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Abstract

The coalgebraic perspective on objects and classes in object�oriented programming is elaborated� objects consist

of a �unique� identi�er� a local state� and a collection of methods described as a coalgebra� classes are coalgebraic

�behavioural� speci�cations of objects	 The creation of a 
new� object of a class is described in terms of the

terminal coalgebra satisfying the speci�cation	 We present a notion of 
totally speci�ed� class� which leads to

particularly simple terminal coalgebras	 We further describe local and global operational semantics for objects	

Associated with the local operational semantics is a notion of bisimulation �for objects belonging to the same

class�� expressing observational indistinguishability	

AMS Subject Classi�cation ������� �
C��� ��G��

CR Subject Classi�cation ������� D	�	�� D	�	�� E	�� F	�	�� F	�	�

Keywords � Phrases� object� class� �terminal� coalgebra� coalgebraic speci�cation� bisimulation

�� Introduction
Within the object�oriented paradigm the world consists of a collection of autonomous entities� called
�objects�� each dealing with a speci�c task� Coordination and communication takes place via sending
of messages� Objects are grouped into certain �classes� which specify �among other things	 the
interface to the outside world �of the objects belonging to the class	� Objects have private data� which
is only accessible via speci�ed operations� called �methods�� And since each object is persistent� it
can be seen as a �small	 database� �But it typically has no query facilities�	 There is no global state�
The object�oriented paradigm is both popular and succesful� but a general complaint is that it lacks a
proper formal foundation� In this paper we describe a semantics for objects and classes using so�called
�coalgebras�� These are the formal duals of algebras� The essential di
erence between algebras and
coalgebras is that the former have �constructors� �operations going into the algebra� which are used to
build things	 where the latter have �destructors� �operations going out of the coalgebra� which allow
us to observe certain behaviour	� This distinction between construction and behaviour is in essence
the distinction described in ��
� In coalgebra one deals with black boxes to which one only has limited
access via speci�ed operations� This aspect is important in the description of objects� It builds on
ideas from automata theory� The notion of bisimulation forms an intrinsic part of the coalgebraic
view� It means indistinguishability of behaviour� as it can be observed via the speci�ed �coalgebraic	
operations that we have at our disposal� It arises automatically in a situation with limited access�

There is no general agreement about what precisely constitutes an object� But there is broad
agreement about the following two aspects� ��	 an object has a local state� which is only accessible
via the objects methods� and ��	 an object combines data structure with behaviour� Precisely these
two aspects are emphasized in our coalgebraic description of objects� �But there is more to say� see
the last section�	

The suitability of coalgebras for the description of object�oriented features was recognized before�
see e�g� ���� ��� ��� ��
� Elements may be traced back to earlier sources� like ���
 or ���
� where the
word �coalgebra� is not yet used �in ���
 one �nds the phrase �abtract machine� instead	� In ���
 the



	� Preliminaries �

two�level structure of speci�cations in the language COLD are explained� �rst there is a speci�cation
of one�s application domain using algebraic data types� and then there is the system description in
terms of �state machines�� This second step corresponds to our coalgebraic �behavioural	 speci�cation�
In ���� �
 the object�paradigm is explained within the algebraic world using signatures with hidden
sorts� The hidden part is given a terminal interpretation in ��
� In this algebraic approach the output
types of methods are unstructured� unlike in the coalgebraic approach below�

This paper elaborates ideas from ���
 and ���
� What we consider as the main points are the
following�

� This paper works out a �set theoretic	 semantics for some crucial notions of object�oriented
programming in detail� There is a precise notion of object and of class� where the latter is a
suitable coalgebraic speci�cation of the former� We do not focuss on syntactic details �or on
any particular language	 but on the meaning of the concepts involved� In this sense� it is a
semantical study into object�orientation�

� It shows �following ���
	 how behaviour can be speci�ed coalgebraically �using conditional equa�
tions	� Further� it gives a local operational semantics for objects �how objects behave in isolation	
and a global operational semantics �how objects act on a con�guration of messages	� Associated
with the local operational semantics is a notion of bisimulation for objects �belonging to the
same class	�

� It gives a clear meaning to �new� applied to a class� namely as the terminal coalgebra satisfying
the class �as speci�cation	� This gives a canonical choice for an object belonging to a class�

� And it shows that these canonical �terminal coalgebra	 models are �good� implementations� In
this we use the techniques developed in ���
� It is somewhat surprising to see that although
�carriers of	 terminal coalgebras obtained from methods alone are generally huge sets of in�nite
trees �see Lemma ���	� one can cut down these sets to very reasonable size in case one has
�totally speci�ed� behaviour� this happens in Proposition ����

We shall make some use of elementary category theory in order to organize the concepts involved�
In using these categories for the description of object�oriented languages one has to live with the
multiple use of the word �object�� Usually there is no confusion�

�� Preliminaries
In this �rst section we have collected some of the technicalities� They may be skipped at �rst�

��� Algebras versus coalgebras
Assume we wish to specify a datatype X of binary A�labelled trees� for some set of labels A� Alge�
braically one describes how to build up such a tree by giving its �constructors� nil and node� as on the
left below �where � � f�g is a one�element set	� In this speci�cation one says that a binary A�labelled
tree is either the empty tree nil� or of the form node��� a� r	 where � and r are trees� and a � A is a
label� �

nil� � �� X

node�X � A�X �� X

��
�

leaf�X �� A

left�X �� X

right�X �� X

A coalgebraic speci�cation of such trees is given on the right� It does not give the �constructors��
but the �destructors�� it says which operations we have on our datatype of trees� namely taking o

the label at a node� following the left path and following the right path� But it tells nothing about
what is in X� This X is best considered as a black box to which we only have limited acces via the
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operations� The distinguishing di
erence between the algebraic and the coalgebraic description is that
in the �rst case we have operations going into X and in the second case out of X� We can emphasize
this di
erence even more by combining the operations into a single one by using coproducts � and
products �� In the �rst case we get a single operation � � �X �A�X	� X and in the second case
X � A�X �X� See also ��� �
�

The above algebraic speci�cation has a canonical model given by the initial algebra� It consists
of all �nite binary A�labelled trees� and may be constructed as the set of closed terms� Also for the
coalgebraic speci�cation on the right there is a canonical model� given by the terminal coalgebra� It
consists of the in�nite binaryA�labelled trees� and may be obtained as the set of �trees of observations��
Initial algebras form a basis for data type semantics �see e�g� ���
	� and terminal coalgebras play a
similar role in an object�oriented setting�

The general de�nition of an algebra is a map of the form T �X	� X� for some functor T �Sets�
Sets �or some other category	� and a coalgebra is a map X � T �X	� If we have two algebras
�c�T �U	� U	 and �d�V � T �V 		� then we say that an algebra map c� d is a morphism f �U � V

between the �carriers� which commutes with the operations� f � c � d � T �f	� This gives us a
category Alg�T 	� Dually we can form a category CoAlg�T 	 of coalgebras of T � a coalgebra map

�c�U � T �U		� �d�V � T �V 		 is a morphism f �U � V with d � f � T �f	 � c�

��� Finite products� coproducts and exponents
We recall that in a category C an object � � C is terminal if for each X � C there is precisely one
arrow X � �� Singleton sets are terminal objects in Sets� we typically write � � f�g� The dual notion
is that of initial object �� for which there is precisely one �� X to any X� In Sets we have � � �� The
binary product X�Y is characterized by the property that maps Z � X�Y are in �natural	 bijective
correspondence with pairs of maps Z � X and Z � Y � This gives us to projections ��X � Y � X�
���X � Y � Y and a tupling operation h���i� Dually� we have a coproduct X�Y with the property
maps X � Y � Z out of it correspond �naturally	 to pairs of maps X � Z and Y � Z� This gives
us coprojections ��X � X � Y � ���Y � X � Y and a cotupling operation ����
� In Sets � is the
usual cartesian product of pairs of elements� and � is the disjoint union� Finally we use an exponent
construction Y X � with the property that maps Z � Y X correspond �naturally	 to maps Z�X � Y �
In presence of these exponents we get the familiar distributivities X � �Y �Z	 	� �X � Y 	 � �X �Z	
and X � � 	� �� All told� we will be using the structure of a bicartesian closed category �BiCCC	�
But �higher type	 exponents do not play an essential role� in principle we could also use distributive
categories�

We use these constructions ���� ���� ��	��� to build up so�called polynomial functors� We shall
restrict ourselves to functors of the form

T �X	 � �B� �C� �X	A� � 
 
 
 � �Bn �Cn �X	An ��	

for certain �constant	 sets Ai� Bi� Ci�which may be � or � so that parts of this functor become simpler�
A coalgebra c�U � T �U	 of this functor may be identi�ed with a set of maps c��U�A� � B��C��U �
� � �� cn�U � An � Bn � Cn � U � A coalgebra forms in this way a model of a certain signature of
operations �i�e� methods	� And a coalgebra map is a map between the carrier sets which commutes
with the operations� Note that the ci are maps going out of U � with a parameter from Ai�

��� Terminal coalgebras
For reasons that will become clear below we shall be especially interested in terminal objects in
categories CoAlg�T 	 of coalgebras of functors T � These will be called terminal coalgebras� There
is a standard construction �see e�g� ���
	 to compute such a coalgebra as a limit Z of the diagram
� � T ��	 � T ���	 � 
 
 
 � Z� This construction applies for the above functors ��	� because they
preserve limits of such chains� We like to have an explicit description of this terminal coalgebra�
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���� Lemma� The terminal coalgebra Z
�� T �Z	 of the above functor ��	 in Sets can be described

as a set of in�nite trees� Therefore� �rst write

A � A� � 
 
 
�An� B � B� � 
 
 
�Bn� C � C� � 
 
 
� Cn

for the disjoint union of the constants in the functor� We now have

Z � f��A� � B � C j �� � A�� �i 
 n��a � Ai� ��hi� ai 
 �	 � Bi � Ci

and ��hi� ai 
 �	 � Bi � �i� 
 n��a� � Ai� � ��hi
�� a�i 
 hi� ai 
 �	 � ��hi�� a�i 
 �	g�

where 
 is concatenation of sequences �from A�	�

The methods Z �Ai � Bi �Ci � Z are given by

��� a	 ��

�
��hi� ai	 if ��hi� ai	 � Bi

h��hi� ai	� 	� � A�� ��� 
 hi� ai	i otherwise�
�

Notice that elements of this set Z are in�nite trees� This in�nity is achieved by repetition in case
an �attribute value� in a Bi comes out� For example� the set Z of �nite and in�nite lists of C�s is
the �carrier of the	 terminal coalgebra of the functor T �X	 � ��C �X� Explicitly� it is described as
Z � f��N � � � C j �n � N� ��n	 � � � ��n� �	 � �g�

���� Example �See ���
	� A useful special case of the above lemma is the following� the terminal
coalgebra in Sets of the functor T �X	 � B �XA associated with the signature X � B� X �A� X

is the set Z � BA
�

of functions from the set A� of �nite sequences of A�s to B� with methods Z � B

given by � �� ��� 
	 and Z � A � Z by ��� a	 �� 	� � A�� ��� 
 a	� In ���
 only these restricted
signatures �without coproducts	 are used� They form a special case of ��	 above for n � � and
A� � �� B� � B� C� � �� A� � A� B� � � and C� � ��

��
 Bisimulations and mongruences
Bisimulations and mongruences are relations and predicates on carriers of coalgebras which are suitably
closed under the coalgebra operations� One can describe these notions in terms of the functor involved�
see ��
� or ���
� Here we shall describe these notions concretely for functors ��	 as above�

���� De�nition� Let T �Sets� Sets be the above polynomial functor ��	� and let c�U � T �U	 and
d�V � T �V 	 be two coalgebras of this functor�

�i	 A relation R � U � V is called a bisimulation �on these coalgebras	 if for x � U and y � V �
in case R�x� y	 holds� then for each i 
 n and a � Ai we have one of the following two cases�

� both ci�x� a	 and di�y� a	 are in Bi� and they are equal�

� both ci�x� a	 and di�y� a	 are tuples� of the form ci�x� a	 � hc� x�i and di�y� a	 � hc� y�i with equal
components in Ci and with R�x

�� y�	�

Two elements u � U and v � V are called bisimilar if there is a a bisimulation R � U � V with
R�u� v	� In this case one writes u� v�
�ii	 Amongruence on c�U � T �U	 is a predicate P � U for which� if P �x	 holds� then also P �x�	

for each x� � U occurring as �new state� ci�x� a	 � hc� x�i � Ci � U � for i 
 n and a � Ai�

The following standard result gives an equivalent description of bisimulation� in terms of terminal
coalgebras�
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���� Lemma� Consider two coalgebras c�U � T �U	 and d�V � T �V 	 of the same functor T � They

induce two unique coalgebra maps �c and �d to the terminal coalgebra Z
�� T �Z	� in�

T �U	 ��
T ��c	

������ T �Z	 T �V 	oo
T ��d	

� � � � � �

U

OO

c

��
�c

������� Z

OO
	�

Voo
�d

� � � � � � �

OO

d

Two elements u � U and v � V of the carriers of these coalgebras are then bisimilar if and only if
they have the same value on the terminal coalgebra� i�e� u� v if and only if �c�u	 � �d�v	� �

�� Objects and Classes �locally�
This section contains the main de�nitions� which will be illustrated subsequently by a series of ex�
amples� The main aspect of an object that we are capturing coalgebraically is that it has a local
state� which is only accessible via speci�ed operations� Classes will be presented as speci�cations of
objects� We consider objects �locally� in the sense that we describe single objects on their own� and
not systems of objects �as in Section �	�

���� De�nition� �i	 Let C be a set of class names� In a particular program� this set will be �xed�
We write OiD � C �N for the set of object identi�ers �names of objects	� Each object has a unique
identi�er o � hN� ii where N is the name of the class to which the object belongs� and i is a natural
number used to distinguish di
erent objects of the same class�
�ii	 An object is a ��tuple ho� u � U� c�U � T �U	i where o is the objects identi�er� u is its local

state� U is its local state space� and c�U � T �U	 is a coalgebra structure on U � that gives the
operations �methods	 of the object on the local state space U � This coalgebra is determined by the
identi�er� in the sense that equality of identi�ers �names	 for objects means equality of coalgebras�

The identi�er is not so important at �rst� when we consider objects locally �in isolation	� But later
on� when we consider collections of objects globally� it plays a role because it is used to denote the
target object of a message� Having an explicit name component is mathematically not so elegant�
since the standard naming convention �in mathematics	 is to use the tuple as a name for the object�

���� Example� At this stage we only mention a trivial example� where we ignore the identi�er� Every
value b � B forms an object� namely with trivial local state space � � f�g and with b as coalgebra
b� � � B � T ��	 for the constant functor T �X	 � B� This constant object returns the value b when
it is sent a message� There is no possibility to change the local state of this object�

In the type theoretic encoding of object�oriented features into second �or higher	 order polymorphic
lambda calculus �with subtyping	� see e�g� ��� ��� ��
� one uses the type ���Type� �� ��� T ��		 for
objects with �interface� T � One thus has an encoding which involves hiding the local state space �
via an existential quanti�er �as in ���
	� An inhabitant of the product type �� ��� T ��		 is a tuple
consisting of a local state in � and a coalgebra � � T ��	� like in the above de�nition� But in this
type theoretic encoding there is no explicit way to deal with equations� they play an essential role
below in the speci�cation of behaviour�

One may also view an object with local state u � U and coalgebra c�U � T �U	 as a particular
kind of automaton� with u as current state of the automaton� and with the coalgebra c as transition
function� From an object�oriented perspective there is some degree of non�determinism in the sense
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that the transition function c is a tuple of methods ci� and the object itself does not know which of
these components is selected� and with which parameter�

We shall describe classes as speci�cations of objects� Thus an object belongs to a class� when it is
a model of �or� when it meets	 the speci�cation�

���� De�nition� �i	 A class is a structure which has a name� and consists of three components�

� A �nite set of �unary	 methods���
��

X � A� �� B� � C� �X
���

X �An �� Bn � Cn �X

on a local state space X� The functor associated with this signature of coalgebraic operations is

T �X	 � �B� �C� �X	A� � 
 
 
 � �Bn � Cn �X	An �

In a class one should explicitly say which of these methods are public and which are private� If
some Ci is the empty set �� then the associated method gets the form X � Ai �� Bi� and may
be called an attribute� since it yields an �observable element� in Bi and does not change the
local state space� Methods which do a
ect the local state may be seen as procedures�

� Equations� which may be conditional� These equations are between observable outcomes �the
B�s and C�s above	� not between local states �elements of X	� This re�ects the idea that we
do not have direct access to local states� These equations regulate the behaviour of the objects
belonging to the class� Both public and private methods may occur in the equations�

� The attributes which hold for newly created objects� using new� These may be either without
parameters� or be parametrized�

�ii	 An object p � ho� u � U� c�U � T �U	i belongs to �or simply� is in	 a class with name N if

� p�s identi�er o is of the form hN� ii� where i � N�

� the functor T occurring in p is the same as the one in the speci�cation of the methods of N �

� the coalgebra c in p satis�es the equations of N �

�iii	 Objects belonging to a particular class N can be organized in a category ObjN � Then objects
of ObjN �in a categorical sense	 are objects �in an object�oriented sense	� As morphisms ho�� u� �
U�� c��U� � T �U�	i �� ho�� u� � U�� c��U� � T �U�	i in ObjN we simply take the coalgebra maps
c� � c� �consisting of functions f �U� � U� between the local state spaces with c� � f � T �f	 � c�	�
Morphisms between objects do not take identi�ers and local states into account� �The dynamics of
objects is thus ignored� but one can choose to de�ne another category of objects� in which maps do
preserve local states�	
�iv	 For a class N � the object newN will be the terminal object in ObjN � It will have the local state

determined by the attribute values which are speci�ed in the third point in �i	 above� Its identi�er
will be hN�n� �i where n is the number of already existing objects belonging to the class N � �This
latter aspect is determined during run time� it guarantees uniqueness of object identi�ers�	

In the classes that we consider in this paper we shall only use equational logic� but from a semantical
point of view there is no objection against using a more expressive logic in the second point� For
example� temporal logic is used in ���
� The di
erence between public and private methods is that one
object may only send messages requiring execution of a public method in another object� But it may
send messages to itself asking for execution of its own private methods� Private atributes �i�e� methods
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X �� B in the private section	 may play the role of instance variables� Also attributes in the public
method section may be seen as instance variables� but these variables can then be read from outside�

The methods that we consider have output types Bi � Ci �X� This means that they can produce
an observable element in Bi� or an observable element in Ci together with a new state in X� We can
also have methods X �Ai �� X �Di �X by using the isomorphism X �D �X 	� �� �D	�X 	�
� � �� �D	 � X� so that we have an isomorphic output of the required format� But notice that at
most one new state can be produced �in every alternative of �	�

Next we de�ne bisimilarity for objects� This notion is intended to capture observational indistin�
guishability for objects� It will therefore only involve the publicly available methods�

���� De�nition� Consider a class N with two functors Tpu� Tpr�Sets � Sets describing the sig�
natures of respectively the public and private methods of N � Two objects ho�� u� � U�� c��U� �
Tpu�U�	� Tpr�U�	i� ho�� u� � U�� c��U� � Tpu�U�	� Tpr�U�	i belonging to this class N will be called
bisimilar if there is a bisimulation R � U� �U� with respect to the coalgebras � � c��U� � Tpu�U�	
and � � c��U� � Tpu�U�	 of the �public� functor Tpu� implementing the public methods�

During the lifetime of an object its local state may change through the execution of its methods
�as a result of incoming messages	� but its identi�er and its methods �coalgebra	 remain the same�
We shall often call two objects identical if they only di
er in their local state� Thus� execution of
methods does not change the identity of objects� Under bisimilarity more objects are identi�ed�

���� Remarks� �i	 Classes are described above as speci�cations of objects� Thus there is a sharp
distinction between speci�cation and implementation� One of the strong points of this approach
is that it provides a clear semantics for �new�� the canonical implementation of the speci�cation is
taken� Often there is not such a clear separation of speci�cation and implementation� e�g� when classes
contain certain implementation details about the precise way in which a speci�c method is written as
a program� Such �classes� may be seen as bodies for our �classes as speci�cations��
�ii	 There are similarities between the approach presented here and the one in Wieringa ���
� For

example� a �class� here is an �object speci�cation� there� and a �conditional equation� here is a �local
event constraint� �with pre� and post�conditions	 there� A di
erence is that Wieringa incorporates
some process algebra into his speci�cation formalism� But the main di
erence is that he works in an
algebraic world� using Kripke semantics� and not in a coalgebraic one�

In the remainder of this section we shall consider examples of classes and objects� Object identi�ers
will play a minor role in these local investigations�

A rudimentary bank account
We consider a bank account �of a single person	 for which we only have methods bal giving the balance
of the account� and ch with which we can change the amount of money in the account� An obvious
equation should then be satis�ed� describing the balance after the change in terms of the balance
before� and the change� We use hopefully self�explanatory notation� in the following speci�cation�
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with some comments afther the � � sign�

class	 BA  name of the class� �BA� for �bank account�
public methods	

bal�X �� Z  this is an attribute
ch�X �Z�� X  this is a method� with parameter from Z�

 it a
ects the local state space X�
equations	

x�ch�a	�bal � x�bal� a  in OO�style with post �x notation
 �where x�X a variable for the local state	

creation	

new�bal � �
endclass

In this speci�cation we say what methods we want for our bank account and what equations should
hold� The equation x�ch�a	�bal � x�bal � a should be read as� if one sends x the change message ch
with parameter a and then asks for the balance bal� then the outcome is the same as �rst asking x for
its balance� and then adding the amount a� The last point of the speci�cation mentions that newly
created objects �written as newBA	 of this class BA have � � Z as balance�

As an observer on the outside� we do not really care how objects belonging to this bank account class
are implemented� as long as they meet the speci�cation� We have no access to the local state space X
except via the above two methods� This is coalgebra� We shall present some possible implementations�
which give examples of objects belonging to this class� with di
erent interpretations of X and of bal� ch�
But these di
erences are not visible to users� Notice that the functor associated with the signature of
methods is T �X	 � Z�XZ�

A �rst try is to take a bank account as a sequence consecutive changes� Thus we take as local state
space U� � Z

�� the set of �nite sequences of integers� For x � ha�� � � � � ani � U� we de�ne methods�

x�bal � a� � 
 
 
� an and x�ch�a	 � ha�� � � � � an� ai�

These two methods together form a coalgebra c��U� � T �U�	� It obviously satis�es the equation
x�ch�a	�bal � x�bal� a� We can thus form an object hhBA� �i� h����i � U�� c��U� � T �U�	i belonging
to the class BA� The balance of this bank account is ��� One could note that this is a rather ine!cient
implementation� asking for the balance involves adding up all the changes that have been made� But
for a user of the object on the outside�who can only access the object via the balance and change
methods�these implementation details are not visible�

Our second try also involves an implementation which keeps a record of changes� but this time
the additions are done immediately so that taking the balance gives a more direct answer� So we
now take as local state space U� � Z�� the set of non�empty sequences of integers� For an element
x � ha�� � � � � ani � Z� we de�ne

x�bal � an and x�ch�a	 � ha�� � � � � an� an � ai�

This gives us a coalgebra c��U� � T �U�	� which also satis�es the equations�

We mention a third implementation which simply has a local state space the set U� � Z of integers�
For x � Zwe de�ne

x�bal � x and x�ch�a	 � x� a�

A bank account object with this coalgebra� call it c��U� � T �U�	� has as local state an integer that
represents the current balance� In a sense this is the most e!cient implemention� In a mathematical
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sense it distinguishes itself as the terminal coalgebra� i�e� as the terminal object in the category of
coalgebras X � Z�XZ satisfying the bank account equation�

Consider the two bank account objects p� � ho�� h����i� c��Z�� T �Z�	i and p� � ho����� c��Z�
T �Z	i using the above �rst and third implementation� These are bisimilar� because we cannot see a
di
erence� using the public methods speci�ed in the bank account class� they have the same balance�
namely ��� and by using the change method we cannot create a di
erence� since the balance after a
change is determined by the equation in the class� More technically� we have a bisimulationR � Z

��Z
with R�h����i���	 namely

R � fha�� � � � � an� ai � Z
��Z j a� � 
 
 
� an � ag�

There is one more aspect of classes that we can illustrate in this bank account example� namely
the di
erence between creation with or without parameters� The line new�bal � � in the above class
describes creation without parameters� Its result is that newly created bank accounts of this class
have balance �� One may wish to have some more �exibility here�for example� some banks encourage
opening of accounts by giving a starters premium�and to be able to specify the amount of money
that should already be there at creation� This is creation with a parameter� The syntax one could
then use is newBA���	 to indicate that the initial balance should be ��� In the class itself one should
indicate this option of creation with a parameter� for example by writing new�z	�bal � z �instead of
the line new�bal � � for unparametrized creation� as above	�

Two bu�ers with capacity one
Let A be a �xed set of data elements� We wish to describe a class of bu
er objects� which can contain
an element a � A� The methods that it should have are store�a	� to put an element a � A in a bu
er�
and read to read the content of a bu
er� We should decide explicitly�

� what happens when we send the store�a	 message to a bu
er which is already full� �we choose
that nothing will happen
�

� what happens when we read from an empty bu
er� �the �observable	 outcome will be an error
value
�

� what happens to a bu
er when we read from it� one can have a destructive read �DR	� which
means that after reading an element a bu
er will be empty� or a persistent read �PR	� which
means that reading does not a
ect the content of a bu
er� in that case one needs an explicit
method empty for emptying the bu
er�

Below we shall present two classes PR for the persistent read bu
ers �on the left	� and DR for the
destructive read bu
ers �on the right	�

class	 PR class	 DR
public methods	 public methods	

store�X � A �� X store�X �A �� X

read�X �� ferrorg�A read�X �� ferrorg�A�X

empty�X �� X equations	  in sloppy notation
equations	 x�read � error � x�store�a	�read�fst � a

x�empty�read � error x�read � a � x�store�b	�read�fst � a

x�read � error � x�store�a	�read � a x�read � ha� yi � y�read � error

x�read � a � x�store�b	�read � a creation	

creation	 new�read � error

new�read � error endclass

endclass
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The main di
erence between the persistent read class and the destructive read class is that in the
former the read method is an attribute� it does not change the local state space� The destructive
read method does have an e
ect on the local state space�it empties the bu
er�which is re�ected
in the type of this method� the X occurs in the type of the output of the read method� The functor
describing the signature of persistent read methods is X �� XA � �� � A	�X 	� X�A��� � �� � A	�
For the destructive read we have X �� XA � �� �A�X	� where � � ferrorg is the terminal set�

The equations may equivalently be expressed via diagrams� For example� the three equations for
persistent read may be expressed via two diagrams�

X ��empty

��

X

��
read

X �A ��store

��
read� id

X ��read
� �A

� ��
� � � A �� �A	�A ��

	�
A� �A�A	 ��

�id� �

A

OO

��

The equations for the destructive read class have been expressed in a somewhat sloppy way� the
��component of the read output is left implicit� More formally� we need a �case� construction �as in
a type theory with coproduct types �	� so that we can write the equations as�

case of x�read

�
error �� ��b

ha� yi �� ��a

�
� case of x�store�b	�read

�
error �� �error

ha� yi �� ��a

�

case of x�read

�
error �� �error

ha� yi �� y�read

�
� �error�

But of course� they can also be written diagrammatically�

The terminal coalgebras satisfying these speci�cations have in both the persistent and in the de�
structive case as local state space the set � � A� This set can contain an error value in � � ferrorg
representing that the bu
er is empty� and it can contain an element a � A� It thus contains the
minimal information need for a bu
er of capacity one� The store method is in both cases implemented
as the composite

store � ��� �A	�A 	� A� �A�A	 ��
�id� �


A ����
� �A�

It sends �z� a	 � �� � A	 � A to a � A if z � error and to b � A if z � b� The read methods are
of course di
erent� The persistent read is simply the identity function � � A � � � A� whereas the
desctructive read is the composite

read � �� �A 	� � �A� � ��id� id� �
� � A� �� � A	�

Finally� the empty method from the persistent read always gives an error element� via

empty � �� �A �� � ���
� �A�

Other implementations are possible� For example� one can have as local state space �� � A	 � A� 	�
A� � A�� so that one can use the � � A component as the actual bu
er �like above	� and the A�

component as history of elements that have been stored� The actual implementation of the methods
on this alternative local state space �for both the persistent and the destructive read	 is left to the
interested reader�




� Objects and Classes �locally� 



Two �nal points� ��	 We note that the two states x�empty�empty and x�empty are indistinguishable
�bisimilar	� and indeed have equal interpretations in the terminal coalgebra � � A� But there is no
way that we can prove from the equations in the persistent read class that x�empty�empty and x�empty

are equal since we have no equations between states� ��	 One may be tempted from an algebraic
perspective to see the �creation� part in a class as the description of a constant new� �� X� One can
then investigate what the initial model of the speci�cation is� In the above persistent read example
it is not the �minimal	 set � � A of internal states that comes out in the coalgebraic approach� We
algebraically one gets more� since one cannot show that the closed terms new and new�empty are the
same�

A co�ee and tea machine
As third example we sketch a class of objects that can be understood as elementary machines handling
co
ee and tea requests� There are methods coin for inserting a coin� liq for making a choice between
co
ee and tea� and add to choose whether one wishes the co
ee or tea to be black �b	� with milk
�m	� with sugar �s	� or both with milk and sugar �ms	� The interesting aspect is that we use a fourth
private method status to describe the internal state of the machine� The user of objects belonging to
this class is not supposed to have access to this method� With this status method we can express how
the public methods change the local state� This a crucial technique in coalgebraic speci�cation� For
convenience we assume that only one type of coin is used�

class	 CTM
public methods	

coin�X �� X

liq�X � fc� tg �� ferrorg�X

add�X � fb�m� s�msg �� ferrorg� fbc�mc� sc�msc� bt�mt� st�mstg �X

private methods	

status�X �� f�� �� c� tg
equations	

x�status � � � x�coin�status � �
x�status � s � x�coin�status � s for s � f�� c� tg
x�status � � � x�liq�a	�status � a

x�status � s � x�liq�a	 � error for s � f�� c� tg
x�status � s � x�add�a	�fst � �as� for s � fc� tg
x�status � s � x�add�a	�snd�status � � for s � fc� tg
x�status � s � x�add�a	 � error for s � f�� �g

creation	

new�status � �
endclass

One sees how the private status method describes the four di
erent internal states that are relevant�
status � means waiting for a coin� status � means waiting for a choice of co
ee or tea� and status c"t
means waiting for a choice of additive� to be combined with the already known choice for co
ee �c	
or tea �t	� In this sense we can describe what is the order in which the messages should be sent to
get appropriate results� But of course� the objects in this class are able to handle messages coming in
any order�by possibly giving error outcomes� Coalgebraic speci�cation is quite �exible in this sense�

The terminal coalgebra is in this case precisely this �minimal	 set of internal status f�� �� c� tg�
Alternatively� it may be seen as the number �� We leave it to the reader to implement the above
methods on this carrier set�

For an example of an elementary� coalgebraically speci�ed� database� see ���� ���
� where there is a
method store�X �K �A �� X which allows one to store data from A under a key from K�
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�� Local operational semantics
In this section we describe the operational semantics O�p	 of a single object p as the tree of all
possible transitions that start from p� �We thus use a �branching� semantics� as opposed to a �linear�
semantics of traces�	 In such transitions the objects identi�er and coalgebra remain unaltered� but its
local state may change� We shall distinguish between the transitions caused by public methods� and
transitions by both public and private methods�

���� De�nition� Consider an object p � ho� u � U� c�U � T �U	i� where T ��	 � Tpu��	 � Tpr��	
is the functor combining the signatures of public and private methods� We take the two terminal
coalgebras Z �� T �Z	 and Zpu

�� Tpu�Zpu	 of the entire signature� and of the public signature only�
Then� by terminality� we get two coalgebra maps � and �pu in diagrams�

T �U	 ��
T ��	

������ T �Z	 Tpu�U	 ��
Tpu��pu	

������ Tpu�Zpu	

U

OO

c

��
�

������� Z

OO
	�

U

OO

� � c

��
�pu

�������� Zpu

OO
	�

We then assign operational meanings O�p	 � Z and Opu�p	 � Zpu to the object p by putting
O�p	 � ��u	 and Opu�p	 � �pu�u	�

The operational semantics is thus obtained ��by coinduction�	 via the unique map into a terminal
coalgebra� This is dual to the usual way a denotational semantics is de�ned� namely ��by induction�	
as unique map going out of an initial algebra �of terms	� Remember from the explicit description of
terminal coalgebras in Lemma ��� that both O�p	 and Opu�p	 are in�nite trees�

The standard result Lemma ��� gives us the following�

���� Lemma� Two objects p� q belonging to the same class are bisimilar if and only if they have the
same public operational semantics� i�e� if and only if Opu�p	 � Opu�q	� �

This means that two objects are indistinguishable by using their public methods if and only if the
associated trees of public observations are equal� We can give an explicit description of these trees
O�p	 and Opu�p	 via single transition steps for objects� For convenience� we shall do this for O�p	
only�

���� De�nition� Consider an object p � ho� u � U� c�U � T �U	i� where T is the functor X ��Q
i�n�Bi � Ci �X	Ai as used before� The single transition steps

ho� u � U� c�U � T �U	i ��x
y

ho� u� � U� c�U � T �U	i

where x � A � A� � 
 
 
� An is an input� and y � B � C � �B� � 
 
 
� Bn	 � �C� � 
 
 
� Cn	 is an
output� is de�ned as follows� For x � hi� ai � A with a � Ai one has�

y � ci�u� a	 � Bi and u
� � u if ci�u� a	 � Bi

hy� u�i � ci�u� a	 � Ci � U otherwise

So if the outcome of applying the i�th component ci of c to the local state u with parameter a is a
value in Bi� then the local state does not change� but if it yields both a value in Ci and a new local
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state u�� then the value is visible� but the new local state gives us a di
erent object with the original
identi�er and coalgebra� but with this new local state�

Notice that the idenitity of an object �as described after De�nition ���	 does not change under
transition� Thus we have that objects are persistent entities�

���� Lemma� The operational semantics O�p	 as an element of the set Z of trees A� � B�C from
Lemma ��� may be described explicitly as�

O�p	�hxn� xn��� � � � � x�i� � y �

���
��
there are objects p�� � � � � pn and y�� � � � � yn�� � B � C with

p ��x�
y�

p� ��x�
y�


 
 
 ��
xn��
yn��

pn�� ��xn
y

pn�

Proof� This is because the description in the lemma is the unique map to the terminal coalgebra�
applied to the local state of p� �

�� Terminal coalgebras satisfying equations
In Lemma ��� we have described terminal coalgebras of functors associated with signatures of methods�
whereby the equations were ignored� The carrier sets of these terminal coalgebras are rather large
sets of in�nite trees� It turns out that in many cases one can cut down this set considerably by
imposing certain additional �behavioural	 conditions� such as equations in classes� One then considers
the terminal coalgebra which satis�es these conditions�

The following comes from ���
� Consider the terminal coalgebra Z �� T �Z	 of a polynomial functor
T � and let E � Z be a subset induced by certain equations� Let E be the greatest mongruence �see
De�nition ��� �ii		 on Z � T �Z	 which is contained in E� Then E inherits a coalgebra structure�
and is the terminal coalgebra satisfying E� �This procedure is like in algebra� where one cannot
just quotient by the relation given by the equations� but one �rst has to take the associated least
congruence relation� and then form the quotient algebra�	

We illustrate this with the example of the persistent read class from Section �� The associated
functor is T �X	 � X�A��� � �� � A	� which has� by Example ���� as terminal coalgebra the set of
functions � � �� �A	�A���� with operations�

��store�a	 � 	�� ��� 
 �a	� ��read � ��� 
	� ��empty � 	�� ��� 
 ���	�

The three equations in the persistent read class gives us a subset E � �� � A	�A���� consisting of
those � satisfying�

� ��empty�read � �� i�e� �����	 � ��

� if ��read � �� then ��store�a	�read � a� i�e� if ��� 
	 � �� then ���a	 � a�

� if ��read � a� then ��store�b	�read � a� i�e� if ��� 
	 � a� then ���b	 � a�

The greatest mongruenceE � E is the greatest set E � E satisfying� if � � E� then also ��store�a	 � E

and ��empty � E� It is easy to see that E is then the set of � � �� � A	�A���� satisfying for all
� � �A� �	�� ������	 
 �	 � �� if ���	 � � then ����a	 
 �	 � a� and if ���	 � a then ����b	 
 �	 � a�
But then we have that each tree � � E is determined by its value ��� 
	 � � � A� Hence E 	� � � A�
and this is the �carrier of the	 terminal coalgebra satisfying the equations�
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The essential element in the elimination of these trees � is that they are determined by their output
��� 
	 at the root� This will be formalized using the operational semantics O��	 from the previous
section�

���� De�nition� A class will be called total �or totally speci�ed	 when for each object p belonging
to the class the following holds� for each n � �� if O�p	�hxm� � � � � x�i	 is known for each m 
 n and
input sequence hxm� � � � � x�i� then also the outcome of the next step O�p	�hxn��� xn� � � � � x�i	 is known�
for each input sequence hxn��� xn� � � � � x�i� This means that the entire tree O�p	 is determined by the
set of outputs O�p	�hxi	 on singleton input sequences�

A class is thus total when we can deduce what the outcome of a next step is �in terms of observable
outputs	� from what we already know� This means that the equations cover all possible situations that
may occur� It may be clear that the persistent read class is total� the output O�p	�hxn��� xn� � � � � x�i	 �
� � A is determined by xn�� � A� � and by O�p	�hxn� � � � � x�i	 � � � A� according to the following
table�

O�p	�hxn� � � � � x�i	 � � � � O�p	�hxn� � � � � x�i	 � a � A

xn�� � � � � # #

xn�� � b � A b a

Notice that the carrier of the terminal coalgebra in this situation is the set T ��	 � ��A���� ���A	 	�
� � A� The same analysis may be applied to the destructive read class� it gives the same carrier set�
but with di
erent operations�

���� Proposition� The carrier of the terminal coalgebra of a total class involving a polynomial func

tor T �X	 �

Q
i�n�Bi �Ci �X	Ai is a subset of T ��	 �

Q
i�n�Bi � Ci	

Ai �

Proof� Like in the persistent bank account example� the trees ��A� � B � C in the carrier of the
terminal coalgebra are determined by their values ��hi� ai	 � Bi � Ci� These can be described as n
functions Ai � Bi �Ci� They combine into an element of T ��	� �

This result thus gives us a superset for the carrier of the terminal coalgebra� That we can really get
a proper subset of T ��	 can be seen in the example of the �total	 class of the co
ee and tea machine
in Section �� where the coin� liq and add methods on T ��	 are determined by the current status� This
allows a further simpli�cation of T ��	�

���� Rule of thumb� The carrier of the terminal coalgebra for a total class is the minimal set of
internal states needed to carry out the speci�ed task�

For a total class� the observable output values at creation �for new	 should be speci�ed as an element
of T ��	�or of an appropriate subset of this product of function spaces�

	� Global operational semantics
So far we have only considered objects in isolation� In order to communicate� objects should be able
to send messages to each other �including to itself	� In this �nal section we brie�y sketch how such
communtication may take place via a global transition relation� Many details are left out�
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A message is a ��tuple of the form

ho�m� ai where

��
�

o is an object identi�er� representing the target
m is a method name �occuring in the class in o	
a is a parameter for m�

For example� we may have a message hhBA� �i� ch� �i which� when received by object � belonging to
the bank account class BA� is intended to cause execution of the method ch��	 with parameter ��

Let us writeM for the set of all possible messages �given a certain collection C of classes	� From
now on we letM occur explicitly in the output types in signatures of methods in classes� like in

X �A �� B � �C �M�X	�

An output message ho�m� ai � M will be understood as an act of sending this message� �This
should not be regarded as visible on the outside� so we have to adapt the de�nition of bisimilation by
eliminatingM from the associated functor� and by projecting it away from coalgebras�	 For an object
p with an input hi� ai execution of the i�th method in p on the local state with parameter a may now
result in a number of messages as output� We will write this outcome as a �multi�	 set mess�p� hi� ai	
of messages�

In concurrent object�oriented programming there is no global state containing values of global
variables� through which local entities may communicate� One may describe communication via
synchronous message passing� as in the language POOL� see ��
� Here we sketch asynchronous com�
munication where there is a global collection of messages waiting to be executed� Related ideas are
expressed in ��� ��� �
� This collection�in a sense�is a substitute for the global state� it may be
depicted as a �sea� or �chemical soup� of messages� in which each object can recognize the messages
directed at it through uniqueness of identi�ers� Thus each object can pick out the relevant messages
from this soup� and execute the method in the message� Such executions may be performed concur�
rently� since there is no interference� This is because ��	 objects have their own local state� and ��	
objects have unique identi�ers� so there is no possibility that one object handles a message aimed at
another object� The absence of interference is one of the selling points of concurrent object�oriented
programming� Of course� there are some �operational	 scheduling problems in this set�up� For exam�
ple� one has to specify how �global	 execution proceeds when there is more than one message for a
particular object� An obvious approach is to have messages waiting in queues for their target objects�
in the �temporal	 order in which they arrive�

Since there may be multiple copies of the same message waiting to be executed� we have to take
our con�gurations of messages as multisets� We take as set S of all these con�gurations the space
S � NM of functions from messages to natural numbers� For 
 � S and k � M we see 
�k	 � N to
be the number of messages k in the con�guration 
� We extend inhabitation � and union � to S in
the obvious way� For example k � 
 stands for 
�k	 � ��

We have now prepared the grounds for the description of the global operational semantics� It
involves the local transition steps between objects from De�nition ���� but also transition steps between
con�gurations �multisets	 of messages� For a con�guration 
 � S � N

M we have a rule�

ho�m� ai � 
 identi�er�p	 � o

p ��
hm� ai
y p� 
 �� �
 � h��m� ai	 �mess�p� hi� ai	

This rule should be read as follows� If a message ho�m� ai occurs in the current con�guration of
messages 
 and if p is the object with identi�er o at which this message is targeted� then p can make
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a single transition step with input hm� ai�that is� p can execute message m with parameter a� which
yields object p� with possibly di
erent local state� see De�nition ����and a single occurrence of the
message ho�m� ai is removed from the con�guration 
� while the output messages in mess�p� hi� ai	
produced in the transition p � p� are added to the con�guration� We thus have both a local and a
global step�


� Concluding remarks
We have presented a coalgebraic formalism to describe some of the basic concepts of object�oriented
programming� Subtyping and inheritance do not form part of the picture �so far	� Some of the
characteristics of the coalgebraic perspective are listed below�

�� An object has a local state to which one only has access via the public methods of the object� We
do not know anything about this local state� except what these methods tell us� This emphasis
on observation is characteristic of coalgebra� as opposed to algebra where construction is the
key aspect�

�� An object combines both data structure and behaviour� the former is explicit in the signature
of operations in its class� and the latter in the operational semantics�

�� One only has unary methods� acting on a single local state� Thus there are no binary methods�
of the form

X �X �� B � C �X

Such binary methods are excluded in the coalgebraic approach� since they lead to contravariant
functors� But on a di
erent level binary methods also present problems in combination with
inheritance� see ��
 for an extensive discussion�

�� An object has no autonomous activity� it acts only in reaction to incoming messages� But an
object may send messages to itself�

�� Parallellism only occurs at a global level between objects� and not within objects� But there is
some degree of non�determinism within objects� since an object does not know which method
will be executed next� and with which parameter� Also� the output type of a method can contain
a coproduct � so that it may not be known in advance which alternative is selected�

�� A �two�layered� semantics has been described involving local and global phenomena� For the
language POOL a �three�layered� semantics is given in ��
� where meanings are assigned to
methods in terms of a third level� containing the meanings of elementary program statements�

Much further work remains to be done� For example investigation of some serious examples involving
communication and of modularisation mechanisms for coalgebraic speci�cations� and comparison to
other speci�cation formalisms�
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