
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

An extensible language for the generation of parallel data manipulation
and control packages

H.R. Walters, J.F.Th. Kamperman and T.B.Dinesh

Computer Science/Department of Software Technology

CS-R9575 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9575
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

An Extensible Language for the Generation of
Parallel Data Manipulation and Control Packages

H�R�Walters �pum�cwi�nl�

J�F�Th�Kamperman �jasper�cwi�nl�

T�B�Dinesh �dinesh�cwi�nl�

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

Abstract

The design and implementation of the language fSDL �full Structure De�nition Language� is discussed� In

fSDL� complex user�de�ned data types such as lists� tables� trees� and graphs can be constructed from a

tiny set of primitives� Beyond mere structure de�nitions �also o�ered by previously existing tools� high�level

functionality on these data types can be speci�ed� In the COMPARE �ESPRIT� project� the C code generated

from an fSDL speci�cation will be used by compiler�components running in parallel on a common data pool�

fSDL is �rst translated into a sublanguage� �at fSDL� from which the actual C code is produced� Flat

fSDL is a convenient interface for cooperation with other compiler generation tools� There is a formal relation

between the input fSDL and the resulting 	at form�

CR Subject Classi�cation ������� D���� �Tools and Techniques�� Modules and interfaces�
D���� �Distribution and Maintenance�� Extensibility� D���� �Language Constructs and

Features�� Data types and structures� D���� �Processors�� Compilers�

AMS Subject Classi�cation ������� 	
N��� Compilers and generators�

Keywords � Phrases� Compiler Construction� Program Generation� Interface Denition Lan�
guage� Abstract Data Types� Data Description Language� C�

Note� This report appeared as a paper in Proceedings of the Poster Session of Compiler Con	

struction
��� ed� P� Fritzson� technical report LiTH�IDA�R������� University of Link�oping�
Partial support received from the European Communities under ESPRIT projects ����
�Compiler Generation for Parallel Machines � Compare� and ���� �Generation of Interactive
Programming Environments II � GIPE II�� This paper describes joint work of the Compare
consortium� The members of the Compare Consortium are ACE Associated Computer Ex�
perts bv� GMD Forschungsstelle an der Universit�at Karlsruhe� Harlequin Limited� INRIA�
STERIA� Stichting Mathematisch Centrum �CWI�� and Universit�at des Saarlandes�

�� Introduction

Data structuring is an important technique which aids the development and maintenance of
large software� Most programming languages o�er some facility to dene data structures�

�� Introduction �

albeit with limited capabilities for manipulation and organization� Most object oriented lan�
guages and systems are widely used since they allow organization and manipulation of data�
albeit restricted to large grain data structures� In practice� general purpose languages enforce
large grain data structuring while allowing minimal support for ner grain relationships be�
tween these data structures� A structure denition language� on the other hand� can provide
maximum �exibility with respect to data structure denition� manipulation and organization�
For such a structure denition language to be used in conjunction with a specic general pur�
pose language �target language�� the dened structures and their organization need to be
suitably interpreted in the general purpose language�

f SDL is a language which allows �exible denitions and manipulations of data structures
in terms of a calculus of domains� The calculus provides constructive and restrictive oper�
ators over domains for their construction and renement� The process of construction and
renement of domains results in an implicit set of data structures� and domains serve as a
denition of a ne grain view of these data structures� f SDL can thus be used to �exibly de�
ne a group of data structures and various views of them� When compared to object oriented
languages� an f SDL domain could represent a group of classes� where arbitrary attributes of
them are hidden�

The bare domain calculus is extended with opaque and functor domains� for the purpose
of making the calculus freely extensible to a particular target language� Opaques free f SDL
from language specic pre�dened types� whereas functors free f SDL from all pre�dened
abstract data types �e�g�� lists� graphs� sets� locks� as well as facilitate polymorphic library
functionality for a given target language�

A higher level language like f SDL for dening data structures helps generate utilities�
which might be application specic� at a target language level �Sno
�� CIL
�� JT
��� These
may vary from type�checking functionality to generic readers� writers� memory management
and debugging routines� In a multi user context� users can extend and�or restrict views of
common data structures� Incremental modication of views or data structures by one user
need not a�ect other users� views�

f SDL allows users to associate properties� which are simple labels� with the domains� These
properties can be used by application specic code�generation to allow or disallow certain
functionality �read� write� � � �� in views and domains� Thus domains can be used to guarantee
denial of access to components of a structure which can help assure data consistency�

In this paper� we describe the language f SDL through an example� and highlight its char�
acteristic features� An f SDL specication is type�checked� functors expanded �analogous to
template instantiation in C�C��� and �attened to a form with only constructive operators
�the �at form or � SDL�� � SDL can be used by other components such as view�analyzers
and target language code generators �the f SDL compiler or f SDC�� The target language con�
sidered in this paper is C �KR�
�� In Section �� the domain calculus is introduced and in
Section � the �exible functor mechanism is explained� Support for parallelism� the f SDC and
code generation are discussed in later sections�

f SDL is designed in the context of the CoSy�Con��� compiler model which provides a
framework for �exibly combining and embedding compiler phases to facilitate the construction
of parallelizing and optimizing compilers� The �at form� � SDL� can be used by analysis

	� An illustrative example �

tools in conjunction with engine descriptions and conguration descriptions� The � SDL
specication can in turn be modied� e�g�� appropriate locks are added to assure consistent use
of data in a parallel programming context� and fed back to the �attener� A data manipulation
and control package �f DMCP� specic to a target language is generated which can be used
by the engines writers for accessing the pool of data�

��� Related work

In the Gandalf programming support environment �HN
	� tools share a representation based
on the abstract syntax of the language being supported� and all the tools are written in a
single language� A similar approach is taken in �Gro��� CIL
���

IDL �Sno
�� and NewGen �JT
�� generalize these ideas in the Gandalf project� so that
tools could potentially be built in di�erent languages� This generalization has resulted in
identifying a set of pre�dened types as �internal� types� while others are �external� types�
The result of such a distinction� and the lack of capabilities similar to functors in f SDL hinder
building libraries that are polymorphic over the views of data structures� IDL communicates
by channels which require interfaces to be dened for converting external types to internal
types� IDL channels� in practice� promote large grain communication� f SDL aims at an open
system congurations centered around a black�board� where data access requires permission
but not cooperation of the submitting process� The renement mechanisms provided by IDL�
although conceptually similar to the restrictive operations of f SDL� are not written as a
calculus which limits use of renement and makes it hard to dene a domain via a complex
mix of restrictions�

�� An illustrative example

In this section� we will give a small example illustrating the use of fSDL in a C context�
We will show how datastructures for representing the abstract syntax of a tiny programming
language �Femto� are dened in fSDL� Then we will� by way of some extracts of a C program�
show how these datastructures can be used to implement an interpreter for Femto�

�� An f SDL de�nition of Femto

Femto is a tiny language with a tiny context�free syntax �in BNF��

Exp ��� Id � Int

� Exp ��� Exp

� Exp ��� Exp

Stat ��� begin Stat	 end �
�

� Id ���� Exp �
�

� write Exp �
�

� while Exp do Stat

where every statement can be interpreted as a program� Datastructures for implementing
the abstract syntax of Femto are dened by an f SDL specication� which we will introduce
here� divided into small parts�

Basic notions in f SDL are domains� operators and �elds� Domains determine the visibility of
operators and elds� analogous to the way classes determine accessibility of instance variables

	� An illustrative example �

of objects in object oriented languages� Operators are analogous to structs or records� because
they hold values of a cartesian product of several domains �one domain for every eld�� Every
alternative in the context�free syntax above corresponds to an operator� For example� the
domain Un denes the unary operators id and const that hold a single identier Id and a
constant value Int� respectively�

domain Un � f id � name� Id � g
� f const � val� Int � g�

The domains Id and Int are dened as basic values in the underlying programming language
by the following� so�called opaque� denitions�

opaque Id� decl�� typedef char	 Id�

Id Id create
char 	s��

void Id delete
Id��

Id Id copy
Id�� ���

opaque Int� decl�� typedef int Int�

Int Int create
int i��

void Int delete
Int��

Int Int copy
Int�� ���

Where decl�� �� �� contains the declaration of functionality in the underlying program�
ming language� For brevity� we have omitted the implementation �to be specied with impl��

�� ��� of the declared functionality�
When several operators have the same eld� it is advantageous to declare these elds only

once� Thus the f SDL part

domain BinOp � fplusminusg�
domain BinFld � �right�Exp left�Exp��

domain Bin � BinOp � BinFld�

declares a domain Bin with two binary operators� both having a left and a right eld�
Note that the nal domain� Bin� is dened as the sum of the domains BinOp and BinFld�
In f SDL� we have a calculus� called domain calculus� describing the construction of domains
from other domains� Apart from the � operator for adding domains� we also have operators
for restricting domains� In the domain Exp�

domain Exp � Un �
Bin��	���

the operators in Un and Bin are known� but the elds of Bin are not accessible as shared elds�
because �left� and �right� elds are meaningless for unary expressions� The last domain
denition in the f SDL specication of the abstract syntax of Femto concerns Femto�s
statements�

domain Stat � fseq�stats�LIST
Stat��
asgn�id�Idexp�Exp�

while�cond�Expbody�Stat�

ifst�cond�Expthenp�Statelsep�Stat�

write�exp�Exp�g�

Note that the domain of the eld stats in the operator seq is not an ordinary domain� but has
a parameter� The domain LIST�Stat is an instance of a parameterized domain expression�

	� An illustrative example �

called a functor in f SDL� The call of a functor leads to a domain with extended functionality�
in the case of the LIST functor the functions LIST create� LIST delete� LIST hd� LIST tl�
LIST cons and LIST mapc� for creating� deleting� getting the head of a list� getting the tail
of a list� adding an element to the list� and mapping a function over a list� respectively�

� Excerpts of parsing and evaluating Femto

We will now look at some typical examples of the use of code generated from the f SDL
specication above� During parsing� the body of a typical creation function for a node
corresponding to some binary expression �with operator ��� or ���� would be�

f Exp exp�

exp � Bin create
opc��

Bin set left
expleft��

Bin set right
expright��

return
exp��

g

where the functions Bin create� Bin set left and Bin set right� and unique integral
values �opcodes� for all the operators have been generated from the f SDL specication� Note
that the left and right elds can be set without knowing their actual operator code�

A bit more of the power of f SDL is shown in the function that evaluates an expression�

Int eval Exp
Exp e�

f switch
Exp op
e��

f case op Exp const�

return Exp const get val
e�� break�

case op Exp id�

return
lookup
Exp id get name
e���� break�

Bin case� return
eval Bin
e��� break�

default� printf
�error in eval Expnn���
return
���

g�
g

where for the operators const and id� the value is computed directly� and for the binary
operators� another function is called� The identiers op Exp const and op Exp id are the
generated operator codes� and the macro Bin case contains cases for all operators in the
domain Bin�

The expressivity of functors is illustrated by the following excerpt from the evaluation
function for a sequence of statements� where the �mapc� function dened by the LIST functor
is used to map the evaluation function over the sequence of statements�

void eval Stat
Stat s�

f switch
Stat op
s�� f
�	 other cases left out 	�

case op Stat seq�

LIST Stat mapc
Stat seq get stats
s�

eval Stat�� break�

g� g

� f SDL� domains and the domain calculus �

�� f SDL� domains and the domain calculus

��� f SDL and types

In many languages there is a very strict notion of �type�� Variables and values have types
and only assignments of the same type are legal� Often some implicit or explicit casts are
available for conversion of the most obvious similar values�

In many object�oriented languages� this scheme is less strict� objects of a sub�class can
�implicitly or explicitly� be cast to a super�class� and vice versa�

In f SDL there is even greater freedom� objects can generally be cast �implicitly� to any
�type�� but f SDL focusses on visibility rather than type� That is� although some meaningless
cast is technically allowed� the resulting object can not in any way be inspected� since all
aspects are invisible� Visibility is checked either statically or� if this is impossible� dynamically�
and provides security comparable to type�checking�

Technically� the type of a value �we are considering tree or graph structures� so a value
is a single node� is an operator� In practice� however� the domain is more important� In a
domain� some eld in some operator can be dened� and thus become visible� Within that
domain� the operator appears to have only certain elds� and access functionality through
that domain is only dened for those elds�

�� Operators� Fields� Properties and Domains

An operator can be thought of as a C structure type� It has a name� and a number of elds�
each with a name and a domain� Operator names are unique� each occurrence of the same
name refers to the same operator� An operator does not �belong� to a single domain� it may
be dened in a number of domains� each of which denes a �restricted� view of the operator�

A �eld is one of the components of an operator� It has a name and a domain� and in an
operator instance each eld can hold �the reference to� a value of this domain �which is an
instance of an operator dened in that domain�� Fields are used to represent �directed� edges
of trees and graphs�

Fields and operators can have certain properties� A property is an arbitrary identier
or quoted string� Properties control the f DMCP generation process and the functionality
made available in the f DMCP� or the behavior of the f DMCP or other tools� Only a few
properties �such as READONLY� are meaningful to the f SDC itself� others are accepted in
f SDL specications� but are passed on to the �at form� to be used by other tools than the
f SDC�

A domain coincides with a set of operators� each with a list of named and typed elds�
Possibly operators and elds are annotated with properties�

A domain is dened by a number of domain expressions� Each expression adds to the
global denition of that domain� This aspect allows the local extension of a domain which
was primarily dened elsewhere�

A domain expression can be an atom �e�g�� a single operator or eld�� or two expressions
combined with an operation such as � and � In addition� short�hands can be used for
common situations�

��� The Domain Calculus

In f SDL a choice is made to dene specications in terms of a calculus �rather than� perhaps�
a solely constructive denition style such as found in� for example� �Gro�����

� f SDL� domains and the domain calculus �

There are several considerations�

� The calculus allows for constructive specication without the need for local complete�
ness� That is� conservative extensions can be made without altering the global speci�
cation �or unrelated code��

� The concept of visibility is enhanced by restricted views on domains dened elsewhere�
For example�

domain Exp � Un �
Bin��	���

This denition denes expressions with binary operations� of which the arguments need
not be visible �in the underlying context�� This can be expressed in an intuitively clear
manner without untoward redundancy�

Note� though� that restrictive operations are notational convenience only� every speci�
cation could be presented purely constructively�

� The ne granularity of the calculus allows for great expressibility� For example� a view
can be dened which consists of a single eld inside a single operator�

We will now present the domain calculus� Then we will brie�y discuss a few aspects�

� Operators� elds and properties may occur as atomic domains� Examples� fopg is an
operator� �fld�dom� is a eld and �prop� is a property�

� The � operation indicates union� The dened domain contains the union of the left
and right arguments of the � operation� As mentioned� domain denitions may be
distributed� The over�all denition of a domain is the union ��� of all denition con�
stituents�

� Juxtaposition indicates extension of the left argument� For example� fopg�f�dom�
extends the operator op �which is declared implicitly� with the eld f of domain dom�
In this way operators are given elds and properties� and elds are given properties�

� A single domain name can be used as an atom� It indicates importation� The resulting
domain contains all operators with properties and elds dened in the imported domain�
Implementation code domains are not imported� This type of importation is what is
commonly needed�

� The operation � indicates full importation� The left argument is a domain name� the
right argument is an arbitrary domain expression or a quanti�er expression� It acts as a
lter� indicating precisely what should be inherited� The quantiers are used to indicate
classes of things� For example� D�f	g imports precisely all operators from domain D�

� The operation and � indicate restriction and subtraction� respectively� Both argu�
ments are domain expressions� In addition� the right argument may contain quantiers�

Again the right argument acts as a lter� In the case of describing what is imported�
discarding the rest� and in the case of � describing what should be discarded� importing
the rest�

� f SDL� domains and the domain calculus �

� Several short�hands are dened in terms of the calculus� For example� fa�b�f�D�g�D�g
is short for fag � fbg�f�D� � fbg�g�D��

� Finally� there are a few special atoms� which will be discussed in following sections�

��� Private and Shared Fields

Ordinarily� a eld is dened for a single operator� as in fan op �a fld� a dom�g� Such a
eld is called a private eld�

Often it is useful to specify a eld which is to be shared by all operators in some domain�
This is done by dening a shared eld� it appears as an atomic eld� not associated with any
operator� Such a eld becomes private to each operator in that domain�

Consider the following example�

domain BinOp � fplusminusg�
domain BinFld � �right�Expleft�Exp��

domain Bin � BinOp � BinFld�

Each operator in domain Bin has the two elds right and left of type EXP�
Remember that a domain may be dened in several distributed expressions� A shared eld

distributes over all operators in the entire denition� not just the clause in which it appears�
Ordinarily� shared elds are imported� That is� if a domain imports a domain with shared

elds� the importing domain also has these shared elds� and any operators introduced in
that domain will have those elds� To avoid importing shared elds� the import must be
restricted�

Apart from importation� the distinction between private and shared elds is signicant in the
access functionality generated for such elds�

� Private elds are specic to an operator� and hence their access functions is specic for
the operator and the eld�

� Shared elds are implemented as private elds and can be accessed as such� In addition�
in the domain in which the eld occurs as a shared eld� it can be accessed in an
�anonymous� manner� without indicating the operator�

��� Quanti�ers

The full import operation �� and the restrictive operations and � allow the indication of a
lter� which may contain quanti�ers� The scope of a quantier is the left argument of the
enclosing operation� The following quantiers are dened in f SDL�

	 �Only to be used with ��� This indicates everything in the scope�

f	g This refers to all operators in the scope�

f���g�	� This refers to all private elds in the scope� The scope is limited to the operators
shown� this may be a list of operator identiers �such as in fa�bg�	��� in which case
it refers to the private elds of those operators� or again a quantier� f	g�	� refers to
all operators with their private elds� There is no notation for private elds without
operator� for these are not expressible entities in the calculus�

� f SDL� domains and the domain calculus �

�	� This refers to all shared elds in the scope� Note that the elds are still visible as
private elds� they just lose their �shared�ness��

For example� consider the domain Expr in Section ��

domain Exp � Un �
Bin��	���

�	� All properties in the scope� As with elds this quantier may be appended to expressions
to limit its scope� such as in f	g�	��	�� which refers to all operators with private elds
and their properties�

��� Code domains

f SDL specications are translated �by the f SDC� into packages with executable functionality�
This functionality is then used to create� manipulate and destroy trees and graphs� which are
structured according to the specication�

In addition to the default functionality generated by the f SDC� f SDL provides a mechanism
with which code related to a specication can be inserted in that specication�

For this purpose f SDL provides code	domains� A code domain is an atomic domain ex�
pression which contains pieces of code �including function declarations and denitions�� This
code is passed along by the f SDC and is inserted into the generated f DMCP�

There are two types of code�domain� declaration code and implementation code� They
appear as�

impl�� ��� text ��� ��

decl�� ��� text ��� ��

The �decl� code relates to interface descriptions� the �impl� code relates to implementation
oriented code� In the context of C� declaration code ends up in in header les ��h�� and
implementation code in code les ��c��

Code domains are atoms which are left unchanged by juxtaposition �for example� one can
not juxtapose a eld to a code domain��

There are special quantiers associated with code domains� impl�	� and decl�	� refer to
all implementation and interface code domains� respectively�

Ordinary import does not pass on implementation code �which can usually not appear
twice�� It does pass on interface code� in order to propagate visibility of such code� Note
that importing code from a domain does not extend that code to the importing domain� In
Section � extendibility in general will be discussed�

Any code domain is imported by full import� In fact� ordinary import of some domain D

is dened as D�	 � impl�	��
The full power of code domains can not be understood without looking at f SDL�s extension

mechanism �Section ���

��� Support for parallelism

f SDL�s domain calculus supports the ne�grain static detection of possible con�icts between
parallel processes accessing the f DMCP� From the domains known to the processes� it is
straightforward to infer which operators and elds could be involved in such a con�ict�

In addition to the static analysis� dynamic assertions as known from Jade �LR��� or FX
�LG

� can be used to determine which of these con�icts can really occur at runtime� Some

�� Functors 	

of these con�icts may be solved by protecting a eld with a semaphore� or by replacing the
logical eld by several physical versions ��shadows���

Subsequently� �nested� virtual functors can be inserted in the specication in order to
implement these solutions in a transparent way� Here� transparency means that the original
processes still call the same functions as before� We give an example of such a transformation
on page ���

�� Functors

Functors are f SDL�s mechanism for adding generic or non�standard functionality�
A functor is a parameterized f SDL specication� the parameters of which are again do�

mains� A functor can be instantiated from most positions where a domain�name could be
used� Each instantiation of a functor denes an addition to the enclosing� global specica�
tion� the body of the functor is expanded by replacing the formal parameters with the actual
parameters� and by unambiguously renaming local names�

A functor denition looks like this�

functor F �Props�
D� ��� Dn�

begin

domain Aux� � ��� � ���

end�

The body of a functor is an f SDL specication �a list of domain denitions�� with the excep�
tion that it can not contain nested functor denitions� The parameters are domain names�
In addition� a functor may use the implicit parameter �sdom� which refers to the domain in
the denition of which the functor was called� The properties can be used to dene variants

of functors� We will not go into this here�

Each di�erent functor instantiation is instantiated exactly once� A functor instantiation is
regarded di�erent if it has di�erent actual arguments or properties� or if it uses context
information and is instantiated in a di�erent context�

Upon instantiation all local names are uniquely renamed� The instantiated result is a
partial f SDL specication which is added to the global f SDL specication�

Some special attention must be given to parameter replacement in code domains� Remem�
ber that a code�domain is an expression like impl��������� �or decl���������� The body
of this expression is arbitrary �C� code� This text may contain bar�quoted identiers such as
�Id�� These identiers will be replaced by the f SDC for the actual �partial� identier� For
example� some code�domain may contain the following text�

��sdom� parent � �Dom� get exit
x��

Suppose this occurs in a functor instantiation in the type of a eld in a domain Stat� and
suppose that the actual parameter corresponding to Dom happens to be Proc� Then� this
piece of code is expanded to�

Stat parent � Proc get exit
x��

There are two kinds of functors� plain and virtual�

�� Functors 		

��� Plain Functors

In a plain functor there is one special domain called the primary domain� which� in the
functor body� has the same name as the functor itself� After expansion �and renaming of
local names�� the functor instantiation is replaced by the generated name of the primary
domain�

An instantiation to a plain functor may occur anywhere� as the type of a eld� in an import
clause� nested� as the argument to another functor instantiation or inside a code domain�

As an example we will now show how the LIST functor denes an alternative create

function� and the function mapc that maps a function over all the elements in the list� This
function was used in Section ��

functor LIST
S�

begin

domain LIST� fnilcons�hd�Stl�LIST�g
� �my create�

� decl��

�LIST� �LIST� create
��

�S� �LIST� hd
�LIST� This� �

�LIST� �LIST� tl
�LIST� This� �

�LIST� �LIST� cons
�LIST� This �S�� �

void �LIST� mapc
�LIST� This

void
	mappedfun�
�S����

��

� impl��

�LIST� �LIST� create
�

f return d �LIST� create
op �LIST� �nil���g
�S� �LIST� hd
�LIST� This�

f if
�LIST� op
This� �� op �LIST� �cons��

lerror
Head of empty list��

return �LIST� �cons� get hd
This��g
void �LIST� mapc
�LIST� This void
	mappedfun�
�S���

f �LIST� tmp�

tmp � This�

while
�LIST� op
tmp� �� op �LIST� �cons��

f mappedfun
�LIST� �cons� get hd
tmp���

tmp � �LIST� �cons� get tl
tmp��

g
g

���

end�

The LIST functor denes a domain with two operators� nil and cons� where the latter has
elds for the head and the tail of a non�empty list�

Next to the operators and elds� a number of functions �LIST� create� �LIST� hd�

�LIST� tl� �LIST� cons and �LIST� mapc are dened� where it should be noted that the
actual name of any formal argument x will be substituted for the expression �x��

�� The compiler 	�

Finally� it should be noted that the function �LIST� create overrides the function that
would be generated by default for the domain �LIST�� As a result of the property �my create��
this function is renamed as d �LIST� create�

�� Virtual Functors

A virtual functor is �virtual� in that a eld with such a functor instantiation as type is not
a proper eld� it is removed from its context upon instantiation of the functor� It is up to
the functor body to decide how the virtual eld should be implemented� by adding one or
several �hidden� elds instead of the virtual eld� or in any other manner� A virtual functor
does not dene a primary domain�

A virtual functor may use additional implicit parameters dening its context� the domain
��sdom�� operator ��sop� and eld ��sfld� in whose denition the functor was instantiated�
In addition the notation �context may be used to dene something in exactly the same
context� as a private eld in an operator� or as a shared eld� For example� �context�

��sfld� something� replaces the eld containing the virtual functor instantiation by a
eld with the same name but type something� in a context�

A virtual functor may not be imported� Hence� it may only be used in the type of a eld�
or as a nested occurrence in some other functor instantiation� if� eventually� that argument
only occurs as the type of a eld� and never as a direct import�

Due to the limited space available� we will not present an example of virtual functors�

�� The compiler

The f SDL compiler� f SDC �short for �full Structure Denition Compiler��� consists of two
major phases� Flatten and Codegen� Flatten transforms the input specication into so�called
�at form� a sublanguage of fSDL that contains only constructive denitions� From the �at
form� Codegen produces the actual code for the f DMCP�

The �at form provides an interface for the cooperation with other compiler�generation
tools� In a number of iterations� these tools may transform the �at f SDL specication by
adding or deleting domains� operators or elds� and inserting functor applications� Flatten is
used to produce a new �at form as result of every iteration�

In Section ���� we will describe the transformation into �at form� and we will give an
example of a transformation of this �at form by an external tool� Then� in Section ���� we
will discuss the generation of code from a �at f SDL specication�

��� The transformation into �at form

From a code�generation point of view� f SDL specications have a number of awkward prop�
erties�

� An f SDL specication has a distributed character� Information pertaining to a certain
domain may be specied in several places�

� Many domains are constructed from �by �importing�� other domains�

� Plain functors dene new domains that depend on their arguments� These domains are
only implicit in the original f SDL specication�

�� The compiler 	�

� There are many syntactic ways of dening an f DMCP that are semantically equivalent
according to the domain calculus� For example� an identical f DMCP can be dened by
using either constructive or restrictive f SDL operations�

The rst phase of f SDC� Flatten� transforms an f SDL specication into its �at form� which
serves a dual purpose� Firstly� it does not have the awkward problems mentioned above� thus
rendering the generation of code a fairly straightforward process� Secondly� the �at form
serves as an interface for other tools �external to f SDC� to insert their modications and
annotations�

The �at form consists of a list of functor denitions �for referencing by other tools oper�
ating on the �at form� and domain denitions� The domain denitions have the following
characteristics�

� Every domain is dened exactly once�

� There are no imports of other domains� Other domains may only appear as the type
of a eld�

� There are no restrictive f SDL operations�

� There are no calls to functors�

� A denition contains a single list of operators� where every operator is specied with
all of its private elds� visible in that domain�

� There is a single list of elds that have shared access through the domain�

� There are no multiple copies of decl���� or impl���� parts in a �at domain�

A �at f SDL specication is a xpoint under application of Flatten� subsequent runs of Flatten
will produce the same result�

Of course it is only useful to apply Flatten to a �at form which has been modi�ed by tools
external to f SDC � For example� in order to solve a con�ict where two processes running
in parallel that have access to the same eld� it is possible to replace the eld by a locked
version�

domain D� fop�f�D���g � �� �

could be replaced by

domain D� fop�f�LOCK
D����g � ���

which� after another application of f SDC � would be transformed into

opaque SEMA� ���

domain D� fop�F LOCK f D sema�SEMA

F LOCK f D val�D���g
� decl�� D D op f get
D�� ��

� impl�� D D op f get
D d� f��g� ��

���

where F LOCK f D sema is a eld containing a semaphore �dened in the opaque domain
SEMA�� and F LOCK f D val is a eld containing the actual value of the locked eld� In code

�� The compiler 	�

domains� the original access functions for the eld have been redened in order to obtain the
semaphore� before actually processing the eld�

�� Code generation

From the �at form� code is generated to allow the actual use of the f DMCP� In section ������
we will discuss the choice of the implementation language of the f DMCP and in sections
����� and further� we describe what code is actually generated�

���� Choice of implementation language It is important to note that f SDL itself is imple�
mentation language indepedent� providing the implementation language provides su!ciently
powerfull operations to implement the required functionality� This does not necessarily mean
that a generated f DMCP can be addressed from engines written in di�erent programming
languages� but rather that the implementation language is not dictated by f SDL �

The current implementation of f SDC only generates C code� Earlier in the Compare project�
C�� was chosen as the implementation language� From the point of view of f SDL this
language has advantages as well as disadvantages� when compared to C�

The most notable advantage is the stronger type system of C��� In the C�� variant�
every domain corresponds to a class� This domain�class only has conversion functions to
domain�classes which have operators in common� The conversion functions do dynamic type�
checking which can easily be compiled away if a conversion to a domain with a superset of
operators is to be performed� Apart from stronger type�checking� the type system of C��
permits overloading of functions� which leads to signicantly shorter names� especially for
functions generated by functor applications�

Another advantage of C�� is the use of inheritance to specify functionality common to all
or a large subset of all domains� In the C variant� this functionality has to be repeated many
times with only minor di�erences�

An important disadvantage of C�� is a lack of power in it�s concepts of inheritance�
Especially the use of multiple inheritance� where a subclass inherits from several superclasses�
can lead to many problems� A natural implementation of multiple inheriting f SDL domain
hierarchy requires the use of �virtual base classes�� However� this leads to implementations of
classes which are� unexpectedly� many times larger than what was intended�

Another weak point is the lack of possibilities to selectively hide functions from inheritance�
These problems led to an implementation that was e�ectively much more complicated than
an implementation in C�

The most important point� however� is the current state of C�� compiler technology with
respect to interoperability� availability and reliability� The support for overloading seriously
hampers interoperability� at the moment� it is very well possible to incorporate C functionality
into a C�� program� but the other way around is near impossible� Availability and reliability
di�er from company to company� but are too low to warrant a dependency of the Compare
project� Therefore� Compare has abandoned C�� in favour of ANSI C�

��� A summary of the generated code A detailed description of every aspect of the gen�
erated code would far exceed the scope of this paper� Therefore� we will give a summary
here�

Basically� the code generated from an f SDL specication consists of creation� deletion�
copy and equality functions� functions yielding a unique identier� functions to access elds�

�� Conclusions 	�

and of course all additional functions generated by functor applications� For the purposes of
debugging� and reading or writing an f DMCP from or to le� generic access functionality is
provided� This means that for every domain and every operator� there is a list of functions
providing access to all elds of the operator in the domain�

���� Interface and implementation The generated code consists of interface parts ��h les�
and an implementation part ��c les�� An f SDL specication causes many aliases for the
same function� For example� the following extract from the Femto example�

domain Un� f id�n�Id� const�v�Int� g�
domain Exp� Un �
Bin � �	���

causes� among others� the functions

Id Un id get n
Un�� Id Exp id get n
Exp��

In order to keep the executables� produced from code generated by f SDC� small� we have cho�
sen to generate only one real function x Exp id get n in the implementation part ��invisible�
to the user�� and to dene the aliases by way of macros in the interface part�

���� Typing and sort analysis There is some freedom in the mapping of domains to types
�or classes� in the implementation language� In a very strict and type�safe approach� every
domain would map to a distinct type or class� This approach has two disadvantages� Firstly�
a lot of explicit �C� or implicit �C��� conversions have to be performed when the same
operator is accessed through di�erent domains� Secondly� it is hard to express those aspects
that several operators have in common� In C��� this is problematic because of the limited
power of its inheritance concepts� and in C it is impossible to nd a layout of structs� such
that a common eld is always located at a common o�set�

In a very loose and dynamic approach� all domains would map to the same type� In this
type� any eld of any operator should be represented� This leads to huge structures� which
is not really compensated by the advantage that common aspects of several operators are
expressed satisfyingly�

We have chosen for a compromise� in which the set of all operators is partitioned into
sorts� The sorts are the smallest sets of operators such that for any domain� its operators
are in a single sort� Every sort is assigned a distinct C type� and for every domain� a typedef
declaration states C type equivalence between the domain and the sort� Note that a sort may
contain strictly more operators than occur in any single domain� the extreme being a single
sort that contains all operators�

In most cases� shared elds are implemented at the operator level� Therefore� shared elds
only consume space if they must really be present� but their access functions do dynamic
checking because the implementation of the access function depends on the actual operator�
If all operators in a sort share a eld� it can be implemented at the sort level� thus alleviating
the need for a dynamic type check�

	� Conclusions

We have discussed an extensible language for the generation of parallel Data Manipulation
and Control Packages� In several aspects� f SDL is complementary to IDL �Sno
���

Due to the intensive feedback of the Compare user community� the design and implemen�
tation of this language meets actual needs of compiler constructors�

References 	�

f SDL di�ers from other interface denition languages in several aspects�

� Opaque domains provide access to arbitrary external datatypes without the need to
specify a translation into internal primitives�

� The domain calculus provides very ne�grain access control� which is more �exible than
the often rigid class hierarchies found in object oriented languages�

� The domain calculus allows for a conservative extension of data structures� for new
processes added to a system� This is of importance when considering maintenance and
extension of software systems�

� Functors provide extension with abstract data types� A powerful functor library� sup�
porting the needs of the Compare user community is presented in �Tho����

As an implementation language� C was preferred over C��� The main di!culties in using
C�� were a lack of power in its inheritance concepts� and the unreliability �in our experience�
of most current implementations� It must be mentioned that C�� does allow for a greater
degree of static type checking� The main disadvantage of C� from the viewpoint of f SDL� is
the lack of overloading� Thus� the names of the functions generated by f SDC are long�

We would like to express our thanks to all other members in the Compare consortium
that have contributed to the design of f SDL�
References

�CIL
�� D� Cl"ement� J� Incerpi� and B� Lang� The virtual tree processor� INRIA� Sophia�
Antipolis� ��
��

�Con��� The COMPARE Consortium� Investigation into CoSy� ����� Esprit project Com

pare delivarable D��������

�Gro��� J� Grosch� Ast � a generator for abstract syntax trees� Report ��� GMD� Karlsruhe�
Karlsruhe� September �����

�HN
	� A� N� Habermann and D� Notkin� Gandalf� software development environments�
IEEE Transactions on Software Engineering� ����������������� ��
	�

�JT
�� Pierre Jouvelot and R"emi Triolet� NewGen� A language	independent program gener	

ator� Ecole des Mines� ��
��

�KR�
� B�W� Kernighan and D�M� Ritchie� The C Programming Language� Prentice�Hall�
���
�

�LG

� J�M� Lucassen and D�K� Gi�ord� Polymorphic E�ect Systems� ACM Symposium on
Principles of Programming Languages� January ��

�

�LR��� M� S� Lam and M� C� Rinard� Coarse�Grain Parallel Programming in Jade� In ACM

Conference on Principles and Practice of Parallel Programming �PPOPP�� pages
������� Computer Systems Laboratory� Stanford University� �����

�Sno
�� Richard Snodgrass� The Interface description language� De�nition and use� Princi�
ples of Computer science series� Computer Science Press� ��
��

�Tho��� Fran#cois Thomasset� A library of functors in fSDL� Reference Manual� INRIA� �����

