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Abstract

We present Epic� an equational programming language� its abstract syntax� static and operational semantics�

and one of many possible concrete grammars of unconditional Epic�
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�� Introduction

Equational programming is the use of �con�uent� term rewriting systems as a programming
language with don�t care non�determinism �MOI�	
� against a formal background of algebraic
speci�cation with term rewriting as a concrete model


The phrase �equational programming� was used in the mid�eighties �cf� �O�D�	� DP��
� to
refer to programming based on equations and equational logic
 The name has never caught
on� probably because the implementations of the time were suitable only to study equational
speci�cations� not to support large scale programming


Since then� the quality of implementations has increased to such an extent that in many
circumstances there is now a real choice between a general purpose language and an imple�
mentable speci�cation language� the speed that can be attained using the general purpose
language must be weighed against the speed with which an executable speci�cation can be
developed


In order to have an implementable� su�ciently e�cient speci�cation language� concessions
must be made with respect to expressive power and �operational� semantics� we restrict
ourselves to term models and to rewrite systems which must be complete for many results
�in order to have don�t�care non�determinism�
Epic is an equational programming language primarily developed as a �formal system

programming language�
 That is� it is strongly based on equational speci�cation and term
rewriting� but its operational semantics are too speci�c for a speci�cation language




�� Introduction �

Epic has two main applications�

� It can be used as a �systems programming language� to write executable speci�cations in

For example� Epic�s compiler� and several other tools for Epic� have been implemented
in Epic itself�

� It can be used as a target language� where other speci�cation languages are given
an implementation by translating them to Epic
 Epic is a suitable target for many
languages based on pattern matching� tree� �dag�� replacement and term rewriting since
it provides precisely the needed primitives� without super�uous detail


Historically� Epic has evolved in the context of ASF�SDF �BHK��
� an algebraic spec�
i�cation and syntax de�nition formalism which provides algebraic speci�cations over
signatures with user de�nable syntax
 ASF�SDF speci�cations can be implemented by
translating them to Epic


For these reasons Epic�s syntax is intentionally abstract� when used as a target language�
generating the abstract syntax directly �as a data structure� or in a simple textual format�
avoids producing and parsing the concrete text� and when used as a system programming
language� a concrete syntax must be available� but can be austere
 The Epic tool set � a
collection of software for the support of Epic� containing� among others� tools constituting
the compiler and run�time system� � uses a front�end �written in Epic� which accepts such
an austere syntax and produces Epic abstract syntax


Similarly� Epic�s type�system is trivial� it is single�sorted� requiring only the usual re�
strictions for TRSs �left�hand side of a rule is not a sole variable� all arities coincide� and a
variable must be instantiated � in the lhs � before it is used�� and some concerning modules
�free and external functions may not become de�ned�
 Epic�s tool set contains a type�checker
�incorporated in the compiler� which veri�es these requirements


��� EPIC in a nutshell

Epic features rewrite rules with syntactic speci�city ordering �WK�	a
 �a simpli�ed version
of speci�city ordering �BBKW��
�
 It supports external datatypes and separate compilation
of modules


An Epicmodule consists of a signature and a set of rules
 The signature declares functions�
each with an arity �number of arguments�
 In addition� functions can be declared external

�i
e
� de�ned in another module� or directly in C�� or free �i
e
� not de�ned in any module�

The rules are left�linear rewrite rules

Rules are partially ordered by a syntactic speci�city ordering� a more speci�c rule has

higher precedence than a more general rule
 When applicable rules are not ordered by syn�
tactic speci�city� the choice which rule to apply is free
 This makes Epic a nondeterministic
language
 In contrast to languages with don�t know nondeterminism �i
e
� the implementa�
tion is required to explore all choices� such as Prolog� Epic is a language with don�t care

nondeterminism �i
e
� the programs should be written in such a way that the choice does not
matter�

Epic assumes �rightmost� innermost rewriting� in �KW�	
 a method is described which

makes lazy �outermost� rewriting available by TRS transformation
 This method will be
added to Epic in the future




�� Introduction �

In �WK�	b
 a model for I�O in term rewriting systesm is presented� which will be added
to Epic in the future
 In �Wal��
 so�called hybrid datatypes are introduced as a mechanism
to combine� transparently� TRSs with abstract datatypes implemented in any fashion


��� System design �losofy

The development of Epic and its supporting tools is fueled by our conviction that term
rewriting isn�t less e�cient� intrinsically� than any other implementation mechanism


Accordingly� all tools relating to Epic are themselves TRSs written in Epic� the single
exception is the run�time system� which is the abstract rewriting machine �Arm discussed in
Section �


All tools in the Epic tool set are based on a simple design principle� they consume and
produce text
 They are usually composed of four parts� a parser� which interprets the input
text and builds the term it represents� the essential computation performed by the tool� a
�pretty� printer which produces a text given the term resulting from the computation� and a
�top module� which glues the three together


Clearly intermediate printing and parsing is avoided when tools are combined
 Also� a
graph exchange language �Kam��
 can be used to store or pass on� in a very compact form
approaching one byte per node� terms� dags and graphs� where sharing should be preserved


��� A brief overview

Full Epic features conditional rewrite rules �Klo��
 with speci�city ordering �KW�	

 It
supports external datatypes and separate compilation of modules
 In this document we only
consider unconditional Epic� rewrite rules are left�linear and unconditional


An Epic module consists of a set of types �the signature� and a set of rules
 The types
declare functions� each with an arity �number of arguments�
 In addition� functions can be
declared external �i
e
� de�ned in another module� or directly in C�� or free �i
e
� not de�ned
in any module�


The rules are left�linear pattern�replacement �i
e
� rewrite� rules

Rules are ordered by a syntactic speci�city ordering� a more speci�c rule has higher prece�

dence than a more general rule


��� An Example

As mentioned� the concrete syntax of Epic is not very relevant
 In the sequel we will de�ne
one concrete syntax �which is the one we use�� but we do not propose that syntax to be �the�
concrete syntax of Epic� it has none
 To provide a �rst taste of Epic� however� concrete
syntax must be used
 This example is intended to illustrate the expressive power of Epic�
and of tool�building with Epic


For clarity� we refer to the current version of this concrete language as Epicc���
 Epic
c
���

is naively simple in features traditionally considered useful in programming languages or
speci�cation languages
 Most notably� Epicc��� is single�sorted� although its syntax allows the
expression of argument and result sorts� these are intended for program documentation only�
and are not enforced


Note that Epic itself is purposefully single�sorted� it is always assumed that typechecking
occurs at source�level �if Epic is a target�� or by a separate tool �if Epic is used for system
programming�
 Operationally� sorts play no role




�� Introduction �

The example below de�nes a simple calculator for binary numbers


module bin�calc

types

calc� Text �� Text�

parse� Text �� Nat fexternalg�
print� Num �� Text fexternalg�

rules

calc�Txt� � print�parse�Txt���

module io

types

nn� �� Char� 	 � �� Char� 	�� �� Char� 	�� �� Char�

	
� �� Char� 	�� �� Char� 	�� �� Char� 	
� �� Char�

jxt� Nat � Nat �� Nat fexternalg�
o� �� Nat fexternalg�
i� �� Nat fexternalg�
plus� Nat � Nat �� Nat fexternalg�
times� Nat � Nat �� Nat fexternalg�
eos �� Text ffreeg�
str� Char � Text �� Text ffreeg�
cat� Text � Text �� Text ffreeg�
parse� Text �� Nat�

get�val� Tuple �� Text�

enc�exp� Tuple �� Text�

aft�exp� Num � Text �� Tuple�

plus�exp� Num � Tuple �� Tuple�

mul�exp� Num � Tuple �� Tuple�

nb� Text �� Text�

parse�num� Text � Nat �� Tuple�

parse�exp� Text �� Tuple�

trail� Text � Nat �� Tuple�

tuple� Nat � Text �� Tuple ffreeg�
print� Num �� Text�

rules

parse�Txt� � get�val�parse�exp�nb�Txt����

get�val�tuple�Val�Rest�� � Val�

parse�exp�����Txt� � enc�exp�parse�exp�nb�Txt����

enc�exp�tuple�Val�Rest�� � aft�exp�Val�nb�Rest���

aft�exp�Val�����Rest� � trail�nb�Rest��Val��

parse�exp�Txt� � parse�num�Txt�o��

parse�num�����Txt�Val� � parse�num�Txt�plus�Val�Val���

parse�num��
��Txt�Val� � parse�num�Txt�plus�plus�Val�Val��i���

parse�num�Txt�Val� � trail�Txt�Val��

trail�����Txt�Val
� � plus�exp�Val
�parse�exp�Txt���

plus�exp�Val
�tuple�Val��Rest�� � tuple�plus�Val
�Val���Rest��

trail��
��Txt�Val
� � mul�exp�Val
�parse�exp�Txt���

mul�exp�Val
�tuple�Val��Rest�� � tuple�times�Val
�Val���Rest��

trail�Txt�Val� � tuple�Val�Txt��

nb��nn��Txt� � Txt �

nb�� ��Txt� � Txt �

nb�Txt� � Txt�



	� Abstract Syntax �

print�jxt�A�B�� � cat�print�A��print�B���

print�o� � ����

print�i� � �
��

module numbers

types

o� �� Nat�

i� �� Nat�

jxt� Nat � Nat �� Nat�

plus� Nat � Nat �� Nat�

times� Nat � Nat �� Nat�

rules

jxt�o�X� � X�

jxt�X�jxt�Y�Z�� � jxt�plus�X�Y��Z��

plus�o�X� � X� plus�i�o� � i �

plus�i�i� � jxt�i�o��

plus�i�jxt�X�Y�� � jxt�X�plus�i�Y���

plus�jxt�X�Y��Z� � jxt�X�plus�Y�Z���

times�o�X� � o � times�i�X� � X�

times�jxt�X�Y��Z� � jxt�times�X�Z��times�Y�Z���

�� Abstract Syntax

The abstract syntax of Epic de�nes the essential structural information� void of representa�
tional aspects
 We de�ne the abstract syntax as an abstract datatype� a collection of sorts
�corresponding to all distinct notions� and functions �the information that can be retrieved
from those notions�� and a number of additional properties applicable models should exhibit

This leaves the abstract syntax underspeci�ed� even the signature is only partly given
 In
Section � we present one particular term algebra which is an instance of Epic�s abstract
syntax


There are several reasons for this approach�

� In this manner the syntax is truly abstract� essential aspects are de�ned� and all irrel�
evant detail is avoided


� Epic is partly an intermediate language
 Its major source of input are machine inter�
faces rather than humans
 Whereas humans are text oriented� machine interfaces prefer
structured information


� This approach is more �exible �compared to the traditional approach of de�ning a
graph�tree language as an abstract syntax� w
r
t
 future modi�cations to Epic


In this document we indicate speci�cation segments with bars to their left� a single bar
signi�es syntax �sorts and functions�� a double bar signi�es semantical information




	� Abstract Syntax �

Prog � An Epic program
Mod � An Epic module
Type � The type of a function
Rule � A rewrite rule
Term � A term
Indxm�Indxf�Indxr�Indxt� � Indices 	i


Name � Name
Number � Numbers 	ii


Notes�

	i
� Indices are an abstraction to provide sub�structure selection
 The mechanism we de�ne
is somewhat abtruse� for the following reason
 It models the three most commonly
used �di�erent� mechanisms� global� inductively ordered indices �e
g
� the natural num�
bers�� context�dependent ordered indices �e
g
� �eld�names�� and indices derived from
structure �e
g
� recursive lists�


To be precise�

� if structures are represented as arrays� then an index is a tuple of such an array
and a natural number �i
e
� hx� �i��� the indicated sub�structure is x��
� and the
next index is hx� � � �i�

� if lisp�like lists are used for index �and structure�� an index would be a cons� the
indicated sub�structure its car� and the next index its cdr�

� if �eld�names and records are used� then an index is a tuple of a record and a �eld�
name �hx� �i�� the sub�structure is x��� and the next index is hx� nxt fld�tp�x�� ��i�
where nxt fldmaps the type of a structure and a �eld name to the next �eld name
in that type


	ii
� We use Number to designate the arity of functions
 Number need not be the set of natural
numbers IN �which is in�nite�� although� in practice� su�ciently many distinct numbers
should exist


In the remainder of this paper� all formulae are �implicitly� universally quanti�ed �unless
otherwise indicated�� where the name of variables �possibly with subscript� indicates their
range� p for Prog� m for Mod� f for Type�f for function�type�� r for Rule� t for Term� n for
Name� � for Number and i for Indx �and� for example� it for Indxt�


We introduce various auxiliary sorts and overloaded functions in order to reduce the total
number of �overloaded� functions and equations� or to reduce trivial conditions
 The meaning
of a formula is the set of instances that are well�typed using base �i
e
� non auxiliary� sorts

We do not consider sub�sorts


Predicates are logical value �boolean� valued� total functions
 Their use in a condition or
consequence signi�es truth� their negation �e
g
� �is var�lhs�r��� or t �� r� signi�es falsehood

We assume and use some degree of initiality for predicates� if the value of a predicate isn�t
de�ned to be true� then it is taken to be false


We use the notation h� � �i for tuples �i
e
� members of cartesian products�
 For example� if
a and b are of sort A and B� respectively� then ha� bi is of sort A�B




	� Abstract Syntax �

Finally� we take recursively enumerable sets to be a primitive

Let Indx � Indxm � Indxs � Indxr � Indxt be the sort of all indices


mods� Prog predicate Predicate expressing if program has �any� modules
subsm� Prog �� Indxm The �rst index of a module in the program
at� Indxm �� Mod Access 	i

adv� Indxm �� Indxm Advancement
funs� Mod predicate Does module have functions
subsf� Mod �� Indxf The �rst index of a function in the module
at� Indxf �� Type Access
adv� Indxf �� Indxf Advancement
rules� Mod predicate Does module have rules
subsr� Mod �� Indxr The �rst index of a rule in the module
at� Indxr �� Rule Access
adv� Indxr �� Indxr Advancement

name� Type �� Id the name of a function
arity� Type �� Number The number of arguments a function takes 	ii

external� Type predicate Is the function external
free� Type predicate Is the function �globally� free

lhs� Rule �� Term The lhs of the rule
rhs� Rule �� Term The rhs

ofs� Term �� Id The outermost function symbol
sub�terms� Term predicate Does Term have sub�terms
subst� Term �� Indxt The �rst index of a sub�term of the term
at� Indxt �� Term Access
adv� Indxt �� Indxt Advancement
is var� Term predicate Is the term a variable

last� Indx predicate is this the last index �or can it be advanced�

�� �� Number The number zero
��� Number �� Number Successor function

Domains

We do not require all functions to be total� but sub�structure selection should be su�ciently
de�ned as required below
 Let dom�adv� denote the union of the domains of all functions
adv


mods�p� �� p � dom�subsm�
funs�m� �� m � dom�subsf�
rules�m� �� m � dom�subsr�
is var�t� �� t �� dom�ofs� � t �� dom�sub�terms� � t �� dom�subst�
sub�terms�t� �� t � dom�subst�
�last�i� �� i � dom�adv�




� Semantics �

�� Semantics

In order to de�ne static and operational semantics� some auxiliary notions are needed� which
we will �rst introduce


Let Var � ftjis var�t�g be the set of all variables� and let v� possibly with sub�script�
range over Var


Arity

arity� Indx �� Number

last�i� �� arity�i� � �
�last�i� �� arity�i� � arity�adv�i�� � �

Containment

Let ModI � Mod � Indxm� Type
I � Type � Indxf� Rule

I � Rule � Indxr and TermI � Term �
Indxt be the union of structures and their indices� let Struct � Prog�Mod�Type�Rule�Term
be the set of all structures� and let StructI � Prog � ModI � TypeI � RuleI � TermI 


�� StructI � StructI predicate

x� � x� � x� � x
 �� x� � x

x � x

mods�p� �� subsm�p� � p
funs�m� �� subsf�m� � m
rules�m� �� subsr�m� � m
lhs�r� � r
rhs�r� � r
sub�terms�t� �� subst�t� � t
at�i� � i
�last�i� �� adv�i� � i

Substitutions

Let Subst � P�Var�Term� be the set of variable�value pairs which homomor�cally generate
substitutions� and let �� possibly with subscript� range over Subst


� TermI � Subst �� TermI �e
g
 t��
hv� ti � � �� v� � t

�is var�t� �� ofs�t�� � ofs�t�
sub�terms�t� �� sub�terms�t��
sub�terms�t� �� subst�t

�� � subst�t�
�

last�i� �� last�i��
at�i�� � at�i��

�last�i� �� adv�i�� � adv�i��

Contexts

Containment can not be used to express the position of sub�terms� as is required in the sequel

We use the slightly operational notion of contexts �Klo��
 to express position
 With con�

texts� one can use containment to reason about positions





� Semantics �

Intuitively� a context is a structure with a hole in it
 We de�ne contexts by extending the
set of terms with the hole ���
 Unlike �Klo��
� we take � to be a variable� this allows us to
use substitution for context instantiation


�� �� Term

is var���

Let Context be the set of rules and terms� and their indices� which contain exactly one
occurrence of �
 We forego the constructive de�nition of Context� which is trivial but tedious

Let �� �t� �r and �i range over Context� Context�Term� Context�Rule and Context�Indxt�
respectively


Instantiation of a context coincides with substitution of the hole


� 
� Context � Term ��Rule

Context � Term ��Term

lhs��r�t
� � lhs��r��t

rhs��r�t
� � rhs��r��t


�t�t
 � �tfh��tig

Two contexts are compatible if they can be instantiated to the same

	� Context � Context predicate

���t�
 � ���t�
 �� �� 	 ��

Pre�order� if two contexts are compatible� and � occurs above or �to the left� �picturing
adv as movement to the right�� then that context is smaller in pre�order


�� Context � Context predicate

�� � �� � �� � �
 �� �� � �

����

t
 � �� �� �� � ��
�r

� 	 �r
� �� � lhs��r

�� �� � rhs��r
�� �� �r

� � �r
�

�i
� 	 �i

� � �last��
i
�� �� � at��i

�� �� � adv��i
�� �� �i

� � �i
�

Matching

matches� TermI � TermI predicate

match� TermI � TermI �� Subst

matches�s� v�
�is var�t�� � �is var�t�� � ofs�t�� � ofs�t�� � matches�subst�t��� subst�t���

�� matches�t�� t��
matches�at�i��� at�i��� � ��last�i�� � last�i��� 
 matches�adv�i��� adv�i����

�� matches�i�� i��
match�s� v� � fhv� sig
�is var�t�� � �is var�t�� � ofs�t�� � ofs�t�� � matches�subst�t��� subst�t���

�� match�t�� t�� � match�subst�t��� subst�t���
matches�at�i��� at�i��� � last�i�� � last�i��

�� match�i�� i�� � match�at�i��� at�i���
matches�at�i��� at�i��� � �last�i�� � �last�i�� � matches�adv�i��� adv�i���

�� match�i�� i�� � match�at�i��� at�i��� � match�adv�i��� adv�i���



�� Static Semantics 	


Speci�city ordering

Intuitively� any non�variable term is more speci�c than a variable
 This is the basis for a
partial order on terms� syntactic speci�city
 The order is extended on rules


�� Rule � Rule predicate

Term � Term predicate

Indx � Indx predicate
�� Term � Term predicate

Indx � Indx predicate

lhs�r�� � lhs�r�� �� r� � r�
�is var�t� �� v � t

�is var�t��� � �is var�t�� � ofs�t�� � ofs�t�� � subst�t�� � subst�t�� �� t� � t�
last�i�� � last�i�� � at�i�� � at�i�� �� i� � i�
�last�i�� � �last�i�� � at�i�� � at�i�� � adv�i�� � adv�i�� �� i� � i�
�last�i�� � �last�i�� � at�i�� � at�i�� � adv�i�� � adv�i�� �� i� � i�
x� � x� �� x� � x�
x � x

v� � v�

�� Static Semantics

m� � p �m� � p � r� � m� � r� � m� � ofs�lhs�r��� � ofs�lhs�r��� �� m� � m� 	i


r � p � f � p � ofs�lhs�r�� � name�f� �� �free�f� 	ii


r � m � s � m � ofs�lhs�r�� � name�f� �� �external�f� 	iii


t � p � f � p � ofs�t� � name�f� �� arity�f� � arity�subst�t�� 	iv


�is var�lhs�r�� 	v


v � rhs�r� �� v � lhs�r� 	vi


��v
 � lhs�r� �� v �� � 	vii


Notes�

	i
� A function should be de�ned in one module only �it can be used in more than one
module�
 This restriction is a consequence of implementational aspects� and should be

removed in later versions of Epic��

	ii
� A function that is declared to be free should never become de�ned�

	iii
� A function that is declared to be external in a module should not become de�ned in
that module�

	iv
� The number of immediate sub�terms of a term must be in accordance with the arity of
the outermost function symbol of that term�

	v
� The left�hand side of a rewrite rule should not be a sole variable�

	vi
� A variable must be de�ned before it is used


	vii
� Rules must be left�linear �i
e
� unconditional�




�� Operational Semantics 		

�� Operational Semantics

An Epic implementation is a procedure which� given a term and a program� attempts to
determine a normal form of that term that can be reached with right�most inner�most reduc�
tion and in accordance with syntactic speci�city �i
e
� given a right�most innermost redex� a
most�speci�c rule must be applied to it�


Right�most inner�most reduction and speci�city do not make a rewrite system determin�
istic� unordered rules� or rules of equal speci�city can be applicable to the same redex

Accordingly� we must consider sets of reducts and normal forms


potentials� Term � Prog �� P�Context � Term � Rule�
reducts� Term � Prog �� P�Term�
normal forms� Term � Prog �� P�Term�

potentials�t�� p� � fh�� t�� ri j r � p � ��t�
 � t� � matches�t�� lhs�r��g
reducts�t�� p� �

f��rhs�r�match�t��lhs�r��
 j 
h�� t�� ri � potentials�t�� p� �
�
h��� t�� r�i � potentials�t�� p� � � � �� 
 r � r�g

reducts�t� p� � � �� normal forms�t� p� � ftg
reducts�t�� p� �� � �� normal forms�t�� p� �

S
t��reducts�t��p� normal forms�t�� p�

An implementation is a procedure which� given a program p and a term t�� may or may
not terminate
 If it terminates� it yields a member tn of normal forms�t�� p�


�� A Model of the Abstract Syntax

In this section we present a model of the abstract syntax presented earlier

Consider the following signature�

E � The �single� sort of all Epic constructs
C � The sort of characters

spec� E �� E

mod� E � E �� E

fun� E � E � E � E �� E

rule� E � E �� E

ap� E � E �� E

var� E �� E

cons� E � E �� E

nil� �� E

str� C � E �� E

eos� �� E

a� �� C

� � �

z� �� C

� � �

We assume a su�cient number of characters can be de�ned to represent identi�ers




�� A Concrete Syntax 	�

We use characters f and e� in the appropriate place� to signify free and external functions�
respectively �see below�


For each function de�ned in Epic�s abstract syntax a function should now be added to the
signature above� equations should be given� and a ��� map between these functions and those
in Epic�s abstract syntax should be given
 For brevity we will use the same function names
as earlier �leaving their signature implicit�� and using the identity map


Without loss of generality we will use sub�structure selection based on recursive structures


at�cons�x�� x��� � x�
adv�cons�x�� x��� � x�
last�cons�x� nil��
mods�spec�cons�x�� x����
subsm�spec�x�� � x

funs�mod�cons�x�� x��� x
��
subsf�mod�x�� x��� � x�
rules�mod�x�� cons�x�� x
���
subsr�mod�x�� x��� � x�
name�fun�x�� x�� x
� x
�� � x�
arity�fun�x�� x�� x
� x
�� � x�
free�fun�x�� x�� f� x
��
external�fun�x�� x�� x
� e��
lhs�rule�x�� x��� � x�
rhs�rule�x�� x��� � x�
sub�terms�ap�x�� cons�x�� x
���
subst�ap�x�� x��� � x�
ofs�ap�x�� x��� � x�
is var�var�x��

�� A Concrete Syntax

In this section we present a concrete syntax of Epic


Spec ��� Module Spec � �

Module ��� �module� LwrId �types� Types �rules� Rules

Types ��� Type ��� Types � �

Type ��� FunId ��� Sort Sorts ��� ���� VrSrtId Prop �

FunId ���� VrSrtId Prop

Prop ��� �f� free �g� � �f� external �g� � �

Sorts ��� ��� Sort Sorts � �

Sort ��� VrSrtId � � �

Rules ��� Rule ��� Rules � �

Rule ��� Term ��� Term

Term ��� Var � FunId � FunId ��� Term Terms ���

Terms ��� ��� Term Terms � �

Var ��� VrSrtId

FunId ��� LwrId �

�	������ � � all printable characters

�n���������������� � all characters� decimal coded

VrSrtId ��� �A�Z��� A�Za�z���	�




�� A Concrete Syntax 	�

LwrId ��� �a�z��� A�Za�z���	�


The relation between this concrete syntax and the abstract syntax of the previous section
is straightforward
 We will look at a few aspects�

� Syntactic rules of the form �Ss ��� S Ss � � are trivially mapped to a cons�nil
list�

� Syntactically� the two Term variants FunId and �FunId 	
	 Terms 	�	 are distinct�
but are mapped to the same form with an empty� and non�empty argument list�

� The lexical notions of identi�ers are de�ned in two classes� those starting with a capital�
which are used for variables and sorts� and those starting with a lowercase letter� which
are used for function symbols


In both cases the lexical token should be mapped to a str�eos representation� each
character being mapped to the appropriate function symbol


� The syntax�less injection of VrSrtId into Var is represented by the injection var




�� EPIC�s tool set 	�

Appendices

�� EPIC	s tool set

The Epic tool set includes the following tools�

� an Epic parser�

� a �primitive� typechecker�

� a printer for parsed speci�cations�

� a printer for �Arm code�

� a non�linearity annotator
 Internally� Epic requires nonlinearities to be indicated
 They
are added by this tool�

� a compiler which translates Epic to �Arm
 As can be seen� various features not intrin�
sically in Epic are added by separate tools
 The compiler combines all of the above�

� the �Arm interpreter


In addition several stand�alone tools exist�

� a curri�er� which handles function symbol occurrences with too few arguments
 Epic
doesn�t provide currying� but this tool adds that facility�

� an ML to Epic translator� which translates a subset of ML to Epic


� a �Arm to C translator which compiles �Arm code into C functions� one for each
function in the original TRS
 These functions can be linked� statically� to the interpreter


� a tool which implements associative matching by a TRS transformation


Epic is available via www at http���www�cwi�nl�epic�

�� A high
performance engine for hybrid term rewriting

�Arm is an e�cient abstract machine for hybrid term rewriting
 Here� e�ciency pertains both
to run�time e�ciency as to e�ciency with respect to software�development
 In particular�
�Arm allows for an incremental style of software development and supports the transparant
combination of compiled �stable� code with interpreted code still earlier in the software de�
velopment cycle

�Arm supports external and hybrid datatypes� data types which are entirely opaque� and

are manipulated only by external functions� and datatypes which� in addition� can be trans�
parently viewed as formally speci�ed datatypes �as de�ned in �Wal��
�
 �Arm�s dispatcher
uses a combination of directly and indirectly threaded code to achieve an e�cient� transparent
interface between di�ernet types of functions

�Arm has e�cient memory management� where garbage collection takes up less than 	!

of the overall execution time
 In addition� �Arm uses a space�e�cient innermost reduction
strategy� whilst allowing for lazy rewriting when this is desired �as described in �KW�	
�


Finally� �Arm is parameterized with a small number of C macro�s which can be de�ned
either for portable ANSI C� or for a machine speci�c variant which performs two to three




� EPIC�s e
ciency 	�

times better
 In this manner ports for SUN SPARC and SGI R	��� using gcc have been
de�ned� and a port for Macintosh ����xx� and �Symantec� Think C


A precursor of �Arm is described in �KW�"
� a successor in �WK�	a



�� EPIC	s efficiency

Epic was designed speci�cally with e�ciency in mind� where a balance was stricken between
compilation speed and execution speed
 In lieu of the former� an interpreter is used for the
intermediate �abstract machine� level� this interpreter has been optimized and �ne�tuned to
achieve acceptable execution speeds


In �HF���
 a compute�bound benchmark comparing implementations of functional lan�
guages is reported on in which �Arm presented itself as the most e�cient interpreted system

Since the benchmark relies heavily on �oating point computations� with little control��ow
overhead� it favors compiling implementations� which fare better in that benchmark


The �portable� non machine�speci�c� �Arm interpreter performs "	���� simple reductions
per second �of the form f�s�X�� � f�X�� on a SUN Sparc station
 On the same platform�
the Larch Prover �LP "
�a� performs ��� reductions per second� on the identical example

This is not mentioned as a comment on LP� but rather to provide a basis for comparison with
other platforms
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