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Abstract

We present a strategy for �nding algebraic correctness proofs for communication systems�
It is described in the setting of �CRL ����� which is� roughly� ACP ��� 	� extended with a
formal treatment of the interaction between data and processes�

The strategy has already been applied successfully in �
� and ����� but was not explicitly
identi�ed as such� Moreover� the protocols that were veri�ed in these papers were rather
complex� so that the general picture was obscured by the amount of details� In this paper�
the proof strategy is materialised in the form of de�nitions and theorems� These results
reduce a large part of protocol veri�cation to a number of trivial facts concerning data
parameters occurring in implementation and speci�cation� This greatly simpli�es protocol
veri�cations and makes our approach amenable to mechanical assistance� experiments in
this direction seem promising�

The strategy is illustrated by several small examples and one larger example� the
Concurrent Alternating Bit Protocol CABP�� Although simple� this protocol contains a
large amount of internal parallelism� so that all relevant issues make their appearance�

AMS Subject Classi�cation ������� ��M��� ��Q��� ��Q��� ��Q��� ��Q��� ��Q��� ��Q���
CR Subject Classi�cation ������� C����� D���
� F������ F�	���
Keywords � Phrases� Communication protocols� process algebra� protocol veri�cation�
linear process operators� ACP� �CRL�
Note� The second author is supported by the Netherlands Computer Science Research
Foundation SION� with �nancial support of the Netherlands Organisation for Scienti�c
Research NWO�� A preliminary version of this paper appeared inModels and Proofs� pro	
ceedings of AMAST workshop on Real	Time systems and Op
eration Inter	PRC �Mod�eles
et Preuves� Bordeaux� �����

� Introduction

One of the main aims of process theory is to be able to formally describe distributed systems
and to verify their correctness w�r�t� some speci�cation� In this paper� we focus on commu�
nication protocols and present a proof strategy to verify the correctness of such protocols in

�
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the framework of process algebra� This strategy has implicitly been used in �	
 and ���
 as
well as in a number of unpublished veri�cations� It appeared to structure and simplify the
proofs considerably� In this paper we explicitly present the strategy� We work in the theory
�CRL ���
� which is� roughly� ACP ��� �
 extended with a formal treatment of the interaction
between data and processes�
The task we set ourselves can be described as follows� An implementation of a communi�

cation protocol can be described as the parallel composition of several components C�� � � � �
Cn� These components can be receivers� senders� timers� channels� etc� They communicate
via internal actions in a set H�� resulting in internal communications in a set I�� The
speci�cation that this implementation should satisfy is given by a process Spec� Typically�
Spec de�nes a one�bit bu�er or a bidirectional queue� etc� In our process algebraic frame�
work� satisfying a speci�cation means being equal to it according to some preferred equality
relation�� Thus� in �CRL notation� we want to show that

�I�HC� k � � � k Cn�� � Spec�

Here� the �I�operator hides the communication actions in I� while the �H �operator forces the
send and read actions in H to synchronise� these operators will be explained below�
In simple cases� the equation can be proved as follows� First� �nd a guarded recursive

equation G� where guarded means that each occurrence of a recursive process variable must
be in the scope of an action� not being � � Then show that both �I�HC� k � � � k Cn�� and
Spec are solutions of this equation possibly applying some fairness principle�� Usually� G
is the expanded version of the protocol� Then the desired equality follows from RSP� the
principle stating that guarded recursive equations have at most one solution� Actually it
su�ces that the recursive equation is weakly guarded� or convergent� in the sense that there
exist no in�nite chains of unguarded occurrences of recursive process variables�
Our strategy can be seen as a considerably re�ned version of the above strategy� The re�

�nements are based on a particular format for the notation of processes� the so�called linear

process operators� This format� similar to the UNITY format of ��
 and to the precondi�
tion�e�ect notation of ���
 and ���
� enriches the process algebraic language with a symbolic
representation of the possibly in�nite� state space of a process by means of state variables
and formulas concerning these variables� Thus it combines the advantages of a compact and
easy to manipulate algebraic notation with the advantages of the precondition�e�ect style�
Instead of the principle RSP� we use the Concrete Invariant Corollary taken from ��
� that

says that if G is convergent and the processes �I�HC� k � � � k Cn�� and Spec are solutions
of G under the assumption of some invariant� then the two processes are equal in all states
satisfying the invariant� Since the invariant supposedly holds for the initial state� we are
done� We obtain G from the expanded version of the implementation by carefully renaming
internal actions to the silent step � so that the result is convergent�
Exploiting the symbolic representation of state spaces� we reduce the task of proving im�

plementation and speci�cation solutions for G to the existence of a state mapping� satisfying
certain constraints� the matching criteria� A state mapping maps states of the implemen�
tation to matching states of the speci�cation� Here� matching means that the same set of
external actions can be executed directly� The matching criteria are comparable to the de�n�
ing clauses of weak re�nements ���
� The criteria are formulated as simple formulas over
the data parameters and conditions occurring in implementation and speci�cation� Thus
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we reduce a large part of the correctness of the implementation w�r�t� the speci�cation to a
number of mostly trivial facts concerning data parameters and conditions occurring in im�
plementation and speci�cation� This greatly simpli�es protocol veri�cations and makes our
approach amenable to mechanical assistance� currently� our approach is being implemented
in the proof�assistant Coq ��� ��
�
The matching criteria embody an important concept� that of a focus point in the literature

sometimes called stable points�� It is often the case that states in the implementation do not
match directly with a state of the speci�cation� yet from these states a state can be reached�
after some internal computation� that does match directly with a state of the speci�cation�
To deal with this� we employ a case distinction between states in which the protocol cannot
perform internal actions� the focus points� and non�focus points� where the protocol can
perform internal actions� Focus points must match directly with states in the speci�cation�
In case the implementation is convergent� a focus point must be reached by performing �nitely
many internal actions� The set of states from which a focus point can be reached by internal
activity is called a cone� Under the assumption that there is no unbounded internal activity�
every state belongs to some cone� The state mapping maps all states of a cone to the state
corresponding to the focus point of the cone�
For distributed systems that only perform bounded internal activity� the proof strategy is

formulated as Theorem ���� For the case where the implementation can perform unbounded
activity� we provide Theorem 	��� Here one must in addition distinguish between progressing

and non�progressing internal actions in the implementation in order to guarantee convergence�
Intuitively� progressing internal steps are those that lead towards focus points� whereas non�
progressing internal actions lead away from focus points�
As shown in a number of veri�cations� the ingredients outlined above appear su�cient for

the systematic veri�cation of numerous protocols and distributed systems see e�g� �	� ��
��
The main contribution of the present paper is that it explicitly identi�es the strategy outlined
above� in the form of de�nitions and theorems� We provide an example of the veri�cation of
the Concurrent Alternating Bit Protocol with a correctness proof that consists of 	 amply
commented pages� We hope that this example provides some intuition how progressing
internal actions� state mappings� and invariants can be identi�ed�
In its present form� our strategy is not complete� in particular the speci�cation is not

allowed to contain � �steps� so these cases cannot be dealt with� Example ��� gives a counter
example to our main results in case the speci�cation is allowed to contain � �steps� We will
also give an example where a state mapping does not exist� even though implementation
and speci�cation are evidently branching bisimilar� A thorough treatment of completeness is
deferred to a future paper� Another future topic will be to exploit possible connections with
the theory of simulations�
Related work� We have incorporated several well�known and useful concepts such as

precondition�e�ect notation� invariants and simulations in an algebraic framework� leading
to a powerful methodology� The linear process format is similar to the UNITY format of ��

and to the precondition�e�ect notation of ���
 and ���
� Our state mappings are comparable
to weak re�nements� For a comprehensive treatment of re�nements and other simulation
relations� see ���
� Invariants are omnipresent in computer science� Proof strategies for
protocol veri�cation in an algebraic style appear among others in ���� ��� ��
�
Organisation� In Section �� we present the preliminaries of the theory� In Section �� we
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present a general result that formulates su�cient conditions for two processes to be equal
in the case where there are no in�nite chains of internal action in the implementation� This
result is specialised in Section 	 to the veri�cation of communication protocols that do have
unbounded internal activity� In Section �� we illustrate the proof strategy with some pos�
itive and negative examples� One of the positive examples is the Concurrent Alternating
Bit Protocol� Appendix A contains technical lemmas that are used in the paper� Finally�
Appendix B contains the �CRL axioms plus some additional axioms that are used in the
veri�cation�

Acknowledgements� A preliminary version of this paper was read by Doeko Bosscher�
Dennis Dams� Wan Fokkink� David Gri�oen� Henri Korver� Jaco van de Pol� Judi Romijn�
Alex Sellink� and Frits Vaandrager� Their comments and subsequent discussions lead to many
improvements� Example ��� is due to Frits Vaandrager�

� Preliminaries

In this section� we present some basic de�nitions� properties and results that we use in this
paper� We apply the proof theory of �CRL ���
� which is� roughly� ACP ��� �
 extended with
a formal treatment of the interaction between data and processes�

��� A short description of �CRL

The language �CRL is a process algebra comprising data ���
� We do not describe the
treatment of data types in �CRL in detail� as we make little use of it in this paper� For
our purpose it is su�cient that processes can be parameterised with data� We assume the
data sort of booleans Bool with constants true T and false F� and the usual operators�
Furthermore� we assume for all data types the existence of an equality function eq that
faithfully re�ects equality� and an if then else�function such that if b� t�� t�� equals t� if b
equals T and equals t� otherwise�
Starting from a set Act of actions that can be parameterised with data� processes are de�ned

by means of guarded recursive equations and the following operators� In Subsection ���� we
will discuss a useful variant of guarded recursive equations��
First� there is a constant � � �� Act� that cannot perform any action and is henceforth

called deadlock or inaction�
Next� there are the sequential composition operator � and the alternative composition

operator �� The process x � y �rst behaves as x and if x successfully terminates continues to
behave as y� The process x� y can either do an action of x and continue to behave as x or
do an action of y and continue to behave as y�
Interleaving parallelism is modeled by the operator k� The process x k y is the result of

interleaving actions of x and y� except that actions from x and y may also synchronise to a
communication action� when this is explicitly allowed by a communication function� This is a
partial� commutative and associative function � � Act�Act� Act that describes how actions
can communicate� parameterised actions ad� and bd�� communicate to �a� b�d�� provided
d � d�� A speci�cation of a process typically contains a speci�cation of a communication
function�
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In order to axiomatise the parallel operator there are two auxiliary parallel operators� First�
the left merge k � which behaves as the parallel operator� except that the �rst step must come
from the process at the left� Secondly� the communication merge j which also behaves as the
parallel operator� except that the �rst step is a communication between both arguments�
To enforce that actions in processes x and y synchronise� we can prevent actions from

happening on their own� using the encapsulation operator �H � The process �Hx� can perform
all actions of x except that actions in the set H are blocked� So� assuming �a� b� � c� in
�fa�bgx k y� the actions a and b are forced to synchronise to c�
We assume the existence of a special action � � �� Act� that is internal and cannot be

directly observed� A useful feature is o�ered by the hiding operator �I that renames the
actions in the set I to � � By hiding all internal communications of a process only the external
actions remain� In this way we can obtain compact descriptions of the external functionality
of a set of cooperating processes� A nice example is provided in Theorem ��	 where the
external behaviour of a set of parallel processes modelling the Concurrent Alternating Bit
Protocol appears to be the same as that of a simple one place bu�er�
Another useful operator is the general renaming �f � where f � Act � Act is a renaming

function on actions� If process x can perform an action a� then �f x� can perform the action
fa��
The following two operators combine data with processes� The sum operator �d�Dpd�

describes the process that can execute the process pd� for some value d selected from the
sort D� The conditional operator 	 
 describes the then�if �else� The process x 	 b 
 y
where b is a boolean� has the behaviour of x if b is true and the behaviour of y if b is false�
We apply the convention that � binds stronger than �� followed by 	 
 � and � binds

weakest� Moreover� � is usually suppressed� Axioms that characterise the operators are given
in Appendix B�

��� Linear process operators

We recapitulate some terminology that has been introduced in �	
� Especially the notion of
a linear process operator forms the cornerstone for the developments in this paper�

De�nition ���� A linear process operator LPO� over data type D is an expression of the
form

� � �p��d�D�
X
i�I

X
ei�Ei

cifid� ei���pgid� ei�� 	 bid� ei� 
 �

for some �nite index set I� actions ci � Act � f�g� data types Ei�Di� and functions fi � D �
Ei � Di� gi � D � Ei � D� bi � D � Ei � Bool� We assume that � has no parameter��
�

We will give an example below� Note that the bound variable p ranges over processes param�
eterised with a datum of sort D� When writing I � f�� � � � � ng� we use a meta�sum notation
�i�Ipi for p� � p� � � � � � pn� the pi�s are called summands of �i�Ipi�
In �	
 an LPO is de�ned as having also summands that allow termination� We have omitted

these here� because they hardly occur in actual speci�cations and obscure the presentation
of the theory� Moreover� it is not hard to add them if so required�
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LPOs are de�ned having a single data parameter� The LPOs that we will consider generally
have more than one parameter� but using cartesian products and projection functions� it is
easily seen that this is an inessential extension� Often� parameter lists get rather long�
Therefore� we use the following notation for updating elements in the list� Let �d abbreviate
the vector d�� � � � � dn� A summand of the form �ei�Ei

cifi�d� ei�� pd
�
idi� 	 bi

�d� ei� 
 � in

the de�nition of a process p�d � abbreviates �ei�Ei
cifi�d� ei�� pd�� � � � � di��� d

�
i� di��� � � � dn� 	

bi�d� ei� 
 �� Here� the parameter di is in the recursive call updated to d�i� This notation is
extended in the natural way to multiple updates� If no parameter is updated� we write the
summand as �ei�Ei

cifi�d� ei�� p 	 bi�d� ei� 
 ��
LPOs are often de�ned equationally� We give an example of an LPO K which is a channel

that reads frames consisting of a datum from some data type D and an alternating bit� It
either delivers the frame correctly� or loses or garbles it� In the last case a checksum error ce
is sent� The non�deterministic choice between the three options is modeled by the actions j
and j�� If j is chosen the frame is delivered correctly and if j� happens it is garbled or lost�
The state of the channel is modeled by the parameter ik�

proc Kd�D� b�Bit � ik�Nat� �P
d��D

P
b��Bit rhd

�� b�i�Kd�d� b�b� �ik� 	 eqik� �� 
 ��
j�K�ik� � j K�ik� � j�K	ik�� 	 eqik� �� 
 ��
shd� bi�K�ik� 	 eqik� �� 
 ��
sce�K�ik� 	 eqik� 	� 
 �

Note that we have deviated from the pure LPO format� in the last three summands there is
no summation over a data type Ei� in the second summand j and j

� do not carry a parameter
like the � �action� and the � operator occurs� But� using axiom SUM� from Appendix B� we
can always add a dummy summation over some data type� Also� it is possible to give j and
j� some dummy argument� Finally� using axiom SUM	� the

P
�operator can be distributed

over the �� In the sequel we will allow ourselves these deviations�
Processes can be de�ned as solutions for convergent LPOs�

De�nition ���� A solution or �xed point of an LPO � is a process p� parameterised with a
datum of sort D� such that� for all d � D� pd� � �pd� �

De�nition ���� An LPO � written as in De�nition ��� is called convergent if there is a
well�founded ordering � on D such that for all i � I with ci � � and for all ei � Ei� d � D we
have that bid� ei� implies gid� ei� � d� �

For each LPO �� we assume an axiom which postulates that � has a canonical solution�
which we denote by h�i� Then� we postulate that every convergent LPO has at most one
solution� In this way� convergent LPOs de�ne processes� The two principles re�ect that we
only consider process algebras where every LPO has at least solution and converging LPOs
have precisely one solution�

De�nition ���� We assume the following two principles�

� L�RDP � For all d of sort D and LPOs � over D we have h�id� � �h�id
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� CL�RSP� Every convergent linear process operator has at most one �xed point solu�
tion�� for all d of sort D and convergent LPOs � over D we have pd� � �pd� p � h�i�

�

Usually� we do not mention h�i explicitly and just speak about solutions for ��
The following general theorem� taken from ��
� is the basis for our proofs� Roughly� it says

that if an LPO is convergent in the part of its state space that satis�es an invariant I� then
it has at most one solution in that part of the state space�

De�nition ���� An invariant of an LPO � written as in De�nition ��� is a function I �
D � Bool such that for for all i � I� ei � Ei� and d � D we have�

bid� ei� 	 Id�� Igid� ei���

�

Theorem ��	 �Concrete Invariant Corollary ����� Let � be an LPO� If	 for some invariant I
of �	 the LPO �p��d��pd 	 Id� 
 � is convergent and for some processes q	 q�	 parameterised
by a datum of type D	 we have

Id�� qd� � �qd�
Id�� q�d� � �q�d�

then

Id�� qd� � q�d��

To develop the theory it is convenient to work with a particular form of LPOs� which we call
deterministic� Deterministic LPOs contain� for each action a� at most one summand starting
with a� Thus deterministic LPOs can be de�ned by summation over a �nite set of actions
instead of over a general �nite index set I�

De�nition ��
� Let Act 
 Act be a �nite set of actions� possibly extended with � � A
deterministic linear process operator D�LPO� over Act is an expression of the form

� � �p��d�D�
X
a�Act

X
ea�Ea

afad� ea�� pgad� ea�� 	 bad� ea� 
 ��

�

The following theorem states that it is no restriction to assume that LPOs are deterministic�

Theorem ����

�� Every convergent LPO � can be rewritten to a D
LPO �� with the same solution	
provided every occurrence of an action a in � has a parameter of a unique type Da�

�� Consider convergent D
LPOs �	 � such that action a occurs both in � and in � �with
parameters of the same data type�� There exist convergent D
LPOs ��	 �� having the
same solutions as �	 �	 respectively	 such that a occurs in �� and �� in summands with
summation over the same sort Ea�
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This result is proved as Theorem A�	 in Appendix A� Here we just give an example� The
two summands shd� bi�K�ik� 	 eqik� �� 
 � and sce�K�ik� 	 eqik� 	� 
 � of the channel
K can be grouped together as

sif eqik� ��� hd� bi� ce��K�ik� 	 eqik� �� � eqik� 	� 
 ��

Here we assume that ce is of the same sort as the pair hd� bi�
We end this subsection by remarking that� due to the symbolic representation of state

spaces� the parallel composition of LPOs can be computed very easily� This property is well�
known for similar formats� For LPOs� the precise formulation is given by Lemma A�� from
Appendix A� Currently� a tool set for linear processes� which handles expansion and many
other operations� is being built using the ASF�SDF meta�environment ��� �	
�

��� Internal actions

We work in the setting of branching bisimulation ���
� but provide results for weak bisimula�
tion too in those cases where they di�er� So� we generally use the following two laws�

B�� x � � x

B�� z� x� y� � x� � zx� y�

We write x � y if there exists a z such that x� z � y� It is easily veri�ed that if x � y and
y � x then x � y� Using this notation� we have the following easy fact�

Lemma ����

y � x� �x � ��x� y�

Proof� �x � �x� y�
B�
� ��x� y� � y� � ��x� y�� �

We also assume a principle of fair abstraction� in the form of Koomen�s Fair Abstraction Rule
KFAR�� The formulation below is the one valid in branching bisimulation�

pd� � i pd� � y

� �figpd�� � � �figy�

Here p represents a process that can be parameterised� y represents a process and i represents
an action�

� Su�cient conditions for the equality of LPOs

In this section� we are concerned with proving equality of solutions of LPOs � and �� The
LPO � de�nes an implementation and the LPO � de�nes the speci�cation of a system�
We assume that � �steps do not occur in the speci�cation �� We want to show that after
abstraction of internal actions in a set Int the solution of � is equal to the solution of �� In
this section we assume that � cannot perform an in�nite sequence of internal actions� but in
the next section we relax this restriction� It turns out to be convenient to consider � where
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the actions in Int are already renamed to � � Hence� we speak about an LPO  which is
� where actions in Int have been hidden� Note that  is convergent� and hence de�nes a
process� We �x the LPOs  and � as follows where the actions are taken from a set Act��

 � �p��d�D��
X
a�Act

X
ea�Ea

afad� ea�� pgad� ea�� 	 bad� ea� 
 �

� � �q��d�D��
X

a�Actnf�g

X
ea�Ea

af �ad� ea�� qg
�
ad� ea�� 	 b

�
ad� ea� 
 �

The issue that we consider is how to prove the solutions of  and � equal� This is done by
means of a state mapping h�D� � D�� The mapping h maps states of the implementation to
states of the speci�cation� It explains how the data parameter that encodes states of the spec�
i�cation is constructed out of the data parameter that encodes states of the implementation�
In order to prove implementation and speci�cation branching bisimilar� the state mapping
should satisfy certain properties� which we call matching criteria because they serve to match
states and transitions of implementation and speci�cation� They are inspired by numerous
case studies in protocol veri�cation� and reduce complex calculations to a few straightforward
checks�
In order to understand the matching criteria we �rst introduce an important concept� called

a focus point� A focus point is a state in the implementation without outgoing � �steps� Focus
points are characterised by the focus condition FC�d�� which is true if d is a focus point�
and false if not�

De�nition ���� The focus condition FC�d� of  is the formula �e� �E� b� d� e� ��� �

The set of states from which a focus point can be reached via internal actions is called the
cone belonging to this focus point�
Now the matching criteria express that focus points in the state space of the implementation

must match perfectly with their h�image in the speci�cation� whereas points in a cone only
have to match indirectly� Here� a direct match means that the same set of external actions
can be executed directly requirement �� and 	� below�� with the same data parameter
requirement ��� and leading to h�related states requirement ���� If in non�focus points
a visible action can be done� then this action must also be possible in the speci�cation
requirement �� below�� But if an h�image in the speci�cation of a non�focus point s in the
implementation can perform an action� the non�focus point s need not match it directly� As
 is convergent a focus point will be reached after a �nite number of internal steps� Due to
condition �� this focus point will have the same h�image as s� and can therefore perform the
same actions� So� it is guaranteed that s can eventually mimic the step of its h�image�
The situation is depicted very schematically in Figure �� Here the dashed arrows are

internal actions � �steps� that are all directed towards the focus point� Since in a focus point
there is a perfect match between implementation and speci�cation� we can say that a focus
point is a goal of the implementation� and the internal actions in the cone which are directed
to the focus point� are progressing towards this goal� Note that as we have assumed that
 is convergent� each internal step in Figure � is directed towards the focus point� This is
a real restriction� as in general there may be loops of internal actions� for instance if data
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External actions

F

Progressing internal actions
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d

c
d

d
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a
b
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b
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a

Figure �� A cone and a focus point

must be retransmitted over unreliable channels� Actions that give rise to such loops may be
considered non�progressing w�r�t� the focus point�� We will deal with them in Section 	�

Now we formulate the criteria� We discuss each criterion directly after the de�nition� Here
and below we assume that  binds stronger than 	 and �� which in turn bind stronger than
��

De�nition ���� Let h�D� � D� be a state mapping� The following criteria referring to  �
� and h are called the matching criteria� We refer to their conjunction by C����hd��

 is convergent ��

�e� �E� b� d� e� �� hd� � hg� d� e� ��� ��

�a � Act n f�g�ea�Ea bad� ea�� b�ahd�� ea�� ��

�a � Act n f�g�ea�Ea FC�d� 	 b�ahd�� ea�� bad� ea�� 	�

�a � Act n f�g �ea�Ea bad� ea�� fad� ea� � f �ahd�� ea�� ��

�a � Act n f�g �ea�Ea bad� ea�� hgad� ea�� � g�ahd�� ea�� ��

�

Criterion �� says that  must be convergent� In e�ect this does not say anything else than
that in a cone every internal action � constitutes progress towards a focus point�
Criterion �� says that if in a state d in the implementation an internal step can be done

i�e� b� d� e� � is valid� then this internal step is not observable� This is described by saying
that both states relate to the same state in the speci�cation�
Criterion �� says that when the implementation can perform an external step� then the

corresponding point in the speci�cation must also be able to perform this step� Note that
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in general� the converse need not hold� If the speci�cation can perform an a�action in a
certain state e� then it is only necessary that in every state d of the implementation such that
hd� � e an a�step can be done after some internal actions�
This is guaranteed by criterion 	�� It says that in a focus point of the implementation� an

action a in the implementation can be performed if it is enabled in the speci�cation�
Criteria �� and �� express that corresponding external actions carry the same data pa�

rameter modulo h� and lead to corresponding states�

Assume that r and q are solutions of  and �� respectively� Using the matching criteria� we
would like to prove that� for all d�D� C����hd� implies rd� � qhd���
In fact we prove a more complicated result� This has two reasons� The �rst one is that

the statement above is not generally true� Consider the case where d is a non�focus point of
 � In this case� rd� can perform a � �step� Since q cannot perform � �steps� rd� cannot be
equal to qhd��� Therefore� in the setting of branching bisimulation we can for non�focus
points d only prove � rd� � � qhd��� In the setting of weak bisimulation this simpli�es to
rd� � � qhd����
The second reason why we need a more complicated result is of a very general nature� A

speci�cation and an implementation are in general only equivalent for the reachable states
in the implementation� A common tool to exclude non�reachable states is an invariant�
Therefore we have added an invariant to the theorem below�

Theorem ��� �General Equality Theorem�� Let  	 � and h be as above �recall that � does
not contain � 
steps�� Assume that r and q are solutions of  and �	 respectively� If I is an
invariant of  and �d�D� Id�� C����hd��	 then

�d�D� Id�� rd� 	 FC�d� 
 � rd� � qhd�� 	 FC�d� 
 � qhd���

Proof� De�ne the LPO ! by�

! � �r��d�D�� rd 	 FCd� 
 �  rd�

We prove the theorem as an application of the Concrete Invariant Corollary Theorem ����
with ! as LPO� We verify the conditions of that result�
As the invariant implies that  is convergent� it is straightforward to see that the LPO

�r��d�D� � !rd 	 Id� 
 � is convergent too�
Using LemmaA�� and the fact that r is a solution of  � it is also easy to see that �d�D��rd�	

FCd� 
 �rd� is a solution of !�
It is slightly more involved to check that �d�D��qhd�� 	 FCd� 
 �qhd�� is a solution of

!� After applying Lemma A��� this boils down to proving the following equation�

qhd�� 	 FCd� 
 � qhd�� �
 ��d�D��qhd��
d 	 FCd� 
 �  ��d�D��qhd��
d

We distinguish two cases� The �rst case is where FCd� holds� We must show that

qhd�� �
X
a�Act

X
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea� 
 �
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We proceed as follows�

qhd�� �P
a�Act

P
ea�Ea

af �ahd�� ea�� qg
�
ahd�� ea�� 	 b

�
ahd�� ea� 
 �

�	
���

�P

a�Act

P
ea�Ea

af �ahd�� ea�� qg
�
ahd�� ea�� 	 bad� ea� 
 �

��
��

�P

a�Act

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea� 
 �

The second case is where FCd� does not hold� Now we must show that

� qhd�� � �
X
a�Act

X
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea� 
 �

First note the following Fact�

qhd�� �P
a�Act

P
ea�Ea

af �ahd�� ea�� qg
�
ahd�� ea�� 	 b

�
ahd�� ea� 
 � �P

a�Actnf�g

P
ea�Ea

af �ahd�� ea�� qg
�
ahd�� ea�� 	 b

�
ahd�� ea� 	 bad� ea� 
 �

��
��

�P

a�Actnf�g

P
ea�Ea

afad� ea�� qhgad� ea��� 	 b
�
ahd�� ea� 	 bad� ea� 
 �

�	

�P

a�Actnf�g

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea� 
 ��

The theorem now follows by�

� qhd��
z
�

� � qhd���P
a�Actnf�g

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea� 
 ��
�
�

� 
P

e� �E�
� qhg� d� e� ��� 	 b� d� e� � 
 ��P

a�Actnf�g

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea� 
 �� �

� 
P

a�Act

P
ea�Ea

afad� ea�� qhgad� ea��� 	 bad� ea� 
 ��

At z� we have used Lemma ��� and the Fact stated above� At �� we have used Lemma A��
and matching criterion ��� Recall that� since FC�d� holds� there exists an e� such that
b� d� e� �� For the same reason� � � Act � this justi�es the last step� �

We can formulate a similar result in the setting of weak bisimulation semantics� which is
axiomatised by the following laws where a �� ���

T�� x � � x

T�� � x � � x� x

T�� a� x� y� � a� x� y� � ax

First� we prove the following variant of Lemma ����

Lemma ��� �Lemma ��� for weak bisimulation��

y � x� �x � �x� y
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Proof� �x
T�
� �x� x � �x� x� y

T�
� �x� y� �

Using Lemma ��	 rather than Lemma ���� we can prove the following adaptation of Theo�
rem ����

Theorem ��� �General Equality Theorem for Weak Bisimulation�� Let  	 � and h be as
above �recall that � does not contain � 
steps�� Assume that r and q are solutions of  and
�	 respectively� If I is an invariant of  and �d�D� Id�� C����hd��	 then

�d�D� Id�� rd� � qhd�� 	 FC�d� 
 � qhd���

� Abstraction and idle loops

The main result of this section� Theorem 	��� is an adaptation of Theorem ��� to the setting
where implementations can perform unbounded sequences of internal activity�
Recall that we are concerned with the following situation� We have an implementation�

de�ned by the LPO �� and a speci�cation� de�ned by the LPO �� We want to prove that
� is equal to �� after abstraction of internal actions in �� In the previous section� we have
shown how to prove equality of � and  � which is an abstract version of �� where internal
actions� i�e� actions not in �� are hidden�
Thus our next task is to rename internal actions in � in such a way that the resulting LPO

 is convergent� i�e� does not contain � �loops� and such that a state mapping h from  to ��
satisfying the matching criteria� can be de�ned�
In the previous section� we identi�ed � �steps with internal actions that make progress

towards a focus point� and so make progress in the protocol� Following this intuition� we only
rename those occurrences of actions that constitute progress in the protocol� Consider for
instance the Concurrent Alternating Bit Protocol of Section �� where a sender S repeatedly
sends a datum with an alternating bit b attached to receiver R through the channel K of
Section �� until an acknowledgement arrives via channel L� Obviously� losing or garbling the
datum in the channel K does not constitute progress in any sense� indeed� these events give
rise to an internal loop� since the sender S retransmits the datum� So these transitions are
not renamed to � � Also� the transmission of the datum by the sender is useful only when
the receiver has not yet received it� i�e� is still willing to accept data with alternating bit b�
Suppose that we have a formula � that expresses that R will accept data with alternating
bit b� Then we split this transmission into two transitions� one where the transmission is
renamed to � and the enabling condition is strengthened by the conjunct �� and one where
the transition is unchanged but the enabling condition is strengthened by the conjunct ��
It requires experience to identify progressing internal actions for particular applications�

we hope that the examples in Subsection ��� provide enough intuition�
We have seen that� when the implementation has unbounded internal behaviour� not all

occurrences of all internal actions can be renamed to � � since this would give rise to a non�
convergent LPO  � Hence some occurrences of some internal actions in the implementation
remain unchanged� However� in order to apply Theorem ���� the speci�cation � and ab�
stracted implementation  should run over the same set of actions� except that  can per�
form � �steps� To arrive at this situation� we augment � with "idle# loops� for each internal
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action j that still occurs in  � we augment � with a j�loop of the form j pd� 	 T 
 �� As a
consequence� the augmented speci�cation is in every state able to do a j�step� In general�
the abstracted implementation  is not in every state able to perform a j�step� To remedy
this we also add a j�loop to  �
After these preparations� Theorem ��� yields that  plus idle loops is equal to � plus

idle loops� Now by KFAR� we can abstract from these idle loops to obtain equality of
implementation � after abstraction of all internal actions� and speci�cation ��
Since the internal actions are eventually all renamed to � � we may as well rename them

�rst to a single internal action i� and add just a single idle loop an i�loop� to  and �� This
considerably smoothens the presentation�

As opposed to the previous section� the main result of this section� Theorem 	��� is the
same for weak bisimulation and branching bisimulation� In the sequel� we assume that Ext
the set of external actions of ��� Int the set of internal actions of ��� and f�g are mutually
disjoint and �nite sets of actions�
First� we introduce a number of operator transformations that are instrumental in the

proof� The operator i�� is � extended with an i�loop� �Int �� is � with all actions in Int

renamed to i� iInt �� is a combination of the two�

De�nition ���� Let � be a convergent LPO over Ext � Int � f�g� Let i � Act be an action
such that i � Ext � Int � f�g� Let �Int be a renaming operator renaming the actions in Int

to i� We de�ne the following operators on LPOs�

i��
def
� �p��d�D���pd� i pd��

�Int��
def
� �p��d�D���Int �pd��

iInt��
def
� i�Int ����

�

The following theorem gives the relevant properties of these operators� It is proved in Ap�
pendix A as Theorem A��� the proof uses KFAR and CL�RSP�

Theorem ���� Let � be a convergent LPO over Ext�Int�f�g such that i � Ext�Int�f�g�
Assume that p� is a solution of �	 p� is a solution of i��	 and p	 is a solution of iInt ���
Then we have	 for all d � D�

�� � p�d� � � �figp�d��	

�� �Int p�d�� � p	d� and

�� � �Int p�d�� � � �figp	d���

The essential technical concept in this section is a pre�abstraction or partial abstraction

function �� The function � divides occurrences of internal actions in the implementation into
two categories� namely the progressing and non�progressing internal actions� In this setting�
a focus point is not de�ned in terms of � �steps� as in the previous section� but in terms of
progressing internal actions�
In order to apply Theorem 	�� below� one must provide not only an invariant and a state

mapping h� but also a pre�abstraction�
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De�nition ���� Let � be a D�LPO and let Int be a �nite set of actions� A pre�abstraction

function � is a mapping that yields for every action a � Int an expression of sort Bool� The
pre�abstraction �� is de�ned by replacing every summand in � of the formX

ea�Ea

afad� ea�� pgad� ea�� 	 bad� ea� 
 �

with a � Int byX
ea�Ea

� pgad� ea�� 	 �a�d� ea� 
 afad� ea�� pgad� ea��� 	 bad� ea� 
 �

We extend � to all actions by assuming that ���d� e� � � T and �a�d� ea� � F for all
remaining actions� �

Note that if �a�d� ea� � T� the action a in the summand is replaced by � � while if
�a�d� ea� � F� the summand remains unchanged� In the remaining case� a�transitions
are divided into progressing ones renamed to �� and non�progressing ones� Observe that
D� � D��

and that convergence of �� implies convergence of ��
We rede�ne the notions convergent and focus point in a setting where there is a pre�

abstraction�

De�nition ���� Let � be an LPO with internal actions Int and let � be a pre�abstraction
function� The LPO � is called convergent w�r�t� � i� there is a well founded ordering � on
D such that for all a � Int � f�g� d � D and all ea � Ea we have that bad� ea� and �a�d� ea�
imply gad� ea� � d� Note that this is equivalent to convergence of ��� de�ned in terms of �
and �� �

The di�erence between � and �� disappears when the internal actions in Int are hidden�
This is stated in the next lemma� which is proven as Lemma A�� in Appendix A�

Lemma ���� Let � be an LPO that is convergent w�r�t� a pre
abstraction function �� Let
p be a solution of � and p� be a solution of ��� Then

�Intp� � �Intp
���

De�nition ��	� Let � be a pre�abstraction function� The focus condition of � relative to �
is de�ned by�

FC��Int��d�
def
� �a � Int � f�g �ea�Ea bad� ea� 	 �a�d� ea���

Note that this is exactly the focus condition of ��� de�ned in terms of � and �� �

In the next de�nition we de�ne the matching criteria for the case where the implementation
can perform unbounded internal activity� After an instrumental technical lemmawe formulate
the main theorem�
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De�nition ��
� Let �� � be D�LPOs� where � runs over Ext � Int �f�g Ext � Int and f�g
mutually disjoint� and � runs over Ext � Let h � D� � D� and let � be a pre�abstraction
function� The following � conditions are called the matching criteria for idle loops and their
conjunction is denoted by CI������hd��

� is convergent w�r�t� � ��

�a � Int � f�g �ea�Ea bad� ea�� hd� � hgad� ea��� ��

�a � Ext �ea�Eabad� ea�� b�ahd�� ea�� ��

�a � Ext �ea�Ea FC��Int��d� 	 b�ahd�� ea�� bad� ea�� 	�

�a � Ext �ea�Ea bad� ea�� fad� ea� � f �ahd�� ea�� ��

�a � Ext �ea�Ea bad� ea�� hgad� ea�� � g�ahd�� ea�� ��

�

Lemma ���� Let �	 �	 h and � as in De�nition ��� We �nd�

CI������hd�� CiInt���
�i��
�hd��

Proof� Below we show that the conditions in CiInt���
�i��
�hd� follow from the conditions in
CI������hd�� In order to see this� we formulate the conditions of CiInt���
�i��
�hd� in terms of
�� � and � directly and show how they follow�

�� We must show that iInt ��� is convergent� This is an immediate consequence of the
fact that � is convergent w�r�t� ��

�� We must prove �a � Int �f�g �ea�Ea �a�d� ea�	 bad� ea�� hd� � hgad� ea��� We
must consider a � Int as these are renamed to � if �a�d� ea� holds�� Note that this
condition is a direct consequence of condition � of CI������hd��

�� We get

�a � Int � Ext � fig �ea�Ea bad� ea� 	 �a�d� ea�� b�ahd�� ea���

In case a � Int or a is the new action i� the action a appears as i in iInt ���� In this
case b�ihd�� eb� equals T and the condition trivially holds�

In case a � Ext � this is exactly condition � of CI������hd��

	� This condition yields

�a � Int � Ext � fig �ea�Ea FC��Int ��d� 	 b�ahd�� ea�� bad� ea� 	 �a�d� ea���

In case a � Int � fig� a occurs as i in iInt ��� and iInt ��� So the conditions bid� ei�
and b�ihd�� ei� are both equal to T� If �i�d� ei� � F� we are done� if �i�d� ei� � T�
the focus condition is false and the theorem follows trivially�

In case a � Ext we have that �a�d� ea� � F and the theorem follows from condition 	
of CI������hd��
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�� In this case we get �a � Int � Ext � fig �ea�Ea �a�d� ea� 	 bad� ea� � fad� ea� �
f �ahd�� ea���

In case a � Int � fig� a occurs as i in iInt �� and iInt ��� As i has no parameter� this
condition holds trivially�

In case a � Ext this is exactly condition � of CI������hd��

�� The last condition is �a � Int�Ext�fig �ea�Ea �a�d� ea�	bad� ea�� hgad� ea�� �
g�ahd�� ea���

In case a � Int � fig the action a appears as i in iInt ��� and iInt��� So� g
�
i is the

identity and we must prove that hgad� ea�� � hd�� This follows from condition � of
CI������hd��

In case a � Ext this is an immediate consequence of condition � of CI������hd��

�

Theorem ��� �Equality theorem for idle loops�� Let �	 � be D
LPOs	 where � runs over
Ext � Int � f�g �Ext 	 Int and f�g mutually disjoint� and � runs over Ext � Let h � D� � D�

and let � be a pre
abstraction function� Let p and q be solutions of � and �	 respectively�
If I is an invariant of � and �d � D� Id�� CI������hd��	 then

�d�D� Id�� � �Intpd�� � � qhd���

Proof� Let p� q� p� and q� be solutions of �� �� iInt ��� and iInt ��� respectively� The
following three facts follow straightforwardly from the work done up to now�

�� � �Int pd�� � � �figp
�d�� Theorem 	������

�� � qhd�� � � �figq
�hd��� Theorem 	����� and

�� Id�� � p�d� � � q�hd�� Theorem ��� and Lemma 	����

The theorem follows straightforwardly by

� �Intpd��
��

� � �figp

�d��
�	

� � �figq

�hd���
��

� � qhd��

�

� Examples

In this section we give some examples� We begin with three simple ones� where invariants�
progressiveness of internal actions� and convergence hardly play a role� The �rst example
is an easy application of Theorem 	��� The next example shows that in some cases a state
mapping as required by Theorem ��� or Theorem 	�� does not exist� even though the processes
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in question are evidently branching bisimilar� The third example motivates our restriction to
speci�cations without � �steps� In Subsection ���� we present a larger example� the Concurrent
Alternating Bit Protocol� As an application of Theorem 	��� we prove the correctness of this
protocol� Here� invariants� progressiveness of internal actions and convergence make their
appearance�

Example ���� The following LPO describes a person who tosses a coin this event is mod�
eled by the internal action j�� When head turns up the person performs an external action
outhead �� when tail turns up the person tosses again� We write Sides for the sort consisting
of head and tail �

proc Xs�Sides� �P
s��Sides j Xs

�� 	 eqs� tail� 
 ��
outs�Xtail � 	 eqs� head � 
 �

After hiding the internal action j� this process implements the process which does nothing
but outhead ��steps� given by

proc Y s�Sides� � outhead �Y s�

Here we leave the condition T of the summand implicit� The parameter s is added to Y
for convenience� We use Theorem 	�� to prove that solutions for X and Y are branching
bisimilar� More precisely� let p and q be solutions for X and Y � respectively� we prove that
for all s � Sides� � �fjgps�� � � qs�� Here we take X for �� Y for �� fjg for Int and
foutg for Ext � First we de�ne the ��function� which determines when the internal action j
is renamed to � � The coin is tossed when s equals tail � When the side that turns up� s��
is again tail � we have a j�loop which after renaming would lead to a � �loop�� To exclude
this situation� we put �j� � eqs�� head �� The focus condition FCX�fjg��s� is now de�ned
as �s��Sides eqs� tail � 	 eqs�� head ��� which is equivalent to eqs� head �� As invariant we
simply take the always true formula T and we de�ne h � Sides � Sides by hs� � head �
Spelling out the matching criteria of De�nition 	��� we get the following proof obligations�

�� X is convergent w�r�t� �� This is easy� we let the required well�founded ordering on
Sides be given by� head � tail �

�� eqs� tail �� head � head � This formula is trivially proved�

�� eqs� head �� T� Equally trivial�

	� FCX�fjg��s� 	 T�� eqs� head �� Easy� since FCX�fjg��s� is equivalent to eqs� head ��

�� eqs� head � � s � head � Trivial� Remember that we assume that eq faithfully re�ects
equality�

�� eqs� head �� head � head � Trivial�

�End example��

Example ���� Let Y be de�ned as in Example ���� De�ne a function �ip � Sides � Sides

with �iphead � � tail and �iptail � � head no other equations hold�� Let Z be de�ned by
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proc Zst�Sides� � outhead �Z�ipst��

Processes de�ned by Y and Z are evidently strongly bisimilar� However� we cannot give a
state mapping h � Sides � Sides that satis�es the matching criteria� Towards a contradiction�
suppose that h exists� By criterion ��� we have hs� � �iphs��� which is clearly impossible�
We conjecture that in cases like this� one can always rewrite the implementation and

speci�cation in a simple way to branching� equivalent ones� which can be dealt with by our
strategy� In the present case� just delete the parameter st in Z�� It remains to make this
more precise� �End example��

Now we show that the restriction to speci�cations without � �steps cannot be dropped� We
present a counter example to this generalisation of Theorem ���� which also serves to refute
the same generalisation of Theorem 	���

Example ���� Let U be de�ned by

proc Ust�Nat� �
� U�� 	 eqst� �� 
 ��
bU�� 	 eqst� �� 
 ��
cUst� 	 eqst� �� 
 �

Solutions for this LPO can be written as � b c�� Next� consider

proc V st�Nat� �
� V �� 	 eqst� �� 
 ��
b V �� 	 eqst� �� 
 ��
� V �� 	 eqst� �� 
 ��
c V st� 	 eqst� �� 
 �

We have that solutions to U and V are not in general branching or weakly� bisimilar� the
in�nite trace c� is an in�nite� trace of a solution for V � but not of a solution for U � However�
it is easy to show that the conditions of Theorem ��� are satis�ed� contradicting this result�
We de�ne a state mapping h from U to V � of type Nat � Nat � by

hst� �

�
� if eqst� ��
st otherwise

The focus condition FCU st� is equivalent to eqst� ��� It is easily seen that the matching
criteria CU�V�h are satis�ed� For convergence� take the � ordering on Nat restricted to
f�� �� �g� as the required well�founded ordering��
The question arises whether our strategy can deal with � �steps in the speci�cation at all�

Intuitively� these steps model that the speci�cation internally and invisibly makes choices� In
case the implementation is after abstraction of internal actions� equal to the speci�cation�
these choices must also occur in the implementation� Usually� they will be modeled by
internal but visible actions� An adaptation of our strategy could be to make the choices
in the speci�cation visible by replacing the � �steps by the corresponding internal actions�
Then one might prove this version of the speci�cation equal to the partially abstracted�
implementation� Thereafter� hiding the internal actions in the speci�cation yields the desired
result� �End example��
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Figure �� The structure of the CABP

��� The Concurrent Alternating Bit Protocol

In this subsection we prove the correctness of the Concurrent Alternating Bit Protocol
CABP�� as an application of Theorem 	���

����� Speci�cation

In this section we give the standard description of the Concurrent Alternating Bit Protocol
and its speci�cation� The system is built from six components� The overall structure of
the CABP is depicted in Figure �� Information �ows clockwise through this picture� The
components can perform read rn� � ��� and send actions sn� � ��� to transport data over port
n� A read and a send action over port n can synchronise to a communication action cn� � ���
over port n when they are executed simultaneously� In such a case the parameters of the
send and read action must match�
We use the sort Bit with bits e� and e� with an inversion function inv and the sort Nat

of natural numbers� We assume an unspeci�ed sort D that contains the data elements to be
transferred by the protocol� The sort Frame consists of pairs hd� bi with d � D and b � Bit
b models the alternating bit�� This sort also contains two error messages� ce for checksum
error� and ae for acknowledgement error��
The channels K and L read data at port �� resp� port �� They either deliver the data

correctly via port 	� resp� ��� or lose or garble the data in the last case a checksum error ce
resp�� acknowledgement error ae�� is sent� The non�deterministic choice between the three
options is modeled by the actions j and j�� If j is chosen the data are delivered correctly and
if j� happens they are garbled or lost� The state of the channels is modeled by parameters ik
and il�

proc Kdk�D� bk�Bit � ik�Nat� �P
d�D

P
b�Bit r	hd� bi�Kddk � bbk� �ik� 	 eqik� �� 
 ��

j�K�ik� � j K�ik� � j�K	ik�� 	 eqik� �� 
 ��
s�hdk� bki�K�ik� 	 eqik� �� 
 ��
s�ce�K�ik� 	 eqik� 	� 
 �

Lbl�Bit � il�Nat� �P
b�Bit rb�Lbbl� �il� 	 eqil� �� 
 ��
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j� L�il� � j L�il� � j� L	il�� 	 eqil� �� 
 ��
s�bl�L�il� 	 eqil� �� 
 ��
s�ae�L�il� 	 eqil� 	� 
 �

The sender S reads a datum of sort D at port � and repeatedly o�ers the datum with a
bit attached� at port � until it receives an acknowledgement ac at port � after which the
bit�to�be�attached is inverted�

proc Sds�D� bs�Bit � is�Nat� �P
d�D r�d�Sdds� �is� 	 eqis� �� 
 �

s	hds� bsi�S � r�ac�Sinv bs�bs� �is�� 	 eqis� �� 
 �

The receiver R reads a datum at port 	 and if the datum is not a checksum error ce and if
the bit attached is the expected bit� it sends the datum via port � and sends via port �� an
acknowledgement ac to the acknowledgement sender AS� after which the bit�to�be�expected
is inverted� If the datum is a checksum error or the bit attached is not the expected bit� the
datum is ignored�

proc Rdr�D� br�Bit � ir�Nat� �P
d�D r�hd� bri�Rddr � �ir� 	 eqir� �� 
 ��

r�ce� �
P

d�D r�hd� inv br�i��R 	 eqir� �� 
 ��
s�dr�R�ir� 	 eqir� �� 
 ��
s�ac�Rinv br�br� �ir� 	 eqir� �� 
 �

The acknowledgement sender AS repeatedly sends its acknowledgement bit via port �� until
it reads an acknowledgement ac at port �� after which the acknowledgement bit is inverted�

proc ASb�r�Bit� �
r�ac�ASinv b

�
r�� � sb

�
r�ASb

�
r�

The acknowledgement receiver AR reads bits at port � and when the bit is the expected
acknowledgement bit� it sends via port � an acknowledgement ac to the sender S� after
which the bit�to�be�expected is inverted� Acknowledgements errors ae or unexpected bits are
ignored�

proc ARb�s�Bit � i
�
s�Nat� �

r�b
�
s�AR�i

�
s� 	 eqi

�
s� �� 
 ��

r�ae� � r�invb
�
s���AR 	 eqi�s� �� 
 ��

s�ac�ARinv b
�
s�b

�
s� �i

�
s� 	 eqi

�
s� �� 
 �

The CABP is obtained by putting the components in parallel and encapsulating the internal
send and read actions at ports n � f�� 	� �� �� �� �g� Synchronisation between the components
is modeled by communication actions at connecting ports�
We put H � fs	� r	� s�� r�� s�� r�� s� r� s�� r�� s�� r�g�

proc CABPd�D� �
�HSd� e�� �� k ARe�� �� k Kd� e�� �� k Le�� �� k Rd� e�� �� k ASe���
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The speci�cation of the external behaviour of CABP uses the one�datum bu�er B� which can
read via port � if b is true� and deliver via port � if b is false�

proc Bd�D� b�Bool� �P
e�D r�e�Be�F� 	 b 
 ��

s�d�Bd�T� 	 b 
 �

After abstraction of internal actions� the CABP should behave as a one�datum bu�er� up to
initial silent steps� We let I � fc	� c�� c�� c� c�� c�� j� j

�g� Our goal is to prove the following
result�

Theorem ���� For all d�D we have

� �ICABPd�� � � Bd�T��

This result will be proved as Theorem ����� as an easy consequence of Theorem 	��� taking
a certain expansion Sys of CABP for �� B for �� the set I for Int � and fr�� s�g for Ext � In
the next section� we determine Sys�

����� Expansion

In this section we expand CABP to a linear process term Sys� As a preparation� we �rst
group S and AR� respectively R and AS� together� This has the advantage that we can
dispose of the parameters b�s and b�r� For ds� dr� dk � D� bs� br� bk� bl � Bit and is� i

�
s� ir� ik� il

� Nat � we de�ne�

proc SARds� bs� is� i
�
s� � Sds� bs� is� k ARbs� i

�
s�

RASdr� br� ir� � Rdr� br� ir� k ASinvbr��

Sysds� bs� is� i
�
s� dr� br� ir� dk� bk� ik� bl� il� �

�HSARds� bs� is� i
�
s� k Kdk� bk� ik� k Lbl� il� k RASdr� br� ir��

Lemma ���� For all d�D we have

CABPd� � Sysd� e�� �� �� d� e� � �� d� e�� �� e�� ���

Proof� Direct using the de�nitions� �

Lemma ��	� For all ds	 dr	 dk � D	 bs	 br	 bk	 bl � Bit and is	 i
�
s	 ir	 ik	 il � Nat 	 it holds that

Sysds� bs� is� i
�
s� dr� br� ir� dk� bk� ik� bl� il� �P

d�D r�d�Sysdds� �is� 	 eqis� �� 
 ��
c	hds� bsi�Sysdsdk� bsbk� �ik� 	 eqis� �� 	 eqik� �� 
 ��
c�hdk� bri�Sysdkdr� �ir � �ik� 	 eqir� �� 	 eqbr� bk� 	 eqik� �� 
 ��
c�hdk� bri�Sys�ik� 	 eqir� �� 	 eqbr� invbk�� 	 eqik� �� 
 ��
c�ce�Sys�ik� 	 eqir� �� 	 eqik� 	� 
 ��
s�dr�Sys�ir� 	 eqir� �� 
 ��



� EXAMPLES ��

c�ac�Sysinvbr�br� �ir� 	 eqir� �� 
 ��
cinvbr��Sysinvbr�bl� �il� 	 eqil� �� 
 ��
c�bl�Sys�il� �i

�
s� 	 eqi

�
s� �� 	 eqbl� bs� 	 eqil� �� 
 ��

c�bl�Sys�il� 	 eqi
�
s� �� 	 eqbl� invbs�� 	 eqil� �� 
 ��

c�ae�Sys�il� 	 eqi
�
s� �� 	 eqil� 	� 
 ��

c�ac�Sysinvbs�bs� �is� �i
�
s� 	 eqis� �� 	 eqi�s� �� 
 ��

j� Sys�ik� � j Sys�ik� � j� Sys	ik�� 	 eqik� �� 
 ��
j� Sys�il� � j Sys�il� � j� Sys	il�� 	 eqil� �� 
 �

Proof� By straightforward process algebraic calculations� using Lemma A�� and the auxil�
iary de�nitions given above� �

Now this expanded version of Sys will play the role of � as introduced in section 	� Note
however� that this LPO is not deterministic in the sense of De�nition ���� As it would decrease
readability� we have chosen not to transform Sys to a D�LPO� We have taken care that all
theorems are correctly applied to Sys�

����� Invariant

The process Sys does not behave as the bu�er for all its data states� Actually� there are cases
where it can perform an r� in succession without an intermediate s�� or two successive s�
actions without an intermediate r�� However� such states cannot be reached from the initial
state� We formalise this observation by formulating six invariant properties of Sys� The �rst
�ve invariants I�� � � � � I� state what values is� i

�
s� ir� ik� and il may have� The last invariant

I is less trivial� We �rst provide the formal de�nition of the invariant� thereafter we give an
informal explanation of I�

I� � eqis� �� � eqis� ���
I� � eqi�s� �� � eqi�s� ���
I	 � eqik� �� � eqik� �� � eqik� �� � eqik� 	��
I� � eqir� �� � eqir� �� � eqir� ���
I� � eqil� �� � eqil� �� � eqil� �� � eqil� 	��
I � eqis� ��� eqbs� invbk�� 	 eqbs� br� 	 eqds� dk� 	 eqds� dr� 	 eqi�s� �� 	 eqir� ���	

eqbs� bk�� eqds� dk��	
eqir� �� � eqir� ��� eqds� dr� 	 eqbs� br� 	 eqbs� bk��	
eqbs� invbr��� eqds� dr� 	 eqbs� bk��	
eqbs� bl�� eqbs� invbr���	
eqi�s� ��� eqbs� bl���

The invariant I can be understood in the following way� Every component can be in exactly
two modes� which we call involved and unaware�
If a component is involved� it has received correct information about the datum to be

transmitted and has the duty to forward this information in the clockwise direction� If a
component is unaware� it is not yet� involved in transmitting the datum� In particular the
sender S is unaware if there is nothing to transmit� The idea behind the protocol is that
initially all components are in the unaware mode� When the sender S reads a datum to be
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transmitted it gets involved� By transmitting data the components K� R� L and AR become
subsequently involved� When AR signals the acknowledgement to S by s�ac�� it is clear that
the datum has correctly been delivered� and all components fall back to the unaware mode�
The invariant simply expresses that if a component is in the involved mode all components
in the anti�clockwise direction up to and including the sender S must also be involved� With
regard to the components K and R the invariant also expresses the property that if these
components are involved� then the data that these contain must be equal to the datum of
the sender�
Below we present a table indicating in which case a component is involved� and in case it is

involved� what property should hold� It is left to the reader to check that the invariant indeed
encodes the intuition explained above� Note that AS has been omitted as its parameters do
not play a role in Sys�

Component Condition for involvement Property
S eqis� ��
K eqbs� bk� eqds� dk�
R eqir� �� � eqir� �� � eqbs� invbr�� eqds� dr�
L eqbs� bl�
AR eqi�s� ��

We write �d for the vector ds� bs� is� i
�
s� dr� br� ir� dk� bk� ik� bl� il�

Lemma ��
�

I�d � �

�
j��

Ij�d �

is an invariant of Sys�

����� Abstraction and focus points

The Concurrent Alternating Bit Protocol has unbounded internal behaviour that occurs when
the channels repeatedly lose data� when acknowledgements are repeatedly being sent by the
receiver without being processed by the sender or when the sender repeatedly sends data to
the receiver that it has already received� We de�ne a pre�abstraction function to rename all
actions in Int into � except those that give rise to loops� So�

�a��d � �

����
���

F if a � j��
eqbs� br� if a � c	�
eqbs� br� if a � c�
T for all other a � Int �

In case a � j� either channel K or L distorts or loses data� In case a � c	 and eqbs� br�
data is being sent by the sender to the receiver that is subsequently ignored by the receiver�
And in case a � c and eqbs� br�� an acknowledgement sent by the receiver to the sender is
ignored by the sender�
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We can now derive the focus condition FC with respect to �� FC is the negation of
the conditions that enable � �steps in Sys� This results in a rather long formula� which is
equivalent to the following formula assuming that the invariant holds��

Lemma ���� The invariant I�d � implies that

FCSys�Int���d � �
eqi�s� �� 	 eqil� �� 	 eqis� �� 	 eqik� ��� � eqir� �� 	 eqik� �� � eqik� 	�����

Lemma ���� Sys�d � is convergent w�r�t� ��

Proof� We de�ne a well�founded ordering � by means of the function f given below as
follows� �a � �b � f�a � � f�b �� where � is the usual "less than# ordering on the natural
numbers� Since � is well�founded on the natural numbers and � as can easily be checked � f
decreases with every internal step of Sys� as above� we see that � does the job�
Now we give the function f � For � � fk� lg� we let x�� x�� x	� x��

� abbreviate

if eqi�� ��� x�� if eqi�� ��� x�� if eqi�� ��� x	� x�����

De�ne fds� bs� is� i
�
s� dr� br� ir� dk� bk� ik� bl� il� by

if eqis� ��� �� �� � if eqi�s� ��� �� �� � if eqir � ��� �� �� � if eqir� ��� �� ���
if eqbr� bk�� �� �� �� ��

k � �� �� 	� 	�k��
if eqbs� bl�� �� �� �� ��

l � �� �� 	� 	�l��

�

Theorem ���� For all d � D we have

� �ICABPd�� � � Bd�T��

Proof� By Lemma ��� it su�ces to prove� for all d�D�

� �ISysd� e�� �� �� d� e�� �� d� e�� �� e�� ��� � � Bd�T��

Note that the invariant I holds for the parameters of Sys such as displayed� So we can apply
Theorem 	��� taking Sys for �� B for �� Sys� for  � the set I for Int � fr�� s�g for Ext � and
I as invariant� It remains to pick an appropriate function h� this function will yield a pair
consisting of a datum of type D and a boolean� We choose h to be�

h�d � � hds� eqis� �� � eqir� �� � eqbs� br�i�

The �rst component is the datum that is read by the bu�er when eqis� �� and exported when
eqir� ��� We can take ds� because we can show that when action s�dr� happens� ds � dr�
The second component of the triple is the boolean formula that controls� in terms of the

parameters �d of Sys� whether the bu�er is enabled to read the formula is true� or enabled to
write the formula is false�� Typically� Sys is able to read when eqis� �� as the read action in
the sender is enabled� The sender is also enabled to read after some internal activity� when
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it is still waiting for an acknowledgement� but the proper acknowledgement is on its way�
This case is characterised by eqbs� br�� The same holds when the receiver has delivered
a datum� but has not yet informed the acknowledgement handler AS� In this case eqir� ��
holds�
Next� we verify the conditions of Theorem 	��� We get the following conditions omitting

trivial conditions��

�� Sys is convergent w�r�t� ��

�� a� eqir� ��� T � eqis� �� � eqbs� invbr��

b� eqis� �� 	 eqi�s� ��� eqir� �� � eqbs� br� � T�

�� eqir� ��� eqis� �� � eqir� �� � eqbs� br���

	� a� FCSys�Int���d � 	 eqis� �� � eqir� �� � eqbs� br��� eqis� ���

b� FCSys�Int���d � 	 eqis� �� � eqir� �� � eqbs� br��� eqir� ���

�� eqir� ��� dr � ds�

�� eqis� ��� eqir� �� � eqbs� br� � F�

Lemma ��� takes care of condition �� The remaining conditions are easily veri�ed� under the
invariant I� �

A Elementary results

This appendix contains some technical lemmas� which are used in previous sections� We
begin with simple properties of the 	 
 operator and the

P
�operator�

Lemma A��� For all processes x� y and �open� terms of sort Bool b� b�� b� we have�

�� x 	 b 
 x � x

�� x 	 b 
 y � y 	 b 
 x

�� x 	 b 
 y � x 	 b 
 � � y 	 b 
 �

� x 	 b� 	 b� 
 � � x 	 b� 
 �� 	 b��

�� x 	 b� � b� 
 � � x 	 b� 
 � � x 	 b� 
 �

Proof� ��� ��� ��� by induction on b� i�e� by distinguishing the cases where b equals T and
where b equals F� 	�� ��� by induction on b� and b�� �

Lemma A��� If there is some e�D such that be� holds	 then

x �
X
d�D

x 	 bd� 
 ��
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Proof� Assume be� holds�


X
d�D

x 	 bd� 
 �� � x 	 be� 
 �� � x � 
X
d�D

x� � 
X
d�D

x 	 bd� 
 ���

Note that in the �rst ��step we use axiom SUM�� In the second ��step� we use SUM�� The
last step can be seen as follows�P

d�D x �P
d�Dx 	 bd� 
 x� �P
d�Dx 	 bd� 
 � � x 	 bd� 
 �� �P
d�Dx 	 bd� 
 �� �

P
d�Dx 	 bd� 
 ��

At the �rst step we use Lemma A����� at the second step we use Lemma A���� and at the
last step we use SUM	� Note that at the �rst two steps we also use SUM��� �

LPOs do not blow up when put in parallel� This is the content of the next lemma� taken
from ��
�

Lemma A��� Let

� � �p��d��i�I�ei�Ei
cifid� ei�� pgid� ei�� 	 bid� ei� 
 � and

� � �p��d�i�I��e�

i�E
�

i
c�if

�
id� e

�
i�� pg

�
id� e

�
i�� 	 b

�
id� e

�
i� 
 �

be convergent LPOs with solutions p and q� Then the parallel composition of p and q	 p k q	
is the solution of the following convergent LPO�

�p��hd� d�i�D �D� ��i�I�ei�Ei
cifid� ei�� pgid� ei�� d

�� 	 bid� ei� 
 ��
�i�I��e�

i�E
�

i
c�if

�
id

�� e�i�� pd� g
�
id

�� e�i�� 	 b
�
id

�� e�i� 
 ��

�i�I�i��I��ei�Ei
�e�

i�E
�

i

cifid� ei���c
�
if

�
id

�� e�i��� pgid� ei�� g
�
id

�� e�i�� 	 bid� ei� 	 b�id
�� e�i� 
 �

Note that a summand of the last form is only present when cifid� ei���c
�
if

�
id

�� e�i��� is
de�ned�

Next� we give a proof of the fact that linear process operators LPOs� can be rewritten to
equivalent deterministic linear process operators D�LPOs��

Theorem A���

�� Every convergent LPO � can be rewritten to a D
LPO �� with the same solution	
provided every occurrence of an action a in � has a parameter of a unique type Da�

�� Consider convergent D
LPOs �	 � such that action a occurs both in � and in � �with
parameters of the same data type�� There exist convergent D
LPOs ��	 �� having the
same solutions as �	 �	 respectively	 such that a occurs in �� and �� in summands with
summation over the same sort Ea�
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Proof�

�� We de�ne �� as the result of iterating the following procedure� Let action a occur more
than once in �� We de�ne E � f

P
ei�Ei

afid� ei�� pgid� ei�� 	 bid� ei� 
 � j � � i � ng
as the set of summands in � with action a we have n � ���

First we treat a simple case� where the formulas bid� ei� are mutually exclusive i�e�
for no i� j such that i �� j� the formula bid� ei� 	 bjd� ej� is satis�able�� De�ne E �
E� � � � � � En� For � � i � n and e � E� we let �ie� denote the i

th projection of e
yielding a term of sort Ei�� Using E and the projection functions� we represent the
summands in E by the following summand in ���X

e�E

afd� e�� pgd� e�� 	 bd� e� 
 �

Here� b � D � E � Bool is given by

bd� e� � b�d� ��e�� � � � � � bnd� �ne��

and f � D � E � Da is de�ned by

fd� e� �
if b�d� ��e��� f�d� ��e��� if b�d� ��e��� f�d� ��e��� � � � � fnd� �ne�� � � ��

Similarly� we de�ne g � D � E � D from the gi functions� It is easy to check that �
�

has the same solution as ��

In general we cannot assume that the formulas bid� ei� are mutually exclusive� So we
add an extra summation over vectors of booleans to model the non�deterministic choice
between any of the alternatives�

De�ne

E � E� � � � � �En �Bool� � � � �Bool� 	z 

n�� times

For � � i � n and e � E� we let �ie� denote the i
th projection of e yielding a term of

sort Ei�� and� for � � i � n� �� �ie� denotes the n� i�th projection of e yielding a
term of sort Bool�� We de�ne the summand in �� as before� but with di�erent f and g
functions� Write b�id� �ie�� for bid� �ie��	�ie�� Now we de�ne f � D � E � Da by

fd� e� �
if b��d� ��e��� f�d� ��e��� if b

�
�d� ��e��� f�d� ��e��� � � � � fnd� �ne�� � � ��

Similarly� g � D � E � D is de�ned from the gi functions� Again� it is easy to check
that �� has the same solution as ��

�� By a coding trick as in ��� we obtain that summands in � and � with action a have
summation over the same data type�

�
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The following result is a trivial corollary of � �law B��

Lemma A��� Let � be an LPO� For all processes p and data d � D we have

�pd � ���d�pd� 	 bd� 
 � pd�
d

The last two results concern LPOs extended with idle loops� They are used in Section 	�
Remember that we assume that Ext � Int and f�g are mutually disjoint and that i �� Ext �
Int � f�g�

Theorem A�	� Let � be a convergent LPO over Ext�Int�f�g such that i � Ext�Int�f�g�
Assume that p� is a solution of �	 p� is a solution of i��	 and p	 is a solution of iInt ���
Then we have	 for all d � D�

�� � p�d� � � �figp�d��	

�� �Int p�d�� � p	d� and

�� � �Int p�d�� � � �figp	d���

Proof�

�� First we show �d�� p�d� and �d�� �figp�d�� to be solutions of

�
def
� �p��d�D��� �pd�

It is straightforward to see that �d�� p�d� is a solution of �� We only prove that
�d�� �figp�d�� is a solution of ��

As p� is a solution of i�� it holds that

p�d� � �p�d� i p�d��

By an application of KFAR we �nd�

� �figp�d�� � � �fig�p�d��

As i does not appear in �� we can distribute �fig and we �nd�

� �figp�d�� � ����d��figp�d���
d��

So� �d�� �figp�d�� is a solution of ��

As � is convergent� � is convergent� Hence� using the principle CL�RSP we �nd for all
d � D

� p�d� � � �figp�d���
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�� First observe that i�Int ��� and �Int i��� are syntactically identical operators� So
we may assume that p	 is a solution of �Int i���� Since p� is a solution of i��� we
also have that �Int p�d�� is a solution of �Int i���� Since �Int i��� is convergent� the
desired equality follows from CL�RSP�

�� By case � and � of this theorem we �nd�

� p�d� � � �figp�d��

�Intp�d�� � p	d�
��

Using the congruence properties we transform the second equation of �� above into�

� �fig�Int p�d��� � � �figp	d���

By axioms R� and T� this simpli�es to�

� �Int�figp�d��� � � �figp	d���

Using the �rst equation of �� and the Hiding laws TI� this is reduced to�

� �Intp�d�� � � �figp	d���

which we had to prove�

�

Lemma A�
� Let � be an LPO that is convergent w�r�t� a pre
abstraction function �� Let
p be a solution of � and p� be a solution of ��� Then

�Intp� � �Intp
���

Proof� Consider the LPO �� where every summand of the formX
ea�Ea

afad� ea�� pgad� ea�� 	 bad� ea� 
 �

with a � Int is replaced byX
ea�Ea

i pgad� ea�� 	 �a�d� ea� 
 afad� ea�� pgad� ea��� 	 bad� ea� 
 �

where i is a fresh action� Assume �� has solution p�� Clearly� �figp
�� � p� as both terms are

a solution of �� use Lemma A������ Also �Intp
�� � �Int p� as both terms are solutions of

�Int��� Furthermore� �figp� � p as i does not occur in � so both terms are solutions of ���
Using these observations and at the second and fourth step� axioms R� and T�� we

derive�

�Intp� � �Int�figp��

� �fig�Intp��

� �fig�Intp
���

� �Int�figp
���

� �Intp
��

�
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B Axioms and Rules for �CRL

In this section� we present tables containing the axioms for the ACP operators� some axioms
for the Sum and the conditional operator� plus some additional axioms that were necessary�
In the tables� D is an arbitrary data type� d represents an element of D� x� y� z range over
processes� a� b� i are actions� c� d represent either �� � or an action ad�� and p� p�� p� are
process terms in which the variable d may occur� Although some names are overloaded�
the context makes clear what is meant� In Table �� b also ranges over boolean terms��
Furthermore� R ranges over renaming functions� and I� I � and H range over sets of actions�
If R � fa� � b�� � � � � an � bng� then domR� � fa�� � � � � ang and ranR� � fb�� � � � � bng�
Finally� D in Table � ranges over derivations�
Beside these axioms� �CRL features two important principles� RSP� stating that guarded

recursive speci�cation have at most one solution� and an induction rule� for inductive reason�
ing over data types� For more information on �CRL� the reader is referred to ���
�

References

��
 J�C�M� Baeten� Applications of Process Algebra� volume �� of Cambridge Tracts in

Theoretical Computer Science� Cambridge University Press� Cambridge� �����

��
 J�C�M� Baeten and W�P� Weijland� Process Algebra� volume �� of Cambridge Tracts in

Theoretical Computer Science� Cambridge University Press� Cambridge� �����

��
 J�A� Bergstra and J�W� Klop� The algebra of recursively de�ned processes and the
algebra of regular processes� In Proceedings of the ��th ICALP� Antwerp� volume ��� of
Lecture Notes in Computer Science� pages ��$��� Springer�Verlag� ���	�

�	
 M�A� Bezem and J�F� Groote� A correctness proof of a one�bit sliding window protocol
in �CRL� The Computer Journal� ��	�����$���� ���	�

��
 M�A� Bezem and J�F� Groote� Invariants in process algebra with data� In B� Jonsson
and J� Parrow� editors� Proceedings of the �th Conference on Theories of Concurrency�

CONCUR ��	� Uppsala� Sweden� August ���	� volume ��� of Lecture Notes in Computer

Science� pages 	��$	��� Springer�Verlag� ���	�

��
 D�J� Bosscher and A� Ponse� Translating a process algebra with symbolic data values
to linear format� In U�H� Engberg� K�G� Larsen� and A�S� Skou� editors� Proceedings of
the Workshop on Tools and Algorithms for the Construction and Analysis of Systems
TACAS�� pages ���$���� BRICS Notes Series NS������ May �����

��
 J�J� Brunekreef� Process speci�cation in a UNITY format� In A� Ponse� C� Verhoef�
and S�F�M� van Vlijmen� editors� Proceedings of the �st Workshop in the Algebra of

Communicating Processes� ACP ��	� Utrecht� the Netherlands� July ���	� volume 	��
ofWorkshops in Computing� Springer�Verlag� pages ���$���� Springer�Verlag� July ���	�

��
 K�M� Chandy and J� Misra� Parallel Program Design� A Foundation� Addison�Wesley�
Reading MA� �����



REFERENCES ��

��
 C� Cornes� J� Courant� J��C� Filli%atre� G� Huet� P� Manoury� C� Paulin�Mohring�
C� Mu&noz� C� Murthy� C� Parent� A� Sa'(bi� and B� Werner� The Coq proof assistant
reference manual� Version ����� Technical report� INRIA � Rocquencourt ) CNRS �
ENS Lyon� �����

���
 L��*A� Fredlund� J�F� Groote� and H�P� Korver� Formal veri�cation of a leader election
protocol in process algebra� Technical Report R������ SICS� �����

���
 J�F� Groote and A� Ponse� Proof theory for �CRL� a language for processes with data�
In D�J� Andrews� J�F� Groote� and C�A� Middelburg� editors� Proceedings of the Inter�

national Workshop on Semantics of Speci�cation Languages� Utrecht� The Netherlands�
pages ���$���� Workshops in Computer Science� Springer�Verlag� �����

���
 J�F� Groote and A� Ponse� The syntax and semantics of �CRL� In A� Ponse� C� Ver�
hoef and S�F�M� van Vlijmen� eds� Algebra of Communicating Processes� Workshops in
Computing� pp� ��$��� Springer Verlag� ���	�

���
 B� Jonsson� Compositional Veri�cation of Distributed Systems� PhD thesis� Department
of Computer Systems� Uppsala University� �����

��	
 P� Klint� A meta�environment for generating programming environments� ACM Trans�

actions on Software Engineering and Methodology� �������$���� �����

���
 H� Korver� Personal communication� �����

���
 C�P�J� Koymans and J�C� Mulder� A modular approach to protocol veri�cation using
process algebra� In Baeten ��
� pages ���$����

���
 K�G� Larsen and R� Milner� A compositional protocol veri�cation using relativized
bisimulation� Information and Computation� �����$���� �����

���
 N�A� Lynch and M�R� Tuttle� Hierarchical correctness proofs for distributed algorithms�
In� Proceedings of the 
 th Annual ACM Symposium on Principles of Distributed Com�

puting� pages �������� �����

���
 N�A� Lynch and F�W� Vaandrager� Forward and backward simulations� Part I� untimed
systems� In� Information and Computation� ������	$���� �����

���
 R� Milner� Communication and Concurrency� Prentice Hall� London� �����

���
 F�W� Vaandrager� Some observations on redundancy in a context� In Baeten ��
� pages
���$����

���
 R�J� van Glabbeek and W�P� Weijland� Branching time and abstraction in bisimulation
semantics extended abstract�� In G�X� Ritter� editor� Information Processing ��� pages
���$���� �����



REFERENCES ��

A� x� y � y � x CM� x k y � x k y � y k x� xjy

A� x� y � z� � x� y� � z CM� c k x � c � x

A	 x� x � x CM	 c � x k y � c � x k y�

A
 x� y� � z � x � z � y � z CM
 x� y� k z � x k z � y k z

A� x � y� � z � x � y � z� CM� c � xjd � cjd� � x

A� x� � � x CM� cjd � x � cjd� � x

A� � � x � � CM� c � xjd � y � cjd� � x k y�

B� x � � � x CM� x� y�jz � xjz � yjz

B� z� � x� y� � x� � zx� y� CM� xjy � z� � xjy � xjz

CD� �jx � � DD �H�� � �

CD� xj� � � DT �H�� � �

CT� � jx � � D� �Had�� � a if a � H

CT� xj� � � D� �Had�� � � if a � H

D	 �Hx� y� � �Hx� � �Hy�

D
 �Hx � y� � �Hx� � �Hy�

CF ad�jbe� �

���
��

�a� b�d� if d � e and

�a� b� de�ned

� otherwise

TID �I�� � � RD �R�� � �

TIT �I�� � � RT �R�� � �

TI� �Iad�� � ad� if a � I R� �Rad�� � Ra�d�

TI� �Iad�� � � if a � I

TI	 �Ix� y� � �Ix� � �Iy� R	 �Rx� y� � �Rx� � �Ry�

TI
 �Ix � y� � �Ix� � �Iy� R
 �Rx � y� � �Rx� � �Ry�

Table �� Axioms for the ACP operators
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SUM� �d�Dp � p d not free in p

SUM� �d�Dp � �e�Dp�ed
� e not free in p

SUM	 �d�Dp � �d�Dp� pd�

SUM
 �d�Dp� � p�� � �d�Dp� ��d�Dp�
SUM� �d�Dp� � p�� � �d�Dp�� � p� d not free in p�
SUM� �d�Dp� k p�� � �d�Dp�� k p� d not free in p�
SUM� �d�Dp�jp�� � �d�Dp��jp� d not free in p�
SUM� �d�D�Hp�� � �H�d�Dp�

SUM� �d�D�Ip�� � �I�d�Dp�

SUM�� �d�D�Rp�� � �R�d�Dp�

D

SUM��
p� � p�

�d�Dp�� � �d�Dp��

d not free in

the assumptions of D

BOOL� T � F�

BOOL� b � T�� b � F

COND� x 	 T 
 y � x

COND� x 	 F 
 y � y

Table �� Axioms for Sum and Conditional

KFAR pd� � i pd� � y � � �figpd�� � � �figy�

T� �I�I�x�� � �I�I�x�

R� �I�Rx�� � �I�x� if ranR� � I and I � � I � domR�

SC� x k y� k z � x k y k z�

SC	 xjy � yjx

SC
 xjy�jz � xjyjz�

SC� xjy k z� � xjy� k z

Table �� Some extra axioms needed in the veri�cation


