in � and � with action a have
summation over the same data type�

�

A ELEMENTARY RESULTS ��

The following result is a trivial corollary of � �law B��

Lemma A��� Let � be an LPO� For all processes p and data d � D we have

�pd � ���d�pd� 	 bd�
 � pd�
d

The last two results concern LPOs extended with idle loops� They are used in Section 	�
Remember that we assume that Ext � Int and f�g are mutually disjoint and that i �� Ext �
Int � f�g�

Theorem A�	� Let � be a convergent LPO over Ext�Int�f�g such that i � Ext�Int�f�g�
Assume that p� is a solution of �	 p� is a solution of i��	 and p	 is a solution of iInt ���
Then we have	 for all d � D�

�� � p�d� � � �figp�d��	

�� �Int p�d�� � p	d� and

�� � �Int p�d�� � � �figp	d���

Proof�

�� First we show �d�� p�d� and �d�� �figp�d�� to be solutions of

�
def
� �p��d�D��� �pd�

It is straightforward to see that �d�� p�d� is a solution of �� We only prove that
�d�� �figp�d�� is a solution of ��

As p� is a solution of i�� it holds that

p�d� � �p�d� i p�d��

By an application of KFAR we �nd�

� �figp�d�� � � �fig�p�d��

As i does not appear in �� we can distribute �fig and we �nd�

� �figp�d�� � ����d��figp�d���
d��

So� �d�� �figp�d�� is a solution of ��

As � is convergent� � is convergent� Hence� using the principle CL�RSP we �nd for all
d � D

� p�d� � � �figp�d���

A ELEMENTARY RESULTS ��

�� First observe that i�Int ��� and �Int i��� are syntactically identical operators� So
we may assume that p	 is a solution of �Int i���� Since p� is a solution of i��� we
also have that �Int p�d�� is a solution of �Int i���� Since �Int i��� is convergent� the
desired equality follows from CL�RSP�

�� By case � and � of this theorem we �nd�

� p�d� � � �figp�d��

�Intp�d�� � p	d�
��

Using the congruence properties we transform the second equation of �� above into�

� �fig�Int p�d��� � � �figp	d���

By axioms R� and T� this simpli�es to�

� �Int�figp�d��� � � �figp	d���

Using the �rst equation of �� and the Hiding laws TI� this is reduced to�

� �Intp�d�� � � �figp	d���

which we had to prove�

�

Lemma A�
� Let � be an LPO that is convergent w�r�t� a pre
abstraction function �� Let
p be a solution of � and p� be a solution of ��� Then

�Intp� � �Intp
���

Proof� Consider the LPO �� where every summand of the formX
ea�Ea

afad� ea�� pgad� ea�� 	 bad� ea�
 �

with a � Int is replaced byX
ea�Ea

i pgad� ea�� 	 �a�d� ea�
 afad� ea�� pgad� ea��� 	 bad� ea�
 �

where i is a fresh action� Assume �� has solution p�� Clearly� �figp
�� � p� as both terms are

a solution of �� use Lemma A������ Also �Intp
�� � �Int p� as both terms are solutions of

�Int��� Furthermore� �figp� � p as i does not occur in � so both terms are solutions of ���
Using these observations and at the second and fourth step� axioms R� and T�� we

derive�

�Intp� � �Int�figp��

� �fig�Intp��

� �fig�Intp
���

� �Int�figp
���

� �Intp
��

�

B AXIOMS AND RULES FOR �CRL ��

B Axioms and Rules for �CRL

In this section� we present tables containing the axioms for the ACP operators� some axioms
for the Sum and the conditional operator� plus some additional axioms that were necessary�
In the tables� D is an arbitrary data type� d represents an element of D� x� y� z range over
processes� a� b� i are actions� c� d represent either �� � or an action ad�� and p� p�� p� are
process terms in which the variable d may occur� Although some names are overloaded�
the context makes clear what is meant� In Table �� b also ranges over boolean terms��
Furthermore� R ranges over renaming functions� and I� I � and H range over sets of actions�
If R � fa� � b�� � � � � an � bng� then domR� � fa�� � � � � ang and ranR� � fb�� � � � � bng�
Finally� D in Table � ranges over derivations�
Beside these axioms� �CRL features two important principles� RSP� stating that guarded

recursive speci�cation have at most one solution� and an induction rule� for inductive reason�
ing over data types� For more information on �CRL� the reader is referred to ���
�

References

��
 J�C�M� Baeten� Applications of Process Algebra� volume �� of Cambridge Tracts in

Theoretical Computer Science� Cambridge University Press� Cambridge� �����

��
 J�C�M� Baeten and W�P� Weijland� Process Algebra� volume �� of Cambridge Tracts in

Theoretical Computer Science� Cambridge University Press� Cambridge� �����

��
 J�A� Bergstra and J�W� Klop� The algebra of recursively de�ned processes and the
algebra of regular processes� In Proceedings of the ��th ICALP� Antwerp� volume ��� of
Lecture Notes in Computer Science� pages ��$��� Springer�Verlag� ���	�

�	
 M�A� Bezem and J�F� Groote� A correctness proof of a one�bit sliding window protocol
in �CRL� The Computer Journal� ��	�����$���� ���	�

��
 M�A� Bezem and J�F� Groote� Invariants in process algebra with data� In B� Jonsson
and J� Parrow� editors� Proceedings of the �th Conference on Theories of Concurrency�

CONCUR ��	� Uppsala� Sweden� August ���	� volume ��� of Lecture Notes in Computer

Science� pages 	��$	��� Springer�Verlag� ���	�

��
 D�J� Bosscher and A� Ponse� Translating a process algebra with symbolic data values
to linear format� In U�H� Engberg� K�G� Larsen� and A�S� Skou� editors� Proceedings of
the Workshop on Tools and Algorithms for the Construction and Analysis of Systems
TACAS�� pages ���$���� BRICS Notes Series NS������ May �����

��
 J�J� Brunekreef� Process speci�cation in a UNITY format� In A� Ponse� C� Verhoef�
and S�F�M� van Vlijmen� editors� Proceedings of the �st Workshop in the Algebra of

Communicating Processes� ACP ��	� Utrecht� the Netherlands� July ���	� volume 	��
ofWorkshops in Computing� Springer�Verlag� pages ���$���� Springer�Verlag� July ���	�

��
 K�M� Chandy and J� Misra� Parallel Program Design� A Foundation� Addison�Wesley�
Reading MA� �����

REFERENCES ��

��
 C� Cornes� J� Courant� J��C� Filli%atre� G� Huet� P� Manoury� C� Paulin�Mohring�
C� Mu&noz� C� Murthy� C� Parent� A� Sa'(bi� and B� Werner� The Coq proof assistant
reference manual� Version ����� Technical report� INRIA � Rocquencourt) CNRS �
ENS Lyon� �����

���
 L��*A� Fredlund� J�F� Groote� and H�P� Korver� Formal veri�cation of a leader election
protocol in process algebra� Technical Report R������ SICS� �����

���
 J�F� Groote and A� Ponse� Proof theory for �CRL� a language for processes with data�
In D�J� Andrews� J�F� Groote� and C�A� Middelburg� editors� Proceedings of the Inter�

national Workshop on Semantics of Speci�cation Languages� Utrecht� The Netherlands�
pages ���$���� Workshops in Computer Science� Springer�Verlag� �����

���
 J�F� Groote and A� Ponse� The syntax and semantics of �CRL� In A� Ponse� C� Ver�
hoef and S�F�M� van Vlijmen� eds� Algebra of Communicating Processes� Workshops in
Computing� pp� ��$��� Springer Verlag� ���	�

���
 B� Jonsson� Compositional Veri�cation of Distributed Systems� PhD thesis� Department
of Computer Systems� Uppsala University� �����

��	
 P� Klint� A meta�environment for generating programming environments� ACM Trans�

actions on Software Engineering and Methodology� �������$���� �����

���
 H� Korver� Personal communication� �����

���
 C�P�J� Koymans and J�C� Mulder� A modular approach to protocol veri�cation using
process algebra� In Baeten ��
� pages ���$����

���
 K�G� Larsen and R� Milner� A compositional protocol veri�cation using relativized
bisimulation� Information and Computation� �����$���� �����

���
 N�A� Lynch and M�R� Tuttle� Hierarchical correctness proofs for distributed algorithms�
In� Proceedings of the
 th Annual ACM Symposium on Principles of Distributed Com�

puting� pages �������� �����

���
 N�A� Lynch and F�W� Vaandrager� Forward and backward simulations� Part I� untimed
systems� In� Information and Computation� ������	$���� �����

���
 R� Milner� Communication and Concurrency� Prentice Hall� London� �����

���
 F�W� Vaandrager� Some observations on redundancy in a context� In Baeten ��
� pages
���$����

���
 R�J� van Glabbeek and W�P� Weijland� Branching time and abstraction in bisimulation
semantics extended abstract�� In G�X� Ritter� editor� Information Processing ��� pages
���$���� �����

REFERENCES ��

A� x� y � y � x CM� x k y � x k y � y k x� xjy

A� x� y � z� � x� y� � z CM� c k x � c � x

A	 x� x � x CM	 c � x k y � c � x k y�

A
 x� y� � z � x � z � y � z CM
 x� y� k z � x k z � y k z

A� x � y� � z � x � y � z� CM� c � xjd � cjd� � x

A� x� � � x CM� cjd � x � cjd� � x

A� � � x � � CM� c � xjd � y � cjd� � x k y�

B� x � � � x CM� x� y�jz � xjz � yjz

B� z� � x� y� � x� � zx� y� CM� xjy � z� � xjy � xjz

CD� �jx � � DD �H�� � �

CD� xj� � � DT �H�� � �

CT� � jx � � D� �Had�� � a if a � H

CT� xj� � � D� �Had�� � � if a � H

D	 �Hx� y� � �Hx� � �Hy�

D
 �Hx � y� � �Hx� � �Hy�

CF ad�jbe� �

���
��

�a� b�d� if d � e and

�a� b� de�ned

� otherwise

TID �I�� � � RD �R�� � �

TIT �I�� � � RT �R�� � �

TI� �Iad�� � ad� if a � I R� �Rad�� � Ra�d�

TI� �Iad�� � � if a � I

TI	 �Ix� y� � �Ix� � �Iy� R	 �Rx� y� � �Rx� � �Ry�

TI
 �Ix � y� � �Ix� � �Iy� R
 �Rx � y� � �Rx� � �Ry�

Table �� Axioms for the ACP operators

REFERENCES �	

SUM� �d�Dp � p d not free in p

SUM� �d�Dp � �e�Dp�ed
� e not free in p

SUM	 �d�Dp � �d�Dp� pd�

SUM
 �d�Dp� � p�� � �d�Dp� ��d�Dp�
SUM� �d�Dp� � p�� � �d�Dp�� � p� d not free in p�
SUM� �d�Dp� k p�� � �d�Dp�� k p� d not free in p�
SUM� �d�Dp�jp�� � �d�Dp��jp� d not free in p�
SUM� �d�D�Hp�� � �H�d�Dp�

SUM� �d�D�Ip�� � �I�d�Dp�

SUM�� �d�D�Rp�� � �R�d�Dp�

D

SUM��
p� � p�

�d�Dp�� � �d�Dp��

d not free in

the assumptions of D

BOOL� T � F�

BOOL� b � T�� b � F

COND� x 	 T
 y � x

COND� x 	 F
 y � y

Table �� Axioms for Sum and Conditional

KFAR pd� � i pd� � y � � �figpd�� � � �figy�

T� �I�I�x�� � �I�I�x�

R� �I�Rx�� � �I�x� if ranR� � I and I � � I � domR�

SC� x k y� k z � x k y k z�

SC	 xjy � yjx

SC
 xjy�jz � xjyjz�

SC� xjy k z� � xjy� k z

Table �� Some extra axioms needed in the veri�cation

