
Centrum voor Wiskunde en Informatica

Building block filtering and mixing

C.H.M. van Kemenade

Software Engineering (SEN)

SEN-R9837 December 31, 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301667079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report SEN-R9837
ISSN 1386-369X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Building Block Filtering and Mixing

Cees H.M. van Kemenade
CWI

P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

ABSTRACT

A three-stage evolutionary method, the BBF-GA is introduced. BBF-GA is an acronym for building block

filtering genetic algorithm. During the first stage, an ensemble of fast evolutionary algorithms is used to

explore the search space. The best individual found by each of these evolutionary algorithms is propagated

to the next phase. During the second stage, building block filtering is used to extract the essential parts

of each of these local optimal strings, and masks these essential parts. During the third stage, a single

evolutionary algorithm is used to find the global optimum by recombining the masked strings. For this

purpose we use a special recombination operator that exploits the information stored in the masks. Given an

appropriate basis, such that partial solutions can be discovered and evaluated in parallel and be combined

afterwards, a recombination-based evolutionary algorithm can be very efficient. Therefore, learning of the

structure of problem-spaces is important to make a more efficient recombination possible. The BBF-GA

is a first step along this line for binary search spaces and problems that adhere to the building block

hypothesis.

1991 Mathematics Subject Classification: 68T05, 68T20

1991 Computing Reviews Classification System: G.1.6, I.2.8

Keywords and Phrases: genetic algorithms, building block filtering, problem solving

Note: Work carried out under theme SEN4 “Evolutionary Computation”. Part of this report was pub-

lished in the proceedings of the IEEE World Congress on Computational Intelligence/IEEE Conference on

Evolutionary Computation.

Problems involving high-order building blocks with unknown linkage are difficult to solve. Nei-
ther n-point crossover nor uniform crossover can mix high-order building blocks efficiently. Linkage
learning methods might help in generating more efficient recombination operators. Even when hav-
ing an efficient crossover, it might still be difficult to strike the balance between exploration and
exploitation. In this report the bbf-GA is developed. This is a hybrid GA that handles building
blocks effectively and efficiently. A three-stage approach is used. During the first stage a large
number of rapidly converging GA’s is used to explore the search-space. During the second stage
the best individual of each GA is filtered to locate the (potential) building blocks present in this
individual. The third stage consists of a GA that exploits these masked individuals by mixing
them to obtain the global optimal solution. The bbf-GA performs well on a set of test-problems,
and is able to locate and mix more building blocks than the competitor GA’s.

Section 1 presents the basic outline of the bbf-GA. In section 2 the building block filtering
method is described. This algorithm takes a bit-string as its input, and produces a corresponding
mask that marks the most important parts of the bit-string. The produced pairs of bit-strings and
masks can be processed by means of the masked crossover introduced in section 3. In section 4
the bbf-GA is introduced. The test-problems are given in section 5 followed by the experimental
results in section 6. Some enhancements for practical applications are suggested in section 7, and
conclusions are given in section 8.

1. Outline of bbf-GA

The GA is often assumed to be an efficient method for solving building block oriented problems,
because it is able to find building blocks independently of each other, and mix these building blocks
afterwards. GA’s might sometimes fail to locate optimal solutions. A possible reason for this is
that it sometimes is difficult to find an appropriate balance between exploration and exploitation.

2. Filtering of building blocks 2

exploration learning exploitationRND solution

Figure 1: Basic scheme of the algorithm

A GA with emphasis on exploration (searching the complete search-space) is likely to be slow, a
GA with emphasis on exploitation (preservation and duplication of the currently best individuals)
is likely to converge too rapidly to suboptimal solutions.

The hybrid bbf-GA separates the exploration and exploitation task, and handles building blocks
effectively and efficiently. In a traditional GA there is no explicit separation between exploration
and exploitation. Both processes are done simultaneously. During the first few generations em-
phasis is on exploration, and during the final steps the GA is likely to focus on exploitation. There
are no GA parameters to balance these two processes explicitly. Most GA parameters influence
this balance indirectly, but it is difficult to predict how the balance will turn out. Consequently
a lot of hand-tuning of parameters might be required for each new problem. In the bbf-GA the
separation between exploration and exploitation is made more explicit. A basic outline of the
method we are aiming at is given in Figure 1. Here one differentiates between three subsequent
phases:

exploration: find a set of individuals that each contain a few building blocks,

learning: locate the most important bits (and hope that these bits will cover a part/the core of
the building block), and

exploitation: mix the individuals (treating the masked parts as a single piece).

The hybrid bbf-GA follows this schematic approach. Exploration and exploitation are performed
by means of GA’s. Learning is done by a linkage learning algorithm which is called building block
filtering.

2. Filtering of building blocks

Standard crossover operators are not always efficient. Problem-specific crossover operators or
problem-specific choices of the operators can make the building block processing more efficient.
Another approach lies in the usage of an evolutionary algorithm that really is able to learn some-
thing about the problem it solves, and that uses this information to steer the recombination
process. In this report an evolutionary system that aims at this goal is investigated. To learn the
linkage of loci, bit-strings are analysed by measuring the changes in fitness when changing each
of the bits of the string, one at a time. The first GA that uses this approach is the GEMGA
[Kar96b, Kar96a, BKW98]. Simultaneously, but independently, the building block filtering [vK96]
was developed. Both methods estimate marginal fitness contributions of the separate bits. The
GEMGA basically uses this information to guide the evolution process by computing a global
decomposition of the search space (during the so-called preRecombinationExpression phase). The
building block filtering method uses the information to make a decomposition of a bit-string in
order to extract the loci that belong to the same building block and their optimal values. So, the
building block filtering method aims at extracting local information. In this report a hybrid GA,
the bbf-GA, that incorporates the building block filtering method is introduced.

If it is known which bits within a given individual belong to the same building block, then one
can process the corresponding building block easily. If this type of information is not available,
then it would be interesting to be able to extract such information. For this purpose the building
block filtering method was developed. Given a specific individual this filtering method locates a
(small) set of bits that have a relatively large influence on the fitness of the individual. Next, one
assumes that this set of bits corresponds to an optimal building block, or at least that a schema
corresponding to these bits is a schema that almost covers a single building block. These bits are

2. Filtering of building blocks 3

0
1
1
1
0
1

measure
−→
δfit

(1,−8)
(2,−2)
(3,−6)
(4, 2)
(5, 0)
(6,−7)

sort on
−→
δfit

(1,−8)
(6,−7)
(3,−6)
(2,−2)

(5, 0)
(4, 2)

select
−→

significant
loci

(1,−8)
(6,−7)
(3,−6)

construct
−→

building
block

0 ∗
1
1 ∗
1
0
1 ∗

Figure 2: Example of one filtering step

marked and processed as a single unit when applying crossover. In this way the bias introduced
by the choice of representation can be reduced. The defining length and the order of the schema
that represents the optimal building block is not that important anymore, because the schema is
processed in one piece. A detailed description of such a crossover operator is given in section 3.

The building block filtering method is applied in Figure 2. On the left a single individual of
length six is given. This individual contains the bit-string 011101. The method uses four steps.
During the first step the marginal fitness contribution, δfit, of each of the bits is measured, resulting
in a set of tuples. A single tuple contains the index of a bit and the δfit observed when changing
this bit. Next, these tuples are ordered on δfit. In the third step a truncation rule is used to select
a subset of tuples, and in the fourth step a masked individual is created. The bit-string of this
masked individual is exactly the same as the bit-string of the original individual, but a mask is
added that indicates the most significant bits.

In the first step the change of fitness, δfit, of each of the loci is measured. The measurement
for a single locus is performed by changing the value to its complement. So a 1-bit is changed
to a 0-bit and a 0-bit to a 1-bit. The δfit is the change in fitness due to changing the value of
the locus. It is used as a measure for the marginal fitness contribution of the corresponding locus
with the context of the complete bit-string. In the example in Figure 2 a bit-string of length 6 is
used. Let us assume that the main fitness contribution within this string is coming from a building
block containing loci 1, 3 and 6, resulting in a fitness increase of +7 when the schema 0#1##1
is present. The δfit of each locus is measured by flipping its value, and observing the change in
fitness. A set of tuples of type (position, δfit) is created. Flipping the bit in loci 1, 3 or 6 breaks
schema 0#1##1. As a result the positive fitness contribution +7 gets lost. In our example the
δfit-values of loci 1, 3, and 6 are respectively −8, −6, and −7.

The pseudo-code of this filtering step uses the following tuple:

locus = [index, dFit];

Here, the index denote the position of the locus, and dFit denotes a change of fitness. Now, the
filtering step is given by the following pseudo-code:

FilteringStep(x)
loci : list of locus;
loci = {};
Step 1: compute the marginal fitness of all loci
for j = 1 to l do

x′ = x;
x′

j = 1 − x′
j ;

δfit = Fitness(x′) - Fitness(x);
add [j, δfit] to list loci;

od;

Step 2: sort the list of loci on increasing δfit
sortdFit(loci);
Step 3: select the most important loci

2. Filtering of building blocks 4

loci = Truncate(loci);
Step 4: construct the masked individual
ConstructMask(x, loci);

end

Here x is the bit-string that has to be filtered, {} denotes an empty list, Fitness(x) computes
the fitness of individual x, and the add operation adds a tuple to a list.

During the third step one has to truncate the ordered sequence of tuples in order to select a
set of the most influential loci. The simplest approach is to mask a fixed number of tuples. A
more complex approach would be to try to estimate the optimal number of bits to select. We
estimate this truncation bound by taking a random test-individual, transferring the bit-values of
the loci from the filtered individual to the test-individual one by one in the order given by the
filtering step, and tracking the change of the fitness of the test-individual. At the moment the
building block is transferred completely, a significant increase of the fitness of the test-individual
is to be expected. So, in case of the example shown in Figure 2 the bit-values of loci 1, 6, 3,
2, 5, and 4 are transferred in sequence. The bit whose transfer increases the fitness of the test-
individual most, and simultaneously results in a new fitness that is larger than the initial fitness
of the test-individual, is used as an estimate of the truncation position. Assume that the bit at
ranked position r results in the largest increase in fitness. Now, if the filtered individual and the
test-individual have exactly the same bit-values from ranked position r + 1 to r + s, then the
truncation point is chosen in the middle of this range at position r + s

2 . An upper bound on r is
assumed as one expects to find building blocks of limited size only. Masking half of a bit-string
would not make much sense. Application of this procedure with a single test-individual gives only
a rough estimate of the optimal truncation point. Therefore, this procedure is repeated a number
of times using different random test-individuals; The median of all obtained truncation points is
used to select the bits that are masked.

Truncate(x, loci)
truncPoints = list of number;
for i = 1 to numTest do

fitBlock = list of locus;
fitBlock = {};
generate a random test individual
y = RandomIndiv();
fit = Fitness(y);

determine the number of loci to transfer
for r = 1 to l′ do

k = locir.i;
if (xk �= yk) then

yk = xk;
dFit = Fitness(y) - fit;
s = NumSimilarValues(x, y, loci, r + 1);
add [r + s

2 , dFit] to list fitBlock;
fi;

od;
t = MaximalLocus(fitBlock);
if (t.dFit > 0) then

add t.index to list truncPoints;
fi;

od;

generate the truncated list of loci
truncationPoint = Median(truncPoints);
Truncate = TruncateList(loci, truncationPoints);

3. Mixing with masked uniform crossover 5

0 1 0 1 1
* * *

×
1 0 1 1 0

* * *
↓

0 0 1 1 0
* * *

Figure 3: An example of the masked crossover

end

Here RandomIndiv() generates a random test-individual, NumSimilarValues(x, y, loci, r) de-
termines the number of subsequent ranked loci in x and y that have the same value starting from
locus r, MaximalLocus(fitBlock) extracts the locus of list fitBlock that has the highest value of
dFit, Median(m) extracts the median from a list of numbers, and TruncateList(list, pos) truncates
a list at location pos.

3. Mixing with masked uniform crossover

The filtering method described in section 2 produces a masked individual, where the masked bits
are considered to be a potential building block. Next, different building blocks have to be combined
in order to find a globally optimal solution to the problem. Masks do not have to represent exactly
a building block. It is possible that a mask includes loci that do not belong to the same building
block, or it might miss some of the loci that do belong to the building block. Therefore, a genetic
algorithm is used with a special crossover operator to perform the mixing task. Next, the usage
of the mask during the crossover is described, and it is shown how to transfer the information
present in the mask to the offspring.

In the case that the parent individuals have disjunct masks, the crossover is relatively simple.
The masked loci of the first parent are transferred to the offspring, next the masked loci of the
second parent are added, and then uniform crossover is applied for the remaining loci. If there
is an overlap between the masks of the two parents at a certain locus, then two cases have to be
distinguished. If both parents have the same bit-value at this locus, then the masked parts are
compatible and the same procedure can be applied. If both parents define different values for the
locus, then a parent is chosen at random to provide the value for this locus.

The next step involves the creation of a mask for the offspring based on the two masks of the
parents. A locus is masked in the offspring when it was masked by one of the parents, or when
it was masked by both of the parents and the bit-values of the both parents at the corresponding
locus are equal. If both parents masked a locus but define a different value, then the locus is not
masked in the offspring. As a result a pruning of the masks can happen.

Figure 3 shows an example of the application of the masked crossover. The first locus and
the last locus are masked by exactly one parent, so the offspring inherits the bit-value from the
corresponding parents, and the corresponding mask-bits of the offspring are set for these loci.
The third locus is masked by both parents, but the parents have non-matching bit-values, so an
arbitrary parent is selected, and the mask-bit is not propagated. The fourth locus is also masked
by both parents, but this time the bit-values match, so it does not matter from which parent the
value of this locus is taken. In this case the corresponding mask-bit in the offspring is set.

4. The hybrid bbf-GA

The bbf-GA uses a three-stage approach, that follows the schematic overview given in Figure 1.
During the first stage a large number of rapidly converging GA’s is used to explore the search-
space. The best individual of each GA is passed to the next stage. In the second stage each

4. The hybrid bbf-GA 6

Genetic
Algorithm solution

exploration learning exploitation

RND Genetic
Algorithm

Linkage
learning

best

individual

RND Genetic
Algorithm

Linkage
learning

best

individual

RND Genetic
Algorithm

Linkage
learning

best

individual

Figure 4: Overview of the algorithm

individual is filtered in order to mask the building blocks present in this individual. The third
stage consists of a GA that that exploits these masked individuals by mixing them to obtain the
global optimal solution. Figure 4 shows a schematic representation of this algorithm.

Exploration: we use a large set of small-population GA’s running in independently to explore the
search space. This way cross-competition between building blocks is prevented (as different
building blocks can be discovered by different GA’s). The initial populations of these GA’s
are chosen at random. It is important to use small-population GA’s during this phase
because:

1. GA’s with small populations converge fast (i.e. reduction of the computational over-
head),

2. GA’s with small populations are not very reliable, so different GA’s are likely to explore
different parts of the search space. When using a reliable GA for exploration the most
important building block is discovered repeatedly, and the GA is likely to be too slow.

Learning: we want, given an individual (suboptimal solution), to locate the most important part
of it. In fact one tries to learn the linkage of bits within the context of this specific individual
(bit-string)

Exploitation: search for the optimal solution by means of a single reliable GA. The initial pop-
ulation of this GA consists of all the masked individuals created during the previous phase.
This GA should exploit all information of the different GA’s used during the exploration
phase and should make use of the linkage learned during the learning phase.

During the exploration phase a GA is needed that converges rapidly, and is likely to converge
to different solutions, such that different parts of the search space are explored. Although this
GA does not have to be reliable, it is important that the GA really does an exploration of part of
the search space and therefore a GA that prevents too much duplication is preferred. The triple-
competition selection meets these requirements. The triple-competition selection scheme [vK97b]
is a steady-state selection scheme. Figure 5 shows how the next population Pt+1 is produced from
the current population Pt. On the left we see the current population Pt, where each box represents
a single individual. The values in the boxes denote the fitness of the corresponding individuals.
An intermediate population Ps is generated by doing a random shuffle on Pt. Population Ps

is partitioned in a set of triples. Within each set of three individuals the two best performing
individuals are allowed to create one offspring. This offspring replaces the third individual. This
modified triple is propagated to the next generation. So two-third of the individuals are propagated
unmodified to the next generation. The best two individuals are never lost when using this selection
scheme. It has been observed that triple-competition selection tends to result in relatively fast
convergence of the population.

4. The hybrid bbf-GA 7

Pt

.

.

.

.
random�
shuffle

Ps

3
5
9
.

order �
triple

P ′
s

9
5
3
.

��
x �

�

�

Pt+1

9
5
7
.

Figure 5: Schematic representation of triple-competition selection

Elitist
Recombination solution

exploration learning/filtering mixing/exploitation

RND Triple
competition

Building block
filtering

best

individual

RND Triple
competition

Building block
filtering

best

individual

RND Triple
competition

Building block
filtering

best

individual

Figure 6: The bbf-GA

Nothing can be assumed about the linkage of bits during exploration; Therefore, the uniform
crossover is used.

The linkage learning can be performed by means of the building block filtering described in
section 2. The output of this second phase is a set of masked individuals.

During the exploration phase a reliable GA is required that performs well on a mixing task,
even in the case that the population is quite small. Therefore elitist recombination is chosen.
The Elitist recombination [TG94] uses a local competition between parents and offspring. It

Pt

.

.

.
random�
shuffle

Ps

9
5
.

�
� x �

offspring

competition�7
3

Pt+1

9
7
.

Figure 7: Schematic representation of Elitist recombination

selects parents by creating random pairs of individuals. Because all parents have exactly the
same probability of being selected this corresponds to a uniform selection. The sampling error
during this selection is reduced because each individual participates exactly once in a competition
during a single generation. Figure 7 shows how the next population Pt+1 is produced from the
current population Pt. On the left we see the current population Pt, where each box represents
a single individual. The values in the boxes denote the fitness of the corresponding individuals.
An intermediate population Ps is generated by doing a random shuffle on Pt. Population Ps is
partitioned in a set of adjacent pairs and for each pair the recombination operator is applied to

5. Test-problems 8

obtain two offspring. Next, a competition is held between the two offspring and their two parents,
and the two winners are transferred to the next population Pt+1. In the example one parent
and one offspring are transferred to Pt+1. Elitism is used because parents can survive their own
offspring. Elitist recombination has been shown to be more efficient than some other GA’s on a
problem involving a high-order building block [vK97a].

The information provided by the building block filtering is exploited by using the masked
crossover operator. A detailed schematic representation of the bbf-GA is given in Figure 6

5. Test-problems

To study the effectiveness of the filtering and the mixing, two scalable test-problems are used.
The number of building blocks m can be adjusted and the size of the optimal building blocks d is
adjustable. For both test-problems the global optimum can be partitioned in a set of m order d
building blocks.

5.1 The fully deceptive problem
The first test-problem is based on the fully deceptive trap-functions [DG93]. The following formula
is used to compute the fitness contribution of a single part:

fD(b) =
{

αd if u(b) = d
(d − u(b))/d otherwise .

Here α > 1. The global optimum of the deceptive part contains only 1-bits, which results in a
fitness contribution of α.

Based on this building block a scalable test-problem can be constructed by concatenating m of
these order d building blocks whose fitness contribution is determined by fD(b). The fitness of an
complete individual is computed as the sum of the contributions of all its parts divided by mα,
so the fitness ranges from 0 to 1. A solution to this problem can be coded in a straightforward
manner in a bit-string of length l = m × d. The actual linkage of the bits belonging to the same
part is assumed to be unknown, so we have a problem with loose linkage.

5.2 The bb-NK problem
Typical properties of the fully deceptive problem are that the first-order statistics for the fitness
values of each locus are deceptive, and that the different parts can be optimized completely
independent of each other. Therefore a second test-problem, the bb-NK problem, is introduced
that does not have these properties, but does have building blocks. As a basis for the problem
we use NK-landscapes. The NK-landscapes have been introduced by Kauffman [Kau93]. These
are quasi-random landscapes that take a bit-string as input and compute the fitness value. The
fitness of a string is given by the average fitness contribution over all loci in the bit-string. The
fitness contribution of a locus i is determined by a random function fi(·). This function uses
a bit-string of length (k + 1) that is obtained by concatenating the value xi of locus i and the
bit-string Ni that contains the values of k other loci that are in a neighbourhood of locus i. Both
the random function fi(·) and the neighbourhood Ni are chosen independently for each of the loci.
Two types of NK-landscape exist based on the way the neighbours are selected. The first type
uses nearest-neighbour interaction: each locus is dependent on its k nearest other loci. Hence,
the expected correlation between loci decreases with distance. The second type of NK-landscape
uses a randomly selected neighbourhood. In the case the expected correlation between loci is
independent of their relative position on the bit-string and loci that are far apart will usually be
stronger correlated than in case of the nearest-neighbour interaction.

The fitness of a NK-landscape is given by the formula

fNK(�x) =
l∑

i=1

fi(xi · Ni),

where fi is a random function, xi denotes the value of locus i of individual x, Ni is the bit-string
containing the values of the loci that form the neighbourhood of bit i, · is the concatenation

6. Experiments 9

operator, and k is a parameter of the landscape that takes a value in the range 0 to (l − 1). The
function fi : I → [0, 1], where I denotes the integer range from 0 to (2k+1−1); So, this is a random
function that maps a (k + 1)-bits integer to a real value between zero and one.

In order to build a test-problem with m building blocks of size d we take an NK-landscape
length l = m × d with a random neighbourhood, and we select a random partition of the bit-
strings in m parts. The fitness contribution of a bit is set to one if the part that bit belongs to is
completely filled with 1-bits, otherwise the contribution of the bit is determined by the underlying
NK-landscape. The fitness of a complete bit-string is computed as the average fitness-contribution
of all the bits. The optimal solution is again a bit-string consisting of only 1-bits, each given a
fitness-contribution of one. The bb-NK problem does have a set of independent building blocks of
order d. The optimal building blocks are completely independent of each other, but if an optimal
building block is not present within a certain part, then we have nonlinear interactions that cross
the boundaries of the partitions, so this problem is not separable.

6. Experiments

For the exploratory phase of the bbf-GA a population size of 24 is used, which is evolved for
12 generations. Two variants of building block filtering have been investigated. The first variant
uses a fixed bound for the number of bits that are going to be selected in the mask. The number
of selected bits is set to eight. The second variant uses a flexible number of bits that is determined
by the procedure given at the end of section 2. During the third stage elitist recombination with
masked crossover is applied for 100 generations on a population of 100 masked individuals.

For the purpose of comparison we also conducted tests using the elitist recombination, the
generational GA with tournament selection, and a steady-state GA. Elitist recombination using
uniform crossover, is also applied directly to the problem with a population of 300 individuals
that is allowed to converge for 100 generations. Furthermore a generational GA with tournament
selection is applied with tournament-size 2, population size 300, 100 generations, and crossover is
always applied.

For the deceptive problem α = 1.5 is used, and for the bb-NK problem a random neighbourhood
of size k = 10 is taken. All results shown are averaged over 30 independent runs. The bbf-GA with
fixed bound for the number of bits to mask, uses 28,000 fitness evaluations per experiment, while
the bbf-GA with flexible bounds uses approximately 10,000 additional evaluations to determine
the bound during the filtering stage. The generational GA and elitist recombination use 30,000
fitness evaluations per experiment.

A set of 44 different experiments (experiment I) was conducted for varying orders of the building
blocks d, and varying numbers of building blocks m. Each experiment was repeated 30 times. The
upper graphs of Figures 8 and 9 show the average properties of the overall best individual. In
case of the bbf-GA and elitist recombination this individual is present in the last population, but
in case of the generational GA this individual might be lost, as the off-line performance is shown.
For m the smallest value such that l = m × d ≥ 60 is taken, so for d = 9 one has m = 7 such
that the size of an individual becomes 63 bits. The upper graph of Figure 8 shows the average
fraction of building blocks present in the best solution for the deceptive problem. The lower
graphs shows the off-line best fitness. The upper graph of Figure 9 shows the average fraction of
building blocks present in the best solution for the bb-NK problem, and the lower graph shows
the corresponding fitness. On both problems the bbf-GA using a flexible bound performs best
followed by the bbf-GA with fixed bound, the elitist recombination, and the generational GA in
sequence. The flexible bound selection for the bbf-GA performs well on the deceptive problem
while on the bb-NK problem the results are only slightly better than for the bbf-GA with a fixed
bound. The lower graph of Figure 9 shows the average fitness of the best solution as a function
of the order of the optimal building block for the bb-NK problem. It is interesting to see that
the generational GA outperforms elitist recombination for d > 12 even though it does not find
any of the optimal building-blocks. Note that these graphs show the properties of the overall best
individual, so it might be the case that the individual is not present in the final population of the
generational GA and that the generational GA mainly does a random search.

6. Experiments 10

Fr
ac

ti
on

op
ti
m

al
bu

ild
in

g
bl

oc
ks

Order of building block

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16

deceptive problem (experiment I)

BBF (flex. bound)
BBF (fixed bound)

ElRec
GGA

F
it
ne

ss

Order of building block

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16

BBF (flex. bound)
BBF (fixed bound)

ElRec
GGA

Figure 8: The average number of optimal building blocks in the best solution (top) and the fitness
(bottom) when using different optimization methods for the deceptive problem.

6. Experiments 11

Fr
ac

ti
on

op
ti
m

al
bu

ild
in

g
bl

oc
ks

Order of building block

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16

bb-NK problem (experiment I)

BBF (flex. bound)
BBF (fixed bound)

ElRec
GGA

F
it
ne

ss

Order of building block

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

4 6 8 10 12 14 16

bb-NK problem (experiment I)

BBF (flex. bound)
BBF (fixed bound)

ElRec
GGA

Figure 9: The average number of optimal building blocks in the best solution (top) and the fitness
(bottom) when using different optimization methods for the bb-NK problem.

6. Experiments 12

Fr
ac

ti
on

op
ti
m

al
bu

ild
in

g
bl

oc
ks

Total number of building blocks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8 9 10

bb-NK problem (experiment II)

BBF (flex. bound)
BBF (fixed bound)

ElRec
GGA

F
it
ne

ss

Total number of building blocks

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

3 4 5 6 7 8 9 10

BBF (flex. bound)
BBF (fixed bound)

ElRec
GGA

Figure 10: The average number of optimal building blocks in the best solution (top) and the fitness
(bottom) when using different optimization methods for the bb-NK problem (Experiment II).

7. Enhancements to the bbf-GA 13

A second set of 32 experiments (experiment II) was conducted. During these experiments the size
of the building blocks was fixed at d = 10 while the number of building blocks was varied. Again
each experiment was repeated 30 times. Figure 10 shows the fraction of optimal building blocks
(top) and the fitness (bottom) of the best solution for the bb-NK problem. Again the bbf-GA
with flexible bound performs best while the generational GA performs worst. The performance
of the BFF-GA’s degrades less when increasing the number of building blocks than the elitist
recombination. The fraction of building blocks in the best solution is low and nearly constant for
the generational GA.

7. Enhancements to the bbf-GA

The test-problems are difficult and the bbf-GA gives good results. However, more extensive tests
are required to properly assess the performance of the bbf-GA, and compare it to other algo-
rithms. The test-problems shown in the current report are basically concatenations of functions
of unitation. In the bb-NK problem interactions that cross the boundaries of building blocks are
present, but these interactions are likely to be relatively small. A number of improvements have
been added to the bbf-GA in order to prepare it for broader application. These improvements are
discussed in the next subsections.

7.1 Filtering step
Two changes have been applied to the filtering step. The first change involves the correction for
the average marginal fitness of a locus. This average marginal fitness is determined over the set
of all individuals that are used during the learning phase. During the filtering step the marginal
fitness of locus i in function FilterStep(x) is now computed by the formula

δfit′i = Fitness(x′) − Fitness(x) − Av(δfiti, xi);

where x′ and x only differ at locus i, δfiti is given in the first definition of the filtering step,
and Avi(δfiti, xi) denotes the average change in fitness when changing the value of locus i from
xi to the complementary value. This average change in fitness is computed over the set of all
individuals that are filtered. This adjustment helps in getting an appropriate ordering of the loci.
The original rule performed well on functions of unitation, but did not always perform well in case
that building blocks overlap.

The function Truncation has been reformulated based on the definition of a building block,
where a building block is defined as a schema such that schema fitness of the complete schema is
strictly larger than the sum of the schema fitnesses of an arbitrary partition. This reflects the fact
that a building block has a larger fitness contribution than one would expect, when accumulating
the fitnesses of its parts. Given this definition of a building block one can locate the truncation
point by comparing the fitness after transferring the values of k loci, to the fitness after transferring
(k − 1) loci plus the fitness of transferring only ranked locus k. If the transfer of k loci results
in a larger fitness contribution, and results in a positive overall fitness contribution, then this
locus is marked as a possible truncation point. Furthermore all subsequent loci where the two
individuals match are marked as possible truncation points. After applying this procedure to all
test-individuals, the locus with the maximal number of marks is selected. Furthermore a minimal
value is imposed on the number of loci transferred.

7.2 Masked crossover
In the masked crossover operator defined in section 3 a single mask is generated for the offspring.
When building blocks can overlap, it is less convenient to merge the masks of both parents in a
single mask for the offspring. Therefore a representation is chosen where each individual carries
a list of masks. During crossover the parents are allowed to take turns in propagating a masked
set of bit-values to the offspring. The masked bits are transferred in a random order, and a set
of masked bits is only transferred when these bits are compatible with the bits already present in
the offspring, and the mask defines at least one bit that is not present in the offspring. After all
masks of both parents have been processed, the remaining loci in the offspring are determined by a

8. Conclusions 14

uniform crossover of both parents. No pruning of masks is performed, and the offspring contains a
list of all masks that were transferred successfully from one of the parents to this offspring. Exact
duplicates of masks are removed. A further advantage of this approach is that the individuals in
the final population also contain information on the decomposition of these individuals by means
of the mask-list these individuals carry with them.

7.3 Deterministic crowding
The elitist recombination has been replaced by deterministic crowding. Deterministic crowding
is almost similar to elitist recombination. The only difference between elitist recombination and
deterministic crowding is that in deterministic crowding each parent competes with only one
offspring; The parents and offspring are paired such that the similarity between the parents and
the offspring is maximized. Due to the masked crossover, the same parts of an individual are
transferred time after time. This can easily lead to a rapid duplication of the best few masked
individuals. Deterministic crowding performs better at preventing this type of duplication.

7.4 Population size during exploitation
In the explorative phase some loci might always converge to the same value. If that case, such
a locus can never get the opposite value during the exploitation phase. To prevent this the
population size during exploitation is doubled, and the second half of the population is filled with
random individuals. These individuals provide the bit-values that might have been lost. A further
advantage is that all masked individuals on average get one opportunity to duplicate their masked
part before encountering another masked individual.

8. Conclusions

The proposed building block filtering method is able to discover parts of high-order building
blocks even in quasi-random landscapes. Using this filtering method we create masked individuals
which are processed with a special crossover operator. This crossover operator uses the mask to
process a set of bits, assumed to be relatively important, in one piece while the non-masked bits
are processed by a uniform crossover. The masked crossover also computes a new mask for the
offspring based on the masks and the bit-values of both of the parents.

The bbf-GA is a hybrid three-stage GA. During the first stage an exploration of the search space
is performed. The second stage locates a set of potential building blocks, and the third stage tries
to exploit the the building blocks by mixing them in order to generate the optimal solution. The
bbf-GA outperformed its competitors and scales better when increasing either the size, or the
number of building blocks on our test-problems.

References

[BKW98] S. Bandyopadhyay, H. Kargupta, and G. Wang. Revisiting the GEMGA: Scalable evo-
lutionary optimization through linkage learning. In Proceedings of the IEEE World
Congress on Computational Intelligence/fifth IEEE Conference on Evolutionary Com-
putation (Vol. 1), pages 603–608. IEEE Press, 1998.

[DG93] K. Deb and D.E. Goldberg. Analyzing deception in trap functions. In G. Rawlins, editor,
Foundations of Genetic Algorithms-2, pages 93–108. Morgan Kaufmann, 1993.

[Kar96a] H. Kargupta. Gene expression messy genetic algorithm. In Proceedings of the 3rd IEEE
Conference on Evolutionary Computation, pages 814–819. IEEE Press, 1996.

[Kar96b] H. Kargupta. Search, evolution, and the gene expression messy genetic algorithm. Tech-
nical Report 96-60, Los Alamos National Laboratory, February 1996.

[Kau93] S.A. Kauffman. The origins of order. Oxford University press, New York/Oxford, 1993.

[TG94] D. Thierens and D.E. Goldberg. Elitist recombination: an integrated selection recombi-
nation GA. In Proceedings of the First IEEE Conference on Evolutionary Computation,
pages 508–512. IEEE Press, 1994.

References 15

[vK96] C.H.M. van Kemenade. Explicit filtering of building blocks for genetic algorithms. In
H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Proceedings of the
4th Conference on Parallel Problem Solving from Nature – PPSN IV, volume 1141 of
Lecture Notes in Computer Science, pages 494–503. Springer, Berlin, 1996.

[vK97a] C.H.M. van Kemenade. Cross-competition between building blocks, propagating infor-
mation to subsequent generations. In Th. Bäck, editor, Proceedings of the 7th Interna-
tional Conference on Genetic Algorithms, pages 1–8. Morgan Kaufmann, 1997.

[vK97b] C.H.M. van Kemenade. Modeling elitist genetic algorithms with a finite population. In
Proceedings of the Third Nordic Workshop on Genetic Algorithms, pages 1–10, 1997.

