
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Value constraints in the CLP scheme

M.H. van Emden

Computer Science/Department of Software Technology

CS-R9603 1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9603
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Value Constraints in the CLP Scheme

M�H� van Emden

University of Victoria� P�O� Box ����� Victoria� B�C�� V�W �P� Canada

e�mail� vanemden�csr�uvic�ca

http���www�csc�uvic�ca�home�vanemden�vanemden�html

Abstract

This paper addresses the question of how to incorporate constraint propagation into logic programming� A

likely candidate is the CLP scheme� which allows one to exploit algorithmic opportunities while staying within

logic programming semantics� CLP�R� is an example� it combines logic programming with the algorithms

for solving linear equalities and inequalities� In this paper we describe two contrasting constraint store

management strategies within the CLP scheme� One leads to CLP�R�� while the other� which we call value

constraints� supports consistency methods such as arc consistency and interval constraints�

In value constraints� the infer step of the CLP scheme is the application of a consistency operator acting

on the active constraints� We show how the continued application of the infer step can be optimized and

that such optimization is equivalent to the Waltz algorithm for constraint propagation�

Using the Lassez�Maher �xpoint theory of chaotic iterations� we show that the Waltz algorithm does not

necessarily converge to a �xpoint� but that it does so in the �nitary case�

AMS Subject Classi�cation ������� ��N���

CR Subject Classi�cation ������� D����� F����� I���	�

Keywords � Phrases� constraint logic programming� constraint propagation�

�� Introduction

Consistency methods were developed in Arti
cial Intelligence to contain combinatorial explosions
encountered in scene interpretation ����� Consequently the methods were recognized to be of wide
applicability ����� In logic programming� consistency methods were found useful for two di
culties�
ine
cient search for the solution of combinatorial problems and the ruining of logic semantics by
�oating�point implementation of real numbers�

The
rst problem was addressed by CHIP ���� which incorporated a consistency algorithm by
modifying uni
cation and by adding inference rules� The success of CHIP has been the main cause
of the current interest in constraint logic programming�

To address the second problem� BNR Prolog �	� �� also combined a consistency algorithm with
logic programming� The method of combination with the consistency algorithm is di�erent from the
one used in CHIP� uni
cation was not modi
ed and no inference rules were added�

An obvious approach to the incorporation of consistency methods in logic programming is to start
with the CLP scheme� As generalization of the earlier form of logic programming� this scheme is al�
ready the most convincing� In addition� its �exibility has allowed an instance of the scheme� CLP�R��
to incorporate algorithmic opportunities such as the Simplex method and Gaussian elimination�

In this paper we
nd that there is much merit in the obvious approach� The survey paper on
the CLP scheme ���� contains an indication of how to go about incorporating consistency methods
in logic programming by introducing a predicate symbol for each possible domain� As that paper
devotes eight lines to the topic �in Example ����� it cannot be expected to be the last word on it�
In this paper we show that such incorporation can be achieved by elaborating certain unspeci
ed

�

aspects of the CLP scheme� Hence the result inherits all logical properties of the scheme� In
particular� it is based on the clausal form of
rst�order predicate logic with unmodi
ed uni
cation
and resolution as sole inference rule� The resulting instance of the CLP scheme is general enough to
cover both
nite domains and intervals of reals�

The CLP scheme distinguishes active from passive constraint and is permissive about how these are
manipulated� To incorporate the consistency algorithm in the way indicated� we found it necessary
to handle the active and passive constraint in a way that is di�erent from how it is done in CLP�R��
the main instance of the CLP scheme� Because of the wide applicability of the consistency algorithm
�to combinatorial as well as numerical analysis problems�� we view the method presented here as a
subscheme of the CLP scheme and we call it value constraints�

Approaching the incorporation of the consistency algorithm by
rst de
ning a strategy for handling
the active and passive constraints in the CLP scheme has the advantage that one rediscovers the
consistency method in a very natural way� I show that this not only holds for the general idea� but
also for the consistency algorithm itself and several of the algebraic properties found by Benhamou
and Older ����

�� Review of the CLP scheme

The CLP scheme is based on the observation that in logic programming the Herbrand base can
be replaced by any of many other semantic domains� Hence the scheme has as parameter a tuple
h��D�L� T i� where � is a signature� D is a ��structure� L is a class of ��formulas� and T is a

rst�order ��theory� These components play the following roles� � determines the relations and
functions that can occur in constraints� D is the structure over which computations are performed
�for example the ordered
eld of the real numbers��� L is the class of constraints that can be
expressed� Finally� T axiomatizes properties of D�
If a goal G has a successful derivation from program P with answer constraint c� then P � T j�

��c � G�� Here I am particularly interested in the situation where G is a description in logic of a
numerical problem� P contains de
nitions of predicates occurring in G� T expresses all we need to
know about the real number
eld� and c uses intervals to give the value of each problem variable
accurate to a dozen decimal places� The j� relation guarantees that all these decimal places are
correct�

Derivations in the CLP scheme are de
ned by means of transitions between states� A state
is de
ned as a tuple hA�C� Si where A is a multiset of atoms and constraints and C and S are
multisets of constraints�� Together C and S are called the constraint store� The constraints in C
are called the active constraints � those in S the passive constraints�

The query Q corresponds to the initial state hQ� �� �i� A successful derivation ends in a state of
the form h�� C� Si� The existence of such a derivation implies that P � T j� ���C � S�� Q��

The role of C and S in this formula is to describe the answer to the query Q� A favourable property
is that j� guarantees correctness of such a description� A di
culty is that the description may not
be helpful� it can take the form of a set of equalities and inequalities between polynomials in any
number of variables in any degree� a truly formidable problem� In certain types of application� one
would like the constraint store to have the form fX� � r�� � � � � Xn � rng� where X�� � � � � Xn are the
variables on C or S and r�� � � � � rn are real numbers� However� this is not practically feasible� as the
exact values r�� � � � � rn are usually not
nitely representable� An excellent surrogate is a constraint
store in the form fX� � �l�� u��� � � � � Xn � �ln� un�g with all variables occurring exactly once on

�D is a structure consisting of a set D of values �the carrier of the structure� together with relations and functions
over D as speci�ed by the signature �� For example	 the complete ordered �eld R has R	 the set of real numbers	 as
carrier� The signature component of R speci�es � as relation	 and
� �������� � as function symbols� The status of

 and �
 varies between treatments� some include them in the signature� some regard them as part of logic�

�We will often regard C and S as formulas� Then they are the conjunctions of the constraints they contain as
multisets�

�

the left�hand side and on the right�hand side narrow intervals of reals bounded by �oating�point
numbers� To bring about this desirable state of a�airs is the task of constraint store management�

The CLP scheme provides a framework for constraint store management by de
ning a derivation
as a sequence of states such that each next state is obtained from the previous one by a transition�
There are four transitions�

�� Resolution
hA � fag� C� Si �r hA � B�C� S � fs� � t�� � � � � sn � tngi

if a is the atom selected by the computation rule� h � B is a rule of P � renamed to new variables�
and if h � p�t�� � � � � tn� and a � p�s�� � � � � sn��

hA � fag� C� Si �r fail

if a is the atom selected by the computation rule� and for every rule h � B in P � h and a have
di�erent predicate symbols�

	� Constraint transfer
hA � fcg� C� Si �c hA�C� S � fcgi

if constraint c is selected by the computation rule�

� Constraint store management
hA�C� Si �i hA�C �� S�i

if hC �� S�i � infer�C� S��

�� Consistency test
hA�C� Si �s hA�C� Si

if consistent�C�

hA�C� Si �s fail

if 	consistent�C�

�� Constraint store management

To understand the distinctive roles of passive versus active constraints� let us
rst consider derivations
from which the transitions �i and �s are excluded� At the end of a successful derivation of this
kind� all goals generated directly or indirectly from the query Q have been transformed to an answer
constraint only consisting of passive constraints S�

In spite of this restriction� the correctness property for the answer constraints holds� P� T j�
��S � Q�� Because only �r and �c transitions were used� C is empty and no consistency was ever
checked� There are two reasons why such an answer� ��S � Q�� is usually uninteresting� �a� S is
typically inconsistent� and �b� getting useful information out of S� even if consistent� is typically a
signi
cant computational problem�

Thus the computational problem in the CLP scheme is twofold�

 to show D j� �S� consistency of a candidate solution S to the problem posed in query Q� But
even in the presence of consistency� it may still be the case that S tells us little about the
solution� it may be a di
cult numerical problem� Hence�

�

 to use S to
nd a formula that describes the solution in a way that is adequate to our purpose�

The CLP scheme introduced active constraints to solve both problems� to facilitate consistency
checking and to help describe solutions� By choosing a type of constraint for the active part of the
store that facilitates exploiting an algorithmic opportunity� both purposes can be achieved simulta�
neously�

The CLP scheme requires that the�i transition de
ned by hC �� S�i � infer�C� S� has the property

D j� ���C � � S��� �C � S���

It follows that if the next transition is �s and results in failure� then D j� 	�C �� hence D j�
	��C � S�� that is� a recent �c transition has caused loss of consistency and the derivation should
not be continued�

Constraint store management in CLP�R�� So far constraint store management in general� Let
us illustrate this with CLP�R�� Here the active and passive constraints are conjunctions of atoms�
The predicates in constraint atoms are ��
� or �� The active constraint atoms are all linear� that
is� no variable is multiplied by a variable� Such conjunctions are e
ciently solved by the techniques
of numerical linear algebra�

In CLP�R�� infer consists of checking the passive constraints for linearity and transferring any
such to the active part of the store� In this way CLP�R� exploits an algorithmic opportunity� that
linear equalities and inequalities can be e
ciently solved� This is achieved by specializing the CLP
scheme through a number of choices� D� sublanguage of L to be used for S and C� infer with
the implied criterion for distinguishing active and passive constraints� and the algorithm used to
implement consistent�

A comparison of two strategies for constraint store management� CLP�R� depends on identi
ca�
tion of an e
ciently consistency�testable subset of the passive constraints� which is then removed
and added to the active constraints� Active constraints are not redundant� On the contrary� during
a derivation the active constraints replace the passive ones� In each �i transition� S is depleted as
much as possible� I will call this the replacement strategy for constraint store management�

In an alternative that we call the approximation strategy� the �i transition leaves S unchanged�
Suppose that a CLP derivation has hC�� S�i� � � � � hCn� Sni as sequence of hC� Si pairs� C� is empty�
CLP in general requires that D j� ��Cj � Sj � Cj�� � Sj��� and D j� ��Cj�� � Cj � for j �
�� � � � � n� ��

The replacement strategy has as aim to make Sn empty� If successful� then we have D j� ��S� �
�S� � true� � �S� � C�� � �Sn � Cn� � Cn�� That is� the
nal active constraints are equivalent to
the initial passive constraint�

The approximation strategy has as aim to make Cn as strong as possible� while keeping the passive
constraint store unchanged� Starting from the tautology Sn � Cn � Cn� we can use the general
property of CLP to derive D j� ��S� � C� � Cn�� hence D j� ��S� � Cn�� Thus we have only one
half of the
nal result of a successful derivation according to the replacement strategy� But we will
see that Cn� though only an approximation of S�� can be an extremely close one� We will also see
that in numerical computation on actual �as opposed to idealized� computers� D j� ��S� � Cn� is
not possible in general� whereas D j� ��S� � Cn� is�

�� Value constraints

The value constraints subscheme consists of the approximation strategy for constraint store manage�
ment together with the restriction that the active constraint is a conjunction of atoms of the form

�

v�X�� As the unary predicate v denotes a subset of D� the active constraints constrain the values
allowed for each variable individually� independently of those for any other variable�

The subsets of D denoted by the predicates v occurring in the active constraint may have to be
restricted to be e
ciently representable in a computer� Three important examples of representable
subsets D come to mind�

 D is small and
nite� as often happens in scheduling problems� In this case there is no problem
in designating all subsets of D as representable�

 D is the set of real numbers� Now even a single domain element often requires an in
nite
amount of memory� as do most subsets� Even if we restrict subsets to be intervals� then we
cannot represent most of them� A natural choice for computer use is that of intervals of reals
with
oating�point numbers as bounds� It will turn out to be important to include among these
intervals the set of all reals and the empty set of reals�

 D is a Herbrand universe with function symbols of positive arity� hence D is in
nite� Certain
subsets of D are easy to represent even though in
nite� those that consist of all ground
instances of a term� This term is then a convenient way to represent the subset�

��� De�nition of the value�constraint subscheme of CLP�
In the CLP scheme the semantic domain is characterized by h��D�L� T i� where D is a structure
consisting of a set D� the carrier� with functions and relations over D named by symbols in �� In
the value constraints subscheme of CLP we assume in addition that

�� the passive constraint S is a conjunction of the atoms A�� � � � � Am each of which typically
contains few of the many variables X�� � � � � Xn that occur in S�

�� the relations in D include unary representability relations� each corresponding to a repre�
sentable subset of D� We assume that DRS � the set of representable subsets of D� is closed
under intersection in the sense that for any subset X of DRS � the intersection of the elements
of X is also an element of DRS �

Because � has a symbol to name each function or relation of D� � contains unary predicates
v� value predicates� to name the unary representability relations�

	� the active constraint has the form

C � fv��X��� � � � � vn�Xn�g�

where X�� � � � � Xn� the variables of S� occur each exactly once and where v�� � � � � vn are value
predicates� in some enumeration of � that depends on C�

�� the consistency test in the value constraints subscheme becomes especially simple� to detect
whether any conjunct in the active constraint has a value predicate denoting ��

�� the constraint store management strategy is the approximation strategy�

�� In the CLP transition hA�C� Si �i hA�C �� S�i� we have infer�C� S� � hC �� Si� In value con�
straints C � is the result of applying to C the consistency operator associated with one of
A�� � � � � Am� This operator is motivated� de
ned� and analysed in the remainder of the paper�

Every time C � �� C �as we always have D j� ��C � � C��� the �i makes the active constraints
a better approximation to the passive constraints� Hence� �i is repeated until C � � C�

�

The approximation function� Because DRS is closed under intersection� there exists for every
subset X of D a unique least representable subset containing X � This universality and uniqueness
imply the existence of the function ap� � P�D�� DRS �ap� for �approximation�� following ���� with
the prime indicating that this is not yet the real thing� for which see later� as ap��X� � �fY j Y �
DRS and Y � Xg�

Example� Small �nite sets� Here �small� means that D can be represented by enumerating its
elements� Then this is also the case for any subset of D� Hence DRS � P�D� and ap� is the identity
function on P�D��

Example� Real numbers� D is the set of real numbers� Let M be a
nite subset� typically the
�oating point numbers of a given computer� Then DRS is the set of bounded and unbounded
intervals of reals� where bounds have to be in M � ap� maps any set of reals to the least interval
containing it� As the bounds of the intervals are limited to the
nite set M � the existence of the
least interval is easy to see�

Example� Herbrand universes� D is an Herbrand universe� For every term there is an element
of DRS � and this element is the set of ground instances of that term� In addition� DRS contains
the empty set� The intersection property of DRS is guaranteed by the uni
ability �or otherwise�
of the corresponding terms� Let S be a possibly in
nite set of ground terms� Then ap��S� is the
set of ground instances of the least common anti�instance of the terms in S� This anti�instance was
de
ned by Lassez� Maher� and Marriot in ����� In this paper they also proved the existence of the
required least common anti�instance�

��	 Local versus global consistency
Ideally� infer e�ects such a transition from C to C � that a change from v�Xi� to v

��Xi� implies that
values for Xi are removed that are inconsistent with S in the following sense� Consider
rst the
usual notion of consistency of the passive constraints� D j� �S� In keeping with this� we call d a
globally consistent value for Xi i� D j� ��SfXi�cg�� where the constant c names d� That is� as long
as any values for other variables can be found that make S true in D� d is a consistent value for Xi�
A tuple of values is globally consistent with S i� each component is�

Under the value constraints subscheme we assume that the passive constraint S is a conjunction
of atoms� say A�� � � � � Am� The property de
ned above is called global consistency because it includes
all the atoms simultaneously� Analogously we de
ne d to be a locally consistent value for Xi i� we
have for all j � �� � � � �m that D j� ��AjfXi�cg�� where the constant c names d�

�� An algebraic treatment of value constraints

To further specify the value constraint subscheme� it remains to develop the algorithm for the
function infer in hC �� S�i � infer�C� S�� as required in the constraint store management step �i�
Such an algorithm and its properties are best described by changing from the predicate logic language
used so far to an algebraic language of sets and relations�

��� Relations
To make this paper reasonably self�contained� we discuss in this section the operations on relations
used in the sequel� We also need to connect the logic notation for relations with the algebraic one�

The passive constraints as relation� S and D de
ne together an n�ary relation � �where n is the
number of variables occurring in S� over D consisting of all n�tuples of values for the variables in S
that make S true in D� More precisely�

� � fhc��� � � � � c�ni j D j� S� where � � fX��c�� � � � � Xn�cng and

�

c��� � � � � c
�

n are the objects denoted by c�� � � � � cng�
assuming that X�� � � � � Xn are the variables in S�

Given that we assumed the simple form for S as the conjunction of the atomic formulasA�� � � � � Am�
it is natural to de
ne in the same way relations corresponding to each of these conjuncts�

�i � fhc��� � � � � c�nii j D j� Ai� where � � fY��c�� � � � � Yni�cnig where

c��� � � � � c
�

ni
are the objects denoted by c�� � � � � cnig�

assuming that Y�� � � � � Yni are the variables in Ai�

The active constraints as relation� Now the active constraints

C � fv��X��� � � � � vn�Xn�g
can be given a relational characterization similar to the � introduced for the passive constraints�
Let � be the relation

� � fhc��� � � � � c�ni j D j� C� where � � fX��c�� � � � � Xn�cng and

c��� � � � � c
�

n are the objects denoted by c�� � � � � cng�

Relations� arities� projections� and joins� The question now arises how � depends the �i� Analogy
with set algebra might suggest that � � �� � � � � � �m� However� in this more general context this
is only valid when each Ai contains all variables� This special case is of no interest here� as we
are concerned with the opposite situation where each Ai contains only a few of the many variables
occurring in S�

For example� A� might contain only X��� X��� and X���� whereas A� might contain only X���
X��� and X��	� In this case �� � �� is of no interest� although composed of two ternary relations�
Here we need to distinguish relations according to the more subtle concept of arity of a relation�
which is the set indexes of variables in the formula from which the relation is derived�

Let J and K be subsets of f�� � � � � ng� the set of indexes of the variables of S� If p is a relation of
arity J and q is a relation of arity K� then the natural join p � q of p and q is a relation consisting
of tuples with components that have their indexes in J �K� Whenever a tuple s occurs in p and
a tuple t occurs in q such that the components with indexes common to J and K are equal� then
p � q contains the tuple with all components copied from s and t� See ���� for the o
cial de
nition
of natural join�

The projection �i��� of a relation � consisting of n�tuples is the set of all i�th components that
occur in any tuple of �� We have that ������� � ���n��� is the smallest Cartesian product containing
��

��	 Local and global consistency
Proposition� � � �� � � � � � �m�

If C is v��X�� � � � � � vn�Xn�� then � � E� � � � � � En� where the Ei are the representable sets

Ei � fc� j D j� vi�c� where c
� is the object denoted by cg�

Because of C�s simple structure� this join is a Cartesian product�

� � E� � � � � � En � E� � � � � �En�

Under the value constraints subscheme� the task of infer is to change the active constraint in such
a way that values for variables are removed that are inconsistent with S�

	

Proposition� The set of tuples whose components are values consistent with S is ������� � ���n����

The form assumed for the active constraint implies that they can only specify relations that
are Cartesian products with n components� Thus the best possible approximation of the passive
constraint relation � by the active constraint relation � is exactly the set of tuples with components
that are consistent with the passive constraints� The best we can hope for� then� is that infer�
possibly in multiple steps� reduces � to ������ � � � � �n����

This ideal cannot be reached for two reasons�

�� Not all of ������ � � � � �n��� may be representable sets� In other words� it may be that no v exists
such that D j� v�c� � c� � �i��� for all values c� and constants c naming them� Hence the
active constraints cannot approach closer than the smallest Cartesian product of representable
sets that contains ��

�� No su
ciently e
cient algorithm is known that can compute such a smallest product�

Based on the approximation function ap� for sets of single domain values� we de
ne the approxi�
mation function ap for n�ary relations de
ned as ap��� � ap���������� � �� ap���n���� for any n�ary
relation � � Dn�
Benhamou and Older ��� remark that

�X � Dn � �ap�ap�X�� � ap�X��

�namely� ap is idempotent� and

�X�Y � Dn � �X � Y � ap�X� � ap�Y ��

�namely� ap is monotonic��

Proposition� ap��� is the least representable Cartesian product containing the tuples with values
consistent with S�

Thus� the D j� ��S � C� that is characteristic of value constraints� together with the fact that
the active constraints can only specify a representable product� translates to set�theoretic terms as
� � ap���� and it is desirable to have equality in this relation� Let us then design an algorithm for
reducing � to a subset of it that is as close as possible to ap����
To reduce � to ap��� is to remove from � values that are not globally consistent with S� We don�t

have an e
cient algorithm for that� But� because of the assumed primitive nature of the relations in
the conjuncts A�� � � � � Am of S� we can e
ciently remove the tuples from � that are inconsistent with
any Ai individually� Achieving this for all A�� � � � � Am separately is the local consistency de
ned
earlier�
To remove from � all tuples inconsistent with S� we replace � by ap���� Analogy might suggest

that to remove from � all tuples inconsistent with Ai we replace � by ap��i�� The analogy is far
from perfect because � and ap��i� are in general not of the same arity� Suppose that Xi� � � � � � Xini

are the variables occurring in Ai� X�� � � � � Xn being the variables occurring in S � fA�� � � � � Amg�
Then the arity of ap��i� is fi�� � � � � inig� whereas the arity of � is f�� � � � � ng� Thus� � and ap��i�
do not have in general the same arity� so that � � ap��i� is not an interesting relation� However�
� � ap��i� is�

Proposition� � � ap��i� is the smallest representable Cartesian product containing the result of
removing from � all tuples that are not consistent with the conjunct Ai of the passive constraint S�

Proof� Both � and ap��i� are Cartesian products� hence completely characterized by their pro�
jections� For Cartesian products the join operation is particularly simple� �j�� � ap��i�� �

�j�����j�ap��i�� if Xj occurs in Ai and �j�� � ap��i�� � �j��� otherwise� �j�ap��i�� is the smallest
representable set containing the values for Xj that are consistent with Ai� Hence �j�� � ap��i�� is
the result of removing from �j��� all values for Xj that are consistent with Ai�

With this in mind it is clear that removing from � all tuples inconsistent with �� while still
retaining a representable product� results in � � ap���� Because of the special case that � and �
have the same arities� we happen to have � � ap��� � � � ap����

The expression � � ap��i� has some special features� �a� the arity of ap��i� is contained in the
one for �� and �b� both arguments of the join are Cartesian products� The role of the expression
together with its special features suggest that one introduces the consistency operator K indexed by
an arbitrary relation p and acting on a Cartesian product q de
ned by Kp�q� � ap�p� � q� where
arity�p� � arity�q��

Theorem� For all Cartesian products u and v of equal arity including the arity of relation p we
have�

�� Kp�u� � u �Contractance�

�� u � p � Kp�u� � p �Correctness�

	� u � v � Kp�u� � Kp�v� �Monotonicity�

�� Kp�Kp�u�� � Kp�u� �Idempotence�

Proof� We apply the de
nition of Kp and use properties of the natural join�

�� Kp�u� � u � ap�p� � u

�� Kp�u� � p � u � ap�p� � p � u � p because p � ap�p� hence ap�p� � p � p�

	� By monotonicity of natural join�

�� As both sides are Cartesian products� we only need to consider the projections�

�j�Kp�Kp�u��� � �j�ap�p� � �ap�p� � u�� �de
nition Kp�
� �j�ap�p�� � �j�ap�p� � u� �both sides Cartesian products�
� ap���j�p�� � ap���j�p�� � �j�u�� �applying the de
nition of ap�
� ap���j�p�� � �j�u��
� �j�ap�p� � u� � �j�Kp�u��

In case p and q have the same arity� we have Kp�q� � q�ap�p�� Benhamou and Older ��� invented
the operator for this case and called it the �narrowing operator� � it contracts q to Kp�q�� For the
case they considered� they found the properties stated in the theorem� We adopt their names for
the properties� Because of their restriction to equal arities� the narrowing operator is not as useful
in distinguishing local from global consistency� In fact� their results only seem to apply to the case
where all of A�� � � � � Am contain all the variables X�� � � � � Xn�

Examples� If the constraint atom is X� � X�� then the consistency operator reduces v��X��
and v��X�� in the active constraint to v�X�� and v�X�� where v denotes the intersection of the
denotations of v� and v�� This is true whatever D is�
Suppose that D is R and that DRS is the set of bounded and unbounded intervals with machine

numbers as bounds� If the constraint atom is X� �X� � X�� then its consistency operator reduces
v��X��� v��X�� and v��X�� in the active constraint to v���X��� v

�

��X�� and v���X��� Let v�� v� and
v� denote the intervals �x�� x��� �y�� y��� and �z�� z�� respectively� Then it may be shown that the
denotation of v��� v

�

� and v�� is� respectively�

��

�x�� x�� � ��z�� z��� �y�� y����
�y�� y�� � ��z�� z��� �x�� x���� and
�z�� z�� � ��x�� x�� � �y�� y����
The operation ��� in the above formula is extended from the reals to intervals as follows�

�a� b�� �c� d� � ��a� d��� �b� c����

The a� b� c� and d are machine numbers� so that �a� b� and �c� d� are representable sets �in DRS�� In
the right�hand side� the superscripts ��� and ��� indicate that the usually inevitable rounding in
computing a � d and b � c is done downward and upward� respectively� Thus ��a � d��� �b � c���
is also a representable set and it is the smallest such that contains the usual canonical extension of
�a� b�� �c� d�� which is fx� y j x � R � x � �a� b� � y � R � y � �c� d��
A similar discussion goes with �a� b� � �c� d� � ��a � c��� �b � d���� These are the usual formulas

for interval arithmetic ����� The remarks about directed rounding are from Hansen ���� though there
are probably earlier treatments of this topic in the interval arithmetic literature�

�� Efficiently computable approximations to the consistent state

The relations de
ned by the active and the passive constraint are � and � � �� � � � � � �m
respectively� We would like to remove all inconsistent values from � and this would result in �
becoming equal to � � ap���� for which we lack an algorithm� But the primitive nature of the passive
constraints A�� � � � � Am allows us to e
ciently compute K�i���� which was de
ned as � � ap��i��
Thus we repeatedly compute � � K�i��� for various values of i� It will turn out to be important

that we are as free as possible in the choice of i at each stage� Lassez and Maher ��	� studied such�
what they called� chaotic iterations� We are interested in conditions under which chaotic iterations
converge to K����� Such an iteration may be
nite or not�
The goal of the iteration is the same as that of what Davis ��� calls the �Waltz Algorithm�� The

contribution of Waltz is a technique for exploiting the freedom in selecting the i so as to expedite
convergence� In this paper we will derive this technique for the more general situation considered
here�

��� Fixpoint theory of chaotic iterations
In the iteration of repeatedly replacing � by K�i��� we think of � as a state� �of approximation to
K������ We think of i as selecting one of m available operators� As the states are relations� they
form a lattice with set inclusion as partial order�
Lassez and Maher ��	� have given a
xpoint theory of chaotic iterations� Their purpose was to

model SLD resolution as a chaotic iteration� We review these results here�

Lassez and Maher assume a complete lattice L �with partial order �� and closure operators
pi � L � L� for i � �� � � � �m� A closure p satis
es p�x� � x and p�p�x�� � p�x� for all x � L� For
such a set of closures they obtain the proposition that for any lattice element x there exists a unique
least one among the
xpoints common to all of p�� � � � � pm that are above x in the lattice ordering�
Lassez and Maher also consider a method for computing this
xpoint� Let f � 	 � fp�� � � � � pmg�

where 	 is the set of natural numbers� Hence f is an in
nite sequence of operators� Let f be a fair
sequence in the sense that for any natural number N and for any i � �� � � � �m there exist in
nitely
many n � N such that fn � pi�
A lattice element s� and f de
ne s � 	 � L to be a sequence of lattice elements where si �

fi���si��� for i � �� �� � � � Thus s is the result of applying the operators p�� � � � � pm to an initial
lattice element s� in an unspeci
ed order except for the condition that each operator keeps recurring�
as made precise by the de
nition of fairness� Because p�� � � � � pm are closures� s is a nondecreasing
sequence� By lattice completeness�

W
s � L�

Let z be a
xpoint common to all of p�� � � � � pm such that s� � z� The question arises naturally�
What is the relation between

W
s and z�

�Not to be confused with the states hA�C�Si that occur in CLP derivations�

��

By monotonicity� sn � z for all n � 	� By the de
nition of
W
�
W
s � z� If

W
s is a itself a common

xpoint of p�� � � � � pm� then it is the unique least
xpoint above s� that exists by the proposition�
Whether this is the case� depends on the application�

This summarizes a few of the many results in Lassez and Maher ��	�� We have a situation dual to
the one considered in ��	�� the states of the active constraint store form a lattice and K�� � � � � �K�m

are the duals of closures� besides being idempotent� they are contractant � K�i�x� � x for all lattice
elements x� Translating the above proposition to its dual we conclude that K�� � � � � �K�m have a
unique greatest common
xpoint that is under s� in the lattice ordering�
Let z be a
xpoint common to all of K�� � � � � �K�m such that s� � z� By monotonicity� sn � z for

all n � 	� By the de
nition of
V
�
V
s � z� If

V
s is a common
xpoint of K�� � � � � �K�m � then it is

the unique greatest
xpoint below s� that exists by the proposition� But this need not be the case�

Example� Let the passive constraint S be A� �A� where A� is X� � �X� and A� is X� � X�
� � Let

D be R� the set of real numbers� Let the representable sets DRS consist of all intervals with reals
as bounds� Let s� be such that ���s��� the set of values possible for X�� is the interval �a� b�� such
that �
 a

p
�
 b� Let ���s�� be any interval containing ��a� �b�� say� �a� 	b��

Consider the fair sequence of the two consistency operators that alternates between the two and
starts with K�� � Then the elements of s are �a� b� � �a� 	b�� �a� b� � ��a� �b�� � �

p
�a� �

p
�b� � ��a� �b��

� �
p
�a� �

p
�b�� �� �

p
�a� � �

p
�b�� and so on�

Each of the projections of s is a nested sequence of nonempty intervals with width approaching
�� There is no index at which the intervals stop shrinking� The intersections of these nested
sequences contain� by the compactness of the real numbers� exactly one real number� In fact�V
s � �

p
��
p
��� ��� ���

Now suppose that we replace the reals by rationals� Then the consistency operators are no
longer always de
ned� as there is no least interval with rational bounds that contains an interval
with irrational bounds� Now we modify the example so that it is no longer an example of value
constraints� but more generally of contracting monotone operators chaotically iterating in a lattice�
The
rst modi
cation is to make the lattice elements into a pair hi�� i�i rather than a Cartesian

product i� � i�� The other modi
cation is to make the second operator one that is obtained from
K�� by a slight change so that �a� b�� ��a� �b� maps to h�a�� b��� ��a� �b�i� where a� is a rational slightly
less than �

p
�a and b� is a rational slightly greater than �

p
�b� For some such choice of operator �still

monotonic and contractant�� we have that the successive corresponding components of the elements
of s are nested sequences of nonempty intervals with width approaching �� But due to the fact that
the rationals are not compact� their intersection may be empty� In fact� in this example� we haveV
s � h�� ��� ��i�
Now

V
s is not a
xpoint� because one additional application of the operators will cause ���

V
s� �

�� In the terminology of Lloyd ����� the closure ordinal is 	 when
V
s is a
xpoint� In this example�

the closure ordinal is 	 � ��
This admittedly contrived example �who wants to compute

p
� by repeatedly extracting cube

roots�� shows that in the general lattice theoretic framework
V
s need not be a common �xpoint of

the operators� Additional assumptions are needed� In the case of a
nite number of representable
sets� not only is

V
s a
xpoint� but it is also reached in a
nite number of steps�

Theorem� If DRS is
nite� then �N � 	 such that sN is the greatest
xpoint common to all
consistency operators that is less than s��

Proof� We assumed that DRS is
nite� so that the lattice L is
nite� As a result� s� which is now a
nonincreasing sequence� is constant from a certain index onward� �N � 	 such that sn � sN �

V
s

for all n � N �
By the fairness of f � �i such that i � �� � � � �m� we can select an n greater than N such that

sn � pi�sn��� � pi�
V
s�� Hence pi�sn� � pi�pi�

V
s�� � pi�

V
s� �

V
s� by the idempotence of pi and

��

V
s being the limit� Therefore

V
s is a common
xpoint� it is the unique greatest common
xpoint

that is under s�� and it is reached after N steps�

Any fair sequence of operators causes convergence after
nite number of steps� Clearly� fairness
is the weakest possible condition on the sequence f � If for any i � �� � � � �m� pi would have a last
occurrence in f � then examples can be found where the sequence converges to a
xpoint common to
the other operators that is not a
xpoint of pi�
Older and Vellino ���� derive the result independently of ��	� for a more restricted class of fair

sequences f � which consists of repetitions of a single permutation of f�� � � � �mg�

�� The Waltz algorithm as chaotic iteration of consistency operators

To summarize the previous section� if the number of representable sets is
nite� then for any fair
sequence f of operators selected fromK�� � � � � �K�m � the corresponding sequence s of states converges
to the same limit that depends only on s� and on K�� � � � � �K�m � Given this characterization� it
becomes an urgent matter to consider an algorithm to compute the greatest common
xpoint�
As this
xpoint is reached in a
nite number of steps� and the algorithm should terminate as soon

as possible after� we are only concerned with a
nite pre
x of the fair sequences f � Although the
concept of fairness does not apply to this pre
x because of its
niteness� it is still useful to think of
the algorithm as constructing a pre
x to an in
nite sequence s of states de
ned by a fair sequence
f of operators�
We classify occurrences of operators in f according to whether they are live� dormant� or extinct�

An operator is

 live if it changes the state�

 dormant if it does not change the state� and

 extinct if it does not change the state and if the same holds for all later occurrences of the
operator�

In designing an algorithm� we aim for sequences where the limit occurs as early as possible� It
helps� for example� to avoid the application of dormant operators� In the typical situation� where each
constraint involves only a small subset of all variables� the fair sequence obtained from ordering the
constraints according to a permutation of their indexes� and then repeating this same permutation
forever� as considered in ����� has the disadvantage that unnecessarily many dormant operators are
uselessly applied�
For� whenever a live operator is applied� it always becomes dormant� by the idempotency of the

consistency operator� It will surely remain dormant as long as no other operator has contracted the
set associated with at least one of its variables� An algorithm should therefore postpone application
until such contraction has occurred� That will not� of course� guarantee liveness� The only way to
determine liveness with certainty is to actually apply the operator� On the other hand� at each index
we can generally tell for sure that certain constraints are dormant�

The above considerations suggest that an algorithm maintain a candidate set that includes all
live operators and excludes the operators of which one can be sure that they are not� To ensure that
the candidate set include all live operators� it seems inevitable to include some that are not�
The algorithm consists of a loop of which the invariant is the property of the candidate set just

mentioned� It is initialized by containing all constraints� Each time around the loop� while the
candidate set is nonempty� an operator K�j is applied and removed from the candidate set because
it is now dormant� Any dormant K�i such that Ai contains a variable whose domain was changed
by applying K�j � is added to the candidate set� as this constraint may have turned live�

This suggests the program in Figure ��

��

C � the set of all operators�
while C not empty

do remove operator K from C�
�� � K����
for i� � to m do

if �i��
�� �� �i���

then foreach operator K � of a conjunct containing variable Xi

do add K � to C unless K � � C
� � ��

od

Figure �� The Waltz algorithm�

Partial correctness is guaranteed by the invariant� Let us now consider termination� Under
our assumption of a
nite set of representable sets� any in
nite sequence of states has to remain
unchanged from a certain index onwards� After this index� all operators are extinct� Therefore�
whenever an operator is applied� no operator is returned to the candidate set� After at most m
times around the loop� the candidate set is empty so that the algorithm terminates at the latest at
m steps after the limit has been reached�

	� Conclusions

In this paper we have taken the logic programming�centered view� the starting point was to see how
consistency methods could solve problems in logic programming� This point of view may be too
parochial� as consistency methods are extremely powerful in their own right� There are indications
that interval constraints� for example� can solve certain numerical problems as well or better than
the approach via numerical analysis ��� ��� ��� ��� This gives constraint solving a much greater
signi
cance than the role they play in the CLP scheme� which is to generalize uni
cation and to
describe answers to queries�
Given that constraint systems are as important in their own right as� say� all of logic programming�

one may well wonder whether the two are necessarily related�
When considering how to use a constraint system by itself� one must realize that the constraint

formula must have the simple form of a conjunction of atomic formulas where the predicate symbols
name relations su
ciently simple for the consistency operator to be e
ciently computed� In a
numerical setting� for example� these relations are typically ternary sum� ternary product� ��
�

� power with integer exponent� and ternary min and max� The user may input equalities and
inequalities between polynomials in many variables occupying a few lines� yet representing a di
cult
problem� To obtain the help of a constraint system� these equalities and inequalities need to be
translated to the primitive constraints mentioned� The result can easily be hundreds of atomic
formulas� introducing hundreds of auxiliary variables� Moreover� the consistency method typically
leaves intervals that are too large� so that alternative constraint systems have to be e
ciently
generated and subjected to the Waltz algorithm�
This indicates that a constraint system needs a programming language as front end� For some

constraint systems� this is C��� For BNR Prolog� it is Prolog� Does logic programming only connect
to constraint systems by Prolog being a front end programming language preferred by certain users�
We believe that there is a stronger connection� Here we only attempt to make the case for it in the
numerical domain�
Starting with Moore ����� the interval community within numerical analysis developed a method

for guaranteed bounds for numerical results� These bounds have the practical virtue of being valid
on actual rather than idealized computers� This great achievement was stymied by two problems�
The
rst is that interval arithmetic often gives grossly pessimistic bounds� Thus a necessary

complement are methods to reduce interval width� Such methods have been developed in interval

��

arithmetic� An advantage of bringing interval arithmetic under consistency methods as a special
case is that additional methods for reducing interval width become available ����
Another problem of interval arithmetic is the use of programs written in conventional languages�

where program veri
cation is not practicable� The guarantees about numerical results that are in
principle possible by means of interval methods only carry full force if one can verify the correctness of
the program that executes the interval operations� For this reason it is not only of great advantage to
incorporate interval methods in a logic programming language� but it is also important to investigate
in full detail the connection between the logic and the interval consistency algorithm� This paper
shows that such a connection can be made via the CLP scheme�
A radical approach toward correctness in computation is to ensure that computation is a logical

deduction� This idea was introduced by Cordell Green ��� and Patrick Hayes ����� The latter coined
the motto�

Computation is controlled deduction�

The programming language Prolog comes close to supporting this paradigm� But it only comes close
in symbolic computation� Floating�point arithmetic is handled just as poorly as in any conventional
language� In this paper we have shown that even numerical computation can be deduction� even on
actual� rather than idealized� computers�

� Acknowledgements

I gratefully acknowledge my indebtedness to Krzysztof Apt for suggesting the topic of this paper and
for arranging a visitorship at CWI� the Centre for Mathematics and Informatics in Amsterdam� To
Bill Older I am indebted more than the references to his work can suggest� He supported me with
many discussions and explanations and provided me with numerous unpublished notes� Finally� the
Natural Science and Engineering Research Council of Canada generously provided research facilities�
References

�� F� Benhamou� D� McAllester� and P� Van Hentenryck� CLP�Intervals� revisited� In Logic Pro�
gramming� Proc� ���� International Symposium� pages ��� �	�� �����

�� Fr!ed!eric Benhamou and William J� Older� Applying interval arithmetic to real� integer� and
Boolean constraints� Journal of Logic Programming� To appear�

	� BNR� BNR Prolog user guide and reference manual� �����

�� H�M� Chen and M�H� van Emden� Interval constraints for unconstrained global optimization�
In preparation�

�� H�M� Chen and M�H� van Emden� Metacontraction� In preparation�

�� E� Davis� Constraint propagation with labels� Arti�cial Intelligence� 	����� 		�� �����

�� M� Dincbas� P� Van Hentenryck� H� Simonis� A� Aggoun� T� Graf� and F� Berthier� The constraint
programming language CHIP� In Proc� Int� Conf� on Fifth Generation Computer Systems� �����

�� C�C� Green� The application of theorem�proving to question�answering systems� Technical
Report �� Arti
cial Intelligence Group� Stanford Research Institute� �����

�� Eldon Hansen� Global Optimization Using Interval Analysis� Marcel Dekker� �����

��� P�J� Hayes� Computation as deduction� In Proc� Second MFCS Symposium� pages ��� ����
Czechoslovak Academy of Sciences� ���	�

��� Timothy J� Hickey� CLP�F� and constrained ODE�s� In Jean Jourdain� Pierre Lim� and
Roland H�C� Yap� editors� Workshop on Constraint Languages and their Use in Problem Mod�
elling� pages �� ��� Ithaca� New York� November �����

��� Joxan Ja�ar and Michael J� Maher� Constraint logic programming� A survey� Journal of Logic
Programming� ��"�����	 ���� �����

�	� J��L� Lassez and M�J� Maher� Closures and fairness in the semantics of programming logic�
Theoretical Computer Science� ������ ���� �����

��

��� J�L� Lassez� M�J� Maher� and K� Marriott� Uni
cation revisited� In Jack Minker� editor� Foun�
dations of Deductive Databases and Logic Programming� pages ��� ���� Morgan Kaufmann�
�����

��� J�W� Lloyd� Foundations of Logic Programming� Springer�Verlag� �nd edition� �����

��� A�K� Mackworth� Consistency in networks of relations� Arti�cial Intelligence� ���� ���� �����

��� Ramon E� Moore� Interval Analysis� Prentice�Hall� �����

��� William Older and Andr!e Vellino� Constraint arithmetic on real intervals� In Fr!ed!eric Benhamou
and Alain Colmerauer� editors� Constraint Logic Programming� pages ��� ���� MIT Press� ���	�

��� William J� Older� Application of relational interval arithmetic to ordinary di�erential equations�
In Jean Jourdain� Pierre Lim� and Roland H�C� Yap� editors�Workshop on Constraint Languages
and their Use in Problem Modelling� pages �� ��� Ithaca� New York� November �����

��� Je�rey D� Ullman� Principles of Database and Knowledge�Base Systems� Computer Science
Press� �����

��� D� Waltz� Understanding line drawings in scenes with shadows� In Patrick Henry Winston�
editor� The Psychology of Computer Vision� pages �� ��� McGraw�Hill� �����

