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Abstract

Existing models for I�O in side�e�ect free languages focus on functional languages� which are usually based

on a largely deterministic reduction strategy� allowing for a strict sequentialization of I�O operations� In

concurrent logic programming languages a model is used which allows for don�t care non�determinism� the

sequentialization of I�O is extensional rather than intensional� We apply this model to equational languages�

which are closely related to functional languages� but exhibit don�t care non�determinism� The semantics are

formulated as constrained narrowing� a relation that contains the rewrite relation� and is contained in the

narrowing relation�

We present constrained narrowing and some of its properties� a constructive method to transform con�

ventional term rewriting systems to constrained narrowing systems� and a discussion on requirements for an

implementation�
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�� Introduction

Several models have been formulated �Lan��� JW��� AvGP��	 which aim to reconcile the side

e�ect free nature of functional languages with the inherently imperative nature of I�O This is
a hard nut to crack� since the very purpose of I�O is the e�ectuation of side e�ects Side e�ects
invalidate referential transparency� thereby inhibiting equational reasoning and complicating
program transformation� and they imply signi�cant sequentialization of operations� thereby
opposing non
determinism and lazy program evaluation �JW��	 Most prominently� monadic
I�O is found to be a model which addresses these issues� and which has all desired opera

tional and formal properties The basis of the models described in �Lan��� JW��� AvGP��	�
including that of monadic I�O� is a strict sequentialization of I�O operations

Equational languages �we aren�t aware of a generally accepted meaning of this phrase� so we
use it loosely� such as OBJ ��GKK���� KKM��	� or ASF�SDF ��BHK��	� are closely related
to functional languages One of the key di�erences� however� is the essential assumption of
non
determinism� a functional reduction strategy is largely deterministic When functional
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I�O models are used in equational languages� the strict sequentialization of I�O operations
imposes signi�cant determinism

Concurrent logic languages also embrace non
determinism� and there� a suitable model is
de�ned� which is based on uni�cation We formulate that model in the context of equational
languages with don�t
care non
determinism

��� Equational Languages and Non�Determinism

Implementations of equational languages di�er in the way they approach non
determinism
The non
determinism occurs when more than one rule can be applied to a term� or when
rules can be applied in di�erent places in a term There are two kinds of non
determinism�
don�t care� and don�t know �MOI��	

If only some of the possible choices may lead to useful results �the others leading to failure
or in�nite computations�� it is called don�t
know non
determinism� if theoretical grounds exist
which imply that any choice will lead to the desired result� it is don�t
care non
detereminism

Don�t
know non
determinism is computationally much more expensive to implement� be

cause the solution space needs to be searched exhaustively� either breadth
�rst �requiring
much memory�� or depth
�rst �backtracking� In the context of don�t care non
determinism�
only a single thread needs to be followed

In this article we are solely interested in don�t
care non
determinism

The most notable example of a calculus requiring don�t
care non
determinism is term rewrit

ing over complete rewrite systems We will now argue that TRSs are unsuitable to model
output

��� Term Rewriting and I�O

The term rewrite relation is a passive relation in the context of equational logic� whereas
I�O is an expression of activity Operationally this contradiction is less apparent because
an implementation of term rewriting is an active procedure which computes one particular
reduction sequence In this article we strive to model I�O for such a procedure in a manner
that is meaningful and consistent in the formal context� even though the notion of I�O is
unimaginable there

Input is relatively easily modeled by lazy introduction of the subject term As long as the
implementation has had no need to look at some sub
term� it is formally irrelevant whether
it is already ��lled in� or not

Output is less straightforward�

� In general� the end
result is not yet known in any detail� so parts of it can not yet be
produced�

� Reports on individual rewrite steps and substitutions are unsatisfactory� due to non

determinism� reductions can be postponed arbitrary lengths of time �unless no other
reduction is possible� of course�� so output appears in arbitrary order

For this reason we leave the realm of pure term rewriting� as we will see in the direction
of narrowing Unfortunately narrowing involves don�t
know non
determinism� and is compu

tationaly less attractive �MOI��	 We develop a calculus� called constrained narrowing� that
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allows output to be modelled� but has the computational advantages of term rewriting As a
relation� constrained narrowing subsumes term rewriting and is subsumed by narrowing

��� Simple Examples

Consider a rewrite system consisting of a single rule� f�a�� b �here� a and b are constants��
and consider the term f�x� �where x is a variable� Under ordinary term rewriting the term
f�x� is a normal form� but it can be narrowed �to b� by applying the substitution x �� a
Assuming x is an output variable� this reduction is also valid under constrained narrowing
Observe that a variable is used to indicate the place where output will be produced� and that
the actual output is de�ned in the substitution that instantiates that variable That is� when
f�x� is narrowed to b� the output x �� a can be e�ectuated in the outside world

As a second example� consider the two rules f�g�x��� h�x� and h�a�� b� and consider the
term f�y� This term can be narrowed� �rst to h�z� �by applying the substitution y �� g�z���
and then to b� by applying z �� a The output de�ned by this constrained narrowing sequence
is contained in the two substitutions y �� g�z� and z �� a� or equivalently� y �� g�a� Note that
the output is produced partially ordered top
down Otherwise� non
determinism is maintained
entirely

Earlier� we mentioned that input can be modeled by lazy� incremental introduction of the
subject term For uniformity�s sake we present this in the same framework of constrained
narrowing A not
yet
�lled
in term is represented as a variable Unlike an output variable� an
input variable is constrained by the actual input� and a narrowing step is only a constrained
narrowing step if that variable is instantiated in accordance with the input

Consider the two rules g�a� � c and g�b� � d� and consider the term g�x�� where x is an
input variable Suppose that input is provided stating that x should only be narrowed to a
In this context the narrowing step g�x� � d is not a constrained narrowing step� whereas
g�x�� c is

To summarize� a constrained narrowing step is either a term rewriting step� or a narrowing
step in which only certain variables can be instantiated and under certain conditions

��� Overview

We do not limit ourselves to text
oriented I�O� but rather assume there to be an interpretation
from �arbitrary� terms to the contents of �les Thus� for instance� a list of characters �for
example built using the function symbols cons� nil and the characters�� can be interpreted as
a text �le� and an association table as an indexed �le with variant records

In this paper we take ��le� to refer to proper �les as well as I�O streams

The remainder of this paper is organized as follows In Section �� we present an illustra

tive example of the model� in Section �� we de�ne constrained narrowing� which combines
well
known concepts from term rewriting ��Klo��� Red��� Hul��� MOI��	� and concurrent
logic programming ��Sha��	�� and we show how this models I�O In Section � we discuss a
few properties of constrained narrowing In Section � we discuss how a CNS �constrained
narrowing system� can be obtained from an ordinary TRS In Section � we brie�y discuss the
implementation of the model In Section �� we discuss related work Finally� we present our
conclusions
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�� Example

In this section we consider a practical example of a constrained narrowing system involved
in I�O We de�ne a function inverse� which produces on output a bit
wise inverted copy of
its input� and which counts the number of bits that were inverted Input and output are
strings of bits� represented using the constants � and �� and the constructors cons and eof
The normal form of application of inverse on proper input shall be a number in successor
zero
notation Finally� we use the auxiliary function not� the rules for which we will not show In
this section� b� f and g� possibly with subscripts� indicate variables

inverse�cons�b� f�� cons�not�b�� g� � succ�inverse�f� g�� ����

inverse�eof � eof � � zero ����

Consider the term inverse�f�� f��

In the context of constrained narrowing� we must indicate whether variables are input�
output� or neither For this example we will assume any variable with an odd index to be
input related� and any variable with an even index to be output related

Also� the input � say� the string ��� � is provided by expressing the requirement that f�
should only be instantiated with a term that matches cons��� eof �

There are are in�nitely many narrowing sequences applicable to the subject� rule �� can
be applied� producing the normal form zero� or rule ��� can be applied� which results in the
successor of a term that is identical to the original term up to renaming of variables

Given the constraints� only one constrained narrowing sequence exists� up to renaming of
variables It is shown below We use the symbol ��� for constrained narrowing steps� and
above that symbol� the most general uni�er underlying the step is shown The rules applied
are ��� and ��� respectively

inverse�f�� f��

f� � cons�b�� f
�
f� � cons�not�b��� f��� �z �

��� succ�inverse�f
� f���

f
 � eof
f� � eof
� �z �

��� succ�zero�

As in our earlier examples� the output de�ned by this narrowing sequence is de�ned as
whatever f� is �eventually� narrowed to� which is cons�not�b��� eof � The input variable b� is
associated with a part of the input which has not yet been inspected It is consistent with
our model to produce output containing such variables� but in practice it may be desirable
to instantiate that variable in accordance with the input

Secondly� the output term is not a normal form Our model does not require it to be one�
but in practice this may again be desirable In that case the term should be normalized� at
which time the entire term is inspected after all The produced output is cons��� eof �

To summarize�

� Input is provided by de�ning a constraint on the value that input variables can be
instantiated with This constraint makes certain narrowing steps invalid in constrained
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narrowing A rule is only applicable if a unifyer exists which only a�ects input and
output variables� and which concurs with the input constraint

� The input is inspected in discreet stages �because each narrowing step only inspects
the part de�ned by the most general uni�er underlying the narrowing step� Variables
introduced in the most general uni�er correspond to uninspected parts of the input� and
they are implicitly constrained by the original input requirement

� Output variables in the subject term may be instantiated as a result of narrowing steps
The grand total of these instantiations constitutes the output

� Not all input needs to be inspected eventually� and uninspected input �ie� unbound
variables� may occur in the output �however� normalizing the output necessitates in

spection of those variables�

� The output is not automatically put in normal form A practical operationalization is
the requirement that all output is normalized� in which case unused parts are inspected
after all

�� Constrained Narrowing

In this section we de�ne constrained narrowing First we introduce notation and terminology�
which are essentially consistent with �Klo��	 and �DJ��	

��� Basics
A signature  consists of�

� A countably in�nite set V of variables� x� y� f�� c�� � � ��

� A non
empty set F of function symbols� f� g� cons � � � �� each with an arity �� ��� which
is the number of arguments the function requires In this paper� variables and functions
can be distinguished from context

The set T � � of terms over  is the smallest set satisfying

� V � T � ��

� for all f � F with arity n� and t�� � � � tn � T � �� we have f�t�� � � � � tn� � T � �

We write x � t if x occurs in t� and var�t� for fx � Vjx � tg

A path in a term is represented as a sequence of positive integers By tjp� we denote the
sub�term of t at path p For example� if t � f�g� h�f�y� z���� then tj��� is the �rst sub
term of
t�s second sub
term� which is f�y� z� We write p � s if p is a valid path in s �ie� indicates
a sub
term of s�� and p� 	 p� if p� is a pre�x of p� �ie� 
p
 � p� � p��p
� The empty path
�referring to root� is written as � We write t�s	p for the term resulting from the replacement
of tjp in t by s

A substitution is a �total� map � � T � � �� T � � which satis�es �f � F � ��f�t�� � � � � tn��
� f���t��� � � � � ��tn�� By convention� we often write t

� for ��t�
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Let the carrier of a substitution � �denoted as Car���� be the set fx � Vj��x� �� xg� and
the variable range �Ran���� the set fx � Vj
y � Car ��� � x � ��y�g A substitution �� is
more general than a substitution �� ���  ��� if a substitution �
 exists such that �� � �
���
We shall write �i�n�i for �n � � � � � ��� or just ��i if the range is clear from context

A uni	er of a set of terms t�� � � � � tn is a substitution � which satis�es t�� � � � � � t�n The
most general uni	er �abbreviated mgu� of a set of terms is the smallest uni�er� wrt � and
it is unique up to renamings of variables

In many texts� this latter property is used implicitly to obtain renamings of an mgu in
which no unintended name
clashes occur In this paper we are more explicit We introduce the
notation mguS for a renaming of the most general uni�er in which no variable occurring in any
of the terms in the control set S � fs�� � � � � skg is used That is� if � � mgufs������skg�t�� � � � � tn��
then x � si � x �� Ran���

For example� three renamings of mgu�f�x�� f�y�� are fx �� y� y �� yg� fx �� x� y �� xg and
fx �� z� y �� zg� but only the third is �an instance of� mgufx�yg�f�x�� f�y��

A rewrite rule is a pair of terms written as s � t with s� t � T � � It is assumed that
the left
hand side s of a rule s � t is not a sole variable� and� in the case of ordinary term
rewriting� that var�t� � var�s�

A term rewriting system R consists of a signature  and a collection of rewrite rules R

A term rewriting system de�nes a rewrite relation �R Since the subscript R is usually
clear from the context� it is omitted The overloading of � �relation and notation of rules�
is by convention

s� t
def
�� 
�� p� u� v � R � sjp � u� � t � s�v�	p

The sub
term sjp is referred to as redex �for reducible expression�� the sub
term tjp as reduct�
as is t itself� on occasion A series of terms s�� s�� � � � such that s� � s� � � � � is called a
rewrite sequence A term s is said to be in normal form if there is no t such that s� t

A term rewriting system also de�nes the �one step� narrowing relation� ��

s �� t
def
�� 
p � s� u� v � R� � � mgu�sjp� u� � sjp �� V � t � s��v�	p

Various properties of narrowing are discussed in �Hul��� Han��� MOI��� Klo��	 The de�

nition of narrowing allows for pathetic renamings of the uni�er� which we would like to avoid
We introduce the most general narrowing relation to provide �global� generality� the substi

tution used in a rewrite step does not introduce variables occurring in the rewrite relation R�
the initial subject term� or which have already been introduced by earlier substitutions Note
that this is not a new relation� but rather a constraint on �legal� renamings

�In most texts� this relation is trivially extended to equations� and it it is used for solving uni�cation

problems in equational theories that are presented by con�uent TRSs� most notably the determination of

solutions to equations in equational theories� These applications of narrowing are so common� that they are

are identi�ed with the relation itself� but in this paper we use the relation for another purpose�
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sn
�n
���s�����s�������n��� sn��

def
��

s�
��
�� s�

��
�� � � �

�n��

�� sn�


pn � sn� un � vn � R� �n � mgu�i�nRan��i�
S
fs�g

S
var�R��snjpn � un� �

snjpn �� V � sn�� � s�nn �v
�n
n 	pn 

In this de�nition some subscripts of �� have been left out� which are clear from the context

��� Cascades

In order to express the incremental nature by which input is consumed� or output is produced
we introduce the notion of a cascade of substitutions which gradually instantiates a set of
variables

A series of substitutions ��� ��� � � � is called an cascade if it exhibits the following properties�

� �i �� j � Car��i� � Car ��j� � �
Variables are instantiated only once� further instantiation is done by re�ning nested
variables

� �i �� j � Ran��i� � Ran��j� � �
Variables are introduced only once

� �i 	 j � Car��i� � Ran��j� � �
A variable must be introduced before it is instantiated

Theorem 
��� Let s�
��
�� s�

��
�� � � � be a most general rewrite sequence� and let �i be the

substitutions derived from �i by disregarding variables in rewrite rules �ie� �i�x� � �i�x� for
x �� R� and �i�x� � x otherwise� Then ��� ��� � � � is a cascade We call this cascade the trace
of the rewrite sequence

Proof� Observe that � is trivial� because the sequence is most general

Now we will prove � If x � Car ��i� �and hence x � Car ��i��� we have x � si� because �i
is mgu Hence� x � s� or x � Ran��k� for some k � i But x � Ran��j� implies x � Ran��j��
and �j � mgu�l�jRan��l��fs�g

�� � �� This is a contradiction

Finally we will prove � Suppose x � Car ��i��Car ��j� and suppose i � j By ��� we have
x �� Ran��i� Hence� x �� si�� Also� x � Car ��j� implies x � sj But then it must have been
introduced by� say� �k for i � k 	 j That is� x � Ran��k� Since x � Car ��i�� and therefore
x � si we have x � s� or x � Ran��l� for some l � i This is a contradiction

��� Constrained Narrowing
Constrained narrowing di�ers from ordinary narrowing in its distinction of three types of
variables� input� output and ordinary Ordinary variables may never be instantiated during
rewriting� output variables may be instantiated when this is required for the application of a
rule� and input variables may be instantiated if it is required and if it is in accordance with
the input that is provided In addition� whenever an input or output variable x is instantiated
with a term s� the variables that are introduced in s must be of the same type as x
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Firstly� we assume the existence of a function type on V with range fo� i� pg� for output�
input and ordinary �plain� variables� and we say that a uni�er � is I�O�conformant �written
as conf ���� when

conf ���
def
��

�x � Car��� � type�x� �� p � �y � var���x�� � type�x� � type�y��

Secondly� actual input acts as a constraint on potential uni�ers We model input as a
cascade of substitutions �rather than a single substitution�� since input may be de�ned in

crementally �eg� user input� This is a separate aspect from the fact that input is used
incrementally during rewriting We require that the variables occurring in carriers of substi

tutions in this cascade are input variables

��� ��� � � � j� ��� ��� � � �
def
��

�n�x � Car ��n� � type�x� � i �
�n
m�x � Car ��i�m�i� ��i�n�i�x�  �i�m�i�x��

We now present the de�nition of constrained narrowing�

��� ��� � � � j� sn
�n
����s���������sn����n��� sn��

def
��

conf ��n� �

��� ��� � � � j� s�
��
��� � � �

�n��

��� sn �

pn � sn� un � vn � R� �n � mgu�i�nRan��i�

S
fs�g

S
var�R��snjpn � un� �

snjpn �� V�
��� ��� � � � j� ��� � � � � �n�
sn�� � s�nn �v

�n
n 	pn

The ordinary term rewriting relation is subsumed by the constrained narrowing relation�
which is again subsumed by narrowing These facts are easily veri�ed

Input is expressed in the constraint �  This cascade limits the narrowing relation� but
doesn�t depend on it Output occurs when the uni�er � instantiates output variables in the
subject sub
term To be precise� the input consumed� and the output produced by a rewrite
sequence are de�ned as follows�

Output� For every output �le 	 a unique output variable x� is selected which must occur at
least once in the initial query s� The rewrite sequence s� ��� s� ��� � � � de�nes a trace

�� 
�� � � �� which is a cascade The contents of the output �le is de�ned as �
i�x

��

Observe that this output can be e�ectuated incrementaly� while narrowing is still in
progress� as each substitution in the trace becomes available

Input� For every input �le � an input variable x� is chosen which must occur at least once in
the initial query s� The contents of the �le are represented in the constraint ��� ��� � � �
governing the rewrite sequence� with �i�m�i�x

�� approximating the eventual contents
for increasing m

�� Some Properties of Constrained Narrowing

Constrained narrowing is a new calculus in the area of term rewriting and narrowing� which we
propose as a suitable alternative for term rewriting as an operational semantics for equational
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languages In this section we discuss a few of its properties� relating to non
determinism and
computational suitability We will not provide extensive proofs

In this section we abbreviate term rewriting� constrained narrowing and narrowing to Tr�
Cn and Na� respectively

Property �� Let t�� � � ��tn be a Tr sequence� and let t� contain no input or output
variables Then t���� � � ����tn is a Cn sequence

No I�O variables can be introduced� so none occur altogether Then� Cn coincides with
Tr

Property �� Let s���� � � ����sn be a Cn sequence for empty input �� �ie� var�t� �
Car ���� � ��� and suppose s� contains no output variables Then s�� � � ��sn is a Tr
sequence

The only steps possible are proper rewrite steps

Property �� Let s���� � � ����sn be a Cn sequence for input �� � and suppose s� contains
no output variables Let ti ����si� Then t�� � � ��tn is a Tr sequence

Narrowing step i implies that a sub
term in si can be uni�ed with a rule in accordance
with the constraint In ti that constraint has been ��lled in�� so a match must occur

Properties �!� mean that Cn without output is equivalent to Tr Note however� that the
practical aspect of interactive I�O is lost in this formal equivalence

Property �� Let s���� � � ����sn be a Cn sequence for constraint �� and trace ��� and let
ti �������si�� Then t�� � � ��tn is a Tr sequence

This property is derived in a similar vein as above� and it suggests that Cn does not
add essentially new reductions It is not reasonable to say that Cn is equivalent in this case�
because we use the output that is to be computed� unlike input� it is not available beforehand

Corrollary � These properties characterize in�nite Cn sequences� they coincide with in�

nite Tr sequences� they process in�nite input� or they produce in�nite output

Property �� In Section � we present a transformation of a TRS de�ning output as a proper
function of input to a CNS which produces the intended output under Cn The transformed
system is con�uent and terminating underCn if the TRS is con�uent and terminating� respec

tively� under Tr In addition� the transformed system has the property of output
con�uence�
to be introduced now

��� Output Con�uence
A comment must be made regarding the desirable property of con�uence� which is closely re

lated to non
determinism Two kinds can be distinguished� con�uence and output
con�uence
A TRS is con�uent if� for any s� t� and t� where �possibly empty� reduction sequences
s � � � � � t� and s � � � � � t� exist� there is a u such that �possibly empty� reduction se

quences t� � � � �� u and t� � � � �� u exist Con�uence guarantees that reachable reducts
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remain reachable in light of non
determinism� and� given termination� that normal forms are
unique

The same de�nition is applicable to CNSs� but it provides no guarantees wrt the output
that is produced

A CNS is output�con�uent if� for any s� t and distinct narrowing sequences s ���
�
� � � ���

�
t

and s ���
�
� � � ���

�
t with traces ��� � �

�
� � � � � and ��� � �

�
� � � � �� respectively� we have� for any

x � s� that����x� and����x� have a common reduct �ie� a u exists such that����x� ���
� � � ��� u and ����x� ��� � � � ��� u�

Output con�uence guarantees uniquely de�ned output for CNSs� which is the normal form
of the generated output

Su"cient conditions can be formulated under which con�uence and output
con�uence are
guaranteed� but we will not go into that in this paper In Section � a method is presented
to transform conventional TRSs de�ning output� to CNSs that produce that output under
constrained narrowing The transformation is such that a con�uent TRS is transformed to a
con�uent� output
con�uent CNS

�� Transforming Cnventional TRSs

This paper would be incomplete without a constructive description of how a CNS with a
required output behavior is obtained Note� however� that we will not go into the proofs�
merely sketching the method Also note that we do not suggest all CNSs can or should be
constructed in this manner� we merely acknowledge that writing TRSs and writing CNSs are
di�erent skills

We assume that the output can be speci�ed by an ordinary TRS as a function of the input�
and without loss of generality we consider a function f � taking a single �input� argument� and
yielding the intended output That is� given an input s� the intended output is the normal
form of f�s�

We will describe how an ordinary TRS de�ning f can be transformed into a CNS which pro

duces that output under constrained narrowing This method is very similar to the de�nition
of functions as relations in logic programming languages

Let #f be a function with arity �� and let f�u�� v be one of the rules for f  If v does not
have a �recursive� occurrence of f � then de�ne the following rule� #f�u� v� � dummy �where
dummy is an auxiliary free constant� If v has one recursive occurrence of f � say vjp � f�u���
then de�ne the rule #f�u� v�x	p�� #f�u�� x�� where x is a fresh variable

If more than one recursive occurrence of f exists� we use an auxiliary function also� which
is governed by the rule also�dummy � dummy� � dummy  Suppose v has two occurrences
of f �say vjpi � f�ui� for i � f�� �g� If the two occurrences are independent �ie� p� �	
p� � p� �	 p��� we de�ne #f�u� v�x�	p� �x�	p�� � also� #f�u�� x��� #f�u�� x��� Otherwise� say if
p� 	 p�� and let p
 be such that p� � � � p
 � p� �� is the index of f �s sole argument�� we de�ne
#f�u� v�x�	p��� also� #f�u�� x��� #f��vjp�����x�	p� � x���

This can be extended for more recursive occurrences

This transformation results in the de�nition of a function #f � such that the normal form
of #f�s� y� �where y is an output variable� under constrained narrowing is dummy� whilst the
trace re�ects that y � f�s� This is easily veri�ed



�� Implementation 		

Theorem 
��� If the TRS de�ning f is con�uent then the CNS obtained from this transfor

mation is con�uent and output
con�uent

We will not discuss the proof of this theorem

�� Implementation

The implementation of constrained narrowing is straightforward It is based on a special
action that is triggered when a variable is encountered in a subject term

Consider the recursive algorithm which matches a subject term s against the left
hand side
of a rule u� and suppose a variable is encountered in the subject term �ie� s � V for some
recursive instance� If type�s� � i� u is matched against the currently available input If this
match fails �ie� the constraint di�ers� or is not yet available� then the entire match fails If it
succeeds� the variables in the current instance of u are replaced by fresh input variables and the
result is bound to s Binding means global replacement� which can e"ciently be implemented
by graph rewriting� such that variables in subject
terms are represented as �exhaustively�
shared sub
terms Then� binding involves a single in�situ replacement

If type�s� � o� the match succeeds implicitly� and that variable is simply bound to a freshly
renamed version of u

If type�s� � p the match succeeds i� u is identical to s

Observe that the rule isn�t applied if input is not yet available A possible mechanism is that
execution is suspended until input becomes available� but in the context of complete� output
con�uent rewrite systems� it may be preferable to continue normalization This produces the
same result in another manner� or leads to an open term which can be regarded as a weak
normal form representing the partially evaluated subject term As soon as input becomes
available the input variables can be instantiated� and execution can continue

Note that we do not require output to be in normal form If this is needed� then the output
routines must normalize terms bound to output variables� before the output is actualized

�� Related Work

We will �rst discuss the origins of our notion of constrained narrowing� and indicate the few
details in which we di�er from other de�nitions of narrowing and rewriting Then� we will
discuss �concurrent� logic programming languages and functional programming languages
Finally� we will discuss existing techniques for reconciling pure functional programming lan

guages with I�O

In most texts and supporting software environments term rewriting without narrowing is
considered That is� variables occurring in the subject term are left unchanged In �Klo��	 the
notion of narrowing is discussed� although not speci�cally as an extension of term rewriting�
and certainly not to handle I�O

The notion of constrained narrowing has to our knowledge not been de�ned elsewhere

Implementations of conventional logic programming languages such as Prolog� perform I�O
by �calling� so
called extra�logical predicates which have side
e�ects that cannot be undone
during backtracking

In concurrent logic programming �Sha��	� logical variables are used in a similar way as in



� Conclusions 	�

our model The semantics of these languages requires that results of failing �failing in the
sense of Prolog� computations are observable� and I�O is meaningful� regardless whether the
computation is successful or not Our work can be seen as an investigation of these ideas in
the context of equational logic� instead of predicate logic which is fundamental in �concurrent�
Prolog

Functional programming is very much related to equational programming There are sev

eral combinations of logical and functional programming �Han��� Red��	 A good account
of logical variables in the context of functional programming was given by Reddy �Red��	
It is interesting to note that most of the combinations studied in these references assume
backtracking �don�t know non
determinism� in their implementations� instead of don�t care
non
determinism

In pure functional languages� several proposals have been made for clean I�O models We
mention Landin�s streams �Lan��	� Monads �Mog��� JW��	� and Uniqueness Types �AvGP��	
Compared to our approach� these models are more deterministic� especially with respect to
output More generally� these models sequentialize I�O actions by imposing static constraints
�usually expressed as types� on the program

	� Conclusions

We have provided a model for I�O in equational languages with don�t care non
determinism
The operational semantics are intuitively appealing� are independent of any reduction strat

egy� and allow for don�t
care non
determinism An implementation based on conventional
rewriting is straightforward� and can be highly e"cient �HF���	 The model concerns I�O of
arbitrary terms� and does not focus on a particular �le structure

The model is formulated as a calculus combining the good computational properties of
term rewriting with the needed additional expressiveness of narrowing Su"cient conditions
for con�uence and termination exist �but have not been discussed� We have sketched how
constrained narrowing systems can be easily obtained from ordinary rewrite systems de�ning
output as a function of input� and how con�uence of such a TRS implies con�uence and
output con�uence of the result
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