
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Objects and classes, coalgebraically

B. Jacobs

Computer Science/Department of Software Technology

CS-R9536 1995

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CWI's Institutional Repository

https://core.ac.uk/display/301666872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9536
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Objects and Classes� Coalgebraically

Bart Jacobs

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

�bjacobs�cwi�nl�

Abstract

The coalgebraic perspective on objects and classes in object�oriented programming is elaborated� objects consist

of a �unique� identi�er� a local state� and a collection of methods described as a coalgebra� classes are coalgebraic

�behavioural� speci�cations of objects	 The creation of a
new� object of a class is described in terms of the

terminal coalgebra satisfying the speci�cation	 We present a notion of
totally speci�ed� class� which leads to

particularly simple terminal coalgebras	 We further describe local and global operational semantics for objects	

Associated with the local operational semantics is a notion of bisimulation �for objects belonging to the same

class�� expressing observational indistinguishability	

AMS Subject Classi�cation ������� �
C��� ��G��

CR Subject Classi�cation ������� D	�	�� D	�	�� E	�� F	�	�� F	�	�

Keywords � Phrases� object� class� �terminal� coalgebra� coalgebraic speci�cation� bisimulation

�� Introduction
Within the object�oriented paradigm the world consists of a collection of autonomous entities� called
�objects�� each dealing with a speci�c task� Coordination and communication takes place via sending
of messages� Objects are grouped into certain �classes� which specify �among other things	 the
interface to the outside world �of the objects belonging to the class	� Objects have private data� which
is only accessible via speci�ed operations� called �methods�� And since each object is persistent� it
can be seen as a �small	 database� �But it typically has no query facilities�	 There is no global state�
The object�oriented paradigm is both popular and succesful� but a general complaint is that it lacks a
proper formal foundation� In this paper we describe a semantics for objects and classes using so�called
�coalgebras�� These are the formal duals of algebras� The essential di
erence between algebras and
coalgebras is that the former have �constructors� �operations going into the algebra� which are used to
build things	 where the latter have �destructors� �operations going out of the coalgebra� which allow
us to observe certain behaviour	� This distinction between construction and behaviour is in essence
the distinction described in ��
� In coalgebra one deals with black boxes to which one only has limited
access via speci�ed operations� This aspect is important in the description of objects� It builds on
ideas from automata theory� The notion of bisimulation forms an intrinsic part of the coalgebraic
view� It means indistinguishability of behaviour� as it can be observed via the speci�ed �coalgebraic	
operations that we have at our disposal� It arises automatically in a situation with limited access�

There is no general agreement about what precisely constitutes an object� But there is broad
agreement about the following two aspects� ��	 an object has a local state� which is only accessible
via the objects methods� and ��	 an object combines data structure with behaviour� Precisely these
two aspects are emphasized in our coalgebraic description of objects� �But there is more to say� see
the last section�	

The suitability of coalgebras for the description of object�oriented features was recognized before�
see e�g� ���� ��� ��� ��
� Elements may be traced back to earlier sources� like ���
 or ���
� where the
word �coalgebra� is not yet used �in ���
 one �nds the phrase �abtract machine� instead	� In ���
 the

	� Preliminaries �

two�level structure of speci�cations in the language COLD are explained� �rst there is a speci�cation
of one�s application domain using algebraic data types� and then there is the system description in
terms of �state machines�� This second step corresponds to our coalgebraic �behavioural	 speci�cation�
In ���� �
 the object�paradigm is explained within the algebraic world using signatures with hidden
sorts� The hidden part is given a terminal interpretation in ��
� In this algebraic approach the output
types of methods are unstructured� unlike in the coalgebraic approach below�

This paper elaborates ideas from ���
 and ���
� What we consider as the main points are the
following�

� This paper works out a �set theoretic	 semantics for some crucial notions of object�oriented
programming in detail� There is a precise notion of object and of class� where the latter is a
suitable coalgebraic speci�cation of the former� We do not focuss on syntactic details �or on
any particular language	 but on the meaning of the concepts involved� In this sense� it is a
semantical study into object�orientation�

� It shows �following ���
	 how behaviour can be speci�ed coalgebraically �using conditional equa�
tions	� Further� it gives a local operational semantics for objects �how objects behave in isolation	
and a global operational semantics �how objects act on a con�guration of messages	� Associated
with the local operational semantics is a notion of bisimulation for objects �belonging to the
same class	�

� It gives a clear meaning to �new� applied to a class� namely as the terminal coalgebra satisfying
the class �as speci�cation	� This gives a canonical choice for an object belonging to a class�

� And it shows that these canonical �terminal coalgebra	 models are �good� implementations� In
this we use the techniques developed in ���
� It is somewhat surprising to see that although
�carriers of	 terminal coalgebras obtained from methods alone are generally huge sets of in�nite
trees �see Lemma ���	� one can cut down these sets to very reasonable size in case one has
�totally speci�ed� behaviour� this happens in Proposition ����

We shall make some use of elementary category theory in order to organize the concepts involved�
In using these categories for the description of object�oriented languages one has to live with the
multiple use of the word �object�� Usually there is no confusion�

�� Preliminaries
In this �rst section we have collected some of the technicalities� They may be skipped at �rst�

��� Algebras versus coalgebras
Assume we wish to specify a datatype X of binary A�labelled trees� for some set of labels A� Alge�
braically one describes how to build up such a tree by giving its �constructors� nil and node� as on the
left below �where � � f�g is a one�element set	� In this speci�cation one says that a binary A�labelled
tree is either the empty tree nil� or of the form node��� a� r	 where � and r are trees� and a � A is a
label� �

nil� � �� X

node�X � A�X �� X

��
�

leaf�X �� A

left�X �� X

right�X �� X

A coalgebraic speci�cation of such trees is given on the right� It does not give the �constructors��
but the �destructors�� it says which operations we have on our datatype of trees� namely taking o

the label at a node� following the left path and following the right path� But it tells nothing about
what is in X� This X is best considered as a black box to which we only have limited acces via the

	� Preliminaries �

operations� The distinguishing di
erence between the algebraic and the coalgebraic description is that
in the �rst case we have operations going into X and in the second case out of X� We can emphasize
this di
erence even more by combining the operations into a single one by using coproducts � and
products �� In the �rst case we get a single operation � � �X �A�X	� X and in the second case
X � A�X �X� See also ��� �
�

The above algebraic speci�cation has a canonical model given by the initial algebra� It consists
of all �nite binary A�labelled trees� and may be constructed as the set of closed terms� Also for the
coalgebraic speci�cation on the right there is a canonical model� given by the terminal coalgebra� It
consists of the in�nite binaryA�labelled trees� and may be obtained as the set of �trees of observations��
Initial algebras form a basis for data type semantics �see e�g� ���
	� and terminal coalgebras play a
similar role in an object�oriented setting�

The general de�nition of an algebra is a map of the form T �X	� X� for some functor T �Sets�
Sets �or some other category	� and a coalgebra is a map X � T �X	� If we have two algebras
�c�T �U	� U	 and �d�V � T �V 		� then we say that an algebra map c� d is a morphism f �U � V

between the �carriers� which commutes with the operations� f � c � d � T �f	� This gives us a
category Alg�T 	� Dually we can form a category CoAlg�T 	 of coalgebras of T � a coalgebra map

�c�U � T �U		� �d�V � T �V 		 is a morphism f �U � V with d � f � T �f	 � c�

��� Finite products� coproducts and exponents
We recall that in a category C an object � � C is terminal if for each X � C there is precisely one
arrow X � �� Singleton sets are terminal objects in Sets� we typically write � � f�g� The dual notion
is that of initial object �� for which there is precisely one �� X to any X� In Sets we have � � �� The
binary product X�Y is characterized by the property that maps Z � X�Y are in �natural	 bijective
correspondence with pairs of maps Z � X and Z � Y � This gives us to projections ��X � Y � X�
���X � Y � Y and a tupling operation h���i� Dually� we have a coproduct X�Y with the property
maps X � Y � Z out of it correspond �naturally	 to pairs of maps X � Z and Y � Z� This gives
us coprojections ��X � X � Y � ���Y � X � Y and a cotupling operation ����
� In Sets � is the
usual cartesian product of pairs of elements� and � is the disjoint union� Finally we use an exponent
construction Y X � with the property that maps Z � Y X correspond �naturally	 to maps Z�X � Y �
In presence of these exponents we get the familiar distributivities X � �Y �Z	 	� �X � Y 	 � �X �Z	
and X � � 	� �� All told� we will be using the structure of a bicartesian closed category �BiCCC	�
But �higher type	 exponents do not play an essential role� in principle we could also use distributive
categories�

We use these constructions ���� ���� ��	��� to build up so�called polynomial functors� We shall
restrict ourselves to functors of the form

T �X	 � �B� �C� �X	A� �

 � �Bn �Cn �X	An ��	

for certain �constant	 sets Ai� Bi� Ci�which may be � or � so that parts of this functor become simpler�
A coalgebra c�U � T �U	 of this functor may be identi�ed with a set of maps c��U�A� � B��C��U �
� � �� cn�U � An � Bn � Cn � U � A coalgebra forms in this way a model of a certain signature of
operations �i�e� methods	� And a coalgebra map is a map between the carrier sets which commutes
with the operations� Note that the ci are maps going out of U � with a parameter from Ai�

��� Terminal coalgebras
For reasons that will become clear below we shall be especially interested in terminal objects in
categories CoAlg�T 	 of coalgebras of functors T � These will be called terminal coalgebras� There
is a standard construction �see e�g� ���
	 to compute such a coalgebra as a limit Z of the diagram
� � T ��	 � T ���	 �

 � Z� This construction applies for the above functors ��	� because they
preserve limits of such chains� We like to have an explicit description of this terminal coalgebra�

	� Preliminaries �

���� Lemma� The terminal coalgebra Z
�� T �Z	 of the above functor ��	 in Sets can be described

as a set of in�nite trees� Therefore� �rst write

A � A� �

�An� B � B� �

�Bn� C � C� �

� Cn

for the disjoint union of the constants in the functor� We now have

Z � f��A� � B � C j �� � A�� �i
 n��a � Ai� ��hi� ai
 �	 � Bi � Ci

and ��hi� ai
 �	 � Bi � �i�
 n��a� � Ai� � ��hi
�� a�i
 hi� ai
 �	 � ��hi�� a�i
 �	g�

where
 is concatenation of sequences �from A�	�

The methods Z �Ai � Bi �Ci � Z are given by

��� a	 ��

�
��hi� ai	 if ��hi� ai	 � Bi

h��hi� ai	� 	� � A�� ���
 hi� ai	i otherwise�
�

Notice that elements of this set Z are in�nite trees� This in�nity is achieved by repetition in case
an �attribute value� in a Bi comes out� For example� the set Z of �nite and in�nite lists of C�s is
the �carrier of the	 terminal coalgebra of the functor T �X	 � ��C �X� Explicitly� it is described as
Z � f��N � � � C j �n � N� ��n	 � � � ��n� �	 � �g�

���� Example �See ���
	� A useful special case of the above lemma is the following� the terminal
coalgebra in Sets of the functor T �X	 � B �XA associated with the signature X � B� X �A� X

is the set Z � BA
�

of functions from the set A� of �nite sequences of A�s to B� with methods Z � B

given by � �� ���
	 and Z � A � Z by ��� a	 �� 	� � A�� ���
 a	� In ���
 only these restricted
signatures �without coproducts	 are used� They form a special case of ��	 above for n � � and
A� � �� B� � B� C� � �� A� � A� B� � � and C� � ��

��
 Bisimulations and mongruences
Bisimulations and mongruences are relations and predicates on carriers of coalgebras which are suitably
closed under the coalgebra operations� One can describe these notions in terms of the functor involved�
see ��
� or ���
� Here we shall describe these notions concretely for functors ��	 as above�

���� De�nition� Let T �Sets� Sets be the above polynomial functor ��	� and let c�U � T �U	 and
d�V � T �V 	 be two coalgebras of this functor�

�i	 A relation R � U � V is called a bisimulation �on these coalgebras	 if for x � U and y � V �
in case R�x� y	 holds� then for each i
 n and a � Ai we have one of the following two cases�

� both ci�x� a	 and di�y� a	 are in Bi� and they are equal�

� both ci�x� a	 and di�y� a	 are tuples� of the form ci�x� a	 � hc� x�i and di�y� a	 � hc� y�i with equal
components in Ci and with R�x

�� y�	�

Two elements u � U and v � V are called bisimilar if there is a a bisimulation R � U � V with
R�u� v	� In this case one writes u� v�
�ii	 Amongruence on c�U � T �U	 is a predicate P � U for which� if P �x	 holds� then also P �x�	

for each x� � U occurring as �new state� ci�x� a	 � hc� x�i � Ci � U � for i
 n and a � Ai�

The following standard result gives an equivalent description of bisimulation� in terms of terminal
coalgebras�

� Objects and Classes �locally� �

���� Lemma� Consider two coalgebras c�U � T �U	 and d�V � T �V 	 of the same functor T � They

induce two unique coalgebra maps �c and �d to the terminal coalgebra Z
�� T �Z	� in�

T �U	 ��
T ��c	

������ T �Z	 T �V 	oo
T ��d	

� � � � � �

U

OO

c

��
�c

������� Z

OO
	�

Voo
�d

� � � � � � �

OO

d

Two elements u � U and v � V of the carriers of these coalgebras are then bisimilar if and only if
they have the same value on the terminal coalgebra� i�e� u� v if and only if �c�u	 � �d�v	� �

�� Objects and Classes �locally�
This section contains the main de�nitions� which will be illustrated subsequently by a series of ex�
amples� The main aspect of an object that we are capturing coalgebraically is that it has a local
state� which is only accessible via speci�ed operations� Classes will be presented as speci�cations of
objects� We consider objects �locally� in the sense that we describe single objects on their own� and
not systems of objects �as in Section �	�

���� De�nition� �i	 Let C be a set of class names� In a particular program� this set will be �xed�
We write OiD � C �N for the set of object identi�ers �names of objects	� Each object has a unique
identi�er o � hN� ii where N is the name of the class to which the object belongs� and i is a natural
number used to distinguish di
erent objects of the same class�
�ii	 An object is a ��tuple ho� u � U� c�U � T �U	i where o is the objects identi�er� u is its local

state� U is its local state space� and c�U � T �U	 is a coalgebra structure on U � that gives the
operations �methods	 of the object on the local state space U � This coalgebra is determined by the
identi�er� in the sense that equality of identi�ers �names	 for objects means equality of coalgebras�

The identi�er is not so important at �rst� when we consider objects locally �in isolation	� But later
on� when we consider collections of objects globally� it plays a role because it is used to denote the
target object of a message� Having an explicit name component is mathematically not so elegant�
since the standard naming convention �in mathematics	 is to use the tuple as a name for the object�

���� Example� At this stage we only mention a trivial example� where we ignore the identi�er� Every
value b � B forms an object� namely with trivial local state space � � f�g and with b as coalgebra
b� � � B � T ��	 for the constant functor T �X	 � B� This constant object returns the value b when
it is sent a message� There is no possibility to change the local state of this object�

In the type theoretic encoding of object�oriented features into second �or higher	 order polymorphic
lambda calculus �with subtyping	� see e�g� ��� ��� ��
� one uses the type ���Type� �� ��� T ��		 for
objects with �interface� T � One thus has an encoding which involves hiding the local state space �
via an existential quanti�er �as in ���
	� An inhabitant of the product type �� ��� T ��		 is a tuple
consisting of a local state in � and a coalgebra � � T ��	� like in the above de�nition� But in this
type theoretic encoding there is no explicit way to deal with equations� they play an essential role
below in the speci�cation of behaviour�

One may also view an object with local state u � U and coalgebra c�U � T �U	 as a particular
kind of automaton� with u as current state of the automaton� and with the coalgebra c as transition
function� From an object�oriented perspective there is some degree of non�determinism in the sense

� Objects and Classes �locally� �

that the transition function c is a tuple of methods ci� and the object itself does not know which of
these components is selected� and with which parameter�

We shall describe classes as speci�cations of objects� Thus an object belongs to a class� when it is
a model of �or� when it meets	 the speci�cation�

���� De�nition� �i	 A class is a structure which has a name� and consists of three components�

� A �nite set of �unary	 methods���
��

X � A� �� B� � C� �X
���

X �An �� Bn � Cn �X

on a local state space X� The functor associated with this signature of coalgebraic operations is

T �X	 � �B� �C� �X	A� �

 � �Bn � Cn �X	An �

In a class one should explicitly say which of these methods are public and which are private� If
some Ci is the empty set �� then the associated method gets the form X � Ai �� Bi� and may
be called an attribute� since it yields an �observable element� in Bi and does not change the
local state space� Methods which do a
ect the local state may be seen as procedures�

� Equations� which may be conditional� These equations are between observable outcomes �the
B�s and C�s above	� not between local states �elements of X	� This re�ects the idea that we
do not have direct access to local states� These equations regulate the behaviour of the objects
belonging to the class� Both public and private methods may occur in the equations�

� The attributes which hold for newly created objects� using new� These may be either without
parameters� or be parametrized�

�ii	 An object p � ho� u � U� c�U � T �U	i belongs to �or simply� is in	 a class with name N if

� p�s identi�er o is of the form hN� ii� where i � N�

� the functor T occurring in p is the same as the one in the speci�cation of the methods of N �

� the coalgebra c in p satis�es the equations of N �

�iii	 Objects belonging to a particular class N can be organized in a category ObjN � Then objects
of ObjN �in a categorical sense	 are objects �in an object�oriented sense	� As morphisms ho�� u� �
U�� c��U� � T �U�	i �� ho�� u� � U�� c��U� � T �U�	i in ObjN we simply take the coalgebra maps
c� � c� �consisting of functions f �U� � U� between the local state spaces with c� � f � T �f	 � c�	�
Morphisms between objects do not take identi�ers and local states into account� �The dynamics of
objects is thus ignored� but one can choose to de�ne another category of objects� in which maps do
preserve local states�	
�iv	 For a class N � the object newN will be the terminal object in ObjN � It will have the local state

determined by the attribute values which are speci�ed in the third point in �i	 above� Its identi�er
will be hN�n� �i where n is the number of already existing objects belonging to the class N � �This
latter aspect is determined during run time� it guarantees uniqueness of object identi�ers�	

In the classes that we consider in this paper we shall only use equational logic� but from a semantical
point of view there is no objection against using a more expressive logic in the second point� For
example� temporal logic is used in ���
� The di
erence between public and private methods is that one
object may only send messages requiring execution of a public method in another object� But it may
send messages to itself asking for execution of its own private methods� Private atributes �i�e� methods

� Objects and Classes �locally� �

X �� B in the private section	 may play the role of instance variables� Also attributes in the public
method section may be seen as instance variables� but these variables can then be read from outside�

The methods that we consider have output types Bi � Ci �X� This means that they can produce
an observable element in Bi� or an observable element in Ci together with a new state in X� We can
also have methods X �Ai �� X �Di �X by using the isomorphism X �D �X 	� �� �D	�X 	�
� � �� �D	 � X� so that we have an isomorphic output of the required format� But notice that at
most one new state can be produced �in every alternative of �	�

Next we de�ne bisimilarity for objects� This notion is intended to capture observational indistin�
guishability for objects� It will therefore only involve the publicly available methods�

���� De�nition� Consider a class N with two functors Tpu� Tpr�Sets � Sets describing the sig�
natures of respectively the public and private methods of N � Two objects ho�� u� � U�� c��U� �
Tpu�U�	� Tpr�U�	i� ho�� u� � U�� c��U� � Tpu�U�	� Tpr�U�	i belonging to this class N will be called
bisimilar if there is a bisimulation R � U� �U� with respect to the coalgebras � � c��U� � Tpu�U�	
and � � c��U� � Tpu�U�	 of the �public� functor Tpu� implementing the public methods�

During the lifetime of an object its local state may change through the execution of its methods
�as a result of incoming messages	� but its identi�er and its methods �coalgebra	 remain the same�
We shall often call two objects identical if they only di
er in their local state� Thus� execution of
methods does not change the identity of objects� Under bisimilarity more objects are identi�ed�

���� Remarks� �i	 Classes are described above as speci�cations of objects� Thus there is a sharp
distinction between speci�cation and implementation� One of the strong points of this approach
is that it provides a clear semantics for �new�� the canonical implementation of the speci�cation is
taken� Often there is not such a clear separation of speci�cation and implementation� e�g� when classes
contain certain implementation details about the precise way in which a speci�c method is written as
a program� Such �classes� may be seen as bodies for our �classes as speci�cations��
�ii	 There are similarities between the approach presented here and the one in Wieringa ���
� For

example� a �class� here is an �object speci�cation� there� and a �conditional equation� here is a �local
event constraint� �with pre� and post�conditions	 there� A di
erence is that Wieringa incorporates
some process algebra into his speci�cation formalism� But the main di
erence is that he works in an
algebraic world� using Kripke semantics� and not in a coalgebraic one�

In the remainder of this section we shall consider examples of classes and objects� Object identi�ers
will play a minor role in these local investigations�

A rudimentary bank account
We consider a bank account �of a single person	 for which we only have methods bal giving the balance
of the account� and ch with which we can change the amount of money in the account� An obvious
equation should then be satis�ed� describing the balance after the change in terms of the balance
before� and the change� We use hopefully self�explanatory notation� in the following speci�cation�

� Objects and Classes �locally� �

with some comments afther the � � sign�

class	 BA name of the class� �BA� for �bank account�
public methods	

bal�X �� Z this is an attribute
ch�X �Z�� X this is a method� with parameter from Z�

 it a
ects the local state space X�
equations	

x�ch�a	�bal � x�bal� a in OO�style with post �x notation
 �where x�X a variable for the local state	

creation	

new�bal � �
endclass

In this speci�cation we say what methods we want for our bank account and what equations should
hold� The equation x�ch�a	�bal � x�bal � a should be read as� if one sends x the change message ch
with parameter a and then asks for the balance bal� then the outcome is the same as �rst asking x for
its balance� and then adding the amount a� The last point of the speci�cation mentions that newly
created objects �written as newBA	 of this class BA have � � Z as balance�

As an observer on the outside� we do not really care how objects belonging to this bank account class
are implemented� as long as they meet the speci�cation� We have no access to the local state space X
except via the above two methods� This is coalgebra� We shall present some possible implementations�
which give examples of objects belonging to this class� with di
erent interpretations of X and of bal� ch�
But these di
erences are not visible to users� Notice that the functor associated with the signature of
methods is T �X	 � Z�XZ�

A �rst try is to take a bank account as a sequence consecutive changes� Thus we take as local state
space U� � Z

�� the set of �nite sequences of integers� For x � ha�� � � � � ani � U� we de�ne methods�

x�bal � a� �

� an and x�ch�a	 � ha�� � � � � an� ai�

These two methods together form a coalgebra c��U� � T �U�	� It obviously satis�es the equation
x�ch�a	�bal � x�bal� a� We can thus form an object hhBA� �i� h����i � U�� c��U� � T �U�	i belonging
to the class BA� The balance of this bank account is ��� One could note that this is a rather ine!cient
implementation� asking for the balance involves adding up all the changes that have been made� But
for a user of the object on the outside�who can only access the object via the balance and change
methods�these implementation details are not visible�

Our second try also involves an implementation which keeps a record of changes� but this time
the additions are done immediately so that taking the balance gives a more direct answer� So we
now take as local state space U� � Z�� the set of non�empty sequences of integers� For an element
x � ha�� � � � � ani � Z� we de�ne

x�bal � an and x�ch�a	 � ha�� � � � � an� an � ai�

This gives us a coalgebra c��U� � T �U�	� which also satis�es the equations�

We mention a third implementation which simply has a local state space the set U� � Z of integers�
For x � Zwe de�ne

x�bal � x and x�ch�a	 � x� a�

A bank account object with this coalgebra� call it c��U� � T �U�	� has as local state an integer that
represents the current balance� In a sense this is the most e!cient implemention� In a mathematical

� Objects and Classes �locally� 	

sense it distinguishes itself as the terminal coalgebra� i�e� as the terminal object in the category of
coalgebras X � Z�XZ satisfying the bank account equation�

Consider the two bank account objects p� � ho�� h����i� c��Z�� T �Z�	i and p� � ho����� c��Z�
T �Z	i using the above �rst and third implementation� These are bisimilar� because we cannot see a
di
erence� using the public methods speci�ed in the bank account class� they have the same balance�
namely ��� and by using the change method we cannot create a di
erence� since the balance after a
change is determined by the equation in the class� More technically� we have a bisimulationR � Z

��Z
with R�h����i���	 namely

R � fha�� � � � � an� ai � Z
��Z j a� �

� an � ag�

There is one more aspect of classes that we can illustrate in this bank account example� namely
the di
erence between creation with or without parameters� The line new�bal � � in the above class
describes creation without parameters� Its result is that newly created bank accounts of this class
have balance �� One may wish to have some more �exibility here�for example� some banks encourage
opening of accounts by giving a starters premium�and to be able to specify the amount of money
that should already be there at creation� This is creation with a parameter� The syntax one could
then use is newBA���	 to indicate that the initial balance should be ��� In the class itself one should
indicate this option of creation with a parameter� for example by writing new�z	�bal � z �instead of
the line new�bal � � for unparametrized creation� as above	�

Two bu�ers with capacity one
Let A be a �xed set of data elements� We wish to describe a class of bu
er objects� which can contain
an element a � A� The methods that it should have are store�a	� to put an element a � A in a bu
er�
and read to read the content of a bu
er� We should decide explicitly�

� what happens when we send the store�a	 message to a bu
er which is already full� �we choose
that nothing will happen
�

� what happens when we read from an empty bu
er� �the �observable	 outcome will be an error
value
�

� what happens to a bu
er when we read from it� one can have a destructive read �DR	� which
means that after reading an element a bu
er will be empty� or a persistent read �PR	� which
means that reading does not a
ect the content of a bu
er� in that case one needs an explicit
method empty for emptying the bu
er�

Below we shall present two classes PR for the persistent read bu
ers �on the left	� and DR for the
destructive read bu
ers �on the right	�

class	 PR class	 DR
public methods	 public methods	

store�X � A �� X store�X �A �� X

read�X �� ferrorg�A read�X �� ferrorg�A�X

empty�X �� X equations	 in sloppy notation
equations	 x�read � error � x�store�a	�read�fst � a

x�empty�read � error x�read � a � x�store�b	�read�fst � a

x�read � error � x�store�a	�read � a x�read � ha� yi � y�read � error

x�read � a � x�store�b	�read � a creation	

creation	 new�read � error

new�read � error endclass

endclass

� Objects and Classes �locally�
�

The main di
erence between the persistent read class and the destructive read class is that in the
former the read method is an attribute� it does not change the local state space� The destructive
read method does have an e
ect on the local state space�it empties the bu
er�which is re�ected
in the type of this method� the X occurs in the type of the output of the read method� The functor
describing the signature of persistent read methods is X �� XA � �� � A	�X 	� X�A��� � �� � A	�
For the destructive read we have X �� XA � �� �A�X	� where � � ferrorg is the terminal set�

The equations may equivalently be expressed via diagrams� For example� the three equations for
persistent read may be expressed via two diagrams�

X ��empty

��

X

��
read

X �A ��store

��
read� id

X ��read
� �A

� ��
� � � A �� �A	�A ��

	�
A� �A�A	 ��

�id� �

A

OO

��

The equations for the destructive read class have been expressed in a somewhat sloppy way� the
��component of the read output is left implicit� More formally� we need a �case� construction �as in
a type theory with coproduct types �	� so that we can write the equations as�

case of x�read

�
error �� ��b

ha� yi �� ��a

�
� case of x�store�b	�read

�
error �� �error

ha� yi �� ��a

�

case of x�read

�
error �� �error

ha� yi �� y�read

�
� �error�

But of course� they can also be written diagrammatically�

The terminal coalgebras satisfying these speci�cations have in both the persistent and in the de�
structive case as local state space the set � � A� This set can contain an error value in � � ferrorg
representing that the bu
er is empty� and it can contain an element a � A� It thus contains the
minimal information need for a bu
er of capacity one� The store method is in both cases implemented
as the composite

store � ��� �A	�A 	� A� �A�A	 ��
�id� �

A ����
� �A�

It sends �z� a	 � �� � A	 � A to a � A if z � error and to b � A if z � b� The read methods are
of course di
erent� The persistent read is simply the identity function � � A � � � A� whereas the
desctructive read is the composite

read � �� �A 	� � �A� � ��id� id� �
� � A� �� � A	�

Finally� the empty method from the persistent read always gives an error element� via

empty � �� �A �� � ���
� �A�

Other implementations are possible� For example� one can have as local state space �� � A	 � A� 	�
A� � A�� so that one can use the � � A component as the actual bu
er �like above	� and the A�

component as history of elements that have been stored� The actual implementation of the methods
on this alternative local state space �for both the persistent and the destructive read	 is left to the
interested reader�

� Objects and Classes �locally�

Two �nal points� ��	 We note that the two states x�empty�empty and x�empty are indistinguishable
�bisimilar	� and indeed have equal interpretations in the terminal coalgebra � � A� But there is no
way that we can prove from the equations in the persistent read class that x�empty�empty and x�empty

are equal since we have no equations between states� ��	 One may be tempted from an algebraic
perspective to see the �creation� part in a class as the description of a constant new� �� X� One can
then investigate what the initial model of the speci�cation is� In the above persistent read example
it is not the �minimal	 set � � A of internal states that comes out in the coalgebraic approach� We
algebraically one gets more� since one cannot show that the closed terms new and new�empty are the
same�

A co�ee and tea machine
As third example we sketch a class of objects that can be understood as elementary machines handling
co
ee and tea requests� There are methods coin for inserting a coin� liq for making a choice between
co
ee and tea� and add to choose whether one wishes the co
ee or tea to be black �b	� with milk
�m	� with sugar �s	� or both with milk and sugar �ms	� The interesting aspect is that we use a fourth
private method status to describe the internal state of the machine� The user of objects belonging to
this class is not supposed to have access to this method� With this status method we can express how
the public methods change the local state� This a crucial technique in coalgebraic speci�cation� For
convenience we assume that only one type of coin is used�

class	 CTM
public methods	

coin�X �� X

liq�X � fc� tg �� ferrorg�X

add�X � fb�m� s�msg �� ferrorg� fbc�mc� sc�msc� bt�mt� st�mstg �X

private methods	

status�X �� f�� �� c� tg
equations	

x�status � � � x�coin�status � �
x�status � s � x�coin�status � s for s � f�� c� tg
x�status � � � x�liq�a	�status � a

x�status � s � x�liq�a	 � error for s � f�� c� tg
x�status � s � x�add�a	�fst � �as� for s � fc� tg
x�status � s � x�add�a	�snd�status � � for s � fc� tg
x�status � s � x�add�a	 � error for s � f�� �g

creation	

new�status � �
endclass

One sees how the private status method describes the four di
erent internal states that are relevant�
status � means waiting for a coin� status � means waiting for a choice of co
ee or tea� and status c"t
means waiting for a choice of additive� to be combined with the already known choice for co
ee �c	
or tea �t	� In this sense we can describe what is the order in which the messages should be sent to
get appropriate results� But of course� the objects in this class are able to handle messages coming in
any order�by possibly giving error outcomes� Coalgebraic speci�cation is quite �exible in this sense�

The terminal coalgebra is in this case precisely this �minimal	 set of internal status f�� �� c� tg�
Alternatively� it may be seen as the number �� We leave it to the reader to implement the above
methods on this carrier set�

For an example of an elementary� coalgebraically speci�ed� database� see ���� ���
� where there is a
method store�X �K �A �� X which allows one to store data from A under a key from K�

�� Local operational semantics
�

�� Local operational semantics
In this section we describe the operational semantics O�p	 of a single object p as the tree of all
possible transitions that start from p� �We thus use a �branching� semantics� as opposed to a �linear�
semantics of traces�	 In such transitions the objects identi�er and coalgebra remain unaltered� but its
local state may change� We shall distinguish between the transitions caused by public methods� and
transitions by both public and private methods�

���� De�nition� Consider an object p � ho� u � U� c�U � T �U	i� where T ��	 � Tpu��	 � Tpr��	
is the functor combining the signatures of public and private methods� We take the two terminal
coalgebras Z �� T �Z	 and Zpu

�� Tpu�Zpu	 of the entire signature� and of the public signature only�
Then� by terminality� we get two coalgebra maps � and �pu in diagrams�

T �U	 ��
T ��	

������ T �Z	 Tpu�U	 ��
Tpu��pu	

������ Tpu�Zpu	

U

OO

c

��
�

������� Z

OO
	�

U

OO

� � c

��
�pu

�������� Zpu

OO
	�

We then assign operational meanings O�p	 � Z and Opu�p	 � Zpu to the object p by putting
O�p	 � ��u	 and Opu�p	 � �pu�u	�

The operational semantics is thus obtained ��by coinduction�	 via the unique map into a terminal
coalgebra� This is dual to the usual way a denotational semantics is de�ned� namely ��by induction�	
as unique map going out of an initial algebra �of terms	� Remember from the explicit description of
terminal coalgebras in Lemma ��� that both O�p	 and Opu�p	 are in�nite trees�

The standard result Lemma ��� gives us the following�

���� Lemma� Two objects p� q belonging to the same class are bisimilar if and only if they have the
same public operational semantics� i�e� if and only if Opu�p	 � Opu�q	� �

This means that two objects are indistinguishable by using their public methods if and only if the
associated trees of public observations are equal� We can give an explicit description of these trees
O�p	 and Opu�p	 via single transition steps for objects� For convenience� we shall do this for O�p	
only�

���� De�nition� Consider an object p � ho� u � U� c�U � T �U	i� where T is the functor X ��Q
i�n�Bi � Ci �X	Ai as used before� The single transition steps

ho� u � U� c�U � T �U	i ��x
y

ho� u� � U� c�U � T �U	i

where x � A � A� �

� An is an input� and y � B � C � �B� �

� Bn	 � �C� �

� Cn	 is an
output� is de�ned as follows� For x � hi� ai � A with a � Ai one has�

y � ci�u� a	 � Bi and u
� � u if ci�u� a	 � Bi

hy� u�i � ci�u� a	 � Ci � U otherwise

So if the outcome of applying the i�th component ci of c to the local state u with parameter a is a
value in Bi� then the local state does not change� but if it yields both a value in Ci and a new local

� Terminal coalgebras satisfying equations
�

state u�� then the value is visible� but the new local state gives us a di
erent object with the original
identi�er and coalgebra� but with this new local state�

Notice that the idenitity of an object �as described after De�nition ���	 does not change under
transition� Thus we have that objects are persistent entities�

���� Lemma� The operational semantics O�p	 as an element of the set Z of trees A� � B�C from
Lemma ��� may be described explicitly as�

O�p	�hxn� xn��� � � � � x�i� � y �

���
��
there are objects p�� � � � � pn and y�� � � � � yn�� � B � C with

p ��x�
y�

p� ��x�
y�

 ��
xn��
yn��

pn�� ��xn
y

pn�

Proof� This is because the description in the lemma is the unique map to the terminal coalgebra�
applied to the local state of p� �

�� Terminal coalgebras satisfying equations
In Lemma ��� we have described terminal coalgebras of functors associated with signatures of methods�
whereby the equations were ignored� The carrier sets of these terminal coalgebras are rather large
sets of in�nite trees� It turns out that in many cases one can cut down this set considerably by
imposing certain additional �behavioural	 conditions� such as equations in classes� One then considers
the terminal coalgebra which satis�es these conditions�

The following comes from ���
� Consider the terminal coalgebra Z �� T �Z	 of a polynomial functor
T � and let E � Z be a subset induced by certain equations� Let E be the greatest mongruence �see
De�nition ��� �ii		 on Z � T �Z	 which is contained in E� Then E inherits a coalgebra structure�
and is the terminal coalgebra satisfying E� �This procedure is like in algebra� where one cannot
just quotient by the relation given by the equations� but one �rst has to take the associated least
congruence relation� and then form the quotient algebra�	

We illustrate this with the example of the persistent read class from Section �� The associated
functor is T �X	 � X�A��� � �� � A	� which has� by Example ���� as terminal coalgebra the set of
functions � � �� �A	�A���� with operations�

��store�a	 � 	�� ���
 �a	� ��read � ���
	� ��empty � 	�� ���
 ���	�

The three equations in the persistent read class gives us a subset E � �� � A	�A���� consisting of
those � satisfying�

� ��empty�read � �� i�e� �����	 � ��

� if ��read � �� then ��store�a	�read � a� i�e� if ���
	 � �� then ���a	 � a�

� if ��read � a� then ��store�b	�read � a� i�e� if ���
	 � a� then ���b	 � a�

The greatest mongruenceE � E is the greatest set E � E satisfying� if � � E� then also ��store�a	 � E

and ��empty � E� It is easy to see that E is then the set of � � �� � A	�A���� satisfying for all
� � �A� �	�� ������	
 �	 � �� if ���	 � � then ����a	
 �	 � a� and if ���	 � a then ����b	
 �	 � a�
But then we have that each tree � � E is determined by its value ���
	 � � � A� Hence E 	� � � A�
and this is the �carrier of the	 terminal coalgebra satisfying the equations�

�� Global operational semantics
�

The essential element in the elimination of these trees � is that they are determined by their output
���
	 at the root� This will be formalized using the operational semantics O��	 from the previous
section�

���� De�nition� A class will be called total �or totally speci�ed	 when for each object p belonging
to the class the following holds� for each n � �� if O�p	�hxm� � � � � x�i	 is known for each m
 n and
input sequence hxm� � � � � x�i� then also the outcome of the next step O�p	�hxn��� xn� � � � � x�i	 is known�
for each input sequence hxn��� xn� � � � � x�i� This means that the entire tree O�p	 is determined by the
set of outputs O�p	�hxi	 on singleton input sequences�

A class is thus total when we can deduce what the outcome of a next step is �in terms of observable
outputs	� from what we already know� This means that the equations cover all possible situations that
may occur� It may be clear that the persistent read class is total� the output O�p	�hxn��� xn� � � � � x�i	 �
� � A is determined by xn�� � A� � and by O�p	�hxn� � � � � x�i	 � � � A� according to the following
table�

O�p	�hxn� � � � � x�i	 � � � � O�p	�hxn� � � � � x�i	 � a � A

xn�� � � � � # #

xn�� � b � A b a

Notice that the carrier of the terminal coalgebra in this situation is the set T ��	 � ��A���� ���A	 	�
� � A� The same analysis may be applied to the destructive read class� it gives the same carrier set�
but with di
erent operations�

���� Proposition� The carrier of the terminal coalgebra of a total class involving a polynomial func

tor T �X	 �

Q
i�n�Bi �Ci �X	Ai is a subset of T ��	 �

Q
i�n�Bi � Ci	

Ai �

Proof� Like in the persistent bank account example� the trees ��A� � B � C in the carrier of the
terminal coalgebra are determined by their values ��hi� ai	 � Bi � Ci� These can be described as n
functions Ai � Bi �Ci� They combine into an element of T ��	� �

This result thus gives us a superset for the carrier of the terminal coalgebra� That we can really get
a proper subset of T ��	 can be seen in the example of the �total	 class of the co
ee and tea machine
in Section �� where the coin� liq and add methods on T ��	 are determined by the current status� This
allows a further simpli�cation of T ��	�

���� Rule of thumb� The carrier of the terminal coalgebra for a total class is the minimal set of
internal states needed to carry out the speci�ed task�

For a total class� the observable output values at creation �for new	 should be speci�ed as an element
of T ��	�or of an appropriate subset of this product of function spaces�

	� Global operational semantics
So far we have only considered objects in isolation� In order to communicate� objects should be able
to send messages to each other �including to itself	� In this �nal section we brie�y sketch how such
communtication may take place via a global transition relation� Many details are left out�

�� Global operational semantics
�

A message is a ��tuple of the form

ho�m� ai where

��
�

o is an object identi�er� representing the target
m is a method name �occuring in the class in o	
a is a parameter for m�

For example� we may have a message hhBA� �i� ch� �i which� when received by object � belonging to
the bank account class BA� is intended to cause execution of the method ch��	 with parameter ��

Let us writeM for the set of all possible messages �given a certain collection C of classes	� From
now on we letM occur explicitly in the output types in signatures of methods in classes� like in

X �A �� B � �C �M�X	�

An output message ho�m� ai � M will be understood as an act of sending this message� �This
should not be regarded as visible on the outside� so we have to adapt the de�nition of bisimilation by
eliminatingM from the associated functor� and by projecting it away from coalgebras�	 For an object
p with an input hi� ai execution of the i�th method in p on the local state with parameter a may now
result in a number of messages as output� We will write this outcome as a �multi�	 set mess�p� hi� ai	
of messages�

In concurrent object�oriented programming there is no global state containing values of global
variables� through which local entities may communicate� One may describe communication via
synchronous message passing� as in the language POOL� see ��
� Here we sketch asynchronous com�
munication where there is a global collection of messages waiting to be executed� Related ideas are
expressed in ��� ��� �
� This collection�in a sense�is a substitute for the global state� it may be
depicted as a �sea� or �chemical soup� of messages� in which each object can recognize the messages
directed at it through uniqueness of identi�ers� Thus each object can pick out the relevant messages
from this soup� and execute the method in the message� Such executions may be performed concur�
rently� since there is no interference� This is because ��	 objects have their own local state� and ��	
objects have unique identi�ers� so there is no possibility that one object handles a message aimed at
another object� The absence of interference is one of the selling points of concurrent object�oriented
programming� Of course� there are some �operational	 scheduling problems in this set�up� For exam�
ple� one has to specify how �global	 execution proceeds when there is more than one message for a
particular object� An obvious approach is to have messages waiting in queues for their target objects�
in the �temporal	 order in which they arrive�

Since there may be multiple copies of the same message waiting to be executed� we have to take
our con�gurations of messages as multisets� We take as set S of all these con�gurations the space
S � NM of functions from messages to natural numbers� For
 � S and k � M we see
�k	 � N to
be the number of messages k in the con�guration
� We extend inhabitation � and union � to S in
the obvious way� For example k �
 stands for
�k	 � ��

We have now prepared the grounds for the description of the global operational semantics� It
involves the local transition steps between objects from De�nition ���� but also transition steps between
con�gurations �multisets	 of messages� For a con�guration
 � S � N

M we have a rule�

ho�m� ai �
 identi�er�p	 � o

p ��
hm� ai
y p�
 �� �
 � h��m� ai	 �mess�p� hi� ai	

This rule should be read as follows� If a message ho�m� ai occurs in the current con�guration of
messages
 and if p is the object with identi�er o at which this message is targeted� then p can make

�� Concluding remarks
�

a single transition step with input hm� ai�that is� p can execute message m with parameter a� which
yields object p� with possibly di
erent local state� see De�nition ����and a single occurrence of the
message ho�m� ai is removed from the con�guration
� while the output messages in mess�p� hi� ai	
produced in the transition p � p� are added to the con�guration� We thus have both a local and a
global step�

� Concluding remarks
We have presented a coalgebraic formalism to describe some of the basic concepts of object�oriented
programming� Subtyping and inheritance do not form part of the picture �so far	� Some of the
characteristics of the coalgebraic perspective are listed below�

�� An object has a local state to which one only has access via the public methods of the object� We
do not know anything about this local state� except what these methods tell us� This emphasis
on observation is characteristic of coalgebra� as opposed to algebra where construction is the
key aspect�

�� An object combines both data structure and behaviour� the former is explicit in the signature
of operations in its class� and the latter in the operational semantics�

�� One only has unary methods� acting on a single local state� Thus there are no binary methods�
of the form

X �X �� B � C �X

Such binary methods are excluded in the coalgebraic approach� since they lead to contravariant
functors� But on a di
erent level binary methods also present problems in combination with
inheritance� see ��
 for an extensive discussion�

�� An object has no autonomous activity� it acts only in reaction to incoming messages� But an
object may send messages to itself�

�� Parallellism only occurs at a global level between objects� and not within objects� But there is
some degree of non�determinism within objects� since an object does not know which method
will be executed next� and with which parameter� Also� the output type of a method can contain
a coproduct � so that it may not be known in advance which alternative is selected�

�� A �two�layered� semantics has been described involving local and global phenomena� For the
language POOL a �three�layered� semantics is given in ��
� where meanings are assigned to
methods in terms of a third level� containing the meanings of elementary program statements�

Much further work remains to be done� For example investigation of some serious examples involving
communication and of modularisation mechanisms for coalgebraic speci�cations� and comparison to
other speci�cation formalisms�

Acknowledgement
Thanks are due to Jan Rutten for clarifying discussions�

References
�� P� Aczel and N� Mendler� A �nal coalgebra theorem� In D�H� Pitt� A� Poign$e� and D�E� Rydeheard�

editors� Category Theory and Computer Science� number ��� in Lect� Notes Comp� Sci�� pages
���%���� Springer� Berlin� �����

�� G� Agha� Actors� MIT Press� �����

References
�

�� P� America and J� Rutten� A layered semantics for a parallel object�oriented language� Formal
Aspects of Comp�� �����%���� �����

�� G� Berry and G� Boudol� The chemical abstract machine� In Princ� of Progr� Lang�� pages ��%���
ACM� �����

�� K� Bruce� L� Cardelli� G� Castagna� The Hopkins Objects Group� G� Leavens� and B� Pierce� On
binary methods� Manuscript� May �����

�� R� Burstall and R� Diaconescu� Hiding and behaviour� an instiutional approach� In A�W� Roscoe�
editor� A Classical Mind� Essays in honour of C�A�R� Hoare� pages ��%��� Prentice Hall� �����

�� L� Cardelli and P� Wegner� On understanding types� data abstraction and polymorphism� ACM
Comp� Surv�� �����%���� �����

�� J�R�B� Cockett and D� Spencer� Strong categorical datatypes I� In R�A�G� Seely� editor� Category
Theory ����� number �� in CMS Conference Proceedings� pages ���%���� �����

�� W�R� Cook� Object�oriented programming versus abstract data types� In J�W� de Bakker� W�P�
de Roever� and G� Rozenberg� editors� Foundations of Object
Oriented Languages� number ��� in
Lect� Notes Comp� Sci�� pages ���%���� Springer� Berlin� �����

��� H� Ehrig and B� Mahr� Fundamentals of Algebraic Speci�cation I� Equations and Initial Semantics�
Number � in EATCS Monographs� Springer� Berlin� �����

��� L�M�G� Feijs and H�B�M� Jonkers� Formal Speci�cation and Design� Number �� in Tracts in
Theor� Comp� Sci� Cambridge Univ� Press� �����

��� J� Fiadeiro and T� Maibaum� Temporal theories as modularisation units for concurrent system
speci�cation� Formal Aspects of Comp�� �����%���� �����

��� J�A� Goguen� Types as theories� In G�M� Reed� A�W� Roscoe� and R�F� Wachter� editors� Topology
and Category Theory in Computer Science� pages ���%���� Oxford Univ� Press� �����

��� M� Hofmann and B� Pierce� An abstract view of objects and subtyping� Journ� Funct� Progr��
����� to appear�

��� B� Jacobs� Mongruences and cofree coalgebras� In &&&� editor� Algebraic Methods and Software
Technology� Lect� Notes Comp� Sci�� page &&& Springer� Berlin� ����� to appear�

��� S� Kamin� Final data types and their speci�cation� ACM Trans� on Progr� Lang� and Systems�
���	���%���� �����

��� J� Meseguer� A logical theory of concurrent objects� In N� Meyrowitz� editor� OOPSLA�
ECOOP��� Proceedings� pages ���%���� ACM� �����

��� J� Meseguer and J� Goguen� Initiality� induction and computability� In M� Nivat and J�C� Reynolds�
editors� Algebraic Methods in Semantics� pages ���%���� Cambridge Univ� Press� �����

��� J�C� Mitchell and G�D� Plotkin� Abstract types have existential type� ACM Trans� on Progr�
Lang� and Systems� ����	����%���� �����

��� B�C� Pierce and D�N� Turner� Simple type theoretic foundation for object�oriented programming�
Journ� Funct� Progr�� ���	����%���� �����

��� H� Reichel� An approach to object semantics based on terminal co�algebras� Math� Struct� Comp�
Sci�� ����� to appear�

��� M�B� Smyth and G�D� Plotkin� The category theoretic solution of recursive domain equations�
SIAM Journ� Comput�� ������%���� �����

��� R� Wieringa� Equational speci�cation of dynamic objects� In R�A� Meersman� W� Kent� and
S� Khosla� editors� Object
Oriented Databases� Analysis� Design and Construction �DS

	� IFIP�
pages ���%���� Elsevier Sci� Publ�� �����

