
stichting

mathematisch

centrum

AFDELING MATHEMATISCHE BESLISKUNDE
(DEPARTMENT OF OPERATIONS RESEARCH)

C.N. POTTS

AN ADAPTIVE BRANCHING RULE FOR
THE PERMUTATION FLOW-SHOP PROBLEM

Preprint

~
MC

BW 91/78 SEPTEMBER

2e boerhaavestraat 49 amsterdam

PJunte.d a;t .the. Ma;the.ma.:ti..c.a1. Cen;t!z.e., 49, 2e BoeJLhaa.veo.tJr.a.a.t., Am.6.t.e.Jl.dam.

The Ma;the.mcu:,foa1. Centlr.e, 6ou.nded .the 11-.t.h 06 Fe.bnu.M.y 1946, ,L!:, a. non
pno6U in.6.ti.tu.:Uon aiming a;t .the. pnomoti.on 06 pUll.e ma;the.ma.:ti..c..6 a.nd U-6
a.pp.U.c.a.:ti..on2i. I.t ,L!:, -0pon.6oned by .the Ne.thefli.a.nd.6 Gove.Jl.nment .thfl.ough .the
Ne.thefli.a.nd!.> Onga.n..[za.:ti..on oon .the Adva.nc.e.ment ofi PWte Reoea.nc.h (Z.W.0).

AMS(MOS) subject classification scheme (1970): 90B35, 65K05

AN ADAPTIVE BRANCHING RULE FOR THE PERMUTATION FLOW-SHOP PROBLEM

C.N. POTTS

University of Keele, England

ABSTRACT

A branch and bound algorithm is presented for the permutation flow-shop

problem in which the objective is to minimise the maximum completion time.

A branching procedure is used in which jobs both at the beginning and at

the end of the schedule have been fixed. Dominance rules are included in

the algorithm. Also, during the initial stages of the algorithm, upper

bounds are computed at certain nodes of the search tree. Computational

results indicate that the proposed algorithm is superior to previously

published algorithms.

KEY WORDS & PHRASES: permutation flow-shop, branch and bound, adaptive

branching rule, two-machine bound, newest active node search, dominance

rule, upper bound, computational experience.

NOTE: This report is not for review; it will be submitted for publication

in a journal.

1

1. INTRODUCTION

The usual assumptions about the permutation flow-shop problem will be adopted.

Each of n jobs is to be processed on machines 1, •.. ,m in that order. The

processing time of each job i on each machine j , denoted by p .. , is given.
J.J

At any time each machine can process at most one job and each job can be

processed on at most one machine. Once the processing of a job on a machine

has started,, it must be completed without interruption. The sequence in which

the jobs are to be processed is the same for each machine. The problem is to

find a sequence of jobs to minimise the maximum completion time.

Form== 2, Johnson [8] has derived an algorithm requiring O(n log n)

steps. However, form= 3 it has been shown in references [6] and [12] that

the problem is NP-hard. Baker [2] has shown that branch and bound methods

are more efficient than enumerative methods based solely on elimination

rules.

A branch and bound algorithm for a minimisation problem is characterised

by the following:

(a) its branching rule which defines partitions of the set of feasible solu

tions into subsets;

(b) its lo~rer bounding rule which provides a lower bound on the value of

each solution in a subset generated by the branching rule;

(c) its search strategy which selects a node from which to branch.

Additional features such as dominance rules and upper bounding methods may

also be present.

In Section 2 we shall outline our branching rule and in Section 3 a

powerful lower bounding rule is derived. The complete algorithm is presented

in Section 4 including our implementation of these rules, the search strategy,

the dominance rules and the upper bounding method. Computational experience

is presented in Section 5 which is followed by some concluding remarks in

Section 6.

2. BRANCHING RULE

An important characteristic of most efficient branch and bound algorithms

is that the decisions which have a major effect on the objective function

2

are made at the top of the search tree.

In almost all of the previously published algorithms for the permuta

tion flow-shop problem [2,3,4,7,9,13,14,15,16] the same branching procedure

has been used: nodes at level r of the search tree correspond to initial

partial sequences in which jobs in the first r positions have been fixed.

However, both Brown and Lomnicki [4] and McMahon and Burton [14] have found

from computational results that in some circumstances it is more efficient

to solve the inverse problem in which the processing times p .. and p. . 1 iJ i,m-J+
are interchanged for all jobs i and all machines j such that 1 ~ j ~ m/2

rather than the original problem. This problem inversion is equivalent to a

branching procedure for the original problem in which nodes at level r of

the search tree represent final partial sequences in which jobs in the last

r positions have been fixed.

In this paper we are suggesting that the important decisions for some

permutation flow-shop problems will involve scheduling jobs in both the first

few and last few positions. Thus in the proposed algorithm each node of the

search tree will correspond to an initial partial sequence o 1 and a final

partial sequence o2 , though either o 1 or o 2 may be empty. The branching rule

used by other researchers is a special case of our general method for which

o2 is empty. The precise details of the proposed procedure will be given in

Section 4.

3. LOWER BOUNDS

Lower bounds on the maximum completion time for all sequences beginning with

the initial partial sequence o 1 have been developed by several researchers

[3,4,7,9,13,14,15,16]. The most efftcient is the two-machine bound developed

independently by Lageweg et al. [9] and Potts [16]. This will be generalised

to give a lower bound on the total processing time for all sequences begin

ning with the initial partial sequence o 1 and ending with the final partial

sequence o2 •

Let s 1 be the set of jobs sequenced in o 1 and let s2 be the set of jobs

sequenced in o 2 • Also for any machine j, c1 (o 1,j) is defined as the minimum

time to complete processing all jobs in o 1 on machine j and c2 (o2 ,j) is de

fined as the minimum time between the start of processing jobs in o2 on ma-

3

machine j and the completion of processing jobs in o2 on machine m. (We de

fine c 1 (o 1,j) = O if s 1 =~and c2 (o2 ,j) = O if s 2 =~->Now if

S = {1, ••• ,n} (s1us2) is the set of unsequenced jobs, we define

and

if s2 /:- '3}
ifs = ~

2

(j = 1, ... , m)

(j = 1, ... , m) •

A lower bound is obtained by choosing a machine pair (u,v), where l~u;:;v~m,

and relaxing the constraint that machines u+l, ••• ,v-1 can process only one

job at a time. If u f v, a two-machine subproblem is produced in which each

job 1 in S has a processing time p. on the first machine, a time lag of
1 iu

\'v-
lk=u+l pik between the completion of processing job ion the first machine

and the start of processing job ion the second machine, and a processing

time p. on the second machine. An optimum sequence for this subproblem is
1V

obtained by ordering, using Johnson's rule, for a two-machine problem with

processing times I;:! pik and I;=u+l pik for i ES [5]. Alternatively if

u = v, a single-machine subproblem results, for which any sequence is opti

mum. If T(a 1 ,o2 ,u,v) denotes the minimum maximum completion time for the

subproblem, then a lower bound is given by

When s2 = ~, B(o1 ,o2 ,u,v) is identical with the lower bound used in refer

ences [9] and [16]. Computational results have indicated that it is stronger

than previously published bounds. It is a generalisation of the lower bound

B(o1 ,o2,u,u+l), where 1 ~ u ~ m-1, proposed by Nabeshima [15].

Thus a lower bound for the problem is given by specifying a set of ma

chine pairs W = {(u1,v1) , ••• ,(uw,vw)} to give an overall lower bound defined

by

4

When W = { (1,, 1) , ••• , (m,m) } the resulting bound is called the machine-based

bound. The choice of the set W will be discussed in the next section.

4. THE ALGORITHM

Branching Rule

The followin~r branching rule will be used is the proposed algorithm. Initial

experiments have shown it to yield promising results. The first branching

will sequence a job in position 1 while the second branching sequences a job

in position n. Subsequent branchings will either be of type 1 in which a

job is added to the end of an initial partial sequence 0 1 , or of type 2 in

which a job is added to the beginning of a final partial sequence 0 2 . More

formally, each node of the search tree can be represented by (0 1 ,0 2) where

0 1 = (0 1 (1), ,0 1 (s 1)), 0 2 = (0 2 (n-s 2+1), ... ,0 2 (n)) ands 1 < n-s 2+1. As

before let S denote the set of unsequenced jobs. Then for Sf~, a typical

immediate successor of (0 1 ,0 2) is either (0 1i,02) following a type 1 branch

ing where 0 1i = (0 1 (1), ••. ,0 1 (s 1),i) and i ES, or (01 ,i02) following a type

2 branching where i02 = (i,02 (n-s 2+1), ... ,02 (n)) and i E s. The following

rule will decide between type 1 and type 2 branchings during the first pass

of the algorithm. Once the branching pattern has been set, it is repeated

whenever backtracking is necessary. Let k 1 and k 2 denote the lowest levels

of the search tree at which nodes were constructed from type 1 and type 2

branchings respectively. Also let n 1 and n 2 be the numbers of nodes at

levels k 1 and k 2 which have lower bounds achieving the minimum value bound

at levels k 1 and k 2 respectively. If n 1 < n 2 the hext branching is of type

1, while if n 1 > n 2 the next branching is of type 2. If n 1 = n 2 , then the

next branching is of type 1 if the previous branching is of type 1; other

wise it is of type 2. Should all nodes be eliminated by dominance or

upper bounds at some level of the tree whilst the branching pattern is being

set, all subsequent branchings will be of the same type as the previous

branching.

The branching rule used by other researchers will be referred to as B0

while the method described above will be denoted by B1 . It is called an

adaptive branching rule because the branching pattern is problem dependent.

Lower Bounds

The choice of the set of machine pairs used to calculate the lower bound

will be discussed here.

5

In references [9] and [16] it was found that the sets of machine pairs

{(1,m), ••• , (m-1,m)} and {(1,m), ••• ,(m,m)} respectively gave good computa

tional results. However, to ensure that our proposed bound is never less

than the machine-based bound when branching rule B1 is used, we propose the

set of machine pairs

w0 = {(1,1), ••• ,(m,m),(1,m), ••• ,(m-1,m)}.

One factor likely to affect the efficiency of B(o1 ,o2 ,u,v) is the total

processing time on machines u and v. Larger total processing times are ex

pected to produce higher bounds. Another factor is the size of v-u: the

poor results obtained by Ashour and Quraishi [1] for Nabeshima's bound

indicate that B(o 1 ,o2 ,u,v) is likely to increase as v-u increases. With

this in mind we suggest two other choices of sets o[machine pairs. Firstly

we define w1 = w0u{(u,v)} if machines u and v can be found such that l~u<v<m

and the total processing time on each of machines u and v exceeds the total

processing time on all other machines; otherwise w1 = w0 • Secondly we de

fine w2 = w0-{(u,u) ,(u,m)} if a machine u can be found such that (m-1)/2 ~

u < m and the total processing time on machine u is less than the total

processing time on all other machines; otherwise w2 = w0 •

Search Strategy

A newest active node search is used which selects a node from which to

branch which has the smallest lower bound amongst nodes in the most recent

ly created subset. If there is a choice of nodes with the same minimum

lower bound, then one is chosen having partial sequences which produce the

smallest sum of idLe times on all machines. This last tie-splitting rule

is a special feature of the algorithm designed to help generate a good solu

tion quickly. Initial experiments have shown it to be effective.

6

Dominance

If it can be shown that an optimum :solution can always be generated without

branching from a particular node, then that node is dominated and can be

eliminated. Dominance rules usually specify whether a node can be eliminated

before its lower bound is calculated. Clearly, dominance rules are particu

larly useful when a node can be eliminated which has a lower bound that is

less than the optimum solution. The dominance rule developed by Szwarc [18]

for the permutation flow-shop problem will be used here.

Using thie notation of the previous section, let i,j ES be any two un

sequenced jobs. We now define

(k = 1, •.• ,m)

and

(k = 1, ... , m) •

Then we have the following dominance rules. If

fork 2, ... ,m, (1)

then cr 1ij dominates cr 1j. Also if

(2)

then jicr 2 dominates jcr 2 . The application of these rules is limited because

for (1) to hold we must have

pil S pik fork= 2, ... ,m,

and for (2) to hold we must have

P < p fork= 1, ... ,m-1. im - ik

Baker's implementation, in which cr 1ij and jicr2 are not used to eliminate

any partial s,equence once cr 1 i and icr 2 have themselves been eliminated, will

be adopted.

7

Upper Bounds

It is well~known that computation can be reduced by using a heuristic meth

od to find a good solution to act as an upper bound on the maximum comple

tion time prior to the application of a branch and bound algorithm. We pro

pose here to calculate upper bounds at certain nodes of the search tree dur

ing the application of the algorithm. With either approach, the minimum num

ber of nodes can be reduced from n(n+l)/2 ton.

At each node of the search tree a machine pair (u,v) can be found which

provides the lower bound for that node. Also, there exists a corresponding

ordering of the unsequenced jobs that is used in calculating the bound. This

provides us with a sequence of jobs for which the maximum completion time

yields an upper bound. This upper bound is calculated for a node immediately

prior to branching from it, provided that this node was created at the pre

vious branching so that the appropriate machine pair does not have to be

stored or recalculated. To avoid unnecessary calculation of upper bounds

in cases where most of the computational effort is spent on proving the

optimality of a certain solution, it was decided to apply the upper bound

ing procedure to only the first n such nodes.

Algorithm Representation

It can be seen from the specifications above that each algorithm to be con

sidered can be represented by (W,BR,DOM,UB), where

W = w0 , w1 or w2 describes the set of machine pairs to be used in the

calculation of the lower bound;

BR = B0 or B1 describes the branching rule;

DOM= - or D if the dominance rule is not used or used respectively;

UB = - or U if the upper bounds are not used or used respectively.

5. COMPUTATIONAL EXPERIENCE

The problems used to compare the algorithms contained random problems, prob

lems with correlation between the processing times of each job, problems

for which the processing times of each job have a positive trend and final-

8

ly problems with correlation and a positive trend for the processing times

of each job. We shall denote these problem classes by R, C, T and CT re

spectively. Twenty five problems of each type were generated for the n/m

values 8/5, 8/7, 10/3, 10/5, 10/7, 15/5, and 20/3. The method of problem

generation follows that given in reference [9]. The algorithms were coded

in FORTRAN IV and run on a CDC 7600 computer. Computational results are

given in Tables I, II and III. Whenever a problem was not solved after

100,000 nodes had been generated, computation was abandoned for that prob

lem. Thus in some cases the figures given in Tables I and II will be lower

bounds on average computation times and average numbers of nodes.

The first three columns of Tables I and II compare the performance of

the three sets of machine pairs w0 , w1 and w2 using the branching rule B0 .

It is seen that w0 performs best and will be used henceforth. Column 4

shows that the effect of introducing the dominance rule is to reduce compu

tation, which confirms the results of reference [9]. A closer examination

shows that most of the saving comes from the problem class CT and, to a

lesser extent, the class C. The problems from class T could usually be

solved with the minimum number of nodes with or without the dominance rule.

For more than three machines, the dominance rule was most ineffective when

applied to the random problems. The larger average computation time for the

10/5 problems compared with the 10/7 problems in the first four columns of

Tables I and II is probably a random effect which could have been elimi

nated if more problems had been solved.

Columns 5 and 6 of Tables I and II show the effect of using the adap

tive branching rule without and with dominance. Clearly there are substan

tial savings in computation compared with the corresponding results in col

umns 1 and 4 where B0 is used. Finally by adding our upper bounding proce

dure, column 7 shows that a further small reduction in computation can be

achieved.

The numbers of unsolved problems for the two branching procedures,

with and without dominance, are classified according to problem type in

Table III. An unexpected result is observed in the last two columns of Table

III where, for the 15/5 problems in class CT, more problems were unsolved

when dominance was applied than without. Further examination of these prob

lems reveals a different branching pattern for the same problem caused by

*-'-TABLE I. AVERAGE COMPUTATION TIMES 1

Algorithm

n m <wo,Bo,-,-> (Wl ,BO,-,-) (W2,BO,-,-) (Wo,Bo,D,-) (WO,Bl ,-,-)

8 5 1.12 1.22 1.15 0.70 0.92

8 7 3.76 3.95 3.78 2.57 2.53

10 3 2.42 2.78 2.42 1.21 1.05

10 5 41.13 43.39 41.13 19.44 9.24

10 7 38.95 41.04 39.11 15.59 19.22

15 5 228.51 251.61 231. 34 224.35 120.97

20 3 99.96 111.18 99.96 65.89 73.94

* Lower bounds on the average when there are unsolved problems.

t Times are in hundredths of a CPU second.

* TABLE II • AVERAGE -NUMBERS OF NODES

Algorithm

n m <wo,Bo,-,-> (Wl,BO,-,-) (W 2, BO, - , -)

8 5 152 150 156

8 7 423 410 427

10 3 521 520 525

10 5 6282 6049 6382

10 7 4506 4465 4525

15 5 31791 31792 32252

20 3 16802 16801 16932

(Wo,Bo,D,-) (WO,Bl ,-,-)

80 111

253 263

227 179

2538 1273

1504 2123

26966 15690

10302 10928

* Lower bounds on the average when there are unsolved problems.

(w0 ,B1 ,D,-) (W0 ,B1 ,D,U)

0.84 0.70

2.23 2.02

0.54 0.38

7.73 7.37

11.57 10.99

101. 99 99.89

24.10 22.33

(W0 ,B 1 ,D,-) (w0 ,B1 ,D,U)

92 76

204 189

90 53

971 941

1117 1079

11997 11884

3883 3594
I.O

10

the elimination of nodes by dominance. However, this anomaly can be easily

overcome by not discarding dominated nodes until the branching pattern has

been set.

It is interesting to note how our branching rule adapts itself to the

four classes of problem. These results were observed when dominance was

not used. For random problems small groups of consecutive type 1 and type 2

branchings occur towards the top of the search tree. This indicates that

the jobs sequenced in the initial few and final few positions may largely

determine the total processing time. For problems in class C, branchings

tend either to be all of type 1 or all of type 2 in the top half of the

search tree. The jobs with large processing times, which are sequenced in

the middle positions in an optimum sequence, provide the main contributions

to the total processing time. As these jobs cannot be sequenced under B0 or

B1 until approximately one half of the other jobs have been scheduled, the

difficulty in solving such problems is hardly surprising. For problems in

class T the branchings tend to be of type 1. It appears that only the first

few jobs affect the total processing time here. Finally for the CT class,

the initial branchings all tend to be of type 2. The jobs with large pro

cessing times are sequenced towards the end for these problems. As these

correlated problems with a positive trend are best solved by type 2 branch

ings, the inverse problem ought to be solved when branching rule B0 is

adopted. This contradicts results obtained by other researchers [4,14] who

did not test their algorithms on problems in class CT.

Finally the most efficient of our algorithms (W0 ,B1 ,D,U) was applied

to groups of problems with n/m values of 50/3, 50/4, 50/5, 100/3 and 100/4.

Each group contained 20 problems generated in the· same way as the problems

for the previous tests. The results are given in Table IV.

As expected, increasing the number of jobs or machines increases compu

tation. However, there is some evidence that as the number of jobs increases

the numbers of unsolved problems decrease. This may be because for larger

numbers of jobs there is more likely to be a job with "suitable" processing

times to be sequenced in a given position.

Of the 22 unsolved problems, 2 were in class R, 16 were in class C and

4 were in class CT. Thus the correlated problems appear the most challenging,

confirming the results of reference [9].

* TABLE III. NUMBERS OF UNSOLVED PROBLEMS

Alqorithm
Problem

n m Class <wo,Bo,-,-> (Wo,Bo,D,-)

10 5 R 0 0

C 0 0

T 0 0

CT 2 0

10 7 R 0 0

C 0 0

T 0 0

CT 1 0

15 5 R 9 9

C 6 3

T 0 0

CT 14 10

20 3 R 6 5

C 4 1

T 0 0

CT 5 3

(WO,Bl ,-,-) (w0 ,B1 ,D,-)

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

2 2

7 1

0 0

3 5

0 0

5 1

0 0

3 1

* No unsolved problems for the n/m values· 8/5, 8/7, and 10/3.

TABLE IV. COMPUTATIONAL RESULTS FOR LARGER PROBLEMS

Average
*t

Average Number Number of
n m Computational Time of Nodes* Unsolved Problems

50 3 138.80 10452 2

50 4 386.20 30549 6

50 5 850.00 44367 8

100 3 158.25 7487 1

100 4 1004.05 30934 5

* Lower bound on the average when there are unsolved problems.

t Times are in hundredths of a CPU second.

11

12

6. CONCLUDING REMARKS

The use of the adaptive branching rule enables computation to be reduced

by over 50% for some larger problems. It seems likely that a similar branch

ing rule could be effectively applies to other machine scheduling problems

such as permutation flow-shop problems with different objectives and job

shop problems.

In spite of the.improved results achieved by our algorithm, it seems

that a different approach is needed for correlated problems. An approach

based on selecting certain pairs of jobs and deciding, at the top of the

search tree, an ordering between the two jobs of each pair seems worth in

vestigating. Such an algorithm has been applied to the job-shop problem by

Lageweg et al. [10]. Improving the lower bounds, perhaps using subgradient

optimisation, should also yield a more efficient algorithm.

ACKNOWLEDGEMENT

The author is grateful to the Mathematisch Centrum, Amsterdam and The Royal

Society for helping to finance a visit to the Mathematisch Centrum where

this research was completed~ Also usefu:i_ advice by J.K. Lenstra on the pre

sentation of this paper is gratefully acknowledged.

REFERENCES

1. S. Ashour and M.N. Quraishi, "Investigation of Various Bounding Proce

dures for Production Scheduling Problems", Internat. J. Production Res.

7, 249-252 (1969).

2. K.R. Baker, "A Comparative Study of Flow-Shop Algorithms", Operations

Res. 23, 62-73 (1975).

3. P.F. Bestwick and N.A.J. Hastings, "A New Bound for Machine Scheduling",

Operational Res. Quart. 27, 479-487 (1976).

4. A.P.G. Brown and Z.A. Lomnicki, "Some Applications of the 'Branch-and

Bound' Algorithm to the Machine Scheduling Problem", Operational Res.

Quart. 17, 173-186 (1966).

5. R.W. Conway, W.L. Maxwell and L.W. Miller, "Theory of Scheduling",

13

Addison-Wesley, Reading, Mass. 1967.

6. M.R. Garey, D.S. Johnson and R. Sethi, "The Complexity of Flowshop and

Jobshop Scheduling", Math. Operations Res. 1, 117-129 (1976).

7. E. Ignall and L. Schrage, "Applications of the Branch-and-Bound Tech

nique to Some Flow-Shop Scheduling Problems", Operations Res. 13,

400-412 (1965) •

8. S.M. Johnson, "Optimal Two- and Three-Stage Production Schedules with

Setup Times Included", Naval Res. Log. Quart. 1, 61-68 (1954).

9. B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, "A General Bounding

Scheme for the Permutation Flow-Shop Problem", Operations Res. 26,

53-6 7 (1978) •

10. B.J. Lageweg, J.K. Lenstra and A.H.G. Rinnooy Kan, "Job-Shop Scheduling

by Implicit Enumeration", Management Sci. 24, 441-450 (1977).

11. J.K. Lenstra, "Sequencing by Enumerative Methods", Mathematical Centre

Tract 69, Mathematisch Centrum, Amsterdam 1977.

12. J.K. Lenstra, A.H.G. Rinnooy Kan and P. Brucker, "Complexity of Machine

Scheduling Problems", Ann. Discrete Math. 1, 343-362 (1977).

13. Z.A. Lomnicki, "A 'Branch-and Bound' Algorithm for the Exact Solution

of the Three-Machine Scheduling Problem", Operational Res. Quart. 16,

89-100 (1965).

14. G.B. McMahon and P.G. Burton, "Flow-Shop Scheduling with the Branch

and-Bound Method", Operations Res. 15, 473-481 (1967).

15. I. Nabeshima, "On the Bound of Makespans and -Its Application in M

Machine Scheduling Problem", J. Operations Res. Soc. Japan 9, 98-136

(1967) •

16. C.N. Potts, "The Job-Machine Scheduling Prob'lem", Ph.D. thesis, Univer

sity of Birmingham, 1974.

17. A.H.G. Rinnooy Kan, "Machine Scheduling Problems: Classification, Com

plexity and Computations", Nijhoff, The Hague 1976.

18. w. Szwarc, "Elimination Methods in the mxn Sequencing Problem", Naval

Res. Log. Quart. 18, 295-305 (1971).

0

