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On the choice of suitable operators and parameters in multigrid methods

by

W.J.A. Mol

ABSTRACT

In this report we consider multigrid methods for the solution of
elliptic boundary value problems. These methods are described by a simple
Algol—-like program. By special choices of some operators and parameters
almost every multigrid strategy that has been proposed in the literature
for linear problems can be recovered. Several possibilities for the restric-
tion, prolongation, coarse grid and smoothing operators are considered.
Furthermore, we consider the number of smoothing steps and the number of
coarse grid corrections. Some comparitive experiments are described with the

Poisson, anisotropic diffusion and the convection-diffusion equations.

KEY WORDS & PHRASES: multigrid methods, prolongation, restriction, coarse
grid operator, smoothing operator, approximate i1nverse,

tnceomplete LU—-decomposition, Galerkin approximation.
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1. INTRODUCT ION

The numerical treatment of elliptic boundary value problems gilves rise
to the problem of how to solve large sparse systems of equations. Numerical

methods for the solution of these systems can be divided into direct and

iterative methods.

The most general direct method, Gauss—elimination, is not suiltable to
solve 1arge' sparse systems because its use of long computing time and large
storage requirement. There are some variants which take advantage of the
sparsity of the coefficient matrix of the problem. For instance, this can
be done by rearranging rows and columns in the matrix (dissection method)
or by making use of the Laplacian character of the problem (cyclic reduc-
tion and fast Fourier methods). The class of problems to which these methods
can be applied is small. There are restrictions concerning the type of dif-
ferential equations, boundary conditions and the shape of the region.

Many iterative methods are known: Jacobi, Gauss—Seidel, S.0.R. with
several variants (by points, by lines, symmetric, etc.) and the A.D.I.-method.
These methods are generally faster than direct methods especially 1if optimal
parameters are known. They use little storage and the programming is slmple.
A still faster advanced iterative method developed by MEYERINK and v.d. VORST
[ 13] is the ICCG-method, which is applicable if the system is symmetric. A
non symmetric variant, described by WESSELING and SONNEVELD [19] (the
PIDR-method) 1s equally fast.

It seems to be that iterative methods which are both fast and generally
applicable are the multigrid methods. The inventor of these methods 1S
FEDORENKO [6,7]. He described a multigrid method for the Poisson equation
in a square, and he proved that the number of operations is O(N), with N
the number of grid points. BAKHVALOV [2] gave a convergence proof of a
second order boundary value problem with variable coefficients in a
rectangle.

BRANDT [3,4,5] described a multigrid method similar to that of.
Fedorenko and Bakhvalov, and demonstrated its practical usefulness. Further-
more, he pr'osed ideas for adaptive discretization in certain parts of the
region e.g. in the neighbourhood of singularities. ASTRACHANCEV L1] and
NICOLAIDES [16,17] applied a multigrid method on finite element problems



and gave convergence proofs. Other convergence proofs and experiments are
given by FREDERICHSON [8], HACKBUSCH [9,10], WESSELING [18,19,20] and
R [12].

From these proofs and many numerical experiments it can be concluded

MOL [14,15]. A survey of multigrid literature can be found in HEMK]

that multigrid methods need a number of operations of O(N) for the solution
of a very large class of linear and nonlinear elliptic boundary value
problems whereas for other numerical methods this number is O(Na) with

¢ > 1, for a fixed accuracy.

A survey of various numerical methods is given in table 1.1. The last
column gives the number of operations when the method is applied on a 2nd
order elliptic boundary value problem. The estimate of the operations
count of the PIDR method has a note of inférrogation, because a rigorous

theoretical estimate for this method 1s not available at the moment.

Year of c: coefficients |s.a: systems |number of

Method | | L . :
: | ‘appearance |are constant self adjoint |operations

0 (N%)
0(N3/2)
O(N log N)

Gauss—elimination _ < 1850 | =
S.0.R 1954 c

_ A.D.I. 1955 c s.a l
Reduktion/Fourier . l

O(N log N) |
IRV

0 (NS/ 4) ?
1o

methods ‘ 1965 : o I s.a

ICCG - . 1977 _ c - ~ s.a
PIDR 1910 | - j _
Multigrid 1962 - D

Table 1.1 Number of operations for various methods.

vith multigrid methods is that there are many ways
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- more efficient than other multigrid methods for which numerical experi-
ments have been reported in sufficient detail.

- robust. That is, the method can be applied to a large variety of problems
including singularly perturbed problems without adaptation of the multigrid
method to the problem at hand.

In chapter 2 we give a description of a framework into:which we can fit

~ a.large class of multigrid methods.

In chapter 3 we describe various possibilities for restriction, prolonga-
tion, coarse grid and smoothing operators.

In chapter 4 a comparison will be made between different multigrid
methods applied to the Poisson, anisotropic diffusion and conveetion-—
diffusion equations. Furthermore, we compare the efficiency of our method

with the efficiency reported in other publications.

2. MULTIGRID METHODS

2.1 Defect correctlon processes

Defect correction processes are general 1lterative processes for the
solution of operator equations. Many well-known iterative processes can be
classified into this category and among these are the multigrid methods (see
HEMKER [11]). Here we consider only linear systems of equations which
originate from the discretization of a 2nd order elliptic boundary value
problem.

Consider a system of equations denoted by:
(2.1.1) Au = £,

with A an N x N non-singular matrix and u and f N-vectors. The following

defect correction process (DCP) will be considered:

NONENOF

(2.1.2) u(v4i) _ G(v;u(v) s Mg

1,2,...

\Y,

(V) (V)

B the amplification

is called the approximate i1nverse of A and G

(V)

matrix. is defined by



2..3) ™) =1 - g,

It B(V) = B for all v the process is called stationary.

a4

EXAMPLE. Let A be decomposed as A = L + D + U where U is a strict upper and

ot L

L a strict lower triangular and D a diagonal matrix. The Gauss—-Seidel process

reads as follows:

(2.1.4) @ + DD —F M) 4 ¢

¢

™~/ ™4 --1

This is a statiomary DCP with B(v) = B = (L + D)

2.2 The two-grid method.

The two—-grid method is a non—stationary DCP in which two different
approximate inverses are used:
— Some relaxation method (e.g. Jacobi, Gauss—Seidel) on the fine grid
damping short wavelength fluctuations in the residual r(v) = f - Au(v)*

= A coarse grid correction damping the long wavelength fluctuations in the

(v)

residual r' .

Suppose (2.1.1) is a system of equations belonging to a boundary value
problem which 1is discretized on a uniform grid QK. For convenlence we

assume .

-£ L .
= {(xoxy) |x; = m..2 7, m, = 0(1)27, i =1,2}.

(2.2.1) Qﬂ

A corresponding set of grid functions is defined by

L X

----------



£~1

A two—-grid method uses an analogue of (2.2.3) on a coarse grid with
mesh size 2“(2“1) :
£ 4

Let be given a restriction operator R and a prolongation operator P :
(2.2.5) RE':UI' > Ue_] PK:UE'M1 > Ife

A coarse grid correction step in the two—grid method is defined by:

£ £

(2.2.6) u = u + PK(A‘EHI)"I L, L L L

R (f -Au)).

We omit the iteration index v if no confusion is possible. One step 1in
the two—grid method consists of p sweeps with the relaxation method, a
coarse grid correction step and T sweeps with the relaxation method. This
can be described 1n quasi-Algol as follows:

procedure two-grid method (Af', u’e , fz 50 5T Pf', Rf') ;

real array Az,uz',fz; integer p,T; lnteger procedure PK,RK;

»

begin integer n;
L 2L R
for n:= 1(1)p do u := Gu + B f

fe“l .= R£(f'€ - Azuz) ;

R N ot Nl P S
Lo L Pﬂuﬂ-l;

for n:= 1(1)T do uf':';n quz + Bﬁfﬁ;

end two—grid method;

Note that f,ﬁ-l is a coarse grid approximation not to f’e but to the residual
L L L

The amplification matrix G, of one step of the two—grid method 1is

£-1.-1 £ ,~L.p L

L _ 2t vY@HP At

(2.2.7) Gﬁ' = (GK)T((AE)-

with Gf' = I‘e' - Bf' A‘e‘ and 6 = Iz - AE BK the amplification matrices of the



£, -1 £-1 ~1R£*.

relaxation process. (A7) - PK(A ) 1s called the relative convergence
matrix. '

Several authors, e.g. HACKBUSCH [10] and WESSELING [ 18], has shown that
under certain assumptibns HG£ I <c <1 with Il | a suitable norm and c

-0 2

independent of mesh size 2 ~. The two-grid method is completely determined

: : : (-1 - . .
by the discretizations AfeandA£ , the restriction Rﬁ, prolongation PE; a
relaxation method corresponding with an approximate 1inverse B~ and the number

of relaxation steps p and T.

2.3. The multigrid method

The multigrid method makes use of a hierarchy of computational grids
Qk“and corresponding sets of grid functions Uk, k = £~1(-1)1 defined by
(2.2.1) and (2.2.2) with £ replaced by k. The mesh size of Qk is Z“k, hence
the grids Qk gets coarser as k gets smaller.

In the two-grid method we have to solve problem (2.2.4) on the coarse
grid. The multigrid method approximates the solution uf'ml of this problem by
application of ¢ iteration steps of the same two—-grid method on the coarse
level, and so on. On the coarsest grid the problem is solved exactly or

approxim

tely by some iterative method. For simplicity we will assume that

the coarse problem 1is solved exactly. In quasi-Algol the multigrid -
thus obtained is described by:

k k [k k

rocedure multigrid method (k,A ,u ,1 ,p,0,T,P

real array Ak,uk,fk;

procedure Pkng; value k;

:Rk) s

integer integer k,p,0,T;

begin integer n;



1f k=1 then ul:= (A])“lf1

else
__e_g_:l_._tl for n:= l(l)p do uk:= Gkuk-i-kak
fkm1 R (f -Aku ) 3
uknl:m Os;
for n:= 1(1)o do multigrid method (k-l,Ak"] ,uknl,fk"],p,g’T’pk“l,Rk"l);
ﬁk:“ uk Pkuk—l;
for n:= 1(I)T do u:= Gkuk+kak
end ;

end ;

This is the linear variant of the multigrid method. With some modification we
get the non—linear multigrid method (see HEMKER [11]). BRANDT [4] calls
the linear variant the CS—algorithm and the non-linear variant the FAS-
algorithm. It is also possible to apply the multigrid method on 1ncreasingly
finer grids, with the solution on a coarser grid as initial estimate of the
solution on a finer grid. This is called the full multigrid algorithm.
Furthermore, it is possible to add conditional statements in the inter-
ation~-loops taking the number of iterations dependent on the rate of con-
vergence or other conditions that can be checked during the computation.
Multigrid methods that make use of this possibility are called adaptive
methods. Although BRANDT [3,4,5] shows that this strategy enhances the effi-

ciency, we will use the algorithm with fixed p,0, and T because this

strategy is more accessible for theoretical analysis and because we have

found that with a fixed strategy the efficiency 1is already very good for a

large variety of problems.

The amplification matrix of the multigrid algorithm G described above

1s given by:

(2.3.1) G = G + (GI’)TPK(GK“] °( '6“1)“] K(G ) Af'

m

If the same assumptions of the two—-grid method and some additional conditions

for Pk and Rk‘hold then 1t can be derived that



P  L=1,0
.3.2° < Idxd I |
(2.3.2) G2 + C Grm l
With | Ggﬂ < ¢ < 1 on each level it is possible to find a o such that ﬂGflﬂ <
c < 1. Often a small value of 0 (e.g. 0=2) can be shown to be sufficient to

£

obtain ﬂGmﬂ < c <1 on all levels. Thus an upper bound for the norm of the

amplification matrix of the multigrid method can be found which is strictly
separated from 1 for all mesh sizes h = 2"’6 of the fine grid. Other iterative

methods have Igl > 1 for h - O.

2.4. The multigrid method of Frederickson

When p=0 and o=1t=1 the multigrid method can be written in a simple
way as follows:

L K £ L

r = £ -Au;

equations by WESSELING [19] and MOL [14,15].

'I'he ampllflcatlon matrix of this algorlthm 1s rather s:x.mple. For 1instance
for a 4-gr1d method 1t is given by:

6 = (r*-B%a%) { ()Tt ¥ TR A% 4
(2.4.1) + *(I4~--B4A4) P4(13~33A3) (@) 1P (Az)MIRB}RZ’A4

3-B3A3) P (12-—-B2A2) { (A y T -p?aly TTR%1R3R%A%.



It can be shown that every amplification matrix and relative convergence

. . , , : 4
matrix reduces a particular range of wavelengths i1n the residual. 14-—-BA4

reduces the smallest and (Az)ml - PZ(AI)“IR2 the largest wavelengths (see

HEMKER [111]).
3. CHOICES OF PROLONGATION, RESTRICTION, COARSE GRID AND SMOOTHING OPERATORS

In this chapter various alternatives for the aforementioned operators

are described, together with a suitable data structure. This data structure

has been used earlier by FREDERICKSON [8].

3.1. Prolongation and restriction operators.

To enumerate the grid-points of Qk we define the following set of

ordered pairs 1 = (i],iz):

3.1.1) N ={i= (i,i,) ez| i , = 0()2, 7 =Z x Z.

k

A sparse matrix A can be represented by difference molecules as follows:

. i, & k o »
every molecule corresponds with a row in matrix A (which corresponds with

a point 1 = (il’iZ) € Nk) and every point of the molecule corresponds with

an element in this row.
When Ak’is a 9-point operator (1i.e. Ak has 9 diagonals) then the points

of the difference molecule are enumerated by

(3-1.2) Jm{jm (j]’jz) €Z|jl’2=o’i
(1,1)
‘j_“_("ls"l) jm(“l,O) jm(—lyl)
‘j=(09“1), jm(0,0) - jm(O,l)
i=(1,-n || i=0,0 | | 3=a,1

roOw

e S

1#(11,12

Difference molecule of Ak

Structure of matrixiﬁk

Figure 3.1.1
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9-point prolongation

as (3.1.5) except

k k-1 | 1 , k-1 k-1 k-1 k-1
(361‘6) (P u ) ® ® — _(U. & +UQ » +U¢ » +ul o )O
21]+1,212+l 4 1,51, 11+1,12 1],12+1 1l+1,12+1
For the restriction.Rk we consider
I-point restriction (or injection)
(30 l ¢7) (Rkuk)i i — uéi zi ¢
1272 12772
o=point restriction
(3&108) (Rkuk * - -
1212
1 k 1, k k k k
= —-u_ . ,. +5(u,. . tu,. . . +u,. : +u,. D
2 211,212 8 211+1,212 21l 1,212+l 211,212+l 211,212 ]
/-point restriction
k k 1 k 1, k k k
(30]’9) (R u )G ® .ﬂ _‘u * » +“(u e & +u L - +u L d — * +
1,51, 4 211,212 8 21l+1,212 21],212+1 2111,212
k k k
+ u,. : + u,,. . + u,. . 4D
211,212 ] 211 1,212+1 21]+1,212 1
9-point restriction
k k 1 k 1, k k k
(3.1010) (R u ); v S "'"u & » + “(u - » +u# & +u ® -— o +
1,51, 4 211,212 8 211+1,212 211,212+1 21] 1,212
k
+ U,.. ; +
211,212~1)
1 , k k k
+ "‘"‘“‘"""'(u s - +u . ® + * — +
16 211+1,212+l 211*1,212+1 211-!-1,212 ]

k

+ u,. . 1)
211 1,212 1
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On Uk the following inner product is defined

k _k -k k k
(3.1.11) (u,v )kmé Zu?vi
1
Between 7-point and 9-point prolongation and restriction we have the special
relation

k _k k-1 k k k-1 k—1

K, oK1 = (u ,Pv )k, Vu €U, Vv e U .

(3.1.12) (Ru ,v )k“l

Thus 1n those cases the restriction is the adjoint of the prolongation

(3.1.13) RS = (PHT.

3.2. Coarse grid operators.

For the coarse grid operators Ak, k <£ two possibilities will be

studied

k . . . .
(3.2.1) A 1s a finite difference. (FD) approximation on szk

for instance, Ak

p

1s the approximation (2.2.3) with £ replaced by k and

k-1 k  k Jk

(3.2.2) A = R A P .

, k kT : . : : ﬁ _ ]

If R" = (P7) we call this Galerkin-approximation (see WESSELING [20])).
The elements of Akm] can be computed in the following way. Suppose the

K and tf'with

welighting operator t. is associated with the prolongation P ;

_ J
the restriction Rk.

With (3.1;3), (3.1.4) and (3.2.2) we have:



k-1 k-1,  , k k. k k-1, k k k-1
(3.2.3) (A )i = (R'APu )1 = 4R A z t:L"Zjuj =
J
_ k k k=1 _ * k
= 4R E A:Lm Z t:|.+111*---'---'-'*2_] uj =4 z tn X A2i+n,m z 21+n+m-2 ]
m ] n m ]
k-1 * Kk
= 4 2 u. Z Z t A t : =
j=itp 1+p nom D 21+n,m n+m—2p
k=1 ¢ * K
= 4 2 u. Z z t A N v
m=v+2p-n D 1+p gl n  2i+n,v+2p—n
k—1 * k
= 4 z ui_+j z Z tu A21+u,v+23—u tv )
. ] u v
P~>]
n->u
k-1 k-1 .
On the other hand (A u )i 1s equal to
(3.2.4) TSRS =) A K k"l :
+]
3
From the last two relations we deduce that
(3.2.5) A'._: = 4 }’ 2 e AF t ie N
u 2i+u,v+2j-u Vv’ . .
je J
u,veZ
EXAMPLE 1. Let Ak be a 7-point Toeplitz—matrix with coefficients
| k :
Aij = crj, je I\ {((,1),(-1,-1)}.

° (- 3 ) _ s | )

T0,-1)  °(1,-1)
: k

'Figure3.2.l. Difference molecule of A.

13
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Rk and Pk are /-point restriction and prolongation. Then k-l 1s also
a /-point Toeplitz-matrix with elements Al;;l == Ej , Je IN{U,D),(-1,-1)}.
o =2 g 3 (o + O + 0 to M
(0,0) 8 (0,0) 8 (1,0) (0,1) (—-1,0) (0,—1)
TO,-) T-1,1))
-5' = --!-- O + --§--. g.. + -....l-.... (o + g )
(110) 16 (090) 8 (130) 8 (03]) (1:”1)
- ] 3 1
SO + —— P me—— -+
“0,1)7 76 °00,00 " F %0,10* 7,00t %¢-1,1)’
(3.2.6) o = -—La + -§--o + w-!—-(o + O )
(-1,0) 16 “(0,0) 8 “(-1,0) 8 * " (0,-1)  “(-1,1)
(0,-1) 16 "(0,0) 8 “(0,-1) 8 (-1,0) (1,-1)
= = 1 S y
°(,-1) 7 76 °0,00" B %,-1) " 7 90,-1) T %(1,0)°
ST R
(“]31) 16 (090) 8 (“131) 8 (091) (_190)
| k . : k-1, _, : .
Note that when A is a 5-point operator, A is a 7-point operator in general.
An exceptional case is the Poisson equation. If (0,0) = 4 and
3
o] = g = . = = -] —— = () 1 - =
(1,00 ~ °(0,1) ~ “¢-1,00 T 90,-1) T 77 “1,-1) T I¢=1,1) T O them oq o
5 =5 =G, o« =T, R N P = 15 AKX
291,00 T 90,1 T 91,00 T %0,-1) T T & %(1,-1) T F(-y,1) = 0- Thus A
is equal to the finite difference approximation on kal .
EXAMPLE 2. Let Ak be a 9-point Toeplitz-matrix with coefficients Aij = O'j ,
] € J and Rk and Pk are 9-point restriction and prolongation respectively.
Then Akml 1s also a 9-point Toeplitz matrix with elements Alf“:] = g., je J

1] J
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" =91, Y9, 1))
G = -émcr +'EL'G +-l~(g' + g )+
(-1,0) - 32 9,007 8 %¢-1,00)7 16 ‘Y(0,1)" 9(0,-1)
]
T T(G(MI:HI)-'- 0("1:1))
- 3 3 ]
(3.2.7)  9(0,-1)7 32 90,00 " T °0,-n * 16 (1,0 * 71,007 +
1
b

In general, when Ak’is a 5- or 7-point operator, K= 1s a 9-point operator.

In the Poisson case we get

R
8’)

9¢1,0) = 90,1) = 9(¢-1,0) = °(0,-1) ~

= - 3
(0,0) 4

5 a — —

T(-1,-1)" 8(1,"1)-# 6m:(*""""*l,.l)m 8(1,1) 16 .

It is easy to prove that for k - « the limiting @perator*A} 1s equal to the

Raleigh-Ritz—Galerkin discretization over bilinear splines of the Laplacian.

3.3. Smoothing operators.

We introduce two families of smoothing processes:
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— DCP with Bk the approximate inverse of Ak as defined by FREDERICKSON [8]
— DCP with Bkm (LkUk)m1 with Lk,U% the incomplete LU - decomposition of Ak.

3.3.1. The app inverse APINV.

FREDERICKSON [8] introduced a certain smoothing process for his

multigrid

method. The process is a stationary DCP. Consider the system of

equations A uk = fk. We can write this as

) Al.( uX =f1.{, ieNk.

(3.3.1.1) im %i4m :

meJ

The 1nverse Hk of Ak is defined as

From this we can compute the elements of the inverse Hk from the

8 K
€Z

vnere § denotes the Kronecker delta. These are 4k systems with 4k equations.

Instead of an exact inverse ‘We can compute an approximated inverse BX:

t
>
i

3

)
J
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; k | » _ . ] k
Now we have to solve 4 systems of only 9 equations. We call this B the

9-point APINV approximate inverse. In the same way, l—-point, 5-point ot
k

7-point APINV approximate inverses can be constructed with Bij # 0 for the
following values of j
. . . . Kk
approximate i1nverse 3 for which Bij # O
l-point APINV (0,0)
5-point APINV - (0,0),(1,0),(-1,0),(0,1),(0,-1)
/-point APINV ©(0,0),(1,0),(-1,0),(0,1),(0,-1),(=1,1),(1,-1)

Note that application of 1-point APINV gives rise to the Jacobl relaxation

process.

EXAMPLE. If Ak 1s a 9-point Toeplitz—matrix with coefficients.ﬁ%.=ﬂcu,j € J
and Bk 1s the 9-point APINV approximate inverse of Ak with coef;icieszs

ng = Tj, j € J, then the product Bk Ak 1s a 25—-point Toeplitz matrix with
coefficients LIY jfﬁ{(jl,jz)ljl,z = 0,*1,+*2}. The coefficients T j e J,

are defined as follows:

- T. o .
ﬂ(oyo) § J —J
jed

(1,00 = T¢0,0) °(1,0) T T(1,0) %0,0) " T0,1) T(1,-1) ¥

T0,1) - T,0)%0,1)" T1,0)%-1,10" T(0,1) 90,0) T

P10 %0, TELD%,0 " T, 1) %-1,0)

(3-3-1:6) T 1,0) 7 T0,009¢-1,0) ¥ T(0,1) %=1,1) * T(-1,0) °(0,0) +

Y T0,-% 1,107 %-1,-1)°%0,1" T(¢-1,1)9(¢0,-1)

"(0,-1) 7 7(0,0) 7(0,=1) T T (1,007 (=1,=1)" (~1,0 "(1,-1) +

t (0 9 -1 ) G( 03 0) Tt (“l:“l ) © ( 1 ’ 0) T ( 1 ’“l )U (“1 ) O)
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"(1,-1) T 70,00 % 1,-1) 7 T(1,0) °0,-1) " "(0,-1)%(1,0)

T T(1,-1)9(0,0)

T-1,1) = T(0,00%¢=1,1) ¥ T(0,1)(~1,0)

(-1,1)°(0,0)
W(“l:"l) N T(O:O) G("l’“]) * T(”l :O) 0(03"1) * T(Oaml)g('"l so) +

+T

(-1,-1)7(0,0)

T(1,1) T %0,00%1,1) T T(1,0) %0,1) T T,1)% 1,0 *
" T1,1) 90,0)

k

The coefficients Bij , ] €J can be computed from the relations

The coefficients 'rrj, j € {(jl’jZ)ljl 5 = 0, 1, 2} \ J are given by
>

"(2,0) T T(1,00°(1,0) * T(1,-0%1, 0" T, (1,-1)

10,2) T To,1)%0,1) T T(1,)%1,1 7 ""(-~1 1H%¢1,1)
ﬂ(“zyo) N T(""]:O) 0(_1)0) ( ] "1) (“ 1 ) ("lsl) 0("13"1)

1(0,-2) T T(0,-1) 9(0,-1) T T(1,-1) 7 (-1,-1) T H(-1,-1)9(1,-1)

N(B‘B.I‘B) o ‘"(2’1) i T(l’o) G(l’ 1) N T(l)l) U(l ,0)

T(-1,2) T T(O,l)”(-—-l 1) T T-1,10%0,1)

ML) T T, 2, TR, %(1,0)

(12 T 0,0, T Ta,-n%0,m
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(1,-1)7(1,0)

(2’2)“ T(lal)g(]al), ﬁ(mzsz)m'r(“lsl)c(“lyl)

'"(....2,_2) - T(.._l’.....l) G(“laﬂl); ﬂ(zsmz) - T(]:"l)a(lpﬂl)*
End of example.

Assume

(3.3.1.9) BS AF =1 + ¥,

k k ck

with I the identity matrix and C

a rest matrix. In the given example

1s a 16—point Toeplitz matrix with the elements ﬂj given in (3.3.1.8).
The amplification matrix of the process corresponding with APINV approximate

inverse 1S

The smoothing process is defined by

k _ ok, pkgk gk k

(3.3.1.11) u

or by

k k k -k _k k k k .k

(3.3.1.12) u G u + B f =-C u + B f .

EXAMPLE: Poisson case: 0(0’0) = 4, 0(1,0) = O‘(_I’O) = O'(O’ 1) = G(O’_l) = 1,

9-1,-1) " 9%1,-1)" %¢-1,1)" %, " O
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~Analogous to the Jacobi-relaxation process it is possible to introduce

damping. The damped APINV-process 1s defined by

k k k _k k
(3.3.1.13) u = w("cku +B £ ) + (l-w)u , 0 <w<].

3.3.2. Incomplete LU—decomEosition.

MEYERINK and v.d. VORST [13] used the incomplete LU-decomposition
(ILU) as preconditioning for a conjugate gradient process. WESSELING and

SONNEVELD [19] introduced ILU as smoothing operator for multigrid methods.

Suppose Lk is a lower triangular matrix and Uk

& k # 4
matrix. A 1s written as

1S an upper triangular

(3.3.2.1) AF = .¥¢F - RS,

with Rk a rest matrix. Then we can define a DCP with approximate inverse

(3.3.2.2) Bf = @fu® 7.

The amplification matrix 1s

(3.3.2.3) X = 15— ¥ AF = aku*)7! RS

The ILU-smoothing process is defined by

k

k k k_ k|- uk)

(3.3.2.4) of= o+ (LKuR) T (£F - a
or by
(3.3.2.5) o= (LU TT@REGE + £ 9.

The ILU~decomposition 1s defined as

_ ok ok _ Ak
(3.3.2.6) j)eij Lis Uips -3 = A4 0 _ L e J,

K*jeJ+
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with for J and J  the following possibilities:

_ . .

5 point ILU {(030)3(03“1),("1:'0)} {(030)3(130),(0:1)}
7 point ILU {”(0,0), (O,“l),(l,“l), (0,”1)} {(030):(130)5 (“1 9 1): (O: 1)}

9 point ILU |{(0,0),(0,-1),(1,-1),(0,-1),(-1,-1) }4{(0,0),(1,0),(-1,1),(0,1),
(1,1)}

EXAMPLE. If Lk and Uk are Toeplitz matrix corresponding to a 9-point ILU

with coefficients Ll..(. = A., and U?. = U.s,

1] J

J J

"(-1,1)  "(0,1) "(1,1)

("“I,""‘l) (0,"‘“1) (],-—-1) . )
Figure 3.3.2.1. Difference molecules of L and U

k k

then the product L U 1is a 13-point Toeplitz—matrix with coefficients p.

J

_ P(-1,-1) P,-1) Pa,-1) P(2,-1)
7 1ire 3.2.2. 2. Difference molecule of LX & gk, "




The coefficients pj are computed as follows:

0,00 T *0,0) *0,00 * *-1,0) 1,00 * rar,-nM =1,
Y0,-1) * 0,1 Ae-1,-nH, 1)
0 = A U + A u Lt A U
(1:0) (0:0) (]’0) (13"1) (Os]) (05”1) (131)

(3:3:2:7) 20,1y = (0,00 *(0,1) * 21,00 %1,1)

P(=1,0) T *(=1,0) *0,0) Tr0,-1)¥=1,1)* *=1,-1) Y (0,1)

A

P(0,-1) = "0,-1) ¥(0,0) Y -1,-1) ¥ (1,0)

P(1,-1) T *1,-1) *0,0) **0,-1) ¥(1,0)
P ("191) - )\(090) p("lal) N A("""""]:vo) u(osl)

L= T MeL-nM0,00  Pe,0 T Na,-nta,n

= A

P(2,-1) (1,- DH(1,0)

P1,1) T Mo,0Ma, 1 P(=2,0) = M=1,-1)¥"(-1,1)

p(--2, 1) - A(""""1 :O)U("l s])

In order to make the ILU decomposition unique we can requilre

(3.3.2.8) A 1.

(0,0)

When we have a 9-point Ak, A. and y. can be computed from

J J

3.3.2.9) .= 0., jelJ.
( ) P = 0ss 3 €

In that case the real matrix Rk has 4 pOiIltSi p(z O), p(2 ""‘"‘l)’ D(__z 0) and
9 > 5

P(-2,1).

23

In the following table we list the values of (jl’jZ) for which p. # 0 in the

]
rest matrix.
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9 p A
5 p ILU i
7 p ILU (=2,1),(2,~1)
- - ) — | { — _ (“231)3(2:“1)
9 p TLU | (-2,1),(2,-1) (-2,1),(2,-1) (-220) (2.0}
: : : k
Table 3.3.2.1. Values of j for which P # 0 in R .
For instance when Ak 1s Poisson then the various ILU~decompositions are with
A = 1:
' (O:O)
—-DpO1 U : = = + V2 = 3.4142 > H,. = U = =1 3
S—point ILU : “(0,0) 2+ 1 " 3.414 u(l,O) “(O,l)
-1
A = A N = = 0.2929
( 1,0) (0,-1) U(O,O)

== = L2
-1, 7 P, T 0292

/-point ILU = 9-point ILU : = 3.294168
poin poin “(0,0)
My gy = 1101507 X(=1.0y = ~ 0-334381
= - ] A = - 0.30
H(0,1) (0,-1) = ~ 0-303567

— — 0‘ 11 .

End of example.
The ILU-decomposition can be computed by recursive formulas similar

to the Crout method (for the complete LU-decomposition). Consider a 9-point

matrix A" ‘with elements
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(il+ 1512 ‘_ (i.l”"" 1,12"' 1)
b,. L= — d,. , = -
(11+ 1312) ai (l.l 1,12'"1) ai
C,. . e, . v
(11,12+1) (11+-1,1 + 1)
G . EE e e e ,. . = -

(3.3.2.10)

a.,. . . a,. ] - B. b,. :
(11+1,12) (11+l,12) 1 (11+1,1 )

0

0, . . . : - Y. b,. :
(11+I,l2) (ll+l’12) 1 (11+1312)

{

Y .- : Y, : - €. b,. :
(11+l,12) (1l+l,12) 1 (11+1,12)

I

d

. . d,. . - C,. BR.
(11,12+l) (11,12+1) (1],12+1) 1

CRS TSRS DR E SR T S0 DR MR IS | +1)Pi

] 2 1 2 2

‘a(irﬂl,iz+]) B a(il—-l,i +1) B d(il—l,l +1)61

2 2

a,. . = a,. . - C,. . Y
(1],12+l) (11,12+1) (1],12+1) 1

. . = . : - e.,. : €.
a(11+1,12+1) a(11+1,12+1) e(11+1,12+1) 1

b 0

+1,+1) 71

b .. . = . . - .
(1131 +1) (11312+1) c(113 g

2

b

(i+1,i.+41) ~ P(i.+1,i,+1)  S(@i +1,i+DYi
1 1 l

2 2 2

Il

B, . . = B, 4 = -d,. _, . Y -
(11 1,12+1) (11 1,12+]) (11 1,12+1) 1

B .. . =B ,. . - C,. . . \E.
(11,12+1) | (1],12+1) (11,12+]) i

. . k . k
The elements are computed recursively for i, = o(1)2, i, = 0(1)2. In the
following figure the dots denote the elements, which are changed with the

formulas (3.3.2:10).
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(11: +1)

(11+1 12+1)

Figure 3.3.2.3. Computation of ILU-decomposition of Ak;

The elements of the rest*matrilek are given by

L W TS DR e S VE PO R A P TES PRRRT CHE SUS i
- 7 1Y ® | — o | = “
(3.3.2.11) 72 LUz 03 a1y = Prig+1,1,) 7048 Pi,2,-1) T4 -1, 1,410 "B
9 p ILU: p = Db o

i,(=2,1) (i+1,1 )y P4

1,(=2,0) T S +1,i,00) %50 P, (2,00 TG 1,101 "0

Note that an ILU-~decomposition which is according to (3.3.2;10) but only with

with divisions yields abmethod’whlch 1s equivalent with symmetric Gauss-—

Seidel (SGS). Suppose Ak can be deco-posed as Ak fk Bk iEk*mth fk a

. -~k
strict lower triangular, D a dlagonal and Uka strict upper triangular matrix.
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Then Ek and Uk satisfy:
’\‘k ~ ~ Y ™~
(3.3.2.12) L #Lk Dk- Dk Uk mUk “Dk.

The amplification matrix of Gauss—Seidel forward is given in (2.1.4). The
amplification matrix of symmetric Gauss—Seidel is given by

(3.3.2.13) G~ = (T°+D5H Tk L DRy TIgk.

L (L ) U

With (3.3.2.12) and (3.3.2.1) we can derive that

(3.3.2.14) 6= @ Takdk - ak ok 1@~ -pK) -
_ (LkUk )"](LkUk I B’k - ykg Sk) _

L
X o™y T akuk - ARy - (L uH T RE,

I

Thus G 1s 1dentical with the amplification matrix of an ILU-decomposition.

In practice Gauss—Seidel forward is performed according to

(3.3.2.15) uli( = :( {f? . - z Ali( ; ul;_j. }.
For ullf +3? je {(-1,-1),(0,-1),(1,-1),(~-1,0)}, we take the most recent values.

It 1is also possible to define Gauss—Seidel by lines for instance 1in the

1. —direction.

1
k k Kk k k K _
(3.3.2.16) &4 (-1,0) (11-1 i) TR i,00,0%G,,1,) T AL ,0 TG +,i,)
k k *_ (-1 0Y ¢ _
= f, - Z 1+J . J — J\{( 1,0),(0,0),(1,0)}

11>1y JeJ*

K

For each line a triadiagonal system with 2 equations has to be solved.
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4, CO! MULTIGRTD METHODS

{PUTATIONAL COMPLEXITY OF

The computational complexity T of an iterative process depends on the
required accuracy g, on the rate of convergence R = £n S(G), with S(G) the
spectral fadius of G and the computational complexity of one application
of the process W:

SN _ |4£€nel
(4.1) T = - =

W.

Instead of the rate of convergence S(6) we use an experimental quantity,

which is a measure for S(G) namely the average reduction factor defined by:

1/v

(vg), 0
(4.2) r = (.!!__f.:é__‘-}.mﬂ ) v

AV \£-an 'O e

with v, the smallest integer such that

(4.3) “f*-Au(vO)ﬂ < £,

.} is the Euclidian norm.
4 » l » ",f _ Omei ) f . One 1ti rid . iterat iOT.l ®

In this section an estimate will be derived for the computational

nmplexity W of one multigrid iteration as defined by the procedure multi-
id method in section 2.3. An operation will be defined as an element from

the set {+,-,*,/,sqrt}.

W consists of the computational work of the smoothing processes (W ) s
the rest‘rlctlons (W ), the prolongations (Wp) and some addltlonal work

con81st1vr

of the comp utation of the residuals and addltlons in the prolonga“

tion step (W

4.1.1) W
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part of the procedure 1 number of operations
multigrid method in . section . 2.3 | per grid point

uk' s= Gkuk+kak a.

fkwlzm kak a_

~K k k-1

u e= P u ap

.= fk-Akuk} .

uk e = uk¥ﬁk 9

For £ large, o < 4 and with neglecting the computational work on the coarsest

erid k=1 we have:

L NP o uy, L

Wé (D+T){as * iede) a8}4
_ o X

Wf 40 ar4

(4.1.2)

W m_..é..._aaz

p 4-0 p

S T < BN TR &

Wq {aq+ 4—0 q}

. . k . | .
Because the coarse grid matrices A, k < £ may have more diagonals than

A" we distinguish between the numbers a; and a& on the finest grid and

; on the coarser grids.

Note that in the special case p = 0 and ¢ = 1 the multigrid method of

a'" and a
S
section 2.4 can be used. Then ag = 0,

The number of operations per grid point for omne APINV-smoothing step
according to (3.3.1.11) is given in table 4.1.1. (1) denotes the computation

of ;k:m fk“Akuk‘and (2) the computation of ukimuk4Bk?k}
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Table 4.1.1. Operations per grid point for APINV-smoothing
process ' '

In table 4.1.2 we summa

rize a_ of the ILU-smoothing process according to

(3.3.2.5). (1) denotes the computation of ?k:w Rkuk+f]‘c and (2) the computa-—

tion of uk.ﬂ (Llﬁlk)-l?k.



S5p-1ILU (1)
(2)

/p—1ILU

9p—-1ILU

Table 4.1.2. Operations per grid point for ILU-smoothing
process

In table 4.1.3 we give the a_ for Jacobli and Gauss—-Seidel by points and

by lines. It 1is assumed that a tridiagonal system 1s solved at a cost of

1 division, 6 multiplications and 3 additions per point.

| Smoothing

Point Jacobi and
Gauss—Seidel

Line Gauss-—
| __Seidel

‘able 4.1.3. Operatlons per grid point for Jacobi and
- L:uss~8e1del

31
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The numbers of operations per grid point for restriction and prolongation

can be counted from the formulas (3.1.5)-(3.1.10).

Restriction

Prolongation| --- 0.750. 7510.75/1. 25

Table 4.1.4. Operations per grid point for restriction
and prolongation

Finally, we consider aq.
When ILU is used the residual can be computed as follows

k

(I’k) ('\)) .= fk"”.A ( ) (\)) o= f (L (\’)

h.1.3) —R" )(u )
o := RV (u )(\’)-(u y (-

Since Rk has 2 or 4 diagonals (see table 3.3.2.1), this is a very cheap way

to COuaute the re51dua1 The residual of Jacobi, APINV, and Gauss—-Seidel

(points and llneg) 1s computed according to fk s = fk-Akuk;



APINV,Jacobi,

point/line

Gauss—Seidel

9p — ILU

Table 4.1.5. Operations per grid point for
the computation of the residual
plus 1 addition of the prolongation.

4.2. Preliminary work.

Before starting the multigrid process we have to compute approximate

inverses Bk, k = £(-1)1, when APINV and ILU- smoothing 1s used, and coarse

grid operators Ak, k = £-1(-1)1, when the I{};{'JEXI;LPk - coarse

orid approximation

is applied.

The following quantities are defined:

. |number of operations per gridpoint

. i i - . PN . - - . i - H - , .. maiiinkied et 3
| .. | l
' . &, ¥ a :
. ' E

) ;
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For £ large the preliminary work for the computation of Bk, k < £, denoted
by PW B and for the computation of RkAkPk, k < £, denoted by PWC 1S approxi-
mately: '
= LI S l MmN 'K
(4.2.1)
— l ! ...}........‘ ' E
ch (Aac i lZac:)4 '

We distinguish between at') and ac': on the finest grid and a; and a; on the

coarser grids.

In the APINV case the approximate inverses are computed according to

(3.3.1.5). Per grid point a system of 5,7 or 9 equations has to be solved.
I L i

Assuming that the solution of a system of n equations costs D - 50 divi-
sions, --13- n3 + -]i- n2 ~ -g— n multiplications and additions the following table

can be given.

Table 4.2.1. Operations per grld p01nt for the computatlon of
‘ - the AP NV ‘apr roxlte inverse
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The preliminary work needed for the computation of the APINV approximate

inverses 1s rather 1arge.* Table 4.2.2 shows that the preliminary work for
k

the ILU-smoothing process is much less. (1) denotes the computation of L

and Ukaccording to the recursive formulas (3.3.2.10) and (2) denotes the

computation of Rk according to (3.3.2.11).

Table 4.2.2. Operations per grid point for the

computation of Lk,Uk and Rk for ILU-

smoothing process.

Finally, we consider the computation of the coarse grid operators according

to (3.2.5). All possible combinations of Rk‘and P are taken.

* We remark that FREDERICKSON [8] has proposed his method for the Poisson

- equatlion. The preliminary work 1s zero in that case, because the approximate

inverse is known a priori.



T .--------- I

118 72 27 6 90 54 116 78 148 100

_:Iable 4.2.3, Operations per grid point for the computation of a coarse grid operator Ak“ = R A P

lennnm%mmmw>

9¢
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4.3 Efficiency of multigrid methods for the Poisson, anisotropic diffusion

and convection-diffusion equations.

The procedure multigrid method described in section 2.3 1s a general
algorithm for the solution of a linear 2nd order elliptic boundary value

problem. The question is how to choose the parameters p,o,T and the operators

k Jk _k k

PR ,B and A" in the procedure multigrid method for the method to be fast

for a large variety of problems.

In table 4.3.1 we mention the variants of the multigrid method that we

consider.

variant | i T | course grid smoothing
| ‘ | operator process

/p = ILU
l /p — ILU
/p — ILU
, 9p - ILU
RkAkPk , /p — ILU

NN

/p — ILU !
RkAkPk /p — ILU
gk |
FD '
R<aFpN ’
REANPK

FD I SGS

/p — ILU
/p — ILU
7p — APINV

v =000 o s ooty et o . SRR

NN N NN N N NN O e

-
poed puend feemd o

Table 4.3.1. Various variants of the multigrid method

Table 4.3.2. gives the operation counts of one multigrid iteration for
the 12 variants of table 4.3.1. It has been compiled using the operation
counts in the preceeding sections. The table refers to a general 5 and 7

£

point operator A~ with wvariable coefficients. When there is a difference

L : £ . _ . L
between 5 and 7 point operators A, the results for the 7 point operators
are placed within brackets.

For easy comparison, the computational complexity is expressed 1n work
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units. One work unit, as introduced by BRANDT [4] and denoted here as

WUGS, is the number of operations necessary for one Gauss—-Seidel sweep on

the finest grid. Similarly, we define one WULU as the work of omne 7p-ILU

*

smoothing step on the finest grid i.e. 17N operations (see table 4.1.2).

N = O(4£) 1s the number of points on the finest grid.

1.33 , 0.16 | 0.12

.29 | 1.90 ' 1.49(3.07(3.80)}4.56(5.29)

.29 1.90 L 1.49! - L 1.49

.29 1.78 1.49] - 1.49

.29 2.16 1.4915.47(6.44)17.22(8.19)

.39 [ 3.33 1.75/3.07(3.80) |4.56(5.29)

.39 3.33 l 1.49 - 1.49

.58 3.23 1.49(3.07(3.80) [4.56(5.29)

.39 2.00 1.49,3.07(3.80) |4.56(5.29)

| 1.49
25.6(26.3)

.39 2.00 1.49] -
.65(0.88) | 2.89(3.36)]22.50|3.07(3.80)

.65(0.88) | 2.50(3.20){ - |3.07(3.80)[3.07(3.80)
.65(0.88) | 2.34(3.20)! - - -

1

2 1.33
3 1.33
4 1.49
5 | 2.66
" .

7

8

9

-
L
M

o N

2.66
2.00
1.33
1.33
10 | 1.96(2.20)
11 1.57(2.04)
12 | 1.41(2.04)

.12

e

Table 4.3.2. Operations count per grid point expressed in WULU for the

variants of the multigrid method; Ws’wr’wp and Wq are

defined in (4.1.2), W in (4.1.1), PWb and PWC in (4.2.1)3

PW is the total preliminary work: PWb + ch:'
Some conclusions can be derived from table 4.3.2.
- For all variants with ILU the smoothing work W_ and the additional work
Wq are independent of the fact whether AJe 1s a 5 or a 7 point operator.

— The computational complexity of SGS is larger than the computational

complexity of 7p~ILU, but the latter needs preliminary work.

- The contribution of the restriction and pro

longation work W_ and W_ to the

o P
The computational complexity of the comstruction of 1., U and R,

k = £(-1)1 is 0.45 W (variant 5 and 6) up to 0.84 W (variant 3).
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— The computational complexity of the construction of the Galerkin approxi-

: k .k k .
mations R AP, k = £(-1)2 is 0.92 W (variant 5 with Sp*Az) up to 2.98 W

(variant 4 with 7p-A£) .

~ The APINV-smoothing process in variant 10 requires much preliminary work.

To study the efficiency of the various variants, we compute the average
reduction factor for 3 test problems. The test problems have constant

coefficients, so the operation counts of table 4.3.2 can be improved for

these special cases.

Problem 1. The Poisson equation:

(4.3.1) u u = 4,
X]XI + X2X2

defined on the unit square Q = (0,1)x(0,1) with boundary conditions

u = x, + xg on the boundary 9. The exact solution 1s u = x% + x%. The
problem is discretized by central differences on the grid ot (2.2.1) with
£ = 4. The boundary conditions are substituted in the difference equations.
The multigrid iteration is started with the zero solution. The required

accuracy 1s € = IC)M6

variant| I i 2 3 4 |5 6 |7 Is 9 10 txx 12
M |4 |6 ; 4 3 N N L 10 (6 | 10 |
r_, | 0.020{ 0.054 | 0.085/0.020/0.0061|0.0140.0200.055/0.0650.2910.071|0.214
tio | 1-12 | 1.50 | 1.66 {1.27 [1.50 |1.80 |1.90 |1.59 |1.68 |5.38/2.18 |3.49 |
TC [12.16 | 12.89 [13.95 115.86|14.55 |14.81|17.4814.56|13.49|54.5]18.07|23.40

Table 4.3.3. Results of the multigrid method applied to the Poisson equation.

M: number of multigrid iterations

r 3 average reduction factor (4.2)
t10 = W . number of operations per grid point for 0.1
_1 { log ravl reduction of the residual
T.C = M.W + PW: total number of operations per grid point

LU with W and

table 4.3.2.
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Looking at the total complexity TC it can be concluded that variant |
has the smallest complexity although there is only little difference with
variant 2. In the Poisson case, the coarse grid operators of variant 1 and 2

are the same except for the boundary points. Application of R AkPk makes

variant 1 somewhat faster than variant 2 at the expense of preliminary
work.

Comparing variants 2 and 3 it seems that 7—point restriction 1s
better than injection.

Comparison of variant 1 and 4 shows that 9-point restriction and
prolongation combined with 9p—ILU does not accelerate the method.

Considering variants 1,5 and 6 we see that additional smoothing,
which almost doubles the work in one multigrid iteration step, does not
reduce r o enough to make variant 5 and 6 competitive.

Variant 7 shows that increasing of the number of coarse grid corrections
does not imporve the r o of variant 1, while W of variant 7 is about 1.7 W
of variant 1.

Comparison of the variants 1, 8 and 9 shows that i1t is better to
smooth after than before coarse grid correction. Comparison of the variants

1, 10, 11 and 12 shows that ILU 1s a better smoother than SGS or APINV.

Problem 2. The anisotropic diffusion equation:

(4.3.2) u_ + 0.01 u = = 2.02,
1%1 )
and
(4.3.3) 0.0lu +wu_ _ = 2.02,
1% )

defined on the unit square and with the same boundary conditions, exact
solution, discretization, starting values and accuracy requirements as in

the Polsson case.
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ivariant| |1 2 3 ' 4 | s 6 7 8 | 9 10 11 z 12
M| 4 5 | 5 | 4 3 | 3 4 s | 5 |33 | 27 27
r ‘0.014 0.026/0.028|0.014|0.002 |0.002 |0.014/0.031}0.030]0.70 |0.61 |0.61
tig |1-02 {1.20 [1.15 [1.17

1.23  {1.23 [1.74 [1.33 {1.31 |18.66{11.65{10.90
TC  |12.16]10.99/10.39|15.86|14.55 |11.48 |17.48|14.56|11.49]121.0|70.6 |63.2

Table 4.3.4. The 12 variants applied to equation (4.3.2). For legenda see
Table 4.3.3.

variant 1| 2 3 4 5 |6 } 7 8 9 10 | 11 ]2
M 2 3 2 | 2 2 1 2 i 2 3 3 | 33 27 27 |
l r . |1E=4|12E-4 4LE-4 | 1E~4 | 1E~7 |1E~7|{1E-4 |13E-4|14E-4{0.70 |0.61 [0.6] |
t ., |0-48{0.65 [0.52/0.54[0.48 |0.48{0.81 |0.69 [0.70 118.66/11.65]|10.90;

TC 8.36{7.19 {5.05}11.54(11.22|8.15}{11.02{10.56|7.49 {121.0(70.6 |63.2

Table 4.3.5. The 12 variants applied to equation (4.3.3). For legenda
see Table 4.3.3.

First, we remark that APINV and (point) SGS are bad smoothers in both
cases. It 1s known that line relaxation is better in anisotropic cases.

Multigrid methods with ILU seems to be very robust in the sense that the
smoothing operator does not need to be adapted to these anisotropic problems.
In the first case the variants with ILU are somewhat slower than in the
second, but they are at least as fast as in the Poisson case.

Considering the total complexity TC it can be concluded that variant

3 1s superior to the other variants in both anisotropic cases.

Problem 3. The convection—-diffusion equation:

(4.3-.4) 0¢00](UX | + u ) - VvV u_ - X u. = l,

lxl XZXZ 1 X, 5
with a) VI = 1 9 V2 = ( C,) vl =é | v2 = ]
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defined on the unit square with boundary conditions u = 0 on 3Q. The 2nd de-
rivatives are discretized by central differences, the first derivatives with

I1'1ins method:

(1+ai¥. ) (u.

-u. . )+ (l=a. . )(u. . =—u. . )
2 172 12 "1

2h

£
(4.3.5)

(1+B.1,2) (uil,i PR PR ) + (l--Bi

2 i

1 2 I 2
2h,

.. -k
with hﬁ = 2 .

: and Bi ; are the I1'in coefficients:

Q.
"172 172

1

vlh
“iliz = —coth(5 o557

N 0.0?12
.VI yd

(4.3.6) _
o = - coth(vzh) . 0.002
1.11.2 0¢002 V2h£ .

The same starting iterand and required accuracy 1s taken as 1in the

Polsson case.
variant 1 2 | 3 4 5 | 6 ' 8 | 9 “ 10 | 11 12
3 | 3 3 L 3 1 2 I 2 I 3 3 3 16 3 3

case a |M _
| lr_10.0030{0.0063|0.0072{0.0018|7E~5 |9E~5 !0'0024 0.0079|0.0088{0.47 |0.0056 |0.0057
2 2 | 2 2 - 1 2 o |2 | el 3 3
JE-5 | 7E-5 |0.0001| 6E-5 |2E-8 |3E~8 | 6E-5 |0.0002|0.0002{0.47 |0.0043 |0.0045
1 1| 1 S S T N 1 l 16 | 1 1
. _ rav 3E-9 | SE-9 | 6E-9 | 3E-9 |4E-9 E4E—9 | 2E-8 | 2E-8 |2E-8 [0.47 | 4E-9 | 4E-9 |
| case d |M 4 | 6 | 6 | 4 | 3 | 3 6 | 6 | 6 16 ¢ 10 | 10
| 0.093 {0.073 [0.045 |0.0092(0.0095/0.0039/0.090 |0.090 [0.47 | 0.25 | 0.27 |

r
av

case b | M

I' | 0&0140 -
Javy ]

Table 4.3.6. The 12 variants applied to the cases a,b,c and d of the con—

- vection-diffus lon equation (4.3.4). For legenda see table 4.3.3.
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We see that the multigrid methods with ILU or with SGS are slow in case

d, but the r o is comparible with the r o 1n the Poisson case

varliant|

|2 3 4 | 5 ‘ 6 | 7 8 9 | _
1.36 [1.84 |1.57 [1.60 |1.64 [1.65 12.29 |1.91 |1.91 4,15 {4.12

T
10 | _
112.16{12.89{12.1715.86|14.55[11.48|17.48|16.56(13.49|71.84(28.07{23.4 |

 TC

"Table 4.3.7. The 12 variants applied to case d of (4.3.4).
For legenda lee table 4.3.3.

Comparing TC for all wvariants it can be concluded that variant 6 1s best
for case d of the convection-diffusion equation.

In the operation counts for the preliminary work, the work to compute
the I1'in discretizations (4.3.5) 1s neglected. When Galerkin is used as
coarse grid approximation, this work is done only on the finest grid, but
when FD 1s used, some additional work has to be done on the coarse grids.
When we take this work into account, variant 1 is best for case d of the

convection—-diffusion equation.

From the results of the three problems the following conclusions can

be drawn:

— 7p—ILU 1s a better smoother than APINV or SGS. ILU mal multigrid
method efficient and robust, in the sense that the smoothing operator does
not need to be adapted to the singularly perturbed probl 3.

- Comparison of variant 1 with 2, 5 and 6, 8 and 9 and 11 with 12 shows that

a multigrid method with Galerkin approximation R AkPk 1s at least as fast as

ems 2 and

a multigrid method with FD as coarse grid operator. It depends on the

akes the multigrid

amount of preliminary work which coarse grid operator n

method more efficient.

- Smoothing after rather than before coarse grid correction 1s preferable.
- Increasing of the number of coarse grid corrections beyond 1 1s not

worthwhile.

- Application of the ex
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better than the use of the 7—point prolongation and restriction. In the
anisotropic cases, injection and 9-point prolongation appears to be better

than 7-point prolongation and restriction.

4.4. Comparison with other authors

Several authors have reported experiments with multigrid methods applied
to elliptic boundary value problems. A survey of their methods is given 1n

the following table.

- Name of the ' Coarse grid Smoothing 5 K
. author _ | %

operator | operator

FD lpoint GS 9 1 or 9

FD point/line polynomial t 1 or 9
GS ' interpolation

or O

FREDERICKSON [8]| R AP | 9p—-APINV 9 o 9

NICOLATDES [17] |  RFA¥PK point/line GS | 7 or 9 7 or 9

HACKBUSCH [9] f RKAkPk point/line . 9 9

| chess board

- - 6s |
WESSELING [20] |  R*A"PS 7p-1ILU 7 7

Table 4.4.1. Survey of various multigrid methods on the literature.

Comparisons can be made between the methods when the Poisson equation

1s solved in a square with Dirichlet boundary conditions. N

of grid points on the finest grid.

With variant 1 of the f-_:-].tlgrld nethof we find in table 4.3.3 thafft te

number of operatlos

s per grid point fo

;~1 reductlon of tfe re31*ua1

th: = 19N operations. This number is even s When we eXPIOlt the

fact that the coefficients in the Polsson case are constant.



FEDORENKO [6] reports for 0.001 reduction of the residual about 185

operations—per—point, thus tio = 62N operations (exploiting the fact that

the coefficients are constant).

BRANDT mentions in [4] for the solution of the Poisson problem 28N
operations (with savings of operations because of the constant coefficients).

FREDERICKSON [8] finds r o = 0:45 with W = 54 operations-per—-point

(with savings for the constant coefficients), thus tio = ]56N operations.

NICOLAIDES [171] reports results for combinations of a multigrid method
with finite element methods. For the case with linear elements he reports
tio = 3.9 WUGS = 35N operations.

HACKBUSCH [ 9] uses Gauss Seidel with chess-board ordering of the grid-
polnts. The computational complexity of one smoothing step in his method is
equal to the computational complexity of two point Gauss Seidel steps. '

k k_k k k

He uses R AP with R and P the 9-point restriction and prolongation, so

that on the coarse grids he has 9-point operators Ak. According to table

4.1.3 the smoothing work on the finest grid is 18 operations—per-point and
on each coarse grid 34 operations-per-point. The total complexity W of omne
multigrid iteration step with p = 0, ¢ = 1 = 1 is then 2.76 WULU. He finds

r = 0.()48: ThU-S t

= operatlons.
av 35N operatio

10
WESSELING [20] also did experiments with wvariant 1 of our

method. The only difference is that he does not eliminate the boundary

multigrid

conditions from his equations. He finds Low 0.023. Thus €0 = 20N opera—
tions.

The anisotropic diffusion equation (4.3.2) has also been treated by
HACKBUSCH [9] and WESSELING [20].

We find with variant 1 of the m

)

= 17N operations.

WESSELING reports T v o 0.053 with the same multigrid method (but

g
——

HACKBUSCH uses chess-board line Gauss Seidel with 28 operations-per-

without eliminating the boundary conditions). Thus ¢ 25N operations.

point on the finest grid and 44 operat ions—per—point on the coarse

L "\' L - __: __.3 F B 0 _: ; R E .._\. : t w

grids.

-

The computational complexity of one multig ration 1s
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With r = 0.063 he has t,. = 50N operations.
av 10

4.5. Final remarks

It has been shown that multigrid methods with 7p-ILU smoothing,
p =0, c=1=1, wii:h Galerkin or FD coarse grid approximation and with
7-point restriction and prolongation or with injection and 9-point prolonga-
tion are fast for the problems here considered.

It 1s not clear which coarse grid approximation is better. Galerkin

approximation delivers a fast method at the expense of preliminary work.

In the cases of the Poisson and the convection—-diffusion equations
the combination: 7-point restriction and prolongation results in a fast
multigrid method. In the anisotropic cases the combination: injection and
9-point prolongation appears to be better.

Other model problems, such as the biharmonic problem, a problem with
variable coefficients and a nonlinear problem are treated with wvariant
10 of the multigrid method in MOL [14]. The multigrid method turns out to
be as fast as for the Poisson equation 1n all these cases.

In WESSELING and SONNEVELD [19] and MOL [15] results are reported for
the Navier—Stokes equations. The nonlinear equations are Newton—linearized
and the system in each Newton iteration is solved by variant 1 of the multi-
grid method. It appears that the average reduction factor r 1in each

av

Newton step is comparable with r o of the Poisson equation.
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