
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Epic 1.0 (unconditional) an equational programming language

H.R. Walters and J.F.Th. Kamperman

Computer Science/Department of Software Technology

CS-R9604 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9604
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Epic ��� �unconditional�

An Equational Programming Language

H�R�Walters J�F�Th�Kamperman

fH�R�Walters�J�Kampermang�cwi�nl

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Abstract

We present Epic� an equational programming language� its abstract syntax� static and operational semantics�

and one of many possible concrete grammars of unconditional Epic�

CR Subject Classi�cation ������� D���� �Programming Techniques�� Applicative �Functional� Programming	 F�
��
�Logics and Meanings of Programs�� Semantics of Programming Languages� Algebraic approaches to semantics	 F�
��
�Mathematical Logic and Formal Languages�� Logic Programming�

AMS Subject Classi�cation ������� ��N��� Logic Programming� ��Q
�� Symbolic computation� ��Q
�� Rewriting
Systems and ��Q��� Algebraic speci�cation�

Keywords � Phrases� declarative languages� term rewriting� speci�cation languages� formal semantics�

Note� Partial support received from the Foundation for Computer Science Research in the Netherlands �SION� under
project �������
��� �Generic Tools for Program Analysis and Optimization��

�� Introduction

Equational programming is the use of �con�uent� term rewriting systems as a programming
language with don�t care non�determinism �MOI�	
� against a formal background of algebraic
speci�cation with term rewriting as a concrete model

The phrase �equational programming� was used in the mid�eighties �cf� �O�D�	� DP��
� to
refer to programming based on equations and equational logic
 The name has never caught
on� probably because the implementations of the time were suitable only to study equational
speci�cations� not to support large scale programming

Since then� the quality of implementations has increased to such an extent that in many
circumstances there is now a real choice between a general purpose language and an imple�
mentable speci�cation language� the speed that can be attained using the general purpose
language must be weighed against the speed with which an executable speci�cation can be
developed

In order to have an implementable� su�ciently e�cient speci�cation language� concessions
must be made with respect to expressive power and �operational� semantics� we restrict
ourselves to term models and to rewrite systems which must be complete for many results
�in order to have don�t�care non�determinism�
Epic is an equational programming language primarily developed as a �formal system

programming language�
 That is� it is strongly based on equational speci�cation and term
rewriting� but its operational semantics are too speci�c for a speci�cation language

�� Introduction �

Epic has two main applications�

� It can be used as a �systems programming language� to write executable speci�cations in

For example� Epic�s compiler� and several other tools for Epic� have been implemented
in Epic itself�

� It can be used as a target language� where other speci�cation languages are given
an implementation by translating them to Epic
 Epic is a suitable target for many
languages based on pattern matching� tree� �dag�� replacement and term rewriting since
it provides precisely the needed primitives� without super�uous detail

Historically� Epic has evolved in the context of ASF�SDF �BHK��
� an algebraic spec�
i�cation and syntax de�nition formalism which provides algebraic speci�cations over
signatures with user de�nable syntax
 ASF�SDF speci�cations can be implemented by
translating them to Epic

For these reasons Epic�s syntax is intentionally abstract� when used as a target language�
generating the abstract syntax directly �as a data structure� or in a simple textual format�
avoids producing and parsing the concrete text� and when used as a system programming
language� a concrete syntax must be available� but can be austere
 The Epic tool set � a
collection of software for the support of Epic� containing� among others� tools constituting
the compiler and run�time system� � uses a front�end �written in Epic� which accepts such
an austere syntax and produces Epic abstract syntax

Similarly� Epic�s type�system is trivial� it is single�sorted� requiring only the usual re�
strictions for TRSs �left�hand side of a rule is not a sole variable� all arities coincide� and a
variable must be instantiated � in the lhs � before it is used�� and some concerning modules
�free and external functions may not become de�ned�
 Epic�s tool set contains a type�checker
�incorporated in the compiler� which veri�es these requirements

��� EPIC in a nutshell

Epic features rewrite rules with syntactic speci�city ordering �WK�	a
 �a simpli�ed version
of speci�city ordering �BBKW��
�
 It supports external datatypes and separate compilation
of modules

An Epicmodule consists of a signature and a set of rules
 The signature declares functions�
each with an arity �number of arguments�
 In addition� functions can be declared external

�i
e
� de�ned in another module� or directly in C�� or free �i
e
� not de�ned in any module�

The rules are left�linear rewrite rules

Rules are partially ordered by a syntactic speci�city ordering� a more speci�c rule has

higher precedence than a more general rule
 When applicable rules are not ordered by syn�
tactic speci�city� the choice which rule to apply is free
 This makes Epic a nondeterministic
language
 In contrast to languages with don�t know nondeterminism �i
e
� the implementa�
tion is required to explore all choices� such as Prolog� Epic is a language with don�t care

nondeterminism �i
e
� the programs should be written in such a way that the choice does not
matter�

Epic assumes �rightmost� innermost rewriting� in �KW�	
 a method is described which

makes lazy �outermost� rewriting available by TRS transformation
 This method will be
added to Epic in the future

�� Introduction �

In �WK�	b
 a model for I�O in term rewriting systesm is presented� which will be added
to Epic in the future
 In �Wal��
 so�called hybrid datatypes are introduced as a mechanism
to combine� transparently� TRSs with abstract datatypes implemented in any fashion

��� System design �losofy

The development of Epic and its supporting tools is fueled by our conviction that term
rewriting isn�t less e�cient� intrinsically� than any other implementation mechanism

Accordingly� all tools relating to Epic are themselves TRSs written in Epic� the single
exception is the run�time system� which is the abstract rewriting machine �Arm discussed in
Section �

All tools in the Epic tool set are based on a simple design principle� they consume and
produce text
 They are usually composed of four parts� a parser� which interprets the input
text and builds the term it represents� the essential computation performed by the tool� a
�pretty� printer which produces a text given the term resulting from the computation� and a
�top module� which glues the three together

Clearly intermediate printing and parsing is avoided when tools are combined
 Also� a
graph exchange language �Kam��
 can be used to store or pass on� in a very compact form
approaching one byte per node� terms� dags and graphs� where sharing should be preserved

��� A brief overview

Full Epic features conditional rewrite rules �Klo��
 with speci�city ordering �KW�	

 It
supports external datatypes and separate compilation of modules
 In this document we only
consider unconditional Epic� rewrite rules are left�linear and unconditional

An Epic module consists of a set of types �the signature� and a set of rules
 The types
declare functions� each with an arity �number of arguments�
 In addition� functions can be
declared external �i
e
� de�ned in another module� or directly in C�� or free �i
e
� not de�ned
in any module�

The rules are left�linear pattern�replacement �i
e
� rewrite� rules

Rules are ordered by a syntactic speci�city ordering� a more speci�c rule has higher prece�

dence than a more general rule

��� An Example

As mentioned� the concrete syntax of Epic is not very relevant
 In the sequel we will de�ne
one concrete syntax �which is the one we use�� but we do not propose that syntax to be �the�
concrete syntax of Epic� it has none
 To provide a �rst taste of Epic� however� concrete
syntax must be used
 This example is intended to illustrate the expressive power of Epic�
and of tool�building with Epic

For clarity� we refer to the current version of this concrete language as Epicc���
 Epic
c
���

is naively simple in features traditionally considered useful in programming languages or
speci�cation languages
 Most notably� Epicc��� is single�sorted� although its syntax allows the
expression of argument and result sorts� these are intended for program documentation only�
and are not enforced

Note that Epic itself is purposefully single�sorted� it is always assumed that typechecking
occurs at source�level �if Epic is a target�� or by a separate tool �if Epic is used for system
programming�
 Operationally� sorts play no role

�� Introduction �

The example below de�nes a simple calculator for binary numbers

module bin�calc

types

calc� Text �� Text�

parse� Text �� Nat fexternalg�
print� Num �� Text fexternalg�

rules

calc�Txt� � print�parse�Txt���

module io

types

nn� �� Char� 	 � �� Char� 	�� �� Char� 	�� �� Char�

	
� �� Char� 	�� �� Char� 	�� �� Char� 	
� �� Char�

jxt� Nat � Nat �� Nat fexternalg�
o� �� Nat fexternalg�
i� �� Nat fexternalg�
plus� Nat � Nat �� Nat fexternalg�
times� Nat � Nat �� Nat fexternalg�
eos �� Text ffreeg�
str� Char � Text �� Text ffreeg�
cat� Text � Text �� Text ffreeg�
parse� Text �� Nat�

get�val� Tuple �� Text�

enc�exp� Tuple �� Text�

aft�exp� Num � Text �� Tuple�

plus�exp� Num � Tuple �� Tuple�

mul�exp� Num � Tuple �� Tuple�

nb� Text �� Text�

parse�num� Text � Nat �� Tuple�

parse�exp� Text �� Tuple�

trail� Text � Nat �� Tuple�

tuple� Nat � Text �� Tuple ffreeg�
print� Num �� Text�

rules

parse�Txt� � get�val�parse�exp�nb�Txt����

get�val�tuple�Val�Rest�� � Val�

parse�exp�����Txt� � enc�exp�parse�exp�nb�Txt����

enc�exp�tuple�Val�Rest�� � aft�exp�Val�nb�Rest���

aft�exp�Val�����Rest� � trail�nb�Rest��Val��

parse�exp�Txt� � parse�num�Txt�o��

parse�num�����Txt�Val� � parse�num�Txt�plus�Val�Val���

parse�num��
��Txt�Val� � parse�num�Txt�plus�plus�Val�Val��i���

parse�num�Txt�Val� � trail�Txt�Val��

trail�����Txt�Val
� � plus�exp�Val
�parse�exp�Txt���

plus�exp�Val
�tuple�Val��Rest�� � tuple�plus�Val
�Val���Rest��

trail��
��Txt�Val
� � mul�exp�Val
�parse�exp�Txt���

mul�exp�Val
�tuple�Val��Rest�� � tuple�times�Val
�Val���Rest��

trail�Txt�Val� � tuple�Val�Txt��

nb��nn��Txt� � Txt �

nb�� ��Txt� � Txt �

nb�Txt� � Txt�

	� Abstract Syntax �

print�jxt�A�B�� � cat�print�A��print�B���

print�o� � ����

print�i� � �
��

module numbers

types

o� �� Nat�

i� �� Nat�

jxt� Nat � Nat �� Nat�

plus� Nat � Nat �� Nat�

times� Nat � Nat �� Nat�

rules

jxt�o�X� � X�

jxt�X�jxt�Y�Z�� � jxt�plus�X�Y��Z��

plus�o�X� � X� plus�i�o� � i �

plus�i�i� � jxt�i�o��

plus�i�jxt�X�Y�� � jxt�X�plus�i�Y���

plus�jxt�X�Y��Z� � jxt�X�plus�Y�Z���

times�o�X� � o � times�i�X� � X�

times�jxt�X�Y��Z� � jxt�times�X�Z��times�Y�Z���

�� Abstract Syntax

The abstract syntax of Epic de�nes the essential structural information� void of representa�
tional aspects
 We de�ne the abstract syntax as an abstract datatype� a collection of sorts
�corresponding to all distinct notions� and functions �the information that can be retrieved
from those notions�� and a number of additional properties applicable models should exhibit

This leaves the abstract syntax underspeci�ed� even the signature is only partly given
 In
Section � we present one particular term algebra which is an instance of Epic�s abstract
syntax

There are several reasons for this approach�

� In this manner the syntax is truly abstract� essential aspects are de�ned� and all irrel�
evant detail is avoided

� Epic is partly an intermediate language
 Its major source of input are machine inter�
faces rather than humans
 Whereas humans are text oriented� machine interfaces prefer
structured information

� This approach is more �exible �compared to the traditional approach of de�ning a
graph�tree language as an abstract syntax� w
r
t
 future modi�cations to Epic

In this document we indicate speci�cation segments with bars to their left� a single bar
signi�es syntax �sorts and functions�� a double bar signi�es semantical information

	� Abstract Syntax �

Prog � An Epic program
Mod � An Epic module
Type � The type of a function
Rule � A rewrite rule
Term � A term
Indxm�Indxf�Indxr�Indxt� � Indices 	i

Name � Name
Number � Numbers 	ii

Notes�

	i
� Indices are an abstraction to provide sub�structure selection
 The mechanism we de�ne
is somewhat abtruse� for the following reason
 It models the three most commonly
used �di�erent� mechanisms� global� inductively ordered indices �e
g
� the natural num�
bers�� context�dependent ordered indices �e
g
� �eld�names�� and indices derived from
structure �e
g
� recursive lists�

To be precise�

� if structures are represented as arrays� then an index is a tuple of such an array
and a natural number �i
e
� hx� �i��� the indicated sub�structure is x��
� and the
next index is hx� � � �i�

� if lisp�like lists are used for index �and structure�� an index would be a cons� the
indicated sub�structure its car� and the next index its cdr�

� if �eld�names and records are used� then an index is a tuple of a record and a �eld�
name �hx� �i�� the sub�structure is x��� and the next index is hx� nxt fld�tp�x�� ��i�
where nxt fldmaps the type of a structure and a �eld name to the next �eld name
in that type

	ii
� We use Number to designate the arity of functions
 Number need not be the set of natural
numbers IN �which is in�nite�� although� in practice� su�ciently many distinct numbers
should exist

In the remainder of this paper� all formulae are �implicitly� universally quanti�ed �unless
otherwise indicated�� where the name of variables �possibly with subscript� indicates their
range� p for Prog� m for Mod� f for Type�f for function�type�� r for Rule� t for Term� n for
Name� � for Number and i for Indx �and� for example� it for Indxt�

We introduce various auxiliary sorts and overloaded functions in order to reduce the total
number of �overloaded� functions and equations� or to reduce trivial conditions
 The meaning
of a formula is the set of instances that are well�typed using base �i
e
� non auxiliary� sorts

We do not consider sub�sorts

Predicates are logical value �boolean� valued� total functions
 Their use in a condition or
consequence signi�es truth� their negation �e
g
� �is var�lhs�r��� or t �� r� signi�es falsehood

We assume and use some degree of initiality for predicates� if the value of a predicate isn�t
de�ned to be true� then it is taken to be false

We use the notation h� � �i for tuples �i
e
� members of cartesian products�
 For example� if
a and b are of sort A and B� respectively� then ha� bi is of sort A�B

	� Abstract Syntax �

Finally� we take recursively enumerable sets to be a primitive

Let Indx � Indxm � Indxs � Indxr � Indxt be the sort of all indices

mods� Prog predicate Predicate expressing if program has �any� modules
subsm� Prog �� Indxm The �rst index of a module in the program
at� Indxm �� Mod Access 	i

adv� Indxm �� Indxm Advancement
funs� Mod predicate Does module have functions
subsf� Mod �� Indxf The �rst index of a function in the module
at� Indxf �� Type Access
adv� Indxf �� Indxf Advancement
rules� Mod predicate Does module have rules
subsr� Mod �� Indxr The �rst index of a rule in the module
at� Indxr �� Rule Access
adv� Indxr �� Indxr Advancement

name� Type �� Id the name of a function
arity� Type �� Number The number of arguments a function takes 	ii

external� Type predicate Is the function external
free� Type predicate Is the function �globally� free

lhs� Rule �� Term The lhs of the rule
rhs� Rule �� Term The rhs

ofs� Term �� Id The outermost function symbol
sub�terms� Term predicate Does Term have sub�terms
subst� Term �� Indxt The �rst index of a sub�term of the term
at� Indxt �� Term Access
adv� Indxt �� Indxt Advancement
is var� Term predicate Is the term a variable

last� Indx predicate is this the last index �or can it be advanced�

�� �� Number The number zero
��� Number �� Number Successor function

Domains

We do not require all functions to be total� but sub�structure selection should be su�ciently
de�ned as required below
 Let dom�adv� denote the union of the domains of all functions
adv

mods�p� �� p � dom�subsm�
funs�m� �� m � dom�subsf�
rules�m� �� m � dom�subsr�
is var�t� �� t �� dom�ofs� � t �� dom�sub�terms� � t �� dom�subst�
sub�terms�t� �� t � dom�subst�
�last�i� �� i � dom�adv�

� Semantics �

�� Semantics

In order to de�ne static and operational semantics� some auxiliary notions are needed� which
we will �rst introduce

Let Var � ftjis var�t�g be the set of all variables� and let v� possibly with sub�script�
range over Var

Arity

arity� Indx �� Number

last�i� �� arity�i� � �
�last�i� �� arity�i� � arity�adv�i�� � �

Containment

Let ModI � Mod � Indxm� Type
I � Type � Indxf� Rule

I � Rule � Indxr and TermI � Term �
Indxt be the union of structures and their indices� let Struct � Prog�Mod�Type�Rule�Term
be the set of all structures� and let StructI � Prog � ModI � TypeI � RuleI � TermI

�� StructI � StructI predicate

x� � x� � x� � x
 �� x� � x

x � x

mods�p� �� subsm�p� � p
funs�m� �� subsf�m� � m
rules�m� �� subsr�m� � m
lhs�r� � r
rhs�r� � r
sub�terms�t� �� subst�t� � t
at�i� � i
�last�i� �� adv�i� � i

Substitutions

Let Subst � P�Var�Term� be the set of variable�value pairs which homomor�cally generate
substitutions� and let �� possibly with subscript� range over Subst

� TermI � Subst �� TermI �e
g
 t��
hv� ti � � �� v� � t

�is var�t� �� ofs�t�� � ofs�t�
sub�terms�t� �� sub�terms�t��
sub�terms�t� �� subst�t

�� � subst�t�
�

last�i� �� last�i��
at�i�� � at�i��

�last�i� �� adv�i�� � adv�i��

Contexts

Containment can not be used to express the position of sub�terms� as is required in the sequel

We use the slightly operational notion of contexts �Klo��
 to express position
 With con�

texts� one can use containment to reason about positions

� Semantics �

Intuitively� a context is a structure with a hole in it
 We de�ne contexts by extending the
set of terms with the hole ���
 Unlike �Klo��
� we take � to be a variable� this allows us to
use substitution for context instantiation

�� �� Term

is var���

Let Context be the set of rules and terms� and their indices� which contain exactly one
occurrence of �
 We forego the constructive de�nition of Context� which is trivial but tedious

Let �� �t� �r and �i range over Context� Context�Term� Context�Rule and Context�Indxt�
respectively

Instantiation of a context coincides with substitution of the hole

�
� Context � Term ��Rule

Context � Term ��Term

lhs��r�t
� � lhs��r��t

rhs��r�t
� � rhs��r��t

�t�t
 � �tfh��tig

Two contexts are compatible if they can be instantiated to the same

	� Context � Context predicate

���t�
 � ���t�
 �� �� 	 ��

Pre�order� if two contexts are compatible� and � occurs above or �to the left� �picturing
adv as movement to the right�� then that context is smaller in pre�order

�� Context � Context predicate

�� � �� � �� � �
 �� �� � �

����

t
 � �� �� �� � ��
�r

� 	 �r
� �� � lhs��r

�� �� � rhs��r
�� �� �r

� � �r
�

�i
� 	 �i

� � �last��
i
�� �� � at��i

�� �� � adv��i
�� �� �i

� � �i
�

Matching

matches� TermI � TermI predicate

match� TermI � TermI �� Subst

matches�s� v�
�is var�t�� � �is var�t�� � ofs�t�� � ofs�t�� � matches�subst�t��� subst�t���

�� matches�t�� t��
matches�at�i��� at�i��� � ��last�i�� � last�i���
 matches�adv�i��� adv�i����

�� matches�i�� i��
match�s� v� � fhv� sig
�is var�t�� � �is var�t�� � ofs�t�� � ofs�t�� � matches�subst�t��� subst�t���

�� match�t�� t�� � match�subst�t��� subst�t���
matches�at�i��� at�i��� � last�i�� � last�i��

�� match�i�� i�� � match�at�i��� at�i���
matches�at�i��� at�i��� � �last�i�� � �last�i�� � matches�adv�i��� adv�i���

�� match�i�� i�� � match�at�i��� at�i��� � match�adv�i��� adv�i���

�� Static Semantics 	

Speci�city ordering

Intuitively� any non�variable term is more speci�c than a variable
 This is the basis for a
partial order on terms� syntactic speci�city
 The order is extended on rules

�� Rule � Rule predicate

Term � Term predicate

Indx � Indx predicate
�� Term � Term predicate

Indx � Indx predicate

lhs�r�� � lhs�r�� �� r� � r�
�is var�t� �� v � t

�is var�t��� � �is var�t�� � ofs�t�� � ofs�t�� � subst�t�� � subst�t�� �� t� � t�
last�i�� � last�i�� � at�i�� � at�i�� �� i� � i�
�last�i�� � �last�i�� � at�i�� � at�i�� � adv�i�� � adv�i�� �� i� � i�
�last�i�� � �last�i�� � at�i�� � at�i�� � adv�i�� � adv�i�� �� i� � i�
x� � x� �� x� � x�
x � x

v� � v�

�� Static Semantics

m� � p �m� � p � r� � m� � r� � m� � ofs�lhs�r��� � ofs�lhs�r��� �� m� � m� 	i

r � p � f � p � ofs�lhs�r�� � name�f� �� �free�f� 	ii

r � m � s � m � ofs�lhs�r�� � name�f� �� �external�f� 	iii

t � p � f � p � ofs�t� � name�f� �� arity�f� � arity�subst�t�� 	iv

�is var�lhs�r�� 	v

v � rhs�r� �� v � lhs�r� 	vi

��v
 � lhs�r� �� v �� � 	vii

Notes�

	i
� A function should be de�ned in one module only �it can be used in more than one
module�
 This restriction is a consequence of implementational aspects� and should be

removed in later versions of Epic��

	ii
� A function that is declared to be free should never become de�ned�

	iii
� A function that is declared to be external in a module should not become de�ned in
that module�

	iv
� The number of immediate sub�terms of a term must be in accordance with the arity of
the outermost function symbol of that term�

	v
� The left�hand side of a rewrite rule should not be a sole variable�

	vi
� A variable must be de�ned before it is used

	vii
� Rules must be left�linear �i
e
� unconditional�

�� Operational Semantics 		

�� Operational Semantics

An Epic implementation is a procedure which� given a term and a program� attempts to
determine a normal form of that term that can be reached with right�most inner�most reduc�
tion and in accordance with syntactic speci�city �i
e
� given a right�most innermost redex� a
most�speci�c rule must be applied to it�

Right�most inner�most reduction and speci�city do not make a rewrite system determin�
istic� unordered rules� or rules of equal speci�city can be applicable to the same redex

Accordingly� we must consider sets of reducts and normal forms

potentials� Term � Prog �� P�Context � Term � Rule�
reducts� Term � Prog �� P�Term�
normal forms� Term � Prog �� P�Term�

potentials�t�� p� � fh�� t�� ri j r � p � ��t�
 � t� � matches�t�� lhs�r��g
reducts�t�� p� �

f��rhs�r�match�t��lhs�r��
 j
h�� t�� ri � potentials�t�� p� �
�
h��� t�� r�i � potentials�t�� p� � � � ��
 r � r�g

reducts�t� p� � � �� normal forms�t� p� � ftg
reducts�t�� p� �� � �� normal forms�t�� p� �

S
t��reducts�t��p� normal forms�t�� p�

An implementation is a procedure which� given a program p and a term t�� may or may
not terminate
 If it terminates� it yields a member tn of normal forms�t�� p�

�� A Model of the Abstract Syntax

In this section we present a model of the abstract syntax presented earlier

Consider the following signature�

E � The �single� sort of all Epic constructs
C � The sort of characters

spec� E �� E

mod� E � E �� E

fun� E � E � E � E �� E

rule� E � E �� E

ap� E � E �� E

var� E �� E

cons� E � E �� E

nil� �� E

str� C � E �� E

eos� �� E

a� �� C

� � �

z� �� C

� � �

We assume a su�cient number of characters can be de�ned to represent identi�ers

�� A Concrete Syntax 	�

We use characters f and e� in the appropriate place� to signify free and external functions�
respectively �see below�

For each function de�ned in Epic�s abstract syntax a function should now be added to the
signature above� equations should be given� and a ��� map between these functions and those
in Epic�s abstract syntax should be given
 For brevity we will use the same function names
as earlier �leaving their signature implicit�� and using the identity map

Without loss of generality we will use sub�structure selection based on recursive structures

at�cons�x�� x��� � x�
adv�cons�x�� x��� � x�
last�cons�x� nil��
mods�spec�cons�x�� x����
subsm�spec�x�� � x

funs�mod�cons�x�� x��� x
��
subsf�mod�x�� x��� � x�
rules�mod�x�� cons�x�� x
���
subsr�mod�x�� x��� � x�
name�fun�x�� x�� x
� x
�� � x�
arity�fun�x�� x�� x
� x
�� � x�
free�fun�x�� x�� f� x
��
external�fun�x�� x�� x
� e��
lhs�rule�x�� x��� � x�
rhs�rule�x�� x��� � x�
sub�terms�ap�x�� cons�x�� x
���
subst�ap�x�� x��� � x�
ofs�ap�x�� x��� � x�
is var�var�x��

�� A Concrete Syntax

In this section we present a concrete syntax of Epic

Spec ��� Module Spec � �

Module ��� �module� LwrId �types� Types �rules� Rules

Types ��� Type ��� Types � �

Type ��� FunId ��� Sort Sorts ��� ���� VrSrtId Prop �

FunId ���� VrSrtId Prop

Prop ��� �f� free �g� � �f� external �g� � �

Sorts ��� ��� Sort Sorts � �

Sort ��� VrSrtId � � �

Rules ��� Rule ��� Rules � �

Rule ��� Term ��� Term

Term ��� Var � FunId � FunId ��� Term Terms ���

Terms ��� ��� Term Terms � �

Var ��� VrSrtId

FunId ��� LwrId �

�	������ � � all printable characters

�n���������������� � all characters� decimal coded

VrSrtId ��� �A�Z��� A�Za�z���	�

�� A Concrete Syntax 	�

LwrId ��� �a�z��� A�Za�z���	�

The relation between this concrete syntax and the abstract syntax of the previous section
is straightforward
 We will look at a few aspects�

� Syntactic rules of the form �Ss ��� S Ss � � are trivially mapped to a cons�nil
list�

� Syntactically� the two Term variants FunId and �FunId 	
	 Terms 	�	 are distinct�
but are mapped to the same form with an empty� and non�empty argument list�

� The lexical notions of identi�ers are de�ned in two classes� those starting with a capital�
which are used for variables and sorts� and those starting with a lowercase letter� which
are used for function symbols

In both cases the lexical token should be mapped to a str�eos representation� each
character being mapped to the appropriate function symbol

� The syntax�less injection of VrSrtId into Var is represented by the injection var

�� EPIC�s tool set 	�

Appendices

�� EPIC	s tool set

The Epic tool set includes the following tools�

� an Epic parser�

� a �primitive� typechecker�

� a printer for parsed speci�cations�

� a printer for �Arm code�

� a non�linearity annotator
 Internally� Epic requires nonlinearities to be indicated
 They
are added by this tool�

� a compiler which translates Epic to �Arm
 As can be seen� various features not intrin�
sically in Epic are added by separate tools
 The compiler combines all of the above�

� the �Arm interpreter

In addition several stand�alone tools exist�

� a curri�er� which handles function symbol occurrences with too few arguments
 Epic
doesn�t provide currying� but this tool adds that facility�

� an ML to Epic translator� which translates a subset of ML to Epic

� a �Arm to C translator which compiles �Arm code into C functions� one for each
function in the original TRS
 These functions can be linked� statically� to the interpreter

� a tool which implements associative matching by a TRS transformation

Epic is available via www at http���www�cwi�nl�epic�

�� A high
performance engine for hybrid term rewriting

�Arm is an e�cient abstract machine for hybrid term rewriting
 Here� e�ciency pertains both
to run�time e�ciency as to e�ciency with respect to software�development
 In particular�
�Arm allows for an incremental style of software development and supports the transparant
combination of compiled �stable� code with interpreted code still earlier in the software de�
velopment cycle

�Arm supports external and hybrid datatypes� data types which are entirely opaque� and

are manipulated only by external functions� and datatypes which� in addition� can be trans�
parently viewed as formally speci�ed datatypes �as de�ned in �Wal��
�
 �Arm�s dispatcher
uses a combination of directly and indirectly threaded code to achieve an e�cient� transparent
interface between di�ernet types of functions

�Arm has e�cient memory management� where garbage collection takes up less than 	!

of the overall execution time
 In addition� �Arm uses a space�e�cient innermost reduction
strategy� whilst allowing for lazy rewriting when this is desired �as described in �KW�	
�

Finally� �Arm is parameterized with a small number of C macro�s which can be de�ned
either for portable ANSI C� or for a machine speci�c variant which performs two to three

� EPIC�s e
ciency 	�

times better
 In this manner ports for SUN SPARC and SGI R	��� using gcc have been
de�ned� and a port for Macintosh ����xx� and �Symantec� Think C

A precursor of �Arm is described in �KW�"
� a successor in �WK�	a

�� EPIC	s efficiency

Epic was designed speci�cally with e�ciency in mind� where a balance was stricken between
compilation speed and execution speed
 In lieu of the former� an interpreter is used for the
intermediate �abstract machine� level� this interpreter has been optimized and �ne�tuned to
achieve acceptable execution speeds

In �HF���
 a compute�bound benchmark comparing implementations of functional lan�
guages is reported on in which �Arm presented itself as the most e�cient interpreted system

Since the benchmark relies heavily on �oating point computations� with little control��ow
overhead� it favors compiling implementations� which fare better in that benchmark

The �portable� non machine�speci�c� �Arm interpreter performs "	���� simple reductions
per second �of the form f�s�X�� � f�X�� on a SUN Sparc station
 On the same platform�
the Larch Prover �LP "
�a� performs ��� reductions per second� on the identical example

This is not mentioned as a comment on LP� but rather to provide a basis for comparison with
other platforms

References

�BBKW��
 J
C
M
 Baeten� J
A
 Bergstra� J
W
 Klop� and W
P
 Weijland
 Term�rewriting
systems with rule priorities
 Theoretical Computer Science� �#������"�"��� ����

�BHK��
 J
A
 Bergstra� J
 Heering� and P
 Klint� editors
 Algebraic Speci�cation
 ACM
Press Frontier Series
 The ACM Press in co�operation with Addison�Wesley� ����

�DP��
 N
 Dershowitz and D
A
 Plaisted
 Equational programming
Machine Intelligence�
������	�� ����

�HF���
 Pieter H
 Hartel� Marc Feeley� et al
 Benchmarking implementations of functional
languages with �pseudoknot � a �oat�intensive benchmark
 Journal of Functional
Programming� ����
 Accepted for publication

�Kam��
 J
F
Th
 Kamperman
 GEL� a graph exchange language
 Report CS�R����� Cen�
trum voor Wiskunde en Informatica �CWI�� Amsterdam� ����
 Available by ftp

from ftp
cwi
nl��pub�gipe as Kam��
ps
Z

�Klo��
 J
W
 Klop
 Term rewriting systems
 In S
 Abramsky� D
 Gabbay� and
T
 Maibaum� editors� Handbook of Logic in Computer Science� Volume ��� pages
�����
 Oxford University Press� ����

�KW�"
 J
F
Th
 Kamperman and H
R
 Walters
 ARM � Abstract Rewriting Machine

In H
A
 Wijsho�� editor� Computing Science in the Netherlands� pages ��"�����
���"

�KW�	
 J
F
Th
 Kamperman and H
R
 Walters
 Lazy rewriting and eager machinery

In Jieh Hsiang� editor� Rewriting Techniques and Applications� number ��� in
Lecture Notes in Computer Science� pages ��#����
 Springer�Verlag� ���	

References 	�

�MOI�	
 Aart Middeldorp� Satoshi Okui� and Tesuo Ida
 Lazy narrowing� Strong com�
pleteness and eager variable elimination
 In Proceedings of the ��th Colloquium on

Trees in Algebra and Programming� Lecture Notes in Computer Science
 Springer�
Verlag� ���	

�O�D�	
 M
J
 O�Donnell
 Equational Logic as a Programming Language
 MIT Press� ���	

�Wal��
 H
R
 Walters
 Hybrid implementations of algebraic speci�cations
 In H
 Kirch�
ner and W
 Wechler� editors� Proceedings of the Second International Conference
on Algebraic and Logic Programming� volume ��" of Lecture Notes in Computer

Science� pages ���	�
 Springer�Verlag� ����

�Wal��
 H
R
 Walters
 On Equal Terms� Implementing Algebraic Speci�cations

PhD thesis� University of Amsterdam� ����
 Available by ftp from
ftp
cwi
nl��pub�gipe�reports as Wal��
ps
Z

�WK�	a
 H
R
 Walters and J
F
Th
 Kamperman
 Minimal term rewriting systems
 Techni�
cal Report CS�R�	#"� CWI� december ���	
 Submitted for publication
 Available
as http���www
cwi
nl� gipe�epic�articles�CS�R�	#"
ps
Z

�WK�	b
 H
R
 Walters and J
F
Th
 Kamperman
 A model for I�O in equa�
tional languages with don�t care non�determinism
 Technical Report CS�
R�	#�� CWI� december ���	
 Submitted for publication
 Available as
http���www
cwi
nl� gipe�epic�articles�CS�R�	#�
ps
Z

