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by 
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ABSTRACT 

In this report we consider multigrid methods for the solution of 

elliptic boundary value problems. These methods are described by a simple 

Algol-like program. By special choices of some operators and parameters 

almost every multigrid strategy that has been proposed in the literature 

for linear problems can be recovered. Several possibilities for the restric­

tion, prolongation, coarse grid and smoothing operators are considered. 

Further1nore, we consider the nuanber of smoothing steps and the number of 

coarse grid corrections. Some comparitive experiments are described with the · 

Poisson, anisotropic diffusion and the convection-diffusion equations • 

• • 

KEY WORDS & PH 

• 

ES: multigrid methods, prolongation., restriction., coarse 

grid operator., smoothing operator., approximate inverse., 

incorrrpZete LU-decomposition., GaZerkin approximation. 

, 



• 

CONTENTS 

1 • INTRODUCTION 

2.1 Defect correction processes 

2.2 The two-grid method 

2.3 The multigrid method 

2.4 The multigrid method of Frederickson 

3. CHOICES OF PROLONGATION, RESTRICTION, COARSE GRID AND SMOOTHING 

OPERATORS 

3.1 Prolongation and restriction operators 

3.2 Coarse grid operators 

3.3 Smoothing operators 

4. COMPUTATIONAL COMPLEXITY OF TIGRID :METHODS 

4.1 Computational complexity of one multigrid iteration 

4.2 Preliminary work 

4.3 Efficiency of multigrid methods for the Poisson, anisotropic 
I 

diffusion and convection-diffusion equation 

4.4 Comparison with other authors 

4. 5 Final re111arks 

REFERENCES 

• 



l 

1 • INTRODUCTION 

The numerical treatment of elliptic boundary value problems gives rise 

to the problem of how to solve large sparse systems of equations. Nurnerical 

methods for the solution of these systems can be divided into direct and 

iterative methods. 

The most general direct method, Gauss-elimination, is not suitable to 
' 

solve large sparse systems because its use of long computing time and large 

storage requirement. There are some variants which take advantage of the 

sparsity of the coefficient □1atrix of the problem. For instance, this can 

be done by rearranging rows and col111n11s in the 111atrix (dissection method) 

or by 1t1aking use of the Laplacian character of the problem (cyclic reduc­

tion and fast Fourier methods). The class of problems to which these methods 

can be applied is s01all. There are restrictions concer11ing the type of dif 

ferential equations, boundary conditions and the shape of the region. 

Many iterative methods are known: Jacobi, Gauss-Seidel, S.O.R. with 

several variants (by points, by lines, syxia1netric, etc.) and the A.D.I.-method. 

These methods are generally faster than direct methods especially if optimal 

parameters are known. They use little storage and the progra1nming is simple. 

A still faster advanced iterative method developed by MEYERINK and v.d. VORST 

[ 13] is the ICCG 1nethod, which is applicable if the system is sy1n1netric. A 

non sycn,netric variant, described by WESSELING and SO VELD [ 19] (·t11e 

PIDR-method) is equally fast. 

It seems to be that iterative methods which are both fast and generally 

applicable are the multigrid methods. The inventor of these methods is 

FEDORENK.O [6,71. He described a multigrid method for the Poisson equation 

in a square, and he proved that the n1nnber of operations is O(N), with N 

the number of grid points. B OV [2] gave a convergence proof of a 

second order boundary value problem with variable coefficients in a 

rectangle. 

B T [3,4,5] described a multigrid method similar to that of 

Fedorenko and Bakhvalov, and demonstrated its practical usefulness. Further-
. 

more, he proposed ideas for adaptive discretization in certain parts of the 

region e.g. in the neighbourhood of singularities. ASTRAC CEV [1] and 

NICOLAIDES [16, 17] applied a multigrid method on finite eletnent problems 
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and gave convergence proofs. Other convergence proofs and experiments are 

given by FREDERICHSON [8], HACKBUSCH [9,10], WESSELING [18,19,20] and 

MOL [14,15]. A survey of multigrid literature can be found in HEMK:E:R [12]. 

From these proofs and tuany nt.ltoerical experiments it can be concluded 

that multigrid methods need a nt.11111,er of operations of O(N) for the solution 

of a very large class of linear and nonlinear elliptic boundary value 

problems whereas for other n1.11nerical methods this number is O (Na.) with 

a> 1, for a fixed accuracy. 

A survey of various nt1cnerical methods is given in table 1. I. The last 

colum11 gives the number of operations when the method is applied on a 2nd 

order elliptic boundary value problem. The estjaiiate of the operations 
• 

count of the PIDR method has a note of • • 1nterrogat1.on, because a rigorous 

theoretical esti1nate for this method is not available at the moment. 

Year of c: coefficients s.a: systems number of 
Method . 

self adjoint • 
. appearance are constant operations 

' 

Gauss-elimination < 1850 - -
S.O.R 1954 C s.a 

A.D.I. 1955 C s.a O(N log N) 

Reduktion/Fourier 
methods 1965 C s.a O(N log N) 

ICCG 1977 C s.a 

PIDR 1910 - -
' 

Multigrid .· 1962 - ·- '' O(N) • 

Table 1.1 N11mber of operations for various methods. 

' 

A difficulty with multigrid methods is that there are. 1ina:ny way:s in 

· w-hich tHe ba.:sic ideas underlying these methods can be imple1nenn,f;!a .•. IE.. this 
' ' 

-: ·_-, .,. 
,r . ' -_-

' ' 

' 



- more efficient than other multigrid methods for which numerical experi­

ments have been reported in sufficient detail. 
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- robust. That is, the method can be applied to a large variety of problems 

including singularly perturbed problems without adaptation of the multigrid 

method to the problem at hand. 

In chapter 2 we give a description of a framework into:which we can fit 

·· a. large class of multigrid methods. 

In chapter 3 we describe various possibilities for restriction, prolonga 

tion, coarse grid and smoothing operators. 

In chapter 4 a comparison will be ,,iade between different multigrid 

methods applied to the Poisson, anisotropic d,iffusion and .. convection­

diffusion equations. Furthermore, we compare the efficiency of our method 

with the efficiency reported in other publications. 

2.1 Defect correction processes 

Defect correction processes are general iterative processes for the 

solution of operator equations. Many well-known iterative processes can be 

classified into this category and among these are the multigrid methods (see 

HE .'--UR [11]). Here we consider only linear systems of equations which 

originate from the discretization of a 2nd order elliptic boundary value 

problem. 

Consider a system of equations denoted by: 

(2. 1 • 1 ) Au= f , 
• 

with A an N x N non-singular matrix and u and f N-vectors. The following 

defect correction process (DCP) will be considered: 

• 

(2. 1 • 2 J 
• 

• 

\) l, 2, ••• 

the amplification 

• matrix. 
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(2. ]. 3) 

v the process is called stationary. 

,..._, l"'>J r,.J ~ 

LE. Let A be decomposed as A= ---- L + D + U where U is a strict upper and 
- . ·- ,..._, 

L a strict lower triangular and D a diagonal 1natrix. The Gauss-Seidel process 

reads as follows: 

(2. 1.4) f. 

This is a stationary DCP with B = 

2.2 The tw~-grid method. 

The two-grid method is a non-stationary DCP in which two different 

approximate inverses are used: 

Some relaxation method (e.g. Jacobi, Gauss-Seidel) on the fine 
r(v) - f 

grid 

damping short 

A coarse grid 

residual r(v~ 

wavelength fluctuations in the residual Au (v). 

. - correction damping the long wavelength fluctuations in the 

Suppose (2.1.1) is a system of equations belonging 

problem which 

asSU[lle: 

(2. 2. l) -- -~ = m .• 2 , m. = 
l. 1 

A corresponding set of grid functions is defined by 
• 

(2.2.2) 

System (2.1.1) is denoted now by 

(2.2.3) , I 

,: . . 

,, ', . ·. 
. . .. 

: i ' " :, f . 
, .. · 

. . . ' 

to a boundary value 

For convenience we 

• 
l. 1,2}. 
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A two-grid method uses an analogue of (2.2~3) on a coarse gri n wit 
. - i-1) 

(2.2.4) -. 1 
• 

Let be given a restriction operator 

(2.2.5) -1 
• 

! 

A coarse grid correction step in the two-grid method is defined by: 

(2.2.6) .t 
u : 

l 
u + 

We omit the iteration index v if no confusion is possible. One step in 

the two-grid method consists of p sweeps with the relaxation method, a 

coarse grid correction step and T sweeps with the relaxation method. This 

can be described in quasi-Algol as follows: 

procedure 

real array 

begin 

. l £. l ,t l t::wo-gP&d method (A ,u ,f ,P,T,P ,R ); 
l £. l . 

A , u , f ; 1.n~_ege_r,, p, T; i,;0-~_e,g,e! procedure 
• 1.nte~er n; 

-1 
• • 

l .t f.. l-1 
u : u + p u ; 

for 
• 

-1 
• , 

end two-grid method; 

Note that 
-1 

is a coarse grid approximation 

The amplification rna.trix .t Gz of one step of the two-grid method is 

(2.2.7) 
2 

.t I A.l B.t h 1 . f . . ..... . t e amp 1 1cat1.on 1:natr1ces of the 
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relaxation l -I 
process. (A) is called the relative convergence 

• ·rria tr1.x. 

Several authors, e.g. HACK.BUSCH [10] and WESSELING [18], has shown that 

y t e 1.scret1zat1.ons and A , t e restriction R, pro ongation , a 

relaxation method corresponding wit an approximate inverse B an t e n1)11i er 

of relaxation steps p and T. 

2.3. The inult·igrid method 

The multigrid method makes use of a hierarchy of computational grids 

In the two-grid method we have to solve problem (2.2.4) on the coarse 

grid. The multigrid method approxi1nates the solution u o this problem by 

application of a iteration steps of the same two-grid method on the coarse 

level, and so on. On the coarsest grid the problem is solved exactly or 

approxi111ately by some iterative method. For simplicity we will assume that 

the coarse problem is solved exactly. In quasi-Algol the multigrid method 

thus obtained is described by: 

k k k real ar_ray A , u ,f ; 

int .. e~~r pro~edU;re 
• 

value k; intege! k,p,a,T; 
• 



end; 

• 

if k=l then u 1:= (A1)-lfl 

else 

begin 
11 II 

• 

end; -

· · h d · k-1 k-1 k-1 k-1 k-1 for n:= l(l)cr do rrrulttgr~d met o (k-1,A ,u ,f ,p,cr,T,P ,R ); 
k k k k-1 

u := u +Pu ; 

f 1( 1) d Gkuk+Bkfk·, or n:= T o u:= 

7 

This is the linear variant of the multigrid method. With some modification we 

( see 'H F:MK ER [ I I ] ) • B DT [4] calls get 

the 

the non-linear 

linear variant 

multigrid method 

the CS-algorithm and the non-linear variant the FAS-

algorithm. It is also possible to apply the multigrid method on increasingly 

finer grids~ with the solution on a coarser grid as initial esti1oate of the 

solution on a finer grid. This is called the full multigrid algorithm. 

Further1:nore, it is possible to add conditional statements in the inter­

ation-loops taking the n111rtber of iterations dependent on the rate of con­

vergence or other conditions that can be checked during the computation. 

Multigrid methods that 1nake use of this possibility are called adaptive 

methods. Although B T [3,4,5] shows that this strategy enhances the effi-

ciency, we will use the algorithm with fixed p,a, and,:- because this 

strategy is more accessible for theoretical analysis and because we have 

found that with a fixed strategy the efficiency is already very good for a 

large variety of problems. 

The amplification ri,atrix of the multigrid algorithm described above 
m • 

is given by: 

(2.3.1) 

If the 
k for P 

m 2 

same ass11111ptions of the two-grid method 

and Rk hold then it can be derived that 

and some additional conditions 

• 
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(2.3.2) II u < -m 

I on each level it is possible to find a a 

c < 1. Often a srnall value of a (e.g. cr=2) can be shown to 

obtain 
m 

l such that DG D:::: 
m 

be sufficient to 

the norro of the 

a1rtplification matrix of the multigrid method can be found which is strictly 

separated from l for all mesh sizes • • iterative 
' 

methods have IGU + l for h + 0. 

2. 4. The mul tigri~ method of Fred~,rickson 

When p=O and cr=T=l the multigrid method can be written in a simple 

way as follows: 

l 
r := 

e :- r ; 

for k:= 2(1 ).l do 

k e : 

l l 
u +e • , 

• 

FREDERICKSON [8] used this method for the Poisson equation. It has been 

generalized to general 
• equations by WESSELING 

elliptic equations including the Navier-Stokes 

[19] and MOL [14,15]. 

The amplification tnatrix o.f this algorithm is rather simple. For instance 
. . 

for a 4-grid method it is given by: 

(2.4.1) 

G4 
m 

-I 

• 

• 
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It can be shown that every .at11plification. matrix and relative convergence 

111atrix reduces a particular range 
2 -1 2 1 -1 2 reduces the smallest and (A) - P (A) R the largest wavelengths (see 

HE R [11]). 

3. CHOICES OF PROLONGATION, RESTRICTION, COARSE GRID AND SMOOTHING OPERATORS 

In this chapter various alternatives for the aforementioned operators 

are described, together with a suitable data structure. This data structure 

has been used earlier by FREDERICKSON [8]. 

3.1. Prolo~ga~ion and. restriction operators. 

.. ro enumerate 

ordered pairs i 

the grid-points of nk we define the following set of 

(3.1.1) - Z=7l x2Z. 

A sparse r11atrix k A can be represented by difference molecules as follows: 

every molecule corresponds with a row in corresponds with 
• • a point 1 and every point of the molecule corresponds with 

an element in this row. 

Wh k . 9 . en A is a -point 9 diagonals) then the points 

of the difference molecule are enumerated by 

(3.1.2) 

j (-1,-1) 

j (0,-1) 
-

J - { j -

• 

j = (-1, O) 

j (O, 0) 

j=(l ,-1) 
' 

j=(l ,O) 

row 

i=(i 1 ,i2 

Structure of matrix Ak 

• 
E ZJ 1,2 

j- (- l, 1) 

j (O, 1) 

' 

= o, 

j ( 1 , 1) 

' 

± t}. 

(-1 , l) ( 1 , I) 

(0,0) 

(-1, 0) ( 1, O) 

(-1,-1) (0, -1) (1,-1) 

Difference molecule of Ak 

Figure 3.1.1 
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k . . .. k d j € J. 
l.J 

"' i ·"' · . 1 "' 1"' • • d f'" d b W1th th I notation 11M1tr1x-vector mu t 1p · 1cat1on 11 .· e .1.ne . . y 

k. k 
(A. u ) . 

l • 

k 
ui+ j, 

'I.Tk 
l."I • 

. . k t-1 
lntrodt:ace the veightina-operator t:Z + It. Prolongation P :U -+ 

.. .. k k k-1 . ., reetr1ct1.on a :U + U · are defined as follows: 

(3.1.4), 
k k ( I. u ) " -.. l. 

ti-2j 
k-1 

u .. , 
j 

k N , 

Soae poaeibilities for t are ai•en in the following table: j 

' j 
• 

" 7 point 

0 

1/8 

1/8 

0 

1/8 · J 

l 

' 

' 
' i . 

0 0 

/8 0 
' 

/8 l/8 : 
' ' 

0 

0 

0 

• 

• 
\ ' 

n .. t ,, po:1n 

I 

1/2 

1/4 

1/4 1/8 

1/8 . 

1/8 . I /8 
' 

0 

1/8 

1/8 

1/8 1/16 

0 

0 

1/8 

1/16 1/16' 
• 

and 

0 

0 

0 

1/16 

--~------~---·----------------· 
Table 3.1.l 

The J and 5 point prolongations are excluded, because these are zero order 
i . .. , .. 
nterpolat1ons. 

Ve ocl1 aoasider the following possibilities for the prolongation 

1- .·:>' .. '"nt pro•·•.··. ·· .. ··. • .. ··.··.·.··ition. 
k k ..... l k-1 

'i:. ' '' •· k .k.-1 I . k-1 k-1 

. . ~ . ' 

.. ""' 1...,;:x, ., ·. I . 1..._ 1 ~--1 
........ t.. - ' .. .I + ... ' ) 

.... ·.Jtk~!. •· . 1. k-1 kl (P u .. ) .· • . . • ·. • , .... ~1(u.. • +u ) • 
· · . •· 21 J + I ~ 212 + 1 2 . 1 I+ I , 12 .. i I , i 2 + 1 . 

" 
. 

' ., 
. ·' '' ~ . 

. J 
' 

' 

0 . 

0 ' 

0 

0 ' 



• 

9-point pxao Zongation 

as (3.1.5) except 

(3.1.6) • 

For the restriction Rk we consider 

1-point restriction (or injection) 

(3. 1 • 7) k 

5-point restriction 

(3. 1 . 8) k k (R u ) . . -
1.1 ' 1 2 

1 k 1 k k k k 

1 1 

- ---u 
2 2i I, l.2 11+, 12 11-, 12+ 21.1, 12+ 211, 12 

?-point restriction 

(3.1.9) 

9-point restriction 

(3.1.10) 

k 
+ u2 · 2 · 1 1' 1 2 

1 k 

• 

k k 

k 

2 . + 
l, 1 2 

• 
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k 
On U the following inner product is defined 

(3.1.11) k k 
(u ,v )k = 4 k 

• 
l. 

k u. .. 
1 l. 

Between 7-point and 9-point prolongation and restriction we have the special 

relation 

(3.1.12) 
k-1 

-- k 
u 

Thus in those cases the restriction is the adjoint of the prolongation 

(3.1.13) 

For the coarse grid operators 

studied 

k < .t two possibilities will be 

(3.2. I). k 

f . k or instance, A is the approximation (2.2.3) with l replaced by k and 

(3.2.2) 

If Rk 

The elements of Ak-l can be computed in the following way. Suppose the 

weighting operator t. 

h 
. . k J 

t e restriction R. 

is associated with the and * t. with 
J 

• 

With (3.1.3), (3.1.4) and (3.2.2) we have: 

• 



(3.2.3) 
1. 

A~ t. 

1 

4 * t 
• im . . 1. +m n 

m 

= 4 
j=i+p 

• 

p 

= 4 
m=v+2p-n p 

k-1 
u. 1.+p 

J 

nm 

nv 

n 

t n+m-2p 

t* Ak 
n 2i+n,v+2p-n 

t 
V 

--

--

= 4 
• 

k-1 
u. . 

1.+J 
* k t A

2
. 2 • t . 

u 1+u,v+ J-u v 
p ➔ j J 
n ➔ u 

On the other hand 

(3.2.4) 

UV 

k-1 
u ). 

1 

k-1 u ). is equal to 
1. 

A~. 1 
• 1.J 
J 

From the last two relations we deduce that 

(3.2.5) 

E LE 1. 

A~. l = 4 
l.J • 

* k t A
2

. 
2

• t , 
u 1.+u,v+ J-u v 

UV 

u,VE Z 

m 

k A .. - a., jE J \ {(1, 1),(-1,-1)}. 
1-J J 

0 (-1,1) cr 0,1) 
...;.._ _____ _ 

(O,O) 

(0,-1) 

·Figure 3.2.1. Difference molecule 

k-1 t. 2 .u. 
. 1.- J J 
J 

--

k-1 
t2. 2.u. 

• l. +n+m- J J 

. Nk 1 
1€ 
jE J 

k 
of A. 

J 

• 
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. h Ak-l . 1 prolongation.Ten is a so 

a 7-point Toeplitz matrix with elements k-1 - . 
A .. =a., J E J\ {(1,1),(-1,-1)}. 

1] J 

0 (1,0) = 

3 
0 (0,0) + 8 

1 3 
16 a (0, O) + -8 

1 
8 

I 3 
a (O, 1) = l 6 a (0, O) + 8 

I 
cr (O, 1) + 

(3.2.6) a (-1, O) = 
1 

16 cr(O,O) + 
3 
B a (-1,0) + 

3 1-
8 cr(0,-1) + 

1 3 1 
a ( 1, - I) = 1 6 cr (O, 0) + 8 cr ( I ,-1) + 8 

Note k that when A is a 5-point 

An exceptional case 

<J -
( 1 , ()) 0 (0,1) = 

1 

k-1 
operator , A is 

+ cr ( 1 ,- I) + a ( I, I) ) 

I 
-I)+ cr(-

• 

a 7-point operator in general. 

- - - J ~ 1 -
= 0 (0,1) - 0 (1;0) = 0 (0,-1) = - 4' 0 (1,-1) cr(-1,1) = 

cr(O,O) 
k-1 

0. Thus A 

• 

Toeplitz 111atrix with coefficients A .. = a., . . l.J j 
j E J and 

I 
• 

3 · 3 -
a = --.--a +--(1 ,0) 32 -(O,O) - 8 

1J 

-

= a.,je: J 
J 

. . r . ., . ' ' -•---- __ -__ 4- (l,l, --' " - -
'·- - _. -. _-.,_' . .,.,. ; . . •· . 
,.', . :_ . . . . ' ' . . - . 

,, ··:._·_ ::--<; .. ·- __ ._.-: "'' ·-. ,._, __ ··:_ '.'. ·.' ~,- , . ' 

" ' . "' ·: . 



(3.2.7) 

3 
a(O,l) - 32 

3 
a (-1,0) = 32 o (O,O) + 

3 I 
B a (0, 1) + 16 

+ 1 -
4 

3 
8 a (-1, 0) + 

1 

3 
8 a (0 ,-1) + 

1 

1 
+ 4 

1 1 
0 (-1,-1) = .64 °(0,0) + 4 0 (-1,-1) 

- 1 
64 °(0,0)+ 

1 
4 o ( 1, 1) + 

1 

I 

1 I 
cr (-1, I) = 64 o (O,O) + 4 

1 
0 (-1,1) + 16 

1 
64 cr (O,O) + 

I 1 
4 °(1,1) + 

15 

• 

+ 

1 

k In general, when A is a 5 or 7-point 
k-1 operator, A is a 9-point operator. 

In the Poisson case we get 

1 3 • -
0 (0,0) = 4 ' 0 (1,0) cr ( O, 1 ) 0 (-1 , 0) = 0 ( 0, -1) = - 8 ' 

• 

- 1 
0 (- I , -1) er ( 1 , -1) 0 (-1 , 1) = 0 

( 1 , I) - 16 • 

It is easy to prove that fork+ 00 the limiting operator A1 is equal to the 

Raleigh-Ritz-Galerkin discretization over bilinear splines of the Laplacian. 

, 

3. 3. fJ!110.o.tJ:i.ip2; _op-er_:1.to!.s. 

We introduce two f a1:nilies of smoothing processes: 
' 
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DCP with Bk the 

DCP with Bk= (L 

FREDERICKSON [8] introduced a certain smoothing process for his 

multigrid method. The process is a stationary DCP. Consider the system 

(3.3.1.1) 
m E J 

• 

Ak.. u·k. k = f. 
1.m 1.+m 1. 

k i EN • 

as 

The inverse Hk of Ak is defined as 

(3.3.1.2) k 
H •• 

1J 
k 

= u., 
l. 

. k 
l. € N • 

Combining these two expressions we obtain 

(3. 3. l • 3) 
.... - k 

H •• 
. l.J 
J me:J 

k -- u. 
l. +s • 

s J 

k 
H •• 

1] 

--
• • m=s-J J 

k k 
A. • . = u .• 

1.+J ,s-1 1 

From this we can compute the elements of 

following system of equations: 

• 

k 
H •• 

1J 
s 

k k 
A. . • u. 

1+J ,s-J 1+s 

(3.3.1.4) k 
H •• 

• 1J l. E , SE Z, 
J 

je:Z 

• 
J 

• • 

]€ J 

k 
B .• 

l.J 

• 

• 
1 E 

k N , s € J. 

• inverse . ' . ' 

' 
-1 ~" __ 1 )i~)1:~:,-~ -,:·:), .·: _ :';-= -. _· -- :: -,~ _J'·•jL \ -__ - -: 

. " . 

. ./ . 

of 



Now we have to k 
solve 4 systems of only 9 equations. We call this Bk the 

9 point APINV approxi1nate inverse. In the same way, 1-point, 5-point or 

7-point APINV approximate inverses can be constructed 
l.J 

following values of j 

·- . approx11nate inverse • 
J for which 

k 
B •• 

l.J 
=/: 0 

(O,O) 

(O,O),(I,0),(-1,0),(0,l),(O,-I) 

17 

1 ·point APINV 

5-point APINV 

7-point APINV ( 0, 0) , ( 1 , 0) , (-1 , 0) , ( 0, 1) , ( 0, - I ) , (-1 , 1 ) ,( 1 , - I) 

Note that application of I-point APINV gives rise to the Jacobi relaxation 

process. 

E 

and 
k B. . T. , 
l.J J 

j E J, then the product 

o,±1,±2}. The coefficients 'IT., j E J, 
J 

are defined as follows: 

(3.3.1.6) 

a_. 
J 

T ( 0, 0) cr ( 1 , 0) + T ( ] , 0) cr( 0, 0) + T,( 0, i) O ( 1 ,-1) + 

+ T ( 0, -1) cr ( 1 , l ) + T ( 1 , -:- 1) 0 (0, l_) +"t ( 1 , 1) a (O, -1) 

1r(O, 1) = T (O,O) cr(O, 1) + T (1,0) 0 (-1, I)+ T(O, I) cr(O,O) + 
• 

' • 

1T (O, -1) = i- (0, O) cr (0 ,-1) + T ( I , 0) cr (- 1, 1) + T( -1 , O) 0 ( I, - I) + 

+ T(O, .·1) cr(O,O) +.-r(· 1, ·1) 0 (1,0) + ,:(1,-1) 0 ( 1,0) 

' 

' 
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,,.(1,-1) = T(O,O) 0
( 1,-1) + 't(l,O) cr(0,-1) + T(O,-t) 0 (t,O) 

' 

• 

,r(-1,1) - 1"(0,0)cr(-1,I) +-r(0,1) 0 (-1,0) 

,r( ' -I,-

,r(l, 1) 

The coefficients can be computed from the relations 
1J 

(3.3.1.7) 1T - 1 • 
(O, O) ' 

1f .. = 0 J , j E J \ (O, 0) • 

The coefficients ,r., 
J 

= 0 , ± 1 , ± 2} \ J are given by 

1T (2, O) = 1" (I, 0) a ( 1 , O) + -r ( 1 ,-1) a (I, I) + T ( l, 1) a ( 1 ,- 1) 

• 

-1,-1) 

1T(0,-2) T ~ +-r (1 + (0,-1) v(0,-1) (1,-1) (-1,··l) 

(3.3.1.8) ' 

L(l,O) 0 (1,1),.. 1"(1,1) cr(l,O) 

1T 
(-1, 2) 

' ' . . . 

' 

, 1f •( . 2 , -1 ) - T ( -1 , 0) cr (- l , - 1 ) + T (, I , - 1 ) a (- 1 , 0) 
• 

• 

+ t' a 
· ', ( I , - 1 ) (O , 1 ) 



• 

1T (-1 , -2) = T ( 0, - ] ) cr (-] ,-1) + T (- 1 , -1) O ( 0, -1) 

,r (2 ,-1) 

1T(2,2) - T(l,l) a (1,1); ,r(-2,2) = T (-1,1) 0 (-1,1) 

End of example. 

Ass11111e 

(3.3.1.9) • • 

the identity matrix k and C a rest matrix. In the given k example C 

is a 16-point Toeplitz matrix with the elements~. given in (3.3.1.8). 
J 
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The amplification matrix of the process corresponding with APINV approximate 
• • inverse is 

The smoothing process is defined by 

or by 

) 

E 

0 (-1 , -1) = cr ( 1 ,-1) 
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I -point APINV 

(Jacobi) 

5 point APINV 

7 point APINV 

Bk: 

· 9-point APINV 

k 
B : 

End of exau1ple 

1 

1 
12 

20 

1 
10 

1 
1 

l 
8 

1 
16 

0 

1 

o---
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8 
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6 
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1 
20 

1 
16 

1 
16 

l 
1 2 

I 
10 

1 
20 

I 
16 

1 
8 

I 
16 
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Analogous to the Jacobi-relaxation process it is possible to introduce 

damping. The damped APINV-process is defined by 

(3.3.1.13) 
k k k k k k 

u - w (-C u + B f ) + ( 1 -w) u , 0 < w< 1. 
> 

MEYERINK and v.d. VORST [13] used the incomplete LU-decomposition 

(ILU) as preconditioning for a conjugate gradient process. WESSELING and 

SONNEVELD [19] introduced ILU as smoothing operator for multigrid methods. 
k . 1 . 1 . d k . . Suppose L 1s a ower triangu ar matrix an U is an upper triangular 

. Ak . . matrix. is written as 

(3.3.2.1) 

\ 

. h k wit R a 
• rest ,,,a trix. Then we can define a DCP with approxi1nate inverse 

• • 

The amplification matrix is 

(3.3.2.3) 

The !LU-smoothing process is defined by 

(3.3.2.4) 

or by 

(3.3.2.5) 
k u -

• 

The ILU-decomposition is defined as 

(3.3.2.6) l € J, 



' 
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' 

with for J + and J the following possibilities: 

-
J 

5 point ILU {(0,0),(0,-1),(-1,0)} {(0,0),(1,0),(0,l)} 

7 point ILU {"·( 0 , 0) , ( 0 , - 1 ) , ( I , - I ) , ( 0 , - 1 ) } { ( 0 , 0 ) , ( 1 , 0) , (-1 , 1 ) , ( 0 , I ) } 

9 point ILU {(O,O),(O,-I),(l,-l),(0,-1),(-1,-1)} {(0,0),(1,0),(-1,l),(0,1), 

(1,1)} 

E LE. If Lk and Uk 

with coefficients L~. 
l.J 

"- .. 

(-1,-1) 

are Toeplitz matrix corresponding to a 9-point ILU 
k 

- A • , and U ,,. . = µ . , 
J 1.J J 

µ(-1,1) ll(O,l) 
' 

Figure 3.3.2.1. Difference k k molecules of L and U 

then the product Toeplitz-matrix with coefficients p. 
J 

• 



' 

' 

The coefficients p. 
J 

are computed as follows: 

P(l,O) 

p(-1,0) = 

p(0,-1) = 

p (-1, 1) = 

• 

In order to make the ILU decomposition unique we can require 

(3.3.2.8) l • 

When we have a 9-point 
k 

A,::\. 
J 

and µ. can be computed from 
J 

• 

• 

(3.3.2.9) p.- o.,jEJ. 
J J 

In that case the real 1rtatrix Rk has 4 • points: 

p(-2,1). 

In the following table we list the values 
• rest matrix. 

23 

p. + 0 in the 
J 

, 



' 
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k 
7 9 

5 p ILU (-1,1),(1, 1) 
• • 

-4 • 

7 p ILU (-2,1),(2~-I) (-2, I), (2,-1) 

-
(-2,1),(2, l ) -9 p ILU ( -.2 , 1 ) , ( 2 , - 1 ) (-2,1),(2,-1) 
(-2,0),(2,0) 

• 

Table 3.3.2.I. Values of j for which p .. i= 0 
J 

For instance when Ak is Poisson then the various !LU-decompositions are with 

5-point ILU: - - 1 ; 

-

p (-1, I) = 

End of exa111ple. · 

-1 

A = (-1, O) 

0.11181. 

0.334381 

0.101507 

- 0.303567 

The !LU-decomposition can be computed by recursive for111ulas similar 
" 

to the Crout method (for the complete LU-decomposition). Consider a 9-point 
. Ak . h 1 matrix .· wit ,e' ements 

.. ·- ' 

k 

' 

=· . a., 
1 

I h . ' . 
n eac . po1at .·.1 e .·• •·· .. ·.we colllPute, 

' 

·. (elements t:hat are not defined are replaced by zeros): 

= y., 
. J. 

= c., 
J. 



(3.3.2.10) 

a. 
1 

- a. 
1. 

y. 
1 

£ • 
1 

l. -
1 

-b. . -c .. o 

-

--
• 

1. -
1 

a. 
]_ 

a. 
1 

25 

The elements are computed recursively for i 1 -
k 

0 ( 1 ) 2 • In the 

following figure the dots denote the elements, which are changed with the 

f or1nulas (3. 3. 2 ~ 10). 
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a f3 

b 

d 
C 

e 

---------
-----------

y E 
• 

(i 1-I,iz+l) 
(i 1 ,i2+I) 

-------
------ ---
-----------

Figure 3.3.2.3. Computation of 

The ele:1nents by 

5 p ILU: 

(3.3.1.1'') 7 p ILU: P 1.· (-2 I) , , -b .. •o.; 

9 p ILU: =b •. •o.; p. 

Note that an !LU-decomposition which is according to (3.3.2.10) but only with 

with divisions yields a method which is·equivalent with sym1netric Gauss-
• 

Seidel (SG.S). Suppose 
k A. can be 

- ;r_ 
'*l\.. L + 

. k r a.Jk •. -:k • a• -·k 
D + U with L a 

strict lower a strict upper triangular rnatrix. 



• 

(3.3.2.12) --k 
D 

• 

"'k - D • 

The a1nplification matrix of Gauss-Seidel forward is given in (2.1.4). The 

amplification matrix of sy1r1111ctric Gauss-Seidel is given by 

(3.3.2.13) ·k 
G 

With (3.3.2.12) and (3.3.2.1) we can derive that 

(3.3.2.14) k 
G = 

k -·k . :_. 

L D -

k -

--

27 

Thus k . . d . 1 G is 1. entica with the amplification matrix of an !LU-decomposition. 

In practice Gauss-Seidel forward is perfor111ed according to 

(3.3.2.15) 
k u. -
1 

1 

A~ 
1, (O,O) 

k 
A. . 

l.,J 
k 

u. . } • 
l.+J 

For 
k 

u.+., jE {,(-I,-I),(0,-1),(1,-1), (-1,0)}, we take the lllOSt recent values. 
1. J 
It is also possible to define Gauss-Seidel by lines for instance in the 

(3.3.2.16) 
-1,0) 

k k 
+ A • u • . 

k k --

* J = J \ { (-1 , 0) , ( 0 , 0) , ( l , 0) } 

For each line a triadiagonal system with 
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4. COMPUTATIONAL COMPLEXITY OF · · TIGRrD METHODS 

The computational complexity T of an iterative process depends on the 

required accuracyE, on the rate of convergence R = ln S(G), with S(G) the 

·spectral radius of G and the computational complexity of one application 

of the process W: 

(4. 1) 
R 

w. 
• 

Instead of the rate of convergence S(~) we-use an experimental quantity, 

which is a measure for S(G) namely the average reduction factor defined by: 

(4.2) r = 
av 

. (vo) 
II £_Au H 

' 

with v the s11iallest integer such that 
0 

(4.3) 

I • I is the Euclidian norxu. 

• 

4. 1. _C_,o_t!!_F_,u_,t_!3-_t_i __ o_n_a_l __ ,_c_o_mp ...... _,1_,e __ x_i_t..,;;iy ___ o_,f_. _o_n_,,~_· -~-, , __ 1_,t_.1. __ • Jlri_d, ,.iterati9.n. 

In this section an estitriate will be derived for the computational 

complexity W of one 1nultigrid iteration as defined by the procedure mui-ti-
• 

• .· ·a me .·. -d in section 2. 3. An operation will oe defined as an element from 

the set {+,-,*,/,sqrt}. 
• 

W consists of the computational work of the smoothing processes (W ), 
s 

the restrictions (W ), the prolongations (W) and some additional work , . r P . . 
co,nsisting of the computation of the residuals and additions in the prolonga-

• ti.on .step 

(4.J.1) 

(W ) 
. . q 

+W r 

' ' - . . •, · .. ' . . ' 

The following q1.1ant1.t:ies are defined: 

• 



• 

• 

• 

part of the procedure 

mul~igrid me~hod in.section.2.3 

• 

k Gku k +Bkfk u ·= • 

k-1 k-·k i • 

f : Rf 
r.:.k kk 1 
u • p u • • 

,..k fk-Akuk f • • 
k k ,..,.,k 

u • u +u • 

number of operations 

per grid point 

a 
s 

a r 
. . 

a 
p 

a 
q 

29 

For l large, cr < 4 and with neglecting the computational work on the coarsest 

grid k 1 we have: 

(4.1.2) 

w 
s 

w r 

w 
p 

w q 

(p+-r){a' + 
s 

(J 

4-cr 

4 
4-cr 

{a, + 
q 

r 

p 

CJ 

4-o 

' 

er 
4-cr s 

a'' and a'' on the coarser grids. 

l. 1nay have more diagonals than 

a' and a' on the finest grid and 
s q 

s q 
Note that in the special case p = 0 and cr - I the multigrid method of 

section 2.4 can be used .• Then a'' q 
o. 

The n111nber of operations per grid point for one APINV-smoothing step 

according to (3.3.1.11) is given in table 4.1.1. (1) denotes the computation 
,..,k 

of r: -· u an . t e computation o· u :=u +Br. 

• 
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Smoothing 

* 
· 5p-APINV (I) 5 

(2) 5 

+ 

5 

5 

7p 9p 

.. 

a 
------1--s--+-__ 20.;;._ _ _,___--T"" ______ _ 

. 7p-APINV 

· 9p-AP:f NV 

* 

(1) 5 

(2) 7 

a 
s 

* 
( 1) · 5 

, (2) 9 

24 

• 

28 

+ 

5 

7 

+ 

5 

9 

* 

7 

7 

* 

7 

9 

28 

32 

+ 

7 

7 

+ 

7 

9 

* 

9 

9 

36 

+ 

9 

9 

a 
s ______ __;::;__,_a. ____ ...__ ___ ___. _____ _ 

Table 4.1.1. Operations per grid point for APINV-smoothing 
process 

In table 4. 1. 2 we su111r11a,rize a of the !LU-smoothing process according to s . . 
(3.3.2.5). (I) denotes the computation of r :- Ru +f and 2 the computa-

. k · k -l~k 
t1on of u :• (L ·) r • 

• 



• 

' 

... 

Smoothing Sp - Ak 7p Ak k 9p - A 

* * + 

Sp-ILU (I) 2 2 

(2) I 4 4 

I a 
13 s 

.. 
I * + I * + 

7p ILU (1) 2 2 2 2 

(2) l 6 6 1 6 6 

a 
17 17 s 

I * + I * + I * + 

9p-ILU ( 1) 2 2 2 2 4 4 

(2) 1 6 6 1 6 6 1 8 8 

a 
17 17 25 s 

Table 4.1.2. Operations per grid point for ILU smoothing 
process 

In table 4.1.3 we give the a 
s 

for Jacobi and Gauss-Seidel by points and 

by lines. It is ass1111,ed that a tridiagonal system is solved at a cost of 

1 division, 6 multiplications and 3 additions per point. 

· Smoothing Sp Ak 7p - Ak 9p - Ak 

. I * + I * + I * • 

1 4 4 1 6 6 1 8 
• 

Point Jacobi and 9 13 17 
Seidel a 

Gauss s 

I * + I * + I * 
' 

1 8 5 1 10 7 1 12 
• 

• Gauss Line a 14 18 22 
Seidel s 

Table 4.1.3. Operations per grid point for Jacobi and 
Gauss-Seidel 

+ 

8 

+ 

9 

31 



• 
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The nu1nbers of operations per grid point for restriction and prolongation 

can be counted from the fortnulas (3. 1 • 5 )-(3. 1 • 1 O) • 

1 • 5 point 7 • 9 • point point point 

• 

* + * + * + * + 
' 

Restriction 0 0 2 4 2 6 3 8 
I 

a 0 6 8 1 1 r 
" 

• ' 

* + * + 

Prolongation 0.75 1. 25 

a 1. 50 2 

Table 4.1.4. Operations per grid point for restriction 
and prolongation 

Finally, we consider a. 
q 

• 

When ILU is used the residual can be computed as follows 

. (4.1.3) 

to compute the residual·. The res.idual of 

(points and lines) is computed according 
' 

• 

Jacobi, 
k 

to r : 

APINV, and Gauss-Seidel 

• 



• 

' 

Ak Ak Ak Sp - 7p 9p -

APINV,Jacobi, * + * + * + 

point/line 5 6 7 8 9 10 
-

' 

Gauss Seidel a I 1 15 19 q 

* + 

Sp ILU 2 3 

a 5 

* + * + * + 
• 

7p ILU 2 3 2 3 

a 5 5 
... 

* + * + * + 
• 

9p - ILU 2 3 2 3 4 5 

a 5 5 9 
q 

Table 4.1.5. Operations per grid point for 

4.2. Preliminary work. 

the co~putation of the residual 
plus 1 addition of the prolongation. 

Before starting the multigrid process we have to compute approxi111ate 

33 

. k k inverses B, ~ (-1) l , when APINV and ILU- sn10othing is used, and coarse 

grid operators 

is applied. 

A , k -1 • l 1, when the R A P - coarse gri approxl1nat1.on 

The following quantities are defined: 

I).Utnber of .operations per gridpoint 

a . b 

a 
C 
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• 

k 
For~ large the preliminary work for the computation of B, k ~~,denoted 

11·1a te ly: 

PWb - (a'+ - b 
(4.2.1) 

PW ( 1 ' 
4ac C 

coarser grids. 

+ 

3ab 

1 ,, ) 4 l 
12ac • 

a' on the finest grid 
C 

and a'' and a'' on the b C 

In the APINV case the approxi1nate inverses are computed according to 

(3.3.1.5). Per grid point a system of 5,7 or 9 equations has to be solved. 

Ass11111ing that 
• 1 3 

sions, 3 n + 

can be given. 

-Sp-APINV 

ab 

7p-APINV 
' 
ab 

- - 9p .APINV 

:1. 

.. 
• - , 

Table 4.2.1. 
. ' . . '. 

·sp - Ak 

I * + 
' • 

• 

10 50 50 

110 

I * + 

21 133 133 

I 

287 

• 

I * + 

36 276 276 
-

588 

' Ak 7p -

I * + 
--

21 133 133 

287 

I * + 

36 276 276 
-

588 

9p 

- -

I 
+ 

36 

Ak 

" . . . . 

* + 
1 

276 276 

588 

• 
' 

' 

O·perations per grid point for the computation of ·- --
the_ APWV\ approxi,oate inverse 

' 



• 

' 

The preliminary work needed for the computation of the APINV approxixnate 

the 

and according to the recursive for1uulas (3. 3. 2. 10) and (2) denotes the 

. f k d. ( 2 1) computation o R accor 1.ng to 3.3 •. I • 

- • 

Sp Ak 7p Ak 9p Ak 
" 

. 

I * + 

5p-ILU (1) 2 2 2 

(2) 2 

ab 8 
' 

I * + I * 

7p-ILU (1) 3 7 7 3 7 7 

(2) 2 2 
I 

ab 19 19 

I * + I + 
, 

+ I * ' * I 

... 

9p-ILU (1) 3 7 7 3 7 7 4 12 12 

(2) 2 2 4 
" 

" 

ab 19 19 32 
.... 

grid point for the Table 4.2.2. Operations per 

computation of 
k k k L ,U and R for ILU-

smoothing process. 
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Finally, we consider the computation of the coarse grid operators according 

* We rerrta-rk that FREDERICKSON [8] has proposed his wethod for the Poisso11 

equation. The prelirninary work is zero· in that case~ because the approxi1nate 
. . kn . . inverse 1.s .·,·. ·. own a pr1.or1.. 

. " 

• 



• 
• 

- - -

k Sp - A 
- • . .., 

- k k k _ k lp - R 5p - R 7p - R 9p - R k Ip - R . 
• 

. . 
- - . . - - .. 

-

* + * + * + * + * + 
- . ' .. 

- k 7p-·P 18 4 62 34 90 54 118 72 27 _ 6 
- -

a 22 96 144 190 33 -. 

- C 
' . - ' . - . . -

. - . . - - - ' . . . . -

* . + * + * + * + * + 
- . -

' 

. k 
18 4 -- •· 86 48 118 72 150 96 34 . 10 9p-P -

- - . . --
-. '' . -- "' - - '/" - . 

• 

22 134 190 246 44 a 
C 

---· • 

k 7p - A 

- k 
Sp - R k 7p - R k 9p - R 

-

* + * + * + 

90 54 1 16 78 148 100 

144 194 248 
• 

* + * + * + 
. -

118 72 148 100 184 128 

190 248 312 

k Ip - R 

* + 

* + 

so 16 

66 

• 

k 9p - A 

k Sp - R k 7p - R k 9p - R 

* + * + * + 

184 128 

312 

• 

* + * + * + 
' 

150 96 184 128 218 160 

246 312 .378 

I ., 

w 
0\ 



37 

4.3 Poisson, anisotropic diffusion 
1· 0 " :sr r•r 11111 r r I a 

and convection-diffusion equations •. 

The procedure multigrid method described in section 2.3 is a general 

algorithm for the solution of a linear 2nd order elliptic boundary value 

problem. The 

and 

question is how to choose the parameters p,cr,T and the operators 

for a large vari.ety of problems. 

In table 4.3.1 we mention the variants of the multigrid method that we 

consider. 

... 
• Rk Pk course grid smoothing variant p (j T 

operator process 

l 0 1 1 7 7 RkAkPk 7p ILU 

2 0 1 I 7 7 FD 7p ILU 

3 0 1 1 1 9 FD 7p ILU 

4 0 I 1 9 9 
k R A .. 

k 9p ILU 

5 1 1 1 7 7 RkAkPk 7p ILU 

6 l 1 1 7 7 FD 7p ILU 

7 0 2 1 7 7 RkAkPk 7p - ILU 

8 1 1 0 7 7 RkAkPk 7p ILU 

9 l 1 0 7 7 FD 7p ILU 

10 0 1 l 7 7 RkAkPk 7p APINV 

1 1 0 l 1 7 7 RkA k SGS 

12 0 1 1 7 7 FD SGS 

Table 4.3.1. Various variants of the multigrid method 

Table 4.3.2. gives the operation counts of one multigrid iteration for 

the 12 variants of table 4.3.1. It has been compiled using the operation 

counts in the preceeding sections. The table r.efers to a general 5 and 7 

point operator · wit var1.a e coefficients. When there is a dif f,erence 
l between 5 and 7. point oper.ators. A , the results for the 7 po.int ope:r-ators 

are placed within brackets. 

For easy comparison, the computational complexity is expressed in work 

• 
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units. One work unit, as introduced by B DT [4] and denoted here as 
• 

WUGS, is the n11rr1ber of operations necessary for one Gauss-Seidel sweep on 

the finest grid. Similarly, we define one U as the work of one 7p-ILU 
' 

smoothing step on the finest grid i.e. 17Noperations (see table 4.1.2). 

• w w w w w PWb PW variant 
s r p q C 

I 1. 33 0. 16 0 .. 12 0.29 1. 90 1.49 3.07(3.80) 

2 I. 33 0. I 6 0. 12 0.29 1. 90 1. 49 -
3 l. 33 0 0. 16 0.29 l. 78 l .. 49 -
4 1. 49 0.22 0.16 0.29 2. 16 l. 49 5.47(6.44) 
5 2.66 0.16 0. l 2 0.39 3.33 1.75 3.07(3.80) 

6 2.66 0.16 a. 12 0.39 3.33 l. 49 -
7 2.00 0.47 o. 18 0.58 3.23 l .49 3.07(3.80) 

' 

8 1. 33 0.16 o. 12 0.39 2.00 l. 49 3.07(3.80) 

9 1. 33 0.16 0.12 0.39 2.00 1 .49 -
10 1.96(2.20) 0.16 o. 12 0.65(0.88) 2.89(3.36) 22.50 3.07(3.80) 

1 1 1. 5 7 (2. 04) o .. 16 0. 12 0.65(0.88) 2.50(3.20) - 3.07(3.80) 

12 1.41(2.04) 0.16 0. 12 0.65(0.88) 2.34(3.20) - -

Table 4.3.2. Operations count per grid point expressed in 

W ,W ,W and s r p 

PW 

4.56(5.29) 

1.49 

1.49 

7 .22(8.19) 

4.56(5.29) 

1.49 

4.56(5.29) 

4.56(5.29) 

1.49 

2.5. 6 (26. 3) 

3.07(3.80) 

-

U for the 

W are 
q 

variants of the multigrid method; 

defined in (4.1.2), Win (4.1.1), 

PW is the total preliminary work: 

PWb and PWc in (4. 2. 1); 

PWb + PWc. 

Some conclusions can be derived from table 4.3.2. 
' 

- For all variants with·ILU the smoothing work W and the additional work 
5 

• point operator • 
• 

The computational complexity of SGS is larger than the computational 

complexity of 7p-ILU, but the latter needs preliminary work. 

- The contribution of the restriction and prolongation work W . . . . r 
total work W is rather' siaa.11 ·. (at most O. 20 W) •. 

and W p 

The ··computational complexity of the construction k u· and 

k 
• > 

l(-1)1 is 0.45 W (variant 5 and 6) up to 0.84 W (variant 3). 

to the 

• 
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- The computational complexity of the construction of the Galerkin approxi 

k - ,l(-1 )2 

The APINV-smoothing process in variant 10 requires 1ru1ch preliminary work. 

To study the efficiency of the various variants, we compute the average 

reduction factor for 3 test problems. The test problems have constant 

coefficients, so the operation counts of table 4.3.2 can be improved for 

these special cases. 

Problem I. The Poisson equation: 

(4.3.1) 

defined on the unit square n - (O,l)x(O,l) with boundary conditions 

u 

problem is discretized by central differences on the grid (2.2.1) with 

4. The boundary conditions are substituted in the difference equations. 

The multigrid iteration is started with the zero solution. The required 

variant. 1 2 3 4 5 6 7 8 9 10 I I 12 

M 4 6 7 4 3 4 4 5 6 10 6 10 

r 0.020 0.054 0.085 0.020 0.0061 0.014 0.020 0.055 0.065 0.29· 0.071 0.214 
av 

tlO 1. 12 1.50 1. 66 1. 27 1 .. 50 1. 80 1. 90 1. 59 1. 68 .5.38 2. 18 3.49 

TC 12.16 12.89 13.95 15.86 14.55 14.81 17.48 14.56 13.49 ·s4.s · 18. 07 23.40 

• 

• 

• • Table 4.3.3. Results of the multigrid method applied to the Poisson equation. 

• 

M: nurnber of multigrid iterations 

r : average reduction factor (4.2) 
av 

tlO = __ W __ _ 
.log rav 

TC M.W + PW: 

: n11inber of operations per grid point for ·O. 1 

reduction of the residual 

total nu1nber of operations per grid p•oint 
• h w d. 'TJl".T .. . ·~ expressed in .. ··.·· · .. U wit ·· ... • an , .i"w given 1n 

table 4.3.2. 
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Looking at the total complexity TC it can be concluded that variant 1 

has the smallest complexity although there is only little difference with 

variant 2. In the Poisson case, the coarse grid operators of variant 1 and 2 

are the same except for the boundary points. 

variant 1 somewhat faster than variant 2 at the expense of preliminary 

work. 

Comparing variants 2 and 3 it seems that 7-point restriction is 

better than injection. 

Comparison of variant 1 and 4 shows that 9-point restriction and 

prolongation combined with 9p-ILU does not accelerate the method. 

Considering variants 1,5 and 6 we see that additional smoothing, 

which almost doubles the work in one multigrid iteration step, does not 

reducer enough to 
av 

Variant 7 shows 

does not imporve the 

of variant 1 • 

11,ake variant 5 and 6 competitive. 

that increasing of the number of coarse grid corrections 

r of variant l, while W of variant 7 is about 1. 7 W av 

Comparison of the variants 1, 8 and 9 shows that it is better to 

smooth after than before coarse grid correction. Comparison of the variants 

1, 10, 11 and 12 shows that ILU is a better smoother than SGS or APINV. 

Problem 2. The anisotropic diffusion equation: 

(4.3.2) 2.02, 

and 

(4.3.3) 

defined on the unit square and with the sa111e boundary conditions, exact 

solution, discretization, starting values and accuracy requirements as in 
I 

the Poisson case. 



• 

, 

• variant I 2 3 4 5 6 7 8 9 10 l 1 
• 

M 4 5 5 4 3 3 4 5 5 33 27 

r 
av 

0.014 0.026 0.028 0.014 0.002 0. 002 0.014 0.031 0.030 0.70 0.61 

tlO 1. 02 1.20 1.15 l • 17 1. 23 1.23 1.74 I. 33 l. 31 18.66 11. 65 

TC 12. 16 10.99 10.39 15.86 14.55 11. 48 17.48 14.56 11.49 121.0 70.6 

Table 4.3.4. The 12 variants applied to equation (4.3.2). For legenda see 
• 

Table 4.3.3 • 

.. .... 
• variant I I 2 3 4 5 6 7 8 9 10 I 1 12 

M 2 3 2 2 2 2 2 3 3 33 27 27 

r IE-4 12E-4 4E-4 IE-4 IE-7 lE-7 lE-4 13E-4 14E-4 0.70 0.61 0.61 
av 

tlO 0.48 0.65 0.52 0.54 0.48 0.48 0.81 0.69 0.70 18.66 11. 65 )0.90· 

TC 8.36 7. 19 5.05 11.54 11.22 8. 15 11.02 10.56 7.49 121.0 70. 6 63.2 

Table 4.3.5. The 12 variants applied to equation (4.3.3). For legenda 

see Table 4.3.3. 
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12 

27 

0 .. 61 

10.90 

63.2 

First, we re1aark that APINV and (point) SGS are bad smoothers in both 

cases. It is known that line relaxation is better in anisotropic cases. 

Multigrid methods with ILU seems to be very robust in the sense that the 

smoothing operator does not need to be adapted to these anisotropic problen1s • 

In the first case the variants with ILU are somewhat slower than in the 
lf//J ,ti-· 

second, but they are at least as fast as in the Poisson case. 

Considering the total complexity TC it can be concluded that variant · 

3 is superior to the other variants in both anisotropic cases. 

Problem 3. The convection-diffusion equation: 

(4.3.4) 

with a) VJ 
, 1 V 0 , 

2 , 

b), vl O, v2 1 

. 

v 1u 
X . 1 

c) V· 
1 

d) V 
1 

-vu -1, 
2 X 2 

1 , v2 1 

- 1, v2 1 

, 



42 

defined on the unit square with boundary conditions u O on an. The 2nd de 

rivatives are discretized by central differences, the first derivatives with 

Il'ins method: 
' 

( 1 +a . . ) ( u .. l • - u . . ) + ( I -a. . . ) ( u .. . - u • 
,...,, ili2 il+ ,i2 1112 1112 1112 11- ,12 

(4.3.5) 

-l 
2 • 

=-----------------------------

r,J 

=-----------------------------
, 

• 

a. . and S. . are the 11 'in coefficients: 
1 11 2 l.1 1 2 

(4.3.6) 

- coth 

The sarue starting iterand and required accuracy is taken as in the 

Poisson case. 
• 

• 1 2 3 4 5 6 7 8 9 10 I 1 12 variant 

case a 
' ' 

M 3 3 3 3 2 2 3 3 3 16 3 3 
• 

' 

r 0.0.030 0.0063 0.0072 0.0018 7E-5 9E-5 0.0024 0.0079 0.0088 0.47 0.0056 0.0057 
av 

• 
case b M 2 2 2 2 l 1 2 2 2 16 3 3 

r 7E-5 7E-5 0.0001 6E-S 2E-8 3E-8 6E-5 0.0002 0.0002 0.47 0.0043 0.0045 
av 

case c M 1 1 I I l I 1 1 1 16 1 ' 1 ' 
' 

' 

r ,3E-9 SE-9 6E-9 3E-9 4E-9 4E-9 2E-8 2E-8 2E-8 0.47 4E-9 4E-9 
av· ' 

cased ~1 4 6 6 4 3 3 6 6 6 16 10 10 

·r 0.040 0.093 0.073 •0.045 .0.0092 0.0095 0.0039 0.090 0.090 0.47 0.25 0.27 
av 

' ' ' 

Table 4.3.6.·The 12 variants applied to the cases a,b,cand d of 

vection diffusion equation (4.3.4). For legenda see 

the c.on-... ,, 

table 4.3.3. 

• 

• 
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We see that the mult.igrid methods: with ILU or with SGS are slow in case 

d, but the r is comparible with the r in the Poisson case 
av av 

-
• variant 1 2 3 4 5 6 7 8 9 10 1 l 12 

tlO l. 36 1.84 1. 57 l. 60 I. 64 I. 65 12.29 I • 91 1.91 8.81 4. 15 4. l 2 

TC 12. 16 12.89 12.17 )5.86 14.55 11.48 17.48 16.56 13.49 71 .84 28.07 23.4 
-

Table 4.3.7. The 12 variants applied to cased of (4.3.4). 

For legenda lee table 4.3.3. 

Comparing TC for all variants it can be concluded that variant 6 is best 

for cased of the convection-diffusion equation. 

In the operation counts for the preliminary work, the work to compute 

the Il'in discretizations (4.3.5) is neglected. When Galerkin is used as 

coarse grid approxi111ation, this work is done only on the finest grid, but 

when FD is used, some additional work has to be done on the coars.e grids. 

When we take this work into account,·variant 1 is best for cased of the 

convection-diffusion equation. 

From the results of the three problems. the following conclusions can 

be drawn: 

7p-ILU is a better smoother than AP.~ or SGS. ILU t1wkes the mul t:igrid 

method efficient and robust, in the sense that the smoothing operator does 

not need to be adapted to the singularly perturbed probJ,ercis 2 and 3. 

Comparison of variant 1 with 2, 5 and 6, 8 and 9 and 11 with 12 shows that 

1 · · · · · · RkA k • t 1 f a mu tigrid method with Galerk1n approxir1lation . 1s a, east as ast as 
• 

a multigrid method with FD as coarse grid operator. It depends on the 

amount of preliminary work which coarse grid operator 1118kes the multigrid 

method more efficient. 

Smoothing after rather than before coarse grid correction is p.referable. 

Increasing of the n11111her of coarse grid corrections beyond l is not 

worthwhile. 

Application of the expensive 9 point • d t " t· . prolongation an·. res, r1c.. 1.ou 1.s not 

• 

• 

' 
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better than the use of the 7-point prolongation and restriction. In the 

anisotropic cases, injection and 9-point prolongation appears to be better 

than 7-point prolongation and restriction. 

4. 4 •. comp_a:r;i~~n, :Yi,~,? ot_her authors 

Several authors have reported experiments with multigrid methods applied 

to elliptic boundary value problems. A survey of their methods is given in 

the following table. 

· Name of the 
author 

FEDOR... · 0 [6] 

B _ T [3 ,4] 

FREDERICKSON [SJ 

NICOLAIDES [17] 

·HACKBUSCH [9] 

WES SELING [20] 

Coarse grid 

operator 

FD 

FD 

RkAkPk 

RkAkPk 

RkAkPk 

Smoothing 

operator 

point GS 

point/line 

GS 

9p-APINV 

point/line 

point/line 

chess board 

GS 

7p-ILU 

GS 

9 

polynomial 

interpolation 

or 9 

'9 

7 or 9 

9 

7 

Table 4.4.1. Survey of ~arious multigrid methods-on the literature. 

l or 9 

1 or 9 

9 

7 or 9 

9 

7 

Comparisons can be ,nade between the methods when the Poisson equation 

is solved in a square with Dirichlet boundary conditions. N is the nt,1nber 
~. 
' 

of grid points on the finest grid. 

With variant I of the multigrid method we find in table 4.3.3 that the 

nt),Itiber of o,per.ations per grid ·point for O. 1 reduetion of the residual is · 

t l O· 19N • This nu.1aber operations. • st11aller, when exploit the l.S even we 

fact that the coefficients - the Poisson constant. in case are 
' ' ' ' . 

• 
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FEDORENK.O [6] reports for 0.001 reduction of the residual about 185 
operations per-point, thus · 

the coefficients are constant). 

B T mentions in [4] for the solution of the Poisson problem 28N 

operations (with savings of operations "because of the constant coefficients). 

NICOLAIDES [ 17 J reports results, for combinations of a mul tigrid method 

with finite element methods. For the case with linear elements he reports 

t 10 3.9 WUGS 35N operations. 

HACK.BUSCH [9] uses Gauss Seidel with chess-board ordering of the grid­

points. The computational complexity of one smoothing step in his method is 

equal to the computational complexity of two point Gauss Seidel steps. 

He uses RkAkPk with Rk and so 

h h . . k d. bl t at on t e coarse grids he has 9-,point operators A • Accor ing to ta e 

4.1.3 the smoothing work on the finest grid is 18 operations-·per-point and 

on each coarse grid 34 operations-per-point. The total complexity W of one 

multigrid iteration step with p O, er~ 't = 1 is then 2.76 U. He finds 

r 
av 

WESSELING [20] also did experiments with variant 1 of our multigrid 

method. The only difference is that he does not eliminate the boundary 

conditions 
• tions. 

The anisotropic diffusion equation (4.3.2) has also been treated by 

HACK.BUSCH [9] and WESSELING [20]. 

17N operations. 

WESSELING reports r = 0.053 with the same multigrid method (but 
av 

-- ♦ • 

without eliminating the boundary conditions). Thus t 10 r~ 25N operations. 

HACK.BUSCH uses chess-board line Gauss Seidel with 28 operations-·per­

point on the finest grid and 44 operations-per-po,int on the coarse grids,. 

The computational complexity of one mult:igrid iteration is W 3.54 w,u:1 •. u. 



46 

= SON operations. 

4.5. Final remarks 

It has been shown that multigrid methods with 7p-ILU smoothing, 
' 

p - O, cr = -r I, with Galerkin or FD coarse grid approxj1nation and with 

7-point restriction and prolongation or with injection and 9-point prolonga 

tion are fast for the problens here considered. 

It is not clear which coarse grid approximation is better. Galerkin 

approxiroation delivers a fast method at the expense of preliminary work. 

In the cases of the Poisson and the convection-diffusion equations 

the combination: 7-point restriction and prolongation results in a fast 

m.ultigrid method. In the anisotropic cases the combination: injection and 

9-point prolongation appears to be better •. 

Other model problec11s, such as the biharmonic problem, a problem with 

variable coefficients and a nonlinear problem are treated with variant 

10 of the multigrid method in MOL [14]. The multigrid method turns out to 

be as fast as for the Poisson equation in all these cases. 

In WESSELING and S ~VELD [19] and MOL [15] results are reported for 

the Navier-Stokes equations. The nonlinear equations are Newton-linearized 

and the system in each Newton iteration is solved by variant 1 of the multi­

grid method. It appears that the average reduction factor r in each 
av 

Newton step is comparable with r of the Poisson equation. av 

ACKNO'WLED,GF.M ENT 

The author wishes to thank Prof. P. Weaseling for his guidance and 

dr. P.W. Hemker for his· valuable corornents on an earlier version of the paper. 

REFERENCES 

[ I J ASTRACHANCEV, G.P., An iterative method of solving elliptic net p::eobZems, 

USSR Comp. Math. Math. Phys. 11, no. 2 (1971), 171-182. 

[2] 
' 

~OV, N. S • , Ori the convergence of a :re"' """''"' ation method 1iJi th na tu:ra Z 

const-:eaints on the elliptic operato:r.>, USSR Comp. Math. Math. 

Phys. 6.~ no,. 5 (1966), 101-135 • 

• 

, 

' 



47 

[3] B DT, A., Multi level aa/Y'Y"\tive technique (MLAT) for fast numerical 

solution to boundary value problems~ 3rd Int. Conf. on Num. Meth. 

in Fluid Mechanics (Paris 1972), in: Lecture Notes in Physics 18, 

Springer, Berlin & New York (1973), 82-89. 

[4] B 

[5] B 

T, A., Multi-ZeveZ - .,.,,,tive solutions to bou 

Math. Comp. 31 (1977), 333-390. 

value problems., 

T, A., Multi-level -~tive techniques (MLAT) for singular 

pertitrbation problems., in: N1.1111erical Analysis of Singular 

Perturbation Problems, P.W. Hemker and J.J.H. Miller eds., 

Academic Press, London (1979), 53-142. 

[6] FEDORENKO, R.P., A reZa,xation method for solving elliptic difference 

equations., USSR Comp. Math. Math. Phys. 1 (1962), 1092-1096. 

[7] FEDORENKO, R.P., The speed of aonvergenae of one iterative proaess, 

USSR Comp. Math. Math. Phys. 4 no. 3 (1964), 227-235. 

[8] FREDERICKSON, P.O., Fast appr>oximate inversion of large sparse Zinea:e 

systems., Matherr1atics report 7-75, Lakehead University, Ontario, 

Canada (1975). 

[9] HACKBUSCH, w., On the rrrultigrid method appZied to difference equations, 

Computing 20 (1978), 291-306. 

[10] HACK.BUSCH, w., Convergence of rrrulti-gr1id ite-:r>ations appZied to 

difference equations, Math. Comp. 34 (1980), 425-440. 

[11] HEMKER, P.W., Introduction to 111Ulti grid methods, Nieuw Archie£ voor 

Wiskunde (3), XXIX (1981), 71-101 • 
• 

[12] REMKER, P.W., Multigrid bibliography, in: Colloquium Numerical Integra-
' 

tion of Partial Differential Equations, J. Verwer ed., Mathe1c1ati-

cal Centre, Axi,sterdam ( 1980), 88-97. 

[ 13] MEYERINK, J. A. & v. d. VORST, H. A. , An iterative solution method fora 

Zinear systems of uJhich -the ooefficient mat'Pix is a symmetric 

M matrix, Math. Comp. 31 (1977), 148-162 • 
• 

[ 14] MOL, w.J .A., A rrrultigrid method apptwd -to some s ·1/,,,...,ie probZems., Mem<> 

rand1x.1,:a11. nr • . 287, Appl. Math. Dept., Twente University of 

Technology ( 1979) .. 

' 



48 

[15] MOL, W.J.A., Nwnerical solution of the Navier·-Stokes equa~ions by means 

of a multigrid method and Newton-iteration, 7th Int. Conf. on 

N11111. Meth. in Fluid Mechanics (Standard 1980), in: Lecture 

Notes in Physics 141, Springer, Berlin & New York (1981), 285-

291. 

[16] NICOLAIDES, 

finite e Zement e_., r,..,tions, Ma th. Comp. 31 ( 197 7) , 8 9 2-906. 

[17] NICOLAIDES, R.A., On some theoretical and practical aspects of multi­

grid methods, Math. Comp. 33 (1979), 933-952. 

[18] WESSELING, P., The rate of convergence of a rn:ultiple grid method, 

Conference on Nu111erical Analysis (Dundee 1979), in: Lecture 

Notes in Math. 773, G.A. Watson ed., Springer, Berlin & 

New York (1980), 164-184. 

[19] WESSELING, P. & SONNEVELD, P., Numerieal, experiments with a rrrultiple 

grid and a preconditioned Lanczos method, Conference on 

Approxir,iation Methods for Navier-Stokes problems (Paderborn 

1979), in: Lecture Notes in Math. 771, R. Rautn:-,ann ed., Springer, 

Berlin (1980), 543-562. 

[20] WESSELING, P., Theoretical ,'-4, practieal aspects of a rrrultigrid method, 

Report NA-37, Delft University of Technology (1980) • 

• 

• 


