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Abstract

The paper introduces a family of stationary random measures in R? generated by so-called germ-
grain models. The germ-grain model is defined as the union of i.i.d. compact random sets (grains)
shifted by points (germs) of a point process. This model gives rise to random measures defined
by the sum of contributions of non-overlapping parts of the individual grains. The corresponding
moment measures are calculated and the ergodic theorem is presented. The main result of the paper
is the central limit theorem for the introduced random measures, which is valid for rather general
independently marked germ-grain models, including those with non-Poisson distribution of germs and
non-convex grains. The technique is based on a central limit theorem for 3-mixing random fields.
It is shown that this construction of random measures includes those random measures obtained by
the so-called positive extensions of intrinsic volumes. In the Poisson case it is possible to prove a
central limit theorem under weaker assumptions by using approximations by m-dependent random
fields. Applications to statistics of the Boolean model are also discussed. They include a standard
way to derive limit theorems for estimators of the model parameters.
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1. INTRODUCTION

The ergodic theorem for spatial processes [19] establishes the existence of spatial averages
when a sampling window expands unboundedly in all directions. In many applications
such averages can be interpreted as intensities of some stationary random measures having
random closed supports in R? . For example, a point process corresponds to the measure
which counts the number of elements belonging to a discrete random set, a random closed
set with non-empty interior gives rise to the random volume measure. Further examples
are provided by geometric measures, e.g., surface and curvature measures of random sets.
The relationships between intensities of such measures and parameters of the underlying
random set or point process are the basis of the method of moments in statistics of
stationary random sets [18, 26].

A simple example states that, for any ergodic random closed set Z in R? , the volume
fraction inside window W (the part of the window covered), converges almost surely to
its expectation called the volume fraction of Z, while W is assumed to expand to the
whole space in a “regular way” [4, p. 332]. The corresponding central limit theorem
was established in [2, 15]. In fact, it is related to weak dependence properties of the
corresponding indicator random field ((z) = 1z(z) with the subsequent applications of
limit theorems for additive functionals of random fields.

Another example stems from the theory of point processes. If Z is a point process in
R? | then the corresponding counting measure gives the number of points in a bounded
window. Its spatial density (for ergodic point processes) is equal to the intensity of the
point process. The central limit theorem for the number of points is true under some
conditions of weak dependence within Z . The limiting variance is related to the second-
order characteristics of 7.

For more general functionals (which include, e.g., the boundary length or surface area)
the convergence of spatial averages was considered in [19] and [27]. However, until now
a general approach to derive limit theorems for such functionals seems to be unknown.
It should be noted that these limit theorems are very important for the construction of
confidence intervals for estimators in statistics of stationary random sets. Sometimes it is
possible to derive the asymptotic normality of the spatial averages, but the computation
of the variance are usually impossible. In turn, the latter is caused by the lack of second-
order integral-geometric formulae, see [25].

The first limit theorems for geometric functionals other than volume fractions were
proved in [18] and [17] for the so-called Boolean model Z and functionals equal to the
convexity number or the surface measure. In this paper we consider more general models of
random sets and geometric functionals and prove the corresponding central limit theorem.
Also, we do not need the boundedness of the grain assumed in [17] for the case of surface
measures.

As known from probability theory, ergodicity and first moment assumptions are not
sufficient to hold a central limit theorem. One has to impose further conditions on both
the random sets and the corresponding random measures. In the present paper we are
interested in a class of random measures associated with so-called independently marked
germ-grain models. Nevertheless, we will show that this special class includes positive



extensions of the intrinsic volumes, which are very important in statistics of random
closed sets.

To begin with, we recall the definition of germ-grain models and introduce a class of
random measures associated with them (Section 3). The germ-grain model is composed
from a sequence of independent identically distributed random sets (grains) shifted by
the points (germs) of a point process. Germ-grain models with compact grains are widely
used in stochastic geometry and generalize the well-known Boolean model which appears
if the point process of germs is Poisson. Roughly speaking, the associated random mea-
sures are defined through sums of contributions of those parts of individual grains which
are exposed (not covered by all other grains). In the simplest case, this construction can
be used to obtain the surface area of the germ-grain model. The associated random mea-
sures include, for instance, those Minkowski measures (or positive extensions of intrinsic
volumes) defined by Matheron [16, Section 4.7].

Statistical properties of associated random measures are studied in Sections 4 and 5.
In particular, higher-order mixed moment measures are given in Section 4 and the abso-
lute regularity (or S-mixing) is proved in Section 5. We show that the S-mixing property
of the germ process implies F-mixing of the germ-grain model and the associated random
measure provided the diameter of the typical grain has sufficiently high moments. Sec-
tion 6 establishes the central limit theorem for associated random measures. Section 7
deals with the Boolean model for which the central limit theorem holds under very mild
(in fact, optimal) conditions.

Relationships between the introduced associated random measures and standard geo-
metric functionals are studied in Section 8. Then the introduced associated random mea-
sures give, in particular, the so-called positive extensions of the intrinsic volumes, e.g.,
volume, surface area, integrals of absolute curvatures, convexity number etc. Mean value
formulae for extended intrinsic volumes are very important in statistics of the Boolean
model. Therefore, the generalized associated random measures give rise to new mean-
value formulae and also provide a unified approach to limit theorems for spatial averages.
Such statistical applications and examples are considered in Section 9. Several possible
generalizations are outlined in Section 10.

2. Li1sT OF NOTATIONS

[RY, B9] : d-dimensional Euclidean space with Borel o-field;

B : family of bounded Borel sets in R?;

|E4] : Euclidean norm of z € R?;

1Kl = sup{[|z| : = € K}, K € B;

|B| : d-dimensional Lebesgue measure (or volume) of B € B¢;
B,.(z) ={yelR?: ||lz—y|| <r}forz e R and r > 0;

15(z) = 1if z € B and =0 otherwise (indicator function of B);

Fe : complement of set F'in the underlying space;



OF : boundary of ' C R?;

[F, o] : family of closed sets in R? with Matheron’s o-field, see [16];

(K, o] : family of compact sets in R¢ with o-field o}, = {ANK : A € 04};

K ={-z: z€ K} for K € K;

b : Minkowski addition, i.e., 1 @ Fy ={z+y: z € [}, y € F3},
F, F, C RY;

C : family of convex compact sets in R?;

R : convex ring, i.e., family of finite unions of sets from C;

M : set of locally finite measures on R?;

m : o-field generated by sets of the form {u € M : o < p(B) < b},
Be®Bd,0<a<b<oo;

[0, Y : compact metric space with the corresponding Borel o-field;

[2,8(%)] : product space Ux R? with the corresponding product o-algebra;

M(%) : family of locally finite measures on ;

M(X) : o-field generated by sets of the form
{peMXE): a<pu(S)<b},SeB(X),0<a<b< o

N : set of locally finite counting measures 1) on R?;

N : o-field generated by sets of the form {¢y € N : (B) = k},
Be®Bd, k=0,1,...;

[Q,2, P] : hypothetical common probability space on which all occurring
random elements are defined;

E : expectation with respect to P;

Ox : unit measure concentrated at point X € R;

U =35 0x, : random locally finite counting measure (point process) with dis-
tribution P, ie., P(Y)=P{¥P €Y}, Y € N;

A = E¥([0,1)¢) intensity of U;

G[f] = E[[L;.;>1 f(X;)] probability generating functional of W;

Pm'lg”k() : kth-order (reduced) Palm distribution of ¥ with respect to
T1,...,z € R (see [4]);

> : the sum over all k-tuples of pairwise distinct atoms of ¢ € N;

a®(Byx -+ x By)=EY%  Lcolp(x1) - 1p.(z) kth-order factorial moment
measure of U;

o2 (resp. 7(62(])) : the reduced moment (respectively reduced covariance) measure

of W, e, aZl(B) = [y %(B)Py(d), v2(B) = a2(B) — \|BJ,
B e B3.



3. GERM-GRAIN MODELS AND ASSOCIATED RANDOM MEASURES

Many random measures in stochastic geometry are related to some stationary random
sets. Stationary random closed set Z is a random element in space [F, o] such that Z
has the same distribution as Z 4 z for all z € R? . Tractable models of stationary random
sets are produced by set-theoretic operations applied to some elementary components
(stationary point processes and “simple” random sets). Perhaps, the most important one
is the germ-grain model. This model is defined by a stationary marked point process

¥, = Z 5[Xi;Zi]

ii>1

in R? with the mark space [K, 04] , where the stationarity is understood with respect to its
first component, see [23] for further details on marked point processes. The corresponding
germ-grain model 7 is defined as the set-theoretic union

Z= Xi+Z%). (3.1)

ii>1

The points X; are called germs, while the sets Z; are called grains, see [8, 23]. The model
exists as soon as Z is closed. The existence and ergodic properties of germ-grain models
are studied in [11].

In this paper we will consider only independently marked point processes. Throughout
we assume that the corresponding unmarked point process

V() =Tn(() x K) = > ox,

iri>1

is simple and has a positive and finite intensity A = E ¥([0,1]¢). Remember that inde-
pendent marking is thought of as follows: {7;, i > 1} is a sequence of i.i.d. copies of a
random compact set (mark) Zy with distribution

Q(X)=P{Z0€X}, XEO'k.
being independent of ¥ and each atom X; is marked with Z; so that
U (BxX)=#{i>1: X;€B,Z,€¢ X}, BeBi, Xcoy.

The random compact set Zj is called the typical grain or the typical mark. Note that a
random compact set is defined to be a random element in the space [K, o] , [16, Chapter 2].
Then random set (3.1) is closed and different from R? (so the germ-grain model exists) if

E|Zy® B,(0)] <0 for r>0 (3.2)

(e.g., if E||Zp]|¢ < o), see [11].
In case the point process of germs W is Poisson, 7 is said to be a Boolean model. This
is the best studied and most applied model of a stationary random closed set, see [23].

Germ-grain models give rise to several random measures, see [16]. In the simplest case
it is possible to put (W) = |Z N W/|. Then n is a random measure on BZ. Another



random measure can be defined by taking the surface area of Z inside W. Further
random measures are the so-called Minkowski random measures introduced in [16]. It is
worthwhile to note that many interesting geometric measures associated with Z can be
decomposed into the sum with respect to all individual grains. In this sum each grain
contributes to the resulting measure with some (possibly random) weight. For further
information on random measures the reader is referred to [14], [4, Chapter 6] and [23].

Below we present a unified approach to random measures associated with germ-grain
models and marked point processes. First, define

H,:Kw— M)

to be a (o, M(X))-measurable mapping. For each K € K, Hk(-) is a finite measure on
B(X) . For the sake of convenience we mostly write Hy (I', W) instead of Hy (I' x W) for
'€ hand W € BE. We assume that this measure-valued map satisfies the following
conditions

Hg(T,W)=Hg(I',WNK), (3.3)

and
Hi oD, W+ 2) = Hi (T, W) (3.4)
forall Ke K, T ey, We B¢ and x € R¢.
Moreover, we assume that

E Hy (U, R?) < o0, (3.5)
so that

H(T,W) = E Hy (T, W) (3.6)

is a finite deterministic measure on B(X).

Remark 1. It is also possible to consider signed measures H . Then the finiteness condi-
tion must be replaced by the finiteness of the expected total variation of Hy, .

We are now in a position to define a locally finite random measure n(I', W) on B(X)
by

nT,W) =Y Hy.z(T,W\E), Teu, WeB;, (3.7)
2i>1
where
E= U X;+7%), i>1. (3.8)
it

Note that Hk(-) can be identically zero for some K . This means that the corresponding
terms in (3.7) do not contribute to the sum.

The local finiteness of n results from conditions ensuring the closedness of the germ-
grain model, for example, (3.2) is sufficient. Obviously, n(I', W + z) equals n(I', W) in
distribution for all T € &, W € B3, and z € R?, i.e., n(I,-) is a stationary random
measure on B .

To avoid confusion, we put together our basic assumptions.



Basic assumptions:

(i) ¥,, is a simple, stationary, independently marked point process with a finite positive
intensity A > 0.

(ii) The measurable mapping K +— Hg/(-) satisfies (3.3) and (3.4).

(iii) The typical grain Z, satisfies (3.2) and (3.5).
Now consider an important example of measures Hg(-) .

ExAMPLE 3.1. Consider family of measures Hg(-), K € K, which admit integral repre-
sentation

Hie(T, W) = / L (f(u, K))Tx(du), K ek, (3.9)

where T, : K — M(U) is a (ox, M(U))-measurable mapping, where M(U) is the set of
finite measures on [U, 4], and 9M(U) is the o-field generated by sets of the form {u €
MU): a<pU)<b},Uell,0<a<b<oo. Assume that Tk(-) is invariant under
shifts of K, i.e., Tx(-) = Tkia(-), and the mapping £ : U x K — R? is (4 @ o, B)-
measurable and satisfies the conditions
lu,K)e K and lu,K+z)=L0uK)+z
forall K € K, u € Uand z € R!. If Hi(-) admits an integral representation, then
He(DB) = Tx(T), Kek,

and (3.7) can be written as

n(T,W) =3 / Ly (X + 0w, Z) TT (1= Lxyaz, (X + U, Z0))) Y (du). (3.10)

izl p FENE:D
In this case the following useful lemma holds.

Lemma 3.2. Suppose that Hg(-) admits integral representation (3.9). Then, for any
measurable function f : R? — [0, 00),

E [ f(5)Hz(T,dy) = [ FTT,dy) = [ [ 1w (@, 5)F(0u, K)) T (du)Q(AK).

K R4



4. MOMENT MEASURES OF 7

Below we will find the moment measures of the random measure n given by (3.7). The
following lemma gives the first moment measure.

Lemma 4.1. Under the basic assumptions,
En(T, W) = AD)|W], (4.1)

where

=)\ / Gy [P{() ¢ Zo+y}| H(T, dy). (4.2)
In particular, if ¥ is a stationary Poisson process with intensity A, then
AMI) = Xexp{—AE | Zo|YH(I', R*) = A\(1 — p)H(T, R%), (4.3)
where p = P {0 € 7} is the volume fraction of the corresponding Boolean model 7 .
PRrooOF. Note that

Hioz (T, W) = Ha (0, W = X0) = [ 1w (X +y) Hz, (T, dy).
Rd

Using the refined Campbell theorem [4, p. 116] and the independent marking we get

En(l, W)
~E 221/ (X; + y)]lgéz (1= x4, (Xi +y)) Hz (T, dy)
_]J;M/R/ 1y xz—l-y)]'zjg_%E (1 - Lojaz(@s +y)) He (T, dy)Q(dK) P(dy)
- AR/K/R/ 1w(z +y ]{J £[€¢E (1= 15(2; -z — y)) PA(de) Hy (T, dy)Q(dK)dx
_ AR/K/R/ 1w(z + ) /] E@E (1 = 14, (e; — ) Py(de) Hx (T, dy)Q(dK ) dz

Now, by definition of the probability generating functional G} with respect to the Palm
distribution P,

[ I E(-140-y)Pde) = [ TI P{e ¢ Z+y} Pi(dy)

XN diwiEY N Jizi€Y

= Golf(() -,

where

f(x)zP{x%Zvo}, reR:.



Thus,

En(T,W) = AW [ [GI(() = ) Hi (T, dy)Q(dK)
K Rd

= AW| [ GA(C) =) (T, dy).

This proves (4.1) and (4.2). If ¥ is a Poisson process, then, by Slivnyak’s theorem [4,
p. 459),

GH () = vl = GU(C) — ] = exp {A Ja-fe- y))dx} .
Rd

By standard manipulations and Fubini’s theorem,

/(l—f(:c—y))dw: /P{xe Zo}dx:E|Z0|
Rd

R4

proving (4.3) and completing the proof of Lemma 4.1. O

If H admits integral representation (3.9), then, by Lemma 3.2,
=) / / Gy [P{() ¢ Zo+ t(u, K))}] Tr(du)Q(dK). (4.4)

We proceed with the following general result, which gives higher-order mixed moment
measures of 7.

Lemma 4.2. In addition to the above basic assumptions let the kth-order factorial mo-
ment measure o of U exist, E Hj (U,R?) < co, and

/ H E [H7(U, B.(—z;)] «®(d(1, ..., 71)) < 00 (4.5)
(R4 Jj=1

for all 1 < v < k and positive numbers ky, ..., k, satisfying ky +---+ k, = k.
Then, for every I'y,..., I, € L and Wy, ..., W, € BE,

E[n(Ty, Wh) -+ n(T, Wi)] (4.6)

=zk: z_: ///ﬁ _1Wij(mj+yif)

z{;Zjl i€ J=l14;€l;
X H H Hie, (T's;, dys; ) HQ (dK;) (d(ml,...,x,,)).
j=1l4;€l;
Here the sum Zhu UL, ={1,..k} 18 taken over all non-empty partitions of the set {1,...,k}
into v € {1,...,k} subsets I, I and G denotes the probability generatmg

-----

-----



Remark 2. If U is a stationary Poisson process, then o™ (d(zy,...,7,)) = \d(z1,...,z,)

and

Proor. For any k-tuple of functions f; : R — R, j=1,...,k, with bounded supports
the identity

LVJ (Zo +2; +u3,)

J=14;€l;

G!

Z1,---,T

{ ¢ O U (Zo+xj+yi].)}] =eXp{

Condition (4.5) follows from E H%, (U,R?) < oo

S file)- kakzi > : 1211;[

wla"'a‘rkedj ILU---Ul,= {11 :k} Yi,.- 5yl’e¢

holds, where >%, . ., is taken over all v-tuples of pairwise distinct atoms of ) € N.
This identity enables us to write

E [n(Ty, Wh) - n(Tx, Wi)]

= i Z El / Z* ﬁ H 1Wi]-(Xf1j+yij)

v=1 IlU'"UIVZ{l,...,k} (Rd)k q1,-qv 21 7=1 l]EI]

<TI0 TT T (1 12,0, O~ ) TT T A, ()

D;jFq;

By simple manipulations it is seen that, for fixed ¢1,...,¢q, and I,..., I, , the product
1 I I (110, (% = %)) =TT I IT (117, 0, (X, - X))
j=1 p;>1 i;€l; J=1 pj>1 4;€l;

P;j#4; PjFq;

equals
[T IL (1120, X)) TT DL (1120, 05— X))

j=1 j=1 ;€I p>1 j=léEl
J#i P#q1,--qy

Exploiting the independence of marks associated with distinct atoms and the indepen-
dence between the marks and the point process ¥ combined with a multiple use of Fubini’s
theorem we find that

Bl S [ LT 1,06+ 1
q1,--,qv>1 (Rd)k j=14;€l; uy=1i;€l;
i#]

1l (1-
x ] f[ (1—12,,+y )12[];[ ZquyZ]]_

p>1 7=1 ;€15

qu +y1 qu Xq]' ))



_ /E / f[ Ly, (25 + ;) H II (1—1Zi+yij($i_xj))

. i=14;€l; ij=1 i,€l,
(R4) (Rdyk 7 € iJ;éj €
X / IIEZ |II ( — Ly, (= xj)) P, L. (@E ] HZ]-(Rdyz])]
N YEY j=11;€l; j=11;€l;
x aNd(zy,...,z,)).
Here we have also used the relationship
S (@, T = 8y — . — 65, ) P(dD)
N T1emTu€YP
= [ @ mn)P, L (@)l )
(Rdyr N

which is valid for any (B?)” @ M-measurable function f: (R%)” x N — R! | see [4, 23].
Finally, since

v
H H Z¢ +y1 +z] )
j=14;€;

= Py, {y¢ U U (Zo+yij +$j)};

j=114;€l;
the definition of the probability generating functional

P, {() € LVJ U (Zo + u;, +1’j)}]

I=14;¢1;

G!

Ty Ty

yields (4.6). The liberal use of Fubini’s theorem is justified because the right-hand side
of (4.6) is bounded by

S Y e [ BB e a o m),

=1 kqd-tk, =k 'V1° 1
v 1+ki'£11/ (Rd)z/ JI=

where r > 0 is chosen such that W; U---UW, C B,(0). Since, by our assumptions, the
latter sum is finite, Lemma 4.2 is proved. O

If the grain Z, is Hausdorfl rectifiable (H™-rectifiable) [28] with m < d, then Z
represents a particular class of the random processes of Hausdorft rectifiable closed sets
in R¢. This concept includes the well-known fibre and surface processes studied in [23].
Lemma 4.2 can be used to express the corresponding moment measures found in [28].

Now we will specify Lemma 4.2 to compute second-order moment measures of . They
depend on the second-order moment measure

F(Fh Wi To, Wa) = E [Hz, (T, W1)Hg (T, Wa)], Wi, W5 € %8, (4.7)



of Hz,(-), and the measure

(I)(IE;Fl,Wl;FQ,WQ) (48)

—E W/W/(l — 1z, (ya +2))(1 — 14,(y1 — 2))Hy, (U1, dy1) Hz,(Ty, dys)

= E [H, (D), (5 +2) N Wi) Hyy (U, (25 = 2) 0 W)
defined for two independent grains Z; and 7, having the same distribution.

Corollary 4.3. If U is a second-order point process, E Hz (U, RY) < oo and

/ HU,W — 2)H(U,W — 2)a®(d(z1, 25)) < 00,

(Ray2
then
E [n(T'y, W)n(l'y, W] (4.9)
= A / yw(ya = 11)Go [P{() ¢ (Zo+ 1) U (Zo+ 1) }| H(I'y, dys; s, dys)
(R2)2
A [ [ et =G [P{O) ¢ (Zo+u) U (Zo+ 2+ )}
Rd (Rd)2

X ®(z; Ty, dys; Ta, dys)a2)(da)
where vy (z) = W N (W + z)| is the set-covariance function of W .

Corollary 4.4. If H admits integral representation (3.9), and the conditions of Corol-
lary 4.3 are valid, then

E[n(T'y, W)n(T2, W) (4.10)

=A///7W(E(u2,f()—f(ul,x))

K I'1I'2

x Gy [P{() ¢ (Zo + U(wr, 1)) U (Zo + (uz, K)) }] T (dun) Y (duz) Q(d )

+ /\/////’)/W(:L" + Cug, K3) — L(uy, Ky)) (1 - 1I?1+Z(U2,K2)(_x))

R K K T'1 T2
X (1= 1y agur i) (7)) Gha [P {() & (Zo+ Clur, K1) U (Zo + @+ Uuz, K>)) }]
x al)(de) Yk, (dur) Y i, (dus)Q(d K1) Q) .



5. ABSOLUTE REGULARITY OF THE RANDOM MEASURE 7(T, )

Let us recall the definition of the absolute regularity coefficient (or [B-mizing or weak
Bernoulli coefficient) B(X,9)) between any two sub-o-fields X, C A [24]

B(X,Y) = S |Pxey(C) — (Px x Py)(O)]
- ;supg S IP(44 1) B) ~ P(4)P(B). (5.1)

Here Pxgg (respectively Px and Pg)) denotes the restriction to the product o-field X®9Q)
(respectively X and ) of the measure on © x © induced by P and the diagonal mapping
w + (w,w). The supremum in the second formula is taken over all pairs of finite partitions
{Ax} and {B;} of Q2 such that Ay € X and B, € 9. Standard measure-theoretic arguments
ensure that the supremum in (5.1) does not change its value when the A;’s and B;’s belong
to semi-algebras X and @ generating X and Q) respectively.

To be general enough, we consider the random measure

Nl = 3 [ F)Hz (du, () \E) (5.2

IS zZlU

for any measurable, bounded function f : U + [0,00). For any B € %B¢ define sub-o-
fields 2,5 (B) (respectively Ay (B)) containing all events of the form {n(I', B') € [a,b)}
(respectively {¥(B') = k}) for B' € B4, B C B, T € 4,0 < a < b < o0, and
k=0,1,2,.... Furthermore, define the restricted germ-grain model

it X;EB

The following lemma will serve as a cornerstone for the later proof of the asymptotic
normality of n(f, W).

Lemma 5.1. For any two pairs of bounded Borel sets F, G and F,Q such that F C I,
G C G and FNG =0 we have

By (F), A1) (@) < B(RAa(F), Au(G)) (5.3)
+2P{Z(F)nF #£0} +2P{Z(G°)NG #0} .
Remark 3. Estimate (5.3) is in the spirit of Mase [15] who derived upper bounds of the

a-mixing coefficient of germ-grain models. Explicit estimates of the S-mixing coefficient
of Voronoi tessellations and Poisson cluster processes are given in [13].

Proor. We define the following dissections of :

Akl,...,kp = {n(fv Fl) € [Ig)7 cee 777(f7 Fp) € IIE;D,)} ’
Bll,...,lq = {n(f: Gl) € Jl(11)7 s 777(f7 Gq) € Jl(qq)}



fork;=1,...,m;,i=1,...,p,and [; =1,...,n;,j=1,...,q. Here the intervals
I,E?, k;=1,...,m;, (resp. Jl(],j), lj=1,...,nj)
are pairwise disjoint and
Mu--u ]T(,? = [0,00) (resp. JPU.u JT(LZ) = [0, 00))

for any ¢ = 1,...,p (resp. j = 1,...,q). Further, the Borel sets Fi,..., F, (resp.
Gh,...,G,) form an arbitrary partition of F' (resp. ). To simplify the writing, put

A, = Akl,...,k and B, = Bll,...,lq

P

with the multiindices k = (ky,...,k,) and [ = (;,...,l;). According to the definition of
the absolute regularity coefficient 5(, s (F), Ay (G)) we have

8(%1(F). 20() = 5 5up T 5 [P(A4 1 B) = P(44)P(B).

where supremum stretches over all partitions Fy,..., F,, Gi,...,Gy, 19,10 (i =

1,...,p) and Jl(j),...,Jr(L? ( =1,...,q9). We compare the events A, and B; with the
corresponding events arising from the “truncated” random measure 7(f,-) given by

i(f) = X 15(X) [ J(0)Hz, (du, ()\ ).
U

ii>1
The very definition of 7(f,-) and property (3.3) of Hy/(-) reveal that
{Z(F )N F =0} n A, C A, (5.4)

and
{Z(F )N F =0} N A, C A, (5.5)

where ) 1
Ak - {ﬁ(f’ Fl) € Ilgl)’ T 'aﬁ(f: Fp) € I]g:)} .

Remember that n(f, F*) = i(f, F*), F* C F, as soon as Z(F¢)N F = (. Likewise,
{(Z(G)NG=0}NB, C B, and {Z(G)YNG=0}nB,C B,

where )
Bl = {ﬁ(fa Gl) S Jl(ll), R ,ﬁ(f7 G’q) c Jl(qq)} )
From (5.4) and (5.5) it follows that
Ap N Ag
AN Az

{Z(F)NF # 0y Ay,

C
C {Z(F)NF #0}N Ay,
Hence (with the abbreviation AAB = (AN B°)U (A°N B))

ADAL C{Z(F)NF #0030 (AU Ay)



so that
S P(AAA) < 2P{Z(F)NF #0} .
k

Analogously, ) )
S P(BAB) <2P{Z(G)NG £} .
l

After some elementary manipulations we get

;; |P(Ax N B) — P(A)P(B)) — (P(A: N By) — P(A)P(B)))]
< 23 P(ALAL) +2Y P(BAB) (5.6)

< AP{Z(F)NF £ 0} +4P{Z(G)NG £ 0} .

By the assumed conditional independence within the sequence of grains (for given
U =1 = 3,5 0,) and the construction of the truncated random measures 7(f, F'),
n(f,G"), F' CF,G CG, we can write

P(Akﬂél) = EP(AHQ[\I:(F))P(BMQ[@(G))

= /P(Akm‘lf(ﬁ))(wl)P(Bl|Ql\lf(é))(w2)Pqu,(15)®qu,(é)(d(w1:WZ))-

Together with the total probability rule

P(Ar) = [ P(Ae(F)(w1) Py, iy(den)

P(B) = [ P(BIa(G))(w2)Py, ) (divn).

The double sum ¥, 3, |P(A, N B;) — P(A,)P(B))| can be written as

o

/P(Akl%(F))(wl)P(le%(@))(w)

QxQ

X (P%(ﬁ)@%(é) — Py, i) X P%(é)) (d(wlawz))‘
< [ Pasiiren@) — Paue) X Payo)| (@ w2)) = 280 (F), %e(G))
QxQ

The latter estimate combined with (5.6) completes the proof of Lemma 5.1. O
Next we specify (5.3) for
F=[-aad® , G=R\[-b,0,
F=[-(a+A),a+A* , G=R'\[-(b—A),b—A

with 0 <a <b< oo and A = (b—a)/4. Note that by a simple approximation argument
inequality (5.3) remains valid for unbounded G and G .



Lemma 5.2. Let ¥ = }°, .5, 0x, be a stationary point process with intensity A > 0.
Assume that the typical grain Zy is a.s. compact such that

E|Z| < 0. (5.7)
Then ) d s d
P{Z(F)NF #0} < A2 (1 4 Z) [ atan() (5.8)
A
d
an ) d Band1 T
P{Z(G*)NG #0} < Ad2 (1 + K) [#tan(). (5.9)
A

where D(z) =P {||Zy]| <z}, 2> 0.

Proor. By the definition of the germ-grain model (3.1) we obtain that

P{Z(F)NF#0}=E | ] (1-(1—1(X))P{(Z+X)NF #0|T})

ii>1

Y

where P {:|U} is the conditional probability with respect to U. Using the elementary
inequality 1 — [I(1 — z;) < Y z;, 0 < z; < 1, and applying Campbell’s and Fubini’s
theorem lead to
P{Z(F)nF#0} < A/P{eroeaF}dx
FC
= AE|F°N(Fa® Z)|.

Since )

Zo® F C [~(a+1Z0l), a + | Z]l],
we may continue with

P{Z(F)nF#£0} < ME|([-(a+A),a+Al") \[=(a+]%l)a+]Zll|
= 22 [((a+2)" = (a+ A))dD(x)

A
d—1 ¢

A
< Ad2 ("’Z ) [wtan).
A

In a similar way we treat probability (5.9) and get

P{Z(G)NG#0} < AE|[—(b—2),b— A1\ ([~ (b~ Zl). b~ [ Zl])]

- AQd/((b A~ (b— 2))dD(2)

A
b— A\ T
< Ad2¢ (—) z%dD(z) .
s/

Thus, by b — A = a + 3A, the proof of Lemma 5.2 is completed. O



6. LiMIT THEOREMS FOR ASSOCIATED RANDOM MEASURES

The ergodic theorem of Nguyen and Zessin [19] can be used to establish the spatial
strong law of large numbers for the measure n(I', W) provided n(I', W) is ergodic and
W expands infinitely in all directions in a regular way. The latter is denoted by W 7
R? and means that all W’s are convex, compact, increasing and r(W) = sup{r > 0 :
W contains a ball of radius r} — oo, see [4, p. 332].

Theorem 6.1. In addition to the basic assumptions suppose that ¥ is ergodic (under
d-dimensional shifts, see [4, p. 341]). Then, for any T € i,

[W|™n(T,W) = AI) as.as W 1R (6.1)
with A\(I') as defined in Lemma 4.1.

PRrooFr. First, note that for any K € K we have

/ Hi(T,W + z)dz = |[W|Hg (T, RY). (6.2)
Rd

In [11] it was proved that the ergodicity of W entails the ergodicity of Z provided (3.2)
is valid. This, in turn, implies that the spatial stochastic process n(T, F), F € B¢, (T is
fixed) is ergodic under d-dimensional shifts. In order to apply Corollary 4.20 in [19], it is
necessary to bound the family n(I', F), F C [0,1)%, F € B¢, by some integrable random
variable Y being independent of F'. By (3.3) and (3.4),

nT,F)< > Hy(T,[0,1)—X;)=Y.

>1

Together with Campbell’s theorem,

EY <\ / E Hy, (U, [0, 1)%)dz = NH (I, RY) < 00
Rd

proving (6.1). O

This theorem, in particular, yields the almost sure convergence of spatial intensities
for extensions of the intrinsic volumes, see also [11] and [27]. The results about uniform
convergence for W belonging to a certain class of sets YW can be obtained from the general
theory presented in [3].

Below we formulate a central limit theorem for the finite-dimensional distributions of
the set-indexed sequence

n(l, W)

AT, W) = [W,[2 (
W,

- /\(F)> , Ted, (6.3)



where W,, denotes the cube [—n,n)?. For doing this, we need a suitable formulation of
the 8-mixing condition imposed on the underlying point process ¥ = 37, ;5; 0x, . Assume
that

a

—A)) Bo(d)  (6.4)

B(Au([—a, a]*), A (R \ [(a + A),a+ A]")) < (min(a

for any a, A > 1, where (¢(-) is a non-decreasing function on [1,c0).

Theorem 6.2. In addition to the above basic assumptions suppose that there exists
0 > 0 such that

246
E ZHXi+zi<U,[o,1>d>] < oo, (6.5)
i1
E || Zo||?+9/6+e < oo for some &> 0, (6.6)
n% 1 (Be(n)Y ) < 0. (6.7)
n=1

(If
P { Z HXH—ZZ-(Ua [07 1)d) < C} =1
ii>1
for some constant ¢ < oo, then put 6 = oo and € =0 in (6.6) and (6.7).)
Then, for any k-tuple T'y,..., Ty € 8, the random vector (7(I'y, W), ..., 7(Tx, W,)) con-

verges in distribution as n — oo to a k-dimensional centred Gaussian random vector
(&1, ..., &) with covariances E ,¢; = o*(T';,T';) defined by

0_2(1"i,1"j) (68)
= A / Go [P {() ¢ (Zo+w) U (Zo + yz)}] H(Ty, dyy; T5, dys)
(R4)?
A [ [ G [P{O) ¢ Z+u) U Zo+atp]
Rd (R4)2
x ®(z; Ty, dyy; T, dyy )y 2 (d)

e

3 [ [ (G P{OE Dot ) U (Zo b2+ )]
Rd (R4)2
~ Gy [P{0 ¢ Zo+u)] G [P{0) ¢ 2o+ )]
X ®(z,T;,dy )®(—z,T;, dys )dx

—x [ [ @ P{O¢Ztm)] G [P0 ¢ G +w)]
Rd (R4)2

X (i)(xariadyl)(i)(_xal—‘jadyQ)dxa 1 S 1 S ] S ka



where H(T;,dy:; T, dys) and ®(x;T;,dy;T;,dys) have been defined in (4.7) and (4.8)
respectively, and

®(@,T,W) = E | [(1-1z(y - =) Hz (T, dy) (6.9)

= E[Hu(T,(Z5+2)n W),

&(z,T,W) = H(T,W)-d,T,W). (6.10)

In (6.8) all integrals converge absolutely as a consequence of the mixing and moment
conditions (6.5)—(6.7).

Remark 4. Let [ denote the smallest integer greater than or equal to 2 4+ 6. Then the
conditions
Var(%(’;)i) <oo, k=2,...,1, and EHZZO(IU, R?) < oo (6.11)

suffice to hold (6.5). This is immediately seen from Lemma 4.2.
Remark 5. The f-mixing condition (6.7) can be verified for quite a few classes of point
processes under mild additional assumptions. For example, in the special case of a Poisson

cluster process ¥, that is, the support of ¥ is a Boolean model with a random discrete
a.s. finite typical grain (cluster) Z., we have by Lemmata 5.1 and 5.2 that

Bu(t) < 4ANd6 B plly, 10
with p. = sup{||z| : =z € Z.}.
Similar estimates of the §-mixing rate are known for

e dependently thinned (Poisson) point processes (e.g., soft- and hard-core processes)
as defined by Matérn and their generalizations, see [23];

e Gibbsian point processes satisfying Dobrushin’s uniqueness conditions;
e point processes generated by a (Poisson-) Voronoi tessellation of R? (e.g., vertices,

midpoint of edges), see [13].

PRrROOF OF THEOREM 6.2. According to the well-known Cramér-Wold device we need to
prove that, for any (ai,...,a;) € R¥ \ {0}, the sum

k
Sn = Z (lj’ﬁ(Fj, Wn)

=1

converges weakly as n — oo to a Gaussian random variable ¢ with mean zero and variance
o? = ¥F,_1 a;a;0%(T;,T;). In order to apply a central limit theorem for stationary j3-
mixing random fields in [13] we rewrite the above sum as

k
|Wn|1/25n = Z Xza Xz = Z%(n(rj; Ez) - )‘(FJ>)
j=1

z€Il,



E,=[0,1)+zwithze€ I, ={-n,...,0,...,n— 1}<.
From the simple estimate

n(0,10,1)%) < S Hyix, (U, [0, 1))

21221

together with (6.5) we deduce that E|X|?*® < oco. In view of Lemmata 5.1 and 5.2
combined with (6.4) we obtain the following estimate

B(nr) ([~ a]"), Ay (R \ [-(a + A),a + A])

< (4“22A>d_1 Ba(A/2) + /\deHAZ xdD(z) I(MZ A>d_1 + (12“;’ A>d_1]

for all a, A > 1 and any bounded measurable f : U+ [0, 00). The right-hand side of the
latter inequality can be bounded by a term of the form

with

B.(A) = c1fu(A)2) + ¢ / 24dD(z)
A4

and constants ¢; and ¢y depending only on d.
Finally, in order to prove the S-mixing condition needed in the central limit theorem
in [13] we have to ensure that

STt (B, (n) ) < 0o and niB,(n) =0 as n— .

n=1

In turn, this follows from (6.6), (6.7) and the fact that 5,(-) is a non-decreasing function.
If |X,| <e, z € 1,, for some constant ¢, we need the convergence of the series

S nt14,(n)
n=1
and
io: ~18¢(n/2) + Z /xddD(:zz).
n=1 n=1 n/4

This results from (6.7) for § = oo and E || Zy||** < oo, so that the proof of Theorem 6.2
is completed. O



7. A CENTRAL LIMIT THEOREM FOR RANDOM MEASURES GENERATED BY BOOLEAN
MODELS

From now on, let ¥ be a stationary Poisson process with intensity A > 0, i.e., the

corresponding germ-grain model 7 is a Boolean model [16, 23]. In this case, by Slivnyak’s

theorem, 7(2(1)() vanishes identically and

Gops [P{() ¢ (20U (Zo+0))}| = exp{-AE|ZU(Zo+ )|}
= exp{—\E|ZyU (Zy +v)|}
= q(v)(1-p),

where
p=P{0e€Z} =1—-exp{—-AE|Z|}
is the volume fraction of 7,
Clv) —p°
q(v) = (1—p)?
and C(v) =P {0 € Z, v € Z} is the covariance function of 7 .

Using these formulae together with (6.9) we can simplify the covariances o*(T;,T';) in
Theorem 6.2 as follows:

+1=exp{AE|Zs N (Zo+v)|}, veR, (7.1)

aQ(TZ-,Tj) = 1 - / / q\y — y2 andyl)rjadyQ) (72)
R4 R4
21— p)? / (¢(2)®(2,T,)®(~,T;) - H(T;, R)H(T;,RY))de,
R4
where
(2,T) = &(z,[,RY) = E [Hy, (T, Z§ + 2)) . (7.3)

Taking into account the inequalities
/(q(ﬂs) ~Ddz < AE|Z[? exp{\E | Zo|}
R4

and

/\@(x,ri)cp(—x,rj) — (T3, RO (T, RY)|de

< E|Z| Hz(Ti, RY) + E | Zo| Hz, (T, RY),
we conclude that o*(I';,T';), 1 <1i,j < k, are finite whenever
E|Z? <oco and EH (I;,RY) <oo for i=1,...,k. (7.4)

The following Theorem 7.1 restates the main result of the preceding section in case
of a stationary Poisson process of germs under considerably relaxed conditions. In fact,
these conditions are optimal because they are necessary to ensure the existence of the
covariance matrix. This improvement results from a suitable (although somewhat labo-
rious) approximation technique by m-dependent fields, which is quite different from that
used in [9, 10] and [12].



Theorem 7.1. IfV is a stationary Poisson process with intensity A and (7.4) is satisfied,
then (n(T'y, W,,),...,n(Tx, W,)) converges in distribution asn — oo to a Gaussian centred
random vector (&1, ..., &) with the covariances E &¢; = o*(T;T;), 1 <14,j < k, given by

(7.2)

PRrROOF. We only need to consider the univariate case &k = 1 for some fixed ' =T1"; € U.
With the notations introduced in the proof of Theorem 6.2 we put

Sp=Wa"2 3" X, with X, =nT,E.)—A1-p) HT,R?).

ZEIn

Setting F, = E, ® W,, for some fixed integer m > 1 and z € Z? = {0,41,£2,...}* we

m

decompose S, = S(™ + S,(:f) + S,(L,Q) by splitting X, into three random variables:

XM = 3 1p(X) Hzox (T, E\E(F)) with E(B)= ) (Z+X,),
izl §:i#i,X;€B

Xi,ﬂf) = Z 1FZC(X1) HZZ'+X7;(F7 Ez \ Ez(Fz)) ,
2:1>1

X;,Tg) = Y (Hz4x,(T,E.\E;) — Hz.x,(T, E. \ Ei(F))) .
2:12>1

We first note that, by our assumptions, the independently marked Poisson counting

measures
v, = Z 1p, (Xi)é[xi,zi]? z € Zd:
iri>1

can be considered as a family of independent identically distributed random elements tak-
ing values in some measurable space [Npak, Mmark] 0f marked counting measures defined
on [0,1)% x K, see [5] for details. Therefore, having in mind the properties of Hg(-),
K € IC, it is easily seen that the random variables Xém) , 2 € I, , constitute a stationary
2m-dependent random field which even allows a so-called block-representation

XM =g, ye{-m,....m}¢+2), 2€Z?,

(2m+1)¢

where g : N&m+ D", R is some N -measurable function. Applying the central
limit theorem for this type of weakly dependent fields, see, e.g., Heinrich [9], yields the

weak convergence of S(™ (asn — 00) to a centred Gaussian random variable with variance

o2 = S Cov(x{™,x™)

m
2€{-m,...,m}¢

provided that E(X{™)? < co. The latter holds for any m > 1, if E|Z|? < oo and
EHZ (T, R?) < co. In order to prove the asymptotic normality of S, it remains to verify
that

supE(S,(:?))2 < sm = > |Cov(X(§’Tf) ny))| —0 as m—oo.

nz1 z€Z4

fori=1,2.



After straightforward calculations similar to those leading to (7.2) followed by some
obvious estimates we obtain

|Cov(X{™, X)) < A / E [Hy (T, Bo — 2) Hyy (U, B, — @) de
FENFg
w2 [ [ ] [ 1m@+p)1n @ + 1) (a(®, K2) + HE. K +
F§ F¢ K K RIR4
+ 1 — exp{—w(fo, Fz)}) Hi, (U, dy1) Hic, (T', dy2) Q(d K1) Q(d Kz )daodwy
where

a’(FO’ KQ) = 1Foﬁ(f(2+ac1+y1)(w2) ? b(FZ’ Kl) = 1Fzﬂ(f{1+$2+y2) (‘Tl) ’

and
w(Fo,Fz) = AElFO N (ZO +.'171 +y1) N Fz N (Zo +.’L’2 +y2)| .

Therefore,

s <A /E [H2,(T, By — @) Hyy(T, BY)|da + 2X° /E (120] Hz, (T, By — )] da
7 7
+ M E|Z H(,RY) /F(r, Eo—z)dz .
7

In view of our moment assumptions (7.4), it follows from the Lebesgue dominated con-
vergence theorem that the right-hand side tends to zero as m — oo.

Next we estimate the covariances occurring in ng) . For notational simplicity write

WF) =AE|(Fo— (z1+ 1)) N Z|, v(F.)=AE|(F. — (22 + 42)) N Zo| ,

and
I(Fy, F,)
= exp{—(u(Fy) + v(F.))}[(1 = a(Fo, K2))(1 = b(F, K1)) exp{w(Fo, F.)} = 1].
Then
Cov(X§3, XTI < B [ [ [ 1o+ )i (e + 1)

R¢ R4 R4
x ((exp{=AE|(Fy — (z + 1)) N Zo|} — exp{—AE | Zo|}) Hz, (T, dyr) Hz, (T, dys)dz

+/\2//////1150(901+y1)1Ez($2+y2)‘[(]Rdal[&d)—[(Rd7Fz)

Rd Rd }(j }C Rd Rd
— I(Fy,RY) + I(Fy, F)

Hi, (T, dy1) Hi, (T, dy2) Q(d K1) Q(d K3 )dzodzy

< NE|(FE @ By) N Zo| /E [Hy, (T, By — z) Hy (T, E, — 2)]dz
Rd



3 [ [ ] [ e+ y01e @+ ve) (u(F)0(F2) fw(Fo, F2) + al Fo, )

RIRE K K Rd R4
+ b(F., K1)l + w(kg, FY) + [a(Fg, Ka) + w(Fg, F2)] [b(FY, Kv) + o(FY) + w(Fo, FY)]

+u(Fg) [b(FS, K1) + w(Fy, F2)]) Hig, (T, dyy) Hicy (U, dy2)Q(AK1)Q(d Ky )daday

z

Therefore,
sy < N E|(F§ @ Eo) N Z| E HZ, (T, RY)
+ AE|(FE@® Eo) N Zo|))(WH(T,RO2E | Zo|> + 2 H(T, R E | Zo| Hz, (T, RY)
+ E|(FS@® Fy) N Zo|Hy (T, RY) (14 20E | Zo|)H(T, R?)
+ E|(F5 & Eo) N Zol| Zo| (27 + 3NE | Zo|)(H(T, R?))?

)

whence, arguing as above, it follows that sgm — 0 as m — oo which completes the proof

of Theorem 7.1. 0O

Corollary 7.2. If ¥ is a stationary Poisson process with intensity A\, and H admits
integral representation (3.9) such that E|Zy|> < co and EY% (I';) < oo fori=1,...,k,

then (n(I'y1, W), ...,7n(Tx, W,)) converges in distribution as n — oo to a Gaussian centred
random vector (&, . ..,&,) having the covariance matrix
E&é =o*(TLT,) = M1—p)E l I/ q((ul,uZ)TZO(dul)TZO(dUQ)] (7.5)
L T,
A1 —p)? / ((2)® (2, T:)@(~x,T;) = ET4,(T)E T4, (T;))de,
Rd
where
<u1,u2 = f(ul, Zo) — E(UQ, Zo) (76)
and
(@, T) =B | [ (1= 1500002()) Tzo<du>] : (7.7)
r

In particular, if U = {uq,...,u;} consists of k distinct points, ['; = {w;}, 1 <i <k,
and Tz, = 6,, + --- + 0y, is a deterministic counting measure, then

o*(I;, ;) = M1 = p)* E[q(Cuue)] + A(1 = p)* / (9(2)¢u;(2) P, (=) = )dz (7.8)
Rd

for 1 <1,5 <k, where )
u(z) =P{z ¢ Zo+l(u, %)} . (7.9)



8. EXTENSIONS OF GEOMETRIC FUNCTIONALS

Different geometric functionals on the family of convex sets have been defined long ago,
see, e.g., [6] and [21] for more recent developments. The most important are intrinsic
volumes Vo(K), ..., V4(K) of a convex compact set K [21, p. 210]. These functionals can
be defined from the coefficients of the polynomial expansion

d
K| =3 bayr®Vi(K), 120, (8.1)
=0

for the volume of the set K" = K @ B,(0). Here b,_; denotes the volume of the unit ball
in the space R*™7 . Note that V5(K) = 1 for all convex K, V;_;(K) is one half of the
surface area of K, and V,(K) = |K|.

The intrinsic volumes are basically defined on the family of compact convex sets C.
Suppose now that F' belongs to the convex ring R, i.e., F'is a finite union of convex
compact sets K;, 1 <7< n, ie.,

It is often important to extend geometric functionals onto the convex ring R . There are
two standard ways of doing this, see [21, 25]. The first is the additive extension given by

n

Vi(F) =3 (=) 30 V(KN Ky,

k=1 1<y << <n

The resulting functionals on R are additive, but can be negative for j < d — 2. Similarly
to (8.1), it is possible to define these additive extensions via coefficients of the polynomial
expansion of |F7|.

In the following we will deal with the positive extension defined as follows (see [20, 21,
25] for further details). For given F' € R and z € R? | a point ¢ € F is called a projection
of z onto F' if there exists a neighbourhood G of ¢ such that ¢ is the nearest point to z
among all points from F'NG . Let II(F, z) be the set of all projections of z. For I' C S§4-1
and r > 0 let

G(F,TxWx)=#{gell(F,z): 0<|z—q||<r;geWandz—qeTl}, (8.2
where z — ¢ is the unit vector with the same direction as x — ¢. Furthermore, let

i (F,T x W) = /ET(F,F x W, z)dz . (8.3)
Rd

This measure can be decomposed in the following way:

d—1
G (F,T x W) = clz 3y (j) 0,(F,T x W), (8.4)
=0



see [20]. If K € C, then we write ©;(K,T x W) instead of ©,;(K,T" x W) and call it the

jth (generalized) curvature measure of K. For F' € R, the coefficients ©,;(F,T' x W) in
(8.4) are called the positive extension of the curvature measures. In particular,

Vi(F) = 1(‘?) 0;(F,S*"'xR*), FeR,
dba—; \J

is the positive extension of the intrinsic volume V;. Note that Vy(F) = Vy(F) and

Va1(F) = V;_1(F), so that the positive and additive extensions of orders d and d — 1

coincide. For instance, in the smooth case, ©4_1(F,I' x W) can be interpreted as the

(d — 1)-dimensional Hausdorff measure (surface area) of all points in (0F)NW such that

the corresponding outer normals to F lie in T".

Formula (3.7) suggests another way to define functionals on the convex ring. Let
Hg(+) be a measure on [X,B(X)], where K € C. Then

n

ne(D, W) =3 Hg, (D, W\ Urgjcn iz K5) - (8.5)
i=1
gives a kind of extension of Hy(I',W) for any F' € R such that F' = U, K;. Unfor-
tunately, in general, this extension does depend on the decomposition of /' as the union
of convex sets. Indeed, for any convex F we can get np(I', W) = 0 by using the trivial
representation F' = F' U F'. However, as it will be shown, such a situation is not possible
if I is a realization of a germ-grain models satisfying rather weak assumptions.

The most important example appears in the standard framework, where U = S4~! and
Hig(I',W) = 0;(K,I' x W) is the jth curvature measure of K € C. This is motivated by
the possibility to get positive extensions of intrinsic volumes or curvature measures via
integration of absolute curvatures over the boundaries of sets [1, 29, 31], which is similar
to the integral representation defined in (3.9).

If F € R, then x € OF is said to be an exposed positive tangent point if z = II(F,v)
for some v ¢ F'. The set of all exposed positive tangent points of F' € R is denoted
by 0T F and is said to be the positive boundary of F'. The set-difference OF \ 0T F is
comprised of sets of dimensions not greater than (d —2). Note that 0T F contains the set

L(Ky, ..., K,) = ] (0K \ Uijcn iz K;)
=1

for each decomposition F' = U, K, of F' into union of convex compact sets. Clearly,
LIK,K)=10.

Let us use (8.5) to extend onto R the measure Hx(I', W) = (K, x W). For the
moment, we suppose that F' = U, K; with

L(Ky,... K,)=0"F. (8.6)

This means that the positive boundary of F' is equal to the union of all “visible” (or
exposed) boundaries of separate grains. Similar conditions appear in [30] when considering
unions of sets of positive reach.



By (8.3) and (8.6),

n

fr(F,T x W) = Hg (T, W\ Urcjcnjzi K;) -

=1

Expanding both sides in the polynomials (8.4) shows immediately that the basic formula
(8.5) applied to the curvature measure Hg(I',W) = ©,(K,I' x W), K € C, gives its

positive extension onto the convex ring, i.e., np(I', W) = 0;(F, ' x W).

Let us consider an integral representation of the measure Hy(-). For convex set K
and direction u (u € U = S%71) define the support set

L(u,K)={x € 0K : (u,z) = —h(K,u)}, (8.7)
where (u, z) is the scalar product and
h(K,u) = sup{{u,z) : z € K}

is the support function of K. The point ¢(u, K) is defined to be the lexicographical
minimum of the set £(u, K) (if L(u, K) is a singleton, then L(u, K) = {{(u, K)}). Then
l(u, K) is said to be the tangent point of K in the direction w, see [18]. In fact, other
choices of such a “specific” point ¢(u, K) are possible.

ExaMPLE 8.1. We consider the simplest case when the convex set K has only one tangent
point in each direction. This means that the support set L(u,-) is a singleton for all
u € S471. First, notice that ¢,(K,- x RY,z), K € C, is a measure on S%~! concentrated
at a finite number of directions (namely from z to its possible projections). Thus,

n

G(K, T xW,z) =3 /1W(€(u, K))e (K, du x W,z).

=1
Integration with respect to x and polynomial expansion of both sides give

Hy(T,W) = 0,(K,T x W) = /1W(£(u, )T x(du),

where Yg(T') = 0;(K,I' x R?), T € 4, is the jth area measure of K, see [21, p. 203].
Thus, the curvature measure admits integral representation (3.9).

In the following we give conditions to hold the identity (8.6) in case of the germ-grain
model (3.1). For this, define the set-theoretic limit

LX;+Z;1>1) = nh_l}go L(X;i+ Zi51 2> 1, (Xi + Z;) N B,(0) #0)
= YOXi+2Z)\E).

#i>1



Theorem 8.2. Let W = 3, .5, 0x, be a stationary second-order point process satisfying
oz(,fg() L ||, ie., its second-order reduced moment measure is absolutely continuous
with respect to the Lebesgue measure in R . Further assume that the typical grain Z is

a.s. compact and convex. Then, for Z defined in (3.1), we have
P{L(Xi+Zsi>1) = 0% 7} =1.

Remark 6. Clearly, the conditions of Theorem 8.2 are valid for each Boolean model with
any almost surely convex compact typical grain.

Proor. Let K; and K, be two convex compact sets. Then L(Ky, K3) # 0%(K; U K,)
implies that either £(u, K1)NL(u, K3) # 0 or L(u, K;)NL(—u, Ky) # 0 for some u € S~
Thus,

L(Ky, Ky) ={(z,y) : L(Ki+x,Ky+y)# 0T (Ki+2)U(Ky+79))}
c U {@y: y—=eLuK)dLu K)) U (L(u, K1) & L(—u, K2))} .

ueSd—1

It follows from Theorem 1.7.5 of [21] that
L(u, Ky) @ L(—u, K3) = L(u, K1) & L(u, Ky) = L(u, K1 & Ky).

Thus,
LKy, Ky) C{(z,y): y—2 € 0(K1 & Ky) UA(Ky, K))},

where
A(Kl’ KQ) = U ['C(ua Kl) @ ‘Cv(ua KQ)] )
ueS4-1
see [21, p. 86]. The technique described in [21, Section 2.3] can be used to prove that the
Lebesgue measure of A(K7, Ks) is equal to zero. First, the equality £(u, K7 & B1(0)) =
L(u, K1)+u allows to consider sets K; and K, which contain a ball of radius 1. Therefore,
Lemma 2.3.9 of [21] yields

m

=1

where a; € R? and C4, ..., C,, are caps of K; ® K, covering the boundary of K; & K,. A
cap is defined to be a non-empty intersection of the convex set with a closed half-space.
Furthermore, Theorem 2.3.2 [21] gives a possibility to choose these caps in such a way

that .
Z |Oz| <e€
=1

for any given € > 0. Note that |C; @ Cj| < (d + 1)?|C;]. The latter follows from the fact
that C' C dC for any convex compact set C' with non-empty interior and having its centroid
at the origin [21, p. 81]. Thus, the Lebesgue measure of the set in the right-hand side
of (8.8) can be made arbitrarily small. Thus, L(Ky, K3) C {(z,y) : v —z € L(Ky, K3)}
with |L(Ky, K3)| = 0.



Now consider the germ-grain model 7 defined by (3.1). Notice that

{L(Zy+ X1, 75+ Xo,...) # 077}
- U{E(Zi + X5, Z; + Xj) #* 8+((Zi + X;) U (Zj + Xj))}

17#]
= 9_{(Xi,xj) € L(Z;, Z;)}
- 9_{(Xi - X;) € L(Z:, Z))}.

The P-measure of the right-hand side of the last line equals the limit (as n — o0) of
the probabilities

P { U {xi-Xelz Z]-)}}
i#5§:X:,X;€Bn(0)
< [ L@ - DRUEL)QAL)a® (e, )
Br(0)xB,(0) KxK

=>\/ /a(2)(L(L1,L2)ﬂBn(y))dyQ(dLl)Q(dLQ).

red

CxC By (0)

Since |L(L1, Ly)| = 0 for any Ly, Ly € C and by the assumptions of Theorem 8.2 the latter
integral is equal to zero for every n > 1. This completes the proof of Theorem 8.2. O

Theorem 8.2 implies that, for Hx(I', W) = 0;(K,I' x W), K € C, the corresponding
measure 7 associated with 7 coincides almost surely with the positive extension of the
jth generalized curvature measure of 7 .

9. STATISTICAL APPLICATIONS AND EXAMPLES

In this section we consider only Boolean models. In this case the Poisson germ process is
determined by only one parameter (the intensity A), while for the typical grain the mean
values of geometric functionals are usually estimated.

The most severe difficulty in statistics of the Boolean model is caused by overlappings
of the grains. One of standard estimation techniques for the Boolean model uses the
following idea [18, 22, 26]. Take a geometric functional of the typical grain (if the grain
is convex, then one of the intrinsic volumes is a possible choice). Then extend it onto
the convex ring and compute its spatial intensity. This empirical spatial intensity is then
plugged into an equation related its theoretical counterpart to A and the parameters of
the typical grain. For example, the volume fraction is equal to p = 1 — exp{—AE | Z,|},
which allows to estimate AE |Zp| after replacing p by its empirical counterpart.

This procedure is known as the methods of moments in statistics of the Boolean model,
see [17]. The details depend on the chosen functionals and the way of their extension used



in this procedure. We will use the positive extension, which is closely related to random
measures given by (3.7).

According to what has been said, the statistical estimation begins with the choice of
the measure Hy(-) on [X,B(X)]. This measure is used to define the random measure n
associated with the underlying Boolean model. Then Lemma 4.1 and Theorem 6.1 yield

n(l, W)
[WI(1 = pw)

where py = |W N Z|/|W] estimates the volume fraction of Z. For the estimation of A
we put I' = U and take any measure Hg(-) with known H(U,R?) = E Hyz (U, R?) (for
example, any probability measure on ¥ will do). Then the estimator of A can be plugged
again into (9.1) to estimate H (I, R?) for another Hy(").

— M(T,RY) as W TR, (9.1)

Below we will prove a central limit theorem for the random measure

n(T, W)
|Wal(1 = pw,,)

AT, W,) = |W,|*/? ( — /\F(F,]Rd)) , (9.2)

where W,, = [-n,n)¢ and n — oo.

Theorem 9.1. Under conditions of Theorem 7.1, the random vector f(I'1, W,,), ...,
(L, W) converges in distribution to a centred Gaussian random vector with the covari-
ances

01211_11]_ =\ / q(y1 — yo)H(Ts, dyr; T, dys) + N2 / ®(z,T,)®(—z,T,)q(z)dz, (9.3)
(R%)2 Rd

where 1,5 =1,...,k, and

®(z,T) = E [Hg, (T, Zo + 2))] (9.4)
ie, ®(z,T) = &z, T,RY), see (6.10).

ProOF. Similarly to [18, Theorem 5.5], it suffices to calculate the mixed moment of
n(l, W,) and p, = pw,, . First, note that

1= pn = [Wp|™ / [1 = 14(z)]dz = |W,|™ / .'111(1 —1x,47,(z))dz .
Now we deduce
BRI W0~ 5] =Wl [ B T [ 10401 - 1xen (o)

W, 021 ga

X H {(1 - ]‘Xj+Zj (:L’))(l - 1Xj+Zj(Xi + y))} HZi(Fa dy)] dz.

Jij#i



The refined Campbell theorem yields

B (T, Wa)(1 = p)] = NWal™ [ [ [ [ 1w, (24 0)(1 = 14(2 = 2))

Wn Rd K Rd
x Gy [P{() ¢ (Zo+z—2)U(Zo+y)}] Hk(T, dy)Q(dK )dzdz

In particular, we have used the identity
(1= 1x,07,(2))(1 = 1542, (Xi + ) = 1e(X; = Xi + Xi — 2))15(X; — Xi — ).

Substituting z + y = v + x yields

B (0, Wo)(1=pa)] = AW [ [ [ [ 10+ 2010 =)

W, Rd K R4
x Gy [P{() ¢ (Zo+y—v)U(Z+ y)}] Hy (T, du)Q(dK)dvdz

/\/an |W|1//1Kc

K Rd
x Gy [P{() ¢ (Zo+y —v) U (Zo+v)}] He (T, dy)Q(dK)dv

The calculations above were made without referring to the Poisson assumption. Now we
assume that the point process ¥ is Poisson. Then the value of the probability generating
functional in the latter integral does not depend on y and is given by

Gh[P{() ¢ (Zo+y—v)U(Zo+ )}
= exp {—A/ [1 -(1- ElZO(U+U))(1 - ElZO(u))] du}
Rd

= exp{—-A2E|Zy| - E|Zo N (Zo +v)|)}
= (1-p)°qv).
Finally,
B [1(T, Wa)(1 = pu)] = A(1 - / w, IWal ™ [(1 = 15,1, ) H(D, dy)a(v)dv.
Ré

The proof can be easily accomplished by elementary calculations. O

Corollary 9.2. Suppose that H admits integral representation (3.9). Then, under con-
ditions of Theorem 7.1, the statement of Theorem 9.1 holds with the covariances given

by

0% = AE // (Curraa) T 20 ()T 25 (o) +/\2/<I> 2, 0)®(—z,T)q(z)dz, (9.5)
I—‘ R(l



where (y, u, is defined in (7.6), and

‘i)(l‘, F) =E /1Z0+Z(U,ZO)('T)TZO (du)] : (9'6)
r
In particular, if U= {uy,...,u,}, and Yz, (-) is the deterministic counting measure, then
02y = NEQ(Gupa) + X [ 80, (2), (~2)a(w)da, (9.7)
R4
where 5 )
bu(z) =1—u(z) =P{z € Zo+ l(u, Zy)} . (9.8)

Now we consider several examples of measures Hy(-) and statistical applications of
the above asymptotic theory. Note that n is defined by formula (3.7), which includes
individual grains from the underlying germ-grain model. However, only observations of
the union-set Z are available for the statistical analysis.

ExAMPLE 9.3. Let Hg(I', W) = |K N W| being independent of I, i.e., U is trivial (con-
sists of one point). Then n(I", W) is equal to the Lebesgue measure of all points covered

by Z;+ X; for only one ¢. Clearly, the values of the measure  cannot be computed if only
the union-set Z is observable. If E Hz (I',R?) = E|Zy| < 0o, then Theorem 6.1 yields

(W|™n(T,W) = M1 —p)E|Zy| as. as W TR,

Furthermore, if E|Zy|?> < oo, then (I, W,) given by (6.3) satisfies the central limit
theorem (Theorem 7.1) with the limiting variance given by

o’ = A1 —p)2E //Q(yl — Ya)dy1dys

Zo Zo

+ 021 =p [ [a)E |20 0 (Z +2)[B|Z0 0 (25— 2)| — (B |Zo])?]dz
Rd

In statistical applications it is necessary to be able to observe n(I", W) in order to make
further calculations with the corresponding estimators. Most of the interesting examples
appear in the case when U is the unit sphere S¢°! in R?, and H admits an integral
representation such that the points ¢(u, Z;) \ Z; are observable. Unless otherwise stated
the typical grain Zy is supposed to be almost surely compact and convex. Then ¢(u, Z;)
can be the tangent point of Z; in the direction u € S4~!. Fortunately, the tangent points
are observable inside the interior of the window W and these points may occur on the
boundary of W only with probability zero.

EXAMPLE 9.4. Let Hg(-) admit integral representation (3.9) with Yz, concentrated at
a single point u € U such that Tz ({u}) = 1. Then Hg(-) is a probability measure on ¥
given by

Hg(T, W) =1y (l(u,K)), uwel.



Therefore, the ith term in (3.7) is 1 if and only if (u, Z; + X;) € W \ E;. The latter
means that the specific point, ¢(u, Z; + X;), of the ith grain is ezposed, i.e., not covered
by the grains (Z; + X;) with j # i. Then, for all I' 3 w, n(I', W) is equal to the number
of exposed specific points lying in W, i.e.,

For example, if ¢(u, K) is the tangent point of K in the direction w, then n(I', W) is
exactly the number N (u, W) of exposed tangent points in the direction u, see [18, 17].
Since n(I', W) = N*(u, W) is observable, and, by the ergodic theorem,

n(lI', W)
[WI(1 = pw)

Therefore, it is possible to estimate the intensity of the Boolean model using the spatial
intensity of 7 (or the intensity of the point process of exposed tangent points). Further-
more, Lemma 4.2 gives moment measures for the point process of tangent points, and
Corollary 9.2 yields a central limit theorem for the empirical estimator of the intensity of
this point process. In this case (9.7) implies

— X\ as. as WIRY.

o , (9.9)

since ¢y ()@ (—z) = 0 for almost all z. Note that (9.9) gives the asymptotic variance of
the intensity estimator based on counting of tangent points. This variance was computed
directly in [18].

If Tz, = Yo is a deterministic probability measure on S¢~!, then

n(D, W) = / N*(u, W) Yo(du).

This is exactly the weighted number of exposed tangent points considered in [17]. Then
Corollary 9.2 yields Theorem 3.1 of [17], which gives the asymptotic variance of the
corresponding estimator.

EXAMPLE 9.5. Suppose that the support set L(u, Zy) = {€(u, Zy)} is a singleton for all
u € S = U and almost all realizations of Zy. Let kz, (u) be a positive function which
depends on 07y N B.({(u, Zy)) for arbitrarily small ¢ > 0. In particular, kz (u) can be
the absolute curvature of 07, at the corresponding tangent point or a function of this
curvature. The measure H is supposed to admit integral representation (3.9) with YTz, (-)
concentrated at {u} with mass 1. Then

En({u}, W) = AIW[(1 = p)E kz,(u),

whence the expected value of kz (u) can be estimated as soon as an estimator of A is
available. If E|Zg|* < oo and Ek% (u) < oo for all u, then Corollary 9.2 is applicable
with the limiting variance equal to

Tuu(k) = AE (kz,(u)*)/(1 - p).



To estimate the expected value of kz, (u) one should use an estimator of A (e.g., based on
counting of tangent points). For instance, if the grain is a random ball of radius ¢, then
all moments of ¢ (and also all expectations E f(£)) can be estimated.

EXAMPLE 9.6. Let d = 2, U be the unit circle, and let Hg(T',-) with I' 3 u be concen-
trated at the tangent point ¢(u, K') with mass 1 if the support set £(u, K) is a singleton.
Otherwise, L(u, K) is a segment and Hg(T',-) gives the weights 1/2 to its end-points de-
noted by ¢'(u, K) and ¢"(u, K). Note that Hg(-) does not admit integral representation
(3.9).

The corresponding measure 7 is still observable and can be used to estimate the
intensity of the Boolean model, since, by Theorem 6.1, n(I', W)/|W| — A(1 — p) almost
surely as W T R? . Theorem 9.1 implies that the asymptotic variance of the corresponding
estimator, A = n(T, W)/([W|(1 — pw)), is equal to

o2, = AE[q(0) + q(¢"(u, Zo) — 0'(u, Zy))]/2.

This variance is less than the variance given by (9.9) of the usual tangent points estimator,
since q(v) < q(0) =1/(1 —p), v € R¢. Clearly, it is possible to consider other weights of
the end-points or to write a higher-dimensional variant of this example.

EXAMPLE 9.7. Suppose that U = S%!, and Hy, (T,W) = ©4_,(Zo, T x W) is the (d—1)-
dimensional generalized surface area measure of the typical grain. If W is an open set,
then n(I', W) is equal to the surface area measure of the boundary of the germ-grain
model Z measured inside W . In particular, n(S¢~!, W) is equal to the surface area of
(0Z)NW . Then the results above give the ergodic theorem and the central limit theorem
for surface measures. In particular, the ergodic theorem yields an estimator of the mean
surface area measure of the typical grain, which is equal to H(I', R?).

If the typical grain has no flat pieces on its boundary, then Hg(-) admits integral
representation (3.9) with /(u, K) being the tangent point and Yz (I') = ©4-1(Zp, ' x
R?) being the area measure of order (d — 1), see [21, p. 203] and Example 8.1. Then
Theorem 7.1 yields the limit theorem for surface measures proved in [17]. Note that it is
possible to extend this example for non-convex grains with rectifiable boundaries.

If the window W is closed, then the situation is more complicated, since the parts of
the boundary of W covered by Z contribute to n, see [17]. In particular, it was shown in
[17] that the central limit theorem is not valid in this case.

The following example was inspired by Hall [7, Section 5.6], who considered the planar
Boolean model with a circular grain and statistics of the type

(W)= > ¢ia(Ri), (9.10)

it i>1
where ¢; is the angular content of the exposed boundary of the ith grain (disk) within
the window W, and R; is the radius of the ¢th disk. In other words, « is the weighted
sum of all angular contents of all protruded pieces of the boundary. In particular, Hall

[7] proved that
Ex =2nAW|1 —p)Ea(f), (9.11)

if E€2 < oo and E |a(£)| < oo, where £ is the radius of the typical grain (disk).



EXAMPLE 9.8. Let Hg(I', W) = 0;(K,I'xW) f(K), where f(K) is a translation-invariant
positive functional on the space of convex compact sets. The corresponding measure 7¢(-)

is observable as soon as the value f(K) is retrievable from any relatively open piece of the

boundary 0K . In particular, this is true if the typical grain is a ball. Then statistics (9.10)

can be obtained from ns(-) for d =2, T =U= 8%, j =1, and f(B¢(z)) = £ ta(é). Tt

follows from Lemma 4.1 that

Eny (I, W) = AW|(1 = p)E [0;(Z0,T x R) f(Z0)],

which yields (9.11) as a special case (for positive f and circular grains). It is possible to
use this approach to estimate E f(Zp), since

Eng, (T, W) = AW|(1 - p)E[f(Z)]

for fi = f(K)/0;(K,T x R%).

If E|Zo|? < 0o and E[Vj(Z0)f(Zo)]> < o0, then Theorem 7.1 implies that the finite-
dimensional distributions of 7(T",W,,) are asymptotically Gaussian with the covariance
(7.2). These moment assumptions coincide with those imposed in [7, Theorem 5.3] for
planar Boolean models with circular grains. In this case Hy,(-) admits integral represen-
tation (3.9) with Yz (du) = a(§)du and £(u, Zy) equal to the tangent point of Z, in the
direction u. Then Corollary 7.2 yields the asymptotic variance of x

o2 = MN1-p)’E

K

a(§)2£_2/ /Q(yl_yZ)dyldy2]

0Zy 872

+X2(1=p) [ (g@)b(a)b(—2) - 4r*(Ea(§))?)d,

R4

where the integrations over curves are understood with respect to the 1-dimensional Haus-
dorff measure (curve length), and

b(z)=E

aee dy]

02N (Z5+)
is the expected angular content of 07, within Z§ + = multiplied by a(¢) .

ExXAMPLE 9.9. Let us consider typical grain Zy which has almost surely a bounded num-
ber of flat pieces on its boundary. Then for almost all realizations of Zy , H@V(L(u, Zy)) >
0 for some finite set of points u € S*' = U, where H@~1(.) is the (d — 1)-dimensional
Hausdorff measure. Put

Hy (T, W) = > HE D (L(u, Zo) "W).

u€l, M4 (L(u,Z))>0

If E (H41(075))% < oo, then the corresponding measure 7 is both ergodic and satisfies
the central limit theorem. In particular, |W|™'n(U, W) — A(1 — p)Ss—1, where Sy_; is
the expected value of the (d — 1)-dimensional Hausdorff measure of all flat pieces in 07, .



Furthermore,
Hy (T, W) =#{ueT: HD(L(u,Z,)NW) > 0}

is equal to the number of flat faces of Zy with normals belonging to I'. Then n(U, W)
is the number of exposed flat pieces in W . This gives a way to estimate the expected
number of flat faces of the typical grain and, moreover, to formulate the central limit
theorem for the corresponding estimator.

EXAMPLE 9.10. Let Z, be a random convex polytope in R? . Then S9! = UI';, where
['; is the set of directions such that £(u, Zy) is the ith vertex of Z, (the ordering of the
vertices can be arbitrary). Note that H@Y(S471) = 3> HE@-(T,). Put

H(d_l)(f‘i NN O'(Zo, W))

Hy (D,W) =3 HE@D(T) ’

[

where o(Zy, W) is the spherical image of Zg, see [21, p. 77]. In particular, Hz, (U, R?)
is the number of vertices of Zy which is denoted by v, and n(U, W) is the number of
exposed vertices inside W in the Boolean model Z with the typical grain Z,. Thus, the
ergodic theorem establishes the almost sure convergence of the normalized number of the
observed exposed vertices, i.e.,

n(U,W)/IW| = AX1—-p)Ev as W TR,

The central limit theorem is valid if v and |Zp| have finite second moments. In order
to compute the limiting variance consider vertices of Z to be a (non-stationary) point
process Wz with a.s. finite number of points equal to v. Its second-order moment
measure is denoted by a®(d(z,y)). Then (7.2) yields

oy = M1-p? [ gle-ya®(d,y) (9.12)
(R4)2
+ X1 =) [(a@)f(@)f(=2) = (Bv))d,
Ré

where

f@)=E | > 1zhi-2)

Yie¥z,

ExAMPLE 9.11. Let Hg(T', W) be equal to the number of the isolated points in compact
set K C W (clearly, Hg(T", W) does not depend on T"). Note that K is not supposed to be
convex. Then n(T', W) is the number of the exposed isolated points in the Boolean model
with the grain Z;. Similarly to Example 9.10, let ¥, be the point process of isolated
points of Z; with v being the number of points in ¥z, . Then

En(, W)= X1-p)|W|[Ev.

If Ev? < oo and E|Zy]?> < oo, then the central limit theorem is also valid with the
covariance given by (9.12).



EXAMPLE 9.12. Let H(ZTO)(F, W)

= i (Zp, T x R?), see (8.3). Then the corresponding
measure 7" (I, W) coincides with fi,(7,

['x R?). Asin (8.4),
1 d—1
(T, W) Zrd J( )n] (T, W), (9.13)

where 7;(T,W),j =0,...,d—1, are measures defined by (3.7) for Hj (T, W) = 0,(K,T x
W), K € C. We can use (9.2) to define the corresponding measures 7;(I", W,,) . Suppose
that E|Z7|> < oo for some r > 0.

Note that, similarly to the standard Cramér-Wold device, a random vector

(ﬁo(rv Wn)a R ﬁd—l(F; Wn))
converges in distribution to (&,...,&_1) as n — oo, if, for each r > 0,

d—1

Z Tjﬁj(ra Wn)

J=0

converges to Zd ri¢; weakly as n — oo. After applying this to the polynomial expan-
sions (9.13) and (8 4), one can prove that the random vector (7o(I', W5,), ..., fla—1(L, W,))
converges in distribution to a centred Gaussian random vector with the covariances given
by
o = A / q(y1 — y2) Hy5(T, dys; T, dya) + N / ®:(z,1)®;(~z,Tq(z)dz,
(R4)2
where 4,7 =0,...,d—1,

Hy(T, Wi T, Wa) = E [0,(Z5, T x W1)0;(Z0,T x W1)],

and
®,(z,T) = E[0;(Zo,T x (Zo + ))].

10. CONCLUDING REMARKS

To conclude with, we outline several possible generalizations. We give only the results for
the first moments in the Poisson case, although a laborious application of the methods
developed above (with evident changes) allows to derive the corresponding limit theorems.

Consider a family of measures H2(-), K, B € C, on ®B(X) which satisfy the conditions
HRT,W)=HRT,WNKNB) and HEZZ(T,W+2z)=HR[T,W), ze€R*.

In contrast to the standard case, HZ(T', W) need not be a o-finite measure with respect to
B . For instance, it may be one of the Hausdorff measures or a capacity. The corresponding
measure n?(-) is defined by

nB(Fa W) = Z H)B;i+Z¢(Fa W \ E‘l) :

iri>1



Under the basic assumptions,

EnP (I, W) = A1 - p) / EHE (I, W)dz. (10.1)

R4
ExampLE 10.1. Let HE(T,W) = 04_1((KN B),T x W), i.e., HE(T,W) is equal to the
(d — 1)th curvature measure of the set K N B. Then for ' = S4=1, pW(T', W) is equal to
the sum of the surface area of (0Z) N W and the (d — 1)-dimensional Hausdorff measure

of the set of points in OW covered by only one grain. Since HY (T, W) = HY(T,R?),
(10.1) yields

Eq" (T, W) = A(1 — p) / E Oy 1((Zo+2) N W,T x RY)dz .
R4
Now the translative integral formula [21, p. 254] can be applied to get

EnV(SLW) = A1 —p)2E /Vd_l((Z0+x)ﬁW)dx
Rd

= A1 - p)[2E Va1 (Z0)|W| + 2Vaer (W)E | Zo|| .

Remember that 2V;_1(K), K € C, is equal to the surface area of K .

Let us consider the measure H, k,(-) which depends on two compact sets K; and K
in such a way that, for all z € R?,

HK1+w,K2+x(Fa W + .17) = HKl,Kg(Fa W) = HKl,Kg(Fa wn Kl N KQ) . (102)

Then put
nC,w)y= > Hzix,,2,+x, (0, W\ ),
1,521, i#]
where
k: ki j

Then the first moment of 7(+) is given by

En(L, W) = NW| [ [ Gh.[#() = yH.(Ddy)a?(dz),
R4 Rd

where

ﬁZ(Fv W)=E HZl,Zz+Z(F7 W)
for two independent grains Z; and Z, (we suppose that H,(I', R?) is finite for all z € R?).
If the point process of germs is Poisson, then

En(l, W)= A1 -p)|W[E -

/ HZl,Z2+2 (F’ ]Rd)dz
Rd




ExAMPLE 10.2. Let us suppose that Z is the Boolean model with a.s. convex grains.
Consider the measure

Hg, 1, (T, W) = 1k, 000wz, K1, Ko €C,

which satisfies (10.2). Then,

H.(T,R?Y) = / 12 n(Zote) 20 2 = |71 @ Zs|
Rd

whence

En0,W) = \1-p)|W|E|Z & Zs|. (10.3)

For instance, if Zyg = M is a deterministic central symmetric convex set, then (10.3) yields
Eq(T, W) = A1 —p)2|W||M].

To give a geometric interpretation of the measure n in the planar case remember that two
convex planar sets X; + Z; and X; + Z; may be either disjoint or have their boundaries
intersected at two points (these sets may touch with probability zero). Then 2n(S9~1, W)
gives the number of such points in W (resulted from (X; + Z;) N (X, + Z;)) generated by
pairs of grains which are also exposed (not covered by Xy, + Z; with k # i, 7).

Clearly, it is possible to consider also vector-valued measures Hg/(-). In fact, many
results can be generalized also for the germ-grain model Z generated by a not necessarily
independently marked point process. Unfortunately, in this case formulae for the variances
are getting incomprehensible.

The crucial point of the developed technique is the representation of the measure n
as the sum of contributions of exposed parts of the grains. Roughly speaking, this means
that other grains only determine which part of the given grain contributes to the sum.
This excludes possibilities to consider additive extensions of intrinsic volumes of orders
j=0,...,d—2. Indeed, the additively extended intrinsic volumes, V;(F), F € R, are
defined by an analogue of (8.1), so that their values depend on the angles of intersections
of the convex sets which give F' as the union-set. For instance, it is not possible to obtain
the Euler-Poincaré characteristic as a special case of the measure n given by (3.7).
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