
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Transformations of CLP modules

S. Etalle and M. Gabbrielli

Computer Science/Department of Software Technology

CS-R9515 1995

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301666854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Report CS-R9515
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Transformations of CLP Modules

Sandro Etalle

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

and

D�I�S�I� Universit	a di Genova

Viale Benedetto XV
� ���
� Genova� Italy

Maurizio Gabbrielli

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

and

Dipartimento di Informatica� Universit	a di Pisa

Corso Italia ���
���
 Pisa� Italy

Abstract

We propose a transformation system for CLP programs and modules� The framework is inspired
by the one of Tamaki and Sato for pure logic programs ����� However� the use of CLP allows us to
introduce some new operations such as splitting and constraint replacement� We provide two sets
of applicability conditions� The �rst one guarantees that the original and the transformed programs
have the same computational behaviour� in terms of answer constraints� The second set contains
more restrictive conditions that ensure compositionality	 we prove that under these conditions the
original and the transformed modules have the same answer constraints also when they are composed
with other modules� This result is proved by �rst introducing a new formulation� in terms of trees�
of a resultants semantics for CLP� As corollaries we obtain the correctness of both the modular and
the non
modular system w�r�t� the least model semantics�

AMS Subject Classi�cation ������� ��Q�
� ��T���
CR Subject Classi�cation ������� D����� F����� F����� I����� I�����
Keywords and Phrases� Program�s Transformation� Constraint Logic Programming� Semantics� Mod

ularity�
Note� A preliminary� shorter version of this paper will appear in the proceedings of ICLP	�
�
The research of the �rst author has been partially supported by the ERCIM Fellowship Program� The
research of the second author has been supported by the EC�HCM network EUROFOCS under grant
n� ERBCHBGCT�
�����

� Introduction

As shown by a number of applications� programs transformation is a powerful methodology for the
development and optimization of large programs� In this �eld� the unfold�fold transformation rules were
�rst introduced by Burstall and Darlington ��� for transforming clear� simple functional programs into
equivalent� more e	cient ones� and then adapted to logic programs both for program synthesis �
��
���
and for program specialization and optimization �
��� Soon later� Tamaki and Sato ���� proposed an
elegant framework for the transformation of logic programs based on unfold�fold rules� Their system was
proven to be correct w�r�t� the least Herbrand model semantics ���� and the computed answer substitution
semantics �
���

The system was then extended by Seki ���� to logic programs with negation� in particular he provided
new� more restrictive applicability conditions which guarantee that the system preserves also the �nite
failure set and the perfect model semantics of strati�ed programs� Since then serious research e�ort has
been devoted to proving its correctness w�r�t� the various semantics available for normal programs� For
instance� the new system was then adapted by Sato to full �rst order programs ��
�� Related work has
been done by Maher �
��� Gardner and Shepherdson �
��� Aravidan and Dung �
�� Seki ����� Bossi and
Cocco ��� and Bensaou and Guessarian ����

All the �unfold�fold� transformation systems proposed so far for �constraint� logic programs� with the
only exception of �
��� assume that the entire program is available at the time of transformation� This is
often an unpractical assumption� either because not all program components have been de�ned� or because
for handling the complexity a large program has been broken into several smaller modules� Indeed� the
incremental and modular design is by now a well established software�engineering methodology which
helps to verify and maintain large applications� Modularity has received a considerable attention also in
the �eld of logic programming� as the recent survey ��� shows�

Adhering to the above mentioned methodology� we consider here CLP programs as a combination of
separate modules� Each module partially de�nes some predicates� and di�erent modules are combined
together by a simple composition operator�

Now� a transformation system for modules requires ad�hoc applicability conditions� when we transform
P into P � we don�t just want P and P � to have the same �answer constraint� semantics� we want them
to be observationally equivalent whatever the context in which they are employed� When this condition
is satis�ed we say that P and P � are observationally congruent�

In this paper� we develop a transformation system for the optimization of CLP modules� This is
accomplished in two steps� First� we generalize the unfold�fold system of Tamaki and Sato ���� to
CLP programs� The full use of CLP allows us to introduce some new operations� such as splitting and
constraint replacement� which broaden the range of possible optimizations� In this �rst part we also
de�ne new applicability conditions for the folding operation which avoid the use of substitutions and
which are simpler that the ones used previously�

Afterwards� we de�ne a �compositional� transformation system for modules� This is obtained by
adding some further applicability conditions� which we prove su	cient to guarantee that the transformed
module is observationally congruent to the original one� This system allows us to transform independently
the components of an application� and then to combine together the results while preserving the original
meaning of the program in terms of answer constraints� This is useful when a program is not completely
speci�ed in all its parts� as it allows us to optimize on the available modules� When a new module is
added� we can just compose it �or its transformed version� with the already optimized parts� being sure
that the composition of the transformed modules and the composition of the original ones have the same
computational behaviour in terms of answer constraints�

This result is proved by using a new formulation� in terms of trees� of a resultants semantics which
models answer constraints and is compositional w�r�t� union of programs� From a particular case of the
main theorem it follows that also the non�modular transformation system preserves the computational
behaviour of programs� Finally� since the least model �on the relevant algebraic structure� can be seen
as an abstraction of the compositional semantics� we obtain as a corollary that also the least model is
preserved�

The paper is organized as follows� The next Section contains some preliminaries on CLP programs� In
Section � we introduce the notion of module and we formalize the resultants semantics for CLP by using
trees� Section � provides the de�nition of the transformation system� In Section � we add the applicability
conditions needed to obtain a modular system and we state the main correctness result� In Section � we
show that the Tamaki�Sato�s system can be embedded into ours� As a consequence� the conditions given
in Section � can also be added to those de�ne in ���� in order to obtain a modular unfold�fold system
for pure logic programs� Section � concludes by comparing our results to those contained in two related
works� The proof of the main technical result of the paper is deferred to the Appendix�

� Preliminaries� CLP programs

The Constraint Logic Programming paradigm CLP�X� �CLP for short� has been proposed by Ja�ar and
Lassez �
��
�� in order to integrate a generic computational mechanism based on constraints with the
logic programming framework� The advantages of such an integration are several� From a pragmatic
point of view� CLP�X� allows one to use a speci�c constraints domain X and a related constraint solver
within the declarative paradigm of logic programming� From the theoretical viewpoint� CLP provides a
uni�ed view of several extensions of pure logic programming �e�g� arithmetics� equational programming�
within a framework which preserves the existence of equivalent operational� model�theoretic and �xpoint
semantics �
��� Indeed� as discussed in �
��� most of the results which hold for pure logic programs can
be lifted to CLP in a quite straightforward way�

The reader is assumed to be familiar with the terminology and the main results on the semantics of
�constraint� logic programs� In this subsection we introduce some notations we will use in the sequel and�
for the reader�s convenience� we recall some basic notions on constraint logic programs� Lloyd�s book and
the survey by Apt �
��
� provide the necessary background material for logic programming theory� For
constraint logic programs we refer to the original papers �
��
�� by Ja�ar and Lassez and to the recent
survey �
�� by Ja�ar and Maher�

The CLP framework was originally de�ned using a many�sorted �rst order language� In this paper� to
keep the notation simple� we consider a one sorted language �the extension of our results to the the many
sorted case is immediate�� We assume programs de�ned on a signature with predicates � consisting of
a pair of disjoint sets containing function symbols and predicate symbols� The set of predicate symbols�
denoted by �� is assumed to be partitioned into two disjoint sets� �c �containing predicate symbols
used for constraints� which contains also the equality symbol ���� and �u �containing symbols for user
de�nable predicates�� All the following de�nitions will refer to some given �� �c and �u�

The notations �t and �X will denote a tuple of terms and of distinct variables respectively� while �B will
denote a ��nite� possibly empty� conjunction of atoms� The connectives ��� and � will often be used
instead of ���to denote conjunction�

A primitive constraint is an atomic formula p�t�� � � � � tn� where the ti�s are terms �built from � and
a denumerable set of variables� and p � �c� A constraint is a �rst order formula built using primitive
constraints� A CLP rule is a formula of the form

H � c � B�� � � � � Bn�

where c is a constraint� H �the head� and B�� � � � � Bn �the body� are atomic formulas which use predicate
symbols from �u only� A goal �or query�� denoted by c � B�� � � � � Bn� is a conjunction of a constraint
and atomic formulas as before� A CLP program is a �nite set of CLP rules�

The semantics of CLP programs is based on the notion of structure� Given a signature with predicates
�� a ��structure �structure for short� D consists of a set �the domain� D and an assignment of functions
and relations on D to the function symbols in � and to the predicate symbols in �c respecting arities�

A D�interpretation is an assignment that maps each predicate symbols in �u to a relation on the
domain of the structure� A D�interpretation I is called a D�model of a CLP program P if all the rules
of P evaluate to true under the assignment of relations and function provided by I and by D� We recall
that there exists ��
��� the least D�model of a program P which is the natural CLP counterpart of the
least Herbrand model for logic programs�

Given a structure D and a constraint c� D j� c denotes that c is true under the interpretation for
constraints provided by D� Moreover if � is a valuation �i�e� a mapping of variables on the domain D��
and D j� c� holds� then � is called a D�solution of c �c� denotes the application of � to the variables in
c��

Here and in the sequel� given the atoms A� H � we write A � H as a shorthand for�
� a� � t� � � � � � an � tn� if� for some predicate symbol p and natural n� A � p�a�� � � � � an� and

H � p�t�� � � � � tn�
� false� otherwise�

�

This notation readily extends to conjunctions of atoms� We also �nd convenient to use the notation
���x � from �
�� to denote the existential closure of the formula � except for the variables �x which remain
unquanti�ed�

The operational model of CLP is obtained from SLD resolution by simply substituting D�solvability
for uni�ability� More precisely� a derivation step for a goal G � c� � B�� � � � � Bn in the program P results
in the goal

c� � �Bi � H� � c � B�� � � � � Bi��� �B�Bi��� � � � � Bn

provided that Bi is the atom selected by the selection rule and there exists a clause in P standardized apart
�i�e� with no variables in common with G� H � c � �B such that �c� � �Bi � H� � c� is D�satis�able�
that is� D j� � c� � �Bi � H� � c�

A derivation via a selection rule R of a goal G in the program P is a �nite or in�nite sequence of goals�
starting in G� such that every next goal is obtained from the previous one by means of a derivation step
where the atom is selected according to R� A derivation is successful if it is �nite and its last element
is a goal of the form �c ��� In this case� ��V ar�G� c is called the answer constraint �� In what follows a
derivation of a goal G whose last goal is Gi in the program P will be denoted by

G
P
� Gi

Finally� by naturally extending the usual notion used for pure logic programs� we say that a query
c � �C is an instance of the query d � �D i� for any solution � of c there exists a solution � of d such that
�C� � �D��

� Modular CLP Programs

Following the original paper of R� O�Keefe ����� the approach to modular programming we consider here
is based on a meta�linguistic programs composition mechanism� This provides a formal background to
the usual software engineering techniques for the incremental development of programs�

Viewing modularity in terms of meta�linguistic operations on programs has several advantages� In
fact it leads to the de�nition of a simple and powerful methodology for structuring programs which does
not require to extend the CLP theory �this is not the case if one tries to extend CLP programs by
linguistic mechanisms richer than those o�ered by clausal logic�� Moreover� meta�linguistic operations
are quite powerful� indeed the typical mechanisms of the object�oriented paradigm� such as encapsulation
and information hiding� can be realized by means of simple composition operators ������

Here� in order to keep the presentation simple� we follow ��� and say that a module M is a CLP
program P together with a set Op�M� of predicate symbols specifying the open predicates�

De�nition ��� �Module� A CLP module M is a pair hP�Op�M�i where P is a CLP program and
Op�M� is a set of predicate symbols� �

The idea underlying the previous de�nition is that the open predicates� speci�ed in Op�M�� behave
as an interface for composingM with other modules� The de�nition of open predicates could be partially
given in M and further speci�ed by importing it from other modules� Symmetrically� the de�nitions of
open predicates may be exported and used by other modules� A typical practical example is a deductive
database composed of two modules� in which the �rst one I contains the intensional part in the form of
some rules which refer to an unspeci�ed extensional part� This latter is de�ned in the second module E
which contains facts �unit clauses� describing the basic relations� In this case the extensional predicates
which are de�ned in E are exported to I� which in turn imports them when composing the two parts�
Further de�nitions for the extensional predicates can be incrementally added to the database by adjoining
new modules�

�We follow here the more recent terminology used in ����� In the original papers ����	 �
�� a derivation step was de�ned
by rewriting in parallel all the atoms of the goal� As far as successful derivation are concerned the two formulations are
equivalent� Moreover in ���	 �
� the answer constraint was considered c �without quanti�cation��

�

To simplify the notation� when no ambiguity arises we will denote by M also the set of clauses P �
To compose CLP modules we again follow ��� and use a simple program union operator� We denote by
Pred�E� set of predicate symbols which appear in the expression E�

De�nition ��� �Module Composition� Let M � hP�Op�M�i and N � hQ�Op�N�i be modules� We
de�ne

M �N � hP �Q�Op�M� �Op�N�i

provided that Pred�P � � Pred�Q� 	 Op�M� � Op�N� holds� Otherwise M �N is unde�ned� �

So� when composingM and N � we require the common predicate symbols to be open in both modules�
As previously mentioned� more sophisticated compositions �like encapsulation� inheritance and informa�
tion hiding� can be obtained from the one de�ned above by suitably modifying the treatment of the
interfaces �essentially by introducing renamings to simulate hiding and overriding��

Now� in order to de�ne the correctness of our transformation systems� we need to �x the kind of
module�s �and program�s� equivalence that we want to establish between a program and its transformed
version�

Since the result of a CLP computation is an answer constraint� it is natural to say that two programs
are observationally equivalent to each other i� they produce the same answer constraints �up to logical
equivalence in the structure D� for any query� This concept is formalized in the following De�nition�

De�nition ��� �Program	s Equivalence� Let P�� P� be CLP programs� We say that P� and P� are
�observationally� equivalent�

P�
 P�

i�� for any query Q and for any i� j � �
�
�� if there exists a derivation Q
Pi
� ci � then there exists a

derivation Q
Pj
� cj � such that D j� �

�V ar�Q� ci � �
�V ar�Q� cj � �

This notion is satisfactory when programs programs are seen as completely de�ned units� However�
the relation
 is far too weak when considering modules� For instance� consider the following

Example ��
 Consider the modules M� � hP�� fpgi and M� � hP�� fpgi where P� is

q�X� � true � p�X��

p�X� � X�a � �

While P� is

q�X� � X�a � p�X��

p�X� � X�a � �

It is easy to see that P�
 P�� However� if we compose these two modules with M � hP� fpgi where P is
the program

p�X� � X�b � �

we have that M� �M and M� �M have quite di�erent behaviour� in particular M� �M �
M� �M � �

The notion of equivalence which we need when transforming CLP modules has to take into account
also the contexts given by the � composition� In other words� we have to strengthen
 to obtain a
congruence wrt the � operator� Therefore the following�

De�nition ��� �Module	s Congruence� Let M� and M� be CLP modules� We say that M� is �ob�
servationally� congruent to M��

M�
c M�

i� Op�M�� � Op�M�� and for every moduleN such thatM��N andM��N are de�ned�M��N
M��N
holds� �

�

SoM�
c M� i� they have the same open predicates and� for any query� they produce the same answer
constraints in any ��context� By taking N as the empty module we immediately see that if M�
c M�

then M�
M��
This notions of equivalence and of congruence are used to de�ne the correctness of our transformation

system� we say that a transformation for CLP programs �modules� is correct i� it maps a program �a
module� into an
� �
c�� equivalent one�

��� A compositional semantics for CLP modules

The correctness proofs for our transformation system will be carried out by showing that the system
preserves a semantics �borrowed from �

�� which models answer constraints and is compositional w�r�t�
�� This implies that it is also correct w�r�t�
c� in the sense that if two modules have the same semantics
then they are
c�equivalent� From this property it follows the desired correctness result� Basically� the
semantics we are going to use us a straightforward lifting to the CLP case of the compositional semantics
de�ned in ��� for logic programs� The aim of ��� was to obtain a semantics compositional w�r�t� union
of programs� In this respect it is easy to see that the standard semantics� such as the least D�model
and the computed answer semantics� are not compositional wrt �� consider for instance the modules M�

and M� in Example ���� they have the least D�model� where M� �M and M� �M don�t �the same
reasoning applies for the answer constraint semantics of �
���� Following an idea �rst introduced in �
���
compositionality was then obtained by choosing a semantic domain based on clauses� As we discuss below
the resulting semantics turns out to model the notion of �resultant�� hence its name�

In order to de�ne the semantic domain� we use the following equivalence relation� which� intuitively�
is a generalization to the CLP case of the notion of variance�

De�nition ��� Let cl� � A� � c� � �B� and cl� � A� � c� � �B� be two clauses� We write cl�
 cl� i�
for any i� j � �
�
� and for any D�solution � of ci there exists an D�solution � of cj such that Ai� � Aj�

and �Bi� and �Bj� are equal as multisets� Moreover� given two programs P and P � we say that P
 P � i�
P � is obtained by replacing some clauses in P for
�equivalent ones� �

Notice that� in the previous de�nition� the body of a clause is considered as a multiset� Considering
bodies of clauses as sets instead of multisets would not allow to model correctly answer constraints� since
adding a duplicate atom to the body of a clause can augment the set of computed constraints� For
instance� if we consider the programs Q� �

q�X�Y� � true � r�X�Y��r�X�Y��

r�X�Y� � X�a�

r�X�Y� � Y�b�

and Q� �

q�X�Y� � true � r�X�Y��

r�X�Y� � X�a�

r�X�Y� � Y�b�

The query q�X�Y� has the computed answer constraint X � a � Y � b in Q� and not in Q��

The following Lemma shows that the equivalence relation
 is correct wrt the congruence relation

c�

Lemma ��
 �

� Let M � hP� �i and M � � hP �� �i be two modules with the same set of open atoms� If
P
 P � then M
c M

�� �

We are now able to de�ne the semantic domain� For the sake of simplicity� we will denote the

�equivalence class of a clause c by c itself�

De�nition ��� �Denotation� Let � be a set of predicate symbols and let C be the set of the
�
equivalence classes of the CLP clauses in the given language� The interpretation base C� is the set
fA� c � �B � C j Pred� �B� 	 �g� A denotation is any subset of C�� �

�

The following is the de�nition of the resultant semantics as it was originally given in ��� for pure logic
programs and applied to CLP in �

��

De�nition ��� �Resultants Semantics for CLP� LetM � hP�Op�M�i be a module� Then we de�ne

O�M� � fp��x�� c � �B � COp�M� j there exists a derivation true � p��x�
P
� c � �B g�

�

If there exists a derivation c � �A
P
� d � �B� then the formula c � �A� d � �B is called a computed

resultant for the query c � �A in P � It can be shown that computed resultants for generic queries can be
obtained by combining together resultants for simple queries of the form true � p��x�� Therefore O�M� is
expressive enough to characterize all the resultants computable in P � In particular� O�M� models also the
answer constraints computed inM � since these can be obtained from resultants of the form c � �A� d � �
The compositionality of previous semantics w�r�t� � is proved in �

�� From such a result it follows the
correctness of O w�r�t�
c� stated by the following Corollary�

Corollary ���� �Correctness� ����� Let M � hP�Op�M�i and N � hQ�Op�N�i be modules such that
Op�M� � Op�N��

� If O�M� � O�N� then M
c N � �

In the particular case Op�M� � �� i�e� when all the predicates are completely de�ned� O�M� coincides
with the answer constraint semantics which is correct and fully abstract w�r�t�
 ��
����

Example ���� Consider again the modules M� and M� of Example ���� Then

O�M�� � fp�X��X � a � � q�X��X � a � � q�X�� true � p�X�g
O�M�� � fp�X��X � a � � q�X��X � a � g

So the fact that M� and M� are not observationally congruent is re ected by the fact that O�M�� ��
O�M��� �

Resultants semantics via trees

We now provide a new� alternative formulation of the resultant semantics in terms of proof trees� This
particular notation will be used to prove the correctness results�

We assume known the usual notion of �nite labeled tree and the related terminology� Given a �nite
labeled tree rooted in the node N � we say that T � is an immediate subtree of T if T � is the subtree of T
which is rooted in a son of N �

De�nition ���� �Partial proof tree� Let A be an atom A partial proof tree for A is any �nite labeled
tree T satisfying the following conditions

� The root node of T is labeled by a pair hA � A� � A� � cA � A�� � � � � Ani such that A� and A have
the same predicate symbol�

� Each immediate subtree Tj of T is a partial proof tree for a distinct Aj with
 � j � n�

�� All the clauses used in the labels of T are pairwise variable disjoint and have no variables in common
with the atom in the lhs �left hand side� of the label equation in the root node� �

We call label equation and label clause of the node N the left and the right hand side of the label of
N � respectively� Moreover� if Ai is an atom in the body of the label clause of the root of T and Ti is an
immediate subtrees of T which is a partial proof tree for Ai� we say that Ti is attached to Ai� Using this
notation� condition
 can be restated as follows� �no two immediate subtrees of T are attached to the
same atom of the label clause of the root �and therefore� of any� node�� Finally� we say that T is a tree
in P � if the label clauses of all its nodes are �variants of� clauses of the program P �

Notice that� according to previous de�nition� there might be some Aj in the bodies of label clauses
with no subtrees attached to them� We call them the elements of the residual as speci�ed below�

�

De�nition ���� Let T be a partial proof tree�

� The residual of a node in T having the clause label A� � cA � A�� � � � � An� is the multiset consisting
of those Aj �s�
 � j � n� that do not have an immediate subtree attached to�

� The residual of T is the multiset resulting from the �multiset� union of the residuals of its nodes� �

In order to establish the connection between the resultants semantics and partial proof�trees� we
introduce now in a natural way the notion of resultant of partial proof trees�

De�nition ���
 Let T be a partial proof tree� We call the global constraint of T the conjunction of all
the label equations together with the constraints of all the label clauses of the nodes of T � �

De�nition ���� Let T be a partial proof tree of A� Let c be its global constraint and F�� � � � � Fk be its
residual� If c is satis�able we call the clause A� c � F�� � � � � Fk the resultant of T � �

In the sequel we are interested in those partial trees whose residuals consist exclusively of only open
atoms and whose global constraint is satis�able� Therefore the following de�nition�

De�nition ���� Let � be a set of predicate symbols� We call ��atom any atom A such that Pred�A� � ��
An ��tree is a partial proof tree T such that

� the residual of T contains only ��atoms�

� the global constraint of T is satis�able� �

We can now establish the relation between open trees and the resultant semantics�

Proposition ���
 �Correspondence� Let M � hP�Op�M�i be a module� Then A� c � �F � O�M�
i� there exists an ��tree of A in P with A� c� � �F � as resultant such that A� c � �F
 A� c� � �F �

and � � Op�M��

Proof� Straightforward� �

� A transformation system for CLP

In this section we de�ne a transformation system for optimizing constraint logic programs� The system is
inspired by the unfold�fold method proposed by Tamaki and Sato ���� for pure logic programs� Here� the
use of constraint logic programs allows us to introduce some new operations which broaden the possible
optimizations and to simplify the applicability conditions for the folding operation in �����

Before we begin to de�ne the transformation method� it is important to notice that all the observable
properties of computations we refer to are invariant under
� As we formally prove later� this implies that
we can always replace any clause cl in a program P by a clause cl�� provided that cl�
 cl� This operation
is often useful to clean up the constraints� and� in general� to present a clause in a more readable form�

We start from some requirements on the original �i�e� initial� program that one wants to transform�
Here we say that a predicate p is de�ned in a program P � if P contains at least one clause whose head
has predicate symbol p�

De�nition
�� �Initial program� We call a CLP program P� an initial program if the following two
conditions are satis�ed�

�I�� P� is partitioned into two disjoint sets Pnew and Pold�

�I�� the predicates de�ned in Pnew don�t occur in Pold nor in the bodies of the clauses in Pnew � �

�

Following this notation� we call new predicates those predicates that are de�ned in Pnew� We also
call transformation sequence a sequence of programs P�� � � � � Pn� in which P� is an initial program and
each Pi��� is obtained from Pi via a transformation operation�

Our transformation system consists of �ve distinct operations� In order to illustrate them throughout
this section we will use the following working example� To simplify the notation� when the constraint
in a goal or in a clause is true we omit it� So the notation H � �B actually denotes the CLP clause
H � true � �B�

Example
�� �Computing an average� Consider the following CLP���� program AVERAGE comput�
ing the average of the values in a list� Values may be given in di�erent currencies� for this reason each
element of the list contains a term of the form hCurrency� Amounti� The applicable exchange rates may
be found by calling predicate exchange rates� which will return a list containing terms of the form
hCurrency� Exchange Ratei� where Exchange Rate is the exchange rate relative to Currency� AVERAGE
consists of the following clauses

average�List� Av� �
Av is the average of the list List

c�� average�Xs� Av� � Len 	
 � Av�Len � Sum �

exchange rates�Rates��

weighted sum�Xs� Rates� Sum��

len�Xs� Len��

weighted sum�List� Rates� Sum� �
Sum is the sum of the values in the list List

and each amount is multiplied �rst by the exchange rate corresponding to its currency

weighted sum��
�
��

weighted sum�� hCurrency� Amounti � Rest
� Rates� Sum� �
Sum � Amount�Value � Sum� �

member�hCurrency� Valuei� Rates��

weighted sum�Rest� Rates� Sum���

len�List� Len� �
Len is the length of the elements in the list List

len��
�
 ��

len��H�Rest
� Len� � Len � Len��� � len�Rest� Len���

together with the usual de�nition for member� Notice that the de�nition of average needs to scan the
list Xs twice� This is a source of ine	ciency that can be �xed via a transformation sequence� �

The �rst transformation we consider is the unfolding� This operation is basic to all the transformation
systems and essentially consists in applying a derivation step to an atom in the body of a program clause�
in all possible ways� As previously mentioned� all the observable properties we consider are invariant
under reordering of the atoms in the bodies of clauses� Therefore the de�nition of unfolding� as well as
those of the other operations� is given modulo reordering of the bodies� To simplify the notation� in the
following de�nition we also assume that the clauses of a program have been renamed so that they are
variable disjoint�

De�nition
�� �Unfolding� Let cl � A� c � H� �K be a clause in the program P � and fH�� c� � �B��
� � � � Hn� cn � �Bng be the set of the clauses in P such that c � ci � �H � Hi� is D�satis�able� For
i � �
� n�� let cl�i be the clause

A� c � ci � �H � Hi� � �Bi� �K

Then unfolding H in cl in P consists of replacing cl by fcl��� � � � � cl
�

ng in P � �

�CLP��� �
�� is the CLP language obtained by considering the constraint domain � of arithmetic over the real numbers�

�

In this situation we also say that fH�� c� � �B�� � � � � Hn� cn � �Bng are the unfolding clauses�

Example
�� �part �� The transformation strategy which we use to optimize AVERAGE is often referred
to as tupling �see ��
�� or as procedural join �see �
���� First� we introduce a new predicate avl de�ned
by the following clause

avl�List� RATES� AV� LEN� �
AV is the average of the list List� and LEN is its length

c�� avl�XS� RATES� AV� LEN� � LEN	
 � AV�LEN � SUM �

exchange rates�RATES��

weighted sum�Xs� RATES� SUM��

len�XS� LEN��

avl di�ers from average only in the fact that it reports also the list of exchange rates and the length of
the list Xs� Notice that avl� as it is now� needs to traverse the list twice as well�

Now let P� be the initial program consisting of AVERAGE augmented by c
 and assume that avl is the
only new predicate� We start to transform P� by performing some unfolding operations� First we unfold
weighted sum�XS� RATES� SUM� in the body of c�� The resulting clauses� after having cleaned up the
constraints and renamed some variables� are the following ones

avl��
� Rates� Average� Len� � Len 	
 � Average�Len �
 �

exchange rates�Rates��

len��
� Len��

avl��hCurrency�Amounti�Rest
� Rates� Average� Len� �
Len 	
 � Average�Len � Amount�Value�Sum� �

exchange rates�Rates��

member�hCurrency� Valuei� Rates��

weighted sum�Rest� Rates� Sum���

len��hCurrency�Amounti�Rest
� Len��

Furthermore� in the above clauses we unfold the atoms len��
� Len� and len��hCurrency�Amounti
�Rest
� Len�� This yields the following two clauses�

c�� avl��
� Rates� Average�
� �
 	
 � Average�
 �
 �

exchange rates�Rates��

c�� avl��hCurrency�Amounti�Rest
� Rates� Average� Len� �
Len 	
 � Len � Len��� � Average�Len � Amount�Value�Sum� �

exchange rates�Rates��

member�hCurrency� Valuei� Rates��

weighted sum�Rest� Rates� Sum���

len�Rest� Len��� �

Notice that the constraint in the body of clause c� is unsatis�able� For this reason c� could be
removed from the body of the program� to do that we need the following operation�

De�nition
�
 �Clause Removal� Let cl � H � c � �B be a clause in the program P � If

D j� �� c

Then we can remove cl from the program P � obtaining the program P � � Pnfclg� �

Note
�� In ��
� we �nd the de�nition of a clause deletion operation for pure logic programs which in
CLP terms can be expressed as follows� if cl � H � c � �B is a clause in P such that query c � �B has
a �nitely failed tree in P � then we can remove cl from P � Obviously� if D j� �� c then the goal c � A

�The de�nition of �nitely failed tree for CLP is the obvious generalization of the one for pure logic programs�

�

has a �trivial� �nitely failed tree� therefore each time that we can apply the clause removal operation we
can also apply the clause deletion of ��
�� However� clause removal is only apparently more restrictive
than clause deletion� since by combining it with the unfolding operation we can easily simulate the latter�
Indeed� if c � �B has a �nitely failed tree in P then� by a suitable sequence of unfoldings we can always
transform the clause A� c � �B� in such a way that the set of resulting clauses is either empty or contains
only clauses whose constraints are unsatis�able� So using clause removal� we can then �indirectly� remove
cl from the program� We prefer to use clause removal rather than clause deletion� because when we�ll
move to the context of modular CLP programs the �rst operation will remain unchanged while the latter
would require some speci�c applicability conditions� �

We now introduce the splitting operation� Here� just like for the unfolding operation� the de�nition is
given modulo reordering of the bodies of the clauses and it is assumed that program clauses are variable
disjoint�

De�nition
�� �Splitting� Let cl � A� c � H� �K be a clause in the program P � and fH�� c� � �B��
� � � � Hn� cn � �Bng be the set of the clauses in P such that c � ci � �H � Hi� is D�satis�able� For
i � �
� n�� let cl�i be the clause

A� c � ci � �H � Hi� � H� �K

If� for any i� j � �
� n�� i �� j� the constraint �Hi � Hj�� ci � cj is unsatis�able then splitting H in cl in P
consists of replacing cl by fcl��� � � � � cl

�

ng in P � �

In other words� the splitting operation is just an unfolding operation in which we do not replace
the atom H by the bodies of the unfolding clauses� The condition that for no two distinct i� j� �Hi �
Hj�� ci� cj is satis�able is easily seen needed in order to obtain
 equivalent programs� Indeed� consider
for instance the program Q

q�X� Y� � p�X� Y�

p�a� W��

p�Z� b��

If we split p�X� Y� in the body of the �rst clause we obtain the program Q�� which after cleaning up the
constraints consists of the following clauses�

q�a� Y� � p�a� Y�

q�X� b� � p�X� b�

p�a� W��

p�Z� b��

Now Q �
 Q� since the query q�X� Y� has in Q� the computed answer fX � a� Y � bg� while such an answer
is not obtainable in Q�

Note
�
 We should mention that an operation called splitting has also been de�ned in a techni�
cal report of Tamaki and Sato ����� However� the operation described here is substantially di�erent
from theirs� In CLP terms the splitting operation de�ned in ���� can be expressed as follows� If
cl � H � c � �B is a clause and d a constraint then splitting cl via d consists in replacing cl by the
two clauses fH � c � d � �B� H � c � �d � �Bg� This operation preserves the minimal D�model �which
corresponds to semantics used in ����� but is does not produce
 equivalent programs� Indeed� if we
consider the program P � fp�X��g then by splitting its only clause w�r�t� the constraint X � a we obtain
the program P � � fp�X�� X � a��� p�X�� X �� a��g� Clearly P � �
 P � since the query p�X� returns the
answer constraint X � a in P � only� �

Example
�� �part �� By applying the splitting operation to len�Rest� L�� in clause c� we obtain the
following two clauses�

c�� avl��hCurrency�Amounti
�Rates� Average� Len� �
Len 	
 � Len � � � Average�Len � Amount�Value�Sum� �

exchange rates�Rates��

member�hCurrency� Valuei� Rates��

weighted sum��
� Rates� Sum���

len��
�
��

c�� avl��hCurrency�Amounti�J�Rest
� Rates� Average� Len� � Len 	
 �
Len � Len��� � Len� � Len���� � Average�Len � Amount�Value�Sum� �

exchange rates�Rates��

member�hCurrency� Valuei� Rates��

weighted sum��J�Rest
� Rates� Sum���

len��J�Rest
� Len���

In clause c� we can now remove the super uous constraint Len� � Len����� and in c� we can do some
cleaning up and we can unfold both weighted sum�� �� Rates� Sum�� and len�� ��
�� After this operations
we end up with the following clauses�

c�� avl��hCurrency�Amounti
�Rates� Average� �� � Average � Amount�Value �

exchange rates�Rates��

member�hCurrency� Valuei� Rates��

c�� avl��hCurrency�Amounti�J�Rest
� Rates� Average� Len� �
Len 	
 � Len � Len��� � Average�Len � Amount�Value�Sum� �

exchange rates�Rates��

member�hCurrency� Valuei� Rates��

weighted sum��J�Rest
� Rates� Sum���

len��J�Rest
� Len��� �

In order to be able to perform the folding operation on clause c� we need now a last� preliminary
operation� the constraint replacement� In fact� as we will discuss later� to apply such a folding� c� should
contain also the constraint Len� 	
� Clearly� adding Len� 	
 to the body of c� cannot be done via a
simple cleaning�up of the constraints� as it transforms c� in a non
�equivalent clause� However� notice
that the variable Len� in the atom len��JjRest�� Len�� �in the body of c�� represents the length of the list
�JjRest� which obviously contains at least one element� Indeed� every time that c� is used in a refutation
its internal variable Len� will eventually be bounded to a numeric value greater than zero� We can then
safely add the redundant constraint Len� 	
 to body of c�� This type of operation is formalized by
the following de�nition of constraint replacement� Notice that this operation relies on the semantics of
the program �in the previous speci�c case� on the fact that if len��JjRest�� Len�� succeeds in the current
program with answer constraint c then c is equivalent to c � Len� 	 ���

De�nition
�� �Constraint Replacement� Let cl � H � c� � �B be a clause of a program P and let

c� be a constraint� If� for each successful derivation true � �B
P
� d ��

D j� �
�V ar�H� c� � d � �

�V ar�H� c� � d

holds� then replacing c� by c� in cl consists in substituting cl by H � c� � �B in P � �

Constraint replacement has some similarities with the re�nement operation as de�ned by Marriott and
Stuckey in �
��� Re�nement allows to add a constrain c to a program clause H � c� � �B� provided that
�for a given set of initial queries of interest� for any answer constraint d of c� � �B� D j� d � c holds�
i�e� c is redundant in d� Clearly this case is covered by our de�nition� However� the similarities between
this paper and �
�� end here� In �
��� re�nement� together with two other operations� is used to de�ne an
optimization strategy which manipulates exclusively the constraints of the clauses and which is devised
to reduce the overhead of the constraint solver in presence of the �xed left�to�right selection rule� thus
providing a kind of optimization technique totally di�erent from the one here considered�

Example
�� �part
� By performing a constraint replacement of

Len 	
 � Len � Len��� � Average�Len � Amount�Value�Sum�

by

Len 	
 � Len � Len��� � Average�Len � Amount�Value�Sum� � Len� 	

we can add the constraint Len� 	
 to the body of clause c�� thus obtaining the clause

c�� avl��hCurrency�Amounti�J�Rest
� Rates� Average� Len� �
Len 	
 � Len � Len��� � Average�Len � Amount�Value�Sum� � Len� 	
 �

exchange rates�Rates��

member�hCurrency� Valuei� Rates��

weighted sum��J�Rest
� Rates� Sum���

len��J�Rest
� Len���

As we said before� the applicability conditions for the constraint replacement operations are satis�ed
because each time that the query len��JjRest�� Len�� succeeds in the current program the variable Len�

is constrained to a value greater than zero� �

We are now ready for the folding operation� This operation is a fundamental one� as it allows to
introduce recursion in the new de�nitions� Intuitively� folding can be seen as the inverse of unfolding�
Here� we take advantage of this intuitive idea in order to give a di�erent formalization of its applicability
conditions which we hope will be more easily readable than those existing in the literature�

As in ����� the applicability conditions of the folding operations depend on the history of the transfor�
mation� that is� on some previous programs of the transformation sequence� Recall that a transformation
sequence is a sequence of programs obtained by applying some operations of unfolding� clause removal�
splitting� constraint replacement and folding� starting from an initial program P� which is partitioned
into Pnew and Pold�

As usual� in the following de�nition we assume that the folding and the folded clause are renamed
apart and� as a notational convenience� that the body of the folded clause has been reordered so that the
atoms that are going to be folded are found on its left hand side�

De�nition
�� �Folding� Let P�� � � � � Pi� i � �� be a transformation sequence� Let also
cl � A� cA � �K� �J be a clause in Pi�
d � D� cD � �H be a clause in Pnew�

If cA � �K is an instance of true � �H and e is a constraint such that V ar�e� 	 V ar�D� � V ar�cl�� then
folding �K in cl via e consists of replacing cl by

cl� � A� cA � e � D� �J

provided that the following three conditions hold�

�F�� �i� �If we unfold D in cl� using d as unfolding clause� then we obtain cl back� �modulo
��

or� equivalently�

�ii� D j� �
�V ar�A� �J� �H� cA � e � cD � �

�V ar�A� �J� �H� cA � � �H � �K�

�F�� �d is the only clause of Pnew that can be used to unfold D in cl���
that is�
there is no clause b � B� cB � �L in Pnew such that b �� d and cA � e � �D � B� � cB is D�
satis�able�

�F�� �No self�folding is allowed�� that is

�a� either the predicate in A is an old predicate�

�b� or cl is the result of at least one unfolding in the sequence P�� � � � � Pi� �

�

Here� the constraint e acts as a bridge between the variables of d and cl� For this reason in the sequel
we will often refer to it as bridge constraint�

Conditions F� and F� ensure that the folding operation behaves� to some extent� as the inverse of
the unfolding one� the underlying idea is that if we unfolded the atom D in cl� using only clauses from
Pnew as unfolding clauses� then we would obtain cl back� In this context condition F� ensures that in
Pnew there exists no clause other than d that can be used as unfolding clause�

We now show that F��i� and F��ii� are equivalent to each other� First notice that the folding and
the folded clause are assumed to be standardized apart� so �H has no variables in common with A� cA� �K
and �J � From this and the fact that cA � �K is an instance of true � �H � it follows that each solution of
cA can be extended to a solution of cA � � �H � �K�� Hence

cl � A� cA � �K� �J
 A� cA � � �H � �K� � �K� �J

Now� because of the constraint �H � �K� in the rhs of the above formula� we also have that

cl
 A� cA � � �H � �K� � �H� �J �
�

On the other hand� if we unfold cl� using d as unfolding clause� as a result we get the following clause�

cl�� � A� cA � e � �D � D�� � c�D �
�H �� �J

where d� � D� � c�D �
�H � is an appropriate renaming of d� Here� by the standardization apart and the

fact that V ar�e� 	 V ar�D� � V ar�cl�� the variables of cD� �H which do not occur in D� do not occur
anywhere else in this clause� so� by making explicit �D � D��� we can identify c�D with cD and �H � with
�H � Therefore we have that

cl��
 A� cA � e � cD � �H� �J� �
�

From �
� and �
� it follows immediately that

cl��
 cl i� �
�V ar�A� �J� �H� cA � e � cD � �

�V ar�A� �J� �H� cA � � �H � �K�

This proves that condition F��i� is equivalent to F��ii�� Of course� the former is more useful when we
are transforming programs �by hand�� while the latter is more suitable for an automatic implementation
of the folding operation�

Here it is worth noticing that the folding clause is always found in P� and usually does not belong to
the �current� program� therefore in practice �undoing� a fold via an unfolding operation is usually not
possible�

Finally� we should mention that the purpose of F� is to avoid the introduction of loops which can
occur if a clause is folded by itself� This condition is the same one that is found in Tamaki�Sato�s de�nition
of folding for logic programs�

Example
�� �part �� We can now fold

exchange rates�Rates�� sum��JjRest�� Rates� Sum��� len��JjRest�� Len��

in c�� using c� as folding clause� In this case� the bridge constraint e has to be

XS � �JjRest� � RATES � Rates � LEN � Len� � AV � Sum�
Len�

In the resulting program� after cleaning up the constraints� the predicate avl is de�ned by the following
clauses�

c�� avl��hCurrency�Amounti
�Rates� Average� �� �
Average � Amount�Value �

exchange rates�Rates��

member�hCurrency� Valuei� Rates��

c�
� avl��hCurrency�Amounti�J�Rest
� Rates� Average� Len� � Len 	
 �
Len � Len��� � Average�Len � Amount�Value��Average��Len�� � Len� 	
 �

avl��J�Rest
� Rates� Average��Len���

member�hCurrency� Valuei� Rates��

�

Notice that� because of this last operation� the de�nition of avl is now recursive and it needs to traverse
the list only once� Here� checking F� is a trivial task� what we have to do is to unfold c�
 using c� as
unfolding clause� and check that the resulting clause is
�equivalent to c��

Finally� in order to let also the de�nition of average enjoy of these improvements� we simply fold
weighted sum�Xs� Rates� Sum�� len�Xs� Len� in the body of c�� using c� as folding clause� The bridge
constraint e is now

Xs � XS � RATES � Rates � AV � Av � LEN � Len

And the resulting clause is� after the cleaning�up

c��� average�List� Av� � Len	
 � avl�List� Rates� Av� Len��

Again� we could eliminate the constraint Len 	
 in the body of c��� by applying a constraint replacement
operation� In any case� the transformed version of the program AVERAGE� consisting of the clauses c���
c�� c�
 together with the de�nition of member� contains a de�nition of average which needs to scan the
list only once� �

The transformation system given by the previous �ve operations is correct w�r�t�
� that is any
transformed program together with a generic query Q will produce the same answer constraints of the
original one� This is the content of the following result� which follows from the more general one contained
in Section ��

Corollary
��� �Correctness� If P�� � � � � Pn is a transformation sequence then

�a� P�
 Pn�

�b� The least D�models of P� and Pn coincide�

Proof� Statement �a� is proven in Section � as a Corollary of Theorem ���� The fact that �a� implies �b�
is proven in �

�� �

Invariance of the applicability conditions

As previously mentioned� we often substitute a clause in a program by an
 equivalent one in order to
clean up the constraints� The correctness of this operation wrt the
c congruence is stated in Lemma ����
We now show that this operation is correct also in the sense that it does not a�ect the applicability and
the result �up to
� of the previously de�ned operations� This is the content of the following proposition�

Proposition
��� Let P�� � � � � Pn and P �

� � � � � � P
�

n be two transformation sequences� such that� for i �
�� � � � n�� Pi
 P �

i � If Pn�� is a program obtained from Pn via a transformation operation� then there
exists a program P �

n�� which can be obtained from P �

n via the same transformation operation and such
that

Pn��
 P �

n��

Proof� In case that the operation used to obtain Pn�� from Pn was either an unfolding� a clause removal�
a splitting� or a constraint replacement� this result follows immediately from the operation�s de�nitions�
so we only have to take care of the folding operation� We adopt the same notation used in De�nition ����
so we let

� cl � A� cA � �K� �J be the folded clause� in Pn�
� d � D� cD � �H be the folding clause� in Pnew�� P���
� e be the bridge constraint� V ar�e� 	 V ar�D� � V ar�cl��
� cl� � A� cA � e � D� �J be the result of the folding operation�

Moreover� let
� cl� � A�� c�A �

�K�� �J� be the clause of P �

n corresponding to cl in Pn�
� d� � D� � c�D �

�H� be the clause of P �

� corresponding to d in P��
Now let e� be a constraint such that V ar�e�� 	 V ar�D�� � V ar�cl�� such that

�

� cl�
�

� A� � c�A � e� � D�� �J�
 cl� � A� cA � e � D� �J
We now only have to show that if the applicability conditions of the folding operation are satis�ed �by
cl� d and e� in Pn� then they are also satis�ed �by cl�� d� and e�� in P �

n � To this end� the one delicate
step is taken care of by the following Observation�

Observation � Referring to the program Pn� the clauses cl and d� and the constraint e�

cA � �K is an instance of true � �H and �F
� holds i� cA � �K is an instance of cD � �H and �F
�
holds�

Proof�
�If�� This is trivial� as if cA � �K is an instance of cD � �H then it is also an instance of true � �H�
�Only if�� The discussion after De�nition ��� shows that� if cA � �K is an instance of true � �H and

�F
� holds� then we have the following equivalences�

cl � A� cA � �K� �J

A� cA � � �H � �K� � �K� �J

A� cA � � �H � �K� � �H� �J

A� cA � e � cD � �H� �J�

This implies that cA � �K is an instance of cA � e � cD � �H� which in turn is by de�nition an instance
of cD � �H � This concludes the proof of the Observation� �

This Observation shows that there is no loss of generality in modifying the applicability conditions of
the folding operation De�nition ��� by replacing the condition �cA � �K is an instance of true � �H� for
�cA � �K is an instance of cD � �H�� Now� from the de�nitions of instance and of
 it is immediate to
verify that the following facts hold�

�
� If cA � �K is an instance of cD � �H then c�A �
�K� is an instance of c�D �

�H��

�
� if �F
�� �F
�� �F�� are satis�ed �by cl� d and e� in Pn� then they are also satis�ed �by cl�� d� and
e�� in P �

n �

This concludes the proof of the Proposition� �

� A transformation system for CLP modules

Corollary ��
� shows the correctness of the transformation system when viewing each CLP program as an
autonomous unit� However� as pointed out in the introduction� an essential requirement for programming�
in�the�large is modularity� a program should be structured as a composition of interacting modules� In
this framework Corollary ��
� falls short from the minimal requirement since it does not guarantee that
a module P will be transformed into a congruent one P ��

Transforming CLP modules requires then a strengthening of �some of� the applicability conditions
given in the previous section� In what follows� we discuss such modi�cations considering the various
operations one by one� Recall that the open predicates of a module M are the ones speci�ed on Op�M��
Similarly� in the sequel we call open atoms those atoms whose predicate symbol belongs to Op�M��
Moreover� we assume that the transformed version of a module has the same open predicates as the
original one�

Unfolding

In order to preserve the compositional equivalence� for the unfolding operation we need the following
additional applicability condition�

�O�� The unfolding cannot be applied to an open atom�

�

This condition is clearly needed� for instance� consider the module M� consisting of the single clause
fc� � p� q�g and where Op�M�� � fqg� Since M� contains no clause whose head uni�es with q�
unfolding q in c� will return an empty module M� � �� Obviously M� and M� are not observationally
congruent�

Clause Removal

This operation may be safely applied to modules without the need of any additional condition�

Splitting

Being closely connected to the unfolding operation� the splitting one requires the same kind of precautions
when is applied to a modular program� Namely we need the following condition�

�O�� The splitting operation may not be applied to an open atom�

The example used to show the need for condition O� for the unfolding operation can be applied here to
demonstrate the necessity of O��

Constraint Replacement

This operation is the most delicate one� in order to apply it to modules we need to restate completely
its applicability conditions� As a simple example showing the need of such a change� let us consider the
following module M��

c�� p�X� � true � q�X��

q�a��

where Op�M�� � fqg� The only answer constraint to the query q�X� in M� is X � a� Therefore� if we
refer to the applicability conditions of De�nition ���� we could add the constraint X � a to the body of
c� thus obtaining M��

c�� p�X� � X�a � q�X��

q�a��

Once again M� and M� are not congruent� In fact� for N � hfq�b��g� fqgi� the query p�b� succeeds in
M� � N and fails in M� � N �

De�nition ��� �Constraint Replacement for Modules� Let cl � H � c� � �B be a clause of a mod�
ule M and let c� be a constraint� If

�O�� for each derivation true � �B
M
� d � �D such that �D is either empty or contains only open atoms�

we have that
H � c� � d � �D
 H � c� � d � �D

then replacing c� by c� in cl consists in substituting cl by H � c� � �B in M � �

In order to compare this de�nition with the corresponding one for non�modular programs notice that
the applicability conditions of De�nition ��� can be restated as follows� We can replace c� with c� in the

body of cl � H � c� � �B if� for each successful derivation true � �B
P
� d � we have that

H � c� � d �
 H � c� � d �

Now it is clear that the di�erence lies in the fact that here we cannot just refer to the successful derivations

true � �B
P
� d � � but we also have to take into account those partial derivations that end in a tuple of

open atoms� whose de�nition could eventually be modi�ed� It follows immediately that when the set of
open atoms is empty� De�nitions ��� and ��
 coincide� while if Op�M� �� � then this de�nition is more
restrictive than the previous one�

�

Folding

Finally� we consider the folding operation� In order to preserve the compositional equivalence the head
of the folding clause cannot be an open atom� This is shown by the following simple example� Consider
the initial module M��

c�� p � q�

c�� r � q�

where we assume Op�M�� � fpg and Mnew � fp� qg� Since r is an old atom� we can fold q in c� using
c� as folding clause� The resulting module M� is

c�� p � q�

c�� r � p�

Again M� and M� are not observationally congruent� Indeed� if we compose them with the module
N � hfp�g� fpgi� we have that the query r succeeds in M� � N � but fails in M� � N � Since the new
predicates are the only ones that can be used in the heads of folding clauses� we can express this additional
applicability condition for folding as follows�

�O
� No open predicate is also a new predicate�

It is worth noticing that open atoms may still be folded� Below �Example ��
� part ��� we report an
example of such a case�

Using the additional applicability conditions introduced above� we can de�ne now the transformation
sequence for CLP modules �for short� modular transformation sequence��

De�nition ��� �Modular transformation sequence� Let M� � hP�� Op�M��i be a module and P��
� � �� Pn be a transformation sequence� We say that M�� � � � �Mn is a modular transformation sequence i�
Mi � hPi� Op�M��i for i � ��� n� and the conditions O�� � �O
 are satis�ed by all the operations used in
P�� � � � � Pn� �

As expected� for a modular transformation sequence we can prove a correctness result stronger than
the one contained in Corollary ��
�� Indeed� the system transforms a module into a congruent one�

This result is based on the following Theorem which contains the main technical result of the paper
and shows that any modular transformation sequence preserves the resultants semantics�

Theorem ��� Let M�� � � � �Mn be a modular transformation sequence� Then

� O�M�� � O�Mn��

Proof� See the Appendix� �

From previous Theorem and the correctness result for the resultants semantics we can now derive
easily the correctness of a modular transformation sequence�

Theorem ��
 �Correctness of the modular transformation sequence� LetM�� � � � �Mn be a mod�
ular transformation sequence� then

M�
c Mn

Proof� Immediate from Theorem ��� and Corollary ��
�� �

In other words� for any module N such that M��N is de�ned� Mn�N is also de�ned	 and a generic
query has the same answer constraints in M� �N and Mn �N �

From previous result we also obtain Corollary ��
� of previous Section�

�The fact that Mn � N is also de�ned follows immediately from the fact that M� and Mn contain de�nitions for the
same predicate symbols�

�

Corollary
��� If P�� � � � � Pn is a transformation sequence� then�

P�
 Pn�

Proof�Note that when Op�P�� is empty� conditionsO� � � �O
 are trivially satis�ed by any transformation
sequence� Since
 can be seen as the particular case of
c applied to modules with an empty set of open
predicates� the thesis follows from Theorem ���� �

Example
�� �part �� Program AVERAGE can be used in a modular context� Indeed� if we consider
that the exchange rates between currencies are typically uctuating ratios� it comes natural to assume
exchange rates as an open predicate which may refer to some external �information server� to access
always the most up�to�date information� In this context� it is easy to check that all the transformations
we performed satis�ed O�� � �O
� Therefore Theorem ��� guarantees that the �nal program will behave
exactly as the initial one� even in this modular setting� �

� From LP to CLP

It is well�known that pure logic programming �LP for short� can be seen as a particular instance of
the CLP scheme obtained by considering the Herbrand constraint system� This is de�ned by taking as
structure the Herbrand universe and interpreting as identity the only predicate symbol for constraints
���� So it is natural to expect that an unfold�fold transformation for LP can be embedded into one
for CLP� Indeed� in this Section we show that the transformation system we propose is a generalization
to the CLP �and modular� case of the unfold�fold system designed by Tamaki and Sato ���� for LP� As
a consequence� conditions O� and O
 can be used also in the LP case to transform a module into a
congruent one�

We introduce the system of Tamaki and Sato by �rst considering the unfold operation for LP� Again�
we assume that the clauses are standardized apart we give the following de�nition modulo reordering of
the bodies�

De�nition ��� �Unfolding for LP� Let cl � A�H� �K be a clause of a logic program P � and let
fH�� �B�� � � � � Hn� �Bng be the set of clauses of P whose heads unify with H � by mgu�s f��� � � � � �ng�
For i � �
� n� let cl�i be the clause

�A� �Bi� �K��i

Then unfolding H in cl in P consists of replacing cl by fcl��� � � � � cl
�

ng in P �

Also in the LP case the notions of folding operation and of transformation sequence are de�ned in a
mutually recursive way� So� in the sequel we use the same de�nition of initial program as before� However�
since clause removal� splitting and constraint replacement are new operations which were not in ����� we
call now LP transformation sequence a sequence of LP programs P�� � � � � Pn� in which P� is an initial
program and each Pi��� is obtained from Pi either via an unfolding or via a folding operation
�

Now we also need some extra preliminary notions� Given a substitution � � fx�
t�� ���� xn
tng
we denote by Dom��� the set of variables fx�� � � � � xng� and by Ran��� the set of variables appear�
ing in ft�� � � � � tng� if Ran��� � � we say that � is grounding� Finally we denote by Var��� the set
Dom��� �Ran����

We are now ready to give the de�nition of the folding operation for LP� Again� here we assume that
the folding and the folded clause are renamed apart and that the body of the folded clause has been
reordered �as in De�nition �����

De�nition ��� �Folding for LP� ����� Let P�� � � � � Pi� i � �� be an LP transformation sequence and
cl � A� �K� �J � be a clause in Pi�
d � D� �H � be a clause in Pnew�

�However	 we should mention that in ���� also a more general replacement operation is taken into consideration	 but this
operation is beyond the scope of this paper�

�

Let also �v � V ar� �H� n V ar�D� be the set of local variables of d� If there exists a substitution � such
that Dom��� � V ar�d�� then folding �K in cl via � consists of replacing cl by cl� � A�D�� �J � provided
that the following conditions hold�

�LP�� �H� � �K�

�LP�� For any x� y � �v

� x� is a variable�

� x� does not appear in A� �J � D� �

� if x �� y then x� �� y� �

�LP�� d is the only clause in Pnew whose head is uni�able with D� �

�LP
� one of the following two conditions holds

� the predicate in A is an old predicate�

� cl is the result of at least one unfolding in the sequence P�� � � � � Pi� �

Concerning the unfolding operation� it is easy to see that De�nition ��
 is the LP counterpart of
De�nition ���� In fact� an LP clause is itself a CLP rule �with an empty constraint� and well known
results ��
��� imply that two terms s and t have an mgu i� the equation s � t is satis�able in the Herbrand
constraint system� Therefore� given a logic program P � we can unfold P according to De�nition ��
 i�
we can unfold P according to De�nition ���� Clearly� the results of the two operations are syntactically
di�erent� since substitutions are used in the �rst case whereas constraints are employed in the second
one� However� again by using standard results of uni�cation theory� it is easy to check that the di�erent
results are
 equivalent�

On the other hand� when considering the folding operation� the similarities between De�nitions ��

and ��� are less immediate� Therefore we now formally prove that� whenever the folding operation for
LP programs is applicable also the folding operation for CLP programs is� and the result of this latter
operation is
�equivalent to the result of the operation in LP� This is summarized in the following�

Theorem ��� If P� is a logic program and P�� � � � � Pn is an LP transformation sequence then there exists
a CLP transformation sequence P �

� � � � � � P
�

n such that� for i � ��� n�� Pi
 P �

i �

Proof� In order to simplify the notation� we now de�ne a simple mapping from LP clauses to clauses in
pure CLP�� Let cl � p���t��� p���t��� � � � � pn��tn� be a clause in LP� Then
�cl� is the CLP clause

p���x��� �x� � �t� � �x� � �t� � � � � � �xn � �tn � p���x��� � � � � pn��xn��

where �x�� � � � � �xn are tuple of new and distinct variables� Obviously
�cl�
 cl for any clause cl� Therefore
it su	ces to prove that if P�� � � � � Pn is a transformation sequence of logic programs� then
�P��� � � � �
�Pn�
is a transformation sequence in CLP� The proof proceeds by induction on the length of the sequence�
For the the base case �n � �� the result holds trivially� so we go immediately to the induction step� we
assume that P�� � � � � Pn�� is a transformation sequence in LP� that
�P��� � � � �
�Pn� is a transformation
sequence in CLP� and we now prove that
�P��� � � � �
�Pn��� is a transformation sequence in CLP as well�

If Pn�� is the result of unfolding a clause cl of Pi� then it is straightforward to check that by unfolding

�cl� in
�Pi� we obtain
�Pi��� �modulo
��

Now we consider the case in which Pn�� is the result of a folding operation �applied to Pn�� We prove
the thesis for the simpli�ed situation where �H � �K and �J consist each of a single atom� The extension to
the general case is straightforward� Let

d � a��s�� b��t� be the folding clause� in Pnew �
Since we are assuming that the applicability conditions of De�nition ��
 are satis�ed� by LP� the folded
clause �in Pn� can be written as follows�

�
Pure CLP programs are CLP programs in which the atoms in the clauses	 apart from constraints	 are always of the

form p��x�	 where �x is a tuple of distinct variables�

�

cl � c��u�� b��t��� d��v��
the result of the folding operation is then

cl� � c��u�� a��s��� d��v��
which is a clause in Pn���
By translating the folding and the folded clause in CLP� we obtain

�d� � d� � a��x�� �x � �s � �y � �t � b��y��

�cl� � cl� � c��z�� �z � �u � �w � �t� � �k � �v � b� �w�� d��k��

Where �x� �y� �z� �w and �k are tuples of new and distinct variables�
Now� let e be the following constraint

e � �x � �s�

the result of the folding operation in CLP is then
cl�� � c��z�� �z � �u � �w � �t� � �k � �v � �x � �s� � a��x�� d��k��

It is straightforward to check that
�cl��
 cl��� Now� it is also clear that �z � �u � �w � �t� � �k � �v � b� �w�
is an instance of true � b��y�� so in order to prove the thesis we now need to verify that if d� cl and �
satisfy LP�� LP� in Pn then d�� cl� and e satisfy F� in
�Pn�� Here the structure D is the Herbrand
structure� whose domain is the Herbrand universe and where ��� is interpreted as the identity�

Now the condition F� is D j� ���z��y cleft � ���z��y cright
where cleft is �z � �u � �w � �t� � �k � �v � �x � �s� � �x � �s � �y � �t

and cright is �z � �u � �w � �t� � �k � �v � �y � �w

In both sides of the formula we �nd the equations �w � �t�� �k � �v� �x � �s� � where �w� �k� �x are tuple of fresh
variable and are existentially quanti�ed� hence we can simplify F� to

D j� ���z��y �z � �u � �s � �s� � �y � �t � ���z��y �z � �u � �y � �t� ���

Recall that� when considering the Herbrand structure� � is a solution of a constraint c if � is a grounding
substitution such that Dom��� � V ar�c� and D j� c��

We now show that for each solution � of one side of ��� there exists a solution �� of the other side of
��� such that �j�z��y � ��j�z��y� this will imply the thesis�

We now prove the two implications separately�
�� �� Let � be a solution of �z � �u � �y � �t� � We assume that � is minimal� in the sense that if l is a

variable not occurring in �z � �u � �y � �t� � then l �� Dom����
Since� by standardization apart� Dom��� � Ran��� � �� we have that Dom��� �Dom��� � �� We can
extend � to �� Dom���� � Dom��� �Dom���� for each l � Dom���� we let

l�� be equal to l��� ���

�� is now also a solution of the left hand side of ���� In fact
�s�� � �s�� �by ����
� �s��� �because �� is an extension of ���

Moreover
�y�� � �t��� �because �� is an extension of �� and � is a solution of y � �t��
� t�� �by �����

Since �� is an extension of �� we have that �j�z��y � ��j�z��y�
�� �� Let � be a solution of �z � �u � �s � �s� � �y � �t� Again� we assume � to be minimal �in the

sense above� i�e� Dom��� � Var��z � �u � �s � �s� � �y � �t��� Observe that Dom��� � Ran��� � V ar�s���
We now extend � to �� in such a way that Dom��� encompasses the whole Ran��� � V ar�t�� � V ar�s���
Let �l be the tuple of variables given by V ar��t�nV ar��s�� by LP� we have that �l� is a tuple of distinct
variables� Moreover� the variables in �l� don�t occur anywhere else in the above formulas� So� for each
li � �l� we can let

li��
� be equal to li�� ���

Since � is already a solution of �s � �s� and �� is an extension of �� by ��� we have that
�t��� � �t��

Since � is a solution of �y � �t� �� is then a solution of �y � �t� � and hence of the whole LHS of ���� which
concludes the proof� �

Theorem ��� allows us to apply the results of the previous Section also to the Tamaki�Sato schema�
thus obtaining a a transformation system for LP modules� The following Corollary show the correctness
result for this case� Here we consider as LP module a logic program P together with a set of predicate
symbols �� Module composition and the related notions are the same as in the previous sections� Given
two logic programs P� and P�� the concept of observational equivalence
LP is de�ned as follows�

� P�
LP P� i�� for any query Q and for any i� j � �
�
�� if Q has a computed answer �i in the
program Pi then Q has a computed answer �j in the program Pj such that Q�i � Q�j

��

Therefore� in the LP context� the concept of module congruence is de�ned as follows� Given two modules
M� and M��

� M�
LP
c M� i� Op�M�� � Op�M�� and for every module N such that M� �N and M� �N are

de�ned� M� �N
LP M� �N holds�

Corollary ��
 Let M� � hP�� �i be a logic programming module� P�� � � � � Pn be an LP transformation
sequence and for i � �
� n� let Mi be the module hPi� �i� If conditions O� and O
 are satis�ed then
M�
LP

c Mn�

Proof� Immediate from Theorems ��� and ���� �

� Conclusions

Among the works on program�s transformations� the most closely related to this paper are Maher�s �
��
and the one of Bensaou and Guessarian ����

Maher considers several kind of transformations for deductive databases modules with constraints
�allowing negation in the bodies of the clauses� and refers to the perfect model semantics� However� the
folding operation proposed in �
�� is quite restrictive� in particular it lacks the possibility of introducing
recursion� Indeed� for positive programs� it is a particular case of the one de�ned here� Moreover� our
notion of module composition is more general than the one considered in �
��� since the latter does not
allow mutual recursion among modules�

Recently� an extension of the Tamaki�Sato method to CLP programs has also been proposed by
Bensaou and Guessarian ���� yet there are some substantial di�erences between ��� and our proposal�

Firstly� since in an unfold�fold transformation sequence we allow more operations� we obtain a more
powerful system� For instance� the transformation performed in Example ��
 is not feasible with the
tools of ���� On the other hand� since in ��� the authors de�ne also a goal replacement operation� there
exist also some transformation which can be done with the tools of ��� and not with ours� However�
such a replacement operation cannot be �tted in a unfold�fold transformation sequence� in particular no
folding is allowed when the transformation sequence contains a goal replacement� For this reason a goal
replacement operation as de�ned in ��� has to be regarded as an issue which is orthogonal to the one of
the unfold�fold transformations� and which is also beyond the scope of this paper�

Secondly� the semantics they refer to is an extension to the CLP case of the C�semantics ����

���
Such a semantics characterizes the logical consequences of the program on D�models� but does not
allow to model answer constraints� For example� the C�semantics identi�es the programs f p�X�Y� �
X�a�Y�b ��� p�X�Y��g and f fp�X�Y�� g which have di�erent answer constraint for the goal p�X�Y��
and consequently are not identi�ed by the answer constraint semantics in �
��� Since the C�semantics
can be obtained as the upward closure of the answer constraint semantics� the result on the correctness
of the unfold�fold system of ��� is a particular case of our Corollary ��
�� Moreover� we believe that
the answer constraints semantics provides a better reference semantics for transformation systems� since
answer constraints are the most natural properties that one would like to preserve while transforming
programs�

�We assume here that generic mgu�s are used in the SLD derivations� If only relevant mgu�s were allowed	 then the
syntactic equality should be replaced by variance�

A third relevant di�erence is due to the fact that since modularity is not take into account in ���� the
system introduced in that paper does not produce observationally congruent programs� As pointed out
in the introduction� this issue is particularly relevant for practical applications�

Finally� one last improvement over ��� is that of the applicability conditions we propose are invariant
under
�equivalence �Proposition ��

�� while the ones in ��� are not� this means that in some cases
the folding conditions of ��� may not be satis�able unless we appropriately modify the constraints of the
clauses �maintaining
�equivalence��

To conclude� the contributions of this paper can be summarized as follows�
We have de�ned a transformation system for CLP based on the unfold�fold framework of Tamaki

and Sato for logic programs ����� Here� the use of CLP allowed us to de�ne some new operations and to
express the applicability conditions for the folding operation without the use of substitutions� Moreover�
our de�nition of folding emphasizes its nature of being a quasi�inverse of the unfolding� We hope that
this will provide a more intuitive explanation of its applicability conditions� The system is then proven
to preserve the answer constraints and the least D�model of the original program�

A de�nition of a modular transformation sequence is given by adding some further applicability
conditions� These conditions are shown to be su	cient to guarantee the correctness of the system w�r�t�
the module�s congruence� This means that the transformed version of a CLP module can replace the
original one in any context� yet preserving the computational behaviour of the whole system in terms of
answer constraints� As previously argued� this provides a useful tool for the development of real software
since it allows incremental and modular optimizations of large programs�

Finally� the relations between transformation sequences for CLP and LP have been discussed� By
mapping logic programs into CLP programs we have shown that our transformation system is a general�
ization to CLP �and to modules� of the one proposed by Tamaki and Sato ����� This relation allows us
to prove that� under conditions O� and O
� the system by Tamaki and Sato transforms a LP module
into a congruent one�

In the literature we also �nd less related papers presenting methods which focus exclusively on the
manipulation of the constraint for compile�time �
�� and for low�level local optimization �in which the
constraint solving is partially compiled into imperative statements� �

�
��� These techniques are totally
orthogonal to the one discussed here� and can therefore be integrated with our method� On the other hand�
some strategies which use transformation rules for composing complex �pure� logic programs starting from
simpler pieces have been presented in �
�� and further discussed in ��
�� Also these strategies could easily
be extended to CLP and integrated with our transformation rules�

Acknowledgements

The authors want to thank K�R� Apt� A� Bossi and the referees of a preliminary� shorter version of this
paper for their helpful comments�

References

�
� K� R� Apt� Introduction to Logic Programming� In J� van Leeuwen� editor� Handbook of Theoretical
Computer Science� volume B� Formal Models and Semantics� pages ���!���� Elsevier� Amsterdam
and The MIT Press� Cambridge�
����

�
� C� Aravidan and P� M� Dung� On the correctness of Unfold�Fold transformation of normal and
extended logic programs� Technical report� Division of Computer Science� Asian Institute of Tech�
nology� Bangkok� Thailand� April
����

��� N� Bensaou and I� Guessarian� Transforming Constraint Logic Programs� In F� Turini� editor� Proc�
Fourth Workshop on Logic Program Synthesis and Transformation�
����

��� A� Bossi� M� Bugliesi� M� Gabbrielli� G� Levi� and M� C� Meo� Di�erential logic programming� In
Proc� Twentieth Annual ACM Symp� on Principles of Programming Languages� pages ���!���� ACM
Press�
����

�

��� A� Bossi and N� Cocco� Basic Transformation Operations which preserve Computed Answer Substi�
tutions of Logic Programs� Journal of Logic Programming�
��
"
����!���
����

��� A� Bossi� M� Gabbrielli� G� Levi� and M� C� Meo� A Compositional Semantics for Logic Programs�
Theoretical Computer Science�

�
�
���!���
����

��� M� Bugliesi� E� Lamma� and P� Mello� Modularity in logic programming� Journal of Logic Program�
ming�
��
�����!��
�
����

��� R�M� Burstall and J� Darlington� A transformation system for developing recursive programs� Journal
of the ACM�
��
����!��� January
����

��� K� L� Clark� Predicate logic as a computational formalism� Res� Report DOC ������ Imperial
College� Dept� of Computing� London�
����

�
�� K�L� Clark and S� Sickel� Predicate logic� a calculus for deriving programs� In Proceedings of
IJCAI���� pages �
�!

��
����

�

� M� Falaschi� G� Levi� M� Martelli� and C� Palamidessi� A Model�Theoretic Reconstruction of the
Operational Semantics of Logic Programs� Information and Computation�
�
�
����!

��
����

�

� M� Gabbrielli� G�M� Dore� and G� Levi� Observable Semantics for Constraint Logic Programs�
Journal of Logic and Computation�
����

�
�� M� Gabbrielli and G� Levi� Modeling Answer Constraints in Constraint Logic Programs� In K� Fu�
rukawa� editor� Proc� Eighth Int�l Conf� on Logic Programming� pages
��!
�
� The MIT Press�
Cambridge� Mass��
��
�

�
�� H� Gaifman and E� Shapiro� Fully abstract compositional semantics for logic programs� In Proc�
Sixteenth Annual ACM Symp� on Principles of Programming Languages� pages
��!
�
� ACM�
����

�
�� P�A� Gardner and J�C� Shepherdson� Unfold�fold transformations of logic programs� In J�L Lassez
and G� Plotkin� editors� Computational Logic	 Essays in Honor of Alan Robinson� MIT Press�
��
�

�
�� C�J� Hogger� Derivation of logic programs� Journal of the ACM�
��
����
!��
� April
��
�

�
�� J� Ja�ar and J��L� Lassez� Constraint Logic Programming� In Proc� Fourteenth Annual ACM Symp�
on Principles of Programming Languages� pages

!

�� ACM�
����

�
�� J� Ja�ar and J��L� Lassez� Constraint Logic Programming� Technical report� Department of Com�
puter Science� Monash University� June
����

�
�� Joxan Ja�ar and Michael J� Maher� Constraint logic programming� A survey� Journal of Logic
Programming�
��
�����!��
�
����

�
�� Joxan Ja�ar� Spiro Michaylov� Peter J� Stuckey� and Roland H� C� Yap� An abstract machine
for CLP�R�� In Proceedings ACM SIGPLAN Symposium on Programming Language Design and
Implementation �PLDI�
 San Francisco� pages

�!
��� June
��
�

�

� Joxan Ja�ar� Spiro Michayov� Peter J� Stuckey� and Roland H� C� Yap� The CLP�R� language and
system� TOPLAS	 ACM Transactions on Programming Languages and Systems�
��������!���� July

��
�

�

� Niels J#rgensen� Kim Marriott� and Spiro Michaylov� Some global compile�time optimizations for
CLP�R�� In Vijay Saraswat and Kazunori Ueda� editors� ILPS���	 Proceedings of the International
Logic Programming Symposium� pages �
�!���� San Diego� October
��
� MIT Press�

�
�� T� Kawamura and T� Kanamori� Preservation of Stronger Equivalence in Unfold�Fold Logic Pro�
gramming Transformation� In Proc� Int�l Conf� on Fifth Generation Computer Systems� pages �
�!
�

� Institute for New Generation Computer Technology� Tokyo�
����

�

�
�� H�J� Komorowski� Partial evaluation as a means for inferencing data structures in an applicative lan�
guage� A theory and implementation in the case of Prolog� In Ninth ACM Symposium on Principles
of Programming Languages
 Albuquerque
 New Mexico� pages
��!
���
��
�

�
�� A� Lakhotia and L� Sterling� Composing recursive logic programs with clausal join� New Generation
Computing� ��
����

!

��
����

�
�� J��L� Lassez� M� J� Maher� and K� Marriott� Uni�cation Revisited� In J� Minker� editor� Foundations
of Deductive Databases and Logic Programming� pages ���!�
�� Morgan Kaufmann� Los Altos� Ca��

����

�
�� J� W� Lloyd� Foundations of Logic Programming� Springer�Verlag� Berlin�
���� Second edition�

�
�� M�J� Maher� A transformation system for deductive databases with perfect model semantics� Theo�
retical Computer Science�

�����!����
����

�
�� Kim Marriott and Peter J� Stuckey� The � r�s of optimizing constraint logic programs� Re�nement�
removal and reordering� In POPL���	 Proceedings ACM SIGPLAN Symposium on Principles of
Programming Languages� Charleston� January
����

���� R� A� O�Keefe� Towards an Algebra for Constructing Logic Programs� In Proc� IEEE Symp� on
Logic Programming� pages
�
!
���
����

��
� A� Pettorossi and M� Proietti� Transformation of logic programs� Foundations and thechniques�
Journal of Logic Programming�
��
��
�
!�
��
����

��
� T� Sato� Equivalence�preserving �rst�order unfold�fold transformation system� Theoretical Computer
Science�
���
����!���
��
�

���� H� Seki� Unfold�fold transformation of strati�ed programs� Theoretical Computer Science� ���
��
��!

���
��
�

���� H� Seki� Unfold�fold transformation of general logic programs for the Well�Founded semantics�
Journal of Logic Programming�
��
"
���!
��
����

���� H� Tamaki and T� Sato� A transformation system for logic programs which preserves equivalence�
Technical Report ICOT TR��
�� ICOT� Tokyo� Japan� August
����

���� H� Tamaki and T� Sato� Unfold�Fold Transformations of Logic Programs� In Sten�$Ake T%arnlund�
editor� Proc� Second Int�l Conf� on Logic Programming� pages

�!
���
����

�

A Appendix

In this Appendix we �rst give the proof of Theorem ��� which shows that any modular transformation
sequence preserves the resultants semantics� The proof� quite long an tedious� is split in two parts �partial
an total correctness� and is inspired by the one given in �
���

Throughout the Appendix we will adopt the following�

Notation We refer to a �xed module
M� � hP�� Op�M��i

and to a �xed transformation sequence
M� � � �Mn�

Moreover� for notational convenience� we set
� � Op�M��� �

A�� Partial correctness

Intuitively� a transformation is called partially correct if it does not introduce new semantic information�
In our case� partial correctness corresponds to the inclusion O�M�� � O�Mn� of Theorem ���� Before
proving such an inclusion we need to establish some further notation�

De�nition A�� We say that two trees T and T � are similar if they are partial trees of the same atom�
and they have the same resultant� modulo
� �

This is �obviously� an equivalence relation� so we can also say that two trees belong to the same
equivalence class i� they are trees of the same atom� and their resultants are equal� modulo
�

The next two Lemmata outline some simple properties of proof trees which will be useful in the sequel�
The �rst one states that� given a tree T � we can replace a subtree S with a similar subtree S�� without
altering the main properties of T �

Lemma A�� Let T be an ��tree� S be a subtree of T � and S� be a partial proof tree similar to S and
such that the clauses of S� do not share variables with T � Then the tree T � obtained from T by replacing
S for S� is a ��tree and is similar to T �

Proof� Straightforward� �

Lemma A�� Let T be a partial proof tree of A� let also T � be the tree obtained from T by replacing A
with A� in the lhs of the label equation of the root node� If A� and A have the same relation symbol� and
A� is variable�disjoint from T � then T � is a partial proof tree of A��

Proof� Obvious� �

In other words� a partial proof tree for A is basically also a partial proof tree for any A� that has the
same relation symbol of A� Of course this Lemma gives no guarantee that after the substitution of A
with A�� the global constraint of the tree will still be satis�able�

We need a couple of �nal� preliminary results�

Remark A�
 Let P be a program and A� d � �D be an resultant� Equivalent are

� There exists a derivation true � A
P
� d� � �D� such that A� d � �D
 A� d� � �D��

� There exists a partial proof tree of A in P whose whose resultant is A� d�� � �D�� and such that
A� d � �D
 A� d�� � �D���

Proof� Straightforward�
�

�

Lemma A�� ��

�� Let P be a program� if� for distinct i� j � �
� k�� there exists a derivation

true � Ai
P
� ci � �Fi

and V ar�ci � �Fi� � V ar�cj � �Fj� 	 V ar�Ai� � V ar�Aj� then there also exist a derivation

true � A�� � � � � Ak
P
� c� � � � � � ck � �F�� � � � � �Fk�

�

We can now state the partial partial correctness result the transformation system�

Proposition A�� �Partial correctness� If O�M�� � O�Mi� then O�Mi� � O�Mi���

Proof� To simplify the notation� here and in the sequel we refer to P�� � � � � Pn rather that toM�� � � � �Mn�
In case Pi�� was obtained from Pi by unfolding or by a clause removal operation then the result is

straightforward� therefore we need only to consider the remaining operations�
We now show that if there exists an ��tree TA of atom A with resultant R in Pi��� then there exists

also ��tree of A with resultant R in Pi �modulo
�� By Proposition ��
�� this will imply the thesis� The
proof is by induction on the size of a proof tree� which corresponds to the number of nodes it contains�
Let cl� be the label clause of the root node of TA� and let us distinguish various cases�

Case �� cl� � Pi�
This is the case in which clause cl� was not a�ected by the passage from Pi to Pi��� The result follows
then from the inductive hypothesis� For each subtree S of TA �in Pi��� there exists a similar subtree S�

in Pi� so the tree obtained by replacing each S with S� in TA is an ��tree in Pi similar to TA�

Case �� cl� is the result of splitting�
Let cl be the corresponding clause in Pi� that is� the clause that was split� There is no loss in generality
in assuming that the atom that was split was the leftmost one� Therefore the situation is the following�

� cl � A� � cA � A�� � � � � An

� cl� � A� � cA � �A� � B� � cB � A�� � � � � An

Where B� cB � �D is one of the splitting clauses� and has no variable in common with cl� Since by
condition O� no open atom can be split� we have that A� may not belong to the residual of TA� therefore
there exist a subtree TA�

of TA which is attached to A�� Let C � cC � �E be the label clause of the root
node of TA�

� With this notation the global constraint of TA has the form

�A � A�� � cA � �A� � B� � cB � �A� � C� � cC � � � � ���

Now C � cC � �E is also one of the clauses used to split A�� by the applicability conditions of the
splitting operation either C and B are heads �of renamings� of the same clause� or C � B � cC � cB is
unsatis�able� Since ��� is satis�able� we have that C and B must be renamings of the heads of the same
clause� Since by standardization apart� the variables in cB and in B may not occur anywhere else in TA�
as far as global constraint of TA is concerned� the expression �A� � B� � cB is already implied by the
expression �A� � C� � cC � therefore we can eliminate �A� � B� � cB from the global constraint of TA�
and obtain a tree which is similar to it� in other words� by replacing the clause clause cl� with cl in the
label of the root of TA� we obtain a tree T �

A which is similar to TA�
By inductive hypothesis� for each subtree TAi of TA �and T �

A� there exists a tree T �
Ai

in Pi�� which
is similar to TA�

� We can assume without loss of generality that the clauses in each T �
Ai

do not share
variables with those in T �

A�
Finally� let T �

A be the tree obtained from T �
A by substituting each subtree TAi with T �

Ai
� by Lemma

A�
 we have that T �
A is similar to T �

A� and therefore to TA� Since T
�
A is an ��tree of A in Pi� the result

follows�

Case �� cl� is the result of a constraint replacement� From now on� let us call internal constraint of a
tree T � the conjunction of all the constraints in the label clauses of T � together with the label equations
of the subtrees of T � So the internal constraint is obtained from the global constraint by removing from

�

it the label equation of the root node of T �
Now� let

� cl� � A� c� � A�� � � � � An� and
� cl � A� c � A�� � � � � An� Where cl is the clause to which the replacement was applied� Let also

TA�
� � � � � TAn� be the subtrees of TA �which we suppose attached to A�� � � � � An��� cA�

� � � � � cAn� be their

internal constraints and �FA�
� � � � � �FAn� be their residuals� With this notation� the resultant of TA is

A� �A � A�� � c� � cA�
� � � � � cAn� �

�FA�
� � � � � �FAn� � An���� � � � � An

By Lemma A��� the existence of TA�
� � � � � TAn� implies that for i � �
� n�� there exists a derivation

true � Ai

Pi��
� cAi � �FAi �modulo
�� Since by inductive hypothesis each subtree of TA has a simi�

lar subtree in Pi� Remark A�� also implies that� for i � �
� n�� there exists a derivation which is equal
�modulo
� to

true � Ai
Pi
� cAi � �FAi �

By combining these derivations together �Remark A��� we have that there exists a derivation

true � A�� � � � � An
Pi
� �cA�

� � � � � cAn� �
�FA�

� � � � � �FAn� � An���� � � � � An� ���

Now� since cl � Pi it follows that there exists a derivation

true � A
Pi
� �A � A�� � c � cA�

� � � � � cAn� �
�FA�

� � � � � �FAn� � An���� � � � � An�

From Remark A�� it follows that there exists an ��tree SA of A in Pi whose resultant is

A� �A � A�� � c � cA�
� � � � � cAn� �

�FA�
� � � � � �FAn� � An���� � � � � An�

From ��� and the applicability conditions for the replacement operations it follows that the resultant of
SA is
�similar to the one of TA� Hence the thesis�

Case
� cl� is the result of folding�
Let

� cl � A� � cA � B�

� � � � � B
�

m� A�� � � � � An be the folded clause �in Pi�
� d � B� � cB � B�� � � � � Bm be the folding clause �in Pnew��

so we have that
� cl� � A� � cA � e � B�� A�� � � � � An is the label clause of the root node of TA�

Let also
� B�� A�� � � � � An� be the atoms of cl

� that have an immediate subtree �in Pi��� attached to in TA� this
choice causes no loss of generality� in fact� by O
� B� cannot be an ��atom� and hence it cannot be part
of the residual of the root node of TA�

� An���� � � � � An is then the residual of the root node�
So let

� TB�
� TA�

� � � � � TAn� be the immediate ��subtrees of TA�
By the inductive hypothesis� there exist ��trees

� T �

B�
� T �

A�
� � � � � T �

An�
in Pi which are similar to TB�

� TA�
� � � � � TAn� �

Since O�P�� � O�Pi�� from Proposition ��
� it follows that there exists an ��tree SB�
of B� in P� which is

similar to T �

B�
�in Pi�� Because of the condition F�� the label clause of the root of SB�

is an appropriate
renaming of d� Let

� d� � B�

� � c�B � B�

� � � � � � B
�

m be the label clause of the root node of SB�
� and

� B� � B�

� is then the label equation of the root of SB�
�

Moreover� let
� SB�

�
� � � � � SB�

m�

be its immediate subtrees �in P��� which we suppose to be attached to B�

� � � � � � B
�

m�

� B�

m���� � � � � B
�

m is then the residual of its root node�
Let T �

A be the ��tree in Pi�� � Pi � P� obtained from TA by replacing its subtrees TB�
� TA�

� � � � � TAn� with
SB�

� T �

A�
� � � � � T �

An�
and let R� be its resultant� Since we can assume without loss of generality that the

�

clauses in the subtrees SB�
� T �

A�
� � � � � T �

An�
do not share variables with each other and with the clauses in

TA� by Lemma A�
 we have that
R
 R� ���

Now let us write out explicitly the resultant of R�� so let
� crest be the constraint given by the conjunction of all the global expressions of T

�

A�
� � � � � T �

An�
� together

with the internal constraint of SB�

�
� � � � � SB�

m�

�

� �F be the �multiset� union of the residuals of T �

A�
� � � � � T �

An�
� SB�

�
� � � � � SB�

m�

�
� B�

� � C�� � � � � B
�

m� � Cm� be the label equations of the root nodes of SB�

�
� � � � � SB�

m�

�

We have that R� � A� ctot � �F �B�

m���� � � � � B
�

m� An���� � � � � An� where ctot is

�A � A�� � cA � e � �B� � B�

�� � c�B � ��m
�

j
�B
�

j � Cj� � crest

By F�� this reduces to

�A � A�� � cA � �B�

� � B�� � ��mj
�B
�

j � Bj� � ��m
�

j
�B
�

j � Cj� � crest ���

Now we show that we can drop the constraint B�

� � B�� First notice that since B
�

� is a renaming of
B�� then B�

� � B� can be reduced to a conjunction of equations of the form x � y� where x and y are
distinct variables� In the case that for some x� y� B�

� � B� implies x � y� then we have that either x � y
is already implied by the constraint ��mj
�B

�

j � Bj� or the variables x and y do not occur anywhere else

in ���� nor in R�� So ��� becomes

�A � A�� � cA � ��mj
�B
�

j � Bj� � ��m
�

j
�B
�

j � Cj� � crest �
��

On the other hand� by replacing B�

j with B�

j in the lhs of the label equations of the root nodes
of the trees SB�

�
� � � � � SB�

m�

� we obtain the trees SB�

�

� � � � � SB�

m�

� which� by Lemma A��� are ��trees of

B�

� � � � � � B
�

m� � Now let T �
A be the ��tree of A in Pi � P� which is constructed as follows�

� cl is the label clause of its root
� its immediate subtrees are SB�

�

� � � � � SB�

m�

�in P�� and T �

A�
� � � � � T �

An�
�in Pi��

Then the residual of T �
A is precisely A� c�tot � �F �B�

m���� � � � � B
�

m� An���� � � � � An� where c
�
tot is

cA � ��mj
�B
�

j � Bj� � ��m
�

j
�B
�

j � Cj� � crest

By this� �
�� and ���� we have that T �
A is similar to TA

Finally� since O�P�� � O�Pi�� each of the trees SB�

j
�in P�� has a similar tree in Pi� by replacing each

SB�

j

with it in T �
A� obtaining T

	
A by Lemma A�
 and the usual assumption on the variables of the clauses

in the SB�

j

�s� T 	
A is similar to T �

A� and hence to TA� Since T
	
A is a tree in Pi� this proves the thesis� �

A���� Total correctness

We say that a transformation sequence is complete� if no information is lost during it� that is O�M�� 	
O�Mi�� When a transformation sequence is partially correct and complete we say that it is totally correct�
Before entering in the details of the proof of total correctness� we need the following simple observation�

Remark A�
 If cl is a clause of Pi that does not satisfy condition F� then the predicate in the head of
cl is a new predicate� while the predicates in the atoms in the body are old predicates� �

The proof of the completeness is basically done by induction on the weight of a tree� which is de�ned
by the following�

De�nition A�� �weight�

� The weight of an ��tree T � w�T �� is de�ned as follows�

� w�T � � size�T ��
 if the predicate of A is a new predicate�

�

� w�T � � size�T � if the predicate of A is an old predicate�

� The weight of a pair �atom
 resultant�� �A�R�� w�A�R�� is the minimum of the weights of the ��trees
of A in P�� that have R as resultant� �modulo
�� �

In the proof we also make use of trees which have for label clause of their root a clause of Pi but that
for the rest are trees of P�� In particular we need the following�

De�nition A�� We call a tree T of atom A� descent tree in Pi � P� if

� the clause label of its root node cl� is in Pi�

� Its immediate subtrees T�� � � � � Tk are trees in P��

� if T�� � � � � Tk are trees of A�� � � � � Ak and R�� � � � � Rk are their resultants� then

�a� w�A�R� � w�A�� R�� & � � �& w�Ak � Rk��

�b� w�A�R� 	 w�A�� R�� & � � �& w�Ak � Rk� if cl satis�es F�� �

The above de�nition is a generalization of the de�nition of descent clause of �
���

De�nition A��� We call Pi weight complete i� for each atom A and resultant R� if there is an ��tree of
A in P� with resultant R� then there is a descent tree of A with resultant
�equivalent to R in Pi � P��
�

So Pi is weight complete if we can actually reconstruct the resultants semantics of P� by using only
descent trees in Pi � P��

We can now state the �rst part of the completeness result�

Proposition A��� If Pi is weight complete� then O�M�� 	 O�Mi��

Proof� We now proceed by induction on atom�resultant pairs ordered by the following well�founded
ordering �� �A�R� � �A�� R�� i�

� w�A�R� 	 w�A�� R��� or

� w�A�R� � w�A�� R��� and the predicate of A is a new predicate� while the one of A� is an old one�

Let A� R� be an atom and a resultant such that there exist an ��tree of A in P� with resultant R� Since
Pi is weight complete� there exist descent tree TA of A in Pi � P� with resultant R� Let also

� cl � A� � cA � A�� � � � An �in Pi� be the label clause of its root�
� A�� � � � � An� be those atoms of cl that have an immediate subtree attached to
� TA�

� � � � � TAn� be the immediate subtrees of TA �in P�� and RA�
� � � � � RAn�

be their resultants�
Then� since TA is a descent tree�

w�A�R� � w�A�� RA�
� & � � �& w�An� � RAn�

��
Now if w�A�R� 	 w�A�� RA�

� & � � � & w�An� � RAn�
�� then �A�R� � �Aj � RAj �� Otherwise� if w�A�R� �

w�A�� RA�
�& � � �&w�An� � RAn�

�� by condition �b� on the descent tree� we have that cl doesn�t satisfy F��
by Remark A��� this implies that the predicate of A is a new predicate� while the predicates in A�� � � � � An�

are old predicates� By the de�nition of �� this implies that �A�R� � �Aj � RAj ��
Hence� by the inductive hypothesis� there exist ��trees T ��

A�
� � � � � T ��

An�
of A�� � � � � An� in Pi whose

resultants are RA�
� � � � � RAn�

�modulo
�� As usual we assume that the clauses in the T ��

Ai
�s do not share

variables with each other and with those in TA� By Lemma A�
 the tree T
��

A� obtained from TA by replacing
each subtree TAj with T ��

Aj
� is an ��tree of A in Pi with resultant R� This proves the Proposition� �

We we are now ready to prove our total correctness Theorem�

Theorem ��� �Total Correctness� LetM� � hP�� Op�M��i be a module andM�� � � � �Mn be a modular
transformation sequence� Then

��

� O�M�� � O�Mn��

Proof� We will now prove� by induction on i� that for i � ��� n��

� O�M�� � O�Mi��

� Pi is weight complete�

Base case� We just need to prove that P� is weight complete�
Let A be an atom� and R be a resultant such that there is an ��tree of A in P� with resultant R� Let T
be a minimal ��tree of A in P� having R as resultant� T obviously satis�es the condition �a� of De�nition
A��� Let cl be the label clause of the root of T � notice that cl satis�es F� i� its head is an old atom� just
like the elements of its body� From the De�nition of weight A�� and the minimality of T � it follows that
condition �b� in De�nition A�� is satis�ed as well�

Induction step� We now assume that O�P�� � O�Pi�� and that Pi is weight complete�
From Propositions A�� and A�

 it follows that if Pi�� is weight complete then O�P�� � O�Pi���� So

we just need to prove that Pi�� is weight complete�
Let A be an atom� and R be a resultant such that there is an ��tree of A in P� with resultant R� since
Pi is weight complete� there exists a descent tree TA of A in Pi � P� with resultant R�

Let cl � A� � cA � A�� � � � An be the label clause of its root� Let us assume that A�� � � � � An� are
the atoms of cl that have an immediate ��subtree attached to in TA� let TA�

� � � � � TAn� be the immediate
subtrees of TA and let RA�

� � � � � RAn�
be their resultants� By Lemma A�
 there is no loss in generality

in assuming that TA�
� � � � � TAn� are the minimal ��trees of A�� � � � � An� in P� that have RA�

� � � � � RAn�
as

resultants�
We now show that there exists a descent tree of A with resultant R �modulo
� in Pi�� � P�� We

have to distinguish various cases� according to what happens to the clause cl when we move from Pi to
Pi���

Case �� cl � Pi���
That is� cl is not a�ected by the transformation step� Then TA is a descent tree of A with resultant R in
Pi�� � P��

Case �� cl is unfolded�
There is no loss in generality in assuming that A� is the unfolded atom� In fact� by O�� the unfolded
atom cannot be an ��atom� so it cannot belong to the residual of TA�

Now� since Pi is weight complete� there exist a descent tree TB�
of A� in Pi � P�� with clause d �

B� � cB � B�� � � � � Bm �in Pi� as label clause of the root� that has the same resultant �modulo
� of TA�
�

Let T �

A be the partial tree obtained from TA by replacing TA�
with TB�

� T �

A is an ��tree of A in
Pi � P�� let R

�

A be its resultant� by Lemma A�
 and the usual assumption on the variables in the clauses
of the subtrees� we have that

R
 R�

A �

�

Let TB�
� � � � � TBm�

be the immediate subtrees of TB�
� which we suppose attached to B�� � � � � Bm� � let

also RB�
� � � RBm�

be their resultants� By Lemma A�
 there is no loss in generality in assuming that
TB�

� � � � � TBm�
are the smallest trees of P� in their equivalence class�

Let crest be the conjunction of the global constraints of TB�
� � � � � TBm�

� TA�
� � � � � TAn� � and

�F be the
multiset union of their residuals� we have that

R�

A
 A� �A � A�� � cA � �A� � B�� � cB � crest � �F �Bm���� � � � � Bm� An���� � � � � An �

�

Since A� is the unfolded atom� d is one of the unfolding clauses� it follows that one of the clauses of Pi��
resulting from the unfold operation is the following clause�

cl� � A� � cA � �A� � B�� � cB � B�� � � � � Bm� A�� � � � � An

Now consider the ��tree T ��

A of A which is built as follows�
� cl� is the label clause of the root�

�

� TB�
� � � � � TBm�

� TA�
� � � � � TAn� are its immediate subtrees�

Its resultant is then

R�� � A� �A � A�� � cA � �A� � B�� � cB � crest � �F �Bm���� � � � � Bm� An���� � � � � An

By �

� and �

� we have that the resultant of T ��

A is R �modulo
��
Now� in order to prove that T ��

A is a descent tree� we have to prove that conditions �a� and �b� in De�nition
A�� are satis�ed�
Now

w�A�RA� � w�A�� RA�
� & � � �& w�An� � RAn�

� �since TA is a descent tree��
� w�B�� RB�

� & � � �& w�Bm� � RBm�
� & w�A�� RA�

� & � � �& w�An� � RAn�
� �since TA�

is a descent tree�
Moreover� if d satis�es F� then� by condition �b� in De�nition A���

w�A�� RA�
� 	 w�B�� RB�

� & � � �& w�Bm� � RBm�
�

On the other hand if d does not satisfy F�� then by Remark A�� the predicate of B� and A� must be a
new predicate� again� by Remark A�� we have that cl must satisfy F�� It follows that

w�A�RA� 	 w�A�� RA�
� & � � �& w�An� � RAn�

�
So� in any case� we have that

w�A�RA� 	 w�TB�
� & � � �& w�TBm�

� & w�TA�
� & � � �& w�TAn� �

This proves that T ��

A is a descent tree�

Case �� cl is removed from Pi via a clause removal operation�
This simply cannot happen� the constraint of cl is a component of the global constraint of TA and since
the latter is satis�able� so is the �rst one� Therefore cl cannot be removed from Pi�

Case
� cl is split�
Since no ��atom can be split� the split atom may not belong to the residual of TA� therefore there is no
loss in generality in assuming that A� is the split atom and that n� �
�

Since O�P�� � O�Pi�� we have that for i � �
� n�� there exist an ��tree SAi of Ai in Pi� which is
similar to TAi � Let SA be the ��tree obtained from TA by substituting its subtrees TA�

� � � � � TAn� with
SA�

� � � � � SAn� � From Lemma A�
 and the usual standardization apart of the clauses in the subtrees� it
follows that SA is an ��tree of A in Pi and that SA is similar to TA�

Now let hA� � B� � d � B� � cB � B�� � � � � Bmi be the label of the root of SA�
� With this notation�

the resultant of TA �and SA� has the form

A� �A � A�� � cA � �A� � B�� � cB � crest � Residual �
��

Since d is a clause of Pi it was certainly used to split A� in Pi� Therefore in Pi�� we �nd the clause
� cl� � A� � cA � �A� � B�

�� � c�B � A�� � � � � An

Where d� � B�

� � c�B � B�

� � � � � � B
�

m is a renaming of d� Here there in no loss in generality in assuming
that the variables of d� do not occur anywhere else in the trees considered so far� Now� let T �

A be the
��tree of A in Pi�� � P� obtained by substituting cl with cl� as label clause of the root of TA� From �
��
it follows that the resultant of T �

A is �
 equivalent to�

A� �A � A�� � cA � �A� � B�� � cB � �A� � B�

� � � c�B � crest � Residual

Since d� is a renaming of d� and since its variables do not occur anywhere else in T �

A� in the above
formula the subexpression �A� � B�

�� � c�B is already implied by the fact that the expression contains
�A� � B�� � cB � and therefore it may be removed from the constraint� So� from �
�� it follows that T �

A

is similar to TA� Now� in order to prove the thesis we only need to prove that T �

A is a descent tree� that
is� that it satis�es conditions �a� and �b� of De�nition A��� but this follows immediately from the fact
that the subtrees of TA and T �

A are the same ones �and TA is a descent tree� and the fact that cl� satis�es
F� i� cl does�

Case �� The constraint of cl is replaced�
The �rst part of this proof is similar to the one of the previous case� Since O�P�� � O�Pi�� we have
that for i � �
� n�� there exist an ��tree SAi of Ai in Pi� which is similar to TAi � Let SA be the ��
tree obtained from TA by substituting its subtrees TA�

� � � � � TAn� with SA�
� � � � � SAn� � From Lemma A�

�

and the usual standardization apart of the subtrees it follows that SA is an ��tree of A in Pi and that
SA is similar to TA�

Let cA�
� � � � � cAn� be the internal constraints of SA�

� � � � � SAn� and
�FA�

� � � � � �FAn� be their residuals�
With this notation� the resultant of TA �and SA� is

A� �A � A�� � cA � cA�
� � � � � cAn� �

�FA�
� � � � � �FAn� � An���� � � � � An

Recall that by the assumption that the trees are standardized apart� for distinct i� j � �
� n�� we have that
V ar�cAi � �FAi� � V ar�cAj � �FAj � 	 V ar�Ai� � V ar�Aj�� Then� from the existence of SA�

� � � � � SAn� and
from Remarks A�� and A�� it follows that there exist a derivation

A�� � � � � An
Pi
� cA�

� � � � � cAn� �
�FA�

� � � � � �FAn� � An���� � � � � An�

Now� let the result of the constraint replacement operation be the clause
� cl� � A� � c�A � A�� � � � � An�

From the applicability conditions of the constraint replacement operation it follows that the resultant

A� � �A � A�� � cA � cA�
� � � � � cAn� �

�FA�
� � � � � �FAn� � An���� � � � � An�
 �
��

A� � �A � A�� � c�A � cA�
� � � � � cAn� �

�FA�
� � � � � �FAn� � An���� � � � � An�

Now� let T �

A be the tree obtained from TA by replacing the clause label if its root� cl� with cl�� Its resultant
is

A� �A � A�� � c�A � cA�
� � � � � cAn� �

�FA�
� � � � � �FAn� � An���� � � � � An

And from �
�� it follows that T �

A is similar to TA�
Now� in order to prove the thesis we only need to prove that T �

A is a descent tree� that is� that it
satis�es conditions �a� and �b� of De�nition A��� but this follows immediately from the fact that the
subtrees of TA and T �

A are the same ones �and TA is a descent tree� and the fact that cl� satis�es F� i�
cl does�

Case �� cl is folded�
Let fA� � C�� � � � � An� � Cn�g be the label equations of the root nodes of TA�

� � � � � TAn� � let also crest be
the conjunction of the remaining internal equations �label equations & clause constraints� of TA�

� � � � � TAn� �

�nally� let �F be the residual of TA�
� � � � � TAn� � We have that

R
 A� �A � A�� � cA � ��n
�

j
�Aj � Cj� � crest � �F �An���� � � � � An� �
��

Now let the folding clause �in Pnew� be
d � B�� B�� � � � � Bm

There is no loss in generality in assuming that there exists an index k such that Ak � � � � � Ak�m are the
unfolded atoms� so for j � �
�m�� Ak�j and Bj are uni�able atoms� The result of the folding operation
is then

cl� � A� � cA � e � A�� � � � Ak� B�� Ak�m��� � � � An�

Now notice that of the atoms of cl that are going to be folded� Ak��� � � � � An� are the ones that have
an immediate subtree attached to in TA� These atoms correspond to B�� � � � � Bn��k in d� �we should
also consider explicitly the cases all have or have not a subtree attached to� that is� the cases in which
n� � k or n� � m & k� however these are easy corollaries of the general case� so we now assume that
k � n� � m& k��
Now let TB�

be the ��tree of B� in P� built as follows�
� d� � B�

� � c�B � B�

�� � � � � B
�

m �an appropriate renaming of d� is the label clause of its root node�
� B� � B�

� is then the label equations of its root node�
� TB�

�
� � � � � TB�

n��k
are its immediate subtrees� which are obtained� as explained in Lemma A��� from

the trees TAk�� � � � � � TAn� by replacing Ak�j with B�

j in the lhs of the label equations of their root nodes�
� B�

n��k��� � � � � B
�

m is consequently the residual of its root node�
Finally� let T ��

A be the ��tree of A in Pi�� � P� which is built as follows�
� cl� is the label clause if its root �and this is a clause in Pi����

��

� TA�
� � � � � TAk�� � TB�

are its immediate subtrees �in P���
Let R�� be its resultant� we have that

R�� � A� ctot � �F �B�

n��k��� � � � � B
�

m� Ak�m��� � � � � An �
��

where �F is the �multiset� union of the residuals of TA�
� � � � � TAk�� � TB�

and ctot is

�A � A�� � cA � e � �B� � B�

�� � c�B � ��kj
�Aj � Cj� � ��n
�

j
k��B
�

j�k � Cj� � crest

By F� this becomes�

�A � A�� � cA � �B� � B�

�� � ��mj
�Bj � B�

j� � ��kj
�Aj � Cj� � ��n
�

j
k��B
�

j�k � Cj� � crest �
��

As we did in Proposition A��� we now show that we can drop the constraint B� � B�

�� First notice that
since B�

� is a renaming of B�� then B� � B�

� can be reduced to a conjunction of equations of the form
x � y� where x and y are distinct variables� So suppose that for some x� y� B� � B�

� implies that x � y�
then either x � y is already implied by the constraint ��mj
�Bj � B�

j�� or the variables x and y do not
occur anywhere else in �
��� nor in R���

Thus ctot can be rewritten as follows�

�A � A�� � cA � ��mj
�Bj � B�

j� � ��kj
�Aj � Cj� � ��n
�

j
k��B
�

j�k � Cj� � crest

By making explicit the constraint ��mj
�Bj � B�

j� and comparing the result with �
�� we see that T ��

A

is an ��tree of A in Pi�� � P� with resultant R �modulo
�� We now need only to prove that T ��

A is a
descent tree� that is� that it satis�es the conditions �a�� �b� of the De�nition A���

Let RB�
be the resultant of TB�

� Since d is the folding clause� the predicate of B� must be a new
predicate� while the predicates of B� � � � Bm have to be old predicates� Moreover� by condition F�� any
proof tree of B� in P� whose global constraint is consistent with ca � e must have �a renaming of� d as
label clause of the root� By De�nition A�� we then have that

w�B�� RB�
� � w�TB�

� & � � �& w�TBn��k � �
��

Moreover� for j � �
� n� � k�� w�TAk�j � � w�TBj �� and� since TA is a descent tree and the clause of its
root node satis�es F�� by De�nition A�� we have that

w�A�R� 	 w�A�� RA�
� & � � �& w�An� � TRn� �

� w�A�� RA�
� & � � �& w�Ak � RAk � & w�Ak��� RAk��� & � � �& w�An� � RAn�

�
� w�A�� RA�

� & � � �& w�Ak � RAk � & w�TAk��� & � � �& w�TAn� � �by the minimality of the TAj �
� w�A�� RA�

� & � � �& w�Ak � RAk � & w�TB�
� & � � �& w�TBn��k � �by the de�nition of TBj �

� w�A�� RA�
� & � � �& w�Ak � RAk � & w�B�� RB�

� �by �
����
Thus T ��

A satis�es conditions �a� and �b� of De�nition A��� �

��

