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Abstract

In this paper we give a speci�cation of the so called Bakery protocol in an extension of the process algebra
ACP with abstract datatypes� We prove that this protocol is equal to a Queue� modulo branching bisimulation
equivalence�

The veri�cation is as follows� First we give a linear speci�cation of the Bakery� that is a speci�cation without
parallelism� Then we introduce an invariant and encorporate this invariant into the linear speci�cation of the
Bakery and the speci�cation of the Queue� Finally� we give a boolean function on the arguments of the
resulting speci�cation of the Bakery and the Queue� and we prove that by its equations it de�nes a branching
bisimulation�

This paper can be considered as an alternative to the proof of Groote and Korver �GK���� that proves the

correctness of the Bakery protocol modulo weak bisimulation 	or observational congruence
 completely within

the proof system of �CRL�

AMS Subject Classi�cation 	����
� ��Q
�� ��Q��� ��Q��� ��Q���

CR Subject Classi�cation 	����
� D�
��� D���
� D���
� F�
��� F�����
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Note� While writing this paper the �rst author stayed at CWI� funded by scholarships of the University of

Torino and CNR�

Introduction

Process algebras� such as ACP �BK��� BW��� and CCS �Mil���� provide a simple but expressive framework
for specifying and analyzing distributed systems� see for example �Bae���	 However� in their pure form
these process algebras are not very well suited for dealing with systems in which the process behavior
depends on the underlying data	 Therefore� Groote and Ponse have developed the language �CRL�GP����
a combination of ACP with abstract datatypes �EM�
�	 For this language they also gave a proof system
�GP���	

In order to exercise with di�erent proof methods and techniques� that concern processes with data�
various veri
cations of the so called Bakery protocol have been given	 This protocol requires that each
customer takes a number when entering the bakery shop� and that the baker serves the customers in
order of their number	 This protocol is correct as the customers are served in order of their entrance�
in other words� the external behavior of the protocol corresponds with a queue	 Although this seems
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rather obvious this paper� and others� show that a detailed analysis of the correctness depends subtly on
a mixture of process behavior and data properties	

In �GK��� Groote and Korver have proven the bakery protocol purely algebraically� using the axioms
of �CRL� the proofrule RSP and the � �laws for weak bisimulation �which is a more identifying equivalence
than branching bisimulation�	 Lately Gri�oen and Korver have proven the bakery protocol in the I�O�
automata model �GK�
�� this proof has been checked formally within the proof system LP	

When Groote and Korver started their work on the veri
cation of the bakery protocol in �CRL� it
was not completely clear how it could be done	 For example� it was not yet known how one could deal
with invariants� as it has been proposed later by Bezem and Groote in �BG���	 Therefore� Jan Bergstra
suggested to try to verify the bakery protocol in a more model oriented way	 In this paper this idea is
worked out in detail	

Our veri
cation consists of the following steps�

� First we de
ne the bakery protocol formally� it is a parallel composition of an in�counter� a shop�
�oor �modelled as a bag�� and the serve desk� or out�counter	 Moreover� we de
ne a queue process	

The goal of the paper is to prove that these two processes are equal� modulo branching bisimulation	

� Then� we give a linear speci
cation of the bakery protocol� i	e	� a process de
nition without paral�
lelism	 This de
nition is based on the four states in which the bakery can evolve� similar de
nitions
of these four states can be found in �GK��� as well	

This de
nition contains a rather complex sum� based on the fact that if the baker asks for the next
customer� he asks for some customer that holds a label that corresponds with his counter	

� We introduce a so called invariant that formalizes the intuition that says that there will be exactly
a unique customer with that label	 We encorporate this invariant into the linear speci
cation of
the bakery� by which the above mentioned sum can be simpli
ed	

� In order to relate the resulting de
nition with the one of the queue� we encorporate the invariant
into the de
nition of the queue as well	

� Finally we de
ne a relation as a boolean funtion and we show that it can be considered as a
branching bisimulation	

So� we do not use the axioms for branching bisimulation� nor the proof rule RSP	

The language we use consists of ACP constructs and a pre
x summation� it is derived from real time
ACP with pre
x summation �FK�
�� and it can be considered as a subcalculus of �CRL	
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� Some remarks on the syntax of ACP with pre�x Summation

��� The Datatype part

The datatypes that we deal with are de
ned in detail in the Appendix� Section B	 Their de
nitions
are given in a �CRL style� and their standard parts are taken from �GvW���� including the modulo
arithmatic of the natural numbers	

In this paper we will refer to some abstract datatype D� with typical variable d� that models the set
of customers	 For technical reasons we assume that D contains at least the bottom element �� i	e	� a
customer that is not allowed in the bakery	 A pair di models a customer d that holds a label i� and it is
called a frame	 The datatype of frames is denoted by Frame� with typical variable f � and the datatype
of bags of frames is denoted by FBag� with typical variable b and emptybag �fbag	

Nat denotes the standard datatype of natural numbers� �n denotes addition modulo n	
We have also the standard datatype of the booleans� denoted by Bool� with constants t �true� and f

�false�� and operators � and �	 Over this datatype we have expressions like i � n and size�b� � n	 An
arbitrary expression of type Bool is denoted by �	 The boolean expression test�f� b� is true if the frame
f is in the bag b	

Each datatype S is provided with an equality function S� S� Bool� for which holds that eq�s� s�� �
t	 s � s�	 Hence� we may allow ourselves to write the boolean expression eq�s� s�� by s � s�	

��� The Process part

For simplicity we restrict ourselves to pre�x summation� so if x is a process term �in which the data
varable v may occur�� then

P
v�� a�v� 
 x is a process term as well	 The set of process terms is de
ned by

the following BNF sentence�

x ��� � j
X

�

a�v� 
 x j x� x j � �� x j x k x j x x j xjx j �H�x� j �H�x��

were v is a data variable of some type� � is an expression of type Bool� and H is a set of unparameterized
actions	

The sum construct
P

� a�v� 
 x binds all occurrences of the data variable v in x	 For some ground �

data expression e of the same type� it can execute an action a�e� and evolve into x�e�v�� �e substituted
for v�� for every context in which ��e�v� is true	 Hence�

P
� a�v� 
 x can be considered as an abbreviation

of the �CRL expression
P

v�S a�v� 
 x 	 � 
 �� were S is the type of v	 In some cases� for example if � is a
rather large expression� we write

P
v�� a�v� 
 x for

P
� a�v� 
 x	

The process � �� x is enabled only in contexts in which � is true	 Again� � �� x can be considered
as an abbreviation of the �CRL expression x 	 � 
 �	

This calculus is denoted by ACPpS� the su�x pS stands for pre�x summation� and as shown before it
can be considered as a subcalculus of �CRL	 The axioms for ACPpSare given in the Appendix� Section
C	

�i�e�� not containing any data variables
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� The Bakery Protocol

The Bakery protocol models the counter�serving process in a bakery� each customer is a provided with
a label� or index� i and customers are being served by the baker in order of their label	 The protocol is
parameterized with a natural number� n� that de
nes its capacity� i	e	� the maximal numbers of customers
the shop �oor can contain	

The description of the Bakery protocol� or Bn� involves three processes� the �in�counter�� or INn�i �
Nat�� that provides a new customer with a label i� the �out�counter�� or OUTn�j � Nat�� that models the
baker serving the customer with label j� and 
nally we have the clients with their label that are waiting
on the shop �oor� modelled by the process Pbagn�b � FBag�	 Initially both counters are zero and the shop
�oor is empty	

De�nition ��� ��s�� r�� � c�� ��s�� r�� � c�

Bn �� �fc��c�g��fs��s��r��r�g�INn��� k Pbagn��fbag� k OUTn�����

INn�i � Nat� ��
P

d�d��� enter�d� 
 s��d
i� 
 INn�i�n ��

OUTn�j � Nat� ��
P

f �index�f��j r��f� 
 out�data�f�� 
OUTn�j �n ��

Pbagn�b � FBag� �� size�b� �� n ��
P

f �t r��f� 
 Pbagn�add�f� b��

�
P

f �test�f�b� s��f� 
 Pbagn�rem�f� b��

The goal of introducing such a label�countering mechanism into a bakery is of course that customers
are served properly in the order of their entrance	 In fact� that is exactly what we are going to prove in
this paper	 To be able to state this properly� we de
ne DQueue� the datatype of queues of D� see for its
de
nition the Appendix� Section B	�	 A process that behaves like a queue with capacity m is denoted
by Qm and is de
ned below	

De�nition ���

Qm �� Qm��dqueue�
Qm�q � DQueue� �� size�q� �� m ��

P
d��� enter�d� 
Qm�add�d� q��

� size�q� �� � �� out�top�q�� 
Qm�untop�q��

So� we will prove that the Bakery equals a Queue	 As the Bakery has two positions� one at the
in�counter� and one at the out�counter� and a shop �oor with capacity n� we will prove that Bn equals
Qn��	 The Bakery involves certain so called internal actions� both communication actions c� and c�
�that model the transfer of customers from the in�counter to the shop �oor� resp	 the shop �oor to
the out�counter� are considered internal	 A notion of equivalence that considers these internal steps is
called �rooted� Branching Bisimulation� of van Glabbeek and Weijland for which we refer to �GW��� and
�BW���	 This equivalence abstracts from internal actions that do not enforce a choice	

Theorem ��� �Correctnes of the Bakery Protocol�

Bn is �rooted� branching bisimilar with Qn���
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� A linear speci�cation of the Bakery

The 
rst step in our proof is to characterize the Bakery by four di�erent situations	 These are depicted
in Figure �	 In this 
gure di INn�i �n �� denotes the situation at the in�counter were a new customer
d has been provided a label i� but has not yet entered the shop �oor	 Similarly� e OUTn�j� denotes the
situation were customer e has just been served by the baker� but he has not yet left the bakery	 The
starting state of the Bakery� when it is still empty� corresponds with �n��� �fbag � ��	 Note that we have
not considered yet the communication actions c�� c� to be internal	

De�nition ��� �Auxiliary processes �n� 
n� �n and �n�

�n�i � Nat� b � FBag� j � Nat� �� �H� INn�i� k Pbagn�b� k OUTn�j��

n�d � D� i � Nat� b � FBag� j � Nat�

�� �H�s��d
i�
 INn�i�n �� k Pbagn�b� k OUTn�j��

�n�i � Nat� b � FBag� j � Nat� e � D�
�� �H� INn�i� k Pbagn�b� k out�e�
 OUTn�j��

�n�d � D� i � Nat� b � FBag� j � Nat� e � D�
�� �H�s��d

i�
 INn�i�n �� k Pbagn�b� k out�e�
 OUTn�j��

In Figure � it is quite easy to see that the situation � can evolve into a situation 
 �by the entrance of
a new customer�� or evolve into a situation � �when a customer leaves the shop �oor and is being served
by the baker�	 The details of these transitions are described by the next Lemma� that gives a linear
speci
cation �i	e	� without parallel composition�	

Lemma ��� �A linear speci�cation for the Bakery�

B�
n � �n��� �fbag � ��

�n�i� b� j� �
P

d�d��� enter�d� 
 
n�d� i� b� j�
�
P

f �test�f�b��index�f��j s��f� 
 �n�i� rem�f� b�� j �n �� data�f��


n�d� i� b� j� � size�b� �� n �� s��d
i� 
 �n�i�n �� add�d

i� b�� j�
�
P

f �test�f�b��index�f��j s��f� 
 �n�d� i� rem�f� b�� j �n �� data�f��

�n�i� b� j� e� �
P

d�d��� enter�d� 
 �n�d� i� b� j� e�
� out�e� 
 �n�i� b� j�

�n�d� i� b� j� e� � size�b� �� n �� c��d
i� 
 �n�i�n �� add�d

i� b�� j� e�
� out�e� 
 
n�d� i� b� j�

Proof� As the 
rst case is trivial� and the other four cases are similar we only show the case for
�n�i� b� j� in detail	






�n�i� b� j� �

INn�i� Pbagn�b� OUTn�j�


n�d� i� b� j��

di

INn�i�n ��
Pbagn�b� OUTn�j�

�n�i� b� j� e� �

INn�i� Pbagn�b�
e

OUTn�j�

�n�d� i� b� j� e��

di

INn�i�n ��
Pbagn�b�

e
OUTn�j�

Figure �� The four di�erent situations of the Bakery
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�n�i� b� j�
� �H� INn�i� k Pbagn�b� k OUTn�j��
� �H� �

P
d�d��� enter�d� 
 s��d

i� 
 INn��i�n ����

k �size�b� �� n ��
P

f �t r��f� 
 Pbagn�add�f� b��

�
P

f �test�f�b� s��f� 
 Pbagn�rem�f� b���

k �
P

f �index�f��j r��f� 
 out�data�f�� 
OUTn��j �n ����

�
P

d�d��� enter�d� 
 �H��s��d
i� 
 INn�i�n ��� k Pbagn�b� k OUTn�j��

�
P

f �test�f�b��index�f��j c��f� 
 �H�INn�i� k Pbagn�rem�f� b�� k �out�data�f�� 
OUTn��j �n ����

�
P

d�d��� enter�d� 
 
n�d� i� b� j�
�
P

f �test�f�b��index�f��j c��f� 
 �n�i� rem�f� b�� j �n �� data�f��

In the previous derivation we used the following identities�

P
f �test�f�b� s��f� 
 x j

P
f �index�f��j r��f� 
 y �

P
f �test�f�b��index�f��j c��f� 
 �x k y�

s��d
i� 
 xj�size�b� �� n ��

P
f �t r��f� 
 y� � size�b� �� n �� c��d

i� 
 �x k �y�di�f ���

The 
rst identity is a direct consequence of the axiom CF�pS	 The second one can be derived from axiom

CF�pS together with COND�	 Note that s��d
i� 
 x abbreviates

P
f�di s��f� 
 x	 �

� The introduction of the Invariant

��� The de�nition of the Invariant

If the baker can serve the next customer� he just calls the value of the out�counter	 The mechanism
works because there will be exactly one customer with that index	 This depends of course on the proper
working of the in�counter� if this counter would provide multiple customers with the same index the
whole procedure would fall down	

We introduce a so called invariant� that is a property of the system that will hold in all possible
states� that says that for all indices j� j �n �� � � � � i�n � �i	e	� all labels of current customers� there will be
exactly one customer with that index	 As we do not want to deal with some quanti
cation� we formulate
this property recursively� if the Bakery is in state �i� b� j� then we say that there is exactly one customer
with index j �i	e	� cnt�j� b� � �� and if that customer will leave the Bakery and the baker will call the
next index then the invariant will hold again	 This argument is repeated until the Bakery is empty� i	e	�
i � j and b � �fbag	

De�nition 	���� �The Invariant� I � Nat�Nat� FBag� Nat� Bool

In�i� b� j� �� i � n � j � n
� � cnt�j� b� � � � In�i� rem�j� b�� j �n ���

� �i � j � b � �fbag��

Intuitively we do know that the baker does not have to ask for some customer with index j� but it can
ask for the unique customer with index j	 We denote this unique customer by frame�j� b�	 The expression
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frame�j� b� results the frame �j if there is no frame with index j or if there is more than one frame with
index j in the bag� otherwise it results the properly de
ned unique frame in bag b with label j	

More formally� in the context of the invariant I the condition test�f� b�� index�f� � j can be reduced
to f � frame�j� b�� whenever b is not empty	 Note that if b is empty� then test�f� b� reduces to f	

Lemma 	����

In�i� b� j� ��
P

f �test�f�b��index�f��j a�f� 
 x

� �In�i� b� j� � b �
 �fbag� �� a�frame�j� b�� 
 x�frame�j� b��f �

Proof� From Lemma B	
	�� see Appendix� we know that�

cnt�j� b� � �� � test�f� b� � index�f� � j 	 frame�j� b� � f �

As In�i� b� j� implies cnt�j� b� � � we may replace the condition test�f� b� � index�f� � j by frame�j� b��
after which we apply axiom SUM�	 �

��� Adding the Invariant to the linear speci�cation of the Bakery

In order to simplify the sum expression
P

f �test�f�b��index�f��j a�f� 
x� in the de
nitions of �n and 
n� into
a�frame�j� b�� 
 x�frame�j� b��f � we add the invariant to the de
nitions of �n� 
n� �n and �n	 Hence� we
de
ne the following auxiliary processes�

De�nition 	���� �Auxiliary processes with the Invariant�

�I
n�i � Nat� b � FBag� j � Nat� �� In�i� b� j� �� �n�i� b� j�


In�d � D� i � Nat� b � FBag� j � Nat� �� In�i� b� j� �� 
n�d� i� b� j�
�In�i � Nat� b � FBag� j � Nat� e � D� �� In�i� b� j� �� �n�i� b� j� e�
�In�d � D� i � Nat� b � FBag� j � Nat� e � D� �� In�i� b� j� �� �n�d� i� b� j� e�

And we obtain�

Lemma 	����

�



B�
n � �I

n��� �fbag � ��

�I
n�i� b� j� � In�i� b� j� ��

�
P

d�d��� enter�d� 
 
In�d� i� b� j�
�b �
 �fbag �� c��frame�j� b�� 
 �In�i� rem�j� b�� j �n �� frame�j� b��� �


In�d� i� b� j� � In�i� b� j� ��
�size�b� � n �� c��d

i� 
 �I
n�i�n �� add�d

i� b�� j�
�b �
 �fbag �� c��frame�j� b�� 
 �In�d� i� rem�j� b�� j �n �� frame�j� b�� �

�In�i� b� j� e� � In�i� b� j� ��
�
P

d�d��� enter�d� 
 �In�d� i� b� j� e�

�out�e� 
 �I
n�i� b� j� �

�In�d� i� b� j� e� � In�i� b� j� ��
�size�b� � n �� c��d

i� 
 �In�i�n �� add�d
i� b�� j� e�

�out�e� 
 
In�d� i� b� j� �

Proof� �Case �I
n only	�

�I
n�i� b� j�

� � def �I
n� def �n� COND� �

In�i� b� j� ��
P

d�d��� enter�d� 
 
n�d� i� b� j�

�In�i� b� j� ��
P

f �test�f�b��index�f��j c��f� 
 �n�i� rem�f� b�� j �n �� data�f��

� � Lemma ����� �
In�i� b� j� ��

P
d�d��� enter�d� 
 
n�d� i� b� j�

��In�i� b� j� � b �
 �fbag� �� c��frame�j� b�� 
 �n�i� rem�frame�j� b�� b�� j �n �� data�frame�j� b���
� � SUM�� def rem�j� b�� def data�j� b� �
In�i� b� j� ��

P
d�d��� enter�d� 
 �In�i� b� j� �� 
n�d� i� b� j��

��In�i� b� j� � b �
 �fbag� �� c��frame�j� b�� 
 �In�i� rem�j� b�� j �n �� �� �n�i� rem�j� b�� j �n �� data�j� b���
� � COND�� def 
In� def �

I
n �

In�i� b� j� �� �
P

d�d��� enter�d� 
 
In�d� i� b� j�

�b �
 �fbag �� c��frame�j� b�� 
 �In�i� rem�j� b�� j �n �� frame�j� b��� �

�

��� Some properties of the Invariant

For sequel use we state some properties that can be derived from the Invariant� all facts are obvious facts
that one indeed may expect in a Bakery	

� �a� Each customer has a unique index	

� �b� If it is not full� then the amount of customers equals the di�erence between the in� and out�
counter �modulo n�	

�



� �c� If it is full� then the in�counter equals the out�counter	

� �d� The amount of customers does not exceeds the capacity	

� �e� If the two counters are equal� then the shop is either empty or full	

These facts are formalized as follows�

Lemma 	����

�a� In�i� b� j� � k � size�b� � cnt�j �n k� b� � �
�b� In�i� b� j� � size�b� � n � size�b� � i�n j
�c� In�i� b� j� � size�b� � n � i � j
�d� In�i� b� j� � size�b� � n
�e� In�i� b� j� � i � j � size�b� � � � size�b� � n

Proof� See Appendix� Section A	 �

Furthermore we have the following facts� that consider the Invariant itself	 The 
rst one corresponds with
the situation were a customer that has just been served by the baker �i	e	� the customer with index j��
leaves the bakery� after which the baker increases the out�counter to j�n �	 The second one corresponds
with the situation in which a new customer arrives� which takes a label i and enters the bakery� after
which the in�counter increases to i�n �	

Lemma 	����

�a� In�i� b� j� � In�i� rem�j� b�� j �n ��
�b� �In�i� b� j� � size�b� � n� � In�i�n �� add�d

i� b�� j�

Proof� See Appendix� Section A	 �

��� Adding the invariant to the speci�cation of the Queue

In the previous section we have shown that all customers in the Bakery have a unique label each� such
that the customers can be served in order of their label	 In other words� the state of the Bakery� that is
the triple �i� b� j�� de
nes a queue� namely frame�j� b�� frame�j �n ��� � � � � frame�i�n ��	 This queue is
denoted by queuen�i� b� j�� its detailed de
nition is given in Section B	�	

In order to relate the Bakery� Bn� with the Queue Qn�� we de
ne two auxiliary processes�

De�nition 	�	�� �Auxiliary Queue
processes with the Invariant�

�QI
m�q � DQueue� i � Nat� b � FBag� j � Nat� �� Im�i� b� j� �� Qm�q�

QI
m�i � Nat� b � FBag� j � Nat� �� �QI

m�queuem�i� b� j�� i� b� j�

��



Before we continue we state two obvious properties� that regards the function queuen�i� b� j� in the
context of the invariant	 The 
rst one says that a new customer is placed at the back of the queue
�addbck�d� add�d�� add�d�� � � � � add�dn� �dqueue� � � ���� � add�d�� add�d�� � � � � add�dn� add�d� �dqueue�� � � ���� see
for details the Appendix�	

Lemma 	�	��

�a� �In�i� b� j� � size�b� � n� � addbck�d� queuen�i� b� j�� � queuen�i�n �� add�d
i� b�� j�

�b� In�i� b� j� � size�b� � size�queuen�j� b��

Proof� See Appendix� Section A	 �

Next� we prove that we can reformulate the de
nitions of �QI
m and QI

m� such that they are de
ned in
their own terms� like the queue process itself as well	

Note� that the process QI
m�i� b� j� is de
ned completely in terms of the in� and out�counter i� j and

the shop �oor b	 The process QI
m�i� b� j� corresponds with a Bakery that does not have separate positions

for the customers at the in� and out�counter� these positions are considered to be part of the shop �oor
as well	 As a consequence there are no communications anymore between the in�counter and the shop
�oor� resp	 the shop �oor and the out�counter	

Lemma 	��

�a� �QI
m�q� i� b� j� � Im�i� b� j� ��

� size�q� �� m ��
P

d��� enter�d� 
 �QI
m�addbck�d� q�� i �m �� add�di� b�� j�

� size�q� �� � �� out�top�q�� 
 �QI
m�untop�q�� i� rem�j� b�� j �m ��

�

�b� QI
m�i� b� j� � Im�i� b� j� ��

� size�b� �� m ��
P

d��� enter�d� 
QI
m�i�m �� add�di� b�� j�

� size�b� �� � �� out�data�j� b� 
QI
m�i� rem�j� b�� j �m �� �

Proof� Part �a�

�QI
m�q� i� b� j�

� � def �QI
m� SUM�� Lemma ������b�� �a� �

Im�i� b� j� ��
�size�q� �� m ��

P
d ��� enter�d� 
 �Im�i�m �� add�di� b�� j� �� Qm�addbck�d� q��

�size�q� �� � �� out�top�q�� 
 �Im�i� rem�j� b�� j �m �� �� Qm�untop�q�� �

� � def �QI
m �

Im�i� b� j� ��

�size�q� �� m ��
P

d��� enter�d� 
 �QI
m�addbck�d� q�� i �m �� add�di� b�� j�

�size�q� �� � �� out�top�q�� 
 �QI
m�untop�q�� i� rem�j� b�� j �m �� �

��



Part �b�

QI
m�i� b� j�

� � def QI
m� part �a� �

Im�i� b� j� ��

� size�queuem�i� b� j�� �� m ��
P

d��� enter�d� 
 �QI
m�addbck�d� queuem�i� b� j��� i �m �� add�di� b�� j�

� size�queuem�i� b� j�� �� � �� out�top�queuem�i� b� j��� 
 �Q
I
m�untop�queuem�i� b� j��� i� rem�j� b�� j �m �� �

� � Lemma ������a�� Proposition B�
���a�� �b� �
Im�i� b� j� ��

� size�queuem�i� b� j�� �� m ��
P

d��� enter�d� 
 �QI
m�queuem�i�n �� add�d

i� b�� j�� i �m �� add�di� b�� j�

� size�queuem�i� b� j�� �� � �� out�data�j� b� 
 �QI
m�queuem�i� rem�j� b�� j �m ��� i� rem�j� b�� j �m �� �

� � Lemma ������b�� size�b� �� �	 b �
 �fbag� def Q
I
m �

Im�i� b� j� ��
� size�b� �� m ��

P
d ��� enter�d� 
QI

m�i�m �� add�di� b�� j�

� size�b� �� � �� out�data�j� b� 
QI
m�i� rem�j� b�� j �m �� �

�

Finally� we use that In��� �fbag � �� � t� and we take the de
nitions of �	� and �	�	� together�

Corollary 	�	�� Qm � Qm��dqueue� � �QI
m��dqueue� �� �fbag � �� � QI

m��� �fbag � ��

� Showing the Branching Bisimulation equivalence

From now on we consider the communication action actions c�� c� that occur in the description of the
Bakery� as internal actions	 Hence� we take H � fc�� c�g and we consider �H��

I
n��� �fbag � ��� in stead of

�I
n��� �fbag � ��	
Until now we have obtained that

Bn � �H�B
�
n� � �H��

I
n��� �fbag � ���

Qm � QI
m��� �fbag � ��

So� in order to prove that Bn is �rooted� branching bisimilar with Qn�� it is su�cient to prove that
�H��

I
n��� �fbag � ��� is �rooted� branching bisimilar with QI

n����� �fbag � ��	 That is� we have to relate the
states of these processes such that the transfer property holds� i	e	� each step of one state can be mimicked
properly by a state to which it is related	

The state �H��
I
n�i� b� j�� of the Bakery corresponds with the state QI

m�i
�� b�� j�� under the condition

that for both states the invariant holds� m � n��� and the queues that are de
ned by the triples �i� b� j�
and �i�� b�� j�� are equal	 Note that in the state �H��

I
n�i� b� j�� the positions at the in� and out�counter

are empty	
In case of �H�


I
n�d� i� b� j�� there is a �new customer� d at the in�counter	 Hence� �H�


I
n�d� i� b� j��

is related with QI
m�i

�� b�� j�� under the condition that� among others� the queue of �i� b� j� with the �new
customer� d added to the back corresponds with the queue of �i�� b�� j��	 In other words the condition
R��H�


I
n�d� i� b� j��� Q

I
m�i

�� b�� j�� contains the condition that addbck�d� queuen�i� b� j�� � queuem�i
�� b�� j��	

The rooted branching bisimulation R� that de
nes when states are related� is de
ned as follows�

��



De�nition ��� �The bisimulation R�

R��H��
I
n�i� b� j�� � Q

I
m�i

�� b�� j��� � In�i� b� j� �m � n� � � Im�i
�� b�� j��

� queuen�i� b� j� � queuem�i
�� b�� j��

R��H�

I
n�d� i� b� j�� � Q

I
m�i

�� b�� j��� � In�i� b� j� �m � n� � � Im�i
�� b�� j��

� addbck�d� queuen�i� b� j�� � queuem�i
�� b�� j��

R��H��
I
n�i� b� j� e�� � Q

I
m�i

�� b�� j��� � In�i� b� j� �m � n� � � Im�i
�� b�� j��

� add�e� queuen�i� b� j�� � queuem�i
�� b�� j��

R��H��
I
n�d� i� b� j� e�� � Q

I
m�i

�� b�� j��� � In�i� b� j� �m � n� � � Im�i
�� b�� j��

� addbck�d� add�e� queuen�i� b� j�� � queuem�i
�� b�� j��

The �symmetric� part� i	e	� the equations for cases like R�QI
m�i

�� b�� j�� � �I
n�i� b� j�� have been omitted	

One can easily check that

R��I
n��� �fbag � �� � Q

I
n����� �fbag � ��� � t�

and that R is rooted for �I
n��� �fbag � �� and QI

n����� �fbag � ���� as the � �transition of �H��
I
n�i� b� j�� is not

enabled in case b is empty	 Moreover� R is symmetric by de
nition� so� for proving that R is indeed a
branching bisimulation we only have to prove that R sati
es the �transfer� property	

Lemma ��� R is a rooted branching bisimulation�

Proof� 	 First we prove that the enter�d� summand of �H��
I
n�i� b� j�� can be matched with the enter�d�

summand of QI
m�i� b� j�� i	e	� we prove that

R��H��
I
n�i� b� j�� � Q

I
m�i

�� b�� j��� � In�i� b� j� � d ���

� Im�i
�� b�� j�� � size�b�� � m �R��H�


I
n�d� i� b� j�� � Q

I
m�i

� �m �� add�di
�

� b��� j���

Note that the part In�i� b� j� in the premisse� and the parts Im�i� b� j� and size�b� � m in the conclusion
are redundant� as the are consequences as well of R	

R��H��
I
n�i� b� j�� � Q

I
m�i

�� b�� j��� � d ���
	 � def R� Lemma ������b�� Lemma ������d� �

In�i� b� j� �m � n� � � Im�i
�� b�� j��

�queuem�i
�� b�� j�� � queuen�i� b� j� � d ���

�size�b�� � size�queuem�i
�� b�� j��� � size�queuen�i� b� j�� � size�b� � n � n� � � m

� � Lemma ������b�� Lemma ������a� �

In�i� b� j� �m � n� � � Im�i
� �m �� add�di

�

� b��� j��
�addbck�d� queuen�i� b� j�� � addbck�d� queuem�i

�� b�� j��� � queuem�i�m �� add�di� b��� j��
	 � def R �

R��H�

I
n�d� i� b� j�� � Q

I
m�i

� �m �� add�di
�

� b��� j���

�

��



References

�Bae��� J	C	M	 Baeten� editor	 Applications of Process Algebra	 Cambridge Tracts in Theoretical
Computer Science ��	 Cambridge University Press� ����	

�BG��� M	 Bezem and J	F	 Groote	 Invariants in process algebra with data	 Logic Group Preprint
Series ��� Dept	 of Philosophy� Utrecht University� September ����	

�BK��� J	A	 Bergstra and J	W	 Klop	 Process algebra for synchronous communication	 Information

and Computation� ���������������� ����	

�BW��� J	C	M	 Baeten andW	P	 Weijland	 Process Algebra	 Cambridge Tracts in Theoretical Computer
Science ��	 Cambridge University Press� ����	

�EM�
� H	 Ehrig and B	 Mahr	 Fundamentals of algebraic speci�cations I� volume � of EATCS Mono�

graphs on Theoretical Computer Science	 Springer�Verlag� ���
	

�FK�
� W	J	 Fokkink and A	S	 Klusener	 An e�ective axiomatization for real time ACP	 Information

and Computation� ��������������� ���
	

�GK��� J	F	 Groote and H	P	 Korver	 A correctness proof of the bakery protocol in �CRL	 In A	 Ponse�
C	 Verhoef� and S	F	M	 Vlijmen� editors� Proceedings ACP��	� pages 
����	 Report P�����
Programming Research Group� Univ	 of Amsterdam� May ����	

�GK�
� W	O	D	 Gri�oen and H	P	 Korver	 Veri
cation of a bakery protocol in the automata model	
Unpublished document� ���
	

�GP��� J	F	 Groote and A	 Ponse	 Proof theory for �CRL	 Report CS�R����� CWI� Amsterdam� ����	

�GP��� J	F	 Groote and A	 Ponse	 The syntax and semantics of �CRL	 In D	J	 Andrews� J	F	 Groote�
and C	A	 Middelburg� editors� Proceedings of the International Workshop on Semantics of

Speci�cation Languages� Workshops in Computer Science	 Springer Verlag� May ����	 Full
version is available as CWI Report CS�R����� Amsterdam� The Netherlands	

�GvW��� J	F	 Groote and J	 van Wamel	 Algebraic data types and induction in �CRL	 Report P�����
University of Amsterdam� ����	

�GW��� R	J	 van Glabbeek and W	P	 Weijland	 Branching time and abstraction in bisimulation seman�
tics	 Report CS�R����� CWI� Amsterdam� ����	 An extended abstract of an earlier version
has appeared in G	X	 Ritter� editor� Information Processing 
�� North�Holland� ����	

�KvW�
� H	P	 Korver and J	 van Wamel	 Two rules for many sorted constructor induction	 ���
	
Appeared as chapter 
 in �vW�
�	

�Mil��� R	 Milner	 Communication and Concurrency	 Prentice�Hall International� Englewood Cli�s�
����	

�vW�
� J	 van Wamel	 Veri�cation for elemetary data types and retransmission protocols	 PhD thesis�
Department of Mathematics and Computing Science� University of Amsterdam� September
���
	

��



A A more detailed treatment of the Invariant

In the sequel we will prove some lemmas that involve the invariant by induction on the size of the bag b	
However� this does not 
t directly into the induction scheme of �KvW�
�	 To remain within the context
of �KvW�
� we introduce a variant of the Invariant�

De�nition A�� �The Alternative Invariant� I � Nat� Nat� FBag� Nat� Nat� Bool

I �n�i� b� j�m� �� i � n � j � n
� � cnt�j� b� � � � I �n�i� rem�j� b�� j �n ��m� ���

� �i � j � b � �fbag �m � ���

Using the Special Bag Induction � from �GvW���� see De
nition �	� of that paper� we can prove by
induction on b that

In�i� b� j� 	 I �n�i� b� j� size�b��

When we say that we prove a property� say �� that involves In�i� b� j�� by induction on the size of b we
mean formally that we prove the corresponding property� say ��� that involves I �n�i� b� j�m� by induction
on m� after which we apply the above equivalence regarding In�i� b� j� and I �n�i� b� j� size�b�� to obtain the
proof of the original property �	

Lemma 	����

�a� In�i� b� j� � k � size�b� � cnt�j �n k� b� � �
�b� In�i� b� j� � size�b� � n � size�b� � i�n j
�c� In�i� b� j� � size�b� � n � i � j
�d� In�i� b� j� � size�b� � n
�e� In�i� b� j� � i � j � size�b� � � � size�b� � n

Proof� Proof of �a�� by induction to the size of b	

size�b� � � hence b � �fbag �
In�i� �fbag � j� � k � � 	 In�i� �fbag � j� � f 	 f � cnt�j�n� b� � �

size�b� � �� by case distinction� eitherk � � or k � �
In�i� b� j� � k � � � cnt�j �n k� b� � cnt�j� b� � �

In�i� b� j� � � � k � size�b�
� � Lemma ������ Proposition B�
�� �

� � k � size�b� � In�i� rmv�j� b�� j �n �� � k � � � size�rmv�j� b��

� �
ind
� cnt��j �n �� � �k � ��� rmv�j� b�� � cnt�j �n k� rmv�j� b�� � cnt�j �n k� b�

Proof of �b�� by induction to the size of b as well	

�




size�b� � � hence b � �fbag �
In�i� �fbag � j� � i � j 	 i�n j � � � size��fbag�

size�b� � � �
In�i� b� j� � size�b� � n

� In�i� rmv�j� b�� j �n �� � size�rmv�j� b�� � n

� size�b� � size�rmv�j� b�� � �
ind
� i�n �j �n �� � � � inj

For the proof of fact �c� we conclude from part �b� that

n�n � � size�rmv�j� b�� � i�n �j �n ��

hence i�n j � �� so i� j are equal modulo n� and as both i and j are smaller than n we obtain i � j	
Part �d� is a direct corollary from the previous parts	 �

Lemma 	����

�a� In�i� b� j� � In�i� rem�j� b�� j �n ��
�b� �In�i� b� j� � size�b� � n� � In�i�n �� add�d

i� b�� j�

Proof� Part �a� follows directly from the de
nition of In� part �b� is proven by induction on the size of
b	

size�b� � � hence b � �fbag �
In�i� �fbag � j� � size��fbag� � n

	 � def In� cnt�j� �fbag� �� � �
i � n � j � n � i � j

	 i � n � j � n � i � j
�� i�n � � n � j �n � � n � i�n � � j �n �

�rem�j� add�di� �fbag�� � rem�i� add�di� �fbag�� � �fbag �
	 i � n � j � n � i � j � In�i�n �� rem�j� add�di� �fbag��� j �n ��
� i�n � � n � j � n � cnt�j� add�di� �fbag�� � cnt�i� add�di� �fbag�� � �

�In�i�n �� rem�j� add�di� �fbag��� j �n ��
	 In�i�n �� add�d

i� �fbag�� j�

size�b�n� � � � �
In�i� b� j� � � � size�b� � n

� � def In� Lemma ����� �
i � n � j � n � cnt�j� b� � � � In�i� rem�j� b�� j �n ��

� � Induction �

i � n � j � n � cnt�j� b� � � � In�i�n �� add�d
i� rem�j� b��� j �n ��

� � in case i �� j then cnt�j� add�di� b�� � cnt�j� b� and add�di� rem�j� b�� � rem�j� add�di� b�� �
i�n � � n � j � n � cnt�j� add�di� b�� � � � In�i�n �� rem�j� add�di� b��� j �n ��

	 � def In �
In�i�n �� add�d

i� b�� j �n ��

��



�

Lemma 	�	��

�a� �In�i� b� j� � size�b� � n� � addbck�d� queuen�i� b� j�� � queuen�i�n �� add�d
i� b�� j�

�b� In�i� b� j� � size�b� � size�queuen�j� b��

Proof� The proof of �a� is similar to the proof of part �b� of Lemma �	�	�	

size�b� � � hence b � �fbag �
In�i� �fbag � j� � size��fbag� � � � n

� � def In� cnt�j� �fbag� �� � �
i � j

	 i � j�
addbck�d� queuen�i� �fbag � j��

� addbck�d� �dqueue�
� add�d� �dqueue�
� addbck�data�j� add�di� �fbag��� queuen�i�n �� �fbag � j �n ���
� queuen�i�n �� add�d

i� �fbag�� j �n ���

size�b� � � �
In�i� b� j� � � � size�b� � n

� i �� j�
addbck�d� queuen�i� b� j��

� addbck�d� add�data�j� b�� queuen�i� rem�j� b�� j �n ����
� add�data�j� b�� addbck�d� queuen�i� rem�j� b�� j �n ����
ind
� add�data�j� b�� addbck�d� queuen�i�n �� add�d

i� rem�j� b��� j �n ����
� add�data�j� add�di� b��� addbck�d� queuen�i�n �� rem�j� add�di� b��� j �n ����
� queuen�i�n �� add�d

i� b�� j�

Part �b� is proven as well by induction on the size of b	

size�b� � � hence b � �fbag �
In�i� �fbag � j�

� i � j � size��fbag� � � � size��dqueue� � size�queuen�i� �fbag � j��

size�b� � � �
In�i� b� j�

	 � in case b �� �fbag then cnt�j� b� � � and thus size�b� � S�size�rem�j� b��� �
In�i� b� j� � In�i� rem�j� b�� j �n ���

size�queuen�i� b� j��
� size�add�data�j� b�� queuen�i� rem�j� b�� j �n ����
� S�size�queuen�i� rem�j� b�� j �n ����
� S�size�rem�j� b��
� size�b�

��



�

B Datatypes

B�� The datatype Bool

sort Bool

cons t� f �� Bool

func � � Bool� Bool

������ eq � Bool� Bool� Bool

if � Bool� Bool� Bool� Bool

var b� b� � Bool
note In
x notation is used for ��� and �	
rew �t � f

�f � t

t � b � b
f � b � f

t � b � t

f � b � b
b� b� � ��b� � b�

eq�t� t� � t

eq�t� f� � f

eq�f� t� � f

eq�f� f� � t

if�t� b� b�� � b
if�f� b� b�� � b�

��



B�� The datatype Nat� with modulo arithmatic

sort Nat

cons � �� Nat

S � Nat� Nat

func P � Nat� Nat

�� ��� Nat� Nat� Nat

eq����� Nat� Nat� Bool

mod � Nat� Nat� Nat

��� � Nat� Nat� Nat� Nat

if � Bool� Nat� Nat� Nat

var n�m� k� i� j � Nat
note In
x notation is used for �� ����� � and �n

rew P ��� � �
P �Sn� � n
n� � � n
n� Sn � S�n�m�
n �� � � n
n �� Sm � P �n �� m�
eq��� �� � t

eq��� Sn� � f

eq�Sn� �� � f

eq�Sn� Sm� � eq�n�m�
� � n � t
Sn � � � f

Sn � Sm � n � m
n � m � Sn � m
m mod � � �
m mod Sn � if�Sn � m� �m �� Sn� mod Sn�m�
k �n m � �k �m� mod n
k �n m � if�m mod n � k mod n� k mod n �� m mod n� n �� �m mod n �� k mod n��
if�t� n�m� � n
if�f� n�m� � m

��



B�� The datatype D

sort D

cons �� � � D

d � Nat� � D

func eq � D� D� Bool

if � Bool� D� D� D

var d� d�� e� e� � D
note The injection d � Nat� � D is arbitrary� it serves only to produce

some elements of type D� a 
nite number of constants may serve as well
rew eq����� � t

eq��� d�n�� � f

eq�d�n���� � f
eq�d�n�� d�n��� � eq�n� n��
if�t� d� d�� � d
if�f� d� d�� � d�

B�� The datatype Frame

sort Frame

cons frame � D� Nat� Frame

func data � Frame� D

index � Frame� Nat

if � Bool� Frame� Frame� Frame

var f� f � � Frame
note frame�d� i� is denoted by di

rew data�di� � d
index�di� � i
if�t� f� f �� � f
if�f� f� f �� � f �

��



B�	 The datatype FBag

sort FBag

cons �fbag �� FBag

add � Frame� FBag� FBag

func rmv � Frame� FBag� FBag

test � Frame� FBag� Bool

eq � FBag� FBag� FBag

size � FBag� Nat

cnt � Nat� FBag� Nat

frame � Nat� FBag� Frame

data � Nat� FBag� D

rem � Nat� FBag� FBag

if � Bool��FBag� FBag� FBag

var b� b� � FBag
note The functions cnt� frame� data and rem are speci
c for the bakery protocol�

their de
nitions use the fact that a frame is a pair�
of which the second element is an index in Nat

rew add�f� add�f �� b�� � add�f �� add�f� b��
rem�f� �fbag� � �fbag
rem�f� add�f �� b�� � if�f � f �� b� add�f �� rem�f� b���
test�f� �fbag� � f

test�f� add�f �� b�� � if�f � f �� t� test�f� b��
eq��fbag � �fbag� � t
eq��fbag � add�f� b�� � f

eq�add�f� b�� �fbag� � f

eq�add�f� b�� b�� � test�f� b�� � eq�b� rem�f� b���
size��fbag� � �
size�add�f� b�� � S�size�b��
cnt�j� �fbag� � �
cnt�j� add�f� b�� � if�index�f� � j� S�cnt�j� b��� cnt�j� b��
frame�j� �fbag� ��

j

frame�j� add�f� b�� � if�index�f� � j� if�cnt�j� b� � �� f��j�� frame�j� b��
data�j� b� � data�frame�j� b��
rem�j� b� � rem�frame�j� b�� b�
if�t� b� b�� � b
if�f� b� b�� � b�

Proposition B����

cnt�j� b� � � � size�b� � size�rem�j� b�� � �
test�j� b� 	 cnt�index�f�� b� � �

Proof� Omitted	 �

��



Lemma B����

cnt�j� b� � �� � test�f� b� � index�f� � j 	 frame�j� b� � f �

Proof� By induction on b	 The base case is trivial� as cnt�j� �fbag� � � �� �	
For the inductive case� b � add�f �� b��� we prove the equivalent property

cnt�j� add�f �� b��� � � � test�f� add�f �� b��� � index�f� � j
	 cnt�j� add�f �� b��� � � �

� f � f � � cnt�j� b�� � � � index�f� � j
�f �� f � � index�f �� � j � index�f� � cnt�j� b�� � � � test�f� b��
�f �� f � � index�f �� �� j � cnt�j� b�� � � � test�f� b��f� � j �

	 � def frame�j� b�� test�f� b�� cnt�index�f�� b� �� �� Induction �

cnt�j� add�f �� b��� � � �
� f � f � � frame�j� add�f� b�� � f
�f �� f � � index�f �� � j � index�f� � f
�f �� f � � index�f �� �� j � frame�j� b� � f �

	 cnt�j� add�f �� b��� � � �
� f � f � � frame�j� add�f �� b�� � f
�f
�f �� f � � index�f �� �� j � frame�j� add�f �� b�� � f �

	 cnt�j� b� � � � frame�j� b� � f

�

��



B�
 The datatype DQueue

sort DQueue

cons �dqueue �� DQueue

add � D� DQueue� DQueue

func addbck � D� DQueue� DQueue

top � DQueue� D

untop � DQueue� DQueue

queue � Nat� Nat� FBag� Nat� DQueue

if � Bool� DQueue� DQueue� DQueue

var q� q� � DQueue
note queuen�i� b� j� � is speci
c for the bakery protocol�

it takes the �unique� data for all indices in between i and j
out of the bag b� and puts them in order of their indices in a queue

rew addbck�d� �dqueue� � add�d� �dqueue�
addbck�d�� add�d� q�� � add�d� addbck�d�� q��
top��dqueue� ��
top�add�d� q�� � if�q � �dqueue� d� top�q��
untop��dqueue� � �dqueue
untop�add�d� q�� � q
queuen�i� b� j� � if�i � j � b � �fbag� �dqueue� add�data�j� b�� queuen�i� rem�j� b�� j �n ����
if�t� q� q�� � q
if�f� q� q�� � q�

Lemma B����

�a� b �
 �fbag � untop�queuen�i� b� j�� � queuen�i� rem�j� b�� j �n ��
�b� b �
 �fbag � top�queuen�i� b� j�� � data�j� b�

Proof�

b �� �fbag � untop�queuen�i� b� j�� � untop�add�data�j� b�� queuen�i� rem�j� b�� j �n ���
� queuen�i� rem�j� b�� j �n ��

b �� �fbag � top�queuen�i� b� j�� � top�add�data�j� b�� queuen�i� rem�j� b�� j �n ���
� data�j� b�

�

C The axiom system

In Table C the axioms for ACPpSare given	 In that table var��� denotes the set of data variables that

occur in the boolean expression �� fv�x� denotes the set of free� unbound� data variables of x	 Note that
the pre
x sum

P
� a�v� 
 x binds all occurrences of the variable v in x	

��



A� x� y � y � x
A� �x� y� � z � x� �y � z�
A�pS

P
� a�v� 
 x�

P
� a�v� 
 x �

P
��� a�v� 
 x

A� x� � � x

SUM�
P
f a�v� 
 x � �

SUM�
P

v�e a�v� 
 x �
P

v�e a�v� 
 x�e�v�
SUM�

P
� a�v� 
 x �

P
� a�v� 
 � �� x

COND� � �� �x� y� � � �� x� � �� y
COND� v �� var��� � ��

P
� a�v� 
 x �

P
��� a�v� 
 x

CF�pS ��a� b� is de
ned
P

� a�v� 
 xj
P

� b�v� 
 y �
P

��� ��a� b��v� 
 �xky�

CF�pS otherwise
P

� a�v� 
 xj
P

� b�v� 
 y � �

CM� xky � x y � x y � xjy

CM�pS v �� fv�y� �
P

� a�v� 
 x� y �
P

� a�v� 
 �xky�

CM� �x� � x�� y � x� y � x� y

CM� �x� � x��jy � x�jy � x�jy
CM� xj�y� � y�� � xjy� � xjy�

D�pS a �� H �H�
P

� a�v� 
 x� �
P

� a�v� 
 �H�x�

D�pS a � H �H�
P

� a�v� 
 x� � �

D� �H�x� y� � �H�x� � �H�y�

TI�pS a �� H �H�
P

� a�v� 
 x� �
P

� a�v� 
 �H�x�

TI�pS a � H �H�
P

� a�v� 
 x� �
P

� ��v� 
 �H�x�

TI� �H�x� y� � �H�x� � �H�y�

Table �� The axiom system for ACP with pre
x summation
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