
stichting

mathematisch

centrum

AFDELING INFORMATICA
(DEPARTMENT OF COMPUTER SCIENCE)

J • C . VAN V L I ET

IN 15/78

AN IMPLEMENTATION MODEL OF THE ALGOL 68 TRANSPUT

DRAFT VERSION

~
MC

JULY

2e boerhaavestraat 49 amsterdam

E,IBLiOTHEEK MATHEM/\TISCH CENTRUM
-AMSTERDAM-

Punted a:t .the. Ma:the.ma.:ti.eai. Ce.n.ttr.e., 49, 2 e. BoeJLha.a.vu.tM..a.:t, Am.o.te.Jr.dam.

The. Ma.:the.ma.:ti.eai. Ce.ntlr.e., 6ou.nde.d .the. 11-.th 06 Fe.bJc..uaJLy 1946, -lo a non
p1Lo6Lt ino.tli.u.tion cum.,i.ng a..t .the. plLomo:Uon 06 pUll.e. ma:the.ma.:ti.eo and U6
appUc.a.:ti.ono. I.t -lo .oponooJc..e.d by .the. Ne..thvr..la.nd6 Gove.Jc..nme.n:t .thfLough .the.
Ne..thvr..la.ndo 0Jc..gan1.za.:ti.on 6oJL .the. Advanc.e.me.n:t 06 PUll.e. Rue.Mc.h (Z.W.0) •

.AMS(MOS') subject classification scheme: 4.22, 4.41

ACM-Computer Review-categories: 68Al5

An Implementation Model of the ALGOL 68 Transput
Draft version

by

J.C. van Vliet

ABSTRACT

This .report aims at a precise definition of the transput of ALGOL 68,
conforming with section 10.3 of the Revised Report on the Algorithmic
Language ALGOL 68. Whereas section 10.3 of the Revised Report describes the
~ of transput, the emphasis in this report is on implementability.
The present report is prepared for the meeting of the Working Party on
Transput, to be held in Amsterdam on August 23-24, 1978. It describes the
state of the model as of July 1978.

KEY WORDS AND PHRASES: ALGOL 68, transput, portability, runtime system,
ALGOL 68 implementation.

f,

I • INTRODUCTION.

{Presumably, this introduction is still rather floating. This_draft
describes the state of the implementation ·model as of July 1978. Chapters
1-7 are more or less copied from 1W90. Chapters 8-11 are almost completely
rewritten. The ALGOL-68 texts in these Chapters have been tested quite
thoroughly, and behave well on all test cases. Their efficiency is
comparable to that of the transput system o·f the CDC ALGOL-68
implementation.}

This report aims at a precise definiticin of the transput of ALGOL 68?
conforming with .section 10.3 of the 'Revised Report on the Algorithmic
Language ALGOL 68 (henceforth the Revised Report). Whereas section 10.3 of
the Revised Report describes the intention of transput, the emphasis in this
report is on implemen~~bility.

A variety of ALGOL 68 implementations exist or are near completion. They
all support some kind of transput, although they all differ slightly from
each other and from the Revised Report (2-8]. This diversity renders the
porting of programs from one implementation to the other very difficult, if
not virtually impossible.

The existence of so many different transput systems may to some extent
be due to the fact that the description as given in the Revised Report does
not really facilitate implementation of the transput. Each implementer again
has to struggle his way through the transput section and locate the problems
with the particular operating system. It is hoped that the definition in
this report will solve most of these problems once and for all. THOMSON &

BROUGHTON [9,10) and R.FISKER of Manchester have been working on transput
systems of a similar structure.

The present report is written on request of the Working Party on
Transput, which has been set up by the Subcommittee for ALGOL 68 Support of
Working Group 2.1 of IFIP. A preliminary version appeared in [16]; that
version was discussed at the first meeting of the·Working Party in Oxford,
December 14-15, 1977. The main objections against [16] concerned its
efficiency (most notably string processing and formatted transput). These
objections, and many other minor remarks, have been taken care of by now.

{A first implementation of the transput as defined in (16] is by now
available on a TR 440 at the University of Bochum (West-Germany). This
implementation does not support formatted transput. It was finished within 4
months, solely from the description in [16], which places some confidence in
its implementability. At this moment also, work is progressing at the.
Mathematical Centre on an implementation on a CDC Cyber under the NOS-BE
operating system.}

The approach taken is similar to the. one in the Revised Report: the
transput is described in pseudo-ALGOL 68. The pseudo part can be considered
as a language extension which is reasonably implementable. The primitives
underly,;j_ng the model are not defined in ALGOL 68. Instead, their semantics
are given in some kind of formalized English,. resembling the way in which
the semantics in the Revised Report is defined. One advantage of a
description in pseudo-ALGOL 68 is that it can largely be tested
mechanically. It might even be possible to feed this description of the
transput into the compiler, thus automatically creating part of the runtime

2

environment.

Care has been taken to stick to the Revised·Report as closely as
possible so far as the meaning is concerned. So the full transput is
defined, even those features whose value may be questioned (like, e.g.~ th~
elaboration of dynamic replicators upon staticizing a picture). At a few
places however, a different meaning is ass~gned to certain features. These
differences are clearly indicated as such in the sections headed
'DIFFERENCES~.

At its first meeting in December 1977~- the Working Party on Transput
also discussed a host of reported errors and problems in the area of
transput. Most of these are collected in [·1'"4]. The Working Party is
preparing a document containing solutions and answer.s to all these problem.cl,
This document will be submitted for formal approvement to the Subcommittee
on ALGOL 68 Support. The changes caused by this document have already beeh
taken care of in the present report.

The main differences between the transput section presented here and the
one from the Revised Report are:

i) Books are considered to form pa~t of the operating-system interface;
as such, the raode BOOK is not specified;

ii) On many systems, not all of the text of a file is available at each
inst.ant of time. This has been made explic1t in the present model by
starting from a "buffer" concept. {The consequences of this approach
permeate through the whole transput section!};

iii) The nu:nerous calls of 'undefined' in the Revised Report have been.
assigned meanings. Hid.den kinGs of undefined actions like SKIP, UP
gremlins and UP bfileprotect have been paid due attention;

iv) The number of tests that is performed for each transput operation is
minimized. For many routines, pre- and postconditions have been chosen
carefully, so as to achieve security with a minimum of tests;

v) By choosing a different structure for the mode FORJv'iAT, · remarkable
simplifications and optimizations have been made in the section on
formatted transput. _

The differences between the present model and the definition in the
Revised Report have been collected in the sections headed 'DIFFERENCES'. The
following classes are di_stinguished:

i) Differences in the descriptive method being used. Only major changes
in the.descriptive method are listed, such as the change in the
internal representation of formats. They are marked {D};

ii) Definition of 'undefined'. Wherever the Revised Report uses
· 'undefined', the present model prescribes a more precise action, $UCh
as for instance the emission of some error message. These are marked
{U };

iii) Violation of the semantics as given in the Revised Report. There ate a
few places where the semantics of the Revised Report are felt to be
unreasonable. Care has been taken to keep the number of such changes
mininw.l, since they really affect the behavior of user programs. These
gifferences are marked with an {S};

iv) Fixing admitted bugs. The most important bugs in the transput section
of the Revised Report are listed under {B}, although the user should
consult [17) for a complete list of them;

v) Extensions. At a few places also, extensions to the definition as
given in the. Revised Report are defined" They are marked {E}.

3

Care has been taken to ensure reasonable efficiency of the whole system.
Of course, efficiency is most important for heavily used procedures like
'put' or 'whole'. It might well be worthwhile to tune such routines to a
specific operating environment. At places where efficiency is felt to be
essential~ indications are given that may help the implementer.

Acknowl~£,&~~~1lt2.· The author has benefited ![l-UCh from his correspondence and
discussions with H. Wupper of the Ruhr-University at Bochum, 13. Leverett of
Carnegie-Mellon University, C. Cheney of Cambridge, R. Fisker and Ch.
Lindsey of Manchester, A.N. Maslov of Moscow, _L. Heertens, H. Boom and D.
Grune of the Mathematical Centre, and last but not least Section 10.3 of the
Revised Report. itself.

4

2. UNDERLYING PRIMITIVES.

A model that is intended to be easily implementable on a :variety of
machines, must be described in such a way that it is clear which aspects are
machine dependent, and which are not. There must be a clearly defined set of
primitives underlying the transput, and this set must in some sense be
small. These primitives then form the operating-system interface. The
11meaning11 of these primitives must also be·defined.

The primitive that lies at the very heart of the present model is the
11 buffer 11

• In the Revised Report, both the -book and the file contain the
"text'\ which is a reference to a three-dimensional character array. For
most files on most systems, not all of the three-dimensional character array
w.ill be available at any instant of time-. This restriction is made explicit
in the present model; the piece of text that is available is called the
"buffer". Preferably, a buffer corresponds to one l:_ne of the text. It is
however anticipated that there will be files containing only one page which
consists of one huge line (just think of a paper tape). In that case, the,
buffer will probably correspond to a much smaller piece of text. The same
holds for files that are used interactively, where the system possibly
transputs units of information of the size of a number, say. There also
exist systems wher the Duffer has a fixed size (typically 512 11words 11

),

regar.dless of the file being used. One immediate consequence of this is that
the routine 'backspace~, as defined in the Revised Report, cannot be
implemented on such a file. The pn~sent model deviates from the Revised
Report in that an enquiry 'backspace possible' is defined for files, with a
function very similar to that of the enquiries 'set possible' and the like.

If buffers are used as units of transput information, there must be ways
to write a buffer and read the next buffer. Machine-dependent primitives are
needed for this. They are discussed at full length in later sections.

As the internal structure of the buffer is not specified either,
primitives for reading and writing single characters from or to the buffer
are 'needed also.

This scheme offers attractive possibilities with regard to "conversion
keys 11

: The Revised Report specifies characters to be converted from internal
form to external form (and vice versa) before they are actually transput.
This conversion is done per character; not only is control given back to the
main program if a character cannot be converted, but conversion keys may
also be changed per character. It is however not at all sure that characters
may be punched alternatingly in ASCII and EBCDIC, say. It is to be expected
that on many devices there will be only liL,ited possibilities to change the
conversion key. Maybe another conversion key can be provided only if the
file is positioned at the very beginning of a book, or at the beginning of a
line. Probably, there will also be channels on which a change of conversion
key is altogether impossible. On the other hand, there exist line-printers
on which a change of conversion key can be achieved on a line to line basis
with one hardware instructiono The present model Ls flexible enough to allow
these very different implementations of the conversion-key concept: having
primitives both to tra~sput one buffer and to transput single characters to
and from the buffer, the implementer j_s free to do the conversion in either
of these,. He may even decide to do no conversion at all, or to do it
ctifferently on different channels. Changing the conversion key then amounts
to changi.ng the above set of primitives"

5

(Note that, if there are no conversion keys, the buffer need not be made
primitive, but can be defined instead as

MODE BUFFER= REF [] CHAR.

This obviates the need for primitives to transput characters to and from the
buffer. If there are conversion keys, the buffer cannot be defined so
simply, since there is no reason to expect.that internal characters still
look like characters after conversion! Also~ it may be convenient and
efficient to keep the buffer in a machine-oriented form rather than as an
ALGOL 68 row-·of-character, even if there is no conversion key.) For further
details on the buffer and its primit;:iv~s, see section 4.2.2.1.

It should be emphasized here that the Working Party on Transput strongly
dissuades the use of conversion keys. Conversion keys are felt to be not
very useful, whilst they strongly influence the efficiency of the system.
The consequences of the absence of conversion keys are clearly indicated in
subsequent Chapters.

Almost all machine dependencies in the present model are incorporated in
the channel. A channel is a set of attributes that is common to some set of
devices. It is anticipated that most machine dependencies will differ for
files opened on different channels, but will be the same for files opened on
one and the same channel. {Resetting the position of a file will probably be
different for tape and disk, but will probably be identical for two files
that are both opened on disk.} It is thus advantageous to incorporate these
primitives in the channel. This approach is also taken in the ALGOL68S
implementation at Carnegie Mellon University [11, 12] and at Manches.Ler [13].
(The ALGOL68S implementation at Carnegie Mellon also uses a buffer concept,
albeit a slightly different one [12].)

A full list of the primitives that have been incorporated into the
channel is:

read buffer, write buffer, init buffer;
.,. get char, put char, get bin char, put bin char;
- newpage, newline;
- (part of) set, (part of) reset.

6

3. POSITIONS

Positions within the text are. indicated by a page number,· a line number
and a character number,. Two positions are of importance during tra.nsput:

the "logical end" s i.e., the position up to which the book has been
filled with information;
the 11current positionn, i.e.? the position where the next transput
operation will (normally) operate on;

Before any actual transput operation may take place, the validity of the
current position has to be ensured. Whether a•given position is 11valid11

depends on the kind of operation tha:t is desired. {If a newpage is to be
given, only the page number has to be within its bounds; if a character is
written, both the line. number and the character number must be -within their
respective bounds as welL} If one of the _position Pritities need not be
within its bounds~ it may be off by one at the uppe:._· end; in that case, the
line, page or book is said to have 11 overflowed".

{If p, 1 and c. denote the page number, line· number and character number,
thert a typical text may look as follows:

C"" 2 3 4 5 6 7 8
l=l . "

p==l 2 . (> .,. t $

3 L• -·tJ-i
I!_ C _!_.l Ii

4

1~"' l " .
2

p=2 3
4
5 .

p==3 l=l ~

Possible positions are indicated by".", although information can only
be present at positions within a box. For the ·dots that are not placed
within a box, the condition "line ended 11 holds. At <1, 4, 1 >, <2, 5, 1 > and
<3, l, 1 > the condition 11 page ended 11 holds too, while at <3, 1, 1 > the condition
"physical file ended" holds as well.}

{Note that if the page has overflowed, the current line is empty (so the
line has overflowed too), and, if the text has overflowed., the current page
and line are both empty (so the line and page have both overflowed).}

If the current position has overflowed the line, page or book, then it
is said to be outside the "physical file". The. position where the book has
overflowed is termed the 11physical file end". (There is only one such
posHion!)

,,
If, on reading, the current position is at the logical end, then it is

said to be outside the 11logical file 11
•

{Note that, if 11 <= 11 denotes the intuitiv~~ lexical ordering, then the
invariant

current position<== logical end<= physical file end
always holds.}

7

If the current position is outside the (phy~ical or logical) file, the
next transput operation will call an "event routine" (except possibly when
'set', rreset' s 'set char number' or 'backspace' is called)o Event routines
are provided by default, but may be changed by the user (for more details,
see 4.3.2). The event routines for the overflow conditions correspond to the
following "on routines": ·

on logical file end;
on physical file end;
on page end;
on line end.

If an overflow condition occurs, the event ·toutine cor.respondin_g to the
appropriate "on routine" is called. Since more than one overflow condition
may occur at one and the same position {e.g., if the page is ended, the line
is also ended}, it is important to know which event routine is called in
each situation. Obviously, only one out of "physical file ended" and
"logical file ended" can occur: on reading the logical end of the file.may
be reached, on writing the physical end may be reached. The ordering of the
calling of event routines is such that physical (logical) file end has
preference over page end, while page end has preference over line end.

{One striking difference between the physical file end and the logical
file end is_ that the logical end may occur at each valid position (each
position with a dot in the above picture), while the physical end may only
occur at the first .E.,.Osition on _a 11ewi;;1&.f• This will certainly lead to
difficulties if straightforwardly i~1lemented: it necessitates knowledge
about tbe size of the current page (which may be compressible) and know.ledge
about the space that is still available for the text. On many syste~s, a
record that is written to a tape may or may not fit, and this is not known
until it is actually tried! If it does not fit, the operating system will
usually tell so. It is thus implementation dependent when exactly the event
routine corresponding to "on physical file end" is called, and the event
rout~ne may have to be called from within the routine that writes a buffer
to the book.}

The transput system has to administrate both the logical end and the
current position. On reading this is relatively simple: for each character
that is read, the current. position fs advanced over one position until the
logical end is reached. Writing is much more complicated. The effect of a
write operati9n depends on:

- whether the current position is before or at the logical end;
- whether the file is random or sequential access;
- ~hether the file is compressible or not;

whether it is a layout routine that is called.
It is usually a combination of some of the above possibilities that leads to
special effects. These effects are all treated in full detail in later
sections.

Writing at the logical end leads to advancing the logical end along
with th~ current position. The logical position (11 lpos 11

) will then keep pace
with the current position (11 cpos 11

). This is expected to be the normal
every-clay situation if files are written to. The Revised Report maintains
the most important invariant that connects 'cpos' and 'lpos':

8

1: cpos <= lpos

by statements like

{I} cpos +:= l; (cpos > lpos I lpos +:= I) {I}.

In the present model, a new pair of variables (cposl, lposl) is introduced.
This pair is related to (cpos, lpos) through:

cpos = cpos I
lpos -- MAX (cpos1, lpos1).

The same invariant 1 is now ensured by

{I} cpos l +: = l {J }.

Care has to be taken j_f the current position is set back (which may occur
through a call of 'set', 'reset', 'set char number' or 'backspace'). In that
case the value of 'cposl' rn.ust first be assigned to 'lposl' iff 'lposl' <
'cpos i' (the routine 'mind logical pos' serves this purpose). ,. cpos 1' and
'lpos1' are again called 'cpos' and 'lpos' in the text. It is expected that
a considerable gain in efficiency will result from this change of
rep re sen ta tion.

4. BOOKS~ CHANNELS AND FILES.

{"Books", 11 channels 11 and "files" model the transput devices of the
physical machine used in the implementation.}

4. I. BOOKS

4alo 1. DEVIATIONS FROM THE REVISED REPORT

- {D} The various fields of the mode BOOK are not specif:ted. Instead,
routines are provided to construct books,· or change certain fields of
a book.

9

{D} It is not prescribed that books be kept in two chains·. Books
somehow reside in the system and are searched for in some unspecified
way if asked fo.;: one. In the Revised Report, multiple references are
needed to books that allow multiple access. Each time a file is opened
on such a book, one of these references is removed from the chain; and
a counter in the book is increased. {Note that a book may only be
opened on more than one file simultaneously if writing is not possible
on any of them.} It is not defined in the present system how this
administration is exactly performed. In .the Revised Report, critical
sections of routines that access the chains of books are protected by
the semaphore 'bfileprotect'. In the present system, all these
critical sections are behind the curtain, and so is the semaphore.

- {U} The default identification for files which are opened via 'create'
is not left undefined. Rather, an operating-system dependent string is
assumed, which may differ from case to case.

4. 1.2. NEW DEFINITION

Books model the actual devices on which the transput takes place. All
information within the system is to be found in a number of such books. The
information that is kept in the book is operating-:-system dependent
information, such as the identification string. Via the book, the text may
be reached; this text contains the actual information. The text has a
variable number of pages~ each of which may have a variable number of lines,
each of which may have a variable number of characters. Positions within the
text are indicated by a page number, a line number and a character number.
The book includes a field which either indicates the "logical end 11 of the
book, i.e., the position up to which it has been filled with information, or
it indicates that this position is not known yet. Except for 'set', no
routine needs exact knowledge of the logical end of the book, as long as it
is not in the current line.

Books are either searched for in the system, or constructed according to
certain user-defined requisites. Books are searched for by means of the
routine 'book in system'. A book is consiructed by one of the routines
'construct book' and 'pseudo book'.

10

a) HODE 7 BOOK ==
C An actual declarer specifying a mode which contains at least the

followtng operati.ng-system dependent information:
- the identification string;
- some reference to the actual information;
- the logical end of the book{, which may however be unknown};
- information that tells how many other processes have access to this

book, and whether some process is ·writing to the book. C;

b) MODE 7 POS = STRUCT(INT p, 1, c);

c) PRIO 7 EXCEEDS = 5,

d)

OP EXCEEDS = (POS a, b) BOOL:
p OF a > p OF b OR l OF a > 1 OF b OR c OF a > c OF b; - ,_

PR.IO 7 BEYOND = 5,
OP BEYOND -- (POS a, b) BOOL:

IF p OF a < p OF b THEN FALSE
ELIF p OF a > p OF b THEN TRUE
ELIF 1 OF a < 1 OF b THEN FALSE
ELI.F 1 OF a > 1 OF b THEN TRUE
ELSE c OF a > c OF b
FI;

{Positions are indicated by values of the mode POS. They are compared by
the opere,i.tors EXCEEDS and BEYOND.}

e) PROC 7 book in system~
(STRH~G idf, CHANNEL chan, REF REF BOOK book, REF REF BUFFER buffer)
INT:

C The pool of available books is searched for a book with the
following properties:
- the book may be identified by 'idf';
- the book may be legitimately accessed through 'chan';
- opening is not inhibited by other users of the book.

{A book may only be opened on more than one file simultaneously
if putting is not possible on any of them.}

If such a book is found, it is assigned to 'book', space for a
buffer is made available to which 'buffer' is made to refer, and
the routine yields O. Otherwise, the routine yields some positive
integer that corresponds to the appropriate error code. (For a
list of these error codes, see section 5.2.) C;

f) PROC 7 construct book=
(INT p, l, c, STRING id£, CHANNEL chan, REF REF BUFFER buffer)
REF BOOK:

CA book is constructed with a text of the size indicated by (p, 1,
c) s with an identification string 'id£', that may be written to.
The book is to be accessed via 'chan'. The routine allocates space
for a buffer to which 'buffer' is made to refer; the buffer is not
initialized. _The logical end of the book is set to (1, 1, 1). A
reference to the book is yielded as result. The validity of the
parameters has already been checked by the routine 'establish',
which call8 'construct book'. C;

1 1

g) PROC? pseudo book= (INT p) REF BOOK:
CA book is constructed whose only interesting information is its

logical end, which is set to (p + 1, 1, 1). The routine is called by
'associate'(see 5.2.d). C;

h) PROC? default idf = STRING:
CA default identification string for files which are opened via

'create' C;

i) PROC? set logical pos = (REF FILE f) VOID:
BEGIN

C The logical end of the book of -~f' is set to the current position
C;

REF INT(c of lpos OF f):= c OF cpos-OF f;
status OF f ANQAB logical file ended

END;

{This routine replaces the pseudo comment in 'put char'.}

12

4.2. CHANNELS

4.2.1. DEVIATIONS FROM THE REVISED REPORT

- {S,E} A field 'backspace' is added, which determines whether the
routine 'backspace', as defined in section 1O.3.1.6.b of the Revised
Report, is possible on the channel.

{D} The conversion key is understood to be a set of routines that
define how buffers are transput to and from the book, and how
characters are transput to and from the.buffer.

{D} The primitives 'do newline', 'do newpage', 'do set' and 'do reset'
have been incorporated in the channel.

4.2.2. NEW DEFINITION

A "channel" is a collection of attributes that is common to some set of·
devices. A channel is a structured value and has two kinds of fields:

- routines returning truth values which determine the available methods
of access to a book linked via that channel;
primitives for device-class dependent actions.

Since the methods of access to a book may well depend on the book as well as
on the channel, most of_ these routines depend on both the channel and the
book. The access properties may be examined by use of the environment
enquiries for files (4.3.2). Two environment enquiries are provided for
channels. These are:

'estab possible', which returns true if another file may be
"established" (5.2.a) on the channel;
'standconv', which may be used to obtain_the default "conversion key".

The fields that are primitive actions all depend on the file, since they may
have side effects on specific fields of the file {e.g., 'do newpage' will
result in a new value for the current position}.

A "conversion key" is a value of the mode specified by CONV, which is
used to convert characters to and from the values as stored in "internal"
form and as stored in "external" form in a book. A conversion key consists
of two parts:

routines to transput buffers to and from the book and a routine to
initialize the buffer;
routines to transput characters to and from the buffer.

It is not prescribed in the present model whether the actual conversion (if
any) is done per line or per character. {This may differ from one
implementation to another, or even for two different conversion keys used on
one and the same channel.} The implementation may provide additional
conversion keys in its library-prelude. After linking a file to a book via
some channel, the buffer must be initialized. For files which are "opened"
(5.2), this initialization is not done until the first transput operation is
initiated, upon which an explicit call of 'init buffer' takes place.

The routines 'set', 'reset' and 'newpage' may ~ause the current position
to be moved outside the current line. {Nevertheless, they may to a great
extent be written in proper ALGOL 68. For instance, a routine 'newpage' may
be written that searches for an end-of-page condition, in the meantime
skipping lines that have already been filled, and filling empty lines with
blanks.} It is expected that on most systems a newpage is only possible on

13

devices such as a line-printer, for which a hardware newpage instruction is
generally available. Similarly, a fast set routine will probably be
available for random-access files that reside on disk, and so on. Therefore,
(parts of) these routines have been incorporated in the channel, and each
implementation has to define them for each channel it supports.

{Note that a user may still define values of the mode CHANNEL by the way
this mode is defined below. An easy way to circumvent this is to define the
mode CHANNEL as STRUCT(CHUNNEL c), and to define CHUNNEL as the structured
value given below. (The same holds for values of the mode FILE (4. 3) and
FORMAT (11.2).) For clarity's sake, this has not been done in the present
model. Similarly, the user can still get hold of values of the mode
specified by CONV, for instance by writing- 'standconv(stand in
channel}(NIL)' .}

a) MODE CHANNEL= STRUCT(
PROC (REF BOOK) BOOL? reset,? set,? get,? put,? bin,? compress,

? reidf,? backspace,
PROC BOOL? estab,
PROC POS? max pos,
PROC (REF FILE) VOID? do newline,? do newpage,? do reset,
PROC (REF FILE, INT, INT, INT) VOID? do set,
PROC (REF BOOK) CONV? standconv,
INT? channel number);

b) MODE ? CONV = STRUCT (
PROC (REF FILE) VOID read buffer, write buffer, init buffer,
PROC (REF FILE, CHAR) VOID put char,
PROC (REF FILE, BINCHAR) VOID put bin char,
PROC (REF FILE, REF CHAR) BOOL get char,
PROC (REF FILE, REF BINCHAR) VOID get bin char);

c) PROC estab possible= (CHANNEL chan) BOOL:
estab OF chan;

d) PROC siandconv = (CHANNEL chan) PROC (REF BOOK) CONV:
standconv OF chan;

e) CHANNEL stand in channel=
CA channel value w4ose field selected by 'get' is a routine which

always returns true, and whose other fields are some suitable values.
C;

f) CHANNEL stand out channel=
CA channel value whose field selected by 'put' is a routine which

always returns true, and whose other fields are some suitable values.
C;

g) CHANNEL stand back channel=
CA channel value whose fields selected by 'set', 'reset', 'get', 'put'

and 'bin• are routines which always return true, and whose other
,.fields are some -suitable values. C;

14

4.2.2.1. Sfu\fANTICS OF THE CHANNEL PRIMITIVES

In this section, both the semantics of the ~outines that comprise the
conversion key, and the primitives that can move the current position
outside the current buffer ('do newline', 'do newpage', 'do reset' and 'do
set') are given.

In the routines given below, the buffer: is supposed to have a (boolean)
field 'changed' that tells whether the contents of the buffer have changed
since its initialization. This information is used by 'do newline': the
contents of the buffer of a random-access file is not written back if there
is no need to. If this field is not .supported, the value of 'put
possible(£)' may be used instead. (This fieLd is also inspected by the
routines 'close', 'lock' and 'scratch' (5.2°~1,m,n).).

If the buffer corresponds to one line of the text, the semantics are
somewhat easier to describe than in the case where a buffer corresponds to a
smaller unit of information. Therefore, this .case is treated first.

a) PROC init buffer= (REF FILE f) VOID:
The precondition of 'init buffer' is:

• opened,
• either read mood or write mood,
• NOT physical file ended. If

BEGIN -status OF f ORAB buffer filled;
IF get possible(f) AND status OF f SAYS logical pas ok
THEN changed OF buffer OF f:= FALSE;

IF C the page of the book off has overflowed C
THEN status OF f ANDAB page end;

REF INT(char bound OF f):= 0
ELSE

FI

buffer OF£:= C the next buffer from the book off, possibly
after conversion C;

REF INT(char bound OF£):=
C the length of the buffer just filled c;,

test line end(£);
IF C the logical end is in the buffer just read C
THEN status OF f ANDAB lfe in current line;

Fl

REF INT(c of lpos OF f):= C the position of the logical end C;
(status OF f SAYS read mood ! test logical file end(f))

ELSE changed OF buffer OF f:= NOT get possible(f);
IF C the page of the book off has overflowed C
THEN status OF f ANDAB page end;

Fl
ENfl;

REF INT(char bound OF f):= 0
ELSE REF INT(char bound OF f):=

Fl

C the maximum length of this buffer C;
test line end(f)

b) PROC read buffer= (REF FILE f) VOID:
The precondition of 'read buffer' is:

• opened,
• get possible(£),
• NOT logical file end in current line,
• NOT page ended.#

BEGIN REF POS(cpos OF f):= (p OF cpos OF f, 1 OF cpos OF f + 1, 1);
(init buffer OF f)(f)

END;

c) PROC write buffer= (REF FILE f) VOID:
The precondition of 'write b.uffer' is:

• opened,
• write mood,
• NOT physical file ended,
• NOT page ended.#

15

BEGIN C The contents of the buffer off (up to the position indicated
by 'c OF cpos OF f') is, possibly after conversion, written to
the book of 'f' C;

IF C this fails to succeed (i.e., the physical end of the book is
reached while writing this buffer) C

THEN status OF f ANDAB physical file end;
ensure physical file(£, status OF f);

U Note that, since we are writing to the book, this call can never
fail; either the situation is mended, or the program is aborted
after a suitable error message has been issued. #

(write buffer OF f)(f)
ELSE REF POS(cpos OF f):= (p OF cpos OF f, 1 OF cpos OF f + 1, 1);

IF status OF f SUGGESTS lfe in current line
THEN set logical pos(f}
FI;
(init buffer OF f)(f)

Fl
END;

d) PROC put char= (REF FILE f, CHAR char) VOID:
The precondition of 'put char' is:

• line ok (see 7.2). #
BEGIN C The character in 'char' is (possibly after conversion) written

to the buffer off at the position indicated by 'c OF cpos OF
f' c;

c OF cpos OF f +:= 1;
changed OF buffer OF f:= TRUE

END;

e) PROC put bin char= (REF FILE f, BINCHAR char) VOID:
The precondition of 'put bin char' is:

• line ok. #
BEGIN C The binary character in 'char' is written to the buffer off at

the position indicated by 'c Of cpos OF f' C;
c OF cpos OF f +:= 1;
changed OF buffer OF f:= TRUE

END;

16

f) PROC get char= (REF FILE f, REF CHAR char) BOOL:
The precondition of 'get char' is:

• line ok. 11
BEGIN CHAR c = C the character read (and possibly converted) from the

buffer off at the position indicated by 'c OF cpos OF
f' C;

c OF cpos OF f +:= 1;
IF C the conversion succeeds, or no .conversion takes place C
THEN char:= c; TRUE
ELSE FALSE
.Fl

END;

g) PROC get bin char= (REF FILE f, REF BINCHAR char) VOID:
The precondition of 'get bin char' is:

• line ok. ii
BEGIN char:= C The binary character read from the buffer off at the

position indicated by 'c OF cpos OF f' C;
c OF cpos OF f +:= 1

END;

h) PROC do newline= (REF FILE f) VOID:
The precondition of 'do newline' is:

• page ok (see 7.2). #
IF NOT (status OF f SAYS buffer filled)
THEN C skip over the current line C;

IF C this causes the physical end to be reached C
THEN (status OF f ORAB buffer filled) ANDAB

physical file end
ELIF Cit causes the logical end to be reached C
THEN (init buffer OF f)(f)
ELIF C the page has overflowed C
THEN status OF f ANDAB page end;

REF INT(char bound OF£):= 0
FI

ELIF status OF f SUGGESTS lfe in current line AND
status OF f SAYS read mood

THEN REF INT(c OF cpos OF£):= c of lpos OF£;
test logical file end(£); newline(£)

ELSE
IF status OF f SUGGESTS lfe in current line
THEN REF INT(c OF cpos OF£):= c of lpos OF f;

C fill the rest of the buffer with spaces if the file is not
compressible C

FI;
IF changed OF buffer OF f
THEN (write buffer OF f) (f)
ELSE (read buffer OF f)(f)
Fl

FI;

i) PROC do newpage = (REF FILE f) VOID:
The precondition of 'do newpage' is:

• physical file ok (see 7.2). #
BEGIN

WHILE NOT (status OF f SAYS page end)
DO (do newline OF chan OF f)(f) OD;
REF POS(cpos.OF f):= (p OF cpos OF f + 1, 1, I);
IF C this causes the physical file to be ended C
THEN (status OF f ORAB buffer filled) ANDAB physical
ELSE (init buffer OF f)(f)
FI

END;

1 7

file end
)

{This routine is incorporated in the channel for optimization purposes only:
it is expected that more efficient imple~entations will in general be
available.}

j) PROC do reset= (REF FILE f) VOID:
The precondition of 'do reset' is:

• opened,
• reset possible. #

BEGIN REF POS(cpos OF f):= (I, 1, 1);
C the book is physically reset C;
(status OF f ANDAB NOT buffer filled) ORAB open status

END;

i) PROC do set= (REF FILE£, INT p, 1, c) VOID:
The precondition of 'do set' is:

• opened,
• set possible. #

IF ros(l, 1, 1) EXCEEDS POS(p, 1, c}
THEN error(posmin); abort
ELIF C The line indicated by 'p' and '1' is searched for. Note that the

current position is updated while searching. Searching may stop
at the following positions:
- at the physical file end if 'p' exceeds the number of pages in

the book of 'f';
- just beyond the page indicated by 'p' if '1' exceeds the

number of lines in that page;
- at the first position of the last (logical) line if the

position indicated by 'p', 'l' and 'c' is beyond that
position;

- at the first position of the line indicated by 'p' and '1'
otherwise. C

POS(p, 1, 1) EXCEEDS cpos OF f OR c > char bound OF f + 1
THEN error(posmax); abort
ELIF (init buffer OF£)(£);

status OF f SUGGESTS lfe in current line
THEN STATUS reading= state(£);

IF C > C of lpos OF f
THEN c OF cpos OF f:= c of lpos OF f;

(reading SAYS read mood I test logical file end(£));
BOOL mended= (logical file mended OF f)(f);
ensure state(£; reading);
(NOT mended I error(wrongset); abort)

ELSE c OF cpos OF£:= c; test line end(£);

18

(reading SAYS read mood I test logical file end(f))
FI

ELIF c > 1 AND NOT get possible(f)
THEN error(setmiddle); abort
ELSE c OF cpos OF f:= c;

test line end(£); test logical file end(f)
FI;

In case the buffer does not correspond to one line of the text, the
routines essentially remain the same. The value of the current position will
in that case not directly lead to a position 111 the buffer, but some offset
is needed (which must be properly set by 'init buffer'); this offset is
assumed to be incorporated in the buffer. Normal transput which takes place
via 'put char OF f' and 'get char OF f' "tl1en assumes that a next buffer is
automatically initiatP-d as soon as the current buffer has overflowed.

19

4.3. FILES

4.3.1. DEVIATIONS

- {D} The file includes a field 'buffer', which contains a reference to
the current buffer. Transput is performed on this buffer, rather than
on the text of the book (but see section 5.2 on associated files). The
field 'char bound' indicates the maximum number of characters that the
current buffer can contain.

{D} The file includes a field 'status' ,·which contains the status
information. This status is inspected before, and updated after, each
transput operation.

{D} A field 'c of lpos' is included in the fi 1.e. If the logical end is
in the current line (which can be derived fro~ the status
information), this field indicates the position of the logical file
end (and otherwise it is left undefined).

{S,E} An enquiry 'backspace possible' is provided, which returns true
if the file may be "backspaced" (7. 2).

4.3.2. NEW DEFINITION

A "file" is the means of communication between a particular-program and
a book which has been opened on that file via some channel. It is the most
heavily used concept in the transput section. In the present model, it is
considered to be largely machine indepen~ent.

A file is a structured value which includes a reference to the book to
which it has been linked (5.2). The file includes a reference to the text,
which is used for associated files (5.2) and a reference to the buffer,
which is used for non-associated files. The file also contains information
necessary for the transput routines to work with the book, including its
current position 11cpos 11 in the text, its current "status", a reference to
its current "collection list" (11.2) and the channel on which it has been
opened.

The "status" of a file contains the following information:
- whether or not the file has been opened;
- whether or not the buffer has been initialized;
- whether or not the line has overflowed;
- whether or not the page has overflowed;
- whether or not the physical file has overflowed;
- whether or not the logical file is ended;
- whether or not the logical file end is in the current line. (If the

logical file end is in the current line, the 'c of lpos'-field points
to this logical file end.);

- the "mood" of the file, which is determined by four booleans:
- 'read mood', which is true if the file is being used for input;
- 'write mood', which is true if the file is being used for output;
-''char mood', whi.ch is true if the file is being used for character

transput;
- 'bin mood', which is true if the file is being used for binary

transput;
- whether or not the file may be set.

20

{The present model supposes that it is always possible to determine whether
a given file has been opened. So, after a declaration

FILE f,
or even

REF FILE f = SKIP,
it must be possible to detect that 'f' is not opened. To this endj all
user-callable routines may be assumed to start with an implicit test for the
'status'-field being available. It is not defined here how this can be done
in an actual implementation.}

The file also contains the current conver.sion key, i.e., the set of
routines that is currently being us~d tq transput buffers to and from the
book a_nd characters to and from the buffer•.· After opening a file, the
conversion key from the channel on which it is opened is provided by
default. Some other conversion key may be provided by the programmer by
means of a call of 'make conv' (m). ··
{Note that changing the conversion key may depend on the book, the channel,
the current position, both the current and the new conversion key, and other
environmental factors not defined by this model.}

The routine 'make term' is used to associate a string with a file. This
string is used when inputting a variable number of characters, any of its
characters serving as a terminator. {For efficient use of this feature,
implementation through a bit table seems natural. A similar feature can
profitably-be used in ~get' (10.2.c) and 'getf' (11.2.p). To this end, the
mode CHARBAG is introduced, together with an operator STRINGTOBAG and a
routine 'char in bag' (10.2.f).}

The available methods of access to a book which has been opened on a
file may be discovered by calls of the following routines (note that the
yield of such a call may be a function of both the book and the channel):

'get possible', which returns true if the file may be used for input;
'put possible', which returns true if the file may be used for output;
'bin possible', which returns true if the file may be used for binary
transput;
'compressible', which· returns true if lines and pages will be
compressed (7.2) during output, in which case the book is said to be
"compressible";
'reset possible', which returns true if the file may be reset, i.e.,
its current position set to (l, I, 1);
'set possible', which returns true if the file may be set, i.e., the
current• position changed to some specified value; the book is then
said to be a "random access" book and, otherwise, a "sequential
;iccess 11 book. For optimization reasons, this information is also
incorporated in the status of the file;
'backspace possible', which returns true if the file may be
backspaced, i.e., the current position set back over one position if
it remains within the current line; backspacing will always be
possible if the buffer of the file corresponds to one line of the text
{but may for instance not be possible for files that are used
interactively};
'teidf possible' ,·which returns true if the 'idf' field of the book
may be changed;
'chan', which returns the channel on which the file has been opened
(this may be used, for example, by a routine assigned by 'on physical
file end', in order to open another file on the same channel).

21

{Not all combinations of the above set are sensible. For in.stance, it is
expected that at least one of 'put possible' and 'get possible' holds. Most
likely also, 'reset possible' returns true if 'set possible' does and 'estab
possible' implies 'put possible'.}

A file includes some "event routines", which are called when certain
conditions arise during transput. After opening a file, the event routines
provided by default return false when called, but the user may provide other
event routines. The event routines are always given a reference to the file
as a parameter. If the calling of an event·routine is terminated (by a
jump), then the transput routine which called it can take no further action;
otherwise, if it returns true, then it is assumed that the condition has
been mended in some way, and, if possible;·transput continues, but if it
returns false, then the system cont:i:nues with its default action. The "on"
routines are:

'on logical file end'. The corresponding event routine ·is• called when,
during input from a book or as a re~ult of calling 'set' (see 7.2),
the logical end of the book is reached.
'on physical file end'. The corresponding event routine is called when
the current page number of the file excee~s the number of pages in the
book and further transput is attempted (see 7.2).

- 'on page end'. The corresponding event routine is called when the
current line number of the file exceeds the number of lines in the
current page and further transput is attempted (see 7.2).
'on line end'. The corresponding event routine is called when the
current character number of the file exceeds the number of characters
in the current line and further transput is attempted (see 7.2).
'on char error'. The corresponding event routine is called when,
during input, a character conversion was unsuccessful or a character
is read which was not "expected" (~ection 10.3. 4.1.11 of the Revised
Report). The event routine is called with a reference to a character
suggested as a replacement. The event routine provided by the user may
assign some character other than the suggested one. If the event
routine returns true, then that suggested character as possibly
modified is used.
'on value error'. The corresponding event routine is called when:
i) during formatted transput an attempt is made to transput a value

·under the control· of a "picture" with which it is incompatible, or
when the number of "frames" is insufficient. If the routine
returns true, then the current value and picture are skipped and
transput continues; if the routine returns false, then first, on
output, the value is output by 'put', and next the program is
aborted;

ii) during input it is impossible to convert a string to a value of
some given mode (this would occur if, for example, an attempt were
made to read an integer larger than 'max int'). If the routine
returns true, transput continues (although no value is assigned to
the item being read in); if the routine returns false, an error
message is given and the program is aborted.

'on format end'. The corresponding event routine is called when,
during formatted transput, the format is exhausted while some value
still remains to be transput. If the routine -returns true, then the
p,rogram is aborte!i if a new format has not been provided for the file
by the routine; otherwise, the current format is repeated.

22

a) MODE FILE == STRUCT (
REF BOOK 7 book,
CHANNEL '7 chan,
REF REF FORV.tATLIST 7 piece,
REF BUFFER 7 buffer,
REF [] [] [] CHAR 7 text, II for associated files only {I
REF POS 7 cpos,
REF INT 7 c of lpos,
CHARBAG 1 term,
PROC (REF FILE) VOID 7 read buffer, 7 write buffer, 7 init buffer,
PROC (REF FILE, CHAR) VOID 7 put char-,
FROG (REF FILE, BINCHAR) VOID '7, put_ bin char,
PROC (REF FILE, REF CHAR) BOOL 7 get char,
PROC (REF FILE' REF BIN CHAR) VOID ·r get bin char,
REF STATUS 7 status,
REF INT 7 char bound,
PROC (REF FILE) BOOL 7 logical file mended, 7 physical file mended,

7 page mended, 7 line mended, 7 format mended,
7 value error mended,

PROC (REF FILE, REF CHAR) BOOL 7 char error mended);

b) MODE 7 BUFFER= C some mode C;

c) PROC get possible= (REF FILE f) BOOL:
IF status OF f SAYS opened
THEN (get OF chan OF £)(book OF£)
ELSE error(notopen); abort
FI;

d) PROC put possible= (REF FILE f) BOOL:
IF status OF f SAYS opened
THEN (put OF chan OF £)(book OF£)
ELSE error(notopen); abort
FI;

e) PROC bin possible= (REF FILE f) BOOL:
IF status OF f SAYS opened
THEN (bin OF chan OF £)(book OF£)
ELSE error(notopen); abort
FI;

£) PROC compressible = (REF FILE f) BOOL:
IF status OF f SAYS opened
THEN (compress OF chan OF £)(book OF£)
ELSE error(notopen); abort
FI;

g) PROC reset possible= (REF FILE£) BOOL:
IF status OF f SAYS opened
THEN (reset OF chan OF £) (book OF £)
ELSE er.ror(notopen); abort

h) PROC set possible= (REF FILE f) BOOL:
IF status OF f SAYS opened
THEN NOT (status OF f SAYS not set poss)
ELSE error(notopen); abort
FI;

i) PROC backspace possible= (REF FILE f) BOOL:
IF status OF f SAYS opened
THEN (backspace OF chan OF £)(book OF f)
ELSE error(notopen); abort
FI;

j} PROC reidf possible = (REF FILE f) BO.OL:
IF status OF f SAYS opened
THEN (reidf OF chan OF f)(book OF f)
ELSE error(notopen); abort
FI;

k) PROC chan = (REF FILE f) CHANNEL:
IF status OF f SAYS opened
THEN chan OF f
ELSE error(notopen); abort
FI;

1) PROC make conv = (REF FILE f, PROC (REF BOOK) CONV c) VOID:
IF status OF f SAYS opened
THEN

23

C Some implementation-dependent tests will probably be needed here:
whether the conversion key may be changed might depend on the
current and the newly given conversion key, the book, the channel,
and other environmental factors. If the conversion key may be
changed, the routines in the file that comprise the mode CONV have
to be exchanged. One must take care that conversion keys from
associated files (5.2.d) do not get used as parameter to this
routine; also, the conversion key of such a file may not be
changed. C ·

ELSE error(notopen); abort
FI;

m) PROC make term= (REF .FILE f, STRING t) VOID:
term OF f:= STRINGTOBAG t;

n) PROC on logical file end=
(REF FILE f, PROC (REF FILE) BOOL p) VOID:

logical file mended OF f:= p;

o) PROC on physical file end=
(REF FILE f, PROC (REF FILE) BOOL p) VOID:

physical file mended OF f:= p;

p) PROC on page end=
(REF FILE f, PROC (REF FILE) BOOL p) VOID:

page mended OF f:= p;

24

q) PROC on line end=
(REF FILE f, PROC (REF FILE) BOOL p) VOID:

line mended OF f:= p;

r) PROC on format end=
(REF FILE f, PROC (REF FILE) BOOL p) VOID:

format mended OF£:= p;

s) PROC on value error=
(REF FILE f, PROC (REF FILE) BOOL p) VOID:

value error mended OF£:= p;

t) PROC on char error=
(REF FILE£, PROC (REF FILE; REF CHAR) BOOL p) VOID:

char error mended OF f:= p;

u) PROC reidf = (REF FILE f, STRING id£) VOID:
IF status OF f SAYS opened & reidf possible(£) & idf ok(idf)
THEN

C The identification string of the book of 'f' is made to be 'id£'. C
FI;

5. OPENING AND CLOSING FILES

5. 1. DEVIATIONS

25

- {U} The numerous calls of 'undefined' in the Revised Report have been
assigned meanings. Hidden kinds of undefined actions like SKIP, UP
gremlins and UP bfileprotect have been paid due attention. At places
where 'undefined' was called in the ~evised Report, the present system
issues an error message. In case no sensible continuation is possible,
the elaboration of the particular program is aborted by means of a
jump to the label 'abort'. Following thiq label, all buffers still
need to be emptied, and all files ar~ subsequently closed. The
"gremlins". are not activated fn the present system either; rather,
opening a file is treated as a special kind of assignmen~~

{U} If opening is not successful, non zero error codes are returned,
and 'undefined' is not called.

- {B} The validity check for the parameters 'p', 'l' and 'c' in
'establish' is performed differently, since the operator BEYOND used
in the Revised Report does not trap all erroneous combinations of 'p',
'l' and , ,

C •

{D} The routines 'close', 'lock' and 'scratch' are considered
primitive actions.

{E} Contrari to what is stated in the Revised Report, this model
allows all upper bounds of the multiple value in 'associate' to be
less than 1.

5.2. NEW DEFINITION

A book is "linked" with a file by means of 'establish' (a), 'create' (b)
or 'open' (c). The linkage may be terminated by means of 'close' (1), 'lock'
(m) ~r 'scratch' (n).

When a· file is "established" on a channel, then a book is constructed
(4.1.2.f) with a 'text' of the given size and the given identification
string, that may be written to. The logical end of the book is set to (1, 1,
1). {An implementation may require (f) that the characters forming the
identification string should be taken from a l;mited set.and that the· string
should be limited in length. It may also prevent two books from having the
same string.} If the establishing is completed successfully, then the value
0 is returned; otherwise, some non zero integer is returned, which indicates
why the file was not established successfully. A list of these error codes
is given below.

When a file is "created" on a channel, then a file is established with a
book whose text has the default size for-the channel, and whose
_identification string is a default identification string (4.1.2.h) for the
implementation.

When a file is "opened", then the pool of available books is searched
for a book with the following properties:

The book may be identified by the given identification string;
- The book may be legitimately accessed through the given channel;

26

- Opening is not inhibited by other users of the book.
If such a book cannot be found, an appropriate error message is given and a
non zero integer is returned. Otherwise, the file variable is initialized
properly, and the value O is returned.

The routine 'associate' may be used to 11 associate11 a file with a value
of the mode specified by either REF CHAR, REF [] CHAR, REF [] [] CHAR or REF
[] [] [] CHAR, thus enabling such variables to be used as the book of a file.
All lower bounds of the multiple value referred to must be 1, and all upper
bounds.should be at least 1. Note that the scope of the multiple value must
not be newer than the scope of the given file· ; f'.

For associated files, the buffer mechanism cannot be used: here it is
necessary to transput directly to or from the associated multiple value,
since the user also tk1S direct access to it. It is for this reason that a
separate reference to a 'text' is included in the file. The various
primitives that have been incorporated in the channel also directly access
the text in this case.

As a consequence of linking a book with a file, the fields of the file
are initialized as follows:

'book'.
In 'establish' and 'create', a book is constructed (4.1.2.f) according
to the requirements of the user. In 'open', the pool of available
books is searched for a matching one (4.1.2.e). In 'associate', a
pseudo book (4.1.2.g) is used;
'chan'.
In 'establish', 'create' and 'open', the channel is provided by the
user. In 'associate', a channel value is constructed

i) whose fields selected by 'reset', 'set', 'get', 'put' and
'backspace' always return true,

ii) whose fields selected by 'bin', 'compress', 'reidf' and 'estab'
always return false,

iii) whose field selected by 'max pos' returns a value of mode POS
whose fields selected by 'p', '1' and·'c' return 'max int',

iv) whose field selected by 'standconv' is such that transput takes
place directly on the multiple value, without any intermediate
conversion,

v) whose fields selected by 'do newline', 'do newpage' and 'do
reset' simply move the current position and update the status
information accordingly,

vi) whose field selected by 'do set' tests whether the user-supplied
position is valid (possibly after calling the event routine
corresponding to 'on logical file end'), and, if so, moves the
current position to the supplied one, but if not, gives an
appropriate error message, whereupon the elaboration of the
particular program is aborted (see also 4.2.2.1.i),

vii) whose field selected by 'channel number' is left undefined;
'plist'.
The field selected by 'plist' is assigned a nil name;
,'buffer'.
As a result of calling 'establish' or 'create', a reference to the
buffer is yielded by the routine that constructs the book; this buffer
is initialized. When 'open' is called, the buffer is yielded by 'book
in system' along with the book. It is not initialized; initialization
has to await the first transput operation •. The field 'buffer' is left

undefined (and is not used) for associated files;
'text'.

27

The field 'text' is only used for associa~ed files. It then contains a
reference to the associated multiple value; otherwise, it is left
undefined;
'cpos'.
The current position is always initialized to (1, 1, 1);

- , C Of 1 po S , •

The 'c of lpos' field is linked up with the logical end of the book.
If the logical end is in the current (i.e., 1st) line, 'c of lpos'
points to the position where the logical end is. Otherwise it is left
undefined. Whether the logicat end is in the current line can be
derived from the status information v;i..a the 'lfe in current line'
flag. If a file is established or ~reated, the logical-file end is at
(1, 1, 1) initially; when a file is opened it depends on the book and
the read/write mood; in this case initialization has to await the
first transput operation ('init buffer' will then take care of it).
When a file is associated with a multiple value, the logical end is
just beyond the extreme end of the associated multiple value;
'term'.
Initially, the terminator string is the empty string;
'read buffer', 'write buffer', 'init buffer', 'put char',
'put bin char', 'get char', 'get bin char'.
For associated files, these routines are built by the routine
'associate'. They do not make use of an intermediate buffer, nor do
they perform any conversion. For the other opening routines they are
copied from the given channel;
'status'.
In all cases, the initial information is such that the file is opened,
and the line, page and physical file are not ended. The logical file
end is at the current position if a file is established or created. So
in that case the 'lfe in current line' flag is raised. {The 'logical
file ended' flag is not raised since the write mood will be true.} For
associated files they are both not raised, since in that case the text
is assumed to have at least one page. If 'open' is called, then
setting these flags has to await the first transput operation. The
read mood is set to true if a file is linked to a book via 'open', and
writing is not possible on the given channel; otherwise it is set to
false. The write mood is set to true if a file is linked to a book via
'establish' or 'create', or via 'open' in case reading is not possible
on the given channel; otherwise it is set to false. The char mood is
set to true if a file is linked to a book, and binary transput is not
possible on the given channel; otherwise it is set to false. Lastly,
_the bin mood is always initialized to false. The 'set poss' flag
indicates whether the file is random access or not. It is incorporated
in the status information to simplify some of the tests;
'char bound'.
The length of the current buffer differs from case to case:
- it is given if 'establish' is called (the parameter 'c'),

it is the maximum buffer length of the given channel if 'create' is
called;

' it depends on the book if 'open' is called;
- it depends on the associated multiple value if 'associate' is called

(then it is equal to UPB sss[l] [1]);
- the 'on routines'.

The 'on routines' are all initialized to routines returning false.

28

Files may be "closed", "locked" or "scratched". For associated files,
these all just amount to updating the.status information such that the file
is no longer said to be opened. For files that are "opened", "created" or
"established", the resulting action is dif.ferent for each routine. If a file
is closed, the book is put back into the pool of available books, so that
the book may be re-opened at some later stage (e.g., if the channel
corresponds to a tape-unit, the tape is not removed yet). If a book is
locked, it cannot be re-opened until some subsequent system-task has put the
book back into the pool (in this case, the tape is removed and put on the
shelf)•. If a file is scratched, the book is disposed of by the system in
some way (i.e., its information generally gets lost). In all cases, the
current buffer may still have to be transput to the book, possibly resulting
in an end-of-page or end-of-file condition.and the like. The status
information is updated such that the file is no longer said to be opened.

If opening is not successful, a non zero error code is returned. These
error codes consist of two parts: a "general" part and a "specific" part.
The general part can in a loose way be associated with the various validity
tests; the specific parts depend on the particular operating environment,
and they are not further specified in this report. {This strategy is
borrowed from [11]}. The general error codes used have been given the
following symbolic names:

(1) 'badidf' - The string argument to 'open' or 'establish' is

(2)
(3)

(4)

(5)

(6)

(7)

(8)
(9)

(10)

(l 1)

(12)

(13)
(1 4)

(15)

(1 6)

'

'nowrite'
'notavail'

,
noestab'

,
posmax

,

,
posmin'

'notopen
,

,
noread' ,
noset'

'noreset'

,
nobackspace

,
noshift'

,
nobin

,
,
noalter'

'nomood'

,
wrongmult'

,

·wrong; in 'establish', the call of 'idf ok' returns
false, in 'open' no _matching book is found.
Writing cannot be done.
'file available' returns false. {This may be a
temporary problem which can be handled by re-trying
the calling of 'open' or 'establish' - for instance,
there is no room in the directory system for a new
file.}
'estab OF chan' returns false: files simply cannot
be established on this channel.
One of the dimension arguments to 'establish' or
'set' is too large.
One of the dimension arguments to 'establish' or
'set' is too small (i.e.,_:::, 0).
A transput routine is called with a file as
parameter which is not opened.
Reading cannot be done.
An attempt is made to set a file· for which 'set
possible' returns false.
An attempt is made to reset a file for which 'reset
possible' returns false.
An attempt is made to backspace on a file for which
'backspace possible' returns false.
An attempt is made to shift from 'bin mood' to 'char
mood' or vice versa on a sequential-access file.
Binary transput is not possible.
An attempt is made to shift from 'read mood' to

-'write mood' or vice versa on sequential-access
files in 'bin mood'.
Transput is attempted while no mood has been set
yet.
'associate' is called with a reference to a multiple
value as parameter whose bounds are incorrect.

(17) 'wrongset'

(18)
,
nocharpos

(l 9)
,
noline

,

(20)
,
nopage

,

(21)
,
wrongpos

,

(22)
,
wrongchar

,

,

29

'set' is called with a position as parameter which
is beyond the logical end, and this situation is not
mended by the user.
No 11 good" character position can be ensured.
No "good" line can be ensured.
No 11 good" page can be.ensured.
'set char number' is called with a wrong character
position as parameter.
'get' or 'get£' encounters a character which is not
expected, or one which cannot be converted, and this
situation is not mended by the user.

(23) 'wrongval' In 'get', i-t is impossible to convert a string to a
value of some g~ven mode, or during formatted
transput an attempt is made to transput a value
under the control of a picture with which it is
incompatible, or whose numter of frames is
insufficient, and this situation is not mended by
the user.

(24) 'setmiddle' An attempt is made to set a write-only file to a
position which is not at the beginning of a line
(see also section 7.1).

(25) 'wrongbacksp' - Backspace is called with the current position at the
beginning of a line.

(26) 'smallline' ~ An attempt is made to output a number to a line
which is too small to contain that number.

(27) 'noformat' 'putf' or 'getf' is called while no format is
associated with the given file, or the user has not
provided a new format while the event routine
corresponding to 'on format end' returns true.

(28) 'wrongformat' - During the elaboration of the first insertion of a

(29) 'wrongbin'

'collitem', the user has changed the current format
of the file.
During binary transput, it is not possible to input
a value of some given mode.

If more than one validity test needs to be performed, they are performed
one after the other; if one test fails, the corresponding error code is
returned and the remaining tests are not performed.

Files can be categorized according to various different properties:
a file may be random access or sequential;
a file may be read-only, write-only, or both may be possible;
a file may be used for both character and binary transput, or for
character transput only.

Below, a state diagram is given in which the various possible changes in the
mood are depicted for both sequential and random-access files (binary
transput is supposed to be possible here).

30

se·quential

char
mood

bin
mood

random-access

char
mood

bin
mood

read only

write only

both possible/reading

both possible/writing

both possible/none

{There is one striking irregularity in the above picture: reading and
writing may not be alternated on sequential-access files if the file is used
for binary transput.}

{Note that arrows going downwards into the category 11both possible/none11

correspond to transitions caused by a call of 'reset'.}

a) PROC establish=
(REF FILE f, STRING idf, CHANNEL chan, INT p, 1, c) INT:

IF NOT file available(chan) THEN error(notavail)
ELIF NOT estab OF chan THEN error(noestab)
ELIF POS(p, i, c) EXCEEDS max pos OF chart THEN error(posmax)
ELIF POS(l, l, l) EXCEEDS POS(p, 1, c) THEN error(posmin)
ELIF NOT idf ok(idf) THEN error(badidf)
ELSE

REF BUFFER buffer;
REF BOOK book:=

construct book(p, 1, c, idf, chan, buffer);
IF NOT (put OF chan)(book) THEN error(nowrite)
ELSE

CONV cc= (standconv OF chan)(book);
STATUS st:= establish status OR write mood;
(NOT (bin OF chan)(book) I st ORAB char mood);
(NOT (set OF chan)(book) I st ORAB not set poss);
f: ==

0

{book, chan, REF REF FORMATLIST(NIL), buffer, SKIP,
HEAP POS:= (l, 1, l), HEAP INT:= 1,
STRINGTOTERM 1111

,

read buffer OF cc, write buffer OF cc, init buffer OF cc,
put char OF cc, put bin char OF cc,
get char OF cc, get bin char OF cc,
HEAP BITS:= st,

#i.e., opened & lfe in current (1st) line &
the buffer is ready for writing#

HEAP INT:= c,
false, false, false, false, false, false,
(REF FILE f, REF CHAR c) BOOL: FALSE);

FI
Fl;

b) PROC create= (REF FILE£, CHANNEL chan) INT:
BEGIN POS max pos = max pos OF chan;

establish(£, default idf, chan, p OF max pos, 1 OF max pos,
c OF max pos)

END;

c) PROC open= (REF FILE f, STRING id£, CHANNEL chan) INT:
IF NOT file available(chan) THEN error(notavail)
ELIF REF BOOK book, REF BUFFER.buffer;

INT er = book in system(idf, chan_, _book, buffer);
er 1- 0

THEN er
ELSE CONV c = (standconv OF chan)(book);

STATUS st:= open status;
(NOT (put OF chan)(book)
(NOT (get OF chan)(book)
(NOT (bin OF chan)(book)
(NOT (set OF chan)(book)

st ORAB
st ORAB
st ORAB
st ORAB

read mood);
write mood);
char mood);
not set poss);

f:=

0
FI;

(book, chan, REF REF FORMATLIST(NIL), buffer, SKIP,
HEAP POS:= (1, 1, 1), HEAP INT:= SKIP,
STRINGTOTERM 1111

,

read buffer OF c, write buffer OF c, init buffer OF c,
put char OF c, put bin char OF c,
get char OF c, get bin char OF c,
HEAP BITS:= st,
HEAP INT:= SKIP,
false, false, false, false, false, false,
(REF FILE f, REF CHAR c) BOOL: FALSE);

d) PROC associate= (REF FILE file, REF [] [] [] CHAR sss) VOID:
IF INT lp = LWB sss, up= UPB sss;

INT 11 = (up > 0 I LWB sss [1] I 1),
ul =(up> 0 I UPB sss[l] IO);

INT le = (ul > 0 I LWB sss [1] [1] I 1),
uc = (ul > 0 I UPB sss[l] [1] I O);

lp #- 1 OR 11 # 1 OR le# 1
THEN
ELSE

(

I :
I :

error(wrongmult); abort
STATUS st:= associate status OR char mood;
up .:S, 0 I st ORAB (physical file end AND logical file ended)
ul ~ 0 I st ORAB page end
uc .:S, 0 I st ORAB line end);

PROC t = (REF BOOK a) BOOL: TRUE;
PROC f = (REF BOOK a) BOOL: FALSE;

PROC new buffer= (REF FILE f) VOID:
II page is ok II
(INT 1 = 1 OF cpos OF f +:= 1;
c OF cpos OF f:= 1;
IF 1 > UPB (text OF f)[l]

31

32

THEN status OF f ANDAB page end
FI);

CONV c = (
ft read buffer ti

new buffer,
write buffer#

new buffer,
ti init buffer #

(REF FILE f) VOID:
REF STATUS{status OF f):= associate status OR char mood,

fl put char ti
(REF FILE f, CHAR char) VO ID: _ ·

BEGIN REF POS cpos = cpos OF f;
(text OF f)[p OF cpos] [1 OF cpos] [c OF cpos]:= char;
c OF cpos +:= 1; TRUE

END,
put bin char#

SKIP,
get char# ,

(REF FILE f, REF CHAR char) BOOL:
BEGIN REF POS cpos = cpos OF f;

char:= (text OF f)[p OF cpos] [1 OF cpos] [c OF cpos];
c OF cpos +:= 1; TRUE

END,
get bin char#

SKIP);

CHANNEL chan =
(t, t, t, t, f, f, f, t, BOOL: FALSE,
POS: (max int, max int, max int),
newline II
new buffer,
newpage ti
(REF FILE f) VOID:

(REF POS(cpos OF f):= (p OF cpos OF f + 1, 1, 1);
STATUS reading= state(£);
REF STATUS(status OF f):=

·1F p OF cpos OF f = UPB text OF f + 1
THEN REF INT(c of lpos OF f):= 1;

associate status AND physical file end AND
logical file ended

ELSE associate status
Fl OR reading),

ti reset II
(REF FILE f) VOID:

(REF POS(cpos OF f):= (1, 1, 1);
REF INT(c of lpos OF f):= SKIP;
REF STATUS(status OF f):= associate status

OR char mood),

FI;

11 set ti
(REF FILE f, INT p, 1, c) VOID:

IF INT up= UPB text OF f + l;
POS lpos = (up, 1, I), STATUS reading= state(£);
POS(p, 1, c) BEYOND lpos

THEN REF POS(cpos OF f):= lpos;
(reading SAYS read mood I test logical file end(f));
BOOL mended= (logical fil~ mended OF f)(f);
ensure state(f, reading);
(NOT mended I error(wrongset); abort)

ELIF , . .
INT ul = UPB (text OF f)[1] + 1,

uc =UPB (text OF f}[IJ[I] + 1;
BOOL fne = p < up;
BOOL pne = (fne I 1 < ul I FALSE);
BOOL lne = (pne I c < uc I FALSE);
BOOL lfe = NOT fne AND reading SAYS read mood;
POS(p, 1, c) EXCEEDS

POS(up, (fne I ul I 1), (pne I uc I 1))
THEN error(posmax); abort
ELIF POS(l, 1, 1) EXCEEDS POS(p, 1, c)
THEN error(posmin); abort
ELSE REF POS (cpos OF f): = (p, l; c);

REF INT(c of lpos OF f):= (fne I SKIP I 1);
REF STATUS(status OF f):=

FI,

bits pack((TRUE, TRUE, lne, pne, fne, lfe, fne,
FALSE, FALSE, FALSE, FALSE, FALSE))

OR reading

(REF BOOK b) CONV: c,
SKIP);

file:=
(pseudo book(UPB sss), chan, REF REF FORMATLIST(NIL), SKIP, sss,
HEAP POS:= (1, I, 1), HEAP INT:= SKIP,
.STRINGTOTERM 1111

, .

read buffer OF c, write buffer OF c, init buffer OF c,
put char OF c, put bin char OF c,
get char OF c, get bin char OF c,
HEAP STATUS:= associate status OR char mood,
HEAP INT:= UPB sss(IJ [1],
false, false, false, false, false, false,
(REF FILE f, REF CHAR c) BOOL: FALSE)

e) PROC? file available= (CHANNEL chan) BOOL:
C true if another file, at this instant of time, may be "opened",

"established" or "created" on 'chan', and false otherwise C;

-f) PROC 1 idf ok = (STRING idf) BOOL:
C true if 'idf' is acceptable to the implementation as the

~dentification of a new book and false otherwise C;

g)·PROC? false= (REF FILE f) BOOL: FALSE;

33

34

h) PROC 7 set write mood= (REF FILE f) VOID:
If opened and (in general) NOT write mood II
IF NOT (put OF chan OF f)(book OF f)
THEN error(nowrite); abort
ELIF status OF f SAYS read to write not possible
THEN e.rror(noalter); abort
ELSE status OF f ANDAB NOT read mood;

status OF f ORAB (write mood OR log1cal pos ok)
FI # opened & write mood#;

i) PROC 7 set read mood= (REF FILE f) VOID:·
opened and (in general) NOT ~ead- mood#
IF NOT (get OF chan OF f) (book OF f) .···
THEN error (noread); abort ·· -
ELIF status OF f SAYS write to read not possible
THEN error(noalter); abort
ELSE status OF f ORAB read mood;

IF status OF f SAYS write mood
THEN status OF f ANDAB NOT write mood;

mind logical pos(f)
Fl

FI # opened & read mood#;

j) PROC 7 set char mood = (REF FILE f) VOID:
opened and (in general) NOT char mood#
IF status OF f SAYS bin to char not possible
THEN error(noshift); abort
ELSE status OF f ORAB char mood;

status OF f ANDAB NOT bin mood
Fl # opened & char mood#;

k) PROC 7 set bin mood= (REF FILE f) VOID:
opened and (in general) NOT bin mood #
IF NOT (bin OF chan OF £)(book OF f)
THEN error(nobin); abort
ELIF. status OF f SAYS.char to bin not possible
THEN error(noshift); abort
ELSE status OF f ORAB bin mood;

status OF f ANDAB NOT char mood
FI # opened & bin mood#;

1) PROC close= (REF FILE f) VOID:
BEGIN

IF changed OF buffer OF f
THEN (write buffer OF f)(f)
FI;
status OF f ANDAB closed;
C The information on the number of users is updated. Some system-task

is activated to actually close the book; in this case, the book may
be re-opened. C

END; ,.

m) PROC lock= (REF FILE f) VOID:
BEGIN

IF changed OF buffer OF f
THEN (write buffer OF f)(f)
FI;
status OF f ANDAB closed;

35

C The information on the number of users is updated. Some system-task
is activated to actually lock the.book; in this case, it is not
possible to re-open the book (except possibly after some subsequent
system-task). C

END;

n) PROC scratch - (REF FILE f) VOID:
BEGIN

IF changed OF buffer OF f
THEN {write buffer OF£)(£)
FI;
status OF f ANDAB closed;
C The information on the number of users is updated. The book is

disposed of in some way by the system. C
END;

36

6. POSITION ENQUIRIES

6. I. DEVIATIONS

{D} The present model makes no use of the routines 'current pos',
'book bounds', 'line ended', 'page ended', 'physical file ended' and
'logical file ended'. In the present model, the status of the file is
inspected rather than its current po-sition.

6. 2. NEW DEFINITION

·The current position of a book ,opened on a given file is the value
referred to by the 'cpos' field of that file. It is advanced by each
transput operation in accordance with the-number of charactera.written or
read.

If c is the current character number and lb is the (maximum) length of
the current line, then at all times 1 ~ c ~ lb+l. c=l implies that the next
transput operation will be on the first position of the line, and c = lb+l
implies that the line has overflowed and that the next transput operation
wil_l call an event routine. If lb = 0, then the line is empty and is
therefore always in the overflowed state. Corresponding restrictions apply
to the current line and page numbers. Note that, if the page has overflowed,
the current line is empty, and, if the book has overflowed, the current page
and line are both empty.

The user may determine the current position by means of the routines
'char number', 'line number' and 'page number' (a, b, c).

The "status" of a file contains the following information:
whether or not the file has been opened;
whether or not the buffer has been initialized;

- whether or not the line has overflowed;
whether or not the page has overflowed;
whether or not the physical file has overflowed;

- whether or not the logical file is ended;
whether or not the logical file end is in the current line;
whether or not the file is being used for input;
whether or not the file is being used for output;
whether or not the file is being used for character transput;
whether or not the file is being used for binary transput;
whether or not the file is random access.

In order to achieve an efficient implementation, the status is not
defined as a set of separate booleans. Rather, the status is defined to be
of the mode BITS. (On a machine where 'bits width' is less than 12, some
trivial modifications have to be made in the definitions given below (d, e
and f).)

As a consequence of a call of one of the rout~nes 'set', 'reset', 'set
char number' and 'backspace', the current position may be set back.
Following the philosophy sketched in Chapter 2, the current position 'cpos'
and the logical position 'lpos' are related through

cpos = cposl
lpos = MAX(cposl, lposl), (*}

37

where 'cposl' and 'lposl' are the variables maintained by the system
described in this report ('cposl' and 'lposl' are termed 'cpos' and 'lpos'
in the text again). If one of the above mentioned routines is called,
relation(*) may no longer be valid if lposl < cposl. For this purpose, the
routine 'mind logical pos' has been provided. Since the logical position is
of importance when reading and writing is alternated, 'mind logical pos' is
also called from within 'set read mood'.

The status is inspected before each transput operation. This inspection
generally proceeds in two steps:

i) one overall test (which depends on ·the• transput operation); the
"normal" situation will be detected by this test, so that transput
may often be continued after one single test;

ii) in case the overall test fails, a-- chain of tests is activated to
detect the specific condition that fails to hold.

After each transput operation, the status of the file is updated.
Routines are provided to update the 'line end' and 'logical file end'
information. Updating 'buffer filled', 'page erid', 'phy"sical file end' and
'logical file end in current line' information obviously is one of the tasks
of the routines 'read buffer', 'write buffer' and 'init buffer'.

a) PROC char number= (REF FILE f) INT:
IF status OF f SAYS opened
THEN c OF cpos OF f
ELSE error(notopen); abort
FI;

b) PROC line number= (REF FILE f) INT:.
IF status OF f SAYS opened
THEN 1 OF cpos OF f
ELSE error(notopen); abort
FI;

c) PROC page number= (REF FILE f) INT:

d)

IF status OF f SAYS opened
THEN p OF cpos OF f
ELSE error(notopen); abort
Fl;

MODE 7 STATUS = BITS;
II The bits in the status have the following

(they are numbered from left to right):
bit 1 = 1 <=> the file is opened;
bit 2 = 1 <=> the buffer is initialized;
bit 3 = 1 <=> NOT line ended;
bit 4 = 1 <=> NOT page ended;
bit 5 = I <=> NOT physical file ended;
bit 6 = 1 <=> NOT logical file ended;
bit 7 = 1 <=> NOT lfe in current line;

, bit 8 = 1 <=> ~ead mood;
bit 9 = 1 <=> write mood;
bit 10 = 1 <=> char mood;
bit 11 = I <=> bin mood;
bit 12 = 1 <=> NOT set possible. II

meaning

38

e) PRIO 7 ORAB = I ,
OP ORAB= (REF STATUS s, STATUS t) REF STATUS: s:= s OR t;

PRIO 7 ANDAB = 1,
OP ANDAB = (REF STATUS s, STATUS t) REF STATUS: s:= s AND t;

PRIO "! SAYS = 6,
OP SAYS= (STATUS s, t) BOOL: s > t;

PRIO 7 SUGGESTS= 6,
OP SUGGESTS = (STATUS s, t) BOOL: s ~ !:_;

{Sometimes one wants to know whether certain bits are on (then SAYS is
used); sometimes whether they are off (theri SUGGESTS is used)._}.

f) # Some constant-declarations. #
STATUS 7 put char status

7 get char status
7 put bin status
7 get bin status

"l line ok
7 page ok
7 physical file ok

7 logical pos ok
7 logical pos not ok
7 logical file ended

7 opened
7 closed
,· buffer filled
7 not lfe in current line
7 lfe in current line
7 line end
7 page end
7 physical file end
"l associate end

7 not set poss.

7 establish status
7 open status
"l associate status

7 read mood
7 write mood
7 char mood
7 bin mood
7 read or write mood
7 mood part

= 2r
= 2r
= 2r
= 2r

0 000 00 0110 o,
0 000 00 1010 o,
0 000 00 0101 o,
0 000 00 1001 o,

= 2r l I 111 l O 0000 O,
= 2r 1 0 011 10 0000 0,
= 2r l 0 001 10 0000 0,

= 2r l 0 000 10 0000 0,
= 2r O O 000 01 0000 1,
= 2r l 1 1 11 00 1111 1 ,

= 2r 0 000 00 0000 0,
= 2r O O 000 00 0000 O,
= 2r O l 000 00 0000 O,
= 2r O 0 000 01 0000 0,
= 2r I 1 111 1 0 1111 1 ,
= 2r 1 1 011 1 1 1111 1 ,
= 2 r 1 l 00 I l 1 l l 1 1 . I ,
= 2 r 1 l 000 11 l l 11 1 ,
= 2r 1 1 000 11 0000 1,

= 2r O O 000 00 0000 1,

= 2 r 1 1 1 l l l O 0000 0,
= 2r l O 111 1 I 0000 O,
= 2r l 1 1 I 1 11 0000 0,

= 2r O O 000 00 1000 O,
= 2r O O 000 00 0100 O,
= 2r O O 000 00 0010 O,
= 2r O O 000 00 0001 O,
= 2r O O 000 00 1100 O,
= 2r O O 000 00 1111 O,

7 read to write not possible= 2r
7 write to read not possible= 2r

0 000 00 1001 1,
0 000 00 0101 1,
0 000 00 0001 1,
0 000 00 0010 I;

7 bin to char not possible
7 char to bin not possible

= 2r
= 2r

g) PROC 7 mind logical pos = (REF FILE f) VOID:
IF status OF f SAYS not lfe in current line
THEN SKIP
ELSE

IF c OF cpos OF f > c of lpos OF f
THEN REF INT(c of lpos OF£):= c OF cpos OF f
FI;
test logical file end(f)

FI;

h) PROC 7 test line end = (REF FILE f) VOII;)_:
IF c OF cpos OF f > char bound OF f
THEN status OF f ANDAB line end'
FI;

i) PROC 7 test logical file end= (REF FILE f) VOID:
IF c OF cpos OF f = c of. lpos OF f
THEN status OF f ANDAB logical file ended
FI;

39

40

6.3. EFFICIENCY

The efficiency of the transput system criti~ally depends on the way the
operators SAYS and SUGGESTS are implemented. For instance, it will very
often not be necessary for these operators to actually yield a value of the
mode specified by BOOL. In case of an enquiry in an if-statement, the result
of comparing two status values might be kept in a condition register,
subsequently to be tested by that if-statement.

Also, the simple routines 'test line end' and 'test logical file end'
may profitably be expanded inline.

7. LAYOUT ROUTINES

7. 1. DEVIATIONS

41

{S} The Revised Report specifies that 'space', 'newline' and 'newpage'
act as skip operations if the logical file end is not yet reached (is
not in the current line or page, respectively). This requirement will
be difficult to fulfil on write-only ·files as far as 'space' is
concerned. In the present model, blanks are written in that case.

{S} A write-only file can only be set to a position which is at the
beginning of a line (so 'c' equals 1); it is not expected that the
system can start to write in the midqle of a line that cannot be read
(see also the description of 'do set' in section 4. 2. 2.·J h

{S} 'backspace' is not assumed to be possible on all files. For files
having very long lines, the buffer may correspond to a smaller piece
of information. In that case, 'backspace' is not allowed in the
present model. The user may discover whether backspacing is possible
through the environment enquiry 'backspace possible' (4. 3. 2. j). If
'backspace' is called with a file as parameter for which backspacing
is not possible, an error message is given and the program is aborted.

{D} The 'get good'-routines from the Revised Report are termed
'ensure'-routines in the present model. For clarity's sake, they are
written (right-) recursively rather than with the aid of a while loop.
{Of course, this can easily be optimized out.}

{D} The routine 'get good file' in the Revised Report serves a twofold
purpose: on reading, it is tested whether the current position is
still within the logical file; on writing, the current position is
checked against the physical file end. This task has been split up
into two separate routines: 'ensure logical file' and 'ensure physical
file'.

{S}'The routine 'check pas' as given below differs from the one given
in the Revised Report in some obscure circumstances. The Working Party
still has to decide on this matter.

7.2. NEW DEFINITION

A book input from an external medium by some system-task may contain
lines and pages not all of the same length. Contrariwise, the lines and
pages ~fa book which has been established (5.2.a) are all initially of the
size specified by the user. However if, during output to a compressible book
(4.3.2), 'newline' ('newpage') is called with the current position in the

· same line (page) as the logical end of the book, then that line (the page
containing that line) is shortened to the character number (line number) of
the logical end. Thus 'print(("abcde", newline))' could cause the current
line to be reduced to 5 characters in length. Note that it is perfectly
meaningful for a line t~ contain no characters and for a page to contain no
lines.

The routines 'space' (a), 'newline' (c) and 'newpage' (d) serve to
advance the current position to the next character, line or page,
respectively. They do not alter the con-tents of the positions skipped over,

42

except during output with the current position at the logical end of the
book.

If, during character output with the current position at.the logical end
of the book, 'space' is called, then a space character is written (similar
action being taken in the case of ,newline' and 'newpage' if the book is not
compressible). Note that on sequential-access files, 'space' is only treated
as a skip operation if the logical end is in the current line! Thus,
'print((11 a 11

, backspace, space))' has a different effect from 'print(("a",
backspace, blank))', while 'print(space)' may well have the same effect as
'print(blank)', even if the current position is not at the logical end of
the book. ·

The current position may be alt:ered also by calls of 'set char number'
(o) and, on appropriate channels, of 'backspace' (b), 'set' (mf and 'reset'
(n).

A call of 'set' which attempts to leave the current position beyond the
logical end results in an error message, after which execution of the
particular program is aborted. There is thus no defined way in which the
current position can be made to be beyond the logical end, nor in which any
char.acter within the logical file can remain in its initial undefined state.

The mood of the file (4.3.2) controls some effects of the layout
routines. If the read/write mood is reading, the effect of 'space',
'newline' and 'newpage', upon attempting to pass the logical end, is to call
the event routine corresponding to 'on logical file end'; the default action
then is to give an error message and abort the elaboration of the particular
program. If the read/write mood is writing, the effect is to output spaces
(or, in bin mood, to write some undefined character) or to compress the
current line or page. If the read/write mood is not determined on entry to a
layout routine, an error message is given and the program is aborted. On
exit, the read/write mood present on entry is restored.

A reading or writing operation, or a call of 'space', 'newline',
'newpage' ,_ 'set' or 'set char number', may bring the current position
outside the physical or logical file (6.2, 3), but this has no immediate
consequence. However, before· any further transput is attempted, or a further
call of 'space', 'newline' or 'newpage' (but not of 'set' or 'set char
number') is made, the current position must be brought to a "good" position.
It is ensured that the position is "good" by calling one of the 11 ensure 11

routines: 'ensure logical file' (g), 'ensure physical file' (h), 'ensure
page' (i) and 'ensure line' (j). On writing, the page is "good" if the
(physical) file has not overflowed (6. 2, 3); on reading, the page is "good"
if the logical file has not overflowed (6.2, 3). The line (character
position) is "good" if the page (line) has not overflowed (6.2, 3). The
event routine corresponding to 'on physical file end', 'on logical file
end', 'on page end' or 'on line end' is therefore called as appropriate.
Except in the case of formatted transput (which makes use of the routine
'check pos', see below), the default action, if the event routine returns
false, is to give an error message and stop execution of the program in the
first t~o cases, or to call 'newpage' or 'newline', respectively. After this
{or if the event routine returns true), the position is tested again
(recursively).

43

The routines 'next pos' (k) and 'check pos' (1) also belong in the
category of "ensure" routines. 'Next pos' is very similar to 'ensure line';
instead of returning false if the position can not be ensured, an error
message is issued and the program is aborted. It is mainly used in the
section on unformatted transput. The routine 'check pos' differs from
'ensure line' in that no default line mending is performed (although, by
default, 'newpage' may well be called). It is used during unformatted input
of strings or numbers and during formatted.transput. An important
characteristic of 'check pos' is that as soon as an event routine returns
false, no other event routine is called.

Most routines in the transput s~ction obey certain well-defined pre- and
post conditions.- The various conditions that may hold can be summarized as
follows:

opened:
- mood ok:

- physical file ok:

- logical file ok:

- page ok:

- line ok:

the file has been opened.
the file has been opened and the read/write mood is
correct (in general, this means that the read/write
mood is as on entry).
the file has been opened,
correct, and the book has
page number is within its
the file has been opened,

the read/write
not overflowed
bounds).
the read/write

mood is
(i.e., the

mood is
correct, and, on reading, the current position is
within the logical file.

· the file has been opened, the read/write mood is
correct, and both the book and the current page have
not overflowed.
the file has been opened, the read/write mood is
correct, and the book, the current page and the
current line have not overflowed (i.e., the current
position is within the physical file).

{The following inclusions may be observed:

.line ok => page ok => physical file ok => mood ok => opened,

and

logical file ok => physical file ok.
}

In terms of the above conditions, the pre- and post-conditions (if the
routine does not fail) of the ensure routines are:

44

a)

PRE POST
ensure state mood ok

ensure logical file mood ok logical file ok·

ensure physical file mood ok physical

ensure page mood ok page ok

ensure line mood ok line ok

next pos mood ok. .line ok

check pos mood ok line ok

PROC space= (REF FILE f) VOID:
IF STATUS reading= state(f);

IF status OF f SAYS line ok
THEN TRUE
ELSE ensure line(£, reading)
FI

THEN Ii line ok II
REF INT c = c OF cpos OF£;
IF status OF f SAYS not lfe in current line
THEN c +:= 1; test line end(£)
ELIF c of lpos OF f > c

file ok

THEN c +:= 1; test line end(f); test logical file end(f)
ELIF status OF f SAYS bin mood
THEN (put bin char OF£)(£, SKIP)
ELSE

IF NOT (status OF f SAYS char mood)
THEN set char mood(£)
FI;
put char(£, 11 11

)

FI·
ELSE error(nocharpos); abort
FI;

b) PROC backspace= (REF· FILE f) VOID:
IF NOT backspace possible(£)
THEN error(nobackspace); abort
ELSE mind logical pos(f);

REF INT c = c OF cpos OF f;
(c > 1 I c -:= I I error(wrongbacksp); abort);
status OF f ORAB line ok # logical file ok & NOT line ended#

FI;

c) PROC newline= (REF FILE f) VOID:
IF STATUS reading= state(f);

IF status OF f SAYS page ok
THEN TRUE
ELSE ensure page(f, reading)
FI

THEN # page ok #
(do newline OF chan OF f)(f)

ELSE error(noline); abort
FI;

d) PROC newpage = (REF FILE f) VOID:
IF STATUS reading= state(£);

IF status OF f SAYS physical file·ok
THEN TRUE
ELSE ensure physical file(f, reading)
FI

THEN # physical file ok #
(do newpage OF chan OF£)(£)

ELSE error(nopage); abort
FI;

e) PROC 7 state= (REF FILE f) STATUS:
IF NOT (status OF f SAYS opened)
THEN error(notopen); abort
ELIF status OF f SUGGESTS NOT read or write mood
THEN error(nomood); abort
ELSE status OF f AND mood part
FI;

f) PROC 7 ensure state= (REF FILE f, STATUS reading) VOID:
IF NOT {status OF f SAYS opened)
THEN error(notopen); abort
ELSE

IF reading SAYS read mood
THEN set read mood(f)
ELSE set write mood(£)
FI;
IF reading SAYS char mood
THEN set char mood(£)
ELSE set bin mood(£)
FI

FI;

g) PROC 7 ensure logical file= (REF FILE f, STATUS reading) BOOL:
BEGIN # logical file ended#

BOOL mended= (logical file mended OF f)(f);
ensure state(£, reading);
IF status OF f SAYS logical pos ok
THEN TRUE
ELIF mended
THEN ensure logical file{f, reading)
ELSE FALSE
FI

END;

45

46

h) PROC 7 ensure physical file= (REF FILE f, STATUS reading) BOOL:
The mood is correct, the file generally not#
IF

IF status OF f SAYS logical pos ok
OR reading SAYS write mood

THEN TRUE
ELSE ensure logical file(f, reading)
FI

THEN # logical file ok #
IF status OF f SAYS physical file ok
THEN TRUE
ELSE # physical file ended#

FI

BOOL mended== (physica-1 file m~nded OF f)(f);
ensure state(f, reading); ·
IF mended
THEN ensure physical file(f, reading)
ELSE error(nopage); abort
FI

ELSE FALSE
FI;

i) PROC? ensure page= (REF FILE f, STATUS reading) BOOL:
The mood is ok, the page generally not#
IF

IF status OF f SAYS physical file ok
THEN !RUE
ELSE ensure physical file(£; reading)
FI

THEN# physical file ok #
IF status OF f SAYS page ok
THEN TRUE
ELSE # page ended#

BOOL mended= (page mended OF f)(f);
ensure state{f, reading); (NOT mended I newpage(f));
ensure page(f, reading)

'FI
ELSE FALSE
FI;

j) PROC? ensure line= (REE FILE f, STATUS reading) BOOL:
The mood is ok, the line generally not#
IF

IF status· OF f SAYS page ok
THEN TRUE
ELSE ensure page{f, reading)
FI

THEN# page ok #
IF NOT (status OF f SAYS buffer filled)
THEN (init buffer OF f)(f); ensure line(f, reading)
ELIF status OF f SAYS line ok
THEN TRUE
ELSE II line ended II·

BOOL mended= (line mended OF f)(f);
ensure state(f, reading); (NOT mended I newline{f));
ensure line{f, reading)

FI
ELSE FALSE
FI;

k) PROC ! next pos = (REF FILE f) VOID:
IF NOT ensure line(f, status OF f)
THEN error(nocharpos); abort
FI;

1) PROC ! check pos = (REF FILE f) BOOL:
·the mood is ok, the line generally hot·#
IF STATUS reading= status OF r;

IF status OF f SAYS page ok
THEN TRUE
ELSE ensure pa;e(f, reading)
FI

THEN # page ok #
IF NOT (status OF f SAYS buffer filled)
THEN (init buffer OF f) (f); check pos (f)
ELIF status OF f SAYS line ok
THEN TRUE
ELSE # line ended#

FI

BOOL mended= (line mended OF f)(f);
ensure state(£, reading);
(mended I check pos(f) I FALSE)

ELSE FALSE
FI;

m) PROC set= (REF FILE f, INT p, 1, c) VOID:

n)

IF NOT (status OF f SAYS opened)
THEN error(notopen); abort
ELIF status OF f SAYS not set poss
THEN error(noset); abort

'ELSE mind logical pos(f);
(do set OF chan OF f)(f, p, 1, c)

FI;

PROC reset= (REF FILE f) VOID:
IF NOT reset possible(£)
THEN error(noreset); abort
ELSE mind logical pos (f);

REF STATUS st= status OF f;
st ANDAB NOT mood part;
(NOT (put OF chan OF f)(book OF f)
(NOT (get OF chan OF f)(book OF f)
(NOT (bin OF chan OF £)(book OF f)
(do reset OF chan OF f)(f)

FI;

,,

st
st
st

47

ORAB read mood);
ORAB write mood);
ORAB char mood);

48

o) PROC set char number = (REF FILE f, INT c) VOID:
IF NOT (status OF f SAYS opened)
THEN error(notopen); abort
ELIF c < 1 OR c > char bound OF f + 1
THEN error(wrongpos); abort
ELSE

WHILE c OF cpos OF ff c
DO

OD
FI;

IF C > C OF cpos OF f
THEN space(f)
ELSE backspace(f)
FI

8. CONVERSION ROUTINES

8.1. DIFFERENCES

49

{U} In the set of conversion routines given in the Revised Report, it
is not always clear exactly when 'undefined' is called. It seems to be
the intention to call 'undefined' only when, whatever the value of the
first parameter, no string can be del·ivered satisfying the constraints
set by the other parameters. However, when 'x" and 'i" are of the mode
REAL and INT, respectively, 'whole(x, 1)' calls 'undefined', while
'whole(i, l)' does not. Similarly, 'float' may call 'undefined' due to
its recursive description. In .the present model, 'undefined' is never
called; rather, a string filled with 'errorchar' is just returned.

{D} No use has been made of the routine 'L standardize'. In general,
the number of places where real arithmetic co:"es in is kept minimal:
only the routines 'subfixed' and 'log10', and a few lines in 'string
to L real' use real arithmetic.

{D} The routine 'char dig" does not replace spaces by zeroes, since
'indit string' caters for that.

8.2. NEW DEFINITION

{An earlier version of this Chapter appeared in the ALGOL Bulletin
[15).}

From the routines 'whole', 'fixed' and 'float' given below, the
following may be observed:

The routines do not make use of real arithmetic. All real arithmetic
is delegated to 'subfixed' and 'log10'. Unless the exponent in 'float'
may be of the order of magnitude of 'max int', the integral arithmetic
presents no trouble;
Arithmetic values are first converted to strings of sufficient length,
after which the rounding is performed on the strings. This seems to be
the·only reasonable way to ensure that values like 'L max real' may be
converted using 'fixed' or 'float';
The routines are written non-recursively;
Care has been taken to avoid string operations. (Building up a string
of n characters one by one using the standard operations PLUSTO and
PLUSAB will probably result in allocation of about (n**2)/2 storage
cells, most of which are garbage.) Therefore, the routines start by
establishing a reasonable upperbound on the width of the converted
value~ and a reference-to-row-of-character of that length is used
thereafter.

The routines 'whole', 'fixed' and 'float' have the following parameters:
'v', the value to be converted,
'width', whose absolute value specifies the length of the string that
is produced,
'after', whose value specifies the number of digits desired after the
decimal point (f~r 'fixed' and 'float' only), and

- 'exp',· whose absolute value specifies the desired width of the
exponent (for 'float' only).

50

The routine 'whole' is intended to convert integer values. Leading
zeroes are replaced by spaces and a sign is normally included. The user may
specify that a sign is to be included only for negative values by specifying
a negative or zero width. If the width specified is zero, then the shortest
possible string is returned. The routine uses 'subwhole' for the actual
conversion.

Examples:
'whole(i, -4)' might yield II O", 11 99 11

,
11 -99'\ 11 9999 11

, or, if 'i' were
greater than 9999, "****", where 11*" is the yield of 'errorchar';

'whole(i, 4)' would yield" +99" rather than"· 99";
'whole(i, O)' might yield 11 0 11

,
11 99 11

;
11-99 11

,
11 9999 11 or "99999".

The routine 'fixed' may be used to convert real values to fixed point
form (i.e., without en exponent part). It has an 'after' parameter to
specify the number of digits required after the decimal point. From the
value of the 'width' and 'after' parameter, the amount of space left in
front of the decimal point may be calculated. If the space left in front of
the decimal point is not sufficient to contain the integral part of the
value being converted, digits after the decimal point are sacrificed. If the
number of digits after the decimal point is reduced to zero and the value
still does not fit, a string filled with 'errorchar' is returned. The
routine uses 'subfixed' for the actual conversion, and 'log10' to estimate
the width of the integral part of the value submitted.

Examples:
'fixed(x, -6, 3)' might y1-eld" 2.718 11

,
11 27.183 11

,
11 271.83" (in which one

place after the decimal point has been sacrificed in order to fit the
number in), "2718.3'', 11 27183 11 or 11 271828 11 (in the last two examples,
all positions after the decimal point have been sacrificed);

'fixed(x, O, 3)' might yield 11 2.718", 11 27.183 11 or 11 271.828 11
•

The routine 'float' may be used to convert· real values into floating
point form. It has an 'exp' parameter to specify the width of the exponent.
A sign is normally included in both the mantissa and the exponent. Just as
in the case of the 'width' parameter, the sign of the 'exp' parameter
specifies whether or not a plus sign is to be included. If the value of the
'exp' parameter is zero, the exponent is converted to a string of minimal
length. The value of the 'width' parameter, however, may not be zero in this
case. Note that 'float' always leaves the first position for a sign; if no
sign is to be included, a space will be given. From the value of 'width',
'after' and 'exp' it follows how much space is left in front of the decimal
point. From this, the value of the exponent follows; this exponent has to
fit in a string whose length is bounded by the width specified by the 'exp'
parameter. If this is not possible, the digits after the decimal point are
sacrificed one by one; if there are no more digits left after the decimal
point and the exponent still does not fit, digits in front of the decimal
point are sacrificed too. (Note that this has repercussions on the value of
the exponent, and thus possibly on the width of the exponent.) At each step
during this process, a check must be made to ensure that some positions for
digits remain; if this .is not the case, a string filled with 'errorchar' is
returnea. The routine uses 'subfixed' for the actual conversion, and the
operatoc 'EXPLENGTH' to determine the width needed for the exponent.

51

Examples:
'float{x, 9, 3, 2)' might yield u-2.718e+0 11

,
11+2.72e+l1 11 {in which one place

after the decimal point has been sacrificed in order to- make room for
the exponent);

'float(x, 6, l, O)' might yield "-256el", 11+26e12" or "+le -9" (in case 'x'
has the value 0.996e-9).

The routine 'subfixed" performs the actual conversion from numbers to
strings. The parameter's' receives the representation of the value
submitted; the digits are placed from position 1 onwards. Position O is
always filled with the character 11 0", while the positions numbered 'LWB s'
up to -1 are filled with spaces. When called from 'fixed', the routine
delivers all digits from the integral part, followed by 11

•
11

, followed by
'fl.fter+l' digits from the fractional part. When called from '·float', the
first 'after+1' significant digits are delivered an~ the decimal point is
placed after the i-th digit, where i is the initial value of the parameter
'p'. In both cases, the last digit is truncated, and-~- rounded. (The
rounding is done later on, and rounding the number twice may give wrong
results.) The parameter 'p' receives the position of the decimal point,
where the position to the right of the first digit is counted positive and
to the left zero or negative. The routine returns an indication of the sign
of the value submitted (true iff negative).

The routine 'sub.fixed' should to the best possible adhere to the
principles of numerical analysis. Rather than an ALGOL 68 routine, a
semantic definition is given below.

The (hidden) routines 'power10' and ~round' are used for rounding. For
'powerlO', the parameter's' refers to the string to be rounded, the
parameter 'last' is the position where the rounding process starts, and the
parameter 'rp' will obtain as value the index Pin's' such that 's[P+1]'
••• 's[last]' are all equal to 119 11 (or"."). The routine delivers true if
the rounding causes a carry out of the leftmost digit of the number in 's'.
At a subsequent stage, 'round' is called with the same parameters 's', 'rp'
and 'last'. This routine performs the actual rounding. If 'rp' > 'last', no
action is.performed since the number may just be truncated at the position
indicated by 'last'. Otherwise, 's[rp]' gets as value the character
representing the next higher digit, and 's[rp+1]' ••• 's[last]' all get the
value "0 11 (except at the position of the decimal point). The rounding is
done in two steps, since 'float' may necessitate several calls of 'powerlO'
before the actual rounding may take place.

52

a) MODE? NUMBER= UNION({!::, REAL*, {LINT*);

b) PROC whole = (NUMBER v, INT width) STRING:
CASE v IN

,j:(!:,_ INT x):
(INT abs width= ABS width;
INT upb = abs width MAX L int width;
INT lwb:= upb - abs width+ 1;
INT first:= lwb, [0 : upb) CHAR s;
IF BOOL neg= subwhole(x, first, upb, s); neg OR width> 0
THEN s [first :..: = 1); = (neg I 11

-
11

· I ·11+ 11
)

FI;
(width= 0 lwb:= first); # _n~ leading spaces needed#
IF first> lwb THEN s[lwb :)

ELSE abs width* errorchar
FI)*

OUT fixed(x, width, 0)
ESAC;

c) PROC fixed = (NUMBER v, INT width, after) STRING:
IF INT abs width= ABS width,

BOOL poswidth =width> O, zerowidth =width= O;
INT point:= log10(v) - 1, length:= abs width - ABS poswidth;

after< 0 OR
NOT zerowidth AND (after z. length OR point> length)

THEN 1 MAX abs width* errorchar
ELIF INT aft= (zerowidth I after I after MIN (length - point));

Now aft equals the maximum number of digits delivered after the
decimal point. # ·

INT upb =point+ aft+ 3;
[0 HIN (upb - abs width) - 2 : upb] CHAR s;

BOOL neg= subfixed(v, aft, point, s, FALSE);
INT last:= point+ aft, first:= 1, rp;
IF zerowidth THEN length:= last
ELSE length:= abs widtl~ -ABS(neg OR poswidth);

last:= last MIN length
Fl;
IF powerlO(s, rp, last)
THEN first:= 0;

(NOT zerowidth AND last= length I last-:= 1)
FI;
(last= point I last-:= 1);
II The result should not end with 11

•
11

• #
(point= 1 AND last< length I first:= 0);
II Deliver 11011 or 11 0.xxx". It

point> last+ 1 OR last< first
THEN abs width* errorchar
ELSE s[first - 1):= (neg I 11

-
11 I: poswidth I 11+ 11 I 11 11

);

round(s, rp, last};
s[(zerowidth I first - ABS neg I last - abs width+ 1)

:[1;
last]

d) PROC float "" (NUMBER v, INT width, after, exp) STRING:
IF INT abs width =- ABS width, sign after "" S.IGN after,

INT exp places:= ABS exp;
INT last:= abs width -· exp places - 2;
INT before:= last - after - sign after;
SIGN before+ sign after .s_ 0

THEN I MAX abs width* errorchar
ELIF INT first:= 1, exponent:= before, rp:= last+ l;

[-1 : abs width - sign after] CHAR s, BOOL exp sign= exp> O;
BOOL neg:= subfixed{v, after, exponent, s, TRUE);
exponent-:= before;
WHILE

IF rp> last
THEN

IF powerlO(s, rp, last)
THEN first:= O; s[before]:= ";";

FI
FI;

s[before + l]:= (before= 0 l rp:= l; 110 11 I 11 9 11
);

before-:= 1; last-:= 1; exponent+:= 1

exp sign EXPLENGTH exponent> exp places AND last> first
DO last ·-: = 1; exp places +: = 1;

CASE SIGN(last - before - 1) + 2 IN
(before-:= 1; exponent+:= 1),
(before+:= l; exponent-:= 1;
REF CHAR sbl = s[before + I]; s[before]:= sbl; sbl:= 11

•
11

)

ESAC
OD;
last< first

THEN abs width* errorchar
ELSE round(s, rp, last);

s[first -:= 1]:= (neg I 11
-

11 I: width> 0 I 11+ 11 I "..:.");
s[last +:= 1]:= 11e 11

; INT 1 =last+ exp places;
neg:= subwhole(exponent, last+:= 1, 1, s);
(neg OR exp sign I s[last - 1]:= (neg I 11

-
11 l 11+ 11

));

s [first : l]
FI;

e) PROC? subwhole =

53

(UNION({L INT*) x, REF INT first, INT upb, REF [] CHAR s) BOOL:
The digits of 'x' are placed in 's' (right justified to the

position with index 'upb'); the result will be a boolean indicating
the sign of 'x'. As a result, 'first' will point to the first digit
of 'x' in 's'. Leading spaces will be placed from position F
onwards, where F is the initial value of 'first'. II

CASE x IN
{(!!_ INT x):

BEGIN LINT n:= ABS x, INT f = first; first:= upb + 1;
WHILE s[first -:= 1]:= dig char(.§_(n MOD .b_ 10));

n OVERAB h 10; n # 1. 0
DO SKIP OD;
FOR i FROM f TO first - I DO s [i]: = 1

'._:,
11 OD;

X < 0
END*

ESAC;

54

f) PROC 7 subfixed =
(NUMBER v, INT after, REF INT p, REF [] CHAR s, BOOL floating) BOOL:

CA unit which, given values Vs AFTER and FLOATING (where AFTER is at
least zero), yields a value Band makes 'p' and 's' refer to values P
and S, respectively, such that:

c;

@Bis true if Vis negative, and false othe.rwise;
e Case A: FLOATING is false:

o it maximizes

u P-1
M = I

i=l

P-1-i C.*}0 +
1. J. IOP-i

c. * . 1.
i=p·l-1

under the following constraints:

o If V.:::, 1.0, then P = ENTIER(log10 (V)) + 2, and, otherwise, P=l;

e U = P + AFTER + 1 ;

@M<IVI.

{This simply amounts to the following: 's' contains all digits
from the fractional part of Vat positions 1 to P-1, a decimal
point at position P, and 'after+]' digits from the fractional
part of Vat positions P+l to U. Furthermore, if we convert the
contents of V back to some value M, this M should be "close" (in
the sense of numerical-analysis) to the original value V.}

Case B: FLOATING is true:
e it maximizes

M = r
i=l

c. * IOQ-i +
1.

u
I

i=Q+2

under the following constraints:

c. * IOQ+I-i
1.

e Q is the initial' value of 'p" {i.e •. , the number of digits
desired before the decimal point};

e If V = 0, then P = 1, and, otherwise, P = ENTIER(log 10 (V)) + 1

{i.e., V = (appr.) lOP*x, where xis normalized such that
O. 1..'.S_x<l .O};

e U = Q +after+ 2;

e M .:s_ IVI * lOQ-P.

{Thus, 's' contains the first Q significant digits of V, followed
by a decimal point, followed by the next 'after+l' digits of V.
If the contents of 's' is converted back to some value M, this M
should be close to the (sca~ed) original value V.}

~ For all i from 1 to U, if s [iJ =I 11
.", then

0 < ci .:s_ 9,.where ci = 'char dig(s[i])'.

g) PROC i loglO = (NUMBER v) INT:
C A number P such that P = 0 if v < 1.0, and, if v ,2: 1.0, then P is

such that

ENTIER(log
10

(v)) + ..5, P ..5, ENTIER(log
10

(v)) + 2.

55

Thus, Pis an estimate of the number of digits in the fractional part
of 'v'; this estimate may be at most 1 too large. This definition
should allow efficient computation of P; e.g., using the normal
floating point representation of 'v' with a mantissa Mand base 2

·exponent E (E = ENTIER(log
2

v)), P-may-be given the value

max(ENTIER(log 102 * (E+1))+1; O); Obviously also, 'loglO'
typical candidate for i.nline expansion. C;

h) PRIO i EXPLENGTH = 9;
OP EXPLENGTH = (BOOL sign, INT exp) INT:

is a

C The smallest E such that 'whole(exp, ABS sign* E)' succeeds. This
operator is used to estimate the length needed to convert the
exponent in 'float'. This is probably easier and faster than actually
converting the exponent and subsequently .testing its width, since on
most implementations the exponent will be a relatively small integer
(~ 322, say). C;

i) PROG '? power 1 0 = (REF [J CHAR s, REF INT rp, INT last) BOOL:
IF rp:== last+ 1; CHAR c:= s[rp];

char dig((c == 11
•

11 I s[rp+l] I c)) .2: 5
THEN

WHILE c:= s[rp -:== 1]; c = 11 911 OR c == 11
•

11 DO SKIP OD;
rp == 0

ELSE FALSE
Fl;

j) PROC i round= (REF (] CHAR s, INT rp, last) VOID:
IF rp ~ last
THEN REF CHAR srp = sr[p]; srp:= dig char(char dig(srp)+l);

FOR i FROM rp + 1 TO last
DO REF CHAR si = s [i]; (si =/: ". 11 si: = 110 11

) OD
Fl;

k) PROC 7 dig char== (INT x) CHAR:
"0123456789abcdef 11 [x+l];

1) PRIO i MAX= 9;
OP HAX = (INT a, b) INT: (a> b I a I b);

m) PRIO i MIN= 9;
0 P MIN = (INT a, b) INT : (a < b I a I b) ;

56

Strings are converted to arithmetic values by the operator 'ADD' and the
routine 'string to L real'. 'ADD' is used to construct an integer value.
Since getting an integer is relatively simple, no intermediate string is
constructed; rather, each digit read is directly appended to the partially
constructed number. For real values, a string Sis first built which
contains the (at most) 'L real width+!' most significant digits.
Subsequently, an integer exponent EXP is computed such that, if d

1
, ••• , dn

are the digits corresponding to the elements of S, then the number

d 1ct2 ••• dn * 10
EXP

is a close approximation of (the absolute·value of) the number read. This
construction is. performed by 'string to L real', which also gets the sign of
the result as parameter. Obviously, a sem~ntic definition of this routine is
given below.

n) PRIO "! ADD = I ;
OP ADD= (REF 1, INT a, INT d) BOOL:

IF 1,_ INT amax = L max int OVER 1. 10,
dmax = L max int MOD .!:_ 1 0;

a> amax OR a= arnax AND K d > dmax
THEN FALSE
ELSE a:= .b, 10 *a+ K d; TRUE
FI;

o) PROC string to L real=
(REF (] CHAR s, INT exp, BOOL neg, REF 1,_ REAL x) BOOL:

CA unit which, given values S, EXP and NEG, yields a value B such
that:

C;

e Let M be equal to (

UPB s
l ci * IOUPB s-i) * IOEXP

i=LWB s ✓

o IF M < L max real, then:
0 'x'-is made to refer to a value X, where X = M * (neg I -1 I 1);
e B is true;

Otherwise,
•Bis false{, and 'x' is left unchanged}.

p) PROC "! char dig= (CH.4.R x) INT:
(INT i; char in string(x, i, 110123456789abcdef"); i-1);

q) PROC char in string= (CHAR c, REF INT i, STRING s) BOOL:
(BOOL found:= FALSE;
FOR k FROM LWB s TO UPB s WHILE NOT found
DO (c = s[k] I i:= k; found:= TR~E) OD;
found);

r) INTL int width=
/J the smallest integral value such that 'L max int' may be converted

without error using the pattern n(L int width)d #
(INT c: = 1;
WHILE L 10 ** (c-l) < L max int OVER L 10 DO c +:= 1 OD;
c);

s) INTL real width=
C the smallest integral value such that different values yield

different strings using the pattern d.n(L real width - l)d C;

t) INTL exp width=
C the smallest integral value such that 'L max real' may be converted

without error using the pattern
d.n(L real width - l)d e n(L exp width)d C;

57

58

8.3. EFFICIENCY

The conversion routines are likely to be used quite heavily. Therefore,
the efficiency of their implementation is of crucial importance. Care has
already been taken to make the ALGOL-68 text as efficient as possible. Most
notably, all string processing has been avoided~ The following machine
dependent optimizations that will speed up the code considerably, are
recommended (although it may in practice turn out to be advantageous to
wholly rewrite the section on conversion routines in machine-code):

i) Since the character arrays that ar'e used are simple, one-dimensional
arrays with stride 1, an efficient and simple array-subscripting
mechanism can be used on most machines.

ii) The routines 'dig char' and 'char.dig' can cften be implemented much
more efficiently using knowledge about the internal ordering of the
characters.

9. TRANSPUT MODES AND STRAIGHTENING

9. l. DEVIATIONS

59

- {B} The way INTYPE is defined in the Revised Report, 'flexible row of
character' may only occur immediate.bJ. after 'reference to', and may
not be stowed. Thus, names of the mode specified by REF STRUCT(BOOL b,
STRING s), say, cannot be input to. This restriction is very much
against the way in which stowing is normally handled; also,
straightening is well capable of handling this task. This unintended
restriction has been removed.

9.2. NEW DEFINITION

a) MODE '? SIMPLOUT = UNION ({: L INT :t,, { ,h_ REAL *' { h COMPL l, BOOL,
{ h BITS *' CHAR, [] CHAR);

b) {Here, uppercase stands for metanotions.}
OUTTYPE:: union of OUTTYPERS mode.
OUTTYPERS:: OUTTYPER; OUTTYPER OUTTYPERS.
OUTTYPER:: PLAIN;

structured with OUTTAGS mode;
ROWS of OUTTYPER.

OUTTAGS:: OUTTYPER field TAG; OUTTYPER field TAG OUTTAGS.

c) MODE 7 SIMPLIN = UNION ({: REF L INT l, { REF ,h REAL *' { REF h COMPL :f,,
REF BOOL, { REF b, BITS*' REF CHAR, REF [) CHAR, REF STRING);

d) INTYPE:: union OF INTYPERS mode.
INTYPERS:: reference to INTYPER; reference to INTYPER INTYPERS.
INTYPER:: PLAIN;

flexible row of character;
structured with INTAGS mode;
ROWS of INTYPER.

iNTAGS:: INTYPER field TAG; INTYPER field TAG INTAGS.

e) OP 7 STRAIGHTOUT = (OUTTYPE x) [) SIMPLOUT:
C the result of 11 straighteningn 'x' C;

f) OP 7 STRAIGHTIN = (INTYPE x) [] SIMPLIN:
C the result of nstraighteningn 'x' C;

{Straightening is defined in the Revised Report in 10.3.2.3.c,d.}

60

JO. FORMAILESS TRANSPUT

10.1. DIFFERENCES

{S} In the Revised Report, the routines 'put' and 'get' start with a
test for the file being opened. This test is only needed for the case
where the second parameter is an empty row, as in 'put(£, ())'. In all
other cases, the file is tested ead~ time around the loop. In the
present model, this test has been omitted; it can now be stated that
the test for the file being opened is performed only once for each
item to be output except when control is given back to the user in
between.

- {S} In the Revised Report, an empty .-s-tring written at the end of a
page cannot be read back. To achieve compatibility between getting and
putting strings, 'ensure page' is called explicitly before a row of
character is output. Note however that this introduces an
incompatibility between putting and getting rows of characters!
Therefore, 'ensure page' is also called before a row of characters is
input using 'get'. This makes no difference as long as the row of
characters is not empty; for an empty row, a good page will be found,
however.

{S} In the present model it is assumed that internal characters can
always be converted to external ones. Thus, 'char error mended' is
never called by 'put char'. As a consequence, the test for the file
being opened and ·the current position being good can be omitted from
'put char'.

{S,E} As the present model does not assume that backspacing is
possible on each file, the character that may have been read ahead by
'get' must be restored in a different way. A primitive 'back char' is
introduced for this purpose.

{S} If a complex number •is read, no value is assigned to the complex
variable if either conversion to a real number fails.' In the Revised
Report, a value may in that case be assigned to one of the subnames of
the complex variable.

10.2. NEW DEFINITION

In forma.t:less transput, the elements of a "data list" are transput, one
after the other, via the specified file. Each element of the data list is
either a routine of the mode specified by PROC (REF FILE) VOID or a value of
the mode specified by OUTTYPE (on output) or INTYPE (on input). On
encountering a routine in the data list, that routine is called with the
specified file as parameter. Other values in the data list are first
straightened (9.2) and the resulting values are then transput via the given
file one after the other.

Transput normally takes place at the current position but, if there is
no room on the current line, then first, the event routine corresponding to
'on line end' (or, where appropriate, to 'on page end' or 'on physical file
end' or 'on logical file end') is called, and next, if this returns false,
the next "good" character position of the book is found, viz., the first
character position of the next nonempty line.

For formatless output, 'put' (a) and 'print' (or 'write') (section
10.5. 1 of the Revised Report) may be used. Each straightened value V from
the data list is output as follows:

61

If the mode of Vis specified by ,h INT, L REAL or ,h COMPL, output has tlf

fit on one and the same line. Moreover, if output does not take place at the
beginning of a line, a space is given first. The length of the string that
is output is such that 'L max int' ('L max real', ('L max real', 'L max
real')) is output without error if the mode of Vis specified by h INT (L
REAL, 1=_ COMPL). So, if the current position is at the beginning of a line,
the length of these strings is:

L int width + 1,
L real width+ L exp width+ 4, or
2 * (L real width+ L exp width+ fa)+ 2,

respectively, and one more otherwise. If the length of the string happens to
be greater than the length of the current line (i.e., the string would not
fit even if the line were empty), an error message is given and the program
is aborted. Otherwise, if there is not enough room for a string of this
length on the current line, then a good position is found on a subsequent
line, and the test is repeated until the number will fit. Then, when not at
the beginning of a line, a space is given and Vis output as if under the
picture

n(L int width-l)z + d,
+d.n(L real width-l)d e n(L exp width-l)z + d, or
+d.n(L real wi.dth-1)d e n(L exp w_idth-1)z + d 11 11 i

+d.n(L real width-l)d e n(L exp width-1)z + d,

respectively.

If the mode of Vis specified by BOOL, then first, if the current line
is full, a good position is found on a subsequent line; next, if Vis true
(false), the character yielded by 'flip' ('flop') is output (with no
intervening space).

If the mode of Vis specified by 1=_ BITS, then the elements of the only
field of V are output (as if of the mode specified by BOOL) one after the
other (with no intervening spaces, and with new lines being taken as
required).

If the mode of Vis specified by CHAR, then first, if the current line
is full, a good position is found on a subsequent line; next Vis output
(with no intervening space).

If the mode of Vis specified by [] CHAR, then first a good page is
found; next the elements of V are output (as above) one after the other
(with no intervening spaces, and with new lines being taken as required).

62

a) PROC put= (REF FILE f, [] UNION(OUTTYPE, PROC (REF FILE) VOID) x) VOID:
FOR i TO UPB x
DO

IF NOT (status OF f SAYS put char status)
THEN ensure state(f, put char status)
FI;
CASE x[i] IN

(PROC (REF FILE) VOID pf): pf(£),.
(OUTTYPE ot):

BEGIN (] SIMPLOUT y = STRAIGHTOUT ot;

{PROC L real conv = (RE·F [] · CHAR s, L REAL x) VOll):
ti This routine converts '~,. into

s[O: L real width+ L exp width+ 3] #
BEGIN INT exponent:= 1, rp~ last:= L real width+ 1;

BOOL neg=
subfixed(x, L real width - 1, exponent, s, TRUE);

exponent -: = 1;
IF powerlO(s, rp, last)
THEN s [1] : = 11 l 11

; s [2] : = 11
•

11
;

FOR i FROM 3 TO last DO s[i]:= 11 0 11 OD;
exponent +: = 1

ELSE round(s, rp, last)
FI;
slO]:= (neg I 11

-
11 I 11+11

); s[last +:= l]::a 11e11
; last+:= 1;

BOOL ex.pneg =
subwhole(exponent, last, last+ L exp width, s);

s [last - 1 J: = (expneg 1. 11
-

11 I 11+11
)

END*;

FOR j TO UPB y
DO

CASE y(j} IN
(UNION(NUMBER, {b, COMPL*) nc):

BEGIN
INT upb =

CASE nc IN
{(LINT): Lint width*,
{CL REAL): L real width+ L exp width+ 3*,
{(L COMPL): 2 * L real width +

2 * L exp width+ 9*
ESAC;

[O: upb] CHAR s;
CASE nc IN

{(b, INT k):
BEGIN INT first:= O;

BOOL neg= subwhole(k, first, upb, s);
s [first - 1}: = (neg I 11

-
11 I 11+ 11

)

END*,
{(L REAL r): L real conv(s,.r)*,
. { (h COM.PL z) :

BEGIN L real conv(s, re OF z);
INT istart = L real width+ L exp width+ 4;
s[istart]:= 11

"; s[istart + 1]:= "i11
;

L real conv(s(istart + 2: @ O], im OF z)
END:}

OD
END

ESAC
OD;

ESAC;
WHILE

IF NOT (status OF f SAYS line ok)
THEN next pos(f)
FI;
(upb.:::., char bound OF f I error(smallline); abor.t);
c OF cpos OF f + upb + SIGN(c OF cpos OF f - 1) >

c.har bound OF·f
DO BOOL mended == (line mended OF f) (£);

ensure state(f, put char status);
(NOT mended I new line (-f))

OD;
(c OF cpos OF f 1- 1 I (put char OF f)(f, 11 11

));

FOR k FROM OTO upb
DO (put char OF f)(f, s[k]) OD;
IF status OF£ SAYS logical pos not ok
THEN set logical pos(f)
FI;
test line end(f)

END II numeric II,
(BOOL b):

(IF NOT (status OF f SAYS line ok)
THEN next pos(f)
FI;
put char(f, (b flip I flop))),

{ (b_ BITS lb):
FOR k TO L bits width
DO

IF NOT (status OF f SAYS line ok)
THEN next pos(f)
FI;
put char(f, (k ELEM lb I flip I flop))

OD*,
(CHAR k):

(IF NOT (status OF f SAYS line. ok)
THEN next pos(f)
FI;
put char(f, k)),

([) CHAR ss):

ESAC

(IF NOT (status OF f SAYS page ok)
THEN ensure page(f, put char status)
FI;
FOR k FROM LWB ss TO UPB ss
DO

IF NOT (status OF f SAYS line ok)
THEN next pos(f)
FI;
put char(f, ss[k])

OD)

63

64

b) PROC 7 put char= (REF FILE f, CHAR char) VOID:
BEGIN (put char OF f)(f, char);

IF status OF f SAYS logical pas not ok
THEN set logical pos(f)
FI;
test line end(f)

END;

For formatless inputs 'get' (a) and 'read' (section 10.5.1 of the
Revised Report) may be used. Values from the book are assigned to each
straightened name N from the data list as follows:

If the mode.of N is specified by REF!.:, INT, then first, the book is
searched for the first character that is· not a space (finding good positions
on subsequent lines as necessary); next, the largest string is read from the
book that could be 11 Li.dited" (section 10.3. 4. 1. 1.kk of the Revised Report)
under the control of some picture of the form +n(k1) 11 11 n(k2)dd or n(k2)dd
(where ki and k2 yield arbitrary nonnegative integers); this string is
converted to an. integer and assigned to N; if the conversion is
unsuccessful, the event routine corresponding to 'on value error' is called.

If the mode of N is specified by REF L REAL, then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary); next, the largest string is read from the
book that could be 11 fodited" (section 10.3.4.1. L,kk of the Revised Report)
under the control of some picture of the form +n(kl) 11 11n(k2)d or n(k2)d
followed by .n(k3)dd or by ds., possibly followed again by en(k4)" "+n(k5) 11

11n(k6)dd or by en(k5) 11 11n(k6)dd; th.is string is converted to a real number
and assigned to N; if the conversion is unsuccessful, the event routine
corresponding to 'on value error' is called.

If the mode of N is specified by REF .h COHPL, then first, a real number
is input (as above); next, the book is searched for the first character that
is not a space; next, a characfer is input and, if it is not "1" or 11 i 11

,

then· the event routine corresponding to 'on char .error' is called, the
suggestion being 11111

; finally, a second real number is input. Note that if
either conversion to a real number is unsuccessful, the event routine
corresponding to 'on value error' is called. In that case, no value is
assigned to either subname of N. If conversion is successful, the first
(second) number read is assigned to the first (second) subname of N.

{Numbers are input using a finite-state machine that largely follows the
syntax of numbers as given in sections 8.1. 1 and 8.1.2 of the Revised
Report. However, spaces within numbers are explicitly allowed after a sign
and after a 'times-ten~-to-the-power-symbol' (although no good positions are
found on a subsequent line).}

If the mode of N is specified by REF BOOL, then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary); next, a character is read; if this
character is the same as that yielded by 'flip' ('flop'), then true (false)
is assigned to N; otherwise, the event routine corresponding to 'on char
error' is called, the suggestion being 'flop'.

If the mode of N is specified by REF 1. BITS, then input takes place (as
for booleans~ see above) to the subnames of None after the other (with new

L

lines being taken as required).

If the mode of N is specified by REF CHAR, then first, if the current
line is exhausted, a good position is found on a subsequent line; next, a
character is read and assigned to N.

65

If the mode of N is specified by REF [] CHAR, then input takes place (as
above) to the subnames of None after the bther (with new lines being taken
as required).

If the mode of N is specified by REF STRING, then characters are read
until either

i) a character is encountered which is contained in the string
associated with the file by a c~li of the routine 'make term', or

ii) the current line is exhausted, whereupon the event routine
corresponding to 'on line end' (or, where appropriate, to 'on page
end' or 'on logical file end') is called; if the event routine moves
the current position to a good position, then input of characters is
resumed. Note that, if the page has overflowed, a new page is given
by default, but, if the line has overflowed, no default action is
taken.

The string consisting of the characters read is assigned to N (note that, if
the current line has already been exhausted, or if the current position is
at the start of an empty line or outside the logical file, then an empty
string is assigned to N).

c) PROC get= (REF FILE f, [) UNION(INTYPE, PROC (REF FILE) VOID) x) VOID:
FOR i TO UPB x
DO

IF NOT (status OF f SAYS get char status)
THEN ensure state(f, get char status)
FI;
CASE x [i] IN

(PROC (REF FILE) VOID pf): pf(f),
(INTYPE it):

BEGIN [] SIMPLIN y = STRAIGHTIN it, CHAR k;

PRIO = 8;
OP ! = (CHARBAG s, CHAR sugg) VOID:

IF k:= sugg;
BOOL ok =

IF (char error mended OF f)(f, k)
THEN char in bag(k, s)
ELSE FALSE
FI;

ensure state(f, get char status); NOT ok
THEN error(wrongchar); k:= sugg
FI;

PROC skip initial spaces= VOID:
WHILE .

IF NOT(status OF f SAYS line ok)
THEN next pos(f)
FI;
get char(f, k); k = 11

•
11

DO SKIP OD;

66

PROC skip spaces= VOID:
WHILE

IF status OF f SAYS line ok
THEN get char(f, k); k = 11

."

ELSE (check pos(f) I get char(f, k)
I error(nocharpos); abort);

FALSE
Fl

DO SKIP OD;

OP NODIGIT = (CHAR c) BOOL: -·
NOT char in bag(c, radix!Odigit); fl inline code ff

{PROC read L integer= (REF ,h INT i) BOOL:
BEGIN BOOL ok:= TRUE, BOOL neg= k = 11

-
11

;

(neg OR k = 11+11 I skip s'paces);
(NODIGIT k I radixlOdigit ! 11011

);

h INT j:= ~ chardig(k);
WHILE

IF status OF f SAYS line ok
THEN get char(f, k);

IF NODIGIT k
THEN backchar(f); FALSE
ELSE (ok I ok:= j ADD chardig(k); TRUE)
FI

ELSE FALSE
Fl

DO SKIP OD;
IF ok THEN i:= (neg I ~j I j) FI;
ok

END*;

{PROC read L real= (REF h REAL r) BOOL:
BEGIN BOOL ok:= TRUE, BOOL neg= k = 11

-
11

;

(neg OR k = 1~+ 11 I skip spaces);
[O : L real width] CHAR s, INT index:= -1, exp:= O,
BOOL sig:= FALSE;

PROC read digits= (BOOL after) VOID:
BEGIN INT i = ABS after;

(NODIGIT k I radix!Odigit 11 011
);

WHILE
IF NODIGIT k
THEN FALSE
ELIF

IF sig:= sig OR k 'f 11 0 11

THEN (index< L real width

FI;

s[index +:= !]:= k
exp+:= I)

exp-:= i; status OF f SAYS line ok
THEN get char(f, k); TRUE
ELSE FALSE
Fl

DO SKIP OD
END;

IF k f
IF k =

II II
•

II II .
THEN read digits(FALSE) Fl;

THEN
IF (status OF f SAYS line ok. I TRUE I check pos(f))
THEN get char(f, k)
ELSE error(nocharpos); abort
Fl;
read digits(TRUE)

FI;
IF char in bag(k, times ten to the power)
THEN INT e; skip spaces; ok:= read integer(e);

IF ok:= ok AND .
(SIGN e =f SIGN exp OR ABS e < max int -:- µs exp)

THEN exp+:= e
Fl

ELSE back char{f)
Fl;
IF NOT ok THEN FALSE
ELIF L REAL x; string to L real(s[:index], exp, neg, x)
THEN r:= x; TRUE
ELSE FALSE
FI

END*;

FOR j TO UPB y
DO

CASE y [j]
(UNION (

IN
{ REF LINT*, { REF L {REAL*'
{ REF I COMPL *) irc)7

BEGIN skip initial spaces;
IF NOT

CASE ire IN
{(REF LINT ii): read L integer(ii)*,
{(REF L REAL rr): read L real(rr)*,
{ (REF h COMPL zz):

(,h COMPL z;
BOOL ok:= read L real(re OF z); skip spaces;
IF NOT char in bag(k, plus i times)
THEN plus i times ! 11 i 11

Fl;
skip spaces;
(ok:~ ok AND read L real(im OF z) I zz:= z); ok)*

ESAC
THEN BOOL mended= (value error mended OF f)(f);

ensure state(f, get char status);
(NOT mended I error(wrongval); abort)

Fl
END,

(REF BOOL bb):
(skip initial spaces;
IF NOT char in bag(k, flipflop)
THEN flipflop ! flop
FI;
bb: = k = flip) ,

67

68

OD
END

ESAC
OD;

{(REF L BITS lb):
([1 : L bits width] BOOL b;
FOR i TO L bits width
DO skip initial spaces;

IF NOT char in bag(k, flipflop)
THEN flipflop ! flop
FI;
b [i] : = k = flip

OD;
lb:= L bits pack(b))*,

(REF CHAR cc) :
(IF NOT (status OF'f SAYS line ok)
THEN next pos(f)
FI;
gee char(f, cc)),

(REF [] CHAR ss):
(IF NOT (status OF f SAYS page ok)
THEN ensure page(f, get char status)
FI;
FOR i FROM LWB ss TO UPB ss
DO

IF NOT (status OF f SAYS line ok)
THEN next pos(f)
FI; ·
get char(£, ss[i])

OD),.,
(REF STRING ss) :

ESAC

BEGIN INT index:= 0,
upbs:= 80 MIN (char bound OF f - c OF cpos OF f + 1);

REF STRING s:= HEAP [1 : upbs] CHAR;
WHILE

DO

IF (status OF f SAYS line ok TRUE I check pos(f))
THEN get char(f, k);

IF chav in bag(k, term OF f)
THEN back char (f) ;· FALSE ·
ELSE TRUE
FI

ELSE FALSE
FI

IF index = up bs
THEN REF [] CHAR t = s;

s:= HEAP [1 : upbs +:=
80 MIN (char bound OF f - c OF cpos OF f + 2)

] CHAR;
s[: index]:= t

FI; #extends#
s[index +:= 1]:= k

OD;
ss:= s[: index]

END

69

d) PROC? get char= (REF FILE f, REF CHAR char) VOID:
char:=

IF CHAR k; BOOL conv ok = (get char OF f)(f, k);
test line end(f);
IF status OF f SUGGESTS lfe in current line
THEN test logical file end(f)
FI;
conv ok

THEN k
ELIF CHAR sugg:= ".!.";

BOOL mended= (char
ensure state(f, get

THEN sugg

error mended OF- f)(f, sugg);
char status); mended

ELSE error(wrongchar);
FI;

II II .

e) PROC 7 back char= (REF FILE f) VOID:
C If the current position is not at the beginning of a buffer, it is

set back over one position; otherwise, an error message is given and
the elaboration of the particular program is aborted. (This can only
be caused by a call of the event routine corresponding to 'on char
error' while reading a string; this call must then have caused the
current position to be moved to the first position of a new buffer,
while it returned a character from the terminator string of'£'. This
case is assumed to be exceedingly rare.) C;

f) MODE 7 CHARBAG =
C Some mode which allows efficient retrieval of information on the

presence or absence of a given character in a given set. C;

OP 7 STRINGTOBAG = (STRING s) CHARBAG:
C The string in 's' is converted to a corresponding value of the mode

specified by CHARBAG. C;

PROC 7 char in bag = (CHAR k, CHARBAG s) BOOL_:
C This routine returns true if the character 'k' is contained in 's',

and false otherwise. C;

OP+= (CHARBAG s, t) CHARBAG:
CA value K of the mode CHARBAG is delivered, such that, for any

character C, C is in Kif£ C is ins and/or t. C;

CHARBAG 7 radixl Odigit == STRINGTOBAG "0123456789",
7 radix 2digit ::, STRINGTOBAG 110 I II'
7 radix '•digit = STRINGTOBAG 11 0123 11

,

7 radix 8digit = STRINGTOBAG ''01234567",
7 radix I 6digit = STRINGTOBAG 1101234567890abcedf 11

,

7 times ten to the power = STRINGTOBAG "\e",
7 flipflop = STRINGTOBAG (flip + flop),
7 plus i times = STRINGTOBAG 1111 II,
'? xylpkq = STRINGTOBAG "xylpkq 11

;

70

10.3. EFFICIENCY

The efficiency of formatless transput critically dep~nds on the
efficiency of the routines 'put char' and 'get char'. It is recommended that
these be not straightforwardly implemented as procedures; rather, inline
code should be generated here. (This also holds for the calls of 'test line
end' inside 'put char' and 'get char'.) When outputting numbers, there is no
need to test for the line being ended after· each character. Consequently,
the corresponding piece of code in 'put' has been optimized. If an
implementation offers a fast way to output strings of characters, this may
profitably be applied at this spot.

Vatious small operators and routines.that are used in 'get', such as
'N0DIGIT' and 'char in bag', also offer attractive possibilitie~ for
optimization. The mode 'CHARBAG' is incorporated just to encourage efficient
implementation; if efficiency is not important, the mode 'STRING' may be
substituted instead. In that case, 'STRINGT0BAG' becomes a dummy operation,
while 'char in bag' may be replaced by 'char in string'. {Note that the
routine 'char in bag' is also heavily used in formatted transput ('indit
string', 11.2.3.o.).}

11. FORMATTED TRANSPUT

11.l. DIFFERENC£S

71

{D} A different structure has been chosen for the mode specified by
FORMAT. In the Revised Report, the mode specified by FORMAT almost
exactly mirrors the structure of 'format-texts'. This mode FOfillAT
serves two purposes: it contains a description of some format (which
does not change), and it contains some administration on how this
format is currently being used (which does change). These two parts
have been separated in the present mode'L Here, the mode specified by
FORMAT onl.y contains a description of the format; thus, formats need
no longer be copied upon assignme~t. The dynamic information is
collected in the 'piece' field of the file to which the format is
associated. Th:!..n change results in remarkable simplifications in the
routines 'get next picture', 'do £pattern' and 'associate format'.

{D} Formatted transput is rather complicated, and slowed down, by the
possibility of using 11 dynamic 11 replicators, i.e., replicators whose
value is not known until runtime. In the Revised Report, both dynamic
replicators and non-dynamic replicators (i.e., replicators that are
plain integers) are treated in a uniform way; they both give rise to a
routine returning an integer. For example, the replicator '10' gives
rise to a routine composed from 'INT: 10'; the dynamic replicator
'n(lim-1)' gives rise to 'INT: (lim-1)'. For output, as a consequence,
the frames that a pattern is composed· of are traversed three times:

- First, the frames are traversed to evaluate all replicators (i.e.,
each PROC INT is turned into an INT);
Second, the frames are traversed to extract the necessary
information to structure the string to be output (the position of
the decimal point, the width of the exponent, etc., are
determined);
Third, after building the string, this string is matched against
the frames character by character, to determine the actual output
(insertions may have to be placed in between, zeroes may be
replaced by spaces, etc.).

For input, only the first and (the reverse of) the third kind of
traversal is needed.

In the case where a pattern contains only non-dynamic replicators
{which is probably the common case), a much simpler scheme is
possible: in this case, there is no need to construct routines
returning an integer; rather, the integers themselves may be
incorporated in the pattern. Also, the compiler is quite capable of
extracting the information needed to structure the string in that
case. (Alternatively, this may be done upon associating the format
with the file.) In this way, the frames need only be traversed once.

In the present model, two kinds of pictures are distinguished: simple,
static pictures (whose mode is SPICT), and dynamic pictures. A static
ficture may only.arise from an 'integral-', 'real-', 'boolean-',
'complex-', 'string-' or 'bits-pattern'. The reasons therefore are
twofold:

- These kinds of pictures will probably occur most often;
- The treatment of choice-patterns and format-patterns is complicated

by the fact that their insertions are evaluated at moments which

72

are different from those of other patterns.

Outputting a value W using a picture P now proceeds as follows:
- If the mode of Pis DPICT, then Pis staticized, thereby yielding a

static picture;
Subsequently, the picture is either static, or it is a dynamic
picture whose pattern is a 'choice-', 'format-', 'general-' or
'void-pattern'. Dynamic pictures ~re handled in the same way as
they are in the Revised Report. Static pictures can now be handled
quite efficiently: the picture contains all information needed to
build the string to be output. After having done this, 'edit
string' may be called. · · '

{D} There still is one further optimization possible. In the Revised
Report, a format contains quite a lot of redundant information in the
form of default values for insertions, replicators and the like. In
the definition given below, these default values are not explicitly
stored in the data structures that are used. Thus, a "frame" is either
a routine (returning an integer), a character, or a fixed name
referring to a string. This will save both space and time.

11.2 NEW DEFINITION

In formatted transput, each straightened value from a data list (cf
section 10,2) is matched against a constituent 'picture' of a 'format-text'
provided by the user. A 'picture' specifies _how a value is to be converted
to or from a sequence of characters and prescribes the layout of those
characters in the book. Features which may be specified include the number
of digits, the position of the decimal point and of the sign, if any,
suppression of zeroes and the insertion of arbitrary strings. For example,
using the 'picture' '-d.3d "..:.." 3d 11

..:.,
11 e z+d', the value '1234.567' would be

transput as the string 11..:.,1. 234.!..567.: . .8..!.+3 11
•

A "format" is a multiple value (i.e., an internal object) of mode
'FOR.HAT', which mirrors the st:izucture of a 'format-text' (which is an
exte~nal object). For a description of the syntax·of 'format-texts', the
reader is referred back to sections 10.3.4.1. I (about 'collections' and
'pictures') and 10.3.4.2 - 10.3.4. 10 (about 'patterns') of the Revised
Report. Below, only the semantics are described for obtaining the
corresponding format from a 'format-text'. This is necessary since the
internal representation of a 'format-text' in this model_ is rather different
from the representation used in the Revised Report. The only deviation in
the semantics is that, whereas this model prescribes sequential elaboration
of replicators, the Revised Report uses collateral elaboration.

A "piece" is brought into being by means of associating a format with a
file. A piece is a structured value composed of a reference to the
collection list currently in use, a 'count' field which tells how many times
this collection list should be used, the. index of the current collection,
and a reference to a piece to be used after the current collection list is
exhausted. Upon "associating" (•••) a format with a file, the piece will
contain a reference to the collection list of the format. Upon selection of
a picture from this collection list that is itself a replicated
"collectionu, the current collection list is "suspended11

, and this new
collectton list is made to be the current collection list. Subsequent
transput now uses this collection list until it has been exhausted, after

which the suspended collection list is again made to be the current one.
Something similar happens when other formats are invoked by means of
'format-patterns'. (section 10.3.4.9.l of the Reyised Report).

73

Although a 'format-text' may contain 'ENCLOSED-clauses' (in
'replicators' and 'format-patterns') or 'units·· (in 'general-patterns'),
these are not elaborated at this stage but are, rather, turned into routines
for subsequent calline as and when they are encountered during formatted
transput. Note however that, if a data picture contains only non-dynamic
replicators, i.e., repli~alors that are plain integers, these replicators
are elaborated directly, thus giving rise to a so-called static picture.
{The term "data picture" is used as .an .abbreviation for a picture whose
pattern is an 'integral-', 'real-', 'boolean-', 'complex-', 'string-' or
'bits·-pattern' .} It still remains true that the elaboration of --a 'format
text' does not result in any actions of any significance to the user.

If, at runtime, a data picture is encountered that does contain dynamic
replicators, then this data picture is 11 staticized 11

, thereby yielding a
static picture, which is used when actually transputting values. Note that
the compiler is not forced to construct any static pictures; if it does not,
the result will still be the same. An implementer may also choose to
staticize such pictures upon associating the format with the file.

For ease of description, the semantics given below are such that a
static picture is the result of staticizing a dynamic data picture; this
intermediate dynamic data picture is of course not necessarily constructed
in an actual implementation.

11.2.1. Hode declarations

a) MODE FORMAT = REF [] COLLECTION;

b) MODE 7 COLLECTION= UNION(PICTURE, COLLITEM);

c) HODE 7 COLLITEM =
STRUCT (INSERTION i 1,

PROC INT rep, #replicator#
FORMAT p,
INSERTION i2);

d) MODE 7 PICTURE=
UNION(SPICT, DPICT, CPICT, FPICT, GPICT, VOIDPICT);

e) MODE 7 SPICT =
STRUCT(UNION(INTPATTERN, REALPATTERN, BOOLPATTERN, COMPLPATTERN,

STRINGPATTERN, BITSPATTERN) p,
REF [] SFR.1\.ME sframes);

f) MODE 7 DPICT =
STRUCT (INT type,

REF [] DFRl.l.ME frames);

74

g) MODE 7 CPICT =
STRUCT(INSERTION i 1,

INT type,
REF [) INSERTION c,
INSERTION i2);

h) NODE 7 FPICT =
STRUCT(INSERTION i 1,

PROC FORMAT pf,
INSERTION i2);

i) MODE 7 GPICT .=
STRUCT (INSERTION i I,

FLEX [I : 0] PROC INT spec,
INSERTION i2);

j) HODE 7 VOIDPICT = INSERTION;

k) MODE 7 INSERTION = REF [) DFRAME;

1) MODE 7 DFRAME =
UNION (PROC INT, REF (] CHAR, CHAR);

m) MODE 7 SFRM1E =
UNION(INT, REf [] CHAR, CHAR);

n) MODE "! SINSERT = SFRAHE;

o) MODE '7 INTPATTERN = REF STRUCT (INT width, sign);
If 'width': The length of the string controlled by the integral pattern;

'sign' The absolute value of 'sign' is the length of the string
controlled by the sign mould of the pattern. If 'sign' < 0
(> 0), then the sign mould contains a descendent minus
symbol (plus-symbol). If 'sign'= O, then the pattern
contains no sign mould. Note that because of this way of
coding there is no need for u- or v-frames, since the 'sign'
field contains the necessary information. #

p) MODE"! REALPATTERN = REF STRUCT(INT b, sl, a, e, s2, point);
'b' The length of the string controlled by the first integral

, ,
a

, ,
e

'sl'

mould of the stagnant part of the pattern.
The length of the string controlled by the second integral
mould of the stagnant part.
The length of the string controlled by the integral pattern
of the exponent part.
The length of the string controlled by the sign mould of the
stagnant part, coded in the same way as the 'sign' field of
the integral pattern. .

's2' Idem for the sign mould of the exponent.
'point': 'point'= I if the pattern contains a point frame, and 0

otherwise. It

q) MODE 7 COMPLPAITERN = REF STRUCT (REALPATTERN re, im);

r) MODE 7 BO OLP AT TERN = VO ID ;

s) MODE 7 STRINGPATTERN = INT;
The length of the string controlled by the pattern.#

t) MODE 7 BITSPATTERN == REF STRUCT (INT width, radix);
It 'width": The length of the string controlled by the pattern.

'radix': The radix of the radix frame. #

75

{The corresponding revised rnetaproduction rules are not given here since
they follow trivially from the above mode declarations.}

11.2.2. Semantics -----·--
{This section replaces sections 10.3.4._J.2, 10.3.4.8.2, 10.3.4.9.2 and

10.3.4010.2 of the Revised Report.}

{The yield of a 'format-text' is that of its 'collection-list', by way
of pre-elaboration.}

a) The yield N of a 'collection-list' C, in an environ E, is determined as
follows:

~ N is a newly created name {whose mode is 'FORMAT'};
@ N is equal in scope to the environ necessary for C in E;
e., N is made to refer to a value V {whose mode is 'row of COLLECTION'},

having a descriptor ((l, m)), where mis the number of constituent
'collections' of C, and elements determined as follows:
For j = l, ..• , m, let Cj be the j-th constituent 'collection' of C.
Case A: The direct descendents of Cj include a 'picture' P:

o Pis elaborated in E;
e the j-th element of Vis the yield of P;

Case B: The direct descendents of Cj include a first 'insertion' Il, a
'replicator' REP, a 'collection-list-pack' Panda second
'insertion' 12:
e the j-th element of Vis a structured value whose mode is

'COLLITEM' and whose fields, taken in order, are the yields of
o {il} 11,
o {rep} REP,
e {p} {the 'collection-list' of} P,
0 {i2} 12.

b) The yield N, in an environ E, of a 'picture' PICT is a value W whose
mode is 'PICTURE', determined as follows:

• Let V be the yield of the elaboration of the constituent 'pattern' P
together with the constituent ~insertion' I of PICT in E (c, d, e, f);

@·If the constituent 'pattern' of PICT is an 'integral-', 'real-',
'boolean-', 'complex-', 'string-' or 'bits-pattern' which does not
contain any dynamic replicators, then

e W is the result of "staticizing" (k) V in E;
Otherwise,

~ W is V.

76

c) The yield, in an environ E, of an 'integral-', 'real-', 'boolean-',
'complex-', 'string-' or 'bits-pattern' P {sections 10.3.4.2.1.a,
10.3.4.3.1.a, ••• , 10.3.4.7.l.a of the Revised Report}, together with an
'insertion' I, is a structured value W whose moae is 'DPICT', whose fields,
taken in order, are:

@ {type} l (2, 3, 4, 5) if Pis an 'integral-' ('real-', 'boolean-',
'complex-', 'string-') '-pattern' and 6 (8, 12, 20) if Pis a 'bits
pattern' whose constituent 'RADIX' i;=, a 'radix-two' ('-four', '
eight', '-sixteen');

e {frames} a newly created name, equal in scope to the environ necessary
for Pin E, which is made to refer to 3; value F, whose mode is 'row of
FRAHE', having a descriptor ((I, n)) and n elements determined as
follows:
@ a counter i is set to O;
@ the constituent frames of P, in order, are 11 transformed 11 (h) in E

into F, using i;
o I is 11 transfoizmed" (i) in E into F.

d) The yield, in an environ E, of a 'choice..:.pattern' P, together with an
'insertion' I, is a structured value W whose mode is 'CPI CT', determined as
follows:

e let n be the number of constituent 'NEST-literals' of the 'praglit
list-pack' of P;

@ let Si, i = 1, ••• , n, be a 'NEST-insertion' akin to the i-th of those
constituent 'NEST-literals';

0 the insertion 11 of P, all of SJ, ••• , Sn, and the insertion I are
elaborated in E;

@ the fields of W, in order, are:
• {ii} the yield of 11;
e {type} l (2) if Pis a 'boolean-' ('integral-') '-choice-pattern';
e {c} a newly created name, equal in scope to the environ necessary

for Pin E, which is made to refer to a value F whose mode is 'row
ef-INSERTION', having a descriptor ((1, n)), and n elements, that
selected by (i), i = 1~ ••• , n, being the yield of Si;

c {i2} the yield of I. ~.·

e) The yield, in an environ E, of a 'NEST-format-pattern' P, together with
an 'insertion' 1, is a structured value whose mode is 'FPICT' and whose
fields, taken in order, are:

@ {il} the yield of ~he insertion of P;
@ {pf} a routine whose mode is 'procedure yielding FORMAT', composed of
• a 'procedure-yielding-FORMAT-NEST-routine-text' whose unit U is a new

unit akin to the 'meek-FORYlAT-ENCLOSED-clause' of P, together with the
environ necessary for U in E;

e·{i2} the yield of I.

f) The yield, in an environ E, of a 'NEST-general-pattern' P, together with
an 'insertion' I, is a st17uctured value whose mode is 'GPICT' and whose
fields, taken in order, are:

@ {il} the yield of the insertion of P;
0 {spec} a nni.ltiple value W whose mode is 'row of procedure yielding

integral', having a descriptcr ((1, n)), where n is the number of
constituent 'meek-integral-units' of the 'width-specification-option'
of Ps and n elements determined as follows:

77

For i = l, ••• , n,
I'll the i-th element of Wis a routine, whose mode is 'procedure

yielding integral', composed of a 'procedure-yielding-integral
NEST-routine-text' whose unit U is a new uni.t akin to the i-th of
those 'meek-integral-units', together with the environ necessary
for U in E;

~ {i2} the yield of I.

g) The yield N, in an environ E, of an 'insertion' I {section 10.3.4. l.1.d
of the Revised Report} is determined as follows:

o N is a newly created name {whose mode is INSERTION};
@ N is equal in scope to the env'iron necessary for I in E;
@ N is made to refer to a value W whose··mode is 'row of FRAME', having a

descriptor ((I, n)) and n elements, determined as follows-:
o a counter i is set to O;
® I is "transformed 11 (i) in E into W, using i.

h) A 'frame' V is 11 transformed" in an environ E into a multiple value F
whose mode is 'row of FR.A.HE', using a counter i, as follows:

@ the constituent 'insertion' of Vis 11 transformed 11 (i) in E into F,
using i;

@ the constituent 'replicator' of V is "transformed" (j) in E into F,
using i;

e if the constituent 'UNSUPPRESSETY-suppression' of V contains a
'letter-s-symbol', then
@ i is increased by I;
0 the element of F selected by (i) is a 'letter-s-symbol';

e i is increased by I;
@ the element of F selected by (i) is the intrinsic value of the

constituent 'symbol' of the marker of V.

i) An 'insertion' I is 11 transformed 11 in an environ E into a multiple value
F whose mode is 'row of FRAME', using a counter i, as follows:

~ Let UI, ••• , Un, be the constituent 'UNSUPPRESSETY-replicators' of I,
and.let Aj, j = 1, ••• , n be the 'denoter-coercee' or ·'alignment-code'
{immediately} following Uj;

<1> For j = 1, ••• , n:
@ Uj is 11 transformed 11 (j) in E into F, using i;
@ i is increased by 1;
e the element of F selected by (i) is determined as follows:

Case A: Aj is an 'alignment-code':
@ it is the {character which is the} intrinsic value of the

'LETTER-symbol' of Aj;
Case B : Aj is a 'denoter-coercec':

@ it is a newly created name, equal in scope to the environ
necessary for Fin E, which is made to refer to the yield of Aj.

j) A 'NEST-UNSUPPRESSETY-replicator' R is "transformed 11 in an environ E
into a multiple value F whose mode is 'row of FRAME', using a counter i, as
follows:
If R is not invisible, -then:

© i is increased by I;
@ the element of F selected by (i) is a routine whose mode is 'procedure

yielding integral', composed of a 'procedure-yielding-integral-·NEST
:routine-text' whose 'unit"' is U, together with the environ necessary
for U in E, where U is determined as follows:

78

Case A: R contains a 'meek-integral-ENCLOSED-clause' C:
e U is a new 'unit' akin to C;

Case B: R contains a 'fixed-point-numeral'· D, but no 'ENCLOSED
clause':
~ U is a new 'unit' akin to D;

Otherwise,
@ no action is taken.

k) A 'data picture' P is 11 staticized 11 in an environ E, yielding a value V
of mode 'SPICT', as follows:

0 Let F be the value referred to by the ''frames' field of P;
@ Let Vi, i = 1, ••• , n, be the'yield of 11 staticizing11 (1) the i-th

·element of F, where ((1, n)) is the descriptor of F;
El> Let X be the "structure description" (m) determined by "the type of P

and Vl, ••• ,Vn;
• The fields of V, taken in order, are:

e {p} X;
@ {sframes} a newly created.name, equal in scope to the primal

environ, which is made to refer to a value F, whose mode is 'row of
SFR.Af1E', having a descriptor ((1, n)) and n elements, that selected
by (i), i = 1, ••• , n, being Vi.

1) A 'frame' V is 11 staticized11 in an environ E, yielding a value S of mode
'SFRAME', _as follows:

o If Vis a routine, then
e S is the yield. 'of the calling of V in E;
Otherwise,
•Sis V.

m) The "structure description" determined by a type I and sframes Vl, ••• ,
Vn is a value X, determined as follows:
Case A: I equals 1:

e Let i be the "position" (n) of the 11+ 11 or 11
-

11 in Vl, ••• , Vn, if any,
and O otherwise; 1

o Let j be the length controlled by Vl, ••• ,Vi;
@Xis a newly created name, equal in scope to the primal environ, and

is made to refer to a value of the mode 'SIRUCT(INT width, sign)',
whose fields, taken in order, are:
<!I {width} the length 11 controlled" (o) by VI, ••• , Vn;
t {sign} j if i = 0 or Vi= 11+11

, and -j otherwise.
Case B: I equals 2:

o Let e be the position of the 11 e 11 in Vl, ••• , Vn, if any, and ri+l
otherwise;

@ Let p be the
o ther\li se;

position of the II II in Vl, ••• , Vn, if any, and e

e Let x be the position of the 11+" or 11
-

11 in Vl, Vp, if any, and 0
otherwise;

e Let sl be the length controlled by Vl,~ •• ,Vx;
0 Let u be the position of the 11+ 11 or 11

-
11 in V(e+l), ••• , Vn, if any,

and O otherwise;
•~et s2 be the length controlled by V(e+l), ••• ,Vu;
e Xis a newly created name, equal in scope to the primal environ, and

is made to refer to a-value of the mode 'STRUCT(INT b, s1, a, e, s2,
point)', whose fields, taken in order, are:

• {b} the length controlled by VI, ••• , V(p-1);
* {s I} s I if x == 0 or Vx. "" 11+11

, and -s 1 otherwise;
s {a} the length controlled by V(p+l), ••• , V(e-1);
e {e} the length controlled by V(e+I), ••• , Vn;
@ {s2} s2 if u = 0 or Vu== 11+", and -s2 otherwise;
• {point} I if p > O, and O otherwise.

Case C: I equals 3:
(II ;~ is a value of mode 'BOOLPAITERN' {and is equal to empty}.

Case D: I equals L,:
@ Let i be the position of the 11 111 in Vl, ••• , Vn;

79

el X is a newly created name, equal in ·scope to the pr:Lmal environ, and
is made to refer to a value of the mode 'STRUCT(REALPATTERN re, im)',
whose fields, taken in order, are:
<.'! {re} the structure description <let-ermined by 2 and VI,-..••• , V(i-1);
@ {im} the structure description determined bv 2 and V(i+I), ••• , Vn.

Case E: I equals 5: ·
@Xis a value of mode 'STRINGPATTERN' and is equal to the length

controlled by Vl, ••• , Vn.
Case F: I equals 6, 8, 12 or 20:

©Xis a newly created name, equal in scope to the primal environ, and
is made to refer to a value of the mode 'STRUCT(INI width, radix)',
whose fields, taken in order, are
@ {width} the length controlled by Vl, ••• , Vn;
@ {radix} I-4.

n) The "position 11 of a character C in sframes VJ, ••• , Vn is an integer i
such that Vi is C {which, if it exists at all, is unique}.

o) The length 11controlled11 by sframes VI, ••• , Vn is an integer I,
determined as follows:

o counters i and j are set to O and l, respectively;
& while j ~ m:

@ if Vj is an integer, then rep is set to the maximum of O and Vj, and
j is increased by 1, otherwise rep is set to l;

@ if Vj is an 11 s", then j is increased by I;
o if Vj is a 11

•
11

, "+ 11
,

11
-

11
, "e", "i", "z", 11 d11 or "a", then i is

increased by rep;
e j is increased by l;

e I is L

80

During formatted transput, values are transput using the current format
of the file. This current format, together with its administration, is
incorporated in the 'piece' field of the file. The mode of that field is
'reference to reference to FORJ:1ATLIST', and it refers to the following
information:

- (count} the number of times the current collection list is to be
repeated;
(cp) the number of the collection to be executed next;
(p) the current collection list;
(next) a reference to a chain of (embracing) collection lists with
which to continue after the current one is finished.

Upon associating a format with a file, a.name Wis created, which is
(initially) made to refer to a valu~ o.f the mode specified by FORMATLIST,
whose.fields are:

- (count) 1 (since the collection lis{ comprising the format is to be
repeated once);
(cp) 1 ;
(p) the col lee tion list of the given format;

- (next) a nil name.
Subsequently, the 'piece' subname of 'f' is made to refer to W.

When, during formatted transput to a file 'f', a collection is
encountered which itself contains a collection list c, then further transput
uses the collections of c, and c is repeated r times, where r is the integer
returned by the replicat?r of the collection containing c. In that case, a
new name His created which is made to refer to a value of the mode
specified by FORMATLIS'J;., and whose fields are:

{count) r;
(Cp) 1 ;
(p) the yield of c;
(next) the {old} 'piece' field of 'f'.

Subsequentlys the 'piece' subname of 'f' is made to refer to W.

Something very similar occurs when a format pattern fp is encountered: A
new name Wis created, which is made to refer to a value of the mode

!
specified by FORHATLIST, whose fields are:

(count) 1;
(cp) I;

- {p) the value {a format} returned by the 'pf' field of 'fp';
(next) the {old} 'piece' field of 'f'.

Subsequently, the 'piece' field of 'f' is made to refer to W.

In all three cases, a special generator is needed to create W: the newly
created uame must have a scope which is not older than the scope of the
value. to which it is made to refer, nor newer than that of the file with
which the format is associated. {Here, the scope is taken equal to that of
the file. Even if another solution is adopted, once a scope has been adopted
upon associating, the scope of the 'piece' field will not change with the
other manipulations.}

11.2.3. Formatted tra~t

a) HODE "? FORHATLIST =
STRUCT(INT count, cp, FORMAT p, REF FORHATLIST next);

b) PROC '? get next picture= (REF FILE f, REF PICTURE picture) VOID:
IF piece OF f :=: REF REF FORMJuLlST(NIL)
THEN error(nofo~mat); abort
ELSE BOOL picture found:= FALSE, STATUS reading= status OF f;

IF cp OF piece OF f > UPB p OF piece OF f
THEN update cp(f, FALSE, SKIP)
FI;
WHILE NOT picture found
DO

IF cp OF pie~e OF f = 0 # format ended#
THEN BOOL mended = (format mended OF f) (f);

ensure state(f, reading);
IF NOT mended
THEN cp OF piece OF f:= count OF piece OF f:= 1
ELIF cp OF piece OF f = 0
THEN error(noformat); abort
Fl

ELSE REF REF FORMATLIST piece= piece OF f;
CASE (p OF piece) [cp OF. piece] IN

(COLLITEH cl):
(REF FORMATLIST pl= piece;

(1 : UPB il OF cl] SINSERT si;
staticize frames(il OF cl, si);
INT count= rep OF cl;
(reading SAYS read mood I get insertion I put insertion)

(f, si);
IF pl :f: REF FORMATLIST(piece)
THEN error (wrongfonnat); abort
FI;

81

piece:= Ca newly created name which is made to refer to the
yield of an actual-formatlist-declarer and whose
scope is equal to the scope of 'f' C

FI
,OD

FI;

:= (count, 1, p OF cl, pl);
IF count< 0
THEN picture found:= TRUE;

picture:= VOIDPICT(HEAP [1:0] DFRAME:= ());
cp OF piece:= UPB p OF piece+ 1
This forces the yielding of a void picture.

FI),

Subsequently, the second insertion of the colli.tem 'cl'
will be performed. #

(PICTURE pict):
(picture found:= TRUE; picture:= pict; cp OF piece+:= 1)

ESAC

82

c) PROC 7 update cp =
(REF FILE f, BOOL perform insertions, STATUS reading) VOID:

BEGIN REF REF FORMATLIST piece= piece OF t;
WHILE cp OF piece> UPB p OF piece
DO

OD

IF (count OF piece-:= 1) > 0
THEN cp OF piece:= I tt repeat this piece fl
ELIF REF FORMATLIST next= next OF piece;

next:=: REF FORMATLIST(NIL)
THEN cp OF piece:= 0 # format ended#
ELSE piece:= next;

IF perform insertions
THEN INSERTION extra = .. ·

CASE (p OF piece)[cp OF .piece] IN
(COLLITEM cl): i2 OF cl,
(FPICT fp): i2 OF fp

ESAC;
[1 : UPB extra] SINSERT sinsert;
staticize frames(extra, sinsert);
(reading SAYS read mood I get insertion I put insertion)

(f, sinser t)
FI;
cp OF piece+:=

FI

END;

d) PROC 7 staticize frames=
(REF [) DFRAHE frames, REF [] SFRA!:1E sfram.es) VOID:

FOR i TO UPB frames
DO sframes[i] :=

CASE frames[i] IN
(PROC INT n): n,
(REF [] CHAR s): f?,
(CHAR a): a

ESAC
OD;

e) PROC 7 staticize picture= (DPICT p) SPICT:
'staticize picture' turns a picture containing dynamic replicators

into one containing only simple (integer) replicators. It also
extracts information needed to build up the character string to be
output from the frames of the picture. This information is
collected in the 'p' field of the static picture that is delivered.
II

BEGIN HEAP [1 : UPB frames OF p] SFRAME sf;
staticize frames(frames OF p, sf);

,

[l : CASE type OF p IN 2, 6, O, 12, 1 OUT I ESAC) INT t,
INT count:= O, rep:= 1, info:= 1, point:= 6, sign:= 2;

FOR i TO UPB t DO t[i]:= 0 OD;

FOR i TO UPB sf
DO

CASE sf (i] IN
(INT n): rep:== 0 MAX n,

(CHAR a):
(IF a= "a" OR a= 11d11 OR a= "z" THEN count+:= rep
ELIF a= 11+" THEN count+:= 1; t[sign]:= count
ELIF a= 11

-
11 THEN count+:= 1; t(sign]:= -count

ELIF a= 11
•

11 THEN
t[info]:= count; count:= O; info+:= 2; t[point]:=

ELIF a= "e" THEN
t[info):~ count; count:= O; info:= point - 2;
sign:= point - 1

ELIF a= 11 i 11 THEN
t[info] := count; count:= O;· info:= 7; sign:= 8;

. point:= 12
ELSE SKIP
FI;
rep:= 1)

OUT rep:= 1
ESAC

OD;
(UPB t > 0 I t[info]:= count);

(CASE type OF
ti integral
It real

p IN
HEAP STRUCT(INT width, sign):= (t[1], t[2]),
HEAP STRUCT(INT b, s1, a, e, s2, point):=

(t[l], t[2], t[3], t[4], t[SJ, t[6]),
boolean # EMPTY,
complex # HEAP STRUCT(REALPATTERN re, im):=

((HEAP STRUCT(INT b, s1, a, e, s2, point):=
(t[1], t[2], t[3], t[4J, t[S], t[6]),

HEAP STRUCT(INT b, s1, a, e, s2, point):=
(t[7], t[8], t[9], t[10], t(l1], t[l2]))),

string # t[1]
OUT

tt bits

ESAC, sf)
END;·

HEAP STRUCT(INT width, radix):=
(t[I], type OF p - 4)

f) PROC? put insertion= (REF FILE f, REF [] SINSERT sf) VOID:
BEGIN INT rep:= 1; ensure state(f, put char status);

FOR sfp FROM LWB sf TO UPB sf
DO

CASE sf[sfp] IN
{INT count): rep:= count,
{REF [] CHAR s): (put insert string(f, rep, s); rep:= 1),
(CHAR a): (alignment (f, rep, a); rep:= I)

ESAC
OD

END;

g) PROC 7 put insert string= {REF FILE f, INT rep,. REF [) CHAR s) VOID:
TO, rep
DO

FOR i TO UPB s
DO (check pos(f) I put char(f, s[i]) I error(nocharpos); abort)
OD

OD;

83

84

h) PROC 7 get insertion~ (REF FILE f, REF [] SINSERT sf) VOID:
BEGIN INT rep:= 1; ensure state(£, get char status);

FOR sfp FROM UJB sf TO UPB sf
DO

CASE sf[sfk] IN
(INT count): rep:= count,
(REF [] CHAR s): (get insert string(£, rep, s); rep:= 1),
(CHAR a): (alignment(£, rep, a); rep:= 1)

ESAC
OD

Ei'ID;

i) PROC 1 get insert string= (REF FILE f, INT rep, REF [] CHAR s) VOID:
(CHAR c, si;

j)

TO rep
DO

FOR i TO UPB s
DO (check pos(f) I get char(£, c) l error(nocharpos}; abort);

IF c i (si:= s[i])
THEN BOOL mended= (char error mended OF£)(£, c:= si);

ensure state(£, get char status);
(NOT mencied l error(wrongchar); abort)

Fl ,
OD

OD);

PROC "'! alignment = (REF FILE f, INT r, CHAR
IF a - "x" 1HEn TO r DO space(f) OD
ELIF a = llyll TH.EN TO r DO backspace (f)
ELIF a = "l" THEN TO r DO newline(£)
ELIF a = "p II THEN TO r DO newpage(f)
ELIF a = Ilk II THEN set char number(£,
ELIF a = "q II

THEN ::
IF status OF f SAYS read mood
THEN get insert string
ELSE put insert string
Fl (£, r, LOC [I : 1] CHAR:= blank)

FI;

OD
OD
r)

OD

a) VOID:

k) PROC "! do fpict = (REF FILE f, FPICT fpict) VOID:
BEGIN [1 : UPB i OF fpict] SlNSERT si;

REF FORMATLIST pl = piece OF f, STATUS reading -- status OF f;
staticize frames(il OF fpict, si);
FORMAT pf = pf OF fpict;
(reading SAYS read mood l get insertion I put insertion)(£, si)
IF pl : =/-: REF FORMATt,IST (piece OF f)
THEN error (wrong format); abort
Fl;
REF REF FORMATLIST (piece OF f): = C a newly created name which is made

to refer tq the yield of an actual-formatlist-declarer and whose
scope is equal to the scope of 'f" C

:= (l, 1, pf, pl)
END;

85

1) PROC 7 associate format= (REF FILE f, FORMAT format) VOID:
piece OF f:= Ca newly created name which is made to refer to the yield

of an actual-reference-to-formatlist-declarer and whose
scope is equal to the scope of 'f' C

:=Ca newly created name which is made to refer to the yield
of an actual-formatlist-declarer and whose scope is
equal to the scope of 'f' C

:= (I, 1, format, NIL);

m) PROC i edit string=
(REF FILE f, REF [] SFRAME sf, REF INT, sfp, REF [] CHAR s,
BOOL end) VO ID :

BEGIN INT rep:= 1, j:= LWB s - 1, INT last= UPB s, CHAR k,
BOOL supp:= FALSE, zs:= TRUE;

PROC copy= (CHAR c) VOID:
IF

IF status OF f SAYS line ok
THEN TRUE
ELSE check pos(f)
FI

THEN put char(f, c)
ELSE error(nocharpos); abort
FI;

WHILE j < last OR (end AND sfp -5, UPB sf)
DO

CASE sf[sfp] IN
(INT count): rep:= count,
(REF [] CHAR s): (put insert string(f, rep, s); rep:= 1),
(CHAR a):

IF a= "s" THEN supp:= TRUE
ELSE

IF a= "d" THEN zs:= TRUE;
IF supp THEN j +:= rep
ELSE

TO rep
DO k:= s[j +:= 1]; copy((k =

FI
ELIF a= "z" THEN

TO rep
DO k:= s[j +:= 1];

II II

(zs I (k = 110 11 I k:=
(NOT supp I copy(k))

OD

II 11 . I: k =f.

ELIF a= 11a 11 THEN
IF supp THEN j +:= rep
ELSE TO rep DO copy(s[j +:= l]) OD
FI

I "O" I k)) OD

II 11 I zs:= FALSE));

ELIF a = 11+" OR a = 11
-" THEN k: = s [j +: = 1] ;

(zs I (k = "O" I k:= 11
•

11

. I: k 'f 11+ 11 AND k 1 11
-

11 AND k 'f 11
..!.11 I ZS:= FALSE));

copy(k)
ELIF a= 11

." THEN (NOT supp I copy(11
•

11
)); j +:= 1

ELIF a= 11 e 11 OR a= 11 i 11 THEN
(NOT supp I copy(a)); zs:= TRUE

86

OD
END;

ELIF a= 11 b" THEN copy(s[j +:= l])
ELIF a= "r 11 THEN SKIP
ELSE alignment(f, rep, a)
FI;
supp:= FALSE; rep:= I

FI
ESAC;
sfp +: =

n) PROC putf = (REF FILE f, (J UNION(OUTTYPE, FORMAT) x) VOID:
FOR k TO UPB x
DO

IF NOT (status OF f SAYS put char status)
THEN ensure state(£, put char status)
FI;
CASE x[k] IN

(FORMAT format): associate format(£, format),
(OUTTYPE ot):
BEGIN INT j:= 0, PICTURE picture, [] SIHPLOUT y -- STRAIGHTOUT ot;

WHILE (j +:= 1) .:s_ UPB y
DO BOOL incomp: == FALSE;

get next picture(f, picture);

INT n = ·,
CASE picture IN

(DPICT dp):
(picture:= staticize picture(dp);
ensure state(f, put

(CPICT cp): UPB 12 OF
(GPICT gp): UPB 12 OF
(VOlDPICT vp): UPB vp

char status); 0),
cp,

OUT 0
ESAC;

gp,

REF [] SINSERT sinsert:= LOG [l n] SINSERT;

CASE picture IN
(SPICT sp):
BEGIN INT sfp:= l, REF [) SFRA11E sf= sframes OF sp;

f.PROC convert L real=
(REALPATTERN rp, REF [] CHAR s, REF INT first, last,
1, REAL x) BOOL:

IF INT signl = ABS s1 OF rp;
INT before= b OF rp - SIGN sign!;
e OF rp > 0

THEN INT exp:= before, rplace;
BOOL neg! = subfixed(x, a OF rp, exp, s, TRUE);
last:•.a OF rp +before+ point OF rp;
first:=

IF powerlO(s, rplace, last)
THEN exp+:= I; s[before] :=

s[before+I]:= (before= 0
last-:= l; 0

II fl• . '
I rplace:= l; 11 0 11 I 119 11

);

ELSE I
FI;

round(s, rplace, last);
IF sign! I- 0
THEN s[first -:= 1]:=

(negl I 11
-

11 I: sl OF rp > 0 I 11+" I "~")
FI;

now s[first:last] contains the stagnant part of x #
exp-:= before;

II note that 11 e" is not explicitly stored in 's' ff
INT f:= last+ I; ...

· BOOL neg2 = subwhol~(exp, f, last+ e OF rp, s);
INT sign2 = ABS s2 OF rp; _.··
IF last+ SIGN sign2 ~ f OR

(sign2 = 0 AND neg2) OR (signl = 0 AND negl)
THEN FALSE
ELSE

FI

(sign2 /. 0
I s[(sign2 + last) MIN (f - 1)]:=

(neg2 I 11
-

11 I: s2 OF rp > 0 I 11+ 11 I ".:."));
last+:= e OF rp; TRUE

ELSE# e OF rp = 0 #
INT bb, rplace;
BOOL neg) = subfixed(x, a OF rp, bb, s, FALSE);
last:= bb + a OF rp + point OF rp - 1;
first:= (powerlO(s, rplace, last) I bb +:= 1; 0 I 1);
round(s, rplace, last);
IF INT p = bb - 1 - b OF rp;

p > 0 OR (signl = 0 AND neg!)
THEN FALSE
ELSE

FI
FI*;

(sign 1 I- 0
I s[(signl + p) MIN (first - 1)]:=

(neg I I 11
-

11 I: s 1 OF rp > 0 I 11+ 11 I "_:.:11
));

first:= p + 1; TRUE

. {PROC edit L ·real= (1, REAL x, REALPATTERN rp) VOID:
IF INT u, v;

IF e OF rp > 0
THEN u:= -1;

v:= b OF rp + a OF rp + 2 + L exp width MAX e OF rp
ELSE INT b = loglO(x);

u:= 0 MIN (b - b OF rp) - 1;
v:= b + a OF rp + 2

FI;
[u: v] CHAR s, INT first, last;
convert L real(rp, s, first, last, x)

THEN edit. string(f, sf, sfp, s[first: last], TRUE)
ELSE incomp:= TRUE
FI*;

87

88

{PROC edH L compl = (_h COHPL z, COMPLPATTERN cp) VOID:
IF INT ul, vl, u2, v2;

IF e OF re OF cp > 0
THEN u I : == - 1 ;

vl:= b OF re OF cp + a OF re OF cp ·+ 2 +
L exp width 'MAX e OF re OF cp

ELSE INT b = loglO(re OF z);
ul:= 0 MIN (b - b OF re OF cp) - 1;
vl:= b + a OF re OF cp + 2

FI;
IF e OF im OF cp > 0
THEN u2~= •al;

v2:= b OF im OF cp + a OF im OF cp + 2 +
L exp width HAX e OF im OF cp

ELSE INT b = log10(im OF z);
u2:= 0 MIN (b - b OF im OF cp) - l;
v2:= b + a OF im OF cp + 2

FI;
[ul : vl J CHAR s re, [u2 : v2] CHAR s im,
INT f re, 1 re, f im, 1 im;
convert L real(re OF cp, s re, f re, 1 re, re OF z) AND
convert L real(im OF cp, s im, f im, 1 im, im OF z)

THEN edit string(£, sf, sfp, s re[f re 1 re], FALSE);
edit st:r.i.ng(f, sf, sfp, s im[f im : 1 im], TRUE)

ELSE incomp:= TRUE
Fli; .. ;

CASE p OF sp IN

(INT PATTERN ip):
(y [j]
I { (1. INT i) :

IF INT upbs =Lint width MAX width OF ip;
[O : upbs] CHAR s, INT first:= O;

BOOL neg= subwhole(i, first, upbs, s);
INT p = upbs - width OF ip,

abssign = ABS sign OF ip;
p + SIGN abssign ~ first OR (abssign = 0 AND neg)

THEN incomp:= TRUE
ELSE

(abssign 'f 0
I s((abssign + p) MIN (first - 1)] :=

(neg I 11
-

11 I: sign OF ip > 0 I 11+11 I "..!.
11
));

edit string(£, sf, sfp, s[p + I :], TRUE)

Fl*
incomp: = TRUE) ,

(REALPATTERN rp):
(y [j J
I {(L REAL r): edit L real(r, rp)i,

{(LINT i): edit L real(i, rp}*
i.n.Zomp: = TRUE) ,

(BOOLPATTERN bp):
(y [j]
I (BOOL b):

edit string(f, sf, sfp,
LOC [1:1) CHAR:= (b I flip I flop),
TRUE)

incomp : = TRUE) ,

(COMPLPATTERN cp):
(y [j]
I {(L COMPL z): edit L compl(z, cp)*,

{(L REAL r): edit·L compl(r, cp)*,
{(LINT i): edit L COII!-p.l,(i, cp)*
incomp: = TRUE),

(STRINGPATTERN stp):
(y [j]
I (CHAR c):

IF stp =
THEN edit string(f, sf, sfp,

LOC [l:1] CHAR:= c, TRUE)
ELSE incomp:= TRUE
FI,

([] CHAR t):
IF stp = UPB t - LWB t + 1
THEN edit string(f, sf, sfp,

LOC [l:stp] CHAR:= t, TRUE)
ELSE incomp:= TRUE
FI

incomp: = TRUE)

(BITSPATTERN bp):
(y [j]
I { (h BITS lb):

IF INT upbs = L bits width MAX width OF bp;

89

[1 : upbs] CHAR s, !:, INT n:= ABS lb, INT first:= upbs;
WHILE s[first]:= dig char(S(n MOD K radix OF bp));

n OVERAB .f radix OF bp; ";i' # !:, 0 -
DO first-:= 1 OD;
INT p = upbs - width OF bp + l;
p > first

THEN incomp:= TRUE
ELSE

WHILE p < first DO s[first -:= 1]:= "..:." OD;
edit string(f, sf, sfp, s[p :], TRUE)

FI;f-
incomp: = TRUE)

ESAC;

90

IF incomp
THEN sfp:= UPB sf;

WHILE
CASE sf[sfp] IN

(CHAR a): char in bag(a, xylpkq)
OUT TRUE
ESAC

DO sfp -:= l OD;
sinsert:= sf[sfp + 1 :

11 the last insertion of 'sf' is searched for ti
FI

END,

(CPICT choice):
BEGIN [l : UPB il OF choice] SINSERT si;

staticize frames(il OF choice, si);
put insertion(f, si);
I.NT 1 = CASE type OF choice IN

If boolean fl
(y[j] I (BOOL b): (b I 2)

I incomp:= TRUE; SYJ.P),
II integral ti

{y[j] I (INT i): i
. l incoop: = TRUE; SKIP)

ESAC;
IF NOT (inc.omp:= incomp OR 1. ~ 0

OR 1 > UPB c OF choice)
THEN INSU{TION cl = (c OF choice) [1];

[l : UPB cl] SINSERT ci;
staticize frames(cl, ci);
put insertion(f, ci)

FI;
staticize frames(i2 OF choice, sinsert)

END,

(FPICT fpict): do fpict(f, fpict),

(GPICT gpict):
BEGIN [l : UPB il OF gpict] SINSERT si;

staticize frames(il OF gpict, si);
staticize frames(i2 OF gpict, sinsert);
INT n "" UPB spec OF gpic t; [l : n] INT s;
FOR i TO n DO s(i]:= (spec OF gpict) [i] OD;
put insertion(£, si);
IF n = 0 THEN put(£, y[j])
ELSE

NUMBER yj = (y[j]
I {(LINT i): i*,

{(L REAL r): d
I in-;;-omp: = TRUE; SKIP);.

FI

IF NOT incomp
THEN

FI

CASE n IN
put(f, whole(yj, s[l)}),
put(£, fixed(yj, s[l), s[2))),
put(f, float(yj, s[l), s[2), s[3]))

ESAC

For optimization purposes, one might want to
generate different code here. fj

END,

(VOIDPICT v):
(j -:= 1; staticize frames(v, sinsert))

ESAC;

IF incomp
THEN ensure state(f, put char status);

BOOL mended= (value error mended OF f)(f);
ensure state(f, put char status);
(NOT mended I put(f, y[j]); error(wrongval); abort)

FI;
put insertion(£, sinsert);
IF cp OF piece OF f > UPB p OF piece OF f
THEN update cp(f, TRUE, put char status)
FI

OD
END

ESAC
OD;

91

92

o) PROC indit string=
(REF FILE f, REF [J SFRAME sf, REF INT sfp, REF (] CHAR s,
INT sign, radix, BOOL end) VOID:

BEGIN
CHARBAG digits= (radix -· 10 radixlOdigit

I : radix = 2 radix 2digit
I : radix = 4 radix 4digit
I : radix = 8 radix 8digit

CHARBAG digits and space
digits and siguspace

radix 16digit);
==digits+ STRINGTOBAG(". 11

),

digits + STRINGTOBAG("+-.!.");

PRIO "" 8;
OP ! = (CHARBAG s, CHAR c) CHAR:

IF CHAR k;
IF (status OF f SAYS line ok
THEN get char (f, k)
ELSE error(nocharpos); abort
Fl;
char in bag(k, s)

THEN k

TRUE I check pos(f))

ELSE k:= c; BOOL mended= (char error mended OF f)(f, k);
ensure state(f, get char status);
IF (mended I char in bag(k, s) l FALSE)

· THEN k
ELSE error(wxongchar); c
FI

FI;

INT index:= ABS sign, rep:= 1,
BOOL sign found:= FALSE, first space:= FALSE, supp:= FALSE;
CHARBAG allowed:= CASE sign+ 2 IN

{I "-"-frame If (first space:= TRUE; signspace),
II no frame fl (sign ,found:= TRUE; digits and space),
II 11+ 11-fr ame fl signspace

ESAC;

WHILE index < UPB s OR (end Al'1D sfp < UPB sf)
DO

CASE sf[sfp] IN
(INT count): rep:= count,
(REF [] CHAR s): (get insert string(£, rep, s); rep:= l),
(CHAR a):
IF a= "s 11 THEN supp:= TRUE
ELSE

IF a= 11d11 THEN
TO rep
DO s[index+:= 1):= (supp I 110 11 I digits
allowed:= digits and space

ELIF a = 11z 11 OR a == 11+11 OR a = 11
-

11 THEN
TO rep
DO .

IF sign found
THEN s[indcx +:== 1]:==

(supp I 110 11

I CHAR c = allowed "0 11
;

110 11
) OD;

OD
END;

OD

(c =I- ".:.11 I allowed:== digits; c 11011
))

ELSE CHAR c:= (a= "+11 I plusminus I allowed) 11+";
IF c = 11

•
11 AND a= 11z 11

THEN (fi;st space l allowed:= digits and signspace;
first space:= FALSE);

c:= "011
ELSE sign found:= TRUE; allowed:= digits;

(c = ".:." I c: = n+")
FI;
(c = 11+11 OR c = 11

-
11 l s[l]:= c I s[index +:= l]:= c)

FI

ELIF a= 11
•

11 THEN
(NOT supp l point II:•· r

ELIF a= "e" THEN
(NOT supp I times ten to the power "e")

ELIF a= 11 i 11 THEN
{NOT supp I plus i times ! · 11 i 11

)

ELIF a= "r" THEN SKIP
ELIF a= 11h 11 THEN

s[index +:= I]:= flipflop flop
ELIF a= "a" THEN

TO rep
1]: = DO s[index +:=

(supp II It

OD

CHAR c;
(check pos(f)

c)

ELSE alignment(£, rep, a)
FI;
rep:= 1; supp:= FALSE

Fl
ESAC;
sfp +:=

get char(£, c)
error(nocharpos); abort);

p) PROC get£= (REF FILE·£, [] UNION(INTYPE, FORMAT) x) VOID:
FOR k TO UPB x
DO

IF NOT (status OF f SAYS get char status)
THEN ensure state(£, get char status)
FI;
CASE x[k) IN

(FORMAT format): associate format(£, format),
(INTYPE it):
BEGIN INT j:= O, PICTURE picture, [] SIMPLIN y = STRAIGHTIN it;

WHILE (j +:= l) ~ UPB y
, DO BOOL incomp:= FALSE;

get next pictu.re(f, picture);

93

94

INT n =
CASE picture IN

(DPICT dp): (picture:= staticize picture(dp);
ensure state(£, get char status); 0),

(CPICT cp): UPB i2 OF cp,
(GPICT gp): UPB i2 OF gp,
(VOIDPICT vp): UPB vp

OUT 0
ESAC;

REF [) SINSERT sinsert:= LOC [1 :·ri)'SINSERT;

CASE picture IN
(SPICT sp):
BEGIN INT sfp:= l, REF [] SFRAME sf= sfzames OF sp;

{PROC convert L real =
(REALPATTERN rp, REF!:_ REAL rr., BOOL end) BOOL:

BEGIN INT upbs = a OF rp + b OF rp, exp width= e OF rp;
[I : up b s] CHAR s ;
indit string(f, sf, sfp, s, SIGN sl OF rp, 10,

exp width = 0 AND end);
BOOL ok:= TRUE, INT first:= ·(sl OF rp = 0 I l I 2);
WHILE first < upbs AND s [first] = 110 11

DO first+:= 1 OD;
INT last = (first + L real width) MIN upbs;
INT exp:= b OF rp - last;
IF exp width> 0
THEN . [1 : exp witl th] CHAR s;

indit string(£, sf, sfp, s, SIGN s2 OF rp, 10, end);
INT e: = O;
FOR i FROM (s2 OF rp = 0 I 1 I 2) TO exp width
WHILE ok
DO ok:= e ADD char dig(s[i]) OD;
IF ok:= ok AND ABS exp < max int - e
THEN exp+:= (s[l] = "-ii I -e I e)
Fl

FI;
IF ok
THEN ok:=

string to L real(s[first:last], exp, s[l] = 11
-

11
, rr)

FI;
ok

END*;

CASE p OF sp IN

(INT PATTERN ip):
(y [j]
I {(REF h INT ii):

BEGIN (1 : width OF ip] CHAR s;
indit string(f, sf, sfp, s~ sign OF ip, 10, TRUE);
BOOL ok:= TRUE, LINT j:= O;
FOR i FROM (sign--OF ip == 0 I l I 2)
TO width OF tp WHILE ok
DO ok:== j ADD char dig(s[il) OD;

(ok I ii:= (s [1] = 11
-

11

incomp:= NOT ok
END*

incomp: = TRUE) ,

(REALPATTERN rp):
(y [j]
I {(REF.!! REAL rr):

-j I j));

incomp:= NOT convert L real(rp, rr, TRUE)*
I incomp:= TRUE),

(BOOLPATTERN bp):
(y [j]
I (REF BOOL bb):

BEGIN [1 : 1] CHAR s;
indit string(f, sf, sfp, s, O, O, TRUE);
bb:= s[I) = flip

END
in comp:= TRUE) ,

(COMPLPATTERN cp):
(y [j)
I {(REF h COMPL zz):

(L COMPL z; BOOL ok:=
convert L real(re OF cp, re OF z, FALSE);

ok:= ok AND
convert L real(im OF cp, im OF z, TRUE);

(ok I zz:= z); incomp:= NOT ok)*
incomp: = TRUE) ,

(STRINGPATTERN stp):
(y [j]
I (REF CHAR cc):

IF stp = 1
THEN indit string(f, sf, sfp., REF [) CHAR(cc),

O, O, TRUE)
ELSE incomp:= TRUE
FI,

(REF [) CHAR ss):
IF UPB ss - LWB ss + I = stp
THEN indit string(f, sf, sfp, s, O; O, TRUE)
ELSE incomp:= TRUE
FI,

(REF STRING ss) :
BEGIN [1 : stp] CHAR s;

indit string(f, sf, sfp, s, 0, O, TRUE);
ss:= s

END
incomp: = TRUE)

95

96

(BITSPATTERN bp):
(y [j]
I {(REF 1. BITS lb):

ESAC;
END,

BEGIN (! : width OF bp) CHAR s,
INT radix= radix OF bp;
indit string(f, sf, sfp, s, O, radix, TRUE);
INT r = (radix= 2 l l I: radix= 4 I 2

I: radix= 8 j 3 I 4),
INT w:= width OF bp, n:= O, d,
[l : L bits width] BOOL b;
FOR i FROM L bits width BY -1 TO
DO

IF n == 0
THEN d:= (w > 0 r char dig(s[w]) I 0);··

w -:= 1; n:= r
FI;
b[i]:= ODD d; d:= d OVER 2; n -:=

OD;
lb:= L bits pack(b)

END*
incomp: = TRUE)

(CPICT choice}:
BEGIN [l : UPB il OF choice] SlNSERT si;

staticize frames(il OF choice, si);
get insertion(£, si); ·
INT c = c OF cpos OF f, CHAR kk,
INT k:= O, BOOL found:= FALSE;
WHILE k < UPB c OF choice AND NOT found
DO INSERTION ck= (c OF choice)(k +:= l];

(1 : UPB ck] ~lNSERT si;
staticize frames(ck, si);
ensure state(f, get char status);
BOOL bool:= TRUE, INT rep:= l;
FOR i TO UPB si WHILE bool
DO

CASE si[i] IN
(INT count): rep:= count,
(REF [) CHAR ss):

(FOR j TO rep WHILE bool
DO

FOR 1 TO UPB ss
WHILE bool:== bool AND status OF f SAYS line ok
DO get char(fi kk); bool:= kk = s(l] OD

OD;
rep:= 1)

ESAC
OD;
(NOT (found:= bool) I set char number(£, c))

OD;

IF NOT found THEN incomp:= TRUE
ELSE

CASE type OF choice IN
II boolean II

(y [j]
I (REF BOOL b): b:= k =
I incomp:= TRUE),

II integral ti
(y [j]

I (REF INT i) i:= k
I incomp:= TRUE)

ESAC
FI;
staticize frames(i2 OF choice, sinsert)

END,

(FPICT fpict): do fpict(f, fpict),

(GPICT gpict):
BEGIN [I : UPB ii OF gpict] SINSERT si;

staticize frarnes(il OF gpict, si);
staticize frames(i2 OF gpict, sinsert);
get insertion(f, si); get(f, y[j])

END,

(VOIDPICT v):
(j -:= I; staticize frames(v, sinsert))

ESAC;

IF incomp
THEN ensure state(f, get char status);

BUOL mended= (value error mended OF f)(f);
ensure state(f, get char status);
(NOT mended I error(wrongval); abort)

FI;
get insertion(f, sinsert),;
IF cp OF piece OF f > UPB p OF piece OF f
THEN update cp(f, TRUE, get char status)
Fl

OD
END

ESAC
OD;

97

98

11. 3. EFFICIENCY

Considerable attention has been paid to the efficiency of formatted
transput. The data structures have been chosen with great care, so as to
minimize both space and time. The efficiency may be further increased by
carefully rewriting the routines 'edit string' and 'indit string' in machine
code. {This may well speed up things by a factor of 2!}

99

12. BINARY TRANSPUT

12. 1. DEVIATIONS

{D} Rather than assuming that binary transput goes via elementary
values of the mode CHAR, a special mode BINCHAR is used as a primitive
in this model.

{D} In the Revised Report, the number of characters to be input to a
name N is determined as follows:

- Let 'yj' be the value referred tp by N;
- The number of characters that is input is equal to the number of

characters output by 'put 'biri(f, yj)' {i.e., 'UPB to bin(£, yj)'}.
It is anticipated that in an actual implementation there~~ill be
smarter ways to determine that number. Therefore, a separate routine
'bin length' (d) has been introduced.

12.2. NEW DEFINITION

In binary transput, the values obtained by straightening the elements of
a data list are transput, via the specified file, one after the other. The
manner in which such a value is stored is defined only to the extent that a
value of mode M (being some mode from which that specified by SIMPLOUT is
united) output at a given position may subsequently be re-input from that
same position to a name of mode 'REFERENCE TOM'. Note that, during input to
the name referring to a multiple value, the number of elements read will be
the existing number of elements referred to by that name.

The current position is advanced after each value by a suitable amount
and, at the end of each line or page, the appropriate event routine is
called, and next, if this returns false, the next good character position is
found.

For binary output, 'put bin' (e) and 'write bin' (section 10.5.1 of the
Revi~ed Report) may be used and, for binary input, 'get bin' (£) and 'read
bin' {section 10.5.1 of the Revised Report).

a) MODE 7 BINCHAR =
C The elementary mode of binary transput; each value to be transput is

so via some 'row of BINCHAR', the length of the row being determined
by the file on which the transput takes place, the mode of the value
to be transput (and its length in case of·a multiple value). C;

b) PROC '? to bin= (REF FILE£, SIMPLOUT x) [] BINCHAR:

c)

C The lower bound of the resulting multiple value is I, the upper bound
depends on 'f' and on the mode and the value of 'x'; furthermore,
x = from bin(£, x, to bin(£, x)). C;

PROC '? from bin = (REF FILE f, SIMPLOUT y, [] BINCHAR c) SIMPLOUT:
C A value, if one exists, of the mode of the value yielded by

, ,
such y

' that C = to bin(£, from bin(£, y, c)). If su·ch a value does not
~xist, message

,
wrongbin

,
is given and the program is an error

aborted. C;

100

d) PR0C "'! bin length = (REF FILE f, SIHPLIH y) INT:
C The upper bound of the multiple value which is needed to input a

value into 'y'. C;
the following ALGOL-68 unit will do:

(SIHPL0UT yj =
CASE y IN

{(REF LINT i): i*,
{ (REF L REAL r) : r ;t ,
{(REF L COMPL z): z*,
(REF BOOL b): b,
{(REF L BITS lb): lb*,
(REF CHAR c): c,
(REF [] CHAR s): s,
(REF STRING ss): ss

ESAC;
UPB to bin{£, yj)) #

e) PR0C put bin = (REF FILE f, [] 0UTTYPE ot) VOID:
FOR k TO UPB ot
DO

IF NOT (status OF f SAYS put bin status)
THEN ensure state(f, put bin status);
FI;
[] ·sIMPLOUT y :-..c STRAIGHT0UT ot [k.J;

FOR j TO llPB y - - .
DO [J BINCHAR bin= to bin(£, y[j]);

FOR i TO UPB bin

OD
OD;

DO next pos(f); {put bin char OF f)(f, bin[i]);
IF status OF f SAYS logical pos not ok
THEN set logical pos(f)
Fl;
test line end(f)

OD '-'°'

f) PR0C get bin~ (REF FILE£, [] INTYPE it) VOID:
FOR k TO UPB it
DO

IF NOT (status OF f SAYS get bin status)
THEN ensure state(£, get bin status)
FI;
[J SIMPLIN y = STRAIGHTIN it [k);
FOR j TO UPB y
DO [1 : bin length(£, y(j])] BINCHAR bin;

FOR i TO UPB bin
DO next pos(f); (get bin char OF f)(f, binli]);

test line end(f);
IF status OF f SUGGESTS lfo in current line
THEN test logical file end(f)
Fl

OD;

CASE y[j] IN
,j:(REF ,1. INT ii):

(from bin(£, ii,
{ (REF ,1. REAL rr) :

(from bin(£, rr,
{(REF ,1. COMPL zz):

(from bin(£, zz,
(REF BOOL bb}:

(from bin(f, bb,
{(REF h BITS lb):

(from bin(f, lb,
(REF CHAR cc) :

(from bin(£, cc,
(REF [] CHAR ss):

(from bin(f, ss,
(REF STRING ss):

(from bin(f, ss,
ESAC

OD
OD;

bin)

bin)

bin)

bin)

bin)

bin)

bin)

bin)

(h INT i): ii:= i)l,

(_h REAL r): rr:= r)*,

(,h C9MPL z): zz:= z)l,

(BOOL b): bb:= b),

(_h BITS b): lb:= b)l,

(CHAR c): cc:= c),

([] CHAR s): ss:= s),

(STRING s): ss:= s)

1 01

102

REFERENCES

[I] WIJNGAARDEN, A. VAN~ et al (eds.), Revised Report on the.Algorithmic
Language ALGOL 68~ Acta Informatica 5 (1975), pp 1-236.

[2] WOODWARD, P.M. & S.G. BOND, ALGOL 68-R Users Guide, Royal Radar
Establishment, Malvern, England, 1975 ~

[3] ALGOL 68 Version I Reference Manual, Control Data Services B. V.,
Rijffivijk, The Netherlands, 1976.

[4] HILL, _U., H. SCHEIDIG & H. WOESSNER; An ALGOL 68 Compiler, Technische
Universitllt HUnchen and University -of-British Columbia,_ 1972.

[5] ROBERTSON, A. & G.E. HEDRICK, A Portable Compiler for an ALGOL 68
Subset, ii~ G.E. Hedrick (ed.), Proceedings of the 1975
International Conference on ALGOL 68, Oklahoma State University,
Stillwater, Oklahoma, June 10-12, 1975, ·pp 59--64.

[6) BERRY, R.D., A practical Implementation of Formatted Transput in ALGOL
68, MS Thesis, Oklahoma State University, Stillwater, Oklahoma,
July 1973.

(7] LEROY, A., et al) On the 'Adeq_u3cy of the P..LGOL 68 Environment Compared
with an Existing Current Operating System and Problems of 1/0
Implementation, t"n G.E. Hedrick (ed.), Proceedings of the 1975
International Conference on ALGOL 68, Oklahoma State University,
Stillwater, Oklahoma, June 10-12~ 1975, pp 202-220.

[8] BROUGHTON, C.G. & C.M. THOMSON, Aspects of Implementing an ALGOL 68
Student Compiler, i!!. G.E. Hedrick (ed.), Proceedings of the 1975
International Conference on ALGOL 68, Oklahoma State University,
Stillwater, Oklahoma, ~une 10-12, 1975, pp 23-38.

(9) THOMSON, C.M., A description of the FLACC Transput System, preliminary
version, Edmonton, Canada, August 1977.

[10] THOHSON, C.M. & C.G. BROUGHTON, A description of a New Transput System,
preliminary version, Edmonton, Canada, August 1977.

[11] CMU .ALGOL-68 Transput, Users's Guide, Carnegie Mellon University.

[12) ALGOL_68S implementation -- file system, Carnegie Mellon University.

[13] FISK.ER, R., private communication.

[14) VLIET, J.C. VAN, Compilation of problems and errors in section 10.3 of
the Revised Report, Mathematical Centre, June 1977.

[15] VLIET, J.C. VAN, On the ALGOL 68 Transput Conversion Routines, ALGOL
B~lletin ~1, July 1977, pp 10-24.

(16) V1,J.ET, J.C. VAN~ Towards an Implementation--Oriented Definition of the
ALGOL 68 Transput, Report IW90, Mathematical Centre, October 1977.

[17] LINDSEY, CH., Draft Commentaries on Transput, CHL 78-06-23.

103

Alphabetic listing of all defining occurrences of mode-indications and
identifiers. If a mode-indication or identifier is prefixed with an*, this
means that it is not (completely) defined in ALGOL 68.

56
84
38
31
38
85
38
69
44
23
10

100
38
22
38
99
75
10
10
74
22
38
23
13
56

ADD
alignment
ANDAB
associate
associate end
associate format
associate status

*back char
backspace
backspace possible
BEYOND

*bin length
bin mood
bin possible
bin to char

*BINCHAR
BITS PATTERN

*BOOK

not possible

*book in system
BOOLPATTERN

*BUFFER
buffer filled
chan
CHANNEL
char dig

69 *char in bag
56
38
37
38
69
47
34
38
73
73
74
22
10
13
74
31
ll
74
55
84
16
17
17
17
73
85

char
char

in string
mood

char number
char to bin not possible

*CHARBAG
check pos

*close
closed
COLLECTION
COLLITEM
COMPLP ATTERN
compressible

*construct book
CONV
CPICT
create

*default idf
DFRAME
dig char
do fpict

*do ne~line OF chan OF·f
*do newpage OF chan OF f
*do reset OF chan OF f
*do set OF chan OF f

DPICT
edit string

46 ensure line
45 ensure logical file
46 ensure page
46 ensure physical file
45 ensure state
13 est?-b po_ssible
30 establish
38 ·e·stablish status
10 EXCEEDS
55 *EXPLENGTH
33 false
22 FILE
33 *file available
52 fixed
69 flipflop
53 float
73 FORMAT
81 FORMATLIST
74 FPICT

·· 99 *from bin
65 get

100 get bin
16 *get bin char OF f
38 get bin status
69 get char
16 *get char OF f
38 get char status
84 get insert string
84 get insertion
81 get next picture
22 get possib-le
93 getf
74 GPICT
33 *idf ok
92 indit string
1 4 *init buffer OF f
7 4 INSERTION
74 INTPATTERN
59 *INTYPE
57 *L exp width
56 L int width
57 *L real width
38 lfe in current line
38 line end
37 line number
38 line ok

· 35 *lock
55 *log10
38 logical file ended
38 logical pos not ok
38 logical pos ok
23 *make conv

3 make term
5 K..\X
,5 MIN
$9 mind logical pos
38 mood part
45 newline
45 newpage
47 next pos
38 not lfe in current line
38 not set poss
52 NUM.BER
2,~ on char .. error
24 on format end
24 on line end
23 on logical file end
23 on page end
23 on physical file end
24 on value error
31 open
38 open status
38 opened
38 0•:.Ah
59 *QUTTYPE
38 page end
37 par;e number.
38 page oi:.
38 physical file end
38 physical file ok
73 PICTURE
69 plus i times
10 POS
55 powerlO
11 ,~pseudo book
62 put

100 put b,in
15 *put bin char OF f
38 put bin status
64 put char
15 *put char OF f
38 put char status
83 put insert string
83 put insertion
22 put possible
86 putf
69 radix 2digit
69 radix 4digit
69 radix 8digit
69 radixlOdigit
69 radixl6digit
15 *read buffer OF f
38 read mood
38 read or write mood
38 read to write not possible
7t1 REALPATTERN
24 *reidf

·-~-1 ,H oossible

47
22
55
38

reset
reset possible
round
SAYS

35 *scratch
47 set
34 set bin mood
34 set char mood
48 set char number
11 *set logical pos
23 set pos~ible
34 set read mood
34 set write mood
7 4 SF1W1f:
59 SIMPLIN
59 SIMPLOUT
74 SINSERT
44 space
73 SPICT
13 *stand back channel
13 *stand in channel
13 *stand out channel
13 standconv
45 state ·
82 staticize frames
82 staticize picture
37 STATUS
59 .',STR UCHTIN
59 *STRAIGHTOUT
56 *string to L real
75 STRINGPATTERN
69 icSTR.INGTOBAG
51.i *subfixed
53 subwhole
38 SUGGESTS
39 test line end
39 test logical file end
69 times ten to the power
99 *to bin
82 update cp
74 VOIDPICT
52 whole
15 *write buffer OF f
38 write mood
38 write to read not possible
69 xylpkq
69 *+

