
MC SYLLABUS 35 

COLLOQUIUM 
COMPUTER GRAPHICS 

P.J.W. TEN HAGEN (RED.) 

MATHEMATISCH CENTRUM AMSTER 



AMS (MOS) subject classification scheme (l 970): 68. QO 

ACM-.. Computing Reviews-categories: 8. 2 

ISBN 90 6196 142 4 



INHOUD 

Inhoud. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i 

Voorwoord . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 

I. AN INTRODUCTION ·ro COMPUTER GRAPHICS by p. KLINT 

0. Introduction ....... . 

1. 

1.1. 

1.1.1. 

L 1.2. 

1.1.3. 

1.1.4. 

1.2. 

1.2.1. 

1.2 .2. 

1.2 .3. 

2. 

3. 

3 .1. 

3.2. 

3.3. 

3.3. 

3.3.2. 

Devices for computer graphics 

Output devices. 

Plotters .. 

Cathode ray tube (CRT) displays 

Numerically controlled milling machines 

Plasma panel. 

Input devices 

Tablet. . 

Light pen 

Buttons . 

Graphics System organization. 

A model for graphics i/o functions. 

Moti vat.ion. 

Model description 

Choice of primitives. 

Output. 

Input 

3.3.2.1. Input primitives. 

3.3.2.2. Implementation of more complex input operations 

3.3.2.3. Incorporation of input primitives in the DDT. 

3. 3. 3. 

4. 

IL GPGS 

Picture manipulation. 

Bibliography. . . . . 

GENERAL PUHPOSE GRAPHIC SYSTEM by L. C. CARUTHERS 

LO. 

2.0. 

2 .1. 

2. 2. 

Introduction. . . . . 

Design Considerations 

What kind of subroutine package?. 

Device independence . . 

2 

2 

2 

3 

3 

4 

4 

4 

4 

4 

10 

10 

14 

15 

16 

16 

17 

18 

19 

20 

22 

22 

23 

23 

24 



2.3. 

3.0. 

3 .1. 

3.2. 

3.3. 

3.4. 

3.5. 

3.6. 

3.7. 

4.0. 

4.1. 

4.2. 

4.3. 

III. PHII,DIG 

Real devices as seen by GPGS. 

Graphic i/o . . 

Picture making. 

Picture segments and picture elements 

Setting viewing conditions ....• 

Picture element processing pipeline 

Picture segment manipulations 

Input from console tools. 

Additional facilities 

Conclusions . 

Acceptability of design 

Access to devices . . . 

Suitability for applications. 

References. 

Appendix A: Sample program. 

Appendix B: Console tool information returned 

Appendix C: Table of device driver facilities 

26 

26 

26 

27 

28 

29 

29 

30 

31 

31 

32 

32 

33 

33 

35 

37 

38 

PHILIPS DEVICE INDEPENDENT GRAPHICS door C. NIESSEN & J.W. ERO. 39 

0. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Inleiding 

De noodzaak van PHILDIG . 

Globale opzet van PHILDIG 

Administratieve routines. 

Omlijsting routines 

Generatie routines. 

Structuur routines. 

Transformatie routines. 

Modificatie routines. 

Invoer routines . . 

Fouten afhandeling. 

Implementaties. . . 

39 

39 

40 

44 

44 

44 

47 

50 

50 

52 

54 

54 

IV. THE INTERMEDIATE LANGUAGE FOR PICI'URES by P.J.W. TEN HAGEN . . . 57 

1. 

2. 

Introduction .... 

The basic structure of the ILP. 

57 

59 



3. 

4. 

4.1. 

4.2. 

4.3. 

4.4. 

5. 

5 .1. 

5.2. 

5.3. 

5.4. 

5.5. 

6. 

The interpretation of attributes and pictures 

Picture elements. 

Coordinate type 

Text. 

Curve 

Library 

Basic attributes. 

Control .... 

Transformations 

Penfunctions. 

Style .. 

Detection 

conclusion. 

References. 

SATELLITE GRAPHICS by J. VAN DEN BOS 

o. 
L 

2. 

3. 

4. 

5. 

6 

Abstract. 

Introduction. 

Programming the satellite-lost system 

CAGES 

I COPS 

A multi microcomputers system for graphics. 

Conclusion. 

References. 

62 

66 

66 

68 

70 

70 

71 

71 

72 

73 

73 

75 

77 

78 

79 

79 

80 

81 

83 

86 

88 

91 

91 

VI. COMPUTER AIDED DESIGN OF MECHANICAL COMPONENTS door H. RANKERS 95 

0. 

1. 

2. 

3. 

4. 

5. 

6. 
..., 
'· 
8. 

9. 

10. 

Inleiding ... 

De Fourrier-representatie van een periodieke functie. 

Het karakter.i.seren van mechanismen. 

De type-synthese ... 

De dirnensie-synthese. 

Het overschot aan informat.i.e. 

Voorbeeld voor de synthese. 

Uitbreid.i.ng van het systeem 

Waarom benutten wij de beeldbuis? 

Geen besl.i.ssingsalgorit.hme. 

Demonstratie ....... . 

95 

97 

97 

98 

98 

98 

100 

100 

105 

105 

105 



11. 

12. 

Interactieve werkwijze. 

Literatuurlijst •••• 

VII. INTERAKTIEF ONTWERPEN VAN MULTIVARIABELE REGELSYSTEMEN door 

105 

106 

A.J.J. VAN DER WEIDEN. P. VALK & O.H. BOSGRA 107 

1. 

2. 

2.1. 

2.2. 

3. 

4. 

5. 

Inleiding .. 

Inverse Nyquist array ontwerpmethode. 

Grafische Interpretatie 

Ontwerpmethodiek. 

Programmatuur . . 

Ontwerpvoorbeeld. 

Konklusies. 

107 

111 

114 

116 

117 

119 

123 

Referenties 124 

VIII.LOGICAL DESIGN AND DATA ANALYSIS WITH GPGS by L.C. CARUTHERS 125 

0. 

1. 

2. 

3. 

4. 

5. 

Introduction. 

STARFIR •. 

PRISMA-PLOT 

DIGDRA, Semi-automatic digital circuit construction 

CONCLUSIONS . . . 

ACKNOWLEDGEMENTS. 

IX. THE "TROTS SOFTWARE PACKAGE FOR THREE-DIMENSIONAL RECONSTRUCTION" 

125 

127 

129 

131 

136 

137 

by A.H. VEEN . . . . . 138 

1. 

2. 

2 .1. 

2.2. 

2.3. 

2.4. 

2.5. 

3. 

4. 

4.1. 

4.2. 

4.3. 

Introduction. 

The process of reconstruction 

Preparing the visual data . . 

From visual to computer data. 

Transfer to the time sharing computer 

Visual editing. . ...•... 

Three-dimensional reconstruction. 

The hardware .•. 

The TROTS software. 

TRACER: Gathering the data. 

PAPER: Transfer to the PDP-10 

EDIT: Visual data manipulation. 

138 

139 

140 

140 

141 

144 

147 

150 

150 

151 

153 

153 



x. 

4.4. STRIP: Converting to strip format .....•... 

4.5. FIG 3D: Three-dimensional transformation and hidden 

line suppression. 

UTILI'rIES: MERGE I FIX IT and FILL. 

Experimental programs: CROSS and DRESS. 

The supporting graphics package . . 

Towards a real-time software hidden line remover. 

Evaluation. 

References. 

SHAPE PROCESSING FOR MECHANICAL COMPONENTS by I.C. BRAID 

1. 

2. 

3. 

4. 

6. 

7. 

8. 

A mechanical component observed . 

Modelling the component's surface shape 

Building u.p a shape model 

A new shape design system 

General intersections . 

Geomet.r ic extensibility 

Communicating with the system 

Conclusion. 

References. 

v 

155 

158 

160 

160 

162 

162 

166 

167 

168 

168 

170 

171 

172 

176 

178 

179 

179 

179 

XI. ALGOL 68 G GRAPHIC EXTENSION OF ALGOL 68 by P.J.W. TEN HAGEN 180 

2. 

3. 

4. 

4.L 

4.2. 

4.3. 

4.4. 

4.5. 

Introduction ... 

Layered structure 

The host language 

'l'he basic layer 

Geometry. 

1'ransformations and subspace. 

Attributes. 

Pictures. 

Example . 

180 

181 

182 

183 

184 

187 

188 

189 

190 



VOORWOOPJJ 

Het colloquium Computer Graphics werd gehouden in het academische 

jaar 1976/1977 op het Mathematisch Centrum. 

Het werd gezamenlijk georganiseerd door de computer g-raphics groep 

van de Universiteit van Nijmegen, de computer graphics groep van het reken­

centrum van de Technische Hogeschool te Delft en de Afdeling Informatica 

van het Mathematisch Centrum. 

De serie voordrachten geeft onder meer een onverzicht van recente 

activiteiten op dit gebied in Nederland. Alle bijdragen hebben betrekking 

op eigen werk van de auteurs. 

P.J.W. ten Hagen. 



AN INTRODUCTION TO COMPUTER GRAPHICS 

P. KLINT 

flJ. Introduction 

Several diciplines can be distinguished in the special­
ism called "picture processing" or "more dimensional data 
processing", like pattern recognition, computer aided 
design, computational geome~ry, semantic picture analysis 
and graphic languages. In this lecture we will not even be 
able to mention all these areas. Instead we restrict our­
selves to one particular area: computer graphics (CG) and 
computer graphics system (CGS) organization. It is felt 
that this example is representative and can give some in­
sight in the problems encountered in general. 

In chapter l a short survey is given of graphics dev­
ices. Dissimilarities between various devices are stressed. 
chapter 2 deals with graphics system organization and 
discusses some design goals and trade-offs. Chapter 3 
presents a model for graphics i/o functions. 'I'his model is 
still under development and will be used in the Mathematical 
centre computer graphids system. 

l· Devices for computer graphics 

This chapter is not intended as a primer on graphics 
devices. Reviews o-f~the detailed working of such devices 
can be found in the literature (NEWMANN & SPROULL [l], EN­
CARNACAO [2]). The intention of this chapter is rather to 
stress the dissimilarities between various devices, since it 
are these a1ss1m1lar1ties that plague (and have plagued) 
many CG systems. 

1 



2 

l·l· Output devices 

1.1.l. Plotters 
~~~~-

The digital plotter is the classical CG output device, 
several types have evolved (drum and flat bed plotters) but 
their main characteristics are: 

incremental operation (i.e. operations are 
relative to the current pen position) 

a fixed number of drawing directions (typical 
8 to 16) 

pen up, pen down and select pen (colour) 
operations 

it is not possible to erase lines, that are 
already drawn. 

A recent development is the Ink Jet Plotter (SMEDS[3]). Its 
inciple of operation is based Oi1"tFie-aef lection of charged 

particles. Three ink jets of electrically charged ink 
droplets in one of the primary colours are fired on a piece 
of paper. The intensity of each stream is modulated by 
means of an electric field, which transforms the ink stream 
into a spray. This spray hits a diaphragm and thus the 
amount of ink that reaches the paper depends on the electric 
field which is applied. In this way full colour pictures of 
reasonable ity can be produced. 

1.1.2. Cathode ray !ub~ (CR~) display~ 

These displays use the same technology as television 
tubes: an electrostatically or electromagnetically con­
trolled electron beam writes on a phosphorescent screen. 
The places on the screen that are bombarded by the electron 
beam, glow for a short while (ea. 1/5 sec.) and produce a 
visible image. To obtain a stable image, the screen must be 
refreshed, that is the electron beam must write the same 
pattern on the screen repeatedly. Mainly two techniques are 
used to refresh the screen: 

the data from which the screen is refreshed 
are kept in an external memory and a special 
display processor sends these data to the CRT 
cont1nuoUSTY""('rerresh displays). 

the CRT itself contains a fine wire grid that 
"remembers" the image written on the screen. 

Typical operations that both types of displays can perform 
are 



draw a vector (relative or absolute, visible 
or invisible). 

set intensity level. 

display text. 

since most refresh displays contain a separate display pro­
cessor, their instruction repertoire can be very sophisti­
cated: 

draw lines which blink with a chosen frequen­
cy. 

draw dot-dash lines according to a chosen 
pattern. 

jump, subroutine jump, subroutine return 
(useful operations for the implementation of 
segmented display files, see chapter 2.). 

translate, rotate, scale. 

since the image is refreshed at a high rate (ea. 30 times 
per second), it is easy to delete parts of the image and to 
produce moving pictures. 

The less powerful (and thus cheaper) storage display 
has as main disadvantage that a long time is required to 
erase the whole screen and produce a new image. In chapter 
2. we will see which problems this presents in an interac­
tive environment. 

These machines are used for cutting solid objects, made 
of metal or other material. The objects educed by a mil­
ling machine can be considered as an ult goal in graph­
ic output, since the object itself is produced and not some 
picture of it. very special problems are encountered when 

amming these machines. For example, the connectedness 
the ects produced must be taken into account. 

The plasma panel {BITZER & SLOTTOW [4 ) consists of a 
rectangular array of luminous gas discharge cells. By means 
of an addressing mechanism that resembles the one used in 
normal core memories, each individual cell can be made to 
glow or be extincted. This device achieves an almost per-
fec try between input and output operations since the 
gas ls can also be excited by the applicat of an 
external voltage to individual cells. 

3 



4 

L2.L Tablet 

A tablet consists of a flat surface on which can be 
drawn by means of a pen or stylus. The tablet transmits the 
coordinates of the stylus position (or the change in stylus 
position) to its controlling computer. Any point on the ta­
blet can be selected in this manner. 

The light pen is a pointing device and is always used 
in conjunction with a----rerresh display. Its operation is 
roughly as follows. Though its name might suggest the oppo­
site, a light pen accepts light by means of a photo cell. 
If the light pen is used to point at an item on the screen, 
this photo cell "sees" light when that item is redrawn dur­
ing the refresh cycle. At that moment the display processor 
is halted and an interrupt is requested in the controlling 
computer. The item being pointed at can now easily be iden­
tified by means of the contents of the display processors 
address register. Only intensified points can be selected 
by the li t pen. 

L 2. 3. Button"' 

Buttons or function keys are switches that are 
input an integer value in a fixed interval (say 
In most applications a special meaning is attached 
button, such as the selection of a specific program 

2. Graphics System organization 

used to 
0, 15]). 
to each 
action. 

Basic concepts and terminology will be introduced in 
this chapter. An outline is given of the organization 
underlying most CG systems. Some des goals and trade­
offs are discussed (see for instance NEWMANN & SPROULL[5]). 

Figure 2.1. gives an oversimplified view of the 
processes and data that are essential for the operation of 
an interactive graphics application program. 



5 

input input input non CG output 
.......p ~ routines~ 

devi ces handler routines and data routines 
.......p 

concate-
---7 

nation 

i 
,, "' " '* ~ .... ~ ~ 'l< .... '* 

: : 
transform display : : 

---7 and ~ ~ displa y : 

clip generation 

Figure 2.1. A simplified view of a CG system. 

Input devices like keyboard, tablet 
vide the- data and control information 
program. An input handler services each 
performs device-8Pecific operations. 

and light pen pro­
for the application 

input device and 

The input routines receive their information from the 
input handler, possTI)Iy update some internal administration, 
and pass the input data to the application program in a 
uniform 

The output routines define the picture to be displayed. 
In some CG systems only sequentially ordered sets of simple 
pictorial elements like lines, points and characters can be 
displayed with various intensities, shapes (italicity) and 
styles (dot-dash lines) • In other systems these primitive 
elements can also be collected in subpictures, which can be 
referenced from other subpictures. In this way complex 
hierarchycal pictures can be build. 

In all but the most simple systems pictures can be 
transformed, i.e. scaled, rotated, translated and so forth. 
In most sy~tems transformations are represented matrices. 
The details of the representation vary from system to system 



6 

and will not be discussed. In general the output routines 
create pictures of arbitrary size in user coordinates. It 
is also a task of the transformation routines convert 
these user coordinates to screen coordinates. 

Sometimes a window can be defined in the user coordi­
nate system that effectively removes all picture elements 
(or parts thereof) that lie outside this window. This pro­
cess of removing undesired picture parts is called clipping. 
A viewport may be defined which specifies where the contents 
of the window should be positioned on the screen. 

The task of the concatenation routines is to combine 
transformations whenever possible. It is of vital impor­
tance to replace many successive transformations (as occur 
with nested subpictures) by one overall transformation, be­
fore each picture element is transformed, 

DisSlay generation involves the creation and transmis­
sion ofev1ce spec1f1c order code, that visualizes (in some 
sense) the objects defined by the graphical output routines. 
The following discussion is centered around the question how 
the characteristics of display devices influence this 
display generation process. 

As long as the gr ical output routines are used just 
once, the mechanism of display generation given above 
remains sufficient. But as soon as moditications are being 
made to pictures that are already generated, the "need arises 
for a less naive mechanism. we will now consider two such 
mechanisms. It will turn out that both provide only partial 
solutions and that under certain circumstances both mechan­
isms are required. 

The first of these mechanisms, the viewing algorithm, 
is both very attractive and difficult to implement. The way 
in which the graphical output routines are called depends 
entirely on the data base associated with the application 
program and the ication program itself. In a sense, the 
resulting ture can be considered as a view of the con­
tents of the application programs data base. To obtain the 
effect of giving a continous view of the contents of this 
data base, the output routines must be arranged to be exe­
cuted repeatedly at a sufficiently high frequency. This ar­
rangement is called a viewing algorithm. 

As s as this method seems, in practice enormous 
difficulties are encountered with the generation of output 
at such a rate that a flicker free image of good quality is 
guaranteed. One solution to this problem is to restrict the 
class of transformations or pictures to which the viewing 
algorithm is applied. An other solution, to build a 

tructured Picture Description as result of the gr ical 
routines -beforetheactual display generation, will 



now be considered in more detail. 

The Structured Picture Description (SPD) concept is 
based on the observation that in most cases modifications 
only affect minor parts of a picture, while the major part 
of it remains unchanged. Modifications can be described as 
edit operations on the SPD. To generate a picture a trace 
routine must traverse the SPD (figure 2.2.). 

output 

routines -I concate-
--?> 

nation 

build -=l~ t --?> 
__ ,, ~ 

SPD SPD 

transform 
--?> and 

cl 

F ure 2.2. CG system with structured picture descr ion. 

The use of an SPD increases the overall complexity of 
the system since processes to build and trace the SPD are 
now required. 

The second mechanism for the generation of the graphi­
cal output is the plotter analo2Y· In this model all output 
operations control a fictitious pen or beam. As is the case 
with real plotters, a picture store (the paper in the 

) is inherent to this model. For refresh displays a 
or data area with order code for that display consti­

tutes the picture store. In other words, complete pictures 
can be erased but it is impossible to selectively erase 
parts of a picture. 

To allow for selective erasing, the picture store can 
by a transformed ~ file, that contains the 

r of the transformation process----rfigure 2,3.), The 
transformed display file may be subdivided in logical dis­
tinct, named segments or records, that may be created, modi­
fied or deleted separately:-~--

7 



8 

cone ate-
-7 

nation 

t 
transform 

and 
clip 

display 
___,. f i 1 e ---3' 

compiler 

-

trans­
formed 
display ---3' traverse 
file 

display 

generation 

F ure 2.3. CG system with transformed display file. 

As ~an be seen in figure 2. 3. a displJ;X_ file ££!11Piler 
is required to generate the transforiiled'(':l1splay file, ancr-a 
traverse process is required to generate actual order code 
from the transformed display file. 

Both models presented, the structured picture descr 
tion and the transformed display file have their disadvan­
tages.· For displays without hardwired transformation capa­
bility the SPD cannot be used directly, but a transformed 
display file must be constructed first. This introduces the 
problem when and how often this transformed display file 
must be regenerated from a modified SPD. A comparable re­
generation problem exists with transformed display files and 
storage displays, since the display is not refreshed from 
the transformed display file. Transformed display files 
have as an other disadvantage that they form a low level 
representation of the original picture. They are completely 
determined by the characteristics of the output device. 

What we have identified here, is the very 
choice of intermediate representation problem, 
in all software systems of any cornpleXTty. This 
izes when 

fundamental 
that occurs 
problem ar-

(1) The output (or input) data are not completely 
determined. For example, the precise format 
of the object code generated by a portable 
compiler, is not known to the designer of 
that compiler. The variety of potential i/o 
devices presents an analogous uncertainty in 
the CG case. Therefore an intermediate 
representation is required from which the 
output data can be generated (or to which the 
input data can be converted). 



(2) The problem to be solved is too complex and 
must be divided in subproblems (the scans of 
a compiler). Solutions to subproblems must 
be able to communicate with each other in the 
form of an intermediate representation. 

sometimes the intermediate representations required by (1) 
and (2) above are coincident. 

It is useful to compare the design of a device indepen­
dent CG system with the design of device independent 
software in general. One technique will be considered in 
aetail, namely the "levels of language" or "hierarchy of 
abstract machines" approach. 

Given a program P written in language L; how can P be 
made portable? We can either choose for L an ubiquitous 
programming language (FOR'.I'RAN IV) or design a new language 
L, especially suited to write P in. This last alternative 
has the disadvantage that L must be implemented for each 
transfer of P to an other computer. To facilitate the im­
plementation of L, it has been proposed to provide a hierar­
chy {L[n], •• ., L[0]} of new languages such that r" "' L[n], 
and L[i] can be translated to L[i-1] (n > i > 0). A new im­
plementor of P can now choose which L[iJ is most suited for 
him. 

The first alternative can not be used in the context of 
a CG system, since there does not exist a 
generally accepted by all graphics devices. 
in the CG case P is the result of the 
routines! 

language that is 
Remember that 

graphical output 

If we restrict our attention to the second alternative 
we discover that we have already encountered two elements 
from such a hierarchy in the CG case: the high level struc­
tured picture description and the low level transformed 
display file. 

In the remainder of this chapter we will outline why it 
is not desirable, in the specific case of a CG system, to 
have several intermediate representations. 

In a portable software system one path from 
machine independent to machine dependent representations has 
to be selected at a time. This implies that, once L ( i] is 
chosen, the other elements of the hierarchy can be short 
cut. Moreover, such a selection occurs only when the port­
able software is moved to another computer installation. 

In a CG system more than one path can be selected at a 
time, since a user program canaccess several graphics dev­
ices simultaneously. Because it is not known in advance 
which devices will be used, no element of the intermediate 

9 



10 

representation hierarchy that is specific to some device can 
be discarded. 

In contrast with most portable software systems, there 
exists in a CG system a way back from graphics device to in­
termediate representatTo~ This way back may consist of in­
put actions or higher level picture editing operations, If 
more than one intermediate representation exists two situa­
tions are possible: either this backward transformation be­
comes very inefficient because input information must be 
converted to several intermediate representations in succes­
sion, or the overall complexity of the CGS increases because 
all possible backward transformations are incorporated in 
the system. In the latter case, the undesirable situation 
arizes that different versions of a picture represented by 
different elements of the representation hierarchy exist, 

The fact that no •cookbook• solution can be given for 
the des of a CGS, explains why this is still a subject of 
current research. 

3. A model to~ graphics l/~ functions 

3.L Motivation 

The preceeding chapters show clearly the differences 
between various graphics devices and the influence these 
differences have on graphics system design. Given this 
large range of hardware features, one is faced with three 
problems: 

to provide the user of the CG system with a 
{small) conceptually consistent set of primi­
tives 

to allow the exploitation of exotic hardware 
features 

to minimize the effort required to incor­
porate a new device in the system 

The first and third requirement can be met by providing 
as primitives the "least common denominator" of al.l graphics 
devices known. But as a consequence many hardware features 
can not be supported by the system. On the other hand one 
might try to include primitives for all kinds of hardware 
features. The result will be a huge, unstructured set of 
device dependent primitives. 



It is worthwhile to consider a model for graphics i/o 
functions that combines the advantages of the solutions just 
proposed, but has less drawbacks. This model is mainly con­
cerned with the organization of the interface between graph­
ics system (or more precisely an SPD) and graphics devices. 
Most details of this interface itself can not be discussed 
here. Examples of other efforts to obtain machine indepen­
dent graphics systems are described in BLINN & GOODRICH[6] 
or SWITZKY [ 7] • 

1.·~· Model ~ 

To explain the model, we must first define a kernel of 
picture primitives. We require that the device adver for 
each drawing device is able to perform some meaningful ac­
tion for each primitive in the kernel. If we consider out­
put .primitives, this kernel might consist of: 

MOVE'l'O (absolute, invisible beam displace-
ment) 

MOVEBY (relative, invisible beam displace-
ment) 

DRAWTO (absolute, visible beam displacement) 

DRAW BY (relative, visible beam displacement) 

POINTTO (absolute, invisible beam displace­
ment with endpoints intensified) 

POINTBY (relative, invisible beam displace­
ment with endpoints intensified) 

TEXT (display characters) 

We will see that this set of primitives has a useful in­
terpretation e~en for gray-scale devices. The list of pos­
sible non kernel primitives is probably not finite, but some 
li candidates are: 

draw polygon 

draw curve 

draw surface 

draw object with hidden lines removed 

draw object projected along a certain axis 

All these primitives are higher level, device independent 
drawing operations. Note that the list is ordered (as far 
as possible) according to increasing complexity of the prim-

11 



12 

itives, In the sequel primitives 
their position in this list. In 
primitives (3.3.2.) and picture 
(3.3.3.) will be described. 

will be identified by 
following sections input 
manipulation primitives 

By means of a device description table (DDT) the rela­
tions between primitives ana hardware reatureS-Of a specific 
device can be established. A DDT consists of: 

a list (KERNEL) of addresses of routines that 
implement the primitives in the kernel for 
this device 

a list (ACTIONS) 
that implement 
for this device 

of addresses of routines 
kernel and other primitives 

an integer (NENTRIES) defining the number of 
entries in the ACTIONS list 

The kernel primitives appear twice in the DDT, since ACTIONS 
contains also the addresses of kernel primitive routines. 

In principle the ACTIONS list corresponds with the list 
of primitives in the system, but the ACTIONS list may be 
shorter as we will see. If primitive number P is available 
as hardware feature, ACTIONS[P] contains the address of a 
routine in the device driver, that generates code to perform 
the action corresponding with primitive P. If P is not 
available as hardware primitive and P is a legal index in 
the ACTIONS list there are two possibilities: 

1. ACTIONS[PJ contains the address of a standard 
system routine that implements primitive p in 
software by means of more elementary primi­
tives (primitives with a lower index). 

2. ACTIONS[P] contains the address of a device 
specific routine. This routine can use 
hardware features of the same or higher level 
than that of primitive P. 

Otherwise standard system routine number P is used to imple­
ment primitive P. Thus the selection mechanism is as fol­
lows 

if P < NENTRIES then 
execute ACTIONS[PJ 

else 
execute standard routine[P] 

fi 

The inclusion of NENTRIES in the DDT is more important 



than it may seem at first sight. We indicated already that 
the list of primitives is not finite, or will at least grow 
during the life of a graphics system. If a new primitive is 
added to the list only the DDTs of devices that give 
hardware support for the new primitive need to be modified. 
All other DDTs remain unchanged thanks to the selection 
mechanism described above. In a sense NENTRIES can be con­
sidered as a complexity measure for the device under con­
sideration. For primitives of complexity less than NENTRIES 
the device can sometimes give hardware support. For primi­
tives of complexity greater than NENTRIES the device can 
never give hardware support. 

Operations that control the state of a drawing machine 
can also be considered as candidate primitives. We will in­
vestigate how the method works for a specific example: the 
generation of dot-dash lines. Two primitives are involved: 
DRAWTO and SET LINESTYLE. For the moment we forget about 
DRAWBY. 

task 
trol 
line 

If a device supports dot-dash lines in hardware, the 
of SET LINESTYLE is straightforward, namely send con­

inforrnat!on to the drawing device to initiate dot-dash 
generation. 

If a device does not support dot-dash lines in 
hardware, the situation is more complicated. The desired 
effect can be achieved if SET LINESTYLE changes the entry 
ACTIONS[DRAWTO] to let it contain the address of a standard 
system routine STYLED DRAWTO. STYLED DRAWTO generates lines 
in the style defin~d by SET LINEST?LE and uses the primi­
tives in the KERNEL of the DDT-for this purpose. It will by 
now be clear why kernel primitives appear twice in the DDT. 
This approach has the disadvantage that DDTs can not be 
shared among several user programs. Figures 3.1. and 3.2. 
depict the whole scheme. 

DDT 

KERNEL ... 
DRAWTO: 

... 
ACTIONS ... 

DRAWTO: ... 

' 

~ 

DRAWTO routine 
in driver 

F ure 3.1. DDT before SET LINESTYLE call. 

13 



14 

DDT 

KERNEL ... 
~DRAWTO: ... 

ACTIONS ... 
DRAWTO: ... 

STYLED 
-·----1 DRAWTO < 

' DRAWTO routine 
in driver 

Figure 3.2. DDT after SET_LINESTYLE call. 

Two final remarks conclude this discussion. In the 
first place it must be noted that the interaction between 
several primitives may be very subtile. For this reason it 
might be advantageous to divide the ACTIONS list in classes 
of mutually not dependent primitives. In the second place 
one must bear in mind that the model presented here does 
meet many, but not all off the requirements stated in the 
beginning of this chapter. Since a certain primitive and 
hardware primitive may resemble very much, it may not be 
possible (or only at extra cost) to implement tne primitive 
using that hardware feature because of minor differences in 
their description method. The different manners to define a 
circle form an example •. 

l·l· Choice of primitives 

The DDT is used to interface structured picture 
description (SPD) and graphics i/o devices. In other words 
the DDT provides the semantic primitives required by the SPD 
traversal process. From this it follows that at least the 
SPD primitives must be part of DDT or standard system 
routines. Some more specific examples will clarify this 
point. 



]_.i·l· Output 

In the previous section the output primitives MOVETO, 
MOVEBY, DRAWTO and DRAWBY were introduced. It is obvious 
that these primitives have a useful interpretation for line 
drawing machines. We will now give an interpretation for 
gray-scale devices (NEWMANN & SPROULL [8]). 

The result of the drawing operations: 

MOVETO ( 0 , 0) ; 
DRAWT0(20,40) 1 
DRAWT0(40,0); 
DRAWTO ( 0 , 0) ; 

under the standard interpretation in conventional CG systems 
is as indicated. 

To allow the creation of opaque or filled objects, the 
beginning and end of the boundary of such a filled object 
must be marked. The primitives BEGINFILL and ENDFILL serve 
this purpose. ENDFILL and MOVETO always close any filled 
object in progress, so an additional DRAWTO is not neces­
sary. In this manner a filled triangle is defined by 

BEG INFILL 

ENDFILL 

MOVETO ( 0, 0) ; 
DRAWT0(20,40); 
DRAWT0(40,0); 

Additional MOVE'I'O - DRAWTO sequences inside a BEGINFILL 
ENDFILL pair can be used to specify additional boundaries, 
such as holes: 

BEG INFILL 

END FILL 

MOVE'l'O ( 0, 0) ; 
DRAWT0(20,41il); 
DRAWT0(40,0); 
MOVETO(l0,10); 
DRAWTO (20 ,30); 
DRAWTO ( 30, 10) ; 

15 



16 

l·l·3.· Input 

1·1·3.·l· Input primitives 

The choice of graphic input primitives is difficult. 
Graphic input functions offer a large, but unstructured col­
lection of programming techniques and hardware facilities. 
In addition most input functions require some kind of feed­
back (echo) and are thus dependent on the output primitives. 

In general each input primitive is able to cause an 
event of one or more types. All these events are collected 
rna-socalled event queue. At the application program level 
only one type--or-Input statement exists: GET EVEN'T. 
GET EVENT returns the next element from the event queue (if 
anyT. In this manner the application program does not have 
to speci from which device input is expected. 

An input primitive can only cause an event if it is 
enabled, i.e. the user program is prepared to consider 
events caused by this particular input primitive. Otherwise 
the primitive is said to be disabled and can not cause 
events. This construction prevents theContinuous attention 
required by input devices that cause events at a fixed rate. 

We discuss now first a set of primitives 
used to describe most existing input techniques 
ample FOLEY & WALL.ACE [ 9) or WALLACE [HJ] ) • 
specific examples are given. 

that can be 
(see for ex­

Next some 

Input primitives can be divided in selectors and 
valuators. Selectors are used to select an element from 
'SOiiiE!t:iSei: or program defined universe. The two selectors: 
pie~ and button have different universes. Valuators are 
u either to determine values in some vector space 
(potentiometer, locate) or to read alphanumeric data (text). 

The selector pick chooses between user defined objects, 
and can be used""'"fOselect particular lines, arcs,subpIC­
tures and the like. The result of the pick operation is a 
reference to the object being pointed at. All objects have 
as part of their definition a detectability attribute that 
determines whether the objec;r--can be selected by a pick 
operation. The classical pick device is the light pen. 

The selector butto!]_ chooses between pro:l_~ defined 
objects and can EeUsed to select a particular program ac-· 
tion. The result of a button selection is an integer. The 
interpretation ot this integer may vary from program to pro­
gram. 

Valuators are simpler, but not less useful input primi­
tives. The valuator text delivers as value a string of 
characters input from the graphics device by means of an al-



phanumeric keyboard, on-line character recognition or any 
other method whatsoever. A text event is generated as soon 
as a character from a user specified set is encountered. 
Thus an event may be generated for each input character 
(user specified set is equal to whole character set) or only 
when a specific character is encountered (example: user 
specified set contains only the newline character). 

The valuator locate delivers as value coordinates in 
screen space and can 5e used to select an arbitrary position 
on the screen; The result of a locate operation is a vector 
of screen coordinates. Prototype locate devices are tablet 
and joystick. Locate can cause two different types of 
events: 

the locate event proper, announces the selec­
tion of a position on the screen 

the locate boundary event: a position is 
selected that Iies closer to a boundary of 
the current viewport than some user specified 
distance. 

The latter event is necessary to implement rubber band and 
dragging techniques as we will see in section 3.3.2.2 •• 

The valuator potentiometer delivers as value a real 
number in the range [~,l]. The prototype device is obvious. 
AS is the case with locate, a potentiometer can cause two 
types of events: 

the potentiometer event proper 

the potentiometer boundary event a value is 
delivered that ITes i.n the Interval [ 0, alpha] 
or [betha,l], where alpha and betha are user 
defined values (0 < alpha ~ 1). 

l·.2.·3.·3.· Implementation of ~ ££!.ll~ inpu_!: ~ati?E.~. 

Given the set of input primitives just mentioned, it is 
straightforward to implement more complex input operations. 
AS an example we show how ~ging can be implemented by 
means of these input primitives. 

Dragging proceeds in two steps. First a picture or 
picture part on the screen is selected. Next the selected 
item is "attached" to a positioning device and the position 
of the selected item is changed whenever the screen position 
at which the positioning device points is changed. If the 
item has reached a desired position, it is "detached" from 
the the positioning device. The following sequence of input 
primitives implements dragging: 

l.7 



18 

1. start dragging (button) 

2. select item (pick) 

3. attach (button) 

4. move item (locate) 

5. detach (button) 

The item being moved remains unchanged as long as no part of 
it crosses a viewport boundary. To be able to detect the 
crossing of a viewport boundary, a locator causes a locate 
boundary event if it points to a position within a certain 
distance from the viewport boundary. For this distance one 
can choose the overall size of the item being dragged. 

l·l·±.·l· Incorporation of input primitives in the QQ'.!' 

It is the responsibility of each device driver to han­
dle the interrupts of each specific input device. However, 
the detailed information provided by these input devicess 
does not reach any other system module than the device 
driver itself. The device driver can pass input information 
to higher levels in the system by means of the system 
routine CAOSE EVENT, that adds a new entry to the event 
queue. This- new entry contains a description of the input 
event and can ultimately be inspected by the user program by 
means of GET EVENT. This information stream can be divided 
into smaller ~omponents as is shown in figure 3.3 •• The in­
terrupt routine, which is part of the device driver, 
delivers ~ descriptors in a machine dependent form to 
the 12arse input process. Parse input is the counterpart of 
the traverse8P15 process on the output side of the system. 
Parse input calls (via the DDT) machine dependent routines 
to interpret input descriptors for any of the five input 
primitives. In this way symmetry between input and output 
primitives is achieved, 



event 

queue 

parse 

input 
I -I 
------' 

I CAUSE 
<:-

1 EVENT 

I input 
<.:-­

!description 

<.:-1 
I 

DDT 

I interrupt 
<.:--

1 routine 

Figure 3.3. Incorporation of input primitives in DDT. 

19 

<-

input 
<:­

device 

The details of the operation of an input device, get 
lost on the path from input device to user program. Thus 
each device driver defines which input device can realize 
which input primitive and even to simulate non-existent in­
put devices. Ultimately all input primitives can be simu­
lated on a 64 character set keyboard, but it is not clear 
whether people can be hired to use this input facility. 

3.3.3. Picture manipulation 

For the purpose of this discussion we consider as SPD a 
tree-like datastructure as can be found in several special 
purpose gr cs systems for electrical network design and 
civil engineering applications. The nodes in this datas­
tructure contain: 

control information (transformations, lines­
tyles etc.) 

pointers to subtrees (subpictures) 

actual drawing information 

A node is a leaf (terminal node) if it does not contain 
pointers to subtrees. 

Only three edit operations are required to 
(re)construct a picture from a (modified) SPD: 

CREA'rE NODE 



20 

DELETE NODE 

MODI NODE 

Thus these operations should be added to the kernel. 

As we have seen before, the DDT entries corresponding 
to CREATE NODE, DELETE NODE and MODIFY NODE may either con­
tain the address of a machine dependent-routine or the ad­
dress of a standard system routine. In the former case ad­
vantage can be taken of hardware transformation and clip­
ping. In the latter case software transformation and clip­
ping are used and new nodes are generated using DDT entries 
such as MOVETO and DRAWTO. 

The precise contents of the DDT and of the DDT routines 
also dictate the moment when a picture must be regenerated 
for storage displays. Thus a different strategy can be used 
for different devices. A reasonable strategy is to regen­
erate the whole picture for each deletion but not for addi­
tions. Since this method involves the transmission of con­
siderable amounts of data, an other scheme may be preferred • 

.1 · Bibliograph)'._ 

l] NEWMANN, W.M. & SPROULL R.F., Principles of interac­
tive computer graphics, McGraw Hill, 1973 

[ 2] ENCARNACAO, J.L., Computer-Graphics: Programmierung und 
Anwendung von graphischen Systemen R. Oldenbourg Ver­
lag, Munchen, 1975 

3J SMEDS, B., A 3-colour ink jet plotter for computer 
graphics, BI'I ll (1973) pl81-195 

4] BITZER, D.L. & SLOTTOW, H.G., The plasma display panel 
A digitally addressable display with inherent memory 

in AFIPS FJCC ~ (1966) p541-547 

[ 5] NEWMANN, W.M. & SPROULL R.F., An approach to graphics 
system design, Proc. of the IEEE, 62 (1974) p471-483 

[ 6] BLINN J.F. & GOODRICH, A.C., The internal des of the 
IG routines, an interactive graphics system for a large 
timesharing environment, in Proc. of the third annual 
conference on computer graphics, interactive techniques 
and image processing - SIGGRAPH 76, Computer Graphics 
10 ( 1976) 2' p229-234 



[ 7] SWITZKY, C.M., Device independent graphics through 
table driven translation, University of California at 
Los Angeles, UCLA-ENG-7655, 1976 

[ 8] NEWMANN, W.M. & SPROULL 
graphics software, in 
puter graphics, pattern 
may 14-16 1975, pl8-20 

R.F., The design of gray-scale 
Proc. of the conference on com­
recognition & datastructure, 

[ 9] FOLEY, J~D. & WALLACE, V.L., The art of natural graphic 
man-machine conversation, Proc. of the IEEE, _§1 (1974) 
p462-471 

[10] WALLACE, V.L., The semantics of graphic input devices, 
in Proc. ACM symposium on graphic languages, 26-27 
april 1976, SIGPLAN notices 11 (1976) 6, p61-65 or Com­
puter Graphics HJ ( 1974) J., p61-65 

21 



22 

GPGS 

GENERAL PURPOSE GRAPHIC SYSTEM 

l.C. CARUTHERS 

lnformatika I Computer Graphics Group 

University of Nijmegen Faculty of Science 

1.0. INTRODUCTION 

GPGS is the definition of a universal graphics interface to be used 

as an extension of high-level languages. The subroutine call mechanism 

common to these high level-languages provides an easy means of extending 

them with facilities for interactive and passive graphics. Thus any 

(mini)computer with FORTRAN is a possible candidate for a GPGS implementa­

tion. By taking care of all the problems associated with operating systems, 

communications and the physical characteristics of devices, GPGS provides 

for the portability of graphics programs between devices and even between 

computer systems. 

In 1972 common graphics hardware for the Universities of Nijmegen, 

Delft en Cambridge was recommended, and subsequently acquired. The desire 

for common software for these configurations lead to the design of the 

GPGS subroutines. GPGS was designed to replace and improve upon such 

packages as IBM's GSP [1] for 2250's and Calcomp's well known plotting 

subroutines. Among the three universities experience with device indepen­

dent graphics had already been gained with the Cambridge GINO system. 

Rather than reimplement GINO for the new [2] hardware it was decided to 

design a new package with more facilities than GINO and to give the 

subroutines a better packaging with different names. 

Once the initial design of GPGS was completed in 1972, parallel 

implementations were begun on an IBM 370 with a PDP-11/45 as a satellite 

at Nijmegen and on a PDP-11/45 in stand-alone mode at Delft. These two 



assembly language implementations have been in more or less continuous 

development since then. In 1974-75 the graphics group at the computing 

center at the University of Trondheim in Norway made an ANSI FOR'rRAN 

implementation based on the Delft PDP implementation. 

23 

The agreement between Nijmegen and Delft has always been that an 

application program would run equally well on either implementation. This 

agreement, together with the parallel implementations on different comput­

ers, created a situation where each group checked the work of the other. 

As the implementations progressed both groups also checked the initial 

design, the changes to which were negotiated to suit both parties. 'I'hus 

the dual implementations have ensured a doubly proven design. 

2.0. DESIGN CONSIDERATIONS 

The design considerations will be discussed in two groups. First 

those matters pertaining to the creation of a. subroutine package and GPGS 

in general will be discussed. 'I'his will be followed by those issues more 

specifically concerned with device independence and an explanation how 

GPGS looks at real devices. 

The primary GPGS design decision was to create a subroutine package 

instead of a graphics language or graphics extension to an existing 

language. A subroutine package is easier to design and implement, simpler 

for programmers to learn, and easily extended by adding more subroutines. 

The ease of implementation also allowed for more efficient assembler 

language implementations on different computer systems. 

The limitation of a subroutine package, when compared with a lanquage, 

is that you only have one type of syntax for expressing the graphics 

functions, a subroutine name followed by its easily forgettable arguments. 

On the other hand this simpler syntax makes the package easier for pro­

grammers to understand, especially because the syntax is that of a language 

they already know. GPGS also provides a graphics interface for existing 

non-graphics programs or applications packages. 

A very large advantage of a subroutine package is that it automati­

cally splits the implementation of the package into small modules. Ee.eh 

module corresponds roughly to a sj_ngle facility of GPGS. Thus the space 



24 

(memory) overhead incurred by an applications program is proportional to 

the number of GPGS facilities used. 

The subroutines included in GPGS were chosen to be just far enough 

removed (indirect) from the hardware to provide device i.ndependence and at 

the same time allow the applications programmer to (indirectly) control 

the hardware of an advanced CRT di.splay. An additional guideline as to 

what features to include in GPGS was gi.ven by the desire to make the 

package general purpose. Thus those features required or extremely useful 

for a wi.de range of applications (2 and 3d windowing and clipping, trans­

formati.on) were included. 'I'hose with more li.mi.ted appli.cability like 

hidden line removal, data structure, and animation, were not included. 

When designing the subroutines themselves the key concept was 

simplicity, meaning that the subroutines should be easy to understand and 

to use. 'I'he name of a subroutine indicates what its function is an each 

subroutine has as few arguments as possible. GPGS supplies reasonable 

default values for any unspecified picture making conditions. 

In the days when only device dependent (manufacurer supplied) 

graphics packages were available, applications programs that provided a 

facility for plotting a pi.cture that had been created on-line, required 

the simultaneous use of two different packages. Each package has its own 

device independent overhead, a double cost of space for the applications 

program. 

To make GPGS device independent it was decided that each .implemen-· 

tation should be divided into a device independent part to be called by 

applications programs, and as many execution time loaded, device dependent 

device dri11ers as there are devices for that implementation to support. 

To the applications programmer this means that he can write his graphics 

program once and use it with different graphics equipment without chanqing 

the source code or relinking his program. It also meant that the device 

independent overhead part of the graphics package only had to be incurred 

once for all the graphics devices that the program may be using. Since a 

device driver only needs to be resident in core when it is in use, two or 

more drivers could alternatively use the sai'!le core space. For managing re­

sources GPGS allows the initialization of several devices (NI'I'DEV) or 

several buffers (NITBUF) before the correspondinq releasing· of any of the 



resources. To allow the applications programmer to designate which device 

or buffer is to be used there are routines for selecting (SELDEV, SELBUF) 

the device or buffer to be used. The selected device or buffer is then 

referred to as the "current" device or buffer. 

Since his program may run with a different device each time it is 

executed, the applications programmer should imagine that he is program­

ming for a single idealized device. This idealized device draws pictures 

25 

by moving a drawing mechanism from position to position. This characteriza­

tion of graphics output devices applies to plotters, microfilm output, 

storage tube displays and moveable beam CR'.l' refreshed displays. By desig­

ning GPGS to handle refreshed CRT's, a design was achieved which was 

* suitable for the simpler types of devices as well. 

The idealized device concept is also appropriate for describing the 

GPGS scheme for handling input from the user sitting at the display console 

The GPGS idealized device has the following single tools: 

refresh clock, alphanumeric keyboard, lightpen for picking, audible alarm; 

and at least one tool in each of the following classes of tools: dials 

(1 dimension), tracking cross and tablet (2 dimension), joystick (3 dimen-­

s.ion), function switches. Each single tool or class of tools has a format 

for returning integer and/or floating point data to the applications program. 

Those tools not available in hardware may be simulated in software by the 

device drivers. 

GPGS uses the concpet of an idealized device with real tools rather 

that a set of abstract tools [5,4] for all devices. The benefits of this 

approach are that when real hardware exists the applications program can 

use .it directly, whereas with the abstract tool approach there will always 

be a layer of software mapping real tools into abstract tools. 'l'his extra 

indirectness is a conceptual burden for both the applications program 

writer and the console user, both of whom must figure out what the use of 

an actual hardware tool is going to mean to the program. 

* By its design GPGS provides downward comptability from more complex 

to simpler graphics devices. Upward comptability between GPGS devices 

is achieved by software simulations in device drivers which give the 

device the appearance of having more facilities than actually appear 

in the hardware. 



26 

At this point it is appropriate to explain how graphic devices are 

viewed by the GPGS designers. Some graphic devices like plotters can never 

be interactive. Due to this physical limitation some GPGS devices are 

interactive and some are not. It would be nonsense to call a GPGS sub-· 

routine requesting interactive facilities from a non--interactive device. 

l'mother major distinction between devices in .GPGS is whether or not 

a device is buffered. This is purely a logical distinction because buffer­

ing is the software facility for storing all the picture elements that are 

used to make a picture. As described in the GPGS User's Tutorial, all the 

device dependent code for each physical device is in a device driver module. 

Graphics Devices and picture buffers are explicitly controlled 

resources provided by GPGS to the applications program. A picture buffer is 

always required for controlling the picture building process, even for 

devices that do not store their picture in a buffer. Before picture making 

can begin device and buffer resources must be allocated to GPGS. Buffering 

is a software facility which .is either provided or not provided by each 

device driver. 

In Appendix C there is a table of the GPGS facilities that are 

available from the different types of device drivers. The device drivers 

are classified as to whether or not they are buffered and whether or not 

they are interactive. The "pseudo driver" is an abbreviated way of des­

cribing the picture compiler for pseudo picture segments which is imple­

mented as a device driver module. 

'I'he GPGS facilities are based on the activity cycle of interactive 

programs. First a picture is presented on a display, then input is re.cei ved 

from the console user, which is used to make t11e next picture. In this 

section we will first describe how an applications program uses the facili-· 

ties to build a picture, and second how the applications program obtains 

.information from the console user. 

The interaction cycle begins with the applications program making 

th.e first picture. The applications program does this via subroutine calls. 



27 

GPGS software processing in the CPU prepares a display file, or picture 

program for the display processing unit (DPU) of the display device. Since 

the applications programmer is always thinking of the idealized GPGS 

device, he can always imagine that he is building a display file. 

A common representation of a picture is a tree structure. In such a 

tree structure each lower level of a tree is a component. breakdown of a 

higher level. The final bot.tom of the tree consists of the indivisible 

picture elements. 'I'o make a picture of an object represented by the tree­

like data structure, the applications program would scan the tree structure 

to find the picture elements at the bottom nodes. These picture elements 

wouid be passed to GPGS via subroutine calls where they would be converted 

into display file elements and placed in a linear display file, one after 

another. 

3.2. Picture Segments and Picture Elements 

The display file is built of ordered collections of picture elements 

called picture segments. Picture Segments are the GPGS unit of picture mani­

pulation. Picture Segments may only be created, ext.ended an deleted. The 

beginning of a picture segment is indicated to GPGS by an applications 

program call to the BGNPIC routine, which passes the unique picture segment 

identifying number to GPGS. 

Aft.er BGNPIC the applications program calls picture element creation 

subroutines to fill the picture segment. A call to ENDPIC terminates the 

definition of a picture segment and serves as a command to make the picture 

segment. visible. 

Picture segments are built by the subroutine calls that pass picture 

elements and picture elements attributes to GPGS. GPGS accepts line segments, 

character strings and circles as picture elements that can be specified by 

one call to GPGS. One attribute of a line segment is line type (sol.id, 

dashed, dotted, endpoint or invisible) of the line. This attribute must be 

specified with each call to create a line segment. One attribute of a 

character string is the size of the characters, which unlike the line type 

of lines, is a global condition which is specified to GPGS by a separate 

subroutine, CSIZES. All character strings then are made with the same 

size until another call to CSIZES is made to change the character size. 



28 

A third kind of picture element attribute is one that is global 

within a picture segment and gets reset to a default value by each call to 

BGNPIC. These attributes include: blinking, intensity, colour, depth modu­

lation and lightpen sensitivity, for CRT displays these last attributes 

correspond to processing conditions of the display processing unit (DPU). 

Thus the call to request blinking picture elements would precede the sub­

routine calls to create the picture elements which will blink when they 

appear on the CRT display. So you can see that calls to set picture element 

attributes will be intermixed with the calls to create picture elements 

during the building of a picture segment. 

To provide for the creation of a device independent representation 

of tree structure pictures, GPGS has pseudo picture segments. A pseudo 

picture segment is built like a normal picture segment by passing picture 

element attributes and picture elements to GPGS. The picture elements are 

processed thru the software pipeline and then stored in device independent 

format in the pseudo picture segment. Pseudo picture segments are allowed 

to contain one additional type of picture element, a "reference" to another 

(lower level) pseudo picture segment. Thus a tree structure of pseudo 

picture segments can be built to correspond to the tree structure data 

structure that reperesents an object. 

Once pseudo pictu:i:e segments have been created they can be used many 

times to build display picture segments. When the applications program 

calls the INSER'i' routine with the number of a pseudo picture segment, 

picture element attribute settings, names and picture elements are re­

tieved from the pseudo picture segment, passed back t.hru the CPU processing 

pipeline and given to the currently selected device driver. During the 

inserting process all the references to lower level pseudo picture segments 

are followed, so the result of an insert is always picture elements 

without the references. 

Picture elements are passed to GPGS as cartesian coordinates in a 2 

or 3 dimensional user coordinate space. Since the coordinate representation 

of an object only occupies a portion of the infinite coordinate space, 

GPGS must be told what part of the coordinate space is to be used for the 

picture. This is done by specifying a rectangle or box (window) to GPGS as 

high and low houndaries on each of the X, Y (and Z) coordina.te axes. 



29 

Once the applications program has indicated the portion of the user 

coordinate space that is to be displayed, it may also specify a viewpo2·t, 

which is the portion of the display surface that the contents of the window 

are going to appear on. To provide a frame of reference for specifying 

viewport limits to GPGS, Normalized Device Coordinates are defined to have 

the range 0.0 to 1.0 along the side of the largest square area (cubic 

volume) that will fit on the display. If the display area is not square 

then the viewport specifications allowed for that device will have legiti-· 

mate values outside the range of 0.0 to 1.0. 

But what does this have to do with picture segments? A picture seg­

ment can have only one viewport and preferably only one window. These 

viewing conditions must therefore be established for each picture segment 

before the creation of the picture segment is begun by a call to BGNPIC. 

3.4. Picture Element Processing Pipel~ 

Picture elements passed to GPGS go through the software (CPU) pro­

cessing pipeline where all the previously allocated resources are used and 

all the picture making conditions are applied to the picture element. In 

this way the picture element acquires all the attributes the applications 

programmer wants it to have when it appears on the display. 

For line segments the processing pipeline begins with the homogeneous 

coordinate transformations which, if they have been requested, are applied 

to the coordinates of the line. The transformed coordinates are then com­

pared with the boundaries of the window to see if any part of the line 

segment is to appear on the display. If clipping has been requested some 

or all of the line segment might not appear on the display. Next, for those 

line segments which have not been clipped, the transformed coordinates are 

converted into fractions of the window in a range of 0.0 to 1.0. These 

fractional coordinates are then passed to a device driver which uses them 

as the corresponding fractions of the viewport for deciding where to draw 

the line segment. 

3. 5. Picture Sepnent Manipulati.ons 

After a call to ENDPIC there are only a few manipulations still 

permitted for a picture segment. The picture segment can be "reopened" for 

extension by adding more picture elements, and the picture segment can be 

deleted. Further, the visibility can be switched off and on, as can the 



30 

lightpen sensibility of the whole picture segment. Finally, if the device 

has real, or device driver simulated, "hardware" transformations, the size, 

location and orientation of the viewport on the :'ii.splay surface may be 

changed. These viewport transformations provide dynamically changeable 

viewing transformations which are very nice for the v.isuaJ .. izing of three 

dimensional objects and elementary animation. 

The graphic output facilities of GPGS enable the applications program 

to make a picture on the display. But once the picture is made the appli­

cations needs information from the console user to find out how the picture 

should be changed. 

For easy identification by the applications program each tool is 

assigned a permanent integer identifier. To request information from the 

interactive console the applications program passes GPGS a list of the 

tools that it is willing to accept information from as a parameter of the 

INWAIT function subroutine. GPGS then looks at the interrupt queue, to see 

if the console user has used any of the tools, if he has, the information 

from that tool is returned to the applications program. If no tools have 

been used yet, then GPGS examines the time parameter which was also passed 

with the call to INWAIT. If the time is positive GPGS will return to the 

applications program either when the time expires or the console user uses 

a tooL If the time is zero, information is returned from a tool only if 

the console user had used the tool prior to the call to INWAIT, otherwise 

GPGS returns without providing any tool information. If the time parameter 

is negative, INWAIT returns to the applications program only after the 

console user uses one of the tools in the list. Though not all implementa­

tions currently support it, INWAIT is designed to wait for information 

from more than one device at the same time. 

The queing discipline used by GPGS is to allow each tool of each 

initialized device to make at most one entry at a time in the common (to 

all GPGS devices) interrupt queue. Thus the first interrupt from a tool 

stays in the queue until it is either passed to the applications program 

or rejected because it was not requested by the applications program. The 

interrupt queue can be cleared by calling INWAI'l' twice with the refresh 

clock as the only tool in the list of tool codes 



31 

When INWAIT returns to the applications program it gives back the 

information from only one tool. To allow the appli.cations program to 

inquire as to the status of other tools, GPGS has the REATOL subroutine 

which has the tool number as input and returns information in the same 

format as INWAIT. On many kinds of display hardware there are program 

controlable mechanism for assist with getting information from the console 

user. •ro allow the applications program to set various tools, GPGS has the 

WRITOL. Writol has the same parameter list as REATOL, but the information 

is going to the tool and not coming from it. 

3.7. Additional Facilities 

Pictu1:e segments may be stored off-line in picture segment libraries 

which u.re controlled by the applications programmer much in the same way 

as the device and buffer resources. Indeed libraries can be thought of as 

extensions of buffers. They are particularly useful for making large pic­

tures on small computers, saving display picture segments of stand menu's 

or as a file of standard drawing symbols (picture parts) stored as pseudo 

picture segments. 

To allow the applications program to find out the properties and 

status of its currently allocated resources, and to retrieve previously 

established attribute settings, GPGS has subroutines for returning execu­

tion environment information to the applications program. This information 

is sometimes very useful when used in conjunction with the GPGS error 

handling facility which will allow the applications program to specify one 

of its subroutines to receive control on the occurrence of an error 

condition. 

4.0. CONCLUSIONS 

In this final section we will evaluate the succes of the GPGS design 

and implernentations in meeting design objectives. The discussion will 

examine how well device independence was achieved, how easy GPGS has been 

to use, the consequences of not having a data structure, the acceptance of 

the overall design, and the suitability of GPGS for writing programs in 

specific applications areas. 



32 

4.1. Acceptability of Design 

The decision to make a subroutine package instead of a language 

has proven to be a good one. Th.is is largely seen .in the fact that there 

are multiple implementations and that the subroutines are easily under­

stood and used by applications programmers. Indeed the decision to make a 

new package and not to reimplement GINO is born out by the fact that the 

Trondheim group considered both the GINO and GPGS designs, and schoose 

GPGS even though it would mean making a separate .implementation. 

4.2. Access to Dev.ices 

Device Independence has been achieved. Programs that can make a plot 

on a plotter can make the same picture on a refresh CRT. But in order to 

allow this, the plotting program has been forced to abide by the same 

picture segment creation rules as a CRT program. In our experience in 

writing device drivers we have seen that a driver for a simple device 

like a plotter or printer is very easy to write, and that the driver for 

an .interactive device, though much more work is certainly simpler than 

creating a whole new package and conversion interfaces for other devices. 

Making a new driver .is usually a matter of modi.fy.ing the lowest level of 

some existing driver. The table on the next page shows the drivers .imple­

mented at the "home" .installations of three GPGS .implementations: 

Devices SuJ?Rorted 

Vector General 

'I'ektron.ix 4010---4015 
Buffered 
Unbuffered 

Plotter: Calcomp 
Tektronix 
Kingma tic 

Pr.inter 

GPGS 

IBM-370 

Nijmegen 

x 

x 

x 

Implementations 

PDP-11 FORTRAN 

Delft Trondheim 

x 

x x 

x 
x 

x x 

The deci.sions to leave out a data structure and make a device inde-· 

pendent picture representation optional have resulted in packages which 

take little memory space and which run quickly. With its Tektronix 4014 

( 15) driver the RT-11 version of GPGS is smaller than the nucleus of the 



33 

batch version of the RT-11 operating system. Similarly the basic routines 

for making a picture and interaction with the CRT and the satellite of the 

IBM-370 implementation takes about half again as much space as the 

FORTRAN I/O modules (IBCOM + FIOCS) . For highly interactive (not much com­

putation) applications programs on the IBM implementation, the CPU utili­

zation and response time are comparable to that of text editing programs. 

4.3. Suitability for Apglications 

'l'he final comments on the accomplishments of GPGS are on how "general 

purpose" GPGS has proven to be. That is, how easy it is to write applica­

tions programs. For computer-aided design programs, where a faixly low 

level interface is needed along with multiple devices (interactive and 

plotter), GPGS has proven to be ideal. For people who just want to make 

plots of their data GPGS is useable, but nonetheless a set of graph making 

routines to go on top of GPGS has been designed. 

Applications that have proven to be unreasonable to attempt with 

GPGS have had to do with a picture which must be changed in real-time in 

response to console user input. Due to the requirement that a picture 

segment must be completely rebuilt each time it is changed, even if the 

building of the next version of the picture is overlapped with the dis­

playing of the previous version it is difficult to achieve real time 

animation with anything but the simplest of pictures. Where a device has 

transformation hardware, however, a program accessing this hardware through 

GPGS can produce real time motion of arbitrarily complex pictures. 

Thus we have seen that GPGS has largely achieved its original design 

goals of being a device independent, easy to use subroutine package. GPGS 

provides applications programs with access to multiple graphics devices 

through the same subroutine calls. The GPGS design has given to be imple­

mentable a small and large computers alike. 

REFERENCES : 

1. IBM -· Graphics Subroutine Package (GSP) for FORTRAN IV, COBOL and 

PL/I: form GC27-6932. 

2. GINO, P.A. Woodsford (Ed.), Computer Aided Design Group, Corn Exchange 

Street, Cambridge, England. 



34· 

3. GPGS Reference Manual, D. Groot, E. Hermans, Rekencentrum, T.H. Delft 

and L.C. Caruthers, J. Patberg, Informatika, Faculty of Science, 

University of Nijmegen. 

4. J.D. Foley and V.L. Wallace, The Art of Natural Man-·macine Communica­

tions, Proc. IEEE. 62, 4, pp. 462-471, 1974. 

5. U Trambacz, Towards Device-Independent Graphics systems, Computer 

Graphics (siggraph-ACM) 9, pp. 49-52, 1975. 



35 

Appendix A: SamEle Program 

* The sample program on the following page is a straight forward 

demonstration of the elementary graphics output and interactive facilities 

of GPGS. After declaring the necessary arrays and putting the constant 

data in the list of tool codes and the initial visibilities of the line 

segments, the program initializes a buffer and what should be an interac­

tive device. The picture segment number 100 has six named lines foll.owed 

by two character strings (one with a line control character) , to give 

instructions to the console user. Once this picture segment. is displayed 

at the call to ENDPIC, the program waits for a light.pen hit. or function 

key push on key 1 or key 2. If a lightpen hit. is received the line segment 

hit is made invisible in the next regenerations of the picture segment.. 

If key 1 is pushed, all the lines are made visible again. If key 2 is 

pushed the program releases the device and terminates execution. 

C SAMPLE PROGRAM 

c 

c 

c 

* 

DIMENSION IBUF (2000), LTC (4), FDA (3), IVIS (6), FDA (3) 

DATA L'rc/3, 401, 402,-17 

DATA IVIS/1,1,1,l.,1,1/ 

CALL NITBUF (IBUF,2000) 

CAI,L NITDEV ( 3) 

DRAW BOX 

5 CALL BGNPIC (100) 

CALJ, LINE (0.2,0.5,0) 

CALL LINE (0.6,0.5, IVIS ( 1), 1) 

CALL LINE (0.6,0.9, IVIS(2),2) 

CALL LINE (0.2,0.9, IVIS(3),3) 

CALL LINE (0.2,0.5, IVIS (4), 4) 

CALI, I,INE (0.6,0.9, IVIS (5) ,5) 

CALL LINE (0.2,0.9,0) 

CALL LINE (0.6,0.5, IVIS(6) ,6) 

DISPI.AY INSTRUCTIONS FOR THE USER 

CAL.I, LINE (0.25,0.4,0) 

CALL CHAR ('THIS IS A BOX*. I) 

Written and tested by J. Schwarz of N.ijmegen. 



36 

c 

CALL LINE (0.15,3,0) 

CALL CHAR ( 'LIGH'fPEN SEGMENT TO DELETE IT*FUNCTION KEY 1 : X*NRESTORE 

FUNCTION KEY 2: STOP*t) 

CALL ENDPIC 

C PICTURE SEGMENT IS NOW VISIBLE 

c 

C WAIT FO.R AN INTERRUPT 

c 

INDEX INWAIT (-1.0,IED,IDA,3,FDA,3) 

W.RITE (t.111) (IDA(L), (1), L = 1,3) 

111 FORMAT (/ /,316) 

GO TO (10, 20, 99) INDEX 

C LIGHTPEN HIT 

c 

10 JLINE = IDA (3) 

IVIS (JLINE) = 0 

CALI, DELP IC ( 100) 

GO TO 5 

C RES'I'ORE FUNCTION KEY 

20 00 25 I ~" 1 , 6 

c 

25 IVIS (I) = 1 

CALL DELPIC (100) 

GO TO 5 

C STOP EXECUTION 

99 CALL RLSDEV (3) 

STOP 

END 



37 

~ndix B: Console Tool Information_Returned 

A handy reminder of what information is returned in the integer and 

floating po.int data arrays resulting from a call to INWAIT or REATOL. 

Floating point values for dials, tracking cross, tablet and joystick are 

all 0.0-LO. 

Information Returned from Console Tools 

Tool TyJ?.5::.. 

1. 

Clock 

Refresh 

2. Alphanumeric 

Keyboard 

3. Correlation 

Device 

(Lightpen) 

100. all Dials 

101-110. 1-D 

'fools (DIALS) 

200. both 2-D 

tools 

201-202. 

Tracking-cross 

or 'rablet 

300. ,l"oystick 

Integer Data 

Character String 

in Al format 

Floating Point Data 

•Duration of last refresh cycle 

in seconds 

•User reaction time in seconds 

•Picture Segt Name •X, •Y, •z coords of endpoint of 

• ... •Picture Elt Name line or character detected 

Stack 

•last dial changed •settings of all dials 

•scalar Value 

·last 2D tool changed ·X,•Y coords of tracking cross and 

·X,•Y coords of tablet 

·X,·Y coordinates 

•always '1' •X, •Y, ·Z coordinates 

301. 3-D •rools ·X, •Y, ·Z coordinates 

400. Function •last key pushed 

Switches •setting of all. keys 

401-416" •O if not pushed and 

Function Switch • 1 if pushed 



38 

Appendix C: Table of Device Driver Facilities 

Driver Property Type of Driver 

Unbuffered Buffered 

Non-Inter- Inter- Non-Inter- Inter-

Control Functions 

NITDEV/RLSDEV 

Open /Close 

BGNPIC/ENDPIC 

BGNNAM/ENDNAM 

VISPIC/COPPIC 

DELPIC 

REFER 

INSERT 

~erties 

Line Types 

Arc Generator 

Characters 

Intensity 

Blinking 

Depth Modulation 

Color (of lines) 

Background 

Viewport Def n 

Viewport Tforms 

Viewport Clipping 

~~~~-1'.E?.l'_~·tie ~ 

Clock 

A-N Keyboard 

Correlate device 

Audible Alarm 

1-dilll Analog 

2-dim Analog 

3-d.im Analog 

Function Switches 

active 

x 

x 

* x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

----·~-----·--------

* 

active active 

x x x 

x x x 

* x x x 

x x 

x x 

x x 

x x x 

x x x 

x x x 

x x x 

x x x 

x x x 

x x x 

x x x 

x x x 

x x x 

x x 

x x 

x x 

x x 

x 

x x 

x x 

x x 

x x 

x x 

Pseudo 

driver 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

BGNPIC and ENDPIC must be used with unbuffered devices but they arc 
effectively a no-operation. 



PHILDIG (PHILIPS DEVICE INDEPENDENT GRAPHICS) 

C. NIESSEN & J.W. ERO 

N.V. Philips' Gloeilampenfabrieken, Eindhoven 

INLEIDING 

Bij de aanschaf van graphische randapparatuur voor computer, zoals 

plotters of een beeldstation, wordt door de fabrikant meestal een 

subroutine pakket bijgeleverd dat gebruik maakt van alle hardware 

eigenschappen van het betreffende randpparaat maar dat verschillend 

is van soortgelijke pakketten voor andere randapparaten. 

Bij het overgaan op een antler randapparaat of op een andere computer 

moet het applicatie programma warden aangepast, hetgeen zeer kostbaar 

is. 
In hetlaatste decennium is er dan ook een trend waarneembaar om z.g. 

"device independent" subroutine pakketten te maken zodat het applica­

tie programma met enige restricties onafhankelijk is van computer 
en beeldStations. 

De noodzaak van PHILDIG 

Bij Philips wordt de ontwikkeling van geintegreerde schakelingen 

steeds meer geautomatiseerd. Op verschillende plaatsen in het concern 

warden verbeteringen in de layout van IC's aangebracht met behulp 

van computers en beeldstations. Ondanks de verschillen in hardware 

ontstond steeds meer behoefte aan de uitwisseling van applicatie 

software. 

39 



40 

Teneinde kostbare conversies te voorkomen was het noodzakelijk om 
een device independent subroutine pakket als gereedschap ter 
beschikking te hebben. 
Onze eisen waren: 

1. Efficient in een industri~le omgeving. 
2. Behandeling van complexe geometrie~n. 

3. Uitgebreide interactie voor input en modificatie. 
4. Besturing van verschillende randapparaten. 

In augustus 1973 evalueerden wij bestaande 
GPGS. 

zoals GINO-Fen 

- GINO-F, ontwikkeld door het CAD-centru11 in Cambridge, was voornamel ijk 
gericht op geheugenbuizen en plotters. Het had geen faciliteiten 
voor modificatie en de invoer was specifiek voor een Tektronix 
terminal. 
GPGS, ontwikkeld door de TH Delft en de universiteiten van Nijmegen 
en Cambridge, had de volgende tekortkomingen: 

- niet commercieel beschikbaar, 
- modificatie van het plaatje was niet mogelijk, 
- de invoer was niet device onafhankelijk. 

Oerhalve besloten wij zelf een pakket te ontwerpen en te implementeren. 

Globale opzet van PHILOIG 

De implementatie van PHILOIG kan nooit computer en randapparaat 
onafhankelijk zijn, omdat voor elk randapparaat verschillende code 
moet worden gegenereerd. Op het moment zijn er drie z.g. drijvers 
en wel een voor een "refreshed display", een voor een geheugenbuis en 
een voor een pseudo randapparaat. Daar het mogel ijk moet zijn om meer 
dan een apparaat tegelijk te sturen bestaat het pakket uit een boven-
1aag van randapparaat onafhankelijke routines en voor elk apparaat 
een aantal speciale routines met een voor dat apparaat specifiek 
common blok. Verder is er een common blok met variabelen van algemeen 
belang. 
Het blokschema van het pakket is gegeven in fig. 1. 



COMMON/PDG/ 

ROUTINES FOR 

REFRESHED DISPLAY 

COMMON/DEV1/ 

APPLICATION PROGRAM 

USER INTERFACE ROUTINES 

ROUTINES FOR 

STORAGE TUBE 

COMMON/DEV2/ 

FIG. 1 

41 

ROUTINES FOR 

PSEUDO DEVICE 

COMMOl\l/DEV3/ 



4·2 

Bij het initialiseren van het pakket moet worden aangegeven welke 

randapparaten zullen worden gebruikt. 
Devices kunnen worden vrijgegeven en opnieuw gestart. Indien een 
bepaalde drijver in het geheel niet nodig is kunnen de bijbehorende 

routines worden onderdrukt. 
In fig. 2 is getekend hoe een vector aan drie randapparaten wordt 

doorgegeven. 
Het pakket is grotendeels geschreven in Fortran behoudens enkele 
routines voor code generatie en interrupt afhandeling. 
Het ontwikkelen van een device onafhankelijk pakket heeft drie 
belangrijke implicaties: compatibiliteit, standaardisatie en grater 
geheugengebruik. 
Een applicatie programma met PHILDIG calls geschreven voor een 
refreshed display zal zeker niet zonder problemen lopen op een 
display met geheugenbuis of erger nog op een pseudo apparaat 
(=plot file). Omdat de apparaten nu eenmaal verschillend zijn, zullen 
de onderlaag routines anders reageren of zelfs afwezig zijn. 
Bij het schrijven van de applicatie zal men rekening moeten houden 
met deze opwaartse compatibiliteit. 
Een ander belangrijk punt is dat bijzondere eigenschappen van nieuwe 
displays minder goed of niet toepasbaar zullen zijn. M.a.w. er treedt 
een bevriezing op van de "s.tate of the art". 
Verder za1 deze device onafhankelijke aanpak enige overhead met 
zich meebrengen, hetgeen leidt tot meer geheugengebruik en langere 
executietijd. Bij goedkoper wordende hardware en meer implementaties 
is dit natuurlijk geen bezwaar. Anders zouden hogere programmeer­
talen ook nooit ingang hebben gevonden ! 
Bij PHILDIG kunnen we onderscheid maken tussen de volgende soorten 
calls: 

l. administratie 
2. oml ijsting 

3. generatie 
4. structurering 
5. transformatie 
6. modificatie 
7. invoer 
8. fout afhandeling. 



CALL 

SUBR 

COMMON 

. XNEX 

VECIA2 (X, Y) 

/PDG/ 

x 
VNEX Y 

!F (DEV(1). NE.O) 

!F (DEV(2) . NE.O) 

IF (DEV(3) . NE.0) 

RETURN 

SUBR DV1GEN 

COMMON/PDG/ 

COMMON/DEV1/ 

CALL DV1GEN 

CALL DV2GEN 

CALL DV3GEN 

SUBR DV2GEN 

COMMON/PDG/ 

COMMON/DEV2/ 

TRANSFORM USER COORDINATES 

TO SCREEN COORDINATES 

CALL DV1COD CALL DV2COD 

RETURN RETURN 

SUBR DV1COD SUBR DV2COD 

COMMON/DEV1/ COMMON/DEV2/ 

SUBR DV3GEN 

COIVIMON/PDG/ 

COMMON/DEV3/ 

CALL DV3COD 

RETURN 

SUBR DV3COD 

COMMON/DEV3/ 

GENERATE CODE FOR CONNECTED DEVICE 

AND SEND TO BUFFER 

RETURN RETURN RETURN 

FIG. 2 

43 



44 

Niet al deze soorten z1Jn nodig. 
In principe is PHILDIG eenvoudig van opzet en kunnen alleen vectoren 
en series karakters warden getekend. 
Uiteraard kunnen allerlei utiliteits subroutines tussen PHILDIG en 
applicatie programma warden gemaakt. 
We zullen nu de verschillende soorten calls behandelen. 

Administratieve routines 

Deze routines worden gebruikt om het pakket te initia1iseren eventueel 
om randapparaten aan- of af te koppelen en om buffers aan het pakket 
door te geven. 
Voorbeelden: 

CALL NITDEV(P816,l) 
CALL NITDEV(T4014,2) 
CALL PICBUF(l,BUFFER,5000) 

CALL CSLPAK 

Omlijsting routines 

(Fig. 3) 

In het applicatie programma wordt over het algemeen in andere een­
heden gewerkt dan plot- of schermeenheden. Daarom dienen de gebruikers 
coordinaten te worden getransformeerd naar device-coordinaten. 
De transformatievariabelen kunnen eenvoudig warden berekend uit 
"window" en "viewport". Dit zijn twee rechthoekige geb·ieden in 
gebruikers- resp. device coordinaten. 
Het plaatje binnen het window wordt afgebeeld op het viewport. (Zie fig. 4) 
Gelijkvormige rechthoeken moeten warden opgegeven indien de schaal­
factoren in X- en Y-richting gelijk moeten blijven. In het algemeen 
zal de transformatie warden gevolgd door een afknipproces om het 
plaatje binnen het viewport te houden. 

Generatie routines 

In PHILDIG bestaan generatie routines voor een punt, een rechte lijn 
en een serie karakters. 



C RESERVE PICTURE BUFFER 

INTEGER BUFFER {5000) 

C INITIALIZE P816 REFRESHED DISPLAY 

CALL NITDEV (P816, 1) 

C CONNECT PICTURE BUFFER TO PHILDiG PACKAGE 

CALL P!CBUF (1, BUFFER, 5000) 

C INITIALIZE TEKTRONIX STORAGE TUBE 

CALL NITDEV (T4014, 2) 

C CLOSE PACKAGE, DISCONNECT All DEVICES 

CALL CLSPAK 

FIG. 3 

45 



4.6 

-20 

WINDOW 

FIG. 4 

I 
I 

-------1---
1 

VIEWPORT 



Coordinaten kunnen warden opgegeven als integer of real, absoluut of 

relatief t.o.v. het vorige punt, en twee of driedimensionaal. 

Bij driedimensionaal werken op een 2D scherm is uiteraard projectie 

vereist. Een bijzondere generatie call is de aanroep van een 

object waarbij het object fungeert als een graphische subroutine. 

De namen van de subroutines warden samengesteld volgens onderstaand 

schema: 

(PNT(punt)) 
(POS(positie)) (I(integer)) (A(absoluut)) (2(dim)) 

(VEC(vector)) (E(real)) (R(relatief)) (3(dim)) 

In fig. 5 worden enkele voorbeelden gegeven. 

Structuur routines 

Even belangrijk als de generatie van het plaatje is de mogelijkheid 

47 

om het geheel of gedeeltelijk te kunnen manipuleren, d.w.z. verschuiven, 

verdraaien of doen verdwijnen. Dit geldt natuurlijk speciaal voor 

refreshed displays. 

Met behulp van de structuur routines is het mogelijk om gedeelten 

van het plaatje tot een zogenaamd "item" samen te voegen, waarna het 

mogelijk is zulk een item te identificeren en te manipuleren. 

Een item kan als volgt in symbolische notatie warden gedefinieerd: 

<itembody> 
<element> 
<G> 
<Vector> 
<String> 
<Obj> 

=<B> <itembody> <E> 
CALL BGN ITM (I) 

CALL E~DITM 

empty I <element> I <e l ement><i tembody> 

<G> l <item > 
=<vector>!<string>l<obj> 

CALL POSIA2 !CALL VECIA21 
CALL CHAR(, , ) 

CALL OBJECT(n) 

Zie ook fig. 6 



48 

c GO DARK TO 10,25 AND DRAW 2 VECTORS 

CALL POSIA2 (10,25) 

CAll VECIA2 (10,50) 

CAll VECIR2 (40,0) 

c DEFINE OBJECT 

CALL EIGNOBJ (1) 

CALL VECIR2 (-20, -30) 

CALL VECIR2 0) 

CALL ENDOBJ 

c PlACE OBJECT AT CURRENT BEAM POSITION 

CAlL OBJECT (1) 

c GO DARK TO 80,50 AND PLACE OBJECT AGAIN 

CALL POSIA2 (80,50) 

CALL OBJECT {1) 

FIG. 5 



<ITEM> 

<B> 

<E> 

<ITEMBODV> 

<ELEMENT> 

<G> 

<VECTOR> 

<STRING> 

<OBJ> 

<B> <ITEMBODV> <E> 

CALL BGNITM (I) 

CAll ENDiTM 

EMPTY I <ELEMENT> I <ELEMENT> <ITEMl"iODV> 

<G> I <ITEM> 

<VECTOR> I <STRING> I <OBJ> 

CAlL POSIA2 I CALL VECIA2 

CAll CHAR (KARS) 

CAll OBJECT (I) 

FIG. 6 

49 



50 

In het voorbeeld van fig. 7 zijn de eerste twee generatie calls 
niet gestructureerd. De resulterende lijn kan dus niet warden 
geidentificeerd en dus ook niet verp1aatst. 
Let verder op het versch i l tussen item 2 en i te111 1. 2. 

Transformatie routines 

Deze routines zijn niet in het pakket geintegreerd, maar vormen een 
afzonderlijke utility. Dit verkleint de overhead als een gebruiker 
slechts zeer eenvoudige transformaties wil zoals een translatie of 
een rotatie over een veelvoud van 90 graden. 
V~rder wordt het probleem omzeild om ingevoerde schermco6rdinaten via 
geinverteerde matrices terug te transformeren. 
De in PHILDIG genoemde transformatie routines stellen de gebruiker in 
staat om een homogene transformatie matrix samen te stellen en de co6rdi­
naten hiermee te transformeren. 

Modificatie routines 

Hierbij hebben we de volgende mogelijkheden: 
Het gehele plaatje kan verdwijnen en eventueel weer verschijnen. 
Items kunnen warden weggegooid, verschoven of hun hoedanigheid kan 
warden veranderd in die zin dat ze gaan knipperen of van kleur ver­
anderen. 
Uiteraard is dit afhankelijk van de display hardware. 

De belangrijkste calls zijn: 

CALL DELPIC 
CALL DELIM (item) 
CALL MOVE2I(device, item, dx, dy, code) 

Bij de laatste call moet een device nummer worden opgegeven omdat de 
verschuiving slechts op &&n randapparaat tegelijk plaats vindt. De 
translatie kan gebeuren onder programma besturing of van echter het 
scherm m.b.v. een invoer medium zoals bij voorbeeld een "tracking 
cross" 



51 

CALL POSIA2 POSITION 

CALL VECIA2 VECTOR 

CALL BGNITM (1) OPEN ITEM 1 

CALL VECIA2 VECTOR 

CALL BGNITM (2) OPEN ITEM 1.2 

CALL VECIA2 1.2 VECTOR 

CALL CHAR TEXT 

CALL ENIJITM CLOSE lTEM 1.2 

CALL ENDITM CLOSE ITEM 1 

CALL POS!A2 POSITlON 

CALL BGNITM (2) OPEN ITEM 2 

CALL VECIA2 VECTOR 

CALL CHAR 2 TEXT 

CALL POSIA2 POSITION 

CALL OBJECT (3) PLACE OBJECT 

CALL ENDiTM CLOSE lTEM 2 

FIG. 1 



52 

Invoer routines 

Er is veel aandacht besteed bij PHILDIG aan device onafhankelijke 
invoer routines. We zijn er van uitgegaan dat een applicatie 
programmeur niet moet warden 1astig geva11en met interrupt afhande­
ling en verschi11en tussen een "joystick" en een "trackerball". 
Hij is slechts geinteresseerd in de invoer van de volgende logische 
media: 

tekst invoer orgaan 
voor invoer en correctie van tekst rege1s 

geometrisch invoer orgaan 
voor de invoer van coordinaten 

draaiknop voor de invoer van een scalaire grootheid. 
Identificatie orgaan om items te kunnen aanwijzen en naam 

en plaats geretourneerd te krijgen. 
keuze invoer orgaan om een keuze nummer terug te krijgen, 

waarmee de loop van het programma kan warden beinvloed. 

Als physieke invoer organen fungeren lichtpen, stuurknuppel, toetsen­
bord en draaiknoppen. Verder warden deze invoer organen aangevuld 
met programmatuur. Zo heeft men voor geometrische invoer een 
"tracking cross" op het scherm nodig dat met lichtpen of stuurknuppel 
kan worden bewogen. 
Orn een keuze te maken moeten er een of meer menu's zijn, onderverdeeld 
in z.g. "boxes". Voor tekst invoer tenslotte moet een gebied op het 
scherm warden gereserveerd waar de ingetypte karakters zichtbaar 
warden gemaakt. 

Voor elk randapparaat nu bestaan er twee tabellen waarin wordt aan­
gegeven hoe de logische en physieke invoer organen met elkaar zij n 
gere1ateerd. De eerste tabel is de toewijzingstabel en de tweede tabel 
heet activatietabel. 
Vercier is er een logisch status woord, waarin staat van welk logisch 
orgaan invoer verlangd wordt. 
In fig. 8 is te zien hoe deze tabe11en gecorreleerd zijn. 
Indien logische keuze wordt verlangd, warden die physieke organen 
geactiveerd die aan het logisch keuze orgaan zijn toegewezen. Als de 
invoer geschied is worden de physieke organen meteen weer gedeactiveerd. 



lOGDEV 

PHlOAL 

UGHTPEN 

JOYSTICK 

KEYBOARD 

PH LO EN 

UGHTPEN 

JOYSTICK 

KEYBOARD 

IDENT. 

[ 0 

1 

0 

0 

(l 

0 

0 

GEO 

0 

1 

1 

0 

0 

0 

0 

FIG. 8 

53 

DIAL CHOICE TEXT 

0 < I 0 

0 1 0 

0 0 0 

0 1 1 

0 1 0 

0 0 0 

0 1 0 



54 

In het voorbeeld van fig. 9 kan keuze invoer worden gedaan door het 

indrukken van een knop op het toetsenbord, of door het wijzen met 

de lichtpen in een van de menuboxes. 

In PHILDIG hebben we drie soorten invoer calls: 

a. voor het defini~ren van programmeerbare invoerorganen zoals 

menuboxen, keuzenummers voor een toetsenbord, e.d. 

b. voor het toewijzen van physieke aan logische invoerorganen, indien 

afwijkend van standaard allocatie 

c. voor de eigenlijke invoer. 

Voorbeelden: 
C identificatie invoer 

CALL INIDEN(UNIT,ITEM,COOR) 

C geometrische invoer 
CALL EN5GEO (1) 

CALL SNGEO (l,COOR) 
CALL DSBGEO (1) 

C conditionele keuze invoer 
. CALL CNDCHO (1) 

CALL STCHOI (l,KEUZE,STATUS) 

In fig. 9 wordt nog een voorbeeld van keuze invoer gegeven. 

Fouten 2fhandel in~ 

PHILDIG zal proberen bepaalde fouten te detecteren. Een foutcode 

wordt doorgegven aan een routine IGER, die de gebruiker zelf kan 

aanpassen aan zijn behoeften. 

~~ 

PHILDIG is tot nu toe ge~mplementeerd op een P880 minicomputer en 

op de Pl400 computer, beiden van Philips~ 

de P880-P816 (refreshed display) combinatie wordt PHILDIG gebruikt 

in de applicahe programma's Circuitmask en Daisy, beiden voor de 

van geTntegreerde schakelingen. Deze programma's zijn 

ijk in ALGOL geschreven voor een ICL ~130 e~ maakten 

gebruik van het graphics DISMAN, speciaal geschreven voor een 

Elliot display. 



[ ~ 1 . 

PLACE 

02 

0 

INTEGER BOXES (10) 

ROUTE END 

o4 
0 ] 

DATA BOXES/1, 0, 1, IJ, 1023, 900, 1000, 0, 4, 

CALL DEFBOX (1, BOXES) 

DO 101=1,4 

CALL BGNBOX (I) 

CALL POSIA2 

CALL CHAR (TEXT) 

CALL ENDBOX 

CALL INCH01 (1, I<) 

GOTO (20,. 30, 50), K 

flG. 9 

55 

I 



56 

Orn redenen van efficiency werd regelmatig gebruik gemaakt van 
machine code programmering en bovendien werd buiten het DISMAN 
pakket om direct in de graphische data structuur ingegrepen. 
De gegenereerde beelden zijn twee dimensionaal, bijna alle 
figuren zijn rechthoekig. Qua structuur moeten enerzijds de 
diverse componenten onderscheiden kunnen warden, anderzijds 
moeten de diverse lagen (maskers) te onderscheiden zijn. 
De interactie geschiedt voornamelijk op component niveau en behelst: 
- toevoegen van nieuwe componenten 
- verplaatsen en veranderen van componenten b.v. verbindingsspoor 
- verwijderen van componenten 
- lengte en afstandsmetingen. 

Voor al deze handelingen is het aantal keuzebepalingen nogal groot; 
bovendien moeten vaak coordinaten warden ingevoerd. 
Interactie via tekst is minimaal. 

De conversie van deze programma's naar de P880 (Fortran) heeft ons 
het vol eerd: 

- In de meeste geva11en kan een DISMAN aanroep vri:i eenvoudig warden 
vervangen door een PHILDIG functie, Alleen met betrekking tot de 
structuur, de items in PHILDIG,was enig re-design noodzakelijk. 

- In beginsel was het mogelijk de gebruiksaanwi ng voor de ontwerper 
gelijk te houden. We hebben echter de flexibiliteit die PHILDIG 
biedt t.a.v. de interactie, gebruikt om de ontwerper meer mogelijk­
heden te bieden. 

De geconverteerde programma's z1Jn eenvoudiger, enerzi omdat wij 
geen machinetaal hoefden te gebruiken, anderzijds omdat vaak een 
aantal statements door ~~n PHILDIG functie te vervangen is. 

- De programma's lopen ongeveer even snel op P880 en ICL 4130. 
Weliswaar is de P880 2 x sneller maar de woordlengte is slechts 
16 bits (ICL 24) waardoor meer instructies nodig zijn. 
Het totale geheugengebruik is dus grater. 



57 

THE INTERMEDIATE LANGUAGE FOR PICTURES 

P.J.W. TEN HAGEN 

l Introduction. 

The Intermediate Language for Pictures, called ILP, has 
been designed at the Mathematical Centre in the course of a 
research project on computer graphics. The project is based 
on the design and implementation of an autonomous operating 
system for computer graphics. This graphics system can 
operate in a mini-computer installation which paticipates in 
a larger system as a satellite. 

During design and implementation of the system new 
methods are introduced and tested. The ultimate system 
should contribute to computer science in the sense that new 
facilities are realised. 

To reach both goals the ILP is an important basic 
means. To show this we will outline the overall structure of 
the system thereby emphasising the function of the ILP. A 
more complete overview can be found in [1]. 

A computer program for a graphics application is run­
ning in the central computer. It controls the graphics fa­
cilities in the satelite through a communication link. 

application 
languages 

0----

Ln 

intermediate 
language 

ILP 

drawing 
machines 

TI 

Tm l 



58 

The ILP is applied in the following ways: 

All pictures in the satellite are represented as ILP 
programs. 

The communication between (the user at) the satellite 
and the application program is in terms of ILP pro­
grams. 

The high level graphical language of the application 
program is obtained by embedding the ILP in an existing 
high level general purpose programming language. 

Pictures can be stored, retrieved and classified as ILP 
programs. 

The various drawing devices are logically connected by 
defining a conversion between ILP and device code. This 
is also true for input devices. The important conse­
quence of the last application is that for the first 
time full symmetry between input and output can be ob­
tained. 

One might have noticed that these ications of the 
ILP require that the ILP is a datastructure rather than a 
programming language. However, since the meaning of such a 
datastructure is also fixed (It represents a picture), one 
may equal well consider these datastructures as programs, 
which, executed (interpreted) produce the picture as 
output. 

For the designers of the system the ILP plays a key 
role both for designing as well as a means of communication. 
The ILP gets the full language treatment in the sense that a 
complete syntax and semantics for it are given. In can be 
represented in symbolic form just as any other programming 
language. Compilers and interpreters for it are developed. 
All these activities are at the same time contributions to 
the graphics system. We will illustrate this with a few ex­
amples: 

There is a one to one correspondence between the syntax 
and the datastructure representation (of a picture) . 
For instance syntactic non-terminals corespond to cer­
tain (groups of) data types. This syntax will therefore 
define both the form of the internal representation as 
well as the extensions to high level languages. 

The semantics of the language in the first ace com-
tely define the machine independent part o es 

and secondly the effect of the ILP on an i ised 
drawing machine. Each physical device is connected by 
defining a correspondence to this idealised machine. 



59 

Any module of the system can be tested seperately by 
applying it to symbolic ILP programs. In this way the 
cooperation with other modules can be simulated and the 
result is available in readable form. 

The most important achievement however is that a uni­
form concept is used throughout the system. 

During the definition of the language, the designers 
have found that the ILP is a means to isolate and character­
ise the essentials of computer graphics. It is also possi­
ble to compare the complexity of various operations on 
graphical data. One simply expresses these operations in 
tersm of transforming ILP programs. 

2. The basic structure of the ILP. 

The ILP is described in [l]. Here we only present a 
simplified version, which we hope gives a good impression of 
the language. 

The interpretation of a collection of data can result 
in two types of actions performed by an interpreter, namely 
external actions and changes of the state of the inter­
preter. According to this scheme one can devide data enti­
ties in action specifiers or for short actions, and state 
specifiers which we will call attributes. Furthermore one 
needs an operator to connect attributes with actions, ex­
pressing the fact that the actions should be carried out in 
the state as described by the attributes. 

The basic construction for the picture data has the 
form: 

WITH A DRAW P , 

where: A denotes a collection attributes, P denotes a set of 
actions called a picture and WITH ..• DRAW ... denotes the con­
nection operator. The construction as a whole is again a 
picture. For both pictures and attributes there exists prim­
itives and complex constructs built from more primitive en­
tities by means of composition. 

The ILP is a low level language in the sense that apart 
from a number of language primitives only a few very elemen­
tary means of composition are provided. These composition 
rules serve two main purposes: 

Compact representation of data. To this end a 
subroutine-like construct exists for both pictures and 
attributes. Multiple used pictures or attributes have 
to be stored only once and can be referenced as often 



60 

as needed. Furthermore the WITH .•• DRAW •.• construct, 
which can be nested (by applying the subroutine mechan­
ism, for instance) allows us to minimise the number of 
state descriptions. The possibility to specify A common 
state onlly once, although during interpretation inter­
mediate states may be different is refined by giving 
the opportunity to create, locally, partial exceptions 
to the current state. 

Structuring the data in such a way that the manipula­
tions anticipated are best suited. To this end optimi­
sation by the representation function can be overruled, 
so that data collections can easily be split or 
changed. The possibility to insert empty cells in both 
picture lists and attribute lists allows us to specify 
the skeleton for a datastructure in which the actual 
values can be supplied later. The composition rules 
simple as they are can build arbitrary graph struc­
tures. 

The two basic entities picture and attribute have the 
following syntax: 

<picture>: <picture element> I <pname> I 
· { ·<pictures> '} · I 

WITH <attribute> DRAW <picture> 1 
<attribute>: [ABS I REL] <basic attribute> 1 
<basic attribute>: <attribute class> I <aname> 

· ('<attributes')· 

The non-composite constructs are picture element and attri­
bute class. They will be discussed later. Pname and aname 
are names of pictures and attributes respectively. An ILP 
program consists of a set of named pictures and a set of 
named attributes. A named picture is called a rootpicture 
if its name is external (global), it is called subpicture 
otherwise. If, in the sequel, we use the word subpicture we 
also mean rootpicture, but the reverse is not true. A named 
attribute is called an attribute pack. 

<rootpicture>: PICT <pname> <picture> 1 
<subpicture>: SUBPICT <pname> <picture> : 
<attribute pack>: ATTR <aname> <attribute> 

An interpretation of an ILP program is started in a root 
picture. The picture that constitues the body of a subpic­
ture can be a sequence of picture's between brackets: 



61 

<pictures>: <picture> I <picture> <pictures> 

Similar for attributes: 

<attributes>: <attribute> I <attribute> <attributes> 

The subroutine and bracketing mechanism allow us to 
have (directed) attribute graphs and picture graphs. The 
WITH ... DRAW operator combines picture and attribute graph 
into one picture graph. The picture graph concept is used 
in the sequel to give the basic semantic rules. The initial 
node of the graph is the external call to a rootpicture. The 
direct descendants of that node are the pictures that con­
stitute the body of the rootpicture, Picture elements are 
terminal nodes. The non-terminal nodes are the other alter­
natives of the syntax rule for pictures. The WITH ... DRAW 
nodes always have two descendants namely the attribute and 
the picture. An attribute node only contains attributes as 
descendants 

Pname is a subpicture call. At this moment recursive 
calls are not allowed, because both pictures and attributes 
do not contain any form of condition setting. This and other 
constructs like assignment and parameters are left out of 
the language for two reasons: 

ILP programs will be mainly used as objects to be gen­
erated rather than executed. 

The ILP will be embedded in high level languages where 
all these constructs are already present. 

Stated in terms of the picture graph the basic semantic 
actions are the following. The interpreter visits the nodes 
of the graph in preorder. Each time an attribute node is en­
countered, the attribute (which may be an entire subgraph) 
is interpreted, which results in a so-called state descrip­
tion. This new state is mixed with the current state into a 
new current state. Now the picture node of the same parent 
node is interpreted in this state. Upon return to the parent 
node the original state is restored. It follows that the 
interpreter should be capable of maintaining a stack of 
state descriptions. Each time a picture element is encoun­
tered the element at hand is transformed accordina to the 
current state. The resulting element is next converfed into 
a sequence of machine dependent actions. 

According to this scheme further semantics specify the 
following items: 



How attributes are converted into state descriptions. 

How two states are mixed, or for that matter, how at­
tributes are mixed into new attributes. 

How attributes transform picture elements. 

How picture elements will be converted into drawing 
machine instructions. 

Traversing the graph from the root to an endnode (pic­
ture element) the interpreter may have encountered several 
attribute nodes. In principle their effect is accumulated. 
The attributes of child nodes have priority over those of 
parent nodes, e.g., they are applied first and moreover, 
they specify whether the parent attributes will be applied 
at all. The latter is controlled by the tags ABS and REL 
respectively which may be prefixed to a list of attributes. 
REL means apply parent- (or because of the accumulation, 
current-) attribute also. ABS means replace current attri­
bute. This mechanism implements the concept of specifying a 
common state with local exceptions (ABS) or adjustments 
{REL). The common state will be specified close to the root, 
the exceptions closer to the endnodes. 

In the next paragraph we will investigate the traversal 
process in more detail. 

3. The 

In this paragr 
semantic items. 
butes is: 

<attribute 

of attributes and 

we will specify the four rema 
syntax rule for non-composite attri-

class>: <transformation> 
<detection> I 
<style> I 
<pen> I 
<control> 

Attributes are divided into so-called attribute 
classes. Attribute classes are mutually unrelated. This 
means that in the process of mixing attributes only attribu­
tees from the same class are involved. The result of mixing 
attribute primitives from a single class is called an attri­
bute class value (or class value for short). Each primitive 
attribute itself is a particular instance of a class value. 
The converse however, is not true, i.e. not every class 
value can be expressed by means of one attribute primitive 
of that class. 



63 

A state description is a list of class values which 
contains at most one class value for each attribute class. 

We will now define how an attribute graph is combined 
into one state description. In this process we will first 
explain how primitive values are combined into class values, 
next how class values are combined into state descriptions, 
and last how state descriptions are combined into one state 
description. 

The attribute graph that has to become a state descrip­
tion is elaborated as follows. Fiist all references 
(anames) to attribute packs are replaced by the correspond­
ing attribute pack. The only type of nesting that remains 
is bracket nesting. The combining operation starts bottom 
upwards. All attribute lists that contain no sublists 
between brackets are converted into a state description. 
This process can be described in the following steps: 

The primitive attributes are sorted class-wise without 
disturbing the suborder in each class, e.g. 

(al,a3,bl,c,b2,a2) => (al,a3,a2,bl,b2,c). 

Next the attributes of one class are combined (conca­
tenated) into one class value, e.g.: 

( (al*a3*a2), (bl*b2), (c)) . 

According to the syntax, each primitive attribute can 
have at most one ABS/REL prefix. These prefixes are applied 
as follows: 

A * REL a * B = A * a * B 
A * ABS a * B = a * B 

Here A and B denote a sequence of attribute primitives of 
the same class. "*" denotes the mixing operator. The 
resulting value is further treated as a class value. In case 
of a single primitive, the primitive value will also be 
treated as a class value. Any prefix is preserved and be~ 

comes a prefix of the class value, e.g.: 

ABS a => ABS (a) • 

In this way a list of primitive attributes results in a 
state description. 

Going up one level we find a list consisting of state 
descriptions mixed with primitive attribute values. All ad­
jacent primitive attribute values are also combined into a 
state description. We now have on the lowest level a series 
of state descriptions only. According to the syntax and the 
special rule for single primitive values, a class value can 
have at most one individual prefix. The state description as 
a whole can also have one prefix. A state prefix overrules 



64 

an individual prefix. Only when a state description has no 
direct prefix, the individual prefixes are valid, e.g. 

ABS(REL a) = (ABS a) 

What remains to be specified is how a sequence of state 
descriptions is mixed into one state description. This pro­
cess, which very much looks like the one for primitive 
values, takes the following steps: 

The state prefixes are distributed over the individual 
members in the sense just described, so that at most 
one prefix per class value remains. 

The class values are arranged class-wise, without dis­
turbing their ordering (the ordering induced by the 
order of the state descriptions). 

The class values are combined into one new class value 
as follows: 

A * ABS a * B = a * B . 
A * REL a * B = A * a * B . 

Here a denotes a class value, A and B denote sequences 
of class values. Note that a composite class value can 
be replaced by an ABS class value which consists of one 
primitive value only. 

By repeatedly applying the combination rule for state 
descriptions, each time going up one level, finally one 
state description is obtained. 

The mixing of a state description belonging to a 
WITH .•. DRAW construct with the current state description is 
a special case of the mixing process defined above. The se­
quence of state descriptions contains at most two elements. 

The restoration of the original state after a 
WITH ..• DRAW construct has been elaborated, can be described 
as follows: Upon entry an ABS state desription is generated 
with a copy of each class value of the current state that 
will be changed as a result of mixing with the new state. 
This state description is mixed with the current state 
description upon return. 

Dur 
state is 

e element the current 

Part of the state description is fed into the drawing 
machine as control information. 

The remainder is applied by changing the 
ment at hand. 

ture ele-

The ideal situation would be that the state description 



can be fed into the drawing device, so that altering the 
picture element is completely carried out by hardware. In 
practice we have to put one or more virtual machines between 
the ideal one and the physical device. 

The application of a state description to a picture 
element takes two major steps. First the picture element 
performs a state selection. Next the state finally obtained 
is effectuated. 

The general form of a picture element is: 

"type" <attributematches> "type values" 

This is the primitive form of the general construction 

WITH A DRAW P , 

preceded by some type specification. The attribute matches 
control the state selection. A single attribute match is a 
binairy value. Each attribute class has a corresponding at­
tribute match. A state selector contains one attribute match 
value for each class. These values select a partial state 
description from the current state. The partial state is 
completed to a full state by adding default values for each 
missing class. The default values may depend upon the type 
of the. picture element. This mechanism is the ultimate 
consequence of providing a common state with individual ex­
ceptions. 

The five attribute matches and their corresponding at­
tribute classes are: 

match class comment 

Absolute or incremental mode. 

65 

TO/BY 
TF/-TF 
vs;-vs 
DT/-DT 
ST/-ST 
<empty> 

<empty> 
<transformation> 
<pen> 
<detection> 

Penfunctions or invisible move. 
Selectable by pointing or not. 

<style> 
<control> Special controls cannot be ignored. 

The effect of the individual class values on picture 
elements will be specified in the section on attribute prim­
itives. In general two ways of description are needed. In 
the first place one can define the effect for each type of 
picture element. In that case the effect is expressed by 
giving a sequence of equivalent picture elements, e.g. 



66 

WITH a DRAW pe <=> 
{pel; pe2; ; pen} . 

The second way consists of specifying the corresponding con­
trol sequence for the idealised drawing machine. The effect 
on this machine is for the time being described in an infor­
mal way. 

If a class value is still a composite value of several 
primitive attributes, these values are applied in "textual 
ordern, with the one closest to the root last. 

The effect of picture elements themselves on the ideal­
ised machine is defined in a way similar to attribute 
classes. Some can be given in terms of other (more) pr1m1-
tive elements. Some have to be defined more informally. Pic­
ture elements never are composite values. 

4. Pi elements. 

Picture elements are syntactically described by: 

<picture element> 
<coordinate type> I 
<curve> I <text> I 
<library> I NIL ; 

We will now discuss the various picture elements by 
speci the meaning of each type-tag and its correspond-
ing ue. 

!!_. _! ~.E5:l_~nate _ty~. 

The type-tags for which the type-values must be coordi­
nates are: 

<type> POINT I LINE I CONTOUR 

They occur in the following syntax rules: 

<coordinate type>: 
<type> <attribute matches> ' {'<coordinates>·}, I 
<type> <coordinate> 

<coordinate>: PP I PO I 
<attribute matches> <dimensional value> 

PP and PO are special coordinates whose values are cal-
culated during the elaboration of an am. PP and PO 
are mnemonics for penposition and penor in respect 

represent the penposition in user coordinates at cer­
tain moments during elaboration. PP is calculated at the 



67 

beginning of a row of coordinates and remains constant, re­
gardless of changes in the penposition during the elabora­
tion of that row. PO is the value of the pen coordinates at 
the beginning of the smallest picture that encloses the pic­
ture element, in which PO is referenced. Recall that each 
picture element is nested within one or more pictures. PO 
allows us among other things to specify subpictures that 
leave the penposition where it was at the start, by adding a 
picture element like 

POINT VI PO 

as the last element to the subpicture. Note the difference 
with 

POINT VI PP ! 

Before the elaboration of a root picture starts, PP and PO 
have as value the origin of the user coordinate system. 

The primitive action embodied by a picture element with 
coordinates as type-values can be described as follows. 
First of all the row of coordinates specifies a series of 
positions. The positions are found in either of two ways: 

In the TO-state ( attribute match penrel has value 
TO), the coordinates are absolute values with respect 
to the current origin. 

In the BY-state, the coordinates are taken as offsets 
from the current penposition (incremental mode). This 
series of positions is the same for all types. 

The type-tag is used to specify a "polygon", that con­
tains these positions as vertices. The first and last vertex 
of the polygon however are different for different types. 
Let the penposition at the beginning of the action to draw 
the picture element at hand be X. Let the series of posi­
tions be represented by cl, c2, ... , en. Then the polygon to 
be drawn is: 

In case of type POINT: cl-c2- ... -cn 

In case of type LINE: x-cl- ... -cn . 

In case of type CONTOUR cl-c2- ... cn-cl 

The possibility X-cl- ... -cn-X, can be obtained by ad­
ding the special coordinate denoted as PP to the head of the 
row of coordinates of type CONTOUR. This uces a closed 
polygon with the or inal penposition as the first (and 
last) value, e.g.: 



68 

BY CONTOUR {PP;(0, 1);(1, 0);(0, -1)} 

specifies a square that begins and ends in the penposition. 
If we replace BY by TO in this example, we also get a closed 
polygon which starts and ends in the penposition. However, 
we cannot say what the shape will be until we know the pen­
posi tion. 

We now have established which positions the pen will 
visit while a POINT, LINE or CONTOUR is elaborated. What is 
actually drawn, and what route is actually taken going from 
one position to the next, depends on the type-tag and the 
attributes. The attribute match VI and its negation VI 
specify whether anything will be drawn at all. In the state 

VI the route is followed as a sequence of invisible moves. 
In the state VI the pen-functions that define the colour, 
linewidth, etc. are applied. In a similar way the attribute 
match ST or ST specifies whether the current style­
functions or the default style-function for that type will 
be applied. 

There is, apart from the initial vertex, a second fun­
damental difference between a row of POINT coordinates and a 
row of LINe coordinates. For LINEs the route between suc­
cesive positions defined by the coordinates is always a 
straight line, which will be drawn according to the current 
style-functions. The route between POINT positions is unde­
fined. For this reason it is impossible to apply any line 
style~function to the route between these points. It is not 
defined in which order the positions have to be visited, 
with the exception of the last one. Hence the only style­
functions for POINTS are those which specify any symbol cen­
tered around the positions. On the other hand, it is possi­
ble to specify a line style for LINEs which shows the posi­
tions as points. In that case the initial penposition is 
always included. It is also possible to superimpose ''point" 
styles on line styles for LINEs. With respect to style­
functions the CONTOUR behaves in a LINE-like manner. 

4.2 TEXT. 

Objects with type-tag TEXT enable us to produce texts 
as part of a picture. The syntax rules are: 



69 

<text>: TEXT <attribute matches> , { , <str >,} , 

TEXT <string> ; 
<string>: 

<attribute matches> <proper string> 
<proper string>: 

[ESC <escl> <esc2> , " , tokens," , 
,,, 'tokens,,,, ; 

<token>: [escl] <basic token> 
<basic token>: 

<char> I <digit> I 
<esc2> <char> I <esc2> <value> 

The type-value of TEXT is a row of strings. Each element in 
the row may have its own private escape characters. A single 
character is a special case of a string, which in turn is a 
special case of a row of strings. 

Characters are grouped in alphabets of 256 tokens. We 
assume that there are at least 64 printable characters in 
the system. With the help of 2 escape characters it is pos­
sible to specify all 256 tokens. tokens can also be speci­
fied by giving their index to the alphabet as a numerical 
value preceded by esc2. Change of alphabet is possible by 
means of attributes. In principle an unlimited set of alpha­
bets can be used in an ILP-program. 

The attribute matches for TEXT control the same attri­
bute classes as the other picture elements do. Whether an 
attribute from a given class applies to a TEXT element or 
not, depends on the definition of the attribute itself. So 
the important rule is that attribute matches control the at­
tribute classes whereas individual attributes control pic­
ture elements. Attributes which are applied exclusively to 
TEXT elements are called "typographic-functions" and are a 
subclass of the style-functions. 

An important aspect of TEXT values is the way they are 
positioned; since nowhere in a TEXT value, a coordinate can 
be specified, the position must be deduced from the current 
environment. The environment contains as a result of a spe­
cial typographic function, a so-called page format. The page 
format defines the effect of tokens like "carriage return", 
"line feed", "formfeed", "space" and "tabulation". At any 
time during execution there are two pages in existence. One 
page starts (with the upper left corner in the current ori­
gin, the other starts at the penposition valid at the time a 
primitive TEXT element begins. 

The attribute match BY/TO specifies whether the pen page or 
the origin page has to be filled or continued respecti 
The origin page can be (re)defined under control of 
CURRENT attribute. In fact the origin page shifts along 
with the origin. 



70 

So far we have encountered primitives with icit 
values. The remaining two types are generators of values of 
a constant type. 

4.3 CURVE. 

A CURVE-value consists of a row of curvedescriptions 
which are functionspecifications. Each function generates a 
row of coordinates. The effect of a CURVE-value can now be 
defined as the effect of a LINE with the same attribu­
tematches and with the generated coordinates as type values. 

The generated coordinates are either two- or three­
dimensional curves. Three-dimensional curves need not 
necessarily to be anar. CURVE-values are functions which 
produce a list o coordinates. The coordinates are further 
treated as a row of coordinates of type LINE. The functions 
are devided in two types: parameter functions and non­
parameter functions. 

For a parameterfunction one must specify an interval 
(2D or 3D) and two or three functions of one variable. The 
coordinates produced are of types (x (t), y (t) [, z (t)]), 
where t steps through the interval. The stepsize can be cal­
culated by the function itself, can depend on a given device 
or be given as one of the arguments. 

Non-parameterfunctions or systemfunctions are collected 
in a system function library. Each function has its own name 
and parameterformat. Parameters may be number values as well 
as other primitives. The functions only produce coordinates 
and have no side effects whatsoever on drawing device or en­
vironment attributes). The parameters are handed over to 
the system routine without any modification by current at­
tributes. 

The curve concept and especially the function part of 
it is subject to future extensions and refinement. 

4 . 4 LIBRARY. 

LIBRARY is followed by a row of names of external sub­
pictures. The effect of a LIBRARY-call is that a sequence of 
primitives is produced. The way these primitives are pro­
duced inside the LIBRARY-function is not specified in the 
ILP. For instance, it might involve an interactive session. 
In general, however, a LIBRARY subpicture is produced in a 
previous session as an ord subpicture. 

LIBRARY eleements as opposed to subpictures allow us to 
consider part of the picture program to consist of "sym-



71 

bols". To all possible operations on picture programs LI­
BRARY elements are indivisible primitive units. 

5. Basic attributes. 

The attribute classes are the alternatives of the syn­
tax rule 

<attribute class>: <control> 
<transformation> 
<pen> I 
<style> I 
<detection> 

The order in which they are listed here is also the 
order in which they are applied to ture elements. 

per attribute class one must speci 
items: 

How primitive values are mixed. 

How class values are mixed. 

the following 

How class values are applied to picture elements. 

We will now briefly discuss examples of attributes for 
each class. For the complete description so far present in 
ILP we refer to [ 2]. 

5.1 Control. 

Control contains all attributes that cannot be classi­
fied elsewhere. It contains for instance a subclass called 
machine typical. 

<control>: <general control> I 
<machine typical> ; 

<machine typical>: MACHINE <proper str 
<general control> <clear> I 

<operator call> I 
<feed> I <frame> I <stop> 
<material> 

Aclass value simply consists of a list of the alterna­
tives given here. They are applied by feeding them into the 
drawing device as control information, e.g. they do not 



72 

transform picture elements in any way. 

We intend to the class control as small as possi-
ble. 

5.2 Transformations. 

<transformation>: 
q~os1 tion> 
<matrix> I 
<window> I 
<v1ewport._> 

Transformations are applied to so called dimensional 
values (coordinates). The effect of transformations is that 
of coordinate transformations well known in computer gr 
ics. 

Position matches the imaginairy origin of the new pic­
ture with a position in the current coordinate space. This 
position is either the existing origin or the penposition 
(CURRENT). Position can dynamically be converted to a matrix 
transformation. 

Matrix is the general transformation, written as a full 
homogenuous matrix. One may also build up such a matrix 
value with the help of sub-matrices like rotation,scaling 
and ection. 

Window 
border of 
fines a 

has two aspects. It performs clipping along the 
the window. In combination with viewport it de­

ix) transformation to screen coordinates. Mix-
ing of means intersecting them. Cl has prior-
ity over matrix transformation. 

The class value for transformations consists of a ma­
trix and a window. For the moment only rectangular windows 
are allowed. The combination of two matrix window pairs is 
in general not possible (rotation). In the absence of rota­
tion combination can be described as: 

(Ml,Wl) * (M2,W2) = (Ml*M2,Wl*M2(W2)). 
Here M(W) means the rectangle transformed M. 
Ml*M2 implies matrix multiplication. 
Wl*W2 implies intersection of windows. 

In the other case one must retain both pairs. So in general 
a transformation class value consists of a sequence of ma­
te ix window pairs. In the case of a generalised window one 
may again apply full concatenation. 



73 

5 Penfunctions. 

Penfuntions specify all items associated with the hard­
copy or screen materials. 

<pen>: <thick> I <colour> I <ink> ; 

The various alternatives control the thickness of lines, 
colour and type of ink and also the intensity of the elec­
tron beam. If for a given device the attribute is meaning­
less it simply is ignored.This attribute class can be devid­
ed in a number of independent subclasses (of which three are 
listed). A class value consists of a series of subclass 
values (one per class). Mixing means superposition or re­
placement of corresponding subclasses. In the case of an ABS 
prefixed class mixing means complete replacement. 

Stylefunctions as opposed to transformations are more 
directly involved with the actual state of the drawing 
machine. Stylefunctions describe what kind of lines and 
characters (and in a future extension of the language what 
kind of shades and greyscales) are to be produced by the 
drawing machine. The description is as machine independent 
as possible. In view of the enormous var of current and 
future drawing machines the style-function package has to be 
incomplete and hence extendable. 

The two classes of style-functions that exist so far, 
e.g. line styles and typographic styles are mutual unre­
lated. Line styles are applied to coordinate values, typo­
graphic styles to strings. We will now first discuss line 
styles. 

<line style>: <period> MAP <value> <reset> 
<period> PERIOD '('<period descr ion>')· 

The line pattern attribute can produce a large variety 
of dotted and dashed lines. The definition of such a pattern 
goes in two steps: 

Period definition 

Period is a basic pattern which is repeatedly produced go 
along the line. 



7.4 

<period 

<dash>: 
<gap>: 
<reset>: 

description>: 
<dash> I <dash> ',' <gap> I 
<dash> ·,' <gap> ',' <dash> 

DOT I <value> 
<value> ; 

RESET I CONTINUE ; 

The period is defined on a straight line piece of 100 units 
in length: Hence dashl + gapl + dash2 + gap2 = 100. There­
fore gap2 always is omitted (gap2 ~ 100 - (dashl + gapl + 
dash2). If dash2 is omitted, its value is 100 - (dashl + 
gapl). In that case gap2 = 0. In the same manner gapl can 
be omitted (=> dash2 = gap2 = 0). If dash has value DOT. A 
point is produced on the spot with has a length of 0 units 
with respect to the period. 

Examples: 
PER (100) => solid line. 
PER (DOT) => one point at the beginning of each period. 
PER (0, HJ0) => blank (invisible) line. 
PER (50) => dashed line with gaps equal to dashes. 
PER(25, 50) => dashed line with gaps equal to dashes. It starts, 

however, with a half dash. 

Map definition: Map first of all defines the length of the 
period in coordinate distance units. A period of the given 
length is rolled along the line. The period reset is a 
binary value tell whether a period has to be restarted or 
continued when a new coordinate value of the line is encoun­
tered. 

The default line style for a LINE type line is 

PER(l00)PM l CONTINUE, 

e.g. a solid line. Both styles are produced also 
style bit of the attribute match has value ST. 
style 

PER(DOT)PM "some large value" RESET 

when the 
The line 

will produce a dot at each coordinate value encountered. 
This illustrates that style can convert LINE's into POINT's. 
The typographic style is in fact nothing else than a means 
to specify a given characterset from the sets available. 

<typographic>: <fount> 
<size> I 
<i ta lie> I 
<boldness> 

As we have seen before characters ace grouped in sets 



75 

of 128 tokens, called a basic set. A fount attribute now 
specifies a basic set, The other attributes can now be used 
to produce a variant of such a basic set ( g a new 
size, italic, position or boldness). 

A basic set can contain any kind of symbols, up to com­
plete pictures. In the ILP they will, however, be considered 
as characters, and can therefore not be manipulated other­
wise. It is clear that this attribute suffices to be able to 
specify an unlimited collection of characters. 

5.5 

The detection attribute provides the primitives for in­
teractive work with pictures. Basically its effect is that 
it isolates parts of the picture from the rest. The isolated 
part may be of type subpicture but that is merely coinciden­
tal. 

To understand really what happens we must use the graph 
structure description. For each node in the graph (which is 
not an endnode) the detection mechanism tells us whether 
that node is detectable or not. For each endnode in the 
graph, the detection mechanism tells us whether that leave 
is sensible or not. An endnode is sensible if the attribute 
match has the value DT. We make a distinction between sensi­
ble and detectable, because the detecting mechanism is ac­
tivated by means of an external action. The primitives are 
the only objects that can be made subject to external ac­
tions like pointing with a lightpen or a tracker ball, or 
even by textual specification of an ILP primitive. If a 
primitive picture is not sensible, any external point 
mechanism will have no effect when it points at that primi­
tive. If a node is detectable, it also defines a parent node 
or itself as the detectant. 

The detection attribute has the fol syntax 

<detection>: DETECT <dnarne> <proper str 

The detection mchanisme contains more than one detector. 
Each detector has its own name ( dname) . There is also a 
common detector which has no name. Switch from one 
detector to another is possible by external action which 
consists of selecting a new name or the common detector. 
Whenever a node is detected the string (if any) that is at­
tached to it can be returned to the user. This provides him 
with an facility for identification of the various detection 
points. Sensibility is the same for all named and unnamed 
detectors. The sensibility thus in a very crude way devides 
the picture primitives in two groups. The not sensible ones 
are not detectable, the sensible ones are. However, if the 



76 

parent node of the sensible primitive is undetectable, we 
have isolated one simple primitive. We can enforce the un­
detectability of all parent nodes by external action. We 
only need to select a special named detector which does not 
actually occur in the ILP-program. If the primitive is part 
of a subpicture, both the detectbility of the parent node 
and the detectant can be different for each instance of the 
subpicture. What remains to be specified is how the detec­
tion attribute works on non terminal nodes. 

The value of the detection attribute at each node can 
be any of the following four: 

AD absolute detectable 
AU absolute undetectable 
RD relative detectable 
RU relative undetectable 

The absolute/relative value originates from the prefix that 
can be attached to all attributes. The effect of the four 
values is as follows: AD means the node is detectable and it 
defines the current node as the detectant. AU means the 
node is not detectable, the detectant is undefined. This 
means, for instance, that if in fig 1 detl = AD and det2 = 
AU, than nodel can never be selected by pointing at a primi­
tive child of node2. RD means, the node is detectable. The 
detectant is the detectant of the parent node if it is de­
fined, otherwise the node itself becomes the detectant, In 
other words: if the parent node is undetectable, then RD 
AD. RU means, the node is undetectable. However, the detec­
tant remains defined. If a child node is set RD, then it 
will pick up the detectant that is still defined. So the 
value R (relative) in both cases (D and U) passes on the 
detectant, if it exists. This gives a very usefull result if 
one applies this attribute to subpictures. The detectabili­
ty may vary for each instance of the subpicture. If the sub­
picturebody is RD, then it will identify each detectable 
call. If the call is not detectable it will identify the 
subpicture itself. If the subpicturebody is RU, it will also 
identify each detectable call, but if the call is not 
detectable, the subpicture itself will remain undetectable. 
We now can also classify the values of the attribute match, 
namely D'I' <=> AU and DT <=> RD for the pr imi ti ve con­
cerned. 

So far we have not related the pointing action to visi­
bility aspects. Apart from sensible, each primitive can also 
be visible or invisible. Many hardware poin devices 
(e.g. lightpens) identify sensibility and vi lity. We 
have deliberately chosen for the separate concepts, because 
we can give a meaningfull interpretation for each combina­
tion of (in)visibility and (undetectability. For instance, 
in order to change an invisible move, one must first identi­
fy it. This concludes the descr ion of the detection 



77 

primitive, inside the ILP. 

On implementation of the interactive satellite facili­
ties we will introduce a number of external actions that are 
built upon the existing primitives. To give the reader an 
indication of the type of actions we have in mind, we give a 
few examples. 

One can specify several detectors, even conditionally, 
so that the basic detection structure of picture can dynami­
cally vary. This gives a possibility to introduce unions and 
intersections for sets of primitives. 

Each detectable node can identify itself 
string. In this way one can identify the 
tree from primitive to detectant. 

6. Conclusion. 

means of a 
the the 

We tried to show that we designed a general but simple 
scheme in which a large variety of language constructs can 
be fitted. It must be admitted that not everything we want­
ed in the language can be modelled this way. We will give 
two examples. 

In order to be able to consider the two-dimensional 
coordinates as a subset of the three-dimensional ones we had 
to add a construct called subspace. The subspace mainly 
behaves like an attribute. However, we also wanted con­
sistency between various attributes and between attributes 
and picture elements with respect to dimension. This could 
be obtained only by putting constraints on ILP programs that 
contain a dimensional mix. In this case the constraints are 
completely expressed by syntax, so that they do not have any 
influence on dynamic aspects. 

The scaling (by transformations) of line 
elements produces the same line style pattern a 
line itself changes. To remove this restriction we 
have to maintain a dynamically changing unit of measure 
which may be inspected by any attribute. 

Many other cases (generalised windows, for instance) 
have been reserved for future extensions of the 

Our main goal now is to gain experience with it as 
quickly as possible by applying it in the way mentioned in 
the introduction. 



7B 

REFERENCES 

[l] P.J.W. ten Hagen, P. Klint, H. Noot and T. Hagen, 
Design of an Interactive Graphics System. 
MC Report IW36 1975 

[2] T. Hagen, P.J.W. ten Hagen, P. Klint and H Noot, 
The ILP, Intermediate Language for Pictures, 
MC Report, to appear. 

% 



ABSTRACT 

SATELLITE GRAPHICS 

J VAN DEN BOS 

lnformatica I Computer Graphics 
Faculteit Wiskunde en Natuurwetenschappen 

Universiteit Nijmegen 

79 

In this paper we describe the development of computer graphics via 

satellite computers coupled to a large host computer. We study in particu-· 

lar systems where parts of the application may run either in the host ma­

chine or in the satellite or in both, so-called configurable programs. 'I'wo 

major implementations, CAGES of the University of North Carolina, and 

ICOPS of Brown University receive special attention. The advantages and 

drawbacks of both systems are discussed. An alternative approach which is 

in the proposal stage at the University of Nijmegen, utilizing a tightly 

coupled network of microcomputers in lieu of a satellite is described. 'l'his 

microcomputer complex serves as a special purpose vehicle for graphics 

through a pre-planned distribution of the graphics workload. Present pos·­

sibilities and future developments of such a complex are discussed. 



80 

1 . INTRODUC'l'ION 

There are in principle three direct methods to attach a Computer 

Graphics display device to a computer (see Fig. 1). From a configurational 

point of view the simplest way would be to have a graphic terminal con­

nected directly to the computer, in the manner of an ordinary I /0 peripheral 

(see Fig. la). In addition to performing all the computational work for the 

application program the computer would create display lists which on sub­

sequent interpretation (scanning) would generate the displayed images on 

the screen of the graphics terminal by means of direct I/O commands. For a 

refresh-type terminal this scanning followed by the r/o transfer would have 

to be repeated at least every 1/30th of a second to prevent flicker of the 

displayed image. On top of this the computer would have to take care of 

keeping the display List up-to-date, and of general display buffer manage­

ment. It would also have to handle interrupts (attentions) from a diversity 

of graphics input tools such as alphanumeric keyboard, light pen, tablet, 

function keys, joy stick, mouse, tracker ball, control dials and other 

esoteric interaction devices. For a moderately complicated graphics appli­

cation these demands already require a reasonably powerful computer. 

In the arrangement shown in Fig. lb we equip the display station with 

some local intelligence, the Display Processor Unit or DPU. In this way we 

move the job of scanning the display list to the graphics terminal. The DPU 

interpretes the display 1.ist through a direct port (DMA) to the memory of 

the computer. Frequently the DPU is also capable of the initial handling of 

user or program generated attentions. 

Due to the high bandwidth required interference from the DPU with 

the CPU could become significant. This is especially so for a raster scan 

display device where this interference is so high as to virtually rule out 

this configuration. 

We advance a little further (see Fig. le) by equipping the DPU with 

its own memory, often but ambiguously called a display buffer. In this sit­

uation we have two copies of the display list, one which resides in main 

memory, the other one which sits in the display memory. In terms of direct 

graphics support all the central processor does in this case is the con­

struction and maintenance of the original of the display list, and buffer 

management in general. After each refresh cycle the CPU may (but does not 

have to) transfer part or all of a display list to the display station. 



81 

The construction of this display list in no way interferes with the scan·­

ning proces of the DPU, thereby ensuring a smooth and fli.cker···free display. 

While the DPU is regenerating the image the CPU can do useful work i.n the 

context of the graphics application under consideration or possibly for 

some unrelated job running simultaneously with the graphics program. 

In the situation just sketched it was implied that in principle the 

computer may be used in a multiprogramming mode. In actual practice the 

load on the CPU for many graphical applications involving large amounts of 

"number crunching" or dynamic display (animation) turns out to be such that 

either the graphics program or other programs are degraded more or less 

seriously. We face the paradoxical situation that in most cases graphics 

can co-exist very nicely with other programs, yet in some cases the peak 

requirements are such that the computer has to be dedicated for longer or 

shorter time to the graphics program. Since the latter cannot be guaranteed 

on a multiprogramming system we have to accept the fact that applications 

such as real-time motions cannot be run while other jobs are present. 

A partial solution to this problem is to augment the graphics terminal 

by a small to medium sized computer which is connected via a broad band 

connection to a large multiprogrammed host computer (see Fig. 2). If we 

select for this computer one of the advanced mini- or midicornputers, pos­

sibly equipped with floating point arithmetic and disk storage, a number of 

tasks such as windowing, clipping, keyboard entry, lightpen tracking, coor­

dinate transformations, attention handling and of course regeneration can 

be done locally. At the same time the host computer will be available for 

complex computations or data manipulations and for those programs which 

require a large data base. 

In this set-up graphics terminal with local computer function as a 

graphics satellite of the host. This solution offers a local monopoly as 

well as host multiprogramming. In addition it is possible that the satel­

lite is used to run graphics programs in stand-alone mode in which the con­

nection with the large computer is left unused. The advantages of this 

alternative in the satellite system are clear: many applications do not 

need the host any more -· thereby improving throughout and response time 

for all users concerned. 

2. PROGRAMMING THE SATELLI'l'E-HOST SYSTEM 

Having a graphics satellite offers several alternatives to the graphics 

program. Part of the program may be run on the host machine and other parts, 



82 

e.g. those parts which interact with the user on a short·-response time basis 

may be advantageously put on the satellite computer. 

Usually the distribution of program segments is not a prerogative of 

the applications programmer. The implementor has fixed this choice in the 

implementation. For the programmer the advantage is that the very existence 

of the graphics satellite station is transparent. It protects him from get­

ting involved in multiple languages, operating system idiosyncrasies, com­

munication protocol and hardware details. It also provides a measure of 

portability, since changing the satellite system will probably not neces­

sitate alternation of the source code of the program. In general the appli­

cations part of his program will be running on the host machine while low­

level graphics support routines will reside in the satellite. Information 

exchange between the two program components will be accomplished by means 

of message exchange on the basis of some graphics (or more general) proto­

col. This way of doing satellite graphics is called distributed processing 

with static division of labor. 

A typical example of this situation occurs under GPGS [1 , a satellite­

host graphics support system which allows the user to use the satellite in 

stand-along mode as well as in a configuration where the application is 

running on the host routines, while the satellite runs the device .. ·dependent 

routines such as picture compilers (which convert device-independent dis­

play code into device-dependent display lists), display buffer management, 

regeneration, basic attention handling and keyboard entry. In the latter 

situation communication between host and satellite is maintained by mes­

sages transmitted across a high-speed link. For the programmer there is no 

way to directly access this level nor influence the distribution of routines 

over the processors, even if in certain situations this turns out to be 

non-optimal. In particular, short of running the complete application on 

the satellite, there is no way to put any application routines on the satel­

lite. In several instances, e.g. when these routines directly deal with 

man-··machine interaction, this may be a severe disadvantage. 

Another drawback of this static division of tasks is that the satel­

lite hardware can never be fully exploited by the applications programmer. 

MOOL'l'ON and CORi'lijAN [2] report on a system consisting of a host com­

puter supporting several dissimilar graphic satellite processors in which 

remote interaction programs may be specified in the host through an Inter­

·action Language. Semantically this language refers to a virtual graphics 



83 

satellite called the Prograrmnable Graphics Processor (PGP). This PGP is 

equipped with general purpose registers, string registers, and a stack, as 

well as a large number of special purpose display registers (e.g. LPX and 

LPY indicate the position of a lightpen hit, etc.) . PGP consists of a pic-­

ture processor and an interaction processor. The latter one communicates 

with the former one through the display registers and so-··called graphic 

channels. These channels provide access to picture segments, which may be 

manipulated by assi.gning values to certain attributes such as color, line 

texture, intensity etc. of one or all graphic channels. The PGP's run as 

interpreters in the satellites. Satellites are down-loaded from the host 

with the pre-compiled PGP interaction programs. After interpretation the 

interaction routines are activated by attention generated by the user. 

This work may be considered as a follow-up of the Interacti.ve Control 

Tables of CO'I"l'ON [3] which were also used to specify, in the host, inter­

action programs to be run on the satellite, thus ensuring a rapid response 

to graphics interaction demands. 

A more powerful and flexible situation occurs with dynamic d.ivision 

of .Iabor. In this case the programmer is given some decision-making power 

with respect to the placement. of program segments - his program then be­

comes conf.igurab.Ie. This could be utilized to enhance the efficient execu-­

tion of his program, to imporve response time, or to adapt his program 

configuration to the total load of the host computer. 

In Section 3 we discuss a system that allows configurable programs at 

compile-time, and in Section 4 a system which allows complete dynamic con­

figurability, i.e. at execution-time. F'inally in Section 5 a multi micro­

computer system for satellite graphics is proposed. 

3. CAGES 

Dynamic division of labor may be done at compile-time, at binding-· 

time, load time, or at. execution-time. In this order we find increasing 

flexibility but also increasing complexity in support. If the division is 

done at compile-time, then in many cases the user has to program in two 

langua.ges, one for the host and one for the satellite. 

The University of North Carolina's system CAGES [4] (for Configurable 

Applications for Graphic=' Employing Satellites) is a graphics programming 

system which allows configurability at compile-time (actually at 



84 

preprocessor-time) to programs written in an extended subset of PL/I, which 

has special language constructs, mostly of declarative type, which describe 

the desired program configuration. Program procedures and data can be easi­

ly reassigned from one computer to the other, thus modifying the division of 

labor for a given program. CAGES actually simulates a dual processor system 

with a single main memory, through the following services (quoted from 

ref. 4): 

"(1) Inter-computer subroutine Cl'.LLs and RETURNS. A subroutine call exe­

cuted on one computer and targeted to a subroutine resident on the 

other computer is known as a remote procedure caLI. It is supported 

just as one would expect. A message containing the subroutine's name 

and parameters is sent to the computer where the subroutine is to be 

executed. Following its execution, a message containing results 

(modified parameters) is sent back, and the calling routine continues 

its execution. 

(2) Inter-computer CONDITIONs. A SIGNAL statement or interrupts on one 

computer raising a CONDITION for which there is an enable ON-BLOCK 

in the other computer is much like a parameterless remote procedure. 

It is supported in essentially the same manner as a remote call. 

(3) GLOBAL data references. Variables with EXTERNAL scope which may be 

referenced from subroutines in both computers are known as GLOBAL 

variables. If, when referenced, a GLOBAL variable is not located in 

the memory of the referencing computer, the reference is said to be 

a remote reference. 'fhe CAGES system handles such references by ob­

taining the needed data from the remote computer and placing a local 

copy of it in the memory of the referencing computer. The program is 

than allowed to access this copy." 

A block diagram of the complete system is given in Fig. 3. The CAGES 

system is implemented on an IBM 360/75 host computer connected via a 9600 

baud line to a PDP 11/45 satellite with a Vector General display device. 

In this system the intelligence is distributed over three rather than two 

processors, because the display device has a quite powerful DPU itself. 

Application programs are written in the PI./I subset, which is roughly 

the PL/C (Cornell PL/I compiler [5]) subset. At this point the programmer 

still assumes his program will run on a single computer. Next he specifies 

the desired division of labor by indicating the assignment of remote 



procedures and remote data (GLOBALS). He does this with the language con­

structs in the extension of the subset. 'rhe complete source code goes to 

a preprocessor. 

85 

The preprocessor creates two files of source code, one for each com­

puter. 'I'hese source files are processed by PL/I compilers with code emittors 

for the host and the satellite. Remote procedures are replaced (see Fig. 4) 

by stubs (dummy procedures) which call the remote procedure by sending a 

formatted message, containing the entry point and the parameters, to the 

other machine. On return from the remote procedure call the stub will up­

date any variables affected by returned results, and finally the stub will 

return control to the next statement in the (local) calling program. Global 

variables are not assigned to one computer but move between computers de­

pending on which computer references the global (see Fig. 5). Initially, 

globals exist nowhere. Storage will be allocated for each one of them by 

the computer which first references them. Somewhere before this happens in 

the program the preprocessor has inserted a run-time system call to acquire, 

if necessary, one or more global variables from the remote computer. Checks 

have to be made to ascertain that the required copy is the most recently 

changed one. Furthermore, since the allocation of globals is done dynamical-· 

ly some garbage collector has to free the storage used by abandoned globals. 

From the description it should be clear that CAGES is not a graphics 

package in the usual sense. Indeed, any graphics subroutines or other 

graphics support used by the application program appears to the CAGES 

system as part of the application. Thus CAGES does not require or provide 

for any particular type of graphic data structure. In fact, the CAGES system 

is equally useful to non-graphics programs for which distribution is desired. 

The decision to allow remote data has been an expensive one. In the 

first place it is not trivial to describe data items in a computer .i.ndepen­

dent way; furthermore checking the validity of a global variable, alloca­

tion and garbage collection add substantially to the overhead. In fact it 

turns out that 80% of the code in the run-time system is for managing the 

globals. As we shall shortly see, these arguments have been sufficient 

reason for ICOPS not to allow remote data. 



86 

4. ICOPS 

Although CAGES ·is a great stride forward from static division of labor, 

it still suffers from the fact that the distribution remains fixed after 

compile-time. In particular, configuring a program with the objective to 

adapt it to the external load on the host computer, which may vary from in­

stant to instant, is not possible. This may mean a suddenly poor response 

time for a program that initially was configured correctly, due to time-de­

pendent factors which are beyond control of the programmer. In practice it 

could mean that a user would have several different configurations of one 

and the same program. A particular version would then be started according 

to a calculated "guesstimate" by the user. 

l"rom the theory of binding we know that maximal flexibility is achieved 

in a situation where binding is postponed as long as possible. In the con­

text of distributed processing this means that ideally the binding of pro­

cedures and data to a processor should be done at execution time, so that 

the user may reconfigure his running program as the environment requires. 

The Interconnected Processor System (ICOPS) of Brown University [6] 

is a system which allows this completely dynamic distribution of programs. 

It is implemented for an IBM 360/67 host computer, running under the 

CP/CMS operating system, and attached (via its multiplexor channel) to a 

graphics satellite (see Fig. 6), consisting of two m.icroprogrammable Digital 

Scientific ME'I'A 4 computers, the ME'l.'A 4A and the META 4B. The META 4a has 

been microprogrammed to serve as a general purpose (satellite) processor. 

It has therefore been equipped with an IBM/360 like instruction set extended 

with special instructions for list processing, data handling and communica­

tion. The META 4B functions as a programmable display processor driving a 

Vector Genera]. display device. This processor serves in effect as a layer 

around the already reasonably powerful Vector General display. This extra 

level offers a display instruction set tailored to the wishes of the systems 

programmer. The satellite system is also equipped with an in-house designed 

high-speed parallel matrix processor (SIMALE) to perform homogeneous coordi­

nate transformations, windowing and clipping of graphic data for up to 1500 

vectors during a single refresh cycle. The META 4A runs under a layered 

operating system, the lowest level of which is implemented in firmware. 

Both META 4's share the same main store. 

ICOPS allows procedures to be reallocated between host computer and 



87 

satellite at run-time. As a consequence the system supports inter-processor 

calls and returns. Since procedures move dynamically special provisions have 

to be taken to trap calls to procedures absent on the processor from which 

the call originated. 

One can distinghuish three major components in ICOPS: 

1. A high-level language with a compiler capable of generating code for 

host as well as satellite. It should contain constructs which facili­

tate the movement of procedures from processor to processor. Original­

ly LSD (language for System Development [7]) was used. Th.is is a power­

ful PL/I like language which allows the programmer to get as close to 

the hardware as he wants yet at the same t.ime providing him with all 

the advantages of a high-level language. Due to implementation problems 

LSD has eventually been dropped in favor of ALGOL W [8]. In add.it.ion 

to object module output the compiler for the language also produces 

symbol tables to go with each object module. 

2. A 1.ink-ed.it time preprocessing system which creates information which 

later on allows procedure reallocation. It basically performs three 

functions: 

a. It assigns initial placement attributes to the procedures and marks 

the modules which are el.igi.ble to be moved between processors (a 

movable procedure is called ICPable) 

b. All ICPable procedures are embedded in a dummy procedure in which 

a static switch variable .indicates where the called procedure re­

sides, and the call to the procedure is replaced by the switch 

selected real CALL or a call to the run-time system in case the 

procedure resides on the other processor (cf. CAGES). 

c. It places information from the compiler symbol table (type, length, 

etc.) in the dummy procedure for all static variables and para­

meters. 

3. A run-time system which allows the user to manage and control proce­

dure (re-) allocation. This system contains a Monitor which can be en­

tered by user call or via an attention signal from a graphics terminal. 

Th.is monitor allows the user to request procedure reallocation, statis­

tics and trace facilities. In addition the run-time system takes care 

of procedure call resolution (setting the switch in the dummy module), 



88 

procedure movement, for which parameter passing (using the symbol 

table) and communication is performed, as well as marking the old 

copy of a procedure inactive. Furthermore the system offers facili­

ties for performance measurement as a function of allocation, and de­

bugging services through a built-in breakpoint mechanism. 

ICOPS does not allow Global variables. The implementation of this 

type of variable was deemed undesirable because of all the problems related 

with it. In effect the bookkeeping connected with Globals easily surpasses 

the work connected with ICPable procedures. 

Various other restrictions relate to multitasking, which is not sup­

ported, pointers (which can only be relative to some point in a structure 

which is passed as a parameter of an ICPable procedure), and recursive ac­

tivations of moving procedures. 

We conclude that with a system such as ICOPS a knowledgeable user is 

not only able to adapt his program configuration to a sudden upsurge in 

the load on the host computer but he may also fine-tune his procedure allo­

cation by giving him complete control over the dynamic allocation of proce­

dures marked movable, aided by a sensible interpretation of the collected 

statistips as well as tracing information. 

It is clear that systems like CAGES and ICOPS do not aim at the one­

shot program or the beginning programmer, but are meant to be used for 

complicated (graphics) production programs for which optimized computer 

usage is a primary requirement. For simple programs the run-time overhead 

exacts a price which, in all likelihood, users may not be willing to pay. 

In the meantime the interpretation of the statistics collected during 

distribution of programs has turned out to be far from easy. Both with 

CAGES and ICOPS experiments are being done which use a distribution model 

to guide the movement of procedures [9,10]. 

5. A MULTI MICROCOMPUTERS SYSTEM FOR GRAPHICS 

In this Section we discuss a hardware configuration which not only 

supports stand-alone and satellite graphics but which in addition refines 

the concept of distributed processing inherent in the division of labor 

across main computer and satellite. 

The approach taken departs from the general purpose computing idea, 

because it proposes a configuration tailored to a particular application 



89 

area which however may be as wide as computer graphics. 

Briefly the method consists of analyzing the particular area for common 

functions in processing as well as in the way input and output are handled. 

These common functions are then implemented by fast microcomputers. In this 

way each microcomputer becomes a speci.al purpose computer, in effect be­

coming a black box labeled with a certain function. 

More particularly, for graphics, we distinguish a number of tasks that 

have to be handled for each display terminal, such as attention handling, 

display buffer control and update functions, picture compilation (display 

list creation), keyboard entry and response, clipping against a viewport, 

(viewport) transformations, and conversion from logical (device-independent 

or user) coordinates to screen coordinates. All these functions may be 

termed device-dependent. They normally (see e.g. [1]) are put i.n a qroup of 

modules that handle the device-dependent functions, the device-drivers. 

On the device-independent level we discern such functions as di.splay 

buffer management, possibly conversion from graphics program calls to an 

.intermediate representation, system transformations (translation, scaling, 

rotation, shearing, perspective), cl.ipp.ing against a window, and hidden~ 

line removal. 

The first conf i.guration we su9qest is called the terminal processors 

system and .is depicted .in Pig. 7. It consists of a central micro- or m.in.i·­

computer (/pCO) handling the device-independent functions. Th.is central 

computer is connected to as many m.ini- or microcomputers (/µCi., .i>O) as 

there are graphics terminals. Each of these 'terminal' microcomputers 

implements, possibly w.ith the help of multiple microprocessors, the device­

dependent functions for that particular terminal. Note that each terminal 

has .its own mi.crocomputer, even if there are terminals which are alike. 

'rhe central computer routes device-dependent function requests to the ap­

propriate microcomputer. Although .in a first approx.imat.ion not strictly 

necessary, functions could be performed .in parallel, w.ith the central 

machine taking care of synchronization. By tailoring the instruction set 

of the microcomputers to the terminal requirements i.t is hoped that they 

will handle the.ir tasks more efficiently than one satellite computer. 

Furthermore .it is possible to make all terminals look alike to the program-·· 

mer by wrapping the terminal into a layer of code on each microcomputer 

which presents a uniform .interface to the central microcomputer. 'rhis 

would enable the software to implement the .idea of a virtual idealized 



90 

terminal, a concept on which e.g. GPGS and IG [11] as well as PGP (see 

Section 2) were built. Moreover, the addition of a microcomputer to a 

simple graphics terminal (see e.g. [12] may significantly enhance the 

ca.pabili ties of the terminal, in effect making it more intelligent. 

An alternative to this configuration, the dedicated function proces­

sors system, is presented in Fig. 8. Here all terminals are handled by 

the central microcomputer, which allows among other things identical termi­

nals to be handled by reentrant modules. Special graphics functions would 

be handled by dedicated microprocessors, tailored to their application. 

A third approach is displayed in Fig. 9. It basically is a combination 

of the two former configurations, and therefore has the advantages of both. 

A disadvantage of this system is that due to the greater complexity of it,, 

the controlling software residing in the central microcomputer is going to 

be significantly more complicated. 

Which of the three approaches to adopt is a matter of research. It 

seems that in terms of the complexity of control software either the termi­

nal processor system or the dedicated function processors deserve to be 

studied first. During this initial phase the starting point will be static 

division of labor. Later on when a system has been shown to be successful 

one might study the influence of movable data and procedures on the con­

figuration. This may involve some kind of analysis of the procedures in 

order to determine which microcomputer best suits the procedure. 

Although the proposals oatlined above seem rather static, it is pos­

sible, given a more advanced state of the technology, to introduce a great 

amount of flexibility by using microprogrammable microcomputers. In this 

way we may alter the function of a dedicated microprocessor as reguired, 

catering to more generality as well creating the possibility to switch in 

a spare microcomputer when one of the others fails. Actually these micro­

processors already exist in the form of the so-called bit-slice processors. 

It is our opinion however that combining bit-slice processors into a micro­

computer with a user-defined instruction set is something far beyond reach 

of the experienced programmer or systems designer. We feel that, short of 

introducing hardware engineers, the only real possibility lies in vertical­

ly microprogrammable microcomputers. The ultimate flexibility will be 

obtained when the computers can be dynamically microprogrammed, meaning that 

we can change instruction sets (which may be stored on a disk or in the 

main memory of the central computer) while running. Progress in this area 

will be greatly aided by high-level microprogramming languages. 



91 

6. CONCLUSION 

Satellite graphics has been proved a valid concept. Several implemen­

tations of systems based on distributed processing with static division of 

labor exist, although the division of labor has usually been decided on an 

ad-hoe basis and then only for graphics systems software. Dynamic division 

of labor has so far only been demonstrated in the CAGES and ICOPS systems. 

A systematic experiment seems to be needed to determine whether the optimal 

division of labor will change drastically across a wide range of graphics 

applications or whether dynamic division is only a one-time experimental 

vehicle that points out an optimal situation for practically all graphics 

applications. If variable divisions of labor really turns out to be impor­

tant then it is almost without question that microcomputers, and especially 

the dynamically microprogrammable variety, will play a large role in this 

kind of systems. 

REFERENCES 

L 

2. 

GPGS, A device independent general purpose graphics system staYld-

alone and satellite graphics, L.C. CARUTHERS, J. VAN DEN BOS, 

Nijmegen University. A. VAN DAM, Brown University, Computer Graph-· 

ics (Siggraph····ACM) 11,2(1977), pp. 112-119. 

inter-

actions in a host/satellite configuration, Computer Graphics 

(Siggraph-ACM) 10,2(1976), pp. 204-211. 

3. I.W. COTTON, Languages for attention handling_, Proc. Comp. Graph. 70 

Syposium, Brunel University, 1970. 

4. G. HAMLIN & ,J .D. Foley, Configurable applications graph·ics 

employ-ing satelU.tes (CAGES), Computer Graphics (Siggraph-ACM) 

9,2 (1975), pp. 9-19. 

5. R.W. CONWAY & T.R. WILCOX, Design and implementat-i.on of a 

compiler for• PL/I, CACM 16,2(1973)' pp. 169-179. 

6. A. VAN DAM & G.M. Stabler & R.J. HARRINGTON, IntelUgent satellites 

interactive graphics. Proc. IEEE 62,4(1974), pp. 483··492. 

G.M. STABLER, A system for interconnected processing, Ph.D. 'l'hesis, 

Brown University, Providence, R.I. , 1974. 



92 

'Jo D. BERGERON, J. GANNON, D. SHECTER, F. TOMPA & A. VAN DAM, Systems 

programming languages, Advances in computers 12, Academic Press, 

New York 1972. 

8. N. WIRTH & C.A.R. HOARE, A contribution to the development of Algol, 

CACM 9,6(1966), pp. 413-431. 

H.R. BAUER, s. BECKER, S.L. GRAHAM & E. SA'rTERTHWAITE, Algol w. Comp. 

science report 110, Stanford University 1669. 

9. G. HAMLIN, Configurable applications for satellite graphics, Computer 

Graphics (Siggraph-ACMJ 10,2(1976), pp. 196-203. 

10. J. MICHEI, & A. VAN DAM, Expe1°ience with distributed processing on a 

host/satelUte graphics system, Computer Graphics (Siggraph-ACM) 

10,2(1976)' pp. 190-195. 

11. J.F. BLINN & A.C. GOODRICH, The internal design of the IG Routines, 

an interactive graphics system for a large Nmesharing envi1°on­

ment, Computer Graphics (Siggraph-ACM) 10,2(1976), pp. 229-234. 

12. R.G. KELLNER & r,.D. MAAS, A developmental system for microcomputer 

based intelligent graphics terminals, Computer Graphics (Siggraph­

ACM) 10,2 (1976) I pp. 139-142. 



llemory 

CPIJ 

I 

Memory 

Figure 3 

A: l'i'IDC; 
OCL X EXT; 

00 I•I TD 21>; 
CALLll;-

END; 

110 I•I TO 20; 
CALL C; 
x:ix+1; 

END; 

END A; 

Displav 

i.. 

lligll-speed connetliD!I 

CAGES 

~ 
Iii: PRDC; 

OCL I FIXED; 

~ 
DCL X EXT; 

X=2'61; 

ENO 11; 

C: PROC; 

END C; 

Figure 5 

CPU 

Memory DPll 

93 

Figure 1 

Figure 2 

il!ll:NRM; 
ou~IK)emm; 

..... mo; 

Figure 4 



94 

Figure 6 

T4-~~ ..... w-1 

15~---...J 

"HD~!l ll IVUl.S J Tf 
tUPii!C~ snrEll! 

~""""'~--T1 

~----T2 
r=-~--TJ 

.._.,_,,_..,w-.l 

8 

Figure 7 

Figure 9 



COMPUTER AIDED DESIGN OF MECHANICAL COMPONENTS 

H. RANKERS 

T.H. Delft 

95 

In het kader van dit infonnatica-colloquium 1976/1977 COMPUTER 

GRAPHICS zal ik proberen uiteen te zetten, waarom en hoe wij de computer 

inclusief de beeldbuis in ons werk betrekken. Als werktuigbouwkundig 

ingenieur en hoogleraar voor bedrijfsmechanisatie en leer der mechanismen 

zal ik mij beperken tot het ontwerpen van mechanische componenten "met 

ondersteuning door de elektronische rekenmachine". 

De koppeling van de twee vakgebieden -leer der rnechanismen en 

bedrijfsmechanisatie- schept de mogelijkheid theoretische beschouwingen 

en alle tot nu toe verworven inzichten in opbouw en gedrag van mechanismen 

toe te passen in het kader van de bedrijfsmechanisatie. De gehele opzet is 

daarom gericht op toepassingen in de praktijk. 

Tot een belangrijk deel van de aktiviteiten in de bedrijfsmechanisa­

tie behoort het uitwerken van een cyclus van het weg-tijd-diagram voor alle 

in een machine benodigde bewegingen van materiaal en/of van de gereed­

schappen. Deze deelaktiviteit kan erg werkintensief zijn als op eerder 

genomen beslissingen moet warden teruggekomen en een iteratieve optimali­

satie moet worden nagestreefd. 

De volgende deelaktiviteit is dan het zoeken van een energie-omzetter 

met een dusdanige programmering, dat hij als functie-generator in staat is 

de gewenste beweging goed of nog aanvaardbaar te approximeren. 

In termen van de systeemtechni.ek is de functie-generator een black 

box. De gewenste beweging wordt de doelfunctie (goal function, Ziel­

funktion) van het synthese-proces genoemd. In het kader van deze lezing 

zal ik mij beperken tot dit ene onderwerp: de synthese van mechanismen. 



96 

De algemene theorie van de synthese van mechanismen .is beschreven in 

de dissertatie van de spreker [1]. 

Volgens deze algemene theorie is een systematische fout in de syn­

these van eenvoudige mechanismen alleen dan te voorkomen, als eerst wordt 

bekeken welk type mechanisme uit de totale verzameling als functie­

generator Uberhaupt voor de benadering van de doelfunctie in aanmerking 

komt. Pas als dit systemat.isch vastgesteld is lijkt het zi.nvol de af­

met.ingen van het gekozen type te bepalen. 

Als methode voor het systematisch selecteren werd in [1] voorgesteld 

de mechanismenfuncties door middel van Fourier-·coefficienten te karak­

teriseren en met de Fourier-coefficienten van de doelfunctie te verge­

lijken. 

De grote bewerkelijkheid van het synthese-proces was voor de werk­

groep aanleiding voor het ui twerken van een computerprogramma 'I'ADSOL 

(= 'l'YPE AND DIMENSION SYNTHESIS OF' LINK MECHANISMS) [ 2]. 

De resultaten, waarover hier gesproken wordt, werden voltooid in de 

THD-werkgroep CADOM (= Computer Aided Design Of Mechanisms) en hebben als 

doel de elektronische rekenmachine toe te passen bij de synt.hese van 

mechanismen. 

De result.at.en zijn onmisbaar bij de opleiding van ingenieurs die 

aldus in staat zijn concrete opgaven t.e realiseren. 

Als men over een weg-t.ijd-diagram spreekt moet. men ook over de 

synt.hese van mechanismen spreken. 

Naast. het. vermelden van de result.a.ten in mijn hoofdvakcolleges .in 

het. 4e en Se studiejaar wordt get.racht de student.en meer inzicht en er-­

varing te geven door hen bij het. werk t.e bet.rekken. 

Dit gebeurt. door het verstrekken van concrete en relat.ief weinig tijd 

vragende opdrachten om bepaalde bouwst.enen uit t.e werken en te test.en of 

het syst.eem aan problemen ui t. de prakt.ijk t.e t.oetsen. 

Zodoende .is overeenkomst.ig harde afspraken in ons project.boek een 

eigen programma-bibliotheek tot stand gekomen. 

Hier in staat. een verzameling van get~'st.e bouwst.enen voor de invoer, 

uitvoer en de numerieke behandeling van gegevens [3]. Dit wordt. naar 

behoefte uitgebreid en eigenlijk dageli.jks met veel prof.ijt bij bet 

schrijven van hoofdprogramma's en subprogramma's toegepast. 

Een u.itgehreide, op de gebruiker gerichte beschrijving van de 

synthese volgens het TADSOI,-programma is in [2] gegeven, zodat. ik miJ hier 



97 

kan beperken tot het nagaan van de belangrijkste contouren. 

(In de laatste 8 minuten van mijn spreektijd zou ik U dan graag een video­

tape t.onen, die kort.geleden door de audio visuele dienst van de Technische 

Hogeschool Delft is opgenomen.) 

De Fourier-representatie van een periodieke functi~ 

Elke funct.ie f(a), die in het interval 0 ~a~ 2rr continu is, d.w.z. 

elke in de techniek voorkomende periodieke funct.ie kan men in een Fourier 

reeks ontwikkelen en i.n twee gedaanten weergeven: de c-$-representatie en 

de cos-sin-representatie. 

f (Cl) C sin 
n 

A0 + l (A cos na + B sin na) . 
n=l n n 

De mechanismenfuncti.es en de doelfunctie worden vervangen door deze 

Fourier-representaties. Deze vervanging schept de mogelijkheid zowel de 

mechanismenfuncties als de doelfuncties ondubbelzinnig te karakteriseren 

en onderling te vergeli.jken. Mechani.smen met overeenkomstige Fouri.er­

ontwikkelingen hebben overeenkomstige ei.genschappen en zijn i.n kinematisch 

opzicht tenmi.nste bij benadering gelijkwaardi.g [4]. Dank zij het feit, dat 

de hogere orde Fourier-coefficienten van mechanismenfuncties met aanvaard­

bare kinematisch-dynamische eigenschappen al gauw tot nul convergeren, is 

een goede vervanging van de periodieke functies te bereiken met het be­

rekenen van minder dan 24 Fourier-coefficienten. 

Het karakteriseren van mechanismen 

Uitgebreid onderzoek van MEYER ZUR CAPELLEN (o.m. [5]) en sommige 

anderen (zie lit. in [2]) heeft aangetoond, dat het noemen van de eerste 

zes Fourier-coefficienten voldoende i.s om een mechanisme d.m.v. de 

Fourier-coeffici.enten van zijn nulde orde overdrachtsfunctie te laten 

beschrijven. 

Omdat de periode van 2n vereist i.s, moet de Fourier-coefficient van 

de eerste orde, d.w.z. c 1 altijd aanwezig zijn. De belangstelling richt 

zich daarom op het al dan niet aanwezig zijn van de hogere orie Fourier­

coefficienten van de orde twee t/m zes. Is N het aantal voorkomende si.g··· 

nificante Fourier-coefficient.en, dan zijn er K mogelijke combinati.es van 



Fourier-coef f icienten met 

zie ook tabel 1. 

De type-synthese 

Het aantal N significante Fourier-coefficienten en dient als het 

eerste criterium van de selectie van mechanismen. 

De combinatie van de Fourier-coefficient c1 met N-1 andere signifi­

cante coefficienten dient als het tweede criterium van de selectie van 

mechanismen. 

Vanaf het derde criterium wordt de cos-sin-representatie bij de 

selectie van het mechanismentype betrokken. 

De dimensie-synthese 

De berekening van de parameters van een gekozen type mechanisme 

noemen wij dimensie-synthese. Omdat de Fourier-coefficienten volledig 

bepaald zijn door de dimensies van het mechanisme, stelt de inversie ons 

in staat de parameters als functie van diverse Fourier-coefficienten te 

formuleren. Deze inversie is niet altijd even gemakkelijk uit te voeren. 

In het geval van het kruk-sleuf-mechanisme van de tweede soort met een 

ronddraaiende uitgaande beweging zijn de twee parameters bepaald door [6] 

i AO 

A d l k (1~ 1,3,5,7,9 b AO) ' 
m m 

met kl 0.999 958 40 

k3 0.124 448 42 

ks 0.002 166 93 

k7 0.002 ~2 12 

Kg 0.002 086 52. 

Het overschot aan informatie 

De zes Fourier-coefficienten bevatten meer informatie dan voor het 



ctrum van 
rier~ coe icie 

CK, CL 

R 

edrijfsmech 

c 

naam 
verza 

SINGLE 

DOUBLE 

TRIPLE 

DR E 

nu mmers van de laantal 
hoaere rmonisc lcom 

1 

2 ~ K ~ 6 5 

2 K<L~6 10 

2 K < L < 6 II 10 

2::::K < L < <N~6 u 5 

I 

1e en 2 e or t I 1 
Rankers 
tab. 1 --- i 

'° '° 



100 

bepalen van de mechanismenparameters m.b.v. de waarde van de Fourier­

coefficienten benodigd is. Voor het bepalen van de acht paramaters van het 

mechanisme T004 zijn b.v. slechts drie Fourier-coefficienten nodig. De 

overige Fourier-coefficienten van hogere orde, die mogelijk in de doel­

functie nog aanwezig zijn, doen niet mee aan de berekening van de para­

meters van het mechanisme. Daarom moet er wel worden nagegaan of deze met 

het oog op de gewenste goede benadering inderdaad buiten beschouwing mogen 

worden gelaten. Voor verdere details verwijs ik U naar de publikatie [2]. 

Voorbeeld voor de synthese 

* Fig. 1 toont een willekeurig gegeven doelfunctie s(a ) . Fig. 2 geeft 

het daarbij behorende spectrum van de Fourier-coefficienten en in percenten 

van de eerste coefficient c 1• 

De syntheseprocedure maakt duidelijk, dat de mechanismen T002, T004 

en T008, die in de mechanismen-catalogus [7] nader zijn toegelicht, voor 

de approximatie van de in fig. 1 gegeven doelfunctie in aanmerking komen. 

Ik toon U hier de benadering van de doelfunctie d.m.v. het mechanisme 

T008, die fig. 3, en het mechanisme zelf op schaal onder vermelding van 

de referentiestand en van de startpositie en de draairichting voor de 

benadering van de doelfunctie, zie fig. 4. 

De afmetingen van het mechanisme zijn gegeven door de output listing 

MECHANISME NR. T008 

PARAMATER HEEFT DE WAARDE 

PARAMETER 2 HEEFT DE WAARDE 

PARAMETER 3 HEEFT DE WAARDE 

TAU 1. 719 

L 3 

u -7.642 

Uitbreiding van het systeem 

0.244 

43.50 

0.37 

De waarde van de syntheseprocedure wordt mede bepaald door het aan­

tal mechanismen, dat in totaal in de mechanismen-catalogus is opgeslagen. 

Daarom is de voornaamste bezigheid van de CADOM-groep gericht op 

het uitbreiden van deze catalogus. 

Op dit moment zijn er zes mechanismen met doordraaiende uitgaande 

beweging, 14 mechanismen met heen en weer slingerende uitgaande beweging 



t s ) 

0 

0 

ft 
Bedri 

2 4 6 B 

A it rarely given goal function 
for a translating output motion 

~ 

n--

10 1 

-0 .... 



,.... 
0 
N-

Cn 1.0 l ~ I -c,t 

0.6 J ~ f spectr~m 
of uner 
coefficients 

O.~ -I 1:1 I I 
1~n~6 

belongs 
fig.a 

~ 1-J ~ 

0.2 

0 
1 2 3 ' 5 6 

___ ..,_n s 

fig. 2 



t5 

elf t 
Bedr·j mec 

--~ goalf unction 

-----approximation 

'\ 
~ 

~~ 

Goalfunction and approxim mn 

by mechanism T 008 

----

nkers 
fig. 3 

1--
0 
w 



6 

( s t a rt po sit ion of c r a n k a cc o rd i n g fig. 12 

\ 

/ 
I 

0 \* A~ 

-a 

1\ l 
~. 9 Ao 

7 & 5 4 
r 

"8· s 
I 

9 

s ( *) 

u ) 

startposition of 
slider according 
f i 12 

as weUaswith startpositions of crank and slider 
H Delft I Mechanism T 008 with refe re nee posit ion 

Bedrijfs ech. to approximate the goalfunction,, see fig. 12 

Rankers 

fig. ' 

,_.. 
0 
.!>-



en 19 mechanismen met heen en weer schui vende ui tgaande beweging in de 

catalogus opgenomen. 

waarom benutten wij de beeldbuis? 

105 

Tot hiertoe heb ik U ui teengezet wat in het kader van computer aided 

design of mechanical components nu reeds berekend kan worden. Het doel 

daarbij is het bepalen van het type van een voor de approximatie van een 

doelfunctie aangewezen mechanisme en om de dimensies van de schakels te 

weten te komen. Daarom richt ik mij nu op rte vraag waarom naast het 

benutten van de computer oak de GRAPHICS DISPLAY toegepast wordt. Daarvoor 

bestaan tal van redenen. 

Geen beslissingsalgorithme 

Als het moeilijk of onmogelijk is strenge eisen te f ormuleren en 

als beslissingen meer op ervaring en/of intuitie berusten -maar dan wel op 

een ander n.iveau dan de ouderwetse punaise-methode- dan is het verantwoord 

om op de beeldbu.is over te stappen. 

De toepassing van de beeldbu.is .is bijzonder attract.ief am te demon···· 

streren wat men e.igenl.ijk aan het doen is. De successen hangen samen met 

het feit, dat een ontwerper en constructeur meestal visueel ingesteld is 

en meer informatie kan ontlenen aan een grafiek dan aan een reeks \:)'etallen. 

Het voordeel van de uitvoer op de beeldbuis boven de uitvoer van grafieken 

m.b.v. de printer of de plotter ligt in de mogelijkheid veranderingen en 

bewegingen zichtbaar te maken. De aanvraag voor deze toelichting heb ik 

zelf ook te danken a.an het fe.it, dat de Graphics Groep ter T.H. Delft, 

na een demonstratie bijgewoond te hebben, plez.ier had in onze t.oepassing. 

De interactieve werkwijze m.b.v. de beeldbuis schept bovendien de 

mogelijkheid om het programma versneld te doorlopen, lussen te onder­

breken en sprongen te maken als dat gewenst is, of als de gebruiker 

constateert dat het verloop van bet programma ongewenste resultaten 

opleverL 

1'enslotte willen wij niet vergeten t.e vermelden, dat de interact.i.eve 



106 

werkwijze bijdraagt tot het verkrijgen van ervaring met het ingewikkelde 

rekenproces en de gebruiker in staat stelt de sensatie te ondergaan wat het 

resultaat van een bepaalde invoer zou kunnen zijn. 

Dit laatste heeft vooral betrekking op de resultaten van de Fourier­

analyse van een met weinig punten getekende doelfunctie of op de invloed 

van de toevoeging van een bepaald punt. 

LITERATUURLIJST 

[1] RANKERS, H., Angenahrte Getriebsynthese durch harmonische Analyse der 

vorgegebenen per_iodischen Bewegungsverhal tnisse, Dissertation 

TH Aachen, 1958. 

[2] RANKERS, H. A. VAN DIJX, A.J. KLEIN BRETELER & K. VANDERWERFF, 

TADSOL - Type And Dimension Synthesis of Link Mechanisms. 

A user oriented discription of the computer program. 

Proceedings of the symposium on computer aided design in 

mechanical engineering, Milan 1976, pp. 51-65. 

[3] CADOM-Groep TH Delft: PION - FORTRAN SUBROUTINE PAKKET; 

periodieke functies: input, output, numerieke behandeling, 

Technische Hogeschool Delft, Sectie Bedrijfsmechanisatie en 

Leer der Mechanismen, 1974. 

[4] MEYER ZUR CAPELLEN, W., Uber gleichwertige periodische Getriebe, 

Seifen-Fette-Anstrichmittel, 59.(1957)4., pp. 257/266. 

[5] MEYER ZUR CAPELLEN, W., Die harmonischen Analyse an zykloidengesteuer­

ten Schleifen, Forschungsberichte des Landes Nordrhein-Westfalen 

Nr. 835, Westdeutscher Verlag K6ln und Opladen, 1961. 

(Dort weiteres Schrifttum.) 

[6] RANKERS, H.: Synthese der umlaufenden zentrischen Kurbelsch.Zeife 

zwei ter Art, Mechan_ism and Machine Theory, will be published 

in 1977. 

[7] CADOM-Groep TH Delft, Mechanismen-Catalogus, Technische Hogeschool 

Delft, Sect.ie Bedrijfsmechanisatie en Leer der Mechanismen, 

976. 



L 

INTERAKTIEF ONIWERPEN 

VAN MULTIVARIABELE REGELSYSTEMEN 

A.J.J. VAN DER WEIDEN, P. VALK & O.H. BOSGRA 

Laboratoriurn voor 

Werktuigkundige Meet- en Regeltechniek 

T.H. Delft 

In de regeltechniek tracht men door middel van stuur­

signalen een aantal belangrijke variabelen van een proces 

of systeem konstant te houden of vol0ens een bepaald ge­

wenst patroon in de tijd te laten verlopen. 

107 

De stuursignalen worden toegevoerd aan een korrigerend 

orgaan, zoals bijvoorbeeld het roer van een schip bij de 

scheepsbesturing of een klep welke een massastroom beinvloedt 

de procesregeling. In veel gevallen warden de stuurs 

nalen bepaald door van terugkoppeling gebruik te maken. 

De te regelen grootheid wordt dan gemeten en vergeleken 

met een gewenste waarde; het verschilsignaal wordt door 

een regelaar omgezet in een geschikt stuursignaal. In fig.I.I 

is dit in blokschema weergegeven. 

11erschitsi9nci11l ,-
1 corrigerend 

---,-w9){}-'~ r il!!J®IO@i i----..,..---1-eq or3@an 

!j@WWl1$1@ 

r l!I + e II 

~~ I J ---------

Teruggekoppeld systeem. 



108 

De signalen in dit schema moeten beschouwd warden als 

funktie van de tijd, evenals het gedrag van regelaar en 

proces. Dit betekent dat van het te regelen systeem het 

dynamisch gedrag van belang is, zoals dit wordt beschreven 

door differentiaalvergelijkingen. In veel gevallen is voor 

een beperkt werkgebied het dynamisch gedrag als lineair te 

beschouwen, waardoor gebruik gemaakt kan warden van de 

systeemtheorie voor lineaire systemen en van integraal­

transformaties. De regelaar bepaalt het stuursignaal. 

Zowel om stabiliteit van het teruggekoppelde systeem te 

garanderen als om het geregelde systeem een gewenst gedrag te 

geven dient de regelaar aangepast te warden aan de dynamische 

eigenschappen van het te regelen proces. 

We kunnen hierbij spreken van een regeltechnisch ontwerp, 

dat in een praktijksituatie de volgende punten omvat: 

a. Het vastleggen van de regelopdracht (welke grootheid 

dient geregeld te worden, en op welk korrigerend orgaan 

kan warden ingegrepen); 

b. analyseren van het te regelen systeem (het formuleren 

van een konceptueel. en/of kwantitatief dynamisch model); 

c. Het bepalen van de aard van de terugkoppeling (keuze van 

het type regelaar) en het bepalen van de parameters 

hierin (regelaarinstelling) ; 

d. Het realiseren van deze oplossing door het kiezen, aan­

schaffen en installeren van instrumenten; 

e. Het eventueel op grand van de werking in de praktijk 

nader instellen van de regelaar. 

Indien er in een proces een te regelen variabele is en op 

een korrigerend orgaan wordt ingeg-repen, spreken we van een 

skalair systeem. 



Minder eenvoudig wordt het als het nodig is om een aantal 

variabelen van een systeem te regelen en als hiervoor een 

aantal korrigerende organen ter beschikking staat. Als elk 

van de korrigerende organen invloed heeft op meer dan ~~n 

109 

te regelen variabele, dan spreken we van een multivariabel 

systeem en van een multivariabel regelprobleem. In deze 

definitie moeten we het begri9 "heeft invloed opn in tech­

nische zin interpreteren. Als ~~n van de korrigerende or­

ganen (hierna aangeduid met ingangsvariabelen) steeds een 

duidelijke invloed heeft op ~~n van de te regelen variabelen 

(uitgangsvariabelen) en slechts in geringe mate op elk van 

de andere uitgangsvariabelen, dan kunnen deze ingang en 

uitgang warden beschouwd als behorende bij een skalair sys­

teem. 

Het multivariabele karakter van een systeem ontstaat als 

gevolg van de interne relaties tussen de systeernvariabelen. 

Beschouw daartoe als voorbeeld het mengproces van .2. 

In een vat warden twee massastromen gemengd die elk een 

zekere koncentratie van een bepaalde stof bezitten. De regel­

opdracht houdt in, dat de koncentratie van de uitgaande 

massastroorn en het niveau konstant worden gehouden. Het 

proces kan warden verst=rd door variaties in de uitgaande 

massastroorn en door variaties in de koncentraties van de 

ingaande stromen. 

-·-·1 

--t--

1 

Fig,l.2; Mengproces als voorbeeld van een rnultivariabel systeem. 



1 :lO 

In de figuur is een systeemgrens aangegeven; de systeemgrens 

definieert wat we als "proces" zullen opvatten en wat we als 

"omgeving" beschouwen. 

Signalen welke de systeemgrens passeren zijn: 

a. stuursignalen voor klep 1 en klep 2 (ingangen), 

b. rneetsignalen van een kwaliteitsopnemer en van een niveau­

opnemer (uitgangssignalen), 

c. massastroomvariaties in de uitgaande stroom en druk- en 

koncentratievariaties van de ingaande massastromen (sto­

ringen). 

Een dynamisch model van een dergelijk systeem kan in ge­

lineariseerde en Laplace-getransformeerde vorm weergegeven 

warden door vier overdrachtsfunkties (fig.1.3) 

y1! • I ,__ __ _..+,.. :r ,__ __ ___ 
+ 

+ 

Fig.1.3 Multivariabel systeem met twee in- en uitgangen. 

In principe heeft elk van de inganqssignalen invloed op elk 

van de te regelen uitgangsvariabelen. Dit fenomeen wordt 

"interaktie" genoemd. Indien twee afzonderlijke regelkringen 

zouden warden toegepast, dan be1nvloeden deze elkaar op 

systematische wijze als gevolg van de koppelingen via 

2 (s) en G21 (s). 

Er rnoet dan gezacht warden naar een regelaar welke zelf een 

multivariabel karakter heeft. Dit is een prableern dat in de 

volgende hoofdstukken nader uitgewerkt zal warden. 

Verschillende methoden zijn beschikbaar om tot een oplossing 

te kamen. Enerzijds kan gebruik gemaakt warden van tijddomein­

rnethoden zaals de aptirnale regelthearie; daarnaast is het 

k gebleken om de traditionele frekwentiedomein-rnethoden, 



111 

ontwikkeld door Nyquist, Bode, Evans en anderen, te generalise­

ren tot het multivariabele geval. Deze frekwentiedomein-metho­

den z n zeer geschikt als grondslag voor een ontwerpprocedure, 

omdat de gevolgen van een beslissing dens het ontwerp op 

eenvoudige wijze grafisch weergegeven kunnen warden. Hier kan 

een rekenmachine met visuele informatieweergave zeer zinvol 

gebruikt worden. De visuele informatie in de vorm van polaire 

figuren of stapresponsies van het regelsysteem levert een 

ontwerper een goed inzicht in het probleem. Door de rekenmachine 

konversationeel te gebruiken, kan direkt op de gepresenteerde 

informatie gereageerd warden. De computer kan dan het (soms 

aanz ke)rekenwerk verrichten, de ontwerper wordt alleen 

met de gevolgen van een ontwerpbeslissing gekonfronteerd. 

De interaktie tussen computer en ontwerper maakt het mogelijk 

am de "trial and error" aspekten van elke ontwerpprocedure 

verantwoord te la ten verlopen. Ook met allerlei prakti.sche 

aspekten van het regeltechnisch ontwerp kan dan rekening 

warden gehouden, zoals eenvoud van de regelaarstruktuur, het 

afwegen van responsiesnelheid tegenover de relatieve demping 

van het geregelde systeem, of het behoud van stabiliteit 

het defekt raken van een van de signaalopnemers. 

Verschillende regeltechnische ontwerpmethoden voor multj_­

variabele systemen zijn recentelijk ontwikkeld speciaal met 

het oog op interaktief computergebruik met visuele informatie­

presentatie (Rosenbrock 1969, MacFarlane en Belletrutti 1973, 

Mayne en Chuang 1973). 

In het hierna volgende zal gekeken warden naar Rosenbrock's 

"Inverse Nyquist Array" rnethode. 

2. Inverse Nyquist array ontwer12methode. 

Het vinden van een goede regeling voor interaktieve 

multivariabele systernen j_s heel wat gekompliceerder dan 

het bepalen van regelingen vuor skalaire systemen. 

Een van de eerste methoden om het probleem van de inter­

aktie aan te pakken, was het sirnpel elirnineren van deze 

interaktie waarna het systeern als een aantal skalaire 

systemen beschouwd wordt (Boksenbom en Hood 1949). 



112 

Wordt een systeem met overdrachtsmatrix G(s) geregeld door 

een multivariabele regelaar K (s), dan .is de overdrachts-

matrix van het resulterende systeem jk aan 

Q(s) = G(s)K(s) ( 2 • ) 

Door K(s) nu zo te kiezen dat Q(s) een diagonaalmatrix 

wordt, is de interaktie uit het systeem geelimineerd. 

Dit echter vaak zeer gekompliceerde regelaars die 

isch niet te verwezenlijken zijn. 

Het diagonaal maken van Q(s) gaat dus eigenlijk te ver. 

De I.N.A. (Inverse Nyquist Array)-methode verzwakt de eis 

dat Q(s) diagonaal moet zijn, tot de eis van diagonaal­

dominant zijn van Q(s) (of Q-l (s)). In plaats van met Q(s) 
-1 - -1 zal met Q (s) gewerkt worden, genoteerd als Q(s) = Q (s). 

Voor het systeem van fig.2.1 met terugkoppelmatrix H is de 

overdrachtsmatrix van de gesloten keten 

( 2. 2) 

r lsl 
G !sl 

J 
·-------..... y(s) 

Fig.2.1 Teruggekoppeld multivariabel systeem. 

Een eenvoudige berekening levert dat 

-1 - - - -R(s) = R(s) = H + Q(s) = H + K(s)G(s) (2. 3) 

Als nu H diagonaal gekozen wordt dan is 

rii(s) hi+ qii(s) 

~ (s) qij (s), i f. j 
( 2. 4) 

waarin ( ) h t .. de 1 ( ) j s e lJ e ement van R s 

Diagonaal-dominantie van een overdrachtsmatrix kan op 

verschillende manieren gefnterpreteerd worden. Diagonaal 

-dominant bijvoorbeeld heeft de volgende definitie. 



113 

Stel D is de gebruikelijke Nyquist contour in het kornplexe 

vlak, bestaande uit de irnaginaire as van -ja tot ja 

en een halve cirkel met straal a (met a~00 1 in het rechter 

halfvlak en met het middelpunt in de oorsprong. 

Stel dat Q(s) een mxm matrix is. Dan is Q(s) diagonaal 

dominant op D als Q(s) geen pool op D heeft en 

I 2r11 (s) I -
m ~ 
Z [q .. (s)I >O 

1 lJ 

~i 

voor i=l,2, ... ,m en voor alle SED. 

( 2. 5) 

Een overeenkomstige definitie bestaat er voor kolom-dominan­

tie (Rosenbrock 1974). Het belang van diagonaal-dominantie 

van de inverse overdrachtsmatrix 6Cs) voor het ontwerpen van 

regelingen voor multivariabele systemen is het volgende. 

Stel dat het inverse Nyquist diagram van het diagonaal element 

qii(s) van de inverse overdrachtsmatrix Q(s) de oorsprong van 

het komplexe-vlak Ni keer omcirkelt in de richting van de klok. 

Neem verder aan dat het inverse Nyquist diagram van de 

rationale funktie 16Cs) I de oorsprong N keer orncirkelt. 

Als dan Q(s) dominant op 5 is hebben we de relatie 

m 
N == z &i 

i"-'l 
( 2. 6) 

Verder kan de stabiliteit van het gesloten systeem onderzocht 

warden aan de hand van het Nyquist diagram van de determinant 

van de terugkeerverschil-rnatrix 

Daar nu 

F(s) = I + Q(s)H 

I R (sl I 
II+ O(s)H[ = [Q(s) I 

( 2. 7) 

( 2. 8) 

kan de stabiliteit van de gesloten keten bepaald warden uit 

deNyquistdiagranunenvan l<J(s)j en IR(s)J=JH+Q(s)I. 

Zijn nu zowel Q (s) en R(s) diagonaal-dominant dan kan verge··· 

lijking (2.6) gebruikt warden om de stabiliteit van het 

teruggekoppelde systeern te onderzoeken aan de hand van de 

inverse Nyquist diagramrnen van g .. ( s) en r .. ( s) = hi. + ql. i· ( s) . 
. ll ll 

Dit leidt tot een grafische rnethode om stabiele regelingen 

te ontwerpen. 



114 

2.1. Grafische interpretatie. 

Veronderstel dat de overdrachtsmatrix G(s) gegeven is, 

en dat de ingangskompensator K(s) gekozen moet warden. 

De computer kan nu Q(s) (Q(s)) berekenen, daaruit q .. (j10) 
]_ ]_ 

voor een aantal waarden van w bepalen en het korresponderende 

inverse diagraCT op een beeldscherm tekenen. 

Gewoonlijk zal (jw) een vorm hebben zoals in fig.2.2 ge-

geven. 

·-~-------·-·---·-

~idjwl 

.2.2 Inverse Nyquist diagram van element ~ii(jw). 

Voor een bepaalde frekwentie w1 ligt de 

m 

= L: lqij(:i10 1 l/ 
i=l 

( 2. 9) 

vast en kan een cirkel met straal ai en middelpunt op ~i(jwl) 

warden. Als dit gedaan wordt voor een aantal 

frekwentie punten ontstaat een omhullende van 

cirkels (Gershgorin-band) zoals in fig.2.3. 

I 

ijke 

Fig.2.3: Inverse Nyquist diagram met Gershgorin cirkels. 

Nu voldoet O(s) op de as van de D contour aan 

vergelijking (2.5) als voor alle m inverse Nyquist diagrarn­

men de oorsprong buiten de "Gershgorin-banden" liggen. 



Op dezelfde Wl.JZe kan diagonaal-dominantie van R(s) bekeken 

worden door te eisen dat het kritieke punt (-hi,O), op grond 

van vergelijking (2.4), buiten de bovengenoemde "Gershgorin-
- -banden" ligt. Als nu Q(s) en R(s) diagonaal-dominant zijn, 

kan gesproken worden van het aantal omcirkelingen van de 

oorsprong (het kritieke punt) van de ide "Gershgorin-band". 

Dit aantal N . (N . ) zal gelijk zijn aan het aantal omcir-
oi Cl. 

kelingen van de oorsprong (kritieke punt) door de afbeelding 

van q11 (jw). Hieruit wordt indien Q(s) en R(s) diagonaal­

dominant zijn de noodzakelijke en voldoende voorwaarde voor 

de stabiliteit van de gesloten keten afgeleid, namelijk: 

m (N . -.z Ol 
i=l 

(2.10) 

waarin p 0 het aantal instabiele polen van de open-keten is. 

Is het niet-teruggekoppelde systeem stabiel, dan is p 0 = 0. 
Ill - -

Als dan voor alle "Gershgorin-banden".~ 1 (N .- N .) = 0, 
J.- Ol Cl 

dan is aan vergelijking (2.10) voldaan en is het terug-

gekoppelde systeem stabiel. 

De stabj .. Li.tei t van een systeem kan dus onderzocht warden 

aan de hand van de "Gershgorin-banden" van de diagonaal­

elementen g- •. (s) van de inverse Nyquist dianrammen. 
'll - ~ 

In het algemeen representeren de diagonaalelementen (s) 

grootheden die niet direkt meetbaar zijn aan een systeem. 

Door nu gebruik te maken van een theorema van Ostrowski 

(1952) kan aangetoond warden dat 

-l(s) - hi (2.11) 

altijd binnen de amhullende van de Gershgorin-cirkels van 

element ~11 (s) blijft, wat ook de waarde van (tussen 0 en 

in elke andere keten wordt. Merk op dat -l(s) de inverse 

115 

overdrachtsfunktie is tussen ingang i en uitgang i waarbij 

alle andere ketens gesloten zijn, en ri(s) is de overdrachts­

funktie in de ide keten, als deze open is en alle andere 

ketens gesloten zijn. Het is deze overdrachtsfunktie waarvoor 

een skalaire regeling vaor de ide ontwarpen moet warden. 



116 

-1 
De band waarin ri (s) ligt kan echter nag smaller gemaakt 

warden. Als Q(s) en R(s) diagonaal-dominant zijn en als 

ill· l 
max 

j 
jf i 

a. (s) (2.12) 

-1 -dan ligt r. ( s) binnen een "band" l'Tebaseerd on q .. ( s) en 
l ~ - ll 

bepaald door de cirkels met de stralen 

(2.13) 

Dus als de versterkingsf aktoren voor de gesloten-keten 

gekozen zijn, zodat er een stabiel systeem verkregen is, dan 

kan er een maat voor de versterkingsmarge voor elke keten 

bepaald warden, door het tekenen van de cirkels met de 

stralen rad. (s). Deze kleinere "banden" reduceren oak voor 
l 

elke keten het gebied waarin de inverse overdrachtsfunktie 
-1 

rii (s) kan liggen. 

2.2. Ontwerpmethodiek. 

De ontwerpmethode voorgesteld door Rosenbrock bestaat 

:in principe ui t het bepalen van een ingangskompensa tor Kp ( s) 

zodat het produkt G(s)Kp(s) diagonaal-dominant is. 

Als aan deze konditie voldaan is dan kan er een diagonaal­

matrix Kd(s) gekozen warden zodanig dat het totale systeem 

aan vereiste specifikaties voldoet. 

rlsl elsl r;:: - - - - ::::;-i ylsl • 
K11lsl KP!sl G Is) 

L_ __ ~1 _ _J 

Fig.2.4: Algemeen systeem. 

Daar het on twerp zich afspeelt in het inverse domein, zijn 

we dus eigenlijk bezig met het bepalen van een inverse 

kompensator Kp(s) zodat Q(s) = Kp(s)G(s) diagonaal-dorninant is. 



117 

Een manier orn i (s) te bepalen is de newenste matrix op te p ~ -

bouwen uit elementaire rij-operaties, 0ebruik makend van de 

visuele informatie verkregen van alle andere elementen van Q(s). 

Deze methode blijkt in veel gevallen tot het gewenste resultaat 

te leiden. 

Voor verschillende andere methoden voor het bepalen van een 

kompensator K (s) :de Rosenbrock (1974). 
p 

3. Pr_ogrammatuur. 

Daar de I.N.A. rnethode uitermate geschikt is om met 

behulp van een computer tot een resultaat te komen, is juist 

voor deze ontwerpmethode een konversationeel computer pro­

gramma geschreven. Hierbij is er vanuit gegaan, dat de ont­

werpmethodiek als volgt <Jehanteerd dient te warden: 

Men moet interaktief kunnen werken, liefst via een beeld­

scherm en dit moet snel kunnen gaan. 

- De werkvolgorde moet willekeurig bepaald kurmen warden 

door de ontwerper. Juist bij deze ontwerpmethode is het 

belangrijk, dat men naar eigen inzicht kan handelen en 

niet bij voorbaat al vast zit aan een bepaald werkpatroon. 

- Men moet snel een goed inzicht kunnen opbouwen in de inter­

aktie van het systeern, zowel bij lage als ho<Je frekwenties. 

- Via visuele informatie over alle tussenstappen moeten de 

regelaars op verantwoorde wijze ontworpen kunnen warden, 

vertrouwend op een goede interaktie rnens-cornputer. 

De minimale eisen waaraan een computer rnoet vol.doen om ge­

bruikt te kunnen warden al.s ontwerpgereedschap zijn de vol.gende: 

- Snel.le "floatin0-point" operaties moeten mogel.ijk z n om 

de benodigde rekentijd kort te houdeno 

- De machine moet beschikken over een groat 

geheugen, am de benodigde gegevens op te kunnen sl.aan. 

"Overlay" facil.iteiten z n noodzakel.ijk qezien de uitge­

breidheid van de verschi.11.ende alsari throes. 

- Er moet een beel.dscherm aanwezig zijn met de benodigde 

"graphics software" zodat interaktief gewerkt kan warden 

op grand van visuele informatie. 



118 

Voor een PDP-11/45 is een modulair opgebouwd computerprogram­

ma geschreven waarmee alle benodiqde handelingen kunnen wor­

den uitgevoerd. Met gebruikmaking van "overlaystrukturen" 

en "dataopslag" op een schijf blijkt het mogelijk om met 

16K kerngeheugen te werken. In het programma is de mogelijk­

heid opgenomen om een systeem,dat in een andere vorm dan als 

overdrachtsmatrix gegeven is,te transformeren alvorens de 

ontwerpfase kan beginnen. Hierna wordt de inverse van de 

rationale matrix G(s) berekend (van der v!eiden 1976). 

Uit G(s) volgt dan G(jw) voor een reeks van frekwentiepunten 

waarmee de I.N.A. direkt beschikbaar is. 

Door middel van een "overlay" (blok) is nu de vrijheid van 

de ontwerper ingebouwd. Op het beeldscherm verschijnt de 

optielijst (fig.3.1). (Kr. =Ka en KaKb = Kp zie fig.2.4) 

INDICATE THE MATRIX YOU WANT TO CHANGE 

~ 
CALC. Q AND DIS. INA 
CALC. R AND DIS. INA 
CALC. STEPRESPONSES 
END OF PROGRA11 

Fig.3.1: Optielijst. 

In willekeurige volgorde kan een van de regelrnatrices worden 

veranderd en eventueel warden opgeslagen (La, Lb, Le zijn 

uitgangskornpensatoren waarmee indien nodig ook het systeern 

diagonaal-dominant gernaakt kan worden) . 

Het resultaat verkregen met de nieuwe matrix kan direkt op 

het beeldscherrn worden gezet. Hierna is vergelijking met 

voorgaande niveaus mogelijk. Ook kan de I.N.A. van de over­

drachtsmatrix van de gesloten keten op elk tijdstip op het 

beeldscherm gebracht warden. Bij het diagonaal-dominant maken 

van het systeem, kunnen de kompensatoren zowel in het inverse 

vlak als in de oorspronkelijke vorm gekozen warden. 



119 

Keuze in het inverse vlak is belangrijk vanwege de eenvoudige 

interpretatie voor het effekt op de I.N.A., keuze in de 

oorspronkelijke vorm is van belang om de regelaars fysisch 

zo eenvoudig mogelijk te maken. Voor het bepalen van de 

regelaars is men niet alleen afhankelijk van de "trial and 

error" methoden. Er is hiervoor ook een "subroutine-pakket" 

beschikbaar, dat gebaseerd is op mathematische operaties. 

Het spreekt vanzelf, dat na elke stap de "Gershgorin-cirkels" 

of de "Ostrowski-cirkels" in de inverse polaire figuren van 

de diagonaal elementen qetekend kunnen warden, opdat direkte 

visuele informatie over de bereikte dominantie verkregen 

wordt. 

Verder is er voor het bepalen van de skalaire regelrnatrix 

Kd(s) de direkte informatie beschikbaar over bijvoorbeeld 

de fasemarge, de amplitudemarge, het raken aan een M-cirkel 

en andere belangrijke ontwerpkriteria. Zoals deze bij ska­

laire frekwentiedomein-technieken gehanteerd warden. 

Is de totale ontworpen, dan kan deze in het 

domein onderzocht warden aan de hand van stapresponsies. 

4. 9ntwerp_".9orbeeld. 

Een systeem met 2 in- en uitgangen bestaat uit een 

reservoir, waarin door korrekties in de koud- en warmwater­

stroorn de temperatuur en het niveau geregeld moeten warden. 

h@&I w@l@r koud wal@r 

~C-0 
I I 
I 
I 
'- - - TC 

Fig.4.1: Processchema. 



120 

De overdrachtsmatrix van dit praces is (van der Weiden 1973) 

G ( s) 

-LO .e -3s 

108s 

0.82.e-l 7s 
(65s+l) (Ss+l) 

waarin u (s) = ~~ ~:~ , y (s) 

uitgangsvektoren zijn: 

u 1 (s) 

( s) 

y l ( s) 

(s) 

koudwaterstroom 

warmwaterstroom 

niveau van het reservoir 

temperatuur in het reservoir 

en 

De interaktie tussen de niet korresponderende in- en uit­

gangen kan niet verwaarlaasd warden. De skalaire technieken 

kunnen dus niet zander meer gebruikt warden am de regelaar 

voor dit systeem te ontwerpen. 

Het ontwerpproced~ en de taak van de computer hierin zal nu 

aan de hand van een blokschema (fig.4.2) behandeld warden. 

Nadat de systeemgegevens ingelezen zijn en de I.N.A. van het 

ongekompenseerde systeem berekend en op het beeldscherm te 

zien zijn kan er aan het eir;enlijke ontwerp begonnen warden. 

De noodzaak van het interaktief gebruik van de computer komt 

nu duidelijk naar voren. Het ontwerpblok kan gezien warden 

als het hart in het pro0ramma van waaruit beslissin0en door 

de ontwerper senomen moeten warden aansaande de volgende 

stap in het ontwerpproces. Deze stap kan willekeuriCJ sekozen 

worden en wordt geheel be9aald door de ontwerper. Ook kan er 

naar eerder genomen beslissingen teruggegaan warden. 

Voor het ontwerp van een regeling voor 

zou nu als eerste stap de konstante matrix 

systeem 

gekozen kunnen 

warden. Dit is hier gebeurd aan de hand van "trial and error" 

methode, waarbij de resul.taten van de geprobeerde matrices 

op schijf opgesl.agen kunnen warden. De uiteindelijke matrix 

waarmee het ontwerp j_s 

(4. 2) 



START COMPUTER 

~:Cu~!iiE~-l (jw) 

-;·~~ 
-·· 

" 

0' 
-I~ ;- 0.l 

OPTI:ON: ALL EL; GERS; OSTR; 

DIAG; SCALE; 'TURN; 

INDICATE THE MATRIX YOU WANT TO CHANGE 

- r::=:=J CHANGE -K -

LEVEL I 2 J a4 5 

CHANGE 
KEEP 
PRINT 
RETURN 

+-
"(!· .. 

~------0.~ 
" 

OPTION: ALL EL; GERS; OSTR; 

DIAG; SCALE; RETURN; 

I. Bepaleo K 
2. Test diaggnaal-dominantie 
.>. Bepalen versterkingsfakt. 
4. Test regeling in frek.dom. 
5. Test regeling in tijddom. 
6. Einde ontwel"p 

CALC. Q AND DIS. INA 
CALC. R AND DIS. INA 
CALC. STEPRESPONSES 

STEPRESPONSES x 

Fig.4.2: Blokschema ontwerp 

CHANGEiH-LEVEL 12345 

CHANGE 
KEEP 
PRINT 
RETURN " 

+ 

OPTION: ALL EL; GERS; OSTR; 
DIAG; SCALE; RETURN; 

--z_ L1.chtpen 

121 



122 

Met deze kompensator is dit systeem diagonaal-dominant. 

Als nu in de terugkoppel-matrix de versterkingsfaktoren 

= 10. en h 2 = 5. gekozen warden dan blijkt dat het 

teruggekoppelde systeem nagenoeg geen interaktie meer in zich 

heeft en stabiel is. 

Hoe goed de regel is kan nu getest warden aan de hand 

van de stapresponsies. 

Uit deze stapresponsies blijkt dat de regeling nag verbeterd 

kan warden, door bijvoorbeeld een dynamische regelaar (K0 ) 

in de tweede keten q 22 te plaatsen. 



5. Konklusies. 

Een computersysteem met beeldstation blijkt een zeer 

belangrijk hulpmiddel te zijn bij het ontwerpen van multi­

variabele regelsystemen. Met behulp van grafische informatie 

is de ontwerper in staat het inzicht op te bouwen dat hem 

in staat stelt om verantwoorde en suksesvolle ontwerp­

beslissingen te nemen. Belangrijk hierbij is ook het inter­

aktieve computergebruik, waardoor de ontwerper in een wille­

keurige volgorde een aantal programmastappen kan doorlopen, 

op genomen beslissingen terug kan komen en proberenderwijs 

mogelijkheden kan verkennen. Een lichtpen vergemakkel.ijkt 

de dialoog omdat daarbij probleemgeorienteerde kommando's 

gebruikt kunnen warden. 

Orugekeerd heeft de beschikbaarheid van dergelijke computer­

facili tei ten ertoe geleid dat hierop geente regeltechnische 

ontwerpmethoden zijn ontwikkeld (Rosenbrock 1969, MacFarlane 

en Belletrutti 1973, Mayne en Chuang 1973). 

Het is mogelijk om met een relatief kleine computer met l6K 

kerngeheugen, schijf en beeldstation verantwoord te werken. 

Toepassingen in een industriele omgeving lijken dan ook 

haalba.ar. De ontwerpmethoden sluiten goed aan bij de prak­

tische randvoorwaarden welke bij industriele regelproblemen 

naar voren komen. Fysisch inzicht in het gedrag van het te 

regelen systeem kan daa.rbij direkt op nuttige wijze gehan­

teerd worden. 

Theoretische achtergronden van de regeltechnische ontwerp­

methoden zijn hier niet aan de orde gekomen. Voor verdere 

achtergronden kan het boek "Computer-aided control s~stem 

design" van H.H. Rosenbrock (1974) aanbevolen worden. 

123 



124 

Referenties. 

L Boksenborn A.S. en Hood, R. C-eneral algebraic method 

applied to control analysis of complex engine types. 

Report NACA-TR-980, National Advisory Commttee for 

Aeronautics, Washington D.C., 1949. 

2. MacFarlane, A.G.J. en Belletrutti, J.J.: The charac­

teristic locus design method. Automatica, vol. 9, 

p. 575-588, 1973. 

3. Mayne, D.Q. en Chuang, S.C.: The sequential return­

difference method for designing linear multivariable 

systems. I.E.E. Conference on Computer Aided Control 

System Design. Cambridge, 1973. 

4. Ostrowski, A.M.: Note on bounds for determinants with 

dominant diagonal. Proc. Am. Hath. Soc., 

VO L 3 ' p. 2 6- 3 0 ' 195 2 • 

'.1. Rosenbrock, !LH.: Design of multivariable systems 

using inverse Nyquist arry. Proc. I.E.E., vol. 116, 

p. 1929-1936, 1969. 

6. Rosenbrock, H.B.: Com9uter-aided control system design. 

Academic Press, 1974. 

7. Van der Weiden, A.J.J. Inversion of rational matrices. 

To be plublished in Int. J. Control. 

8. Van der Weiden, A.J.J.: Bet ontwerpen van terugkoppeling 

voor multivariabele systemen in het frekwentiedomein met 

gebruik van een rekenmachine met een visueel display. 

Afstudeerverslag A-160, T.H. Delft. Lab. voor werkt. 

Meet- en Regeltechniek, 1973. 



LOGICAL DESIGN AND DATA ANALYSIS WITH GPGS 

L.C. CARUTHERS 

Graphics I lnformatica Faculty of Science, Nijmegen 

IN'£RODUCTION 

125 

Small, medium, and large are the three simplest words for catego­

rizing the 3 graphics applications covered in this presentation. Each of 

these applications has been programmed in FORTRAN using GPGS. Each applica-· 

tion can thus be run on different computers and with different graphics 

devices, thanks to the device independence of GPGS. 

At Nijmegen there are many possible CPU, graphics device combinations 

available for use. The diagram on the following page shows our computer 

configuration with the PDP 11/45 that is connected via a high speed (600 + 

Kbaud) 16 line parallel. link to the IBM 370/158 of the computing center. 

The small tektronix plotter can only be used from the PDP in stand-alone 

mode. The Vector General can be used either from the PDP in stand-al.one 

mode or from the PDP operating as a satellite to the IBM. The 'l'ektronix 

4015 can be used either from the stand-alone PDP or from the IBM directly 

via TSO or from a batch job. The Cal.comp plotter tapes can only ·be written 

from the IBM. 

The versions of GPGS available at Nj.jmegen include the DOS and RT-11 

versions for stand-alone use of the PDP. The FORTRAN version of GPGS is 

being adopted for use under the UNIX multiprogramming system on the PDP. 

Satellite support of the Vector General for the IBM is currently available 

with RT-11 or UNIX. Programs using the PDP as a satellite must run in batch 

on the IBM. The satellite configuration, the direct use of the Tektronix 

from TSO and batch and the Calcomp plotter are all useable from the IBM 

360/370 version of GPGS. 



126 

Nijmegen Gm 

PDP 
11/4 5 

ics 

link 

4015 

rat on 

I B 
370/158 



127 

The small application will show the interactive analysis of astro­

nomical data. The medium size application will show the interactive analy­

sis of physics data. The large application is actually a complete system 

for the semi-automatic construction of digital circuits based on the inter­

active drawing of the logical components of the circuit. 

S'£ARFIT 

Optical astronomers use their telescopes to take pictures of the 

heavens. 'l'he most interesting things in these photographs are things that 

change from one picture to the next. 'I'his can be because the photographed 

object changed its position as is the case with comets or because the ob­

ject changed its intensity without moving as is the case with variable 

stars. The astronomy department of Nijmegen has an aparatus for comparing 

photographs taken of the same part of the sky at different times. By quickly 

switching from one photograph to the other objects with different inten­

sities will appear to bli.nk. Once these blinking objects have been disco­

vered their intensity in a long history of photographs can then be measured. 

This intensity data taken from different photographs at known times 

can then be plotted on a time axis. Some trial hand calculations and visual 

inspect.ion will quickly reveal if the intensity variation is periodic. If 

the data has some promise of periodicity the astronomer attempts to deter­

mine the period by a few hand calculations involving either the peaks or 

the valleys, whichever are scarcer or are represented by the most reliable 

data. The trial period is then used to slice the time axis into regular 

intervals and then plot all the data on a graph of one period interval so 

that all the periods lie on top of each other. 

From his first trial plot the astronomer can then make another guess 

at a better value of the period and t.hen recalculate the interval position 

of each point to get a new plot. Since each plot is typically a half a 

days work, a strong· desire to automate the procedure can be easily unders­

tood. This is exactly what was done for the STARFI'r program. The astrono­

mer types in the value of the period he wants to try and the program makes 

the plot. 

The major problem encountered in this application is that the qua­

lity of the data can vary from point to point si.nce each point comes from 

a different photograph taken on a different night. '.['his means that there 



128 

can be variations in the atmospheric conditions, the quality of the photo­

graph and even the position of the object on the photograph. Objects near 

the edge of a photograph are more subject to distortion. To compensate for 

this variable quality of the data, each data point is encoded as good, 

medium, or had to allow for differing representations in the period plots. 

After the program has read in the data for a star and the astronomer 

has made a plot with his first trial period, the program provides the follo-­

wing possibilities for interact.ion. 'rhe astronomer can simply type in a new 

period and get a new plot. He can also specify an amount to change the 

period, so that he ea!'. step thru a range of possible periods .in small incre-­

ments. By stepping backward and forward he can compare two nearly identical 

periods to see which he likes better, after taking the quality of the data 

points into consideration. The stepping process can even be made to go auto-­

mat.ically either forward or backward with a time of about 5 seconds between 

each new plot. 

•ro provide the astronomer with a measure of how well a given period 

groups the data points into a nice curve the program can be asked to make 

a chi-squared plot of an up to 6th degree polynomial curve which best fits 

the data. Indeed the program even goes so far as allowinq the polynomial 

curve to be recomputed at each step of automatic stepping. 

At this point a reasonable question is how about using some automa­

tic technique for finding the period. Because of the variable quality of 

the data most attempts at this have not been very succesfuL Using the 

program we attempted to let the chi-squared good run of fit measure deter­

mine a d.i.rection to seak the next possible period in a valley searching 

technique. This was sometimes useful for obtaining higher precision in an 

already known per.id. Another unrelated technique that was attempted as 

an initial search technique was simple Fourier analysis. 'l'h.is never yielded 

any profitable results as far as I know. 

'.['he program runs best on the vector general since the screen must be 

erased between each plot. Even at 9600 baud the repetitive redrawing of the 

screen in auto-step mode would be very tedius on the tektronix. 

The major discovery from a graphics point of view was that even using 

the program it was very difficult to determine the period of a star without 

first doing some hand calculations. Beacuse of the technique of plotting 

intervals of the five axes on top of each other, a smal 1 change i_n the 

proposed period can make a big difference in the plot. Thus you cannot 



gradually step toward the best period but must start fairly close to it 

and scan a range of periods to get a better period. 

PRISMA - PLar 

129 

'.l'o study the structure of matter physicists measure the results of 

elementary particle collisions. One of the most common ways of obtaining a 

measureable collision is to bombard a tank filled with liquid hydrogen 

with a stream of high energy particles. Typically such particles as protons 

and pi-mesons are used for the bombardment. The target particles are the 

numclei. of the hydrogen atoms in the tank which are simply protons. Thus a 

typical interaction would be a pi-meson hitting a proton which would result 

in two pi-mesons and a proton after the collision. 

The particles resulting from the collision may be either changed or 

unchanged. A changed particle moving thru the liquid hydrogen causes the 

formation of a trail of bubbles in the liquid hydrogen. This trail of 

bubbles can be photographed. The physicists want to measure the physical 

properties li.l<e energy and momentum of the particular resulting from the 

collision. To get information about the speed, mass, and change of the 

resulting particles a magnetic field is applied across the bubble chamber. 

Si.nee a changed particle moves in a circle in a magnetic field the proper··· 

ties of the changed particles can be deduced by measuring the curvature of 

the bubble tracks. 

The problem is that the interaction of the elementary particles 

during the collision does not always occur in the same way. So even though 

the bombarding particle and the end resulting particles are the same the 

momenta and energies of the resulting particles are not the same and in­

deed the collision interaction mechanism is not the same. During the colli­

sion interaction different short lined elementary particles (also known as 

resonances) may be formed. These resonances quickly decay into the stable 

end particles of the i.nteracti.on. In order to separate the collision events 

by their interaction mechanism and thus to be able to study just one inter­

action mechanism at a time, values of variables derived from the basic 

energy and momentum data are plotted in multidimensi.orial spaces. In these 

multidimensional spaces where each point represents a single collision 

event, clusters of points indicate collisions which resulted in the same 

interaction mechanism. Thus a principle step in the data analysis is to 



130 

separate the data points into clusters in multidimensiona.l space. 

One way to search for clusters is to plot histograms of various 

primary and certain desired variables. A more direct way is to plot the 

values of several variables againts each other in what are called prism 

plots. These prism plots are the primary display of this program. From 

observation of the prism plot the physicists can discover which points lie 

in clusters and then use these points in a certain cluster for making his­

togram plots. 

The current program reads a data file whi.ch contains the values of 

8 vari.ables for each measured collision event. Any 3 of the variables may 

be chosen for making a three dimensional poi.nt plot on the Vector General. 

The transformation hardware of the Vector General can then be used from 

GPGS for rotating the dot cloud in order to search for three dimensi.onal 

clusterings. Histograms can be requested for any variable of the fi.le wi.th 

events selected so that the value of another vari.able li.es in a specific 

range. Two dimensional scatter plots of two variables against each other 

may also be requested. 

Another technique for detecting clustering of the data points is to 

compute and display a Mini.mum Spanning 'l'ree (MST). A minimum spanning tree 

is computed by computing the distance (according to any metric defined on 

the 8 variables) between each point and all the other points. These dis­

tances are then sorted into an ordered list with the shortest distance 

first. Begj_nning with the shortest distance between 2 of n points the 

connections between the first n-1 points that do not form a closed circuit 

are chosen for the minimum spanning tree. 

The program for dot cloud with the selected hi.stograms runs on the 

IBM version of GPGS using the Vector General vi.a the PDP satellite. During 

a typical half hour use of the program on this configuration the program 

used 28 seconds of CPU time send 5400 messages over the satellite link and 

required 176K of IBM core. The satellite support on the Vector General can 

be equally well provided under RT-11 or UNIX. The minimum spanning tree 

program is still small enough to fit on the PDP i.n stand-alone mode. These 

programs are a good example of the portability of GPGS programs between 

the PDP and IBM. 



131 

DIGDRA 

Semi-automatic Digital Circuit Construction 

The electronics department at Nijmegen has the task to build special 

purpose apparatus in support of the research and teaching needs of the 

Faculty of Science. 'l'o accomplish this task the designs are prepared by a 

design department to be given to a drafting and detail department which 

makes instructions for the construction department. In the beginning this 

was all handwork ending with construction by means of hand wire wrapping 

the pins of the integrated circuits. 

The first step toward automating this construction process was to 

replace the hand wire wrapping by an automatic wirewrapping machine guided 

by a punched paper tape. The paper tape is prepared by a computer program 

which accepts a list of named locations pins and generates instructions on 

the tape to join pins with the same name. 'I'his step of automization serves 

only to move the manual work of hand wire wrapping into manual work of 

writing a list of thousands of named locations to be keypunched as program 

input. 

The Digdra program combines the two previous tasks of the drafting 

and detail department namely the drawing of the logic diagram and the pre­

paration of the list of names. The additional task of assigning the integ­

rated circuits to positions on the construction rack is still carried out 

manually but the positions are also incorporated in DIGDRA. 

The Key concept in designing the DIGDRA system was to have a system 

that would be operational on a minimal hardware configuration. By matching 

the processing speeds of the hardware components of the system a powerful 

low-cost system was achieved. 'l'he system is based around a 24K PDP-11 

computer with a disk and a Tektronix 4015 storage display. Since the prog­

ram can retrieve the data structure from the disk just about as fast as 

the Tektronix can write it on its screen (even at 9600 baud), the core 

memory can be used exclusively for the FORrRAN program and a few disk 

blocks from the data structure representing the drawing. 

When it is running the interactive DIGDRA program uses a menu file 

of TTL logic components common to all signal apparatus built at Nijmegen. 

For each apparatus there is a work file which contains all the specific 

components of that apparatus. In addition to the Tektronix 4015 graphic 

device the program also has a Tektronix 4661 plotter available to it. 



132 

Starting from a pencil sketch provided by the logic designer the 

draftsman prepares the logic drawings of the aparatus on a number of dif fe­

rent pages of drawing. The pages are the unit of drawing within the apara­

tus. On each page the draftsman places logic components by assigning their 

local origin by means of the crosshair cursor of the Tektronix. The logic 

components (gates, flip-flops) each have a number of connection points or 

pins where they may be connected to. The connections are represented by 

lines going from pin to pin or by signal names. In addition to the 

technical information there is administrative information in a box in the 

lower right hand corner of the page. 

The best descritption of the detailed capabilities of the program can 

best be given by listing the commands available to the operator of the 

program along with a short description of each one. We begin with the 

commands for administrating the creation of the work file and the adminis­

trative information for the information block in the corner of the page. 

Command 

Begin Page 

Head Apparatus 

Head Page 

Delete Page 

Copy Page 

Display Index of Pages 

Make picture 

Arguments and Action performed 

Page numb,er - Start drawing on a 
clean page 

Apparatus identification information 

Page identification information 

Page Number - Remove page from data 

Copy all logical components and 
connections from one page to another 

Erase Tektronix screen and redraw the 
page that is currently being worked on. 

In principle each apparatus is drawn in two phases using DIGDRA. 

First all the logical components and their connections by lines or names 

are drawn, then the draftsman assigns circuit board locations to the logi­

cal components. Since it frequently happens that an integrated circuit will 

contain more than one logical component, several logical components may be 

assigned to the same location and thus to different gates in the same chip. 

The allocation of the gates in the chip to the logical components is handled 

automatically by the program. Thus each of the logical components assigned 

to the chip receives a different set of xxx numbers. It would of course be 



133 

an error to assign too many logical components to the same physical compo­

nent. The next set of commands to be listed will be for the manipulation 

of logical components and connections. 

Command 

Add Component 

Delete Component 

Modify Component 

Add Line 

Delete Line 

Name Right 

Name Left 

Arguments and Action performed 

Component Code - Component is added 
to the current page with its origin 
at the intersection of the crosshair 
cursor. 

Component Indicated by Crosshair 
cursor and all connections to the 
component are deleted. 

Add additional drawing data to 
component 

Make a connection between two or 
more pins 

Delete Connection 

Assign a name to be displayed to the 

right of the pin 

Assign a name to be displayed to the 

left of a pin. 

Some of the most powerful drawing commands allow the program operator 

to manipulate groups of connected logical components. Such a group of logi­

cal components by connections we call a structure. 

Command Argument~and Action performed 

The structure is moved from one place on the page to another. 

Copy Structure 

Delete Structure 

A new copy of the indicated structure 
is created but without the components 
physical location codes. 

Indicated 

The following set of commands deal with circuit bound position infor­

mation or are multipin plugs which connect circuit bound to a cable or 

another circuit board. Each DIGDRA apparatus does not need to be made on 

one circuit board or rackbut can be made on several racks. There is the 

restriction, however, that all the logical components on a page must all 



134 

be on the same rack to keep the physical location information consistent. 

Command 

Add Position 

Extend Plug 

Reduce Plug 

Modify Frame of Plug 

Pin Definition of Plug 

Ground Horizontal 

Ground Vertical 

Rack number Change 

Circuit Board position code 

Add more pins to plug 

'rake pins away from plug. 

Change pin numbers in plug 

Draw Horizontal Ground Symbol 

Draw Vertical Ground Symbol 

Change the rack description for all 
the components on a page. 

As can be seen above, each command makes a change in the displayable 

picture. Since the system is based around the storage tube for holding the 

picture, only additions to the picture are immediately apparent. Deletions 

are only noticeable after the "Make Picture" or refresh command is executed 

to blank out and redraw the screen. During normal operation of the program 

it is expected that the operator will be :i.ssueing mostly commands to add 

to the picture. This .indeed turns out to be true. '!'he operators work along 

until the screen becomes too cluttered with unwanted pictures before they 

ask for a redraw. 

When a command to add a new component or connection to the screen is 

given the program adds to the data structure on the disk and to the picture 

on the screen without having to look at any other part of the data structure. 

Since the amount of work required to add to the picture has been reduced 

at the expense of the other functions of the program, the proqram runs 

efficiently from a computer point of view .in that .it executes the minimum 

number of instructions. It also runs efficiently from a human point of view 

.in that it has the shortest reaction time for the most frequently used 

commands. 

The commands issued by the operator to build the picture clearly cor­

respond to operations on the data structure. For each logical component on a 

page there is a corresponding logical component block in the data structure. 

All the logical component blocks for a qiven paqe are in a doubly linked 



list for convenience in adding and deleting them. The logical component 

blocks (LCB's) contain pointers to the menu block in the menu file that 

contains the drawing data for the component. The LCB component has been 

assigned to a location on the circuit board. By assigning the logical 

component to a chip location the operator requests the program to either 

find a physical component block that may already exist for that location 

135 

or to create a new physical component block. There may be only one physi-· 

cal component block per location on the circuit board. Because each loca­

tion assignment for a logical component requires a search of all physical 

components to see if it already exists for the specified location, there is 

an index block with the circuitboard locations and pointers to the corres·­

ponding physical component blocks for all the physical component blocks 

on each circuit board or rack. 

Normal logical components like gates and flip-flops have a fixed 

number of pins, but the plugs by which the circuit board is connected to 

cables is another matter. The representation of a plug is simply a rec­

tangle surrounding some numbered pins. The representations of plugs is so 

flexible that some pins of the plug may be on one page, and some on another. 

The connections between the pins of the logical components are usually 

represented by lines for connections on the page and by giving two or more 

pins the same names for connections that go from page to page. Each name 

and drawn connection is represented in the data structure by a connector 

block (CBL). This connector block contains the name assigned to the connec-· 

tion, pointers to the LCB's of the connected pins, and the coordinate data 

necessary to draw the lines connecting the pins as entered by the operator 

when he drew the connection. 

The connections must go from pin to pin and the logical components 

those pins belong to must be identified. To solve the problem of correla­

ting the pin indicated by the crosshair cursor with the appropriate logical 

component block, a list of the pins and their screen locations must be 

searched. To reduce the amount of searching required, the screen has been 

divided into 16 sections (4 by 4) and a shorter list made for each section. 

By this technique the amount of searching has been reduced by an order of 

magnitude. 

At the highest level of organization the data structure for each 

apparatus is maintained in its own file. Within this file the component, 

connector, and hash blocks for each page are linked to a page header block. 



136 

For the whole file there is an index of the pages which points to the page 

header blocks and a single space management mechanism. Since all the blocks 

in the file are potentially variable in length the space management mechanism 

is an essential part of the program. 

Initially all the file is unused available space. As the operator 

adds to the drawing the space for the new blocks is taken from the unu.sed 

available space. When compontents or connections are deleted the blocks are 

put on available space list according to how big they are. Blocks are only 

allowed to have lengths that are expressable a.s powers of t:wo. Thus there 

are only eight or nine possible sizes of blocks. It also means that when 

a block grows over a boundary it is moved to a new block that is twice as 

big. 

To draw the picture represented by the data structure the program 

scans the logical component blocks and their associated menu blocks to draw 

the components. 'l'he pin numbers in the components come from the associated 

physical component blocks. After scanning the logical component blocks the 

program scans the connector block for t:he coordinates of t:he connecting 

lines. 'I'he admin.istrative data in the block in the lower right corner comes 

from the page and apparatus header blocks. 

The major non-graphic output of the system is the list of connections 

obtained by scanning the connector blocks, which is used as input t:o the 

program that generates the tape for the automatic wire--wrap machine. It is 

in fact this extra output that makes the use of the system worthwhile in 

the eyes of the operators. 

CONCLUSIONS 

Each of the three applications described here runs easily with GPGS. 

The features of GPGS that have proven to be the most useful are device 

independence and the existence of multiple GPGS applications. The device 

independence has made the addition of plotting functions for interactive 

programs a trivial task. The device independence has also allowed programs 

to be run on secondary devices when the primary device has not been availa­

ble. The multiple implementation have allowed programmers to begin with 

smaller programs on the once more accessible and easier to use PDP--11 and 

then move there programs to the IBM when their core requirements outgrew 

the space available on the PDP. Indeed the size of an applications p.r:ogram 



137 

has proven to be the single largest factor which implementation and which 

computer was to be used for the program. 

ACKNOWLEDGEMENTS 

S'rARFIT - H.J. Thommassen of the Graphic Group S. L. T. J. van Agt of 

Astronomy. 

PRISMA-PLOT - E.W. Rittel, J.D. Schotanus, and D. Weenink of High 

Energy Physics. 

DIGDRA - Ch. A. Timmer of Electronics. 



138 

1. INTRODUCTION 

THE "TROTS SOFTWARE PACKAGE FOR 

THREE-DIMENSIONAL RECONSTRUCTION" 

A.H. VEEN 

Biology Department 

University of Pennsylvania, Philadelphia, U.S.A. 

As an example of the use of computer graphics in an application 

directed environment, this paper will discuss a software package for the 

three-dimensional reconstruction of biological data. This package was 

designed in 1973 for use at the Biology Department of the University of 

Pennsylvania in Philadelphia (U.S.A.) in cooperation with Lee D. Peachey. 

A more substantial description can be found in [l]. 

In the study of structure, particularly that of biological specimens, 

it sometimes is useful to slice the object being studied into a ser.ies of 

slabs. ·. 'rhese then are examined one at a time in face view, that is, in 

direction perpendicular to the plane of the slab, and information extracted 

from these views is used to construct a model of the original object. 'I'his 

process often is called serial sectioning and reconstruction. Usually the 

model is manually constructed from plastic, wood or other suitable material 

and requires careful and tedious cutting, sawing and glueing. All though 

the resulting model .in many cases greatly clarifies the structure of the 

specimen, the amount of time consumed by this manual method has kept it 

from wide spread usage. 



139 

The direct motivation for the development of a new method (and its 

first test case) was a study in our laboratory by C.H. Damsky of the mito­

chondria of yeast cells. This study needs to be done onanelectronmicroscope 

and for this purpose many very thin slices have to be cut (typically 20-100 

per cell). As a result not much more is known about the spatial structure 

of these organelles as that .it is very complex. It wasn't even known whether 

all the different parts within a slice belong to one or to several structures. 

We have developed a computer graphic method for generating precise 

three-dimensional representations using the kind of structural information 

available from microscopic images of serial slices. The software package 

for this method is known under the name TROTS which stands for Three­

dimensional Reconstruction of Objects from the Tracing of Slices. 'fhe main 

objectives in designing the system were: 

- only readily available hardware should be used 

- the operating costs should be so low that it could become a standard 

research tool 

- .it should be easy enough to use so that biologists without computer 

experience can get meaningful results without the assistance of a separate 

operator and after only a minimal .instruction period. 

2. THE PROCESS OF RECONSTRUC'l'ION 

Two basic tasks must be accompli.shed to solve the problem of three­

dimensional reconstruction. The first is to recover the position and shape 

of the two-dimensional projections of an original three-dimensional structure 

that has been cut into a series of slices of finite thickness. Secondly, 

an accurate description of the structure must be reassembled from these 

projections. These tasks can be broken down into a series of sequential 

steps 



140 

2.1 Preparing the Visual Data 

Preparing the tissue, cutting slices of only a few hundred angstrom 

thick, and taking the electron microscope pictures are the most elaborate, 

dificult and time consuming steps. I have neither the intent.ion nor the 

ability to discuss these in any detail and I will simply assume that a 

reliable set of micrographs of known magnification has already been obtained 

from a set of tissue slices of known sequence and thickness. Each micrograph 

represents the cross-sections of a number of structures. The perimeter of 

each cross-sect.ion is, in essence, a profile of that structure. 

A major problem in reconstruction is to know, once the specimen has 

been sliced, how sequential pairs of slices fit together. This is the 

so-called problem of alignment, In many cases this is handled by simply 

sliding the replicas of the two slices until there is a best fit of the 

profiles of the structure being studied. Th.is method carries the danger 

that the final reconstruction will be biased by some preconceived notion 

of its form. That's why we have paid a lot of attention to the use of 

"fiducial marks". These can be lines or points whose position or orientation 

one has reason to believe will remain fixed from one slice to the next. It 

is essential that these features used for alignment be precisely locatable, 

and usually they should be external to the structure being reconstructed. 

Sometimes the best solution .is to introduce artificial fiducial marks 

during preparation of the tissue. Depending on the nature of the specimen 

these can be plastic fibers, micro tubules (cylindrical subcellular 

structures) or holes drilled by a laser beam. 

2.2 From Visual to Computer Data 

Once the profiles to be used in the reconstruction have been found, 

data must be gathered on their relative positions and shapes. This is done, 

in our system, by an operator tracing manually around each profile in each 

micrograph with a stylus linked through an A/D interface to an appropriate 

computer. This combines the pattern recognition and selection power of 

the human operator with the arithmetic power of the computer. Th.is tracing 

method looks primitive at first, but in my opinion the simplicity of the 

approach is essential to the success of the system. The facts are that cell 



141 

images are subtle, variable and complex which only by specially trained ob­

servers are easily analysed. Developing a pattern recognition program would 

be a major undertaking, would have to be rewritten for many different ap-· 

plications and would need an elaborate control input to indicate to the 

program what is to be recognized and what is to be included in the recon­

struction. Another advantage of the biologist doing the manual tracing her­

self is, that she can use all her special knowledge of the structure to 

directly influence the accuracy of the reconstruction. 

In our implementation the tracing is done using a simple mechanic­

electrical tracing device (see Fig. 1) connected to our laboratory computer. 

2.3. Transfer to the Time Sharing Computer 

The tracing data which have been gathered through the laboratory com­

puter, are transferred by means of a paper tape to the medium scale computer 

where the rest of the process is carried out. The reading of the tape is 

under control of program PAPER of which Fig. 2 gives a sample dialogue. The 

user can specify global parameters as magnification and the thickness of 

individual slices. The program does some preliminary checking and proces­

sing of the data. An automatic transfer is provided to the next program. 



142 

FIGURE 1 

Our tracing device is marked by simplicity and low-cost. The tracing stylus is at 
the end of a lightweight bar which rotates around and slides in and out of a fixed 
construction incorporating high precision potentiometers to translate angular a.nd 
radial position of the stylus into electrical signals. The mechanical design is 
such that the stylus moves smoothly, without backlash, and with no preferred direc­
tion so that curves can be traced easily and accurately. A microswitch is positioned 
near the stylus so that one hand can both trace and operate the switch to give extra 
signals to the program. The positions of two reference points marked on the table 
are included in the taps at the start of the session. 



.RIJN PAPER 

TROTS-PROGRAM PAPER 
FOR HELP TYPE "?" 

SPECIAL OPTIONS ? J_ 
IF YOUR ANSWER IS NO I WILL TAKE THE MOST USUAL ROUTE THROUGH THE 
PROGRAM AND SKIP MOST OF THE QUESTIONS. I WILL USE THE FIRST FIVE 
CHARACTERS OF THE TITLE AS THE FILE NAME. IF YOU HAVEN'T SPECIFIED 
THE NUMBER OF SLICES ON THE TAPE I WILL ASSUME THAT THEY ARE ALL ON 
ONE TAPE AND THAT THEY ARE OF THE SAME THICKNESS. AFTER READING 
THE TAPE I WILL AUTOMATICALLY REDEFINE THE FRAME IF ANY POINTS WERE 
FOIJtlD OUTSIDE. 
IF THIS IS NOT WHAT YOU WANT TYPE YES IN RESPONSE TO THIS QUESTION 
AND I WILL TAKE YOU THROUGH THE WHOLE DIALOGUE. 
DEFAULT : NO 

SPECIAL OPTIONS ? .Y.)1:_§ 
FILE NAME 7 SIDE 
NUMBER OF SLICES_? _ _g 
SKULL 
SIFT NOISE 7 NO 
FRAME SIZE (CM) 7 ~ 
Pll!NT ? _ 
MAGNIFICATION ? 1 
l\llE SLICES OF UNIFORM THICKNESS '1 NO 
TYPE THICKNESS IN CENT!METERS 

I 7 l ,8 
27 2 

llEAD!"NG PAPERTAPE 
our OF BOUNDS.X: -0.024 Y= 0,587 SLICE= 
BOUNDARIES! X FROM -A.0603 TILL 0,8649 

Y FROM -0,0058 TILL 0,5867 
REDEFINE FRAME ? YES 
XLEF'T' XRIGHT. YBOTTor;r;-YToP ? 
DO YOU IVA1JT TO RUtl EDIT ? YES 

TROTS-Pi10GRAM EDIT 
FOR HELP TYPE •7• 

FIGURE 2 

t PROFILE 

A srunple of the dialogue generated by PAPER with user response a underlined, 
This user asked for more information on the first question causing the file 
containing the TROTS manual to be ace.nned and the appropriate information 
to be displayed. Apparently the title ("skull") was on the tape but the number 
of slices not. The options to print aH data and to delete readings that came 
&P<>aren'.tly from noise in the tracing hardware were not selected, The user 

chose a 25 cm frame but points were found outside so it asked for 
a redefinition of the frame and left it up to PAPER to choose the best boun­
dariee, lle uses the chain option to transfer to the next. program EDIT. 

143 



144 

2.4. Visual Editting 

Before the data are ready for three-dimensional reconstruct.ion some 

data manipulation is usually required such as alignment <:md "cleaning" of 

the data. 'I'his is done on a Tektronix storage tube ur1der control of the 

highly interactive program EDI'I'. Fig.3 gives an impression of its options. 

Using the *INPU'.I' command the user can select two slices, which need to be 

realigned with respect to each other. One will be the "active" slice which 

will "slide" over the other one which will be used as reference only. 

The sliding can be done with the use of the more primitive commands 

*AXIS, *TRANSLATE and *RO'l'A'l'E. Feedback is given by the *DISPLAY command, 

which carries out the transformation on the active slice, using the standard 

2-D matrix multiplications for each point, and writes on the screen a 

display as in Fig. 4a. In this example the pair o.f lines and the pair of 

big circles are the fiduciary marks and the ai.m o.f the alignment is to get 

these to coincide as well as possible. To obtian the best fit, the user 

will have to iterate the *'I', *A, •'R command to specify a transformation 

and an "'D command to get feedback on his progress. More automatic procedures 

have been divised so that the user only has to indicate his goal and leave 

it to the computer to calculate the precise transformation. An example 

of the *LINES command can be seen in Figure 4. Another powerful positioning 

option is using the cross-hairs with the *HAIR command. With two knobs the 

cross-hairs displayed on the terminal are positioned at different slices 

and the program calculates the translation and rotation to bring the selected 

points into coincidence. 

In our application tJ1e basic assumption for alignment is that the 

various profiles within one slice are .in a fixed relationship to each 

other. For other applications it might be useful to treat profiles 

separately. The *MODIFY command singles out one profile so that subsequent 

transformations only apply to the selected profile leaving the rest of the 

slice alone. For even more detailed manipulation, one can use the *CRACK 

command to break a profile in two so that the two parts can be treated 

separately. Fiduciary markers that are not being used anymore can be 

removed by the *ZAP command, Pictures taken at different magnifications 

can be adapted to each other with the *SCAJ"E command. 

A sequence of commands can be stored as an *GLOBAL command string 

that is automatically executed whenever a new slice is brought .i.nto core 



TYPE IN THE COMMAND YOU WANT HELP WITH 
THEN HIT RETURN 
FOR LIST OF COMMANDS TYPE n?n 

??? 7 

TYPING 
A .s~.4 
B 6 
c 
D 
E 
F 
G 
H 
I 3 t 4 
J 5 
L 
M .3 
N 
0 
p 
R 52 
S .01,-.PL'S 

T .20,.05 
u 1,2,3,4 
w 2 
z 4 

FIGURE 3 

SETS THE ROTATIONAL AXIS 
BLUNTS WITH LINEAR SMOOTHING USING G POINTS 
CRACKS A PROFILE 
TRANSFORMS AND DISPLAYS 
OUTPUTS AND EXITS 
FINDS A PROFILE WITH AID OF HAIRLINES 
INPUTS GLOBAL COMMANDS 
MANIPULATES WITH AID OF CROSHAIRS 
INPUTS SLICE 3C"PASSIUE"> AND 4CHACTIVE"J 
JOINS PROFILE 5 WITH THE NEXT ONE 
LINES UP WITH AID OF LINES AND PROF.ILES 
OPENS PROFILE 3 FOR MANIPULATION 
INTERPOLATES 
AS D BUT OVERWRITES EXISTING DISPLAY 
SELECTS POINTS, FINDS DISTANCES AND ANGLES 
ROTATES ACTIVE SLICE CLOCKWISE BY 52 DEGREES 
EXPANDS ACTIVE SLICE IZ IN THE X-DIRECTION 
AND CONTRACTS IT 3% IN THE Y-DIRECTION 
TRANSLATES ACTIVE SLICE IN X AND Y-DIRECTIONS 
CALLS USER SUBROUTINE 
WRITES LABE:LS ml PROFILES IN ACTIVE SLICE 
ZAPS PROFILE 4 OUT OF THE ACTIVE SLICE 

145 

I,ist of currently available col!l!lla.nds for EDIT. The first qt11sstion mark 
typed by the user makes EDIT enter the assistance section. The second 
question mark produces the list. 



J.46 

-~· 

1'W 

*1 

~ (\ LH 1 

l2'l' 1 

L11 

t(1 Pl?J! 

!':!!J! 
Pll 

*11 

F'IGURE 4a 

Editing of two serial sections of a yeast cell (user input underlined). The 

smaller outlines are profiles of mitochondria, the organelles whose 3-D 
configuration is being studied. The big outlines marked "6" are the profiles 
of a vacuole, a large organelle extending through all the sections, and 
useful as fiducial marks for positional reference. The lines marked "1" are 
fiducial marks coming from lines drawn on the original photographs pointing 
towards other cells and thus reliable directional references. The user first 
labels the profiles with the ft'RITE command and then specifies with the 
i!LINES command that lines "1" should be used for directional and profiles 11 6" 
for positional alignment A total of 20 of such pairs could be specified. 

FIGURE 4b (right) 

The l!:DISPLAY command produced this picture. EDIT calculated the best fit 
possible minimiz.ing the residual deviations. 
(Preparation by Dr. Caroline Damsky). 



with the *INPUT command. Since an *INPUT command can be the last of an 

*GLOBAJ, command string we can call the string recursively. For example, 

*G 

G?'l' .1,-.2 

G ? Z 

G ? I 

147 

is a recursive G-string that can be initiated ny merely inputting the first 

slice (*I 1). The recursive execution of the g-string will now cause all 

slices to be translated by .1 to the right and .2 downwards and to lose 

their first profile. In this way, simple editing procedures can be written 

and stored. 

Other commands perform measurements (thanks to Dr. Larry Kerr) or 

aid in the identification of profiles, while different ways of data 

reduction and smoothing can also be specified. Any user who is still not 

satisfied with this list of commands can, with the *USER command, transfer 

control to his own subroutine tailored to his personal requiremem:s. 

2. 5 Three-· Dimensional Reconstruction 

When the user is satisfied with the editted data he can enter the 3-D 

section consisting of the programs STRIP and FIG 30. 'I'he first of these 

does the preprocessing to convert the data into a special format required 

by the efficient 3-D and hidden line algorithm in FIG 3D. In this last 

program the user specifies a viewing position and some other parameters 

that determine the appearance of the output. •rhe 3-D figure is now written 

on the screen or on an incremental plotter. Examples of the output and the 

influence of the different depth cues can be seen in Fig. 5 and 6. The 

reconstruction and di.splay goes fast enough (some 40 seconds for FIG. 6 

under normal load and baud rate) to make it practical for the user to create 

reconstructions from many different viewing positions and select the 

most clarifying view. With the program MERGE it is even possible to remove 

slices, which is useful when the internal structure is hidden by outer 

layers. 



1.48 

~ 
Effectiveness of the different depth 
mathematically generated by 
TROTS can handle holes and 
a,. Head-on view,, 
b., View from a more advantageous 
c.., Removal of the htdden lines 
d. With ne·osr,ecti 

e. After "cro1ss·-hf1tc>hintt'' 
-r"' Forms 

d 

f 

cues" These data do not come frcm tracings but are 
DONUT., The shapes a:re chosen to illustrate bow 

parts 0 

parts~ 

degrees,, 



FIGURE 6 

Mitochondria of a yeast cell, (Reconstruction by Dr. Caroline Da.msky), 

a .... Has the same depth cues as Fig,, 5c but is still very ambiguous .. We have no 

idea of the angle from which we are looking at the object nor of its thickness,, 

Since we are dealing with unfamiliar shapes, i.,e., shapes that do not resemble 

a:n,y object we a.r.e accustomed to see in }-D, one neefds special depth cues~ 

b - Our layering technique gives the impression that the slices a.re cut from some 

layered material and provides a pseudo shading effec:t.., Each layer or nsheet0 is 

of the same thicknese so thicker slices have more sheets .. On the progrru.n level 

it is accomplished by simply displaying the slice repeatedly with a displacement 

i:n the z-direction equal to the sheet-thickriess,, 

Electron 
Microscope 

PDP-8/l 

Display 

Display 

149 

FIGURE 

The complete ~'HOTS system. 
ri'he pictures from the electron microscope or other source a.re traced 

manually,., 'Phe program TRACER translates the movement. of the tracing stylus 

into a paper tape .. PAPER converts this into a. disc file .. The progTarns 

FILL, MERGE, EDIT arid FIXIT can be used to perform a variety of data 

manipulations., STRIP prepares and. FIG3D produces the three-dimensional 

reconstruction .. 

1!!l Plotter 



150 

3. THE HARDWARE 

Since one of the objectives in designing TROTS was to come to a 

working system within a matter of months without having to deal with the 

extra costs and delay for the purchasing of special hardware, the available 

hardware was, at least in part, determining the final set-up of TROTS. If, 

for instance, a refresh scope had been available instead of a storage 

scope, a simpler more efficient EDI'I' program would have been written. An 

advantage, however, is that the hardware we are using is, with the 

exception of the tracing device, fairly typical for a research environment. 

'l'he local computer in our laboratory is a most simple PDP8/L, with 

4K of memory, teletype and an A/D converter. A limited machine indeed 

which TROTS only uses for data gathering. Doing this on a time-sharing· 

computer by connecting our tracing device directly, would require special 

input buffer arrangements, might endanger the integrity of the time--sharing 

computer and would not be greeted with great enthusiasm by most computer 

managers. 'l'he paper tape interface we use presents no such problems at 

all. 

Our tracing device (see Fig. 1) is designed and built loca1ly by 

our laboratory shop. At the time this was the only way to get an input 

device, smooth and accurate enough, for only a few hundred dollars. It 

might look primitive but it still operates to our satisfaction. 

Most of TROTS is implemented on a PDP10 wh.ich has an excellent time 

sharing monitor and good file handling facilities. Among the peripherals 

are a number of 'I'eltronix 4010 graphics terminals (with storage tube), 

hardcopy unit and incremental plotter. Maybe most important of all, this 

set-up is supported by an enthusi.astic staff interested in graphics. 

4. THE 'rROTS SOFTW.ARE 

'l'he software for TRO'£S has been written as a modular package (fig. 7). 

The modules are independent programs communicating with each other through 

permanent storage data-sets, The advantages are that intermediate results 

are always available to repeat a step or correct a mistake, that adding 

a new module does not affect the rest of the system in any way and that 

it is possible for a user to enter the chain or leave it at any point h(e 

wants. For example, some applications use only the data collection part 



151 

(programs TRACER and PAPER) as a means of converting the visual data into 

computer files for further calculation. In other cases, three-dimensional 

data that are generated by other means (as by our program DONUT for figure 5), 

can be displayed with hidden lines removed using the three-dimensional. 

programs STRIP and FIG 3D. The functions of these programs are summarized 

in Table 1. 

'rrots makes extensive use of the excellent file handling facilities 

on the PDP-10. A file name consists of two parts: the first name and an 

extension. The latter generally is used to indicate the type of data stored 

in the file. In the input and output columns in Table I the convention is 

shown for the file name extensions that the different programs assume. 'l'he 

series xxx.XY, xxx.EDl, xxx.ED2 till xxx.ED9 forms a hierachy and if an 

extension is not explicitly specified TROTS programs take the highest one 

available for input and the next one for output. All file handling is 

controlled by subroutines from the TROTS library DSK10. 

4. 1 'l'RACER: Gathering the Data 

The program TRACER running on the PDP-8 ensures that the limitations 

of the small computer and its lack of fast peripherals does not interfere 

with an efficient tracing process. 'rhere is of course a conflict between 

the high rate at which the tracer delivers information during tracing and 

the low rate of the paper tape puncher ( 10 BY'l'ES/SECOND). To resolve this 

confli.ct TRACER calculates from each reading (averaging four successive 

samples to reduce noise) the angular and radial displacement with respect 

to the previous recorded point and records them only if either exceeds a 

threshold set by the user. Thus the number of collected data points is 

not dependent on time but only on the distance the stylus has moved and 

the speed of the operator has no effect on the accuracy of the paper tape. 

An additional advantage of this approach is that the recorded points are 

more or less equally spaced along the traced line. Furthermore input and 

output handlers operate independently of each other and communicate through 

a circular buffer. This way always enough room will be available unless the 

input part has gotten more than 3600 points ahead, a feat no user has 

yet accomplished while tracing carefully. 

Points are only recorded while the operator keeps the rnicro·-switch 

closed. So only the profiles itself are included on the tape. Changing 



Pro~T2m 

TRACER 

PAPER 

EDIT 

*FI1L 

*FIX IT 

*HERGE 

STRIP 

FJ:GJD 

TABLE 1 

Program Modules of TROTS 

Function 

Data collection. 
Monitors profile tracing. 

Check tape, convert from polar into normalized 
Cartesian coordinates. 

Align~ent, smoothing, data reductiont etcQ 

Scale data to fill screen. 

Corrects user errors~ 

Combines specified slices from 2 files 

Prepares data for hidden line removal and 
3-D display. 

3-D display with depth cues. 

Input 

Tracing stylus 

Paper tape 

xxx.XY, ~EDl-8 

xxx.XY, .EDl-8 

xxx.XY, .EDl-8 

xxx.XY •• EDl-8 

xxx.KY, .EDl-8 

xxx.STR 

* These "utility programs are relatively straightforward and will not be described in detail. 

Output 

Paper tape 

xxx.XY 

xxx.EDl-9 

xxx.EDl-9 

xxx.EDl-9 

xxx.EDl-9 

xxx.STR 

Graphics 

lJ1 
h.J 



153 

slices (next picture) is signaled through the keyboard. Both signals (end­

of-profile and end-of-slice) cause special markers to be punched in the 

tape. 

4.2 PAPER: Transfer to the PDP-10 

The paper tape is read into the PDP·-10 under control of pl'ogram 

PAPER. In fig. 2 an example of its dialogue was already given. This 

demonstrates a primary design goal of TROTS: to be friendly, self explanatory 

and easy to use by a group of people who are normally not accustomed to 

computers. Reasonable defaults have been defined for most questions so 

that the unsophisticated user who only wants a standard picture has to 

make a minimum of decisions. In general, when a question is not understood 

by the user or deals with an option he is not interested in, simply hitting 

the return key will cause the program to either skip the option, substitute 

a reasonable answer, or provide the user with more directions. The latter 

also happens whenever a question mark is typed. The detailed directions are 

extracted from a file, which contains the complete manual for TROTS. 

'l'he rest of the package works with its own spatial unit chosen such 

that all data are normalized between 0 and 1. PAPER calculates the magnif­

ication factor to relate these units to centimeters. 'l'his factor is recorded 

in the file and gets automatically adjusted with every relevant manipulation. 

Data are presented to the user either in centimeters or microns depending 

on the magnitude of the magnification factor. Using the two reference 

points, (see fig. 1), the readings on the paper tape are transformed into 

polar coordinates and from these into Cartesian coordinates in box units. 

'l'hese normalized coordinates are compacted (two coordinates to a word) , 

buffered, and written into the file. Slice thickness is included in the 

output file for later use by the display program. 

4. 3 EDI'l': Visual Data Manipulation 

Detailed data manipulation is done with program EDI'l'. Together with 

the tracing, operation of this program largely determines the quality of 

the reconstruction. 'I'he power of the program is in the flexibility of the 

conversation, the great number of commands (fig. 3) and its constant feed­

back. The programming for most parts is relatively straightforward, with 

the exception of the input command. This command (fig. 8) is very straight·· 



154 

TYPE HI THE COMMAND YOll WANT HELP WITH 
THEN HIT RETURN 
FOR LIST OF COliMANDS TYPF. "?" 

* M 
*I 0, M 

M, N POSITIVE INTEGERS 
SLICES MAND N AllF. RF.AD FROM THE DISC, M AS THE FIXF.D CPASSIVEl 
SLICE AND N AS THE SLICE TO BE WORKED ON (ACTIVE) 
IF M AND N ARE IDENTICAL TO THE CURRENT PASSIVE AND ACTIVE SLICE 
NUMBERS THE CURRENT ACTIVE SLICE WILL BE "FORGOTTEN" AND THE 
ORIGINAL ONE WILL BE READ FROM THE DISC AGAIN. THIS IS USEFUL 
lF A SERIOUS MISTAKE HAS BEEN MADE IN EDITTING THE CURRFNT SLICE 
AND YOU WANT TO START OVER AGAIN. 

THE ACTIVE SLICE WILL BE REDEFINED AS THE PASSIVE SLICE AND THE 
NEXT SLICE WILL BE READ FROM THE DISC AS THE NEW ACTIVE SLICE, 
IF THERE IS NO NEXT SLICE THIS COMMAND WILL CLOSE THE FILE AND 
EXIT THE PROGRAM, 

M POSITIVE INTEGER 
SLICE M WILL BE READ FROM THE DISC AS THE ACTIVE SLICL NO 
PASSIVE SLICE 

* l M, N, ,J 
M, N,J POSITIVE INTEGERS 
ONLY ONE OUT OF EVERY J POINTS WILL BE READ INTO THE BUFFER, 
THIS CAN BE USED TO SHRINK A LARGE DATA FILE WITH AN EXCESS 
NUMBER OF DATA POINTS TO A REASONABLE SIZE. COMBINE THIS WITH 
THE *G COMMAND TO GET AN AUTOMATIC DATA REDUCTION FOR THE WHOLE 
FILE, FOR INSTANCE TO REDUCE A FILE BY A FACTOR 4 <RETAIN ONLY 
ONE OUT OF EVERY 4 DATA POINTS) GIVE THE FOLLOWING COMMAND 
SEQUENCE AFTER INITIAL DIALOGUE: 

*G 
G7I0,0,4 
•10, 1,4 

THIS WILL READ THROUGH ALL THE SLICES AND EXIT THE PROGRAM 111 
THE l£11AL MArlNNER. 

FIGURE 8 

.Assistance offered by EDI1J1 for the :irTNPUT command~ After the user 
indicated that he wanted 
the rrROTS manual was 
command displayed., 

wi_ th the §:I command~ the fi 1 e containing 
and all information pertaining to this 



155 

forward in its use, but complex in its consequence. Recovering from near 

disastrous mistakes is possible by simply restating the last ''INPUT command, 

which inputs the data again in unaltered form. In all other cases the active 

slice currently in core will be written onto the output file. The user can 

specify any slice as the active and any other or none at all as the 

passive slice. Because of its flexibility, the lining-up can be in any 

direction and any two slices can be compared to attain a better accuracy. 'I'he 

zapping and data reduction features might lead to an output file that is 

smaller than the input file. To support all these features EDIT reads and 

writes all files sequentially, maintains intermediate files (transparent to 

the user), but does extensive bookkeeping to minimize I/O time. 

All not defined commands transfer control to a user defined subroutine 

(if present). In this subroutine the user programmer has access to all data 

necessary for any measurement or action on the active slice. 

4. 4 S'l'RIP - Converting to Strip-format 

'l'he problem of obtaining the 2-D projection of a point in 3-D space as 

seen from a specific distance and angle has a rather straightforward solution 

(see for example [4]). It can be written as a matrix transformation and 

needs a minimum of nine multiplications and two divisions per point. 'l'he 

problem of deciding whether a certain line of the 3-D object is visible or 

is hidden behind other parts of the object is more complicated. Many solutions 

have been prepared but all of these so-called hidden line algorithms consume 

considerable amounts of computer time and core storage. 

Making use of the ordering of our data, I devised a special format for 

describing the individual profiles, such that both a simple hidden line 

algorithm can be used and the 3-D transformation simplified. The resulting 

2-D display is the equivalent or a good approximation of the true projection. 

Our hidden line algorithm is sufficiently general to place no 

restrict.ions on the number or the shape of the individual profiles so that 

the 3-D object can have holes and can consist of many different parts, as is 

already shown .in fig. 5 and 6. 

'I'he feature of our data that makes this scheme practical is the fact 

that all the profiles are parallel and ordered: every profile has a unique 

z-coordinate, which is not less than that of the previous profile. One con­

sequence is that from any viewing position (as long as we do not try to look 



156 

from "behind") any point can be hidden by previous profiles. So if the slices 

are displayed in order, each point has to be checked only against the scene 

as displayed so far in order to decide on its visibility. 

The simplicity of the hidden line algorithm and 3-D transformation is 

made possible by the "strip-format" into which the individual slices and 

the complete 2-D display are coded. 'Ehe "stripping" process is illustrated 

by Figure 9a .. For every strip the y-coordinate of all intersections are 

tabulated in order of increasing magnitude. If a profile changes direction 

within a strip, two equal y-coordinates are entered, positive for left 

turning points (as in<) and negative for right turning points (as in>). It 

is this coding of turning points that makes it possible to reverse the process 

and deduce which y-values in neighboring strips should be connected to get 

the original profile: going from left to right every left turning point is 

the start of a new pair of lines, while a right turning point is the closure 

of a pair of lines. Most importantly, it is possible to do this reconstruction 

serially from left to right, so that for every point in a strip, it .is clear 

to wh..ich point j_n the previous strip it should be connected, without hav.ing 

information about strips further to the right. !'Jo a.fter str.ipping, no 

information about the profile has been lost except for some accuracy .in the 

x-coordinate. 

All profiles are closed and have an "inside" and "outside", since one 

assumes that every profile is a borderline between the solid matter of the 

3-D object and space and that the sections are large enough to completely 

cleave the object. As a consequence, there is aiways an even numbers of 

entries per strip, since every closed profile intersects a strip an even 

number of times, So every pair of points .in a strip marks the li .. mi ts of a 

covered section of the str.ip. Multiple profiles and holes within a s1.ice 

(F'.igure 9b) are treated similarly. 

'Ehe stripping algorithm in STRIP i.s simplified by processinq a profile 

in two stages. In the first stage a "civilized" version of the xy-data .is 

produced. The civ.il.iz.inq consists of averaging of successive points that 

fall in the same strip, generat.ion of intermediate (entries by linear inter-­

polat.ion if successive points are more than one strip apart, closing the 

profile by connecting the first and the last point, and removal of a possible 

overshoot. The latter occurs when the operator more than closed a profile by 

passing the point where he started tracing. To detect an overshoot, STRIP 

checks each point to see whether it falls within a specified distanc'" from 



.8 

.6 

.4 

.2 

2345678910 

§5 
:~€ .~; .~; .~! :~: :~~ ~ . . 1 

.93 .98 .67 
.55 .77 .50 

.71 .89 .51 .44 .93 .87 .40 

.35 .30 24 .18 .22 .26 .30 

.85 .89 .93 .98 .93 .87 -.82 

.85 .40 .55 .70 .72 .75 --;82 

Strip format and hidden line algorithm .. In the program STRIP slices are divided 

in vertical strips., For the sake of clarity 1 the number of strips here is 10 

but is 1 in general, between 100 and 500~ The accuracy of the method depends 

greatly on this parameter., 
a - The solid line represents an arbitrary profile and the table its descrip­

tion in strip format., The line in this table is the connection path of 

these coordinates and is equivalent with the broken line in the figure0 

The shaded area is the portions of the strips covered by this profile 

according to this table"' 

b - One profile within another in the same slice defines a hole~ The table is 

still in order of increasing magnitude and the segment enclosed by an odd 

entry and the next one is still the covered section of a strip~ 

c - The second slice and its strip format description" 

d - Head-on view of the two slices of b and c with hidden lines removed& The 

table shows the contents of the cover-up array after merging~ The equal 

entries for turning points do not show up in this array since they 

enclose no area<') The 0 edge interpolator" in FIG3D eliminates any inaccuracy 

in the hidden line removal that might remain after increasing the 

nUillber of strips.;; 

..... 
(J1 

-..J 



158 

the starting point (closing tolerence). In the second stage, they-coordinates 

of the civilized version of a profile are distributed over the appropriate 

strips of the slice buffer, generating double enties (positive or negative) 

for turning points. 

When all profiles of a slice have been entered, every stri.p is ordered 

according to increasing magnitude of y-values, and the whole buffer is written 

onto the output file in "compacted" format, which reduces a series of zero's 

to a single nimber. 

This stripping is relatively time consuming but the resulting file can 

be used by FIG 3D for efficient 3-D projection from many different angles. 

With perspective however the process becomes more complicated. When 

the eye is at finite distance and not in the X··Z plane, the projections of 

the square slices cannot be divided into parrellel strips. STRIP then 

generates non-parallel strips, j.n effect transforming the data to an inter­

mediate coordinate system in which the projections of the slices are rectangles 

again. The hidden line algorithm operates in this coordinate system. Prior 

to display, FIG 3D performs the reverse transformation. In this case STRIP 

will have to be run for eve:ey change .in viewing position. 

4.5 FIG 3D: Three-Dimensional 'l'ransformation and Hidden Line Suppression 

From these data in strip--format FIG 3D now has to create the three­

dimensional figure. I will first describe the 3-D and then the hidden line 

algorithm. 

Three facts help to simplify matters: 

-· Without perspective 3-D transformations are linear. 

2 - Because of the tracing method all data are ordered in the Z-direction. 

3 - Through the strippinq process all data within a slice are ordered in the 

X-direction. 

It is therefore sufficient to perform the standard 3-·D transformation on the 

B corners of the enclosed box. From these, the projections of the four corners 

of a sheet (the multiple projections of a slice see fig. 6) can be found by 

linear interpolation. From these, the projections of bottom and top of every 

strip can, in turn, be calculated by Ji.near interpolation. With efficient 

bookkeepinq all these interpolations can be reduced to a few additions and 

one multiplication per point. On computers where multiplication is costly 

this amounts to S'lJbstantial savings in computer time compared to the nine 



159 

multiplications per point needed for standard transformation. 

Without perspective this method creates the exact 3-D transformation. 

With perspective the transformation isn't linear anymore, so the just 

described method introduces an error. FIG 3D uses the exact transformation 

for the corners of the box and linear interpolation for all other calculations. 

If the viewing distance is not less than four times the size of the object, 

the error is less than 1%. For most cases this is totally acceptable. 

The main justification, however, for the strip-format is the resulting 

simplicity of the hidden line algorithm. Let us again consider the case 

without perspective. The case with perspective presents no extra problems 

because of the transformation already performed in STRIP. 

'rhe screen has been divided into strips again and its content is 

stored in strip-format in the "cover-up array". At first the screen is clear 

and this array empty. Let the slice of Fig. 9b be the first to be displayed. 

Every strip of the i.nput slice corresponds to one strip of the cover-up 

array. Since this first slice is totally visible, the, by the 3-D algorithm 

transformed, values are copied into the appropriate strips of the cover-up 

array. Now the non-covered parts of the next slice (Fig. 9c) need to be 

displayed. FIG 3D compares the projections of every point of a strip in this 

new slice with the sect.ions defined by successive pairs of entries in the 

corresponding strip of the cover-up array. 'rhere are three possibi.li ties: 

L The point lies within this section: + the point is hidden. 

2. 'I'he point lies below this section: + the point is visible. 

3. 'l'he point lies above this section: _,_ get the next pair of entr.i.es and 

check again. 

If there are no more pairs within this strip, the point is visible. 

If the point is visi.ble its coordi.nates are stored in a plotting 

buffer. If the point i.s hidden while the corresponding point in the last 

strip was visible or when a right turning point is encountered, the visible 

polygon is drawn by a plotting subroutine and removed from the buffer. 

For plotti.ng on an increment.al plotter, a time-saving procedure has 

been devised. Since the order in which the polygons become available for 

plotting is rather haphazard, the plotter would spend most of its time moving 

from one short line segment to the nexL Instead of plotting a line segment 

as soon a.s it becomes available, an attempt .is made to store it in a 

2 K buffer. Only when this buffer is full, room is created by plotting the 

line segment from the buffer that is closest to the present pen position. 



160 

At the end of the program, the buffer is emptied the same way. 

After the visibility of all the points of a strip has been determined 

and the visible points entered onto the display file, the strip is merged 

into the corresponding strip of the cover-up array to obtain the up-dated 

version: Pairs of points defining covered-up sections are compared resulting 

in new pairs describing the "visual super position" of the two strips. The 

number of pairs can decrease as well as increase. 

For high precision pictures, the "edge interpolator" is normally in 

operation,which corrects for the accuracy introduced by the stripping process 

without comprimising the space and time efficiency of the strip concept. 

If a line changes from hidden to visible or visa-versa, it must have crossed 

another line of the image. The edge interpolator tries to identify this line 

and to calculate the exact point of intersection. Without this option, every 

visible line segment starts and ends at the midpoint of a strip, as in 

Figure 9d. For a complex figure as in Figure 10 the visibility test for 

each point requires on the average only four array references and comparisons 

and maybe twice that number for the merging process. No addition, multi­

plication or other arithmetic is needed. 

4.6 UTILITIES: MERGE, FIXIT and FILL 

Three utility type programs help the user maintain his files. MERGE 

is used to create a new file out of specified slices of at most two input 

files. This is useful when a few slices have to be replaced, when a part 

of a structure has. to be cut away to reveal the inside or to reverse the 

order of slices to take a look at the back side of a structure. FIXIT is 

used to fix errors made during tracing. It can adjust global values as 

magnification or slice thickness, join slices or split slices in two. FILL 

is a simple program to make the structure fill the whole box in FIG 3D 

for maximum clarity. All these programs are straightforward and will not 

be described any further. 

4.7 EXPERIMENTAL PROGRAMS: CROSS and DRESS 

In some cases cross-hatching as in Fig. Se can markedly improve the 

clarity of a 3-D picture. For Fig. Se two sets of data were used (with 

viewing directions separated by 90°) and displayed on top of each other. 



FIGURE 10 

Reconstruction of the right half of the skull of the author. 
For obv:i.oue reasons, a non-destructive sectioning technique is chosen 
based on tomography, an X-ray technique that makes it possible to let 
only one specific plane of the object show up on the X-ray picture. 
He:ve the planes were chosen 5 mm apart so that 30 slices covered the 
total skull. (courtesy of D. Kerr). 

161 



162 

The program CROSS was developed to create the second data set from the 

first one, both in strip-··formaL An additional program DRESS (the reverse 

of S'fRIP) can be used to create an XY-type file so that all the data 

handling power of .EDIT and the utilities comes available. The combination 

or the rotating option in .EDIT and the cross-sectioning of CROSS linked 

through STRIP and DRESS makes sectioning under any angle possible. 

5. THE SUPPORTING GRAPHICS PACKAGE 

The software that supports TROTS is a locally written graphics 

package that in functions and interface is very similar to the standard 

Calcomp subroutine package. The relevant extensions are a subroutine to out­

put polygons with savings of 50% in I/O time, and the possibility to write 

the programs device independent: The choice of the out.put graphics 

device can be at. program or job control level. 

The availability of more sophisticated graphics software at. the level 

of GINO or GPGS would not necessarily have facilitated the plotting program-· 

ming. EDIT and FIG 3D are the only programs producing graphics output. EDIT 

could have made use of the 2-D transformation facilities and the possibilities 

of random deletion and addition of picture segments, but this would have 

simplified the programming only if the transformed data were available 

to the program (the write-back option) since that is the data to be stored 

in the output :file. FIG 3D would have to forego the efficiency of the strip·· 

format to be able to use 3-D standard software or hardware. But. again a 

write-back option would be essential for the hidden line algorithm. An 

example of how th.is combination of 3-D hardware and write-back facility 

could be made very useful is described .i.n the next section. 

6. 'I'OWARDS A REAL-TIME SOFTWARE HIDDEN LINE REMOVER 

A very powerful depth cue is provided by the kinetic depth effect 

which is obtained when a three-dimensional scene is rotated around a 

suitable axis such that near and distant points will move in opposite 

directions. If suit.able input tools are available (as control dials or 

joystick), this procesr,, can be made interactive g.i..vi.ng the user the 

impression of a real 3-D object. which he can turn around and zoom i.n on 

producing a very realistic effect. Of course, this requires a di.splay of the 

refresh type rather than the storage tubes we have been discussing so far. 



163 

In applications like these, efficiency becomes very important. To 

obtain a smoothly changing picture we have to provide the refresh hardware 

of the display with a new picture at least once every 200 msec. 'l'o complete 

the 3-D transformation and hidden line removal for a whole scene within 

these 200 msec is hardly possible .in software for pictures of any complexity. 

Several hardware implementations for 3-D transformation are available on 

the market. We worked with the Picture System of Evans & Sutherland 

cons.is ting of the 3-·D transformation hardware ( 3-·D box) , display, 4K refresh 

memory and data tablet connected to a standard PDP 11/40 mini-computer 

with 32 K of core. Hardware hidden line removers have also been constructed, 

but are not to our knowledge commercially available. The efficiency of the 

TROTS hidden line algorithm combined with a sophisticated interplay between 

software and the 3-D box makes it possible to produce a good approximation 

to the ideal case of interactively changing display with all hidden lines 

.removed. 

I postulated that human percepti.on has different sensitivities to 

different inaccuracies. To obtain a flicker-free image on the refresh tube 

we should display more than 20 fps (frames pe.r second). We set our refresh 

rate at 40 fps. This only involves the transfer between refresh buffer and 

display and is independent of the rest of the system (Fig. 11) . •ro obtain 

a smoothly changing picture it. is not necessary that all these frames are 

different. For film animation, for instance, it is standard procedure to 

project pairs of identical frames in succession so that there are, at most, 

18 different frames per second. I set our frame update rate at 8 fps and 

still obtained a smooth movement. This update involves adjusting the 3-D 

box to the new viewing position and starting the transfer of the 3-D data 

from the main memory through the 3-D box to the refresh buffer. 'I'his transfer 

is handled by a Direct Memory Access module leaving the CPU free to attend 

to the user interaction and hidden line removal. 

Even ou.r fast algorithm is not able to complete the hidden line 

removal for the total picture 8 times per second, but I reasoned that our 

perception is not very sensitive to minor inaccuracies in the hidden line 

removal as long as the major portions of the hidden lines are removed and 

the major part of the visible lines are displayed. The solution then is as 

follows: In the main memory we have four arrays. TOTAL contains the xyz--· 

coordinates of the complete scene. The 3-D hardware has the option of 

writing its 2-D output back into the core memory rather than the refresh 

buffer .. This feature is used for the fast conversion of the 3-D data of a 



164 

FIGURE 11 

3-0 
-i Hard-

, : ware 
2D r---S-tr-ip_psd _ _, M0010fV : 

;w;;;t.:_ 
: Back 

' 
·----- J 

11/<IO 
Memory 

Data flow diagram for the real time removal of hidden lines 
from a dynamic display 1 using the special hardware of the Picture 
System. 
Array 'l'OTAL contains the xyz-coordinates of all the points@ VISIBLE 
only the xyz-coordinates of the visible points. STRIPPED contains 
the 2-D p:rojectiomof one slice and COVER is the cover-up array in 
strip format. 



165 

sheet to a stripped format similar to the one described before. Since, for 

dynamic purposes, a limited resolution is considered adequate, the image 

is divided into only 50 strips. 'l'his 2-D output of a sheet is stored in 

S'l'RIPPED. By comparing STRIPPED to the cover-·up array COVER, the program 

decides on the visibility of each point and transfers only the xyz-coordinates 

of visible points from TOTAL to an array VISIBLE. At the end o:f every sheet 

STRIPPED is merged into COVER as described in Section 4.5. It is this array 

VISIBLE that is used as input to the 3-D hardware for the frame update 8 

times per second. 

A hidden line update cycle consists of applying this procedure to all 

the sheets in succession. The viewing position for the hidden line algorithm 

within one cycle has to be the same for all the sheets. This is called the 

cycle viewing position which is generally different from the current frame 

update position which changes constantly during a cycle. rrhe error in the 

hidden line removal is minimized if the cycle viewing position is chosen 

such that at the midpoint of the cycle it is equal to the current update 

position.This can be done if the viewing position changes at a constant 

rate and if one knows the total length of the cycle. After a few cycles, 

the can make a good estimate of the length of the upcoming cycle. 

Moreover, it can alter this length by changing the number of strips. 'l'his 

opens the possibility of automatic determination of the optimum computing 

parameters at which the sum of errors is minimal, depending on the speed of 

the movement. 

Note that the only inaccuracies are that certain hidden line segments 

are displayed and certain visible line segments are removed round the edge~; 

of the scene. This is mostly so around the start and the end of the cycle. 

At the midpoint of a cycle we have a perfect picture. The 3-D perspective 

projection, however, .i..s at all times exact and not influenced by the 

stripping process. 

Although this system .i.s not yet operational, the software has been 

written and tested. Many core and time-conserving measures have been 

incorporated (such as compacted strip :format and routines in assembly 

languages where practical) and it has been demonstrated that with some 

minor additions to the 3-D box, perfectly acceptable pictures can be generated 

from fairly complex scenes with this simple mini-computer with 

amount of core. 

standard 



166 

7. EVALUA'I'ION 

One of our objectives was to design a system that could be used 

directly by the people that are interested in 3-D reconstruction without 

specialized training or the interference of a separate operator. These 

people (in our case, biologists) are experts on the object that is to be 

reconstructed but, more often than not, have no previous experience with 

computers. Moreover, their main interest is not in gaining computer 

expertise but in obtaining a reconstruction easier and faster than they 

could by conventional means. 

So there is a need for a "friendly" system, that is self-explanatory, 

is tolerant of mistakes, guides the user and is not intimidating by forcing 

a new user to make a great number of decisions whose consequences he is 

not familiar with. For this reason we have given much attention to the 

assistance and chaining features and to making the interactions as clear, 

natural and short as possible. 

On the other hand, reconstructing subcellular structures of unfamiliar 

shape i.s not a trivial task and the system should give an experienced user 

some control over the detailed operation of the algorithms. For this reason, 

the dialogues include some more technical questions that normally are 

skipped. 

The 'I'ROTS system has been extensively and successfully used by the 

research group who prov.ided the original motivation for the project. W'nen 

the availability of the package became known other groups started making 

use of it. "rhe different groups at the University of Pennsylvania that 

were using TROTS in their research include botanists reconstructing a plant's 

apex from a series of 80 sections, cardiologists studying the shape of the 

ventricals, and plastic surgeons studying the possibility of predicting 

the visual result of a proposed operation on a defo:nned skull. The latter 

group uses a non-destructive "sectioning" technique based on tomography 

(see Figure 10) that could conceivably be used for all objects that are 

x-ray opaque. Some of these groups have added their own sections such as 

an "operation" procedure for EDIT and elaborate smoothing programs. In all 

these cases '1'ROTS proved to be as flexible and as easy to use as we had 

hoped. Generally after a short demonstration users could independently find 

the:i.r way through the system and produce their first reconstruction in a 

matter of hours, This is often directly followed by a new tracing session, 

since the first tr:i.al usually brings home the point that careful tracing 



and choosing adequate fiduciary marks largely determines the quality of 

reconstruction. 

167 

One of the reasons TROTS can be used for a wide variety of applications 

is that it makes no predetermined assumptions about the shape, topological 

nature or complexity of the objects to be reconstructed. The other is that 

the software is flexible enough to gracefully incorporate new developments 

without affecting the integrity of the system. This is facilitated by the 

USER option in EDI'l', while the file handling through the DSKIO subroutines 

makes adding new programs extremely easy. 

The package is also cheap in its operation. A complete process from 

tracing to final reconstruction can be done in a few hours using less 

than one minute CPU 

The 'I'ROTS software is completely written in FORTRAN and it is 

expected that it can be run on all computers that have sufficient memory 

and graphics display capabilities of either the refresh or storage type. 

Magnetic tapes containing source programs and documentation will be supplied 

to any facility that has the necessary hardware and programming skills 

to adapt the system to the particular installation. This should present 

no particular problems since the programs are profusely documented. 

REF'ERENCES : 

[1] A. VEEN & L.D. PEACHEY, 'l'RO'l'S: A computer graphics system for three .. -

d.imensional reconstruction from serial sections, Computer and 

Graphics, (in press). 

[ 2] W. M. NEWMAN & R. l'. SPROULL, Principles of Interactive Computer Graphics, 

McGraw-Hill, N.Y. (1973). 



168 

SHAPE PROCESSING FOR MECHANICAL COMPONEl'HS 

l.C BRAID 

Computer laboratory, Cambridge University 

1. A MECHANICAL COMPONENT OBSERVED 

Computer-aided design has benefited many areas of engineering but has 

been slow to make an impact on the mechanical. field. Among the many reasons 

that might be adduced for this lack of progress - the conservative nature 

of the industry, the variety of manufacturing methods, the fact that many 

of mechanical engineering are of relatively low value when com­

pared with the work of say civil and electrical engineers, one stands out: 

the sheer complexity of shape enjoyed by these ubiquitous components. 

In this talk, I shall examine the shapes of engineering components 

and show how their complexity can be tackled. I shall then touch briefly 

on previous work in the field, and finally describe some of the present 

research at Cambridge. 

Fig. 1 shows a mechanical component of moderate complexity, .i.n fact 

part of a mounting for a gyroscope. Considered as a point set in three 

dimensions it can be seen to have an interior, in this case occupied by 

metal and bounded, an exterior of air unbounded, and in between a boundary, 

t.hat is, its surface. Although in principle a component might be modelled 

in a computer by storing a description of its interior or even its exterior, 

the finite size of computers makes such a scheme impracticable. Instead, 

a representation of the bmmding surface of the component is stored. By 

giving in addition a sense to the surface, it is then possible to infecr 

whether any point is within the component, outside it, or on its boundary. 

There are other, more indirect, ways of modelling a component's 

shape. 'l'raditionally, engineering drawings formed the medium for storing 



169 

fig, l 

fig. 2 



170 

and transmitting shape information. Indeed, a Frenchman, Gaspard Monge 

(1746-1818) must be given credit for devicing a systematic method based 

on orthogonal plane parallel projections. Early successes in computer 

graphics encouraged digital encoding of drawings, in some respects an un­

fortunate development as .it gave the impression of stor.ing shape infor­

mation yet did so in a form that, except for certain simple classes of 

shapes, could be interpreted only by human intelligence. It is, in gene··· 

ral, impossible to compute the weight of a component from a stored drawing, 

still less to find and draw a section through the component. 

With the advent of numericallT··-controlled machine toolE;, a second 

indire et method of shape representation arose. In this case, it was the 

three-dimensional motion of a cutter that was stored. Once more human 

intelligence, (of a part· .. programmer) was needed in order to translate from 

a drawing to a coded description of cutter motion and once more, that des·­

cription failed as a basis from which to deduce, for example, the weight 

or shape of a component. 

It must still be shown, of course, that drawings, NC tapes, weights 

and so on can all be derived from a stored shape description, and it must be 

admitted that, despite substantial progress, this task has yet to be corn-· 

pleted for a generality of component shapes. Before describing recent work 

in this area, I would like to return to the question of how to restore the 

surface shape of a component. 

2. MODELLING THE COMPONEN'l''s SURFACE SHAPE 

Fig.2 shows a component whose boundary has been split up into pieces. 

Each piece is termed a face and each face lies in a surface. F'or exa.mple 

face lies in a surface which is a plane whereas is in a cylindri-

cal surface F'aces meet at edges and edges lie in curves. Edge is 

in a straight 1.i.ne c1 , edge is in a circular are c6 . Edges meet at 

vertices and vertices are at points. We term the face-edge-vertex struc·· 

ture the topoloqy of the component's shape, and the surface-·curve-point 

information, its geometry. In essence the topology describes how the pieces 

of the boundary are connected together while the geometry describes the 

shape and pos.i.tion of the individual pieces. When a component is altered, 

either the geometry or the topology or both may change. We shall see that 



171 

the separation of shape information into topology and geometry not only 

helps a conceptual understanding of the problem, but has important conse-­

quences in the realization of a practical design system. 

3. BUILDING UP A SHAPE MODEL 

Although in principle a model could be input directly by giving the 

position of points and equations of curves and surfaces together with their 

corresponding vertices, edges and curves and details of how they are connec­

ted, such an approach is tedious and error prone. Programs for fi.nite ele­

ment stress analysis that employ a low-level form of input exhibit the 

difficulty. Si.nee the model is inherently redundent - a curve equation can 

be deduced from the surfaces of the faces intersecting in the edge that 

lies in the curve, for example - questions of model consistency soon arise. 

One approach is to supply just the surface equations. The TIPS system 

of Okino uses this form of input, each surface being given by an equation 

i.n the form f (x, y ) ~o where the sense of the surface is fi.xed by say.ing 

that the function is positive on the inside of the surface. Lf the shape 

is convex, no further i.nformati.on is needed. A convex polyhedron is fully 

defined by its n face equations but to find and draw its edges, requires 

O(n3 ) operations. To describe a non-convex shape in this manner, the order 

in which the faces are intersected must be given by supplying a boolean 

expression. The TIPS system stores an object in the form 

F 

m n 
u { n 

j~l i~l 
} ' 

that is, as the union of the intersect.ions of the surfaces 

three-dirl!'.:msional array of poi.nts, each being tested against the functions 

to find points near the object surfaces. A potential function defined 

terms of the speeds up the locati.on of points on the actual boundary 

of the object, given a nearby point in the three-di.mensional array. Even 

so, computation times are long. The system .is unable to make use of topo­

logical .information since this information is never stored explicitly. 

A second approach is to input boolean combinations of primitive 

shapes rather than boolean combinations of surfaces. This has immediate 

advantages from the user's point of view as he is now descr.ib.ing shapes in 

terms of bounded entities or volumes. Their effect i.s limited to a fin.ite 



172 

part of design space and moreover, they are of the same type as the object 

being designed. There is no need for the user to understand details of sur­

faces or boolean algebra: he can be presented with a design system in which 

he simply adds and substracts building blocks in order to create a complex 

shape. 

For the implementer of such a system, there is still a choice to be 

made. He can store the building blocks as collections of directed surfaces 

(as is done in the PADL system [Voelcker]) and also the boolean expressions 

implied by the user's sequence of additions and subtractions. Only when a 

picture of the object is requested need he actually evaluate the boundary 

to find finite edges for display or faces for producing an NC tape. 

Alternatively, he can include topological and geometric information 

in the stored descritption of the primitive building blocks. By doing so, 

he can greatly assist the evaluation of addition and subtraction operations, 

and can arrange to keep an up to date, evaluated description of the shape 

at each stage of the design. The existence of the evaluated description 

makes display of wire-frame pictures of an object a trivial matter. 

Undoubtedly the greatest difficulty in implementing such a system is 

to evaluate the intersection of two shapes and to produce one or more shapes 

as a result. Initially it seemed that algorithms for this purpose always 

contained a host of special cases. However, over the last two years, when we 

have been developing a new shape design system, we have given much atten­

tion to the general intersection problem and believe that we now have the 

special cases under control. 

4. A NEW SHAPE DESIGN SYSTEM 

An underlying premise of the new system is the belief that the topo­

logical and geometrical aspects of shape should be kept distinct. The topo­

logical treatment is an extension of work at Stamford [Baumgart] where it 

was observed that polyhedra obeing Euler's rule could be built up from a 

single primitive using just two operations. Euler's rule states that 

n + 2 
e 

where nf, nv' ne are the numbers of faces, vertices and edges respectively. 

The simplest Euler polyhedron for which nf nv = 1, ne = 0 we take as our 



173 

primitive object. The two operations are 

OP 1 add edge and vertex n ·+- n + 1 ' +- + 1, and 
e e 

OP 2 add edge and face n +- n + 1' nf ·+· + L 
e e 

By starting with the primitive polyhedron and applying the operations an 

appropriate number of tlmes, any (nf,nv,ne) satisfylng eqn. (1) can obtained. 

In practice we take a more general form of (1) to allow for multiply-connec·· 

ted faces and polyhedra wlth handles. 

Baumgart also proposed a representation for shape topology which 

allows connected edges, faces and vertlc<2s to be found without searchlng 

(Fig.3). Every edge is stored together with po1nters to the vertices at 

its ends, to the faces on either side, and to the neighbourlng edges (termed 

the winged edges) going clockwise or counter-clockwise about these faces. 

Each vertex and face carries a pointer to one of its edges. Us1ng the winged­

edge po1nters, all the edges at a vertex or round a face can be found direct­

ly. As faces can be multiply·-connected, we introduce a further data type, a 

loop and say that a face is bounded by an outer loop of edges and possibly 

by inner loops denoting holes. Each edge then belongs to two loops which tn 

turn belong each to a face. 

A cube and the other ready-stores primitives of the ortglnal system 

are now built up from the single primit1ve and application of the two opera·-­

tors. Rather than apply the operators directly, it is useful to set up 

three intermedtate operators. These do the opposite of a projection, that 

ls they tncrease the d1mension of an object by one. The first takes a po1nt 

object and makes it linear, the second sweeps a ltnear object into a two­

dlmensional object, and the third takes a 2D object and sweeps lt along the 

third dtmenslon to make a 3D object. Fig.4 shows a cube being made in this 

way. Edges added using OP 1 are shown as a full line, those added by OP 2 as 

dashed ltnes. The final cube has required seven appltcations of , ftve 

Of 

We have chosen to add geometric informat1on as the sweeping operators 

are applied. Conventionally the OD to lD operator ftrst moves the vertex 

one untt ln the negative x direction and then sweeps forward two units .in 

the posttive x direction wtth a single applicatton of OP 1 . The lD to 2D 

operator works similarly in the y dtrection, here maktng two calls to 

and one to OP2" The 2D to 3D operator will in fact sweep any 2D lamtna in 

the z direction; :in this case tt calls OP 1 four times and four times. 



174 

next 
clockwise 

next 
wise on 
face 

fig. 3 

/ 
next edge clockwise 
on previous face 

clockwise 
face 



175 

fl 

e 
l 

"'v1 ,f I VJ 

i ~ 
-· - x-axis ···1 4 y-axis 

e v2 I 

I e2 f e3 
fl I 

..... ~ 

sweep point into line 
VJ e 

l v2 

sweep line into lamina 

------+----
z-axis vs e9 v6 

sweep lamina into solid 

fig. 4 



176 

Other intermediate operators are provided. One sweeps a linear object 

around an axis to make a 3D axi-symmetric object. 

5. GENERAL INTERSECTIONS 

As remarked above, the most powerful operation in a volume-based 

system is the general intersection. With it, a user can quickly build up 

complex objects by adding and substracting simple shapes. The intersection 

routines keep track of all the changes to topology and geometry which occur 

during an addtion or substraction and are necessarily complex. In the ori­

ginal system, two special cases of a general intersection were handled. One, 

termed merging or type-1 intersection, combined objects which touched at 

flat faces but did not interpenetrate. The second allowed an arbitrary ob­

ject and a cube or cylinder to intersect without restriction. 

In the new system, any two objects can intersect. Great care is taken 

to see that all the cases which can occur are handled correctly. The most 

common is where two faces intersect in a curve (fig.5), new edges will have 

to be inserted in the positions of the curve common to the two faces. Howe­

ver, it is possible for the surfaces in which the faces lie to intersect 

nowhere (two parallel plane faces) or everywhere (two coincident parallel 

plane faces). The same case of coincidence can occur between any combina­

tion of faces, edges and vertices. The intersection algorithm makes no 

assumptions about convexity fo faces. Although it is being tested on poly-· 

hedra, we have been careful not to build in any assumptions which rely on 

the objects being polyhedra. If an object is cut into pieces by intersection 

with a negative object, the resulting pieces are identified and returned as 

separate objects. 

As in the original system, intersections occur in two stages. In the 

first, intersecting faces, edges and vertices are discovered and marked 

deleted or not. New edges are inserted and linked in to the existing objects. 

In the second stage, the objects are scanned, edges are collected into loops, 

loops into faces, faces into objects. Interestingly, the primitive operators 

of adding an edge plus a vertex or face, are not very helpful in intersec­

tions. The problem is that during intersections the objects exist in a 

form which does not satisfy Euler's rule, that is, they are not Euler 

polyhedra. It would be pleasing to find a way of performing general inter­

sections efficiently using only Euler operators to handle the changes in 

topology. 



177 

curve of intersection 

fig. 5 



l.78 

6. GEOMETRIC EX'I'ENSIBILI'I'Y 

Apart from clarity of expression in programs and algorithms, the 

greatest gain from separating topology and geometry in a shape design 

system occurs when we want to extend the range of curves and surfaces 

handled by the system. For example, in intersections we frequently want 

the curve of intersection of two faces. This is implemented as a single 

procedure and in turn calls other procedures to handle the different cases: 

plane with plane, plane with cylinder, cylinder with cylinder and so on. 

If a new surface type is to be added, new procedures must be written to 

handle its intersection with each existing surface and with itself. The 

geometric growth in number of procedures is unavoidable and is an incentive 

to limit the number of different surface types. 

F'or any set of curves and surfaces, we must be able to supply the 

following routines: 

a) ~rface) _L ]curv':' where the curvce is delivered, possibly 
, ea.eh piece in parametric form. 

b) curve)[ ]point where the points are those in which the 
curve cuts-··the- surface. Coincident curves must be recognised. 

c) vector where the vector gives a directed normal to 
at the point. 

d) where the point(s) if any are those 

f) 

g) 

h) 

i) 

j) 

the case 
surface. The routine must also recognise 

curve .l:i.es on the surface. 

where if the poi.nt lies on the curve, parameter 
a real number. 

where the kleen, a 3-valued boolean, 
to the .left, on or to the right of 

the curve, both point and curve .lying in the surface. 

where the trans is a linear transformation. 

curve. 

Notice that curves must be provided in parametric form as one step 

in intersections has to sort points along a curve and does roo on the basis 

of parameter va.lue. There is no requirement for surfaces to be parametrised 

though a parametric surface is convenient when deriving cutter paths. 



179 

7. COMMUNICA'I'ING wrrH THE SYSTEM 

As the system is written in ALGOL 68C, we have been able to set up 

operators so that objects can be described as expressions in the language. 

This arrangement gives great power to the user and is especially suited to 

the development of special-purpose front-ends to the system. F'or example, 

it would be possible to write a front-end for design of a class of compo-· 

nents such as pistons. The engineering designer would be able to communi­

cate to it in his customary terms. The front-end could include design rules 

or any other information or practice specific to piston design. In this 

way, the special knowledge about a class of shapes, which does so much to 

reduce the amount of input and chances of error, can be separated from the 

underlying, general-purpose shape processor. 

Another possible front-end is of course a command interpreter. We 

have written one in order to use the system interactively. 

8. CONCLUSION 

We are now entering a period of consolidation In shape processing. 

More attention is being given to system design. We find it beneficial to 

separate a general-purpose core or kernel of shape processing routines 

from user-oriented front or back ends. Within the general-purpose routines, 

geometry and topology are best treated separately also. In this way, a 

system can be made extensible in its geometry, and we are able to overcome 

the unavoidable complexities of topology once and for all. 

REFERENCES 

Baumgart, B.G., 1974, 

Braid, I.C., 1973, 

Geometric modelling for computer vision, Stanford 

Artificial Intelligence Laboratory report, STAN­

CS-74--643. 

Designing with volumes, Ph.D. Thesis, Cambridge 

University. 

Okino, N. et al, 1973, TIPS-1; technical information processing systems for 

computer-aided design, drawing and manufacture, 

proceedings of Prolomat '73, Budapest. 

Voelcker, P.~. et al, 
1974 

An introduction of PADL, TM-22, Production Automation 

Project, University of Rochester. 



180 

ALGOL 68 G GRAPHIC EXTENSION OF ALGOL 68 

P.JW. TEN HAGEN 

One of the main goals of the MC project on computer 
graphics (see [l)) is the design of a high level graphic 
language. Two major criteria determine this design: 

All non-graphical elements in the language 
are borrowed from an existing general purpose 

h level language. 

All basic g 
e are 

purpose 
ILP (see 

ical constructs 
ived from a newly 

low level graphic 
[ 2 J , I 3] and [ 4] ) • 

in the 
a nea 

anguage 

Both criteria mean to avoid work that has already been 
done. For the first criterion this is obvious 
(re)inventions take a lot of time. However, if one borrows 
from an existing language, one also has to face its poorly 
designed parts and difficult features. For this reason part 
of the is lost again by tr to circumvent or hide 
from the user all facilities which are too icated or 
too clumsy. 

The second criterion iall avoids duplication o 
our own effort, a lot which been invested in the 
design of ILP. This could only be justified by the fact 
that ILP can be applied in a multitude of ways. For the high 
level graphic language it means 

The data structure for the language is de­
fined. 

The I/O routines for g cal data only re-
quire a trivial conversion. 



A skeleton for interaction with the high lev­
el language is obtained. 

The above is nothing else but stating that the high 
level graphic language is supported by a graphics system 
which is capable of a direct interpretation of the graphical 
data structure. 

Both criteria are not sufficient however to guide all 
major aspects of the design. They only provide the basic 
layer of the language. 

2. 

The g ic language has a layered structure. On the 
bottom layer a data structure exists which is obtained by 

embedding ILP in the host language. This data structure to­
gether with the operations on it provided by the host 
language (assign, compare, select input, output), already 
constitute a high level graphic language, say GLB. The next 
layer, say GLl, consists of GL0 extended with three sets of 
operations and the new data structures created them. 

The first set contains operators and procedures for 
~xtractini GL0 data: A complet~ pictur~ des~ription in GL0 
may contain a lot of irrelevant information with respect to 
a given set of man ations. Extraction is used to obtain 
relevant information in one of the following three ways: 

refer 
data. 

The structure of the ture can be i-
fied. This is called compression. 

Certain aspects (say line styles} are ig­
nored. Such operations are called reduction 

The picture is searched for certain proper­
ties we call this selection. 

combination of these three operations will also be 
to as extraction. Extraction always produces GL0 

The second set of operations is called ~anipulation of 
GLG data. This term is reserved for operations which can be 

defined according to the scheme: 

gl * g2 => g3, 

where g , g2 and g3 are GL0 data. g3 may be a 
value, more complex than gl and g2. 

created 

181 



182 

The difference between extraction and man ion is 
that extraction never produces a structure more complicated 
than its operands. In inciple extraction has priori over 
man ation. The tion of extrac on and mani ation 
is tained using the feature of (if any) of host 
language to write expressions. 

The third group of operations associates GL0 data with 
non-GL0 data. The result of these operations is a data 
structure outside GL0. Schematical 

g <> h => x. 

Either g or h must be in GLB. Hence these operations carry 
us at most one step outside GL0. 

The extension of GL0 with extractions El, manipulations 
MB and associations AB is called GLl. In a similar way GL2 

be obtained from GLl add a new layer of operations 
data structures of the three types 

GL2 • GLl + El + Ml + Al. 

The associations can be divided accordi to two cri-

3. The 

whether the new nformation s structure or 
ther the new information has a graphical in­
or not. The four associations are called graph-

graphical ing exte nal thread and 
respecti y. 

Under the ass that all basic g s fac lities 
are included in the main embedding princ e is tha 
whenever the host language offers a certain fac ity that 
resembles an ILP concept it will be used for that purpose. 
For instance if the 1 uage has an array construct it is 
used for rows of inates as well as for lists of pic­
tures. 

This 
on 

lead to a more efficient implementa­
on the other hand it presents the 

fami iar to the user of 

We have dee to take ALGOL68 as the first host 
uage. The facilities present in ALGOL68 al-

lows us to embed ILP almost directly in the form of mode de-
clarations particular elude. This means 
that no preprocessor or ary r i ed 
to test rams. The ALGOL68G lang l be 
used as a r combinations with other anguages. 



we will however strongly encourage efforts i 
the blueprint to embed ILP in other languages. 

183 

ent of 

In the remainder of this paper we will put s on 
the graphical aspects of the language rather than on the AL­
GOL68 aspects. The way in which ALGOL68 facilities are ap­
plied (or left unused) will not be justified. Moreover, as 
ALGOL68G is still under development, we present a snapshot 
of the first implementation. Before the definition of the 

uage will finally be published most of the anguage as 
presented will have been redesigned as a consequence of in­
tensive exercising. 

The state of ALGOL68G is that GL0 is being tested.GLl, 
GL2 etc. are not yet designed or implemented. The remainder 
of this paper is devoted to GL0. Since it is a nuisance to 
rewrite in this paper all details about ILP the reader is 
advised to read the lecture notes of this colloquium on ILP 
first. 

4. The~ Laxer. 

The embedd of ILP s straightforward in 
that each syntactic terminal or non-terminal of 
found in ALGOL68G, more specifically in GL0, as 
For the syntax rule from ILP 

the sense 
ILP can be 
a 'mode', 

<picture element>: <coordinate type> 
<text> I 
<generator> 

leads to the 'mode' declaration: 

'mode' 'pictel' • union (
0 plc 0 #coordinate type#, 
'text', 'generator' 

) ' 

Rot all 'mode's in the basic layer are derived from the 
ILP syntax. Extra 'mode' declarations are introduced main 
for two purposes: 

Part of the semantic requirements like consistent di-
mensions can be enforced by introducing icit 'mode' 
differences for different dimensions. In s way the 

• checking guarantees correct dimensions. 

ture can be represented in an infinite number 
ways. Efficiency requires a canonical representa­

all places where a more specific one is not re­
By introducing special 'mode's for these 
tions which are submodes of other modes) 

can in many cases be determined statically. For 
these ctures all operations take advantage of the 



184 

structure known beforehand. 

In princ e 'mode's of this kind are hidden from the 
user. The user declares the super.mode, but the values he 
produces are stored as so-called secret modes. In general 
secret modes have the advantage that they can be changed by 
the designer implementers without consequences for the 
user interface. 

1.·.! Geometry. 

The most essential part of g ical data characte ises 
This includes things like coor­
lines faces and transforma-

them as geometrical ects 
dinates, dimension 
tions. 

The basic object for specifying a position in geometri­
cal space is the dimensional value ('dv'): 

if'mode' ·av1' 
'mode' ·av2 · 
'mode' 'dv3' 

= 'real'# 
'struct'('real'x y); 
'struct' ('real 'x,y z) t 

A dimensional value appears in cture elements 
transformations and 
contain rows of successive 
points (the four corners 
lists of positions: 

selections. As ture elements 
positions rather than isolated 
of a square) there is a mode for 

'mode' ·1av1' 
'mode' 'ldv2' 
'mode' 'ldv3' 

'flex'[l 0j'real'~ 
'flex· [l 0] 'dv2 • 
'flex'[ldJ] 'dv3'; 

'mode' '?coord'"' 'union'( 
'ref"ldvl', 'ref"ldv2', 'ref"ldv3') 

The 'mode' '?coord' as secret 'mode' forces the user to in-
voke ided operations for mani ating coordi-
nates. dimension chec full 

A list of dimensional values ('ldv') is the basic ob­
for geometric manipulations. It can represent a se­
of one two or three dimensional absolute or incre-

ject 
quence 
mental vectors. It can speci of points line 

contours etc. All dimensi values must refer to 
positions in the unit (hyper) cube. If they don't apropri­
ate transformations and positioning must be attached to 
them. All this additional information becomes specified when 
an 'lav· is given as part of a ture. 



185 

flag :== ( (0,2) ,(1,0), (0,-1) (-1,0)); 
'ldv2' cross "" ( (0.5,0.5) (0,0.33), (0 -0.67)) 
'ldv 2 ' standard : = ( ( 0, 2) , ( 1, 2) , ( 1 l) , ( 0, 1) , ( 0. 5 1.17 J , 

(0.5,1.5) ,(0.5,1.83))' 

In this example, flag followed by cross can be made to 
specify the same positions as standard. To this end flag and 
cross must be interpreted as incremental positions, standard 
as absolute positions. 

We will now introduce some 
tain dimensional values. 

cture elements that con-

'mode' 'plc'"' 'union' ('point','line','contour'): 

'mode' 'point'= 'struct'('?coord' p)1 
'mode' 'line' "' 'struct'('?coord' l); 
'mode' 'contour'='struct' ('?coord' c); 

The values for 'plc' must be specified by procedures in 
which the r ht dimensions must be specified. 

Example: 
int' pl :• point2(cross) 1 

ine' 11 := line2(flag); 

Now specifies three • ts• to be drawn at the po­
to 

since flag 
the begin-

sitions cross. Similarly specifies 4 line 
be drawn between the positions of flag. Note that 
is of type 'line' the pen position is added at 
ning. 

To ensure 
can put them 

is drawn immediate following 11 we 
in a picture list e.g.: 

[1:2]'picture' flam :"' (11,pl)i 
or as expression: 

[1 2 j , ture flam 
ine2(flag) point2(cross) 

In order to produce the same ture starting with 
standard we ht as follows: We must devide stan-
dard a line part and a point par • 



186 

'point' := 
'line' 2 "' 

int2 (standard [5 8]); 
(standarcl[l 4]); 

Next, we must indicate that the dimensional values are abso­
lute positions. To this end we change the coordinate mode 
and put the result in the list. 

[1:21' ture stam :=: 
{mx([ld] 'xplc':=('not ,12)), 
mx ([l: l] 'xplc · "' ('not 'CM p2)) 

) ' 
or using the special operator to to absolute coordinates 

( · abco 'l 2, • abco · ) ; [ 1: 2 l ture • stam 

Adding an <attribute match> to a picture element 
changes its 'mode' from 'plc' to 'mplc·. In the latter the 
matches are stored, whereas in the former they have default 
values (all 'true'). 

or on one 

ure mm adds a two level match 
mx only adds exceptions. The 

or:· !rators exist act either on one par 
particular position. 

system to a 
ial cases 

ular match 

tures flam and stam produce exactly the same ef­
first positions of flam and stam coincide, e.g.: 

PP+ flag[l] standard [ 1 J. 

This relation is independent of transformations same 
positions incremental or absolute remain the same under the 
same transformations. Hence, if one wants to convert 
between absolute and incremental mode one needs to know the 
penposition. This is acceptable since one must know the pen­
position anyway: Either to know what the first line segment 
looks like(absolute) or where the line will be positioned 
(incremental). The alternative requires that the first po­
sition will be made explicit. In that case one cannot easi­
ly connect drawings when the preceding operation takes place 
under different transformations. 

To enforce that a line starts in a given absolute posi­
tion on may use the operator 

op 'fiv" 



187 

This operator adds an invisible absolute •move• at the be­
ginning. 

Transformations ~ Subspace. 

Like all attributes transformations must be specified 
with correct dimensions. Although all ILP transformations 
are present in GL0, we will, for t~e sake of brevity only 
mention rotation translation and seal 

Each primitive transformation has a 2d and a 3d ver­
sion. An arbitrary transformation can be specified with the 
help of so-called •star• expressions for attributes. 

'trafo' tf := rot2(angle) * tr2(dv2) * 
sc2 (dv2) * tr2 (ddvv2); 

This expression delivers a value of the 'mode' 'ref 'trafo'. 

To apply a transformation to a picture we use the 'wa· 
operator. 

'picture' tp tf 'wa • flam 

This is a 
attributes we wi l 

ial case of a more general construct 
see later on. 

for 

Transformations contain all 
means fo modeling tures The 

(and efficient) 
mechanism is a 

more powerful, and therefore more expensive 
With a subspace selection one can: 

model tool. 

alter(decrease) the dimension; 

transfer dynamically to a position; 

spec 
tern. 

a new non-or coordinate sys-

eneral a subspace transformation 
y but for a translation to the 

space also may reset attributes and l 
matches. 

can be calculated 
posi ion. A sub­

it the scope of 



188 

4.3 Attributes. 

The embedding of attributes has resulted in two ways of 
representation. One is equivalent with the directed attri­
bute graph representation of ILP. The other consists of 
so-called state descriptions. It is an example of a more 
compact canonical representation. Both data structures use 
the same way of representing primitive attributes the so­
called attribute classes. 

'mode''attrclass' "" 'union' ( 
'ref' 'trfcl', 'ref' 'aetcl' 'ref' 'poscl ', 
'ref' 'stylecl ', 'ref' 'pencl ', 
'ref' 'cntrlcl' 
) ; 

Attribute classes can either be put into a 'state' as 
state component or into more complicated attributes e.g. 
'attrpack' or 'attrlist'. Each 'attrclass' can contain all 
values that might be produced by mixing attributes from the 
same class. 

'.!'he mix 
pression 

'mode' 'trfcl' 

'mode' 'poscl • "' 
'mode"detcl' = 
'mode'' stylecl' 

'struct'('ref''tmat' mat #matrix# 
'ref''window' wdw, 
'ref' 'trfcl' parent 

lbackwards linked listl)r 
'struct' ('ref' 'bool' byto) 1 
[J'ref"d t' 

"" 'struct ( "linest' lst, 
'ref''pointst' pst, 
'ref''typogr' tg 

) ; 
'mode' 'pencl • "' ' s t r uc t · ( ' ref' • re a 1 ' 

'ref' 'colo 
'ref' 'blink 

intens, 
'colour 
blink 

) . 
is expressed with the operator * The ex-

a * b 

is defined if a and b are in the same class. a and b 
may both be 'attrclass' values or imitive attribute 
values. The result of a* bis again o the 'mode' 'at­
trclass'. Bence, * - expressions may be of arbitrary length. 

'l'he sampl of class values into a 'state' is denoted 



189 

with the + - operator. The + - operator is defined for any 
two attributes. Its effect is that it turns both operands 
into a 'state' and next combines both 'state's into a new 
one. 

A 'state is a list of 6 state components one for each 
attribute class. 

e' 'state' = !J 'stcomp'9 

Each 'attrclass' has a fixed index in the row. It is 
the most compact representation for an arbitrary combination 
of attributes. 

only way to obtain 'state' values is by writing + - ex­
pressions. This guarantees that the bounds or the indices 
obtain unique values. 

The alternative representation for attributes consti­
tute of the 

'mode''attrlist' 
'mode'· attrpack · 

= 'struct'('int' dim, 
'struct'('int' dim, 

'string' aname 

'ref · ! ·at t r • al) 

'attr · attr) 

An 'attrpack' itself is not an 'attr ·, but a 
'ref''attr' is. The corresponding reference in ILP uses the 
'stri • aname. This is a typical example of using the 'ref' 
mec sm of the language for a similar concept in ILP, 
although a naming convention is defined there. The aname of 
the 'attrpack' however still ays an tant role It al­
lows us to differentiate between an ordinary 'ref''attr' (as 
will occur in variables) and 'ref"attr k'. When the 
latter is output for instance, the cor k will 
be output precisely once. The value of e will be 
output for each reference to it. 

4 

for complex tures arei 



190 

'mode' ture' 'union'('pictel' lthis one is not 
'ref''npict' 'ref''wdnode', 
'ref' 'plist', 'ref' 'subspp'): 

'mode"wdnode'"' 'struct'('int'dim, 'attr' attr 

exl 

'picture' pict); 
'mode"plist'"' 'struct'('int' dim, 'ref'[J'picture' pict); 
'mode"npict'"' 'struct'('int' dim, 'string' pname, 

'picture' pict); 

is 
of 

'mode"subspp'"' 'struct'('int' dim, 'ref" 'subsp, 
'cture' t); 

We wil 
uced 

discuss 'npict' and 'wanoae', An 'npict' 
attaching a string to a ' ture' means 

'proc npict"' ('string' pname, 'picture' et)' ref' 'npict': 

On output, like for 'attrpack's an 
duces only one copy. 

t' also pro-

A 'wdnode' is uced by attaching an 'attr' to a 
ture', by means of the operator 'wa' 

op 'wa',. ('attr' attr,' cture' t)'ref· node' 

We can give three alternative ways to attach a sequence 
of attributes, say A,B,C and D, to a ' ture', say pict. 

'wdnode' wdpl := 
'wdnode' wdp2 := 
'wdnode' wdp2 

A+ B + c + D 'wa' pict; 
attrlist((A,B,C,D)) 'wa' pict; 
A ' wd • ( B ' wd ' ( C ' wd ' ( D ' wd ' et))) 

The first one combines pict with a 'state' the second 
one with a list of attributes. The third one creates a 
hie archical data structure, adding an attribute on each 
level. all speci the same picture. 

e. 

To conclude this chapter we will write a program that 
produces a data structure representing the well known 
pythagoras tree. It illustrates the expressive power al­
ready present in GL0. 



191 

'proc' pyth"" ('int' order) 'ref"npict': 
'bgn' 'line' 11 := line2(((1,l) ,(l,1),(-lil.5,l.5) (-lil.5 -1.5))); 

'line' 12 := line2(('dv2'(1,-l)); 
'trafo' sc I"' scale2((1.5 * sqrt(2) ,lil.5 sqrt{2)) 
'trafo' tleft := sc * rot2(-l.25 *pi), 

tright := sc * rot2(1.5 *pi); 
'heap"npict' :== 
·if' order < 1 'then' 
npict("pythlil" ,plist( (ll,line2.( 'dv2' (1,0)) 12))) 
'else' 
npict("pyth"+whole(order,2), 

'fi' 
'end ·; 

plist ( (11, 
tleft 'wd' pyth(order - 1), 
tright 'wa' pyth(order - 1), 
12) ) 
) 





UITGAVEN IN DE SERIE MC SYLLABUS 

Onderstaande uitga.ven zijn verkrijgbaa.r bij het Ma.themal:isch Centrum, 

2e Boerhaavestraat 49 te J.lmsterdam-l.005, tel. 020-947272. 

MCS 1. 

MCS 1. 2 

MCS 1.3 

MCS 1.4 

MCS 1.5 

MCS 1.6a 

MCS l .6b 

MCS l.7a 

MCS 1.7b 

MCS .7c 

MCS 1.8 

MCS 2 .1 

MCS .2 

MCS • J 

MCS . 2 

MCS 3~] 

MCS 4 

F. GOBEL & J. VAN DE LUNE, Leergang Besliskunde, l l: 
bas·iskennis, 1%5. ISBN 90 6196 014 

,J. HEMELRIJK & J. KRIENS, Lee1"gang 8esliBl<Unde, deel 2: 
, 1965. ISBN 90 6196 015 0 

J~ HEMELRIJK & J~ KRIENS1 Leergarig BesZ1.:skunde1 dee ;-;,,. 
Statistiek, 1966. ISBN 90 6196 016 9. 

G. DE LEVE & w. MOLENAAR, Leer>gang BesUsl<unde, dee/ !J: 

Ma:rkooketens en waehtt-iJdcn, 1966. ISBN 90 6196 017 7. 

J". KRIENS & G. DE LEVE, 
tot de 

ISBN 90 6196 018 5. 
' 1966. 

B. DoRHOUT & ,J. KRIENS, Lec1•gang Bcslisl<unde, deel (ia: 
1, 1968. ISBN 90 6196 032 0. 

B. DORHOU'l', :r. KRIENS c;, J.TH. VAN LIESHOUT, /,eer,mnc1 Be.s!'!'.E:-

kunde' dee 7 6/J: vh'. 
ISBN 90 6196 \50 5. 

:~, 1977n 

G. DE LEVE, LCCY't!Clrifl BeBliskunde, dee[ ?a.· 
1, 1968. ISBN 90 6196 033 9. 

G~ DE LEVE & H.C. TIJMS, Lee1•gang Be.s Z.iskunde 1 deel. 
,-, 

1970. ISBN 90 6196 055 6' 

G. DE LEVE & H.C. TIJMS, Leer•gang Bes Ziskuncle 1 deel 
3, 197L ISBN 90 6196 066 

?b: 
x. 
!o: 

5. 

J~ KHIENS, F~ G6BEL & W~ MOLENAAR, Lee1')t7ang Bc:.sZ'i.sl<u.ncle, dee/ 8: 

Mim'.ma:J.?nethode, , siJrrulatic, 1968. 

ISBN 90 6196 034 7. 

G.J.R. FORCH, P.,L VAN DEE HOUWEN & R.P. VAN DE RIET, 

Stabi li teit: van 
ISBN 90 6196 023 1. 

t.,.-/12sehcmo .. 1s? cleel 1, 1967~ 

L. DEKKER, T.J. DEKKER, P.J. VAN DER HOUWEN & M.N. SPI~IKER, 

Col Stabiliteit oan 's, l 2, 1968. 

ISBN 90 6196 035 5. 

fLA • LAUWERIER, lemen, deel l, 1967. 

ISBN 90 61% 024 x. 
!:LA . LAUWERnrn, leme 1 1, 'I 

''• 1 ')()8. 

ISBN 90 61% 036 J ~ 

I-I.A. LAUWERIER, lemcrl 1 . 196f3. 

ISBN 90 6196 04 6. 

H.A. LAUWERIEH, fi'epr1c.~;r:n )f)( 1?!pen, l {)6?:3. 

JSBN 90 61% o:n 1. 



MCS 5 

MCS 6 

MCS 7.1 

MCS 7.2 

MCS 8 

MCS 9.1 

MCS 9.2 

MCS 10 

MCS 

MCS 12 

MCS 13 

MCS 

MCS 15. 1 

MCS 15.2 

MCS 15.3 

MCS 16. 1 

MCS 16.2 

MCS 17. 1 

MCS 17.2 

MCS 17.3 

MCS 18 

MCS 19 

J.H. VAN LINT, ,J.J·. SEIDEL & P.C. BAAYEN, Col 
wiskunde, 1968. 

lh'..sc.re te 

ISBN 90 6196 044 4. 

LK. KOKSMA, Cur.sus ALGOL 60, 969. ISBN 90 6 96 045 2. 

Moderne rekenmachines, deel 1, 1969. ISBN 90 6196 046 0. 

Mode.rne rekenmachines, deel 2, 1969. ISBN 90 6196 047 9. 

H. BAVINCK & J. GRASMAN, , 1969. 
ISBN 90 6196 056 8. 

T.M.T. CDOLEN, G.J.R. 
tische 
ISBN 90 6196 048 7. 

DE JAGER & H.G.J. PIJLS, 
, deel l, 1970. 

W.P. VAN DEN BRINK, 'f.M.'l'. COOLEN, B. DIJKIIUIS, P.P.N. DE GROEN, 

P.J. VAN DER HOUWEN, E.M. DE JAGER, N.M. TEMME & R.J. DE VOGELAERE, 

Colloqu·ium , deel 2, 1970. 
ISBN 90 6196 049 5. 

J.. F'ABIUS & W.R. VAN ZWET, cle 
,.,.,,,,,,,_.,,,,,1.1, 1970. ISBN 90 6196 057 6. 

H. BART, M.A. KAASHOEK, H.G.J. PIJLS, W.J. DE SCHIPPER & J. DE 

VRIES, en operator•en, 1971. 
ISBN 90 6196 067 3. 

T.J. DEKKER, !Vume1°ie i<e ' 
1971. ISBN 90 6196 06B 1. 

F .E.J. KRUSEMAN ARE'l'Z, ProgY'&nmer•en VOOY' 1°ekenautomaten; De MC 
ALGOL 60 vertaleP voor de EL X8, 1971. ISBN 90 6196 069 X. 

H. BAVINCK, W. GAUTSCH! & G.M. WILLENS, Col 
theor1:e, 197. ISBN 90 6196 070 3. 

'l'.J. DEKKER, P.W. HEMKER & P.J. VAJ'\I DER HOUWEN, 
' deeZ 1, 1972. ISBN 90 6196 078 9. 

P.A. BEENTJES, IC DEKKER., H.C. HEMKER, S.P.N. VAN KAMPEN & 

G.M. WILLENS' StiJve 
deel 2, 1973. ISBN 90 6196 079 7. 

P.A. BEENT:rns, K. DEKKER, P.W. HEMKER & M. VAN VELDHUIZEN, 
u1<'m.1.u,•n SUJve , deeZ 3, 1975. 

ISBN 90 6196 118 1. 

L. GEURTS, CUY'sus Programmer en, dee l .I : De e lemen ten van he ic 
pr'og1oermmePen, 1973. ISBN 90 6196 080 0. 

L. GEURTS, CUP.SUB Pl'ogrammePen, dee l ;_;: De vr•ogr•ammeerrtaaZ. 
ALGOL 60, 1973. ISBN 90 6196 087 B. 

P.S. STOBBE, Lfrzeaire 
' deel 1' 1974. ISBN 90 6196 

P.S. STOBBE, Linem:re deel 0 ,,,, 1974. ISBN 90 6196 

090 

091 

N.M. TEMME, LineaiI•e 
' deel 7 

•)' 1976. ISBN 90 6196 123 

F. VAN DER BLI,J, H. FREUDENTHAL, ,J.J. DE IONGH, J.J. SEIDEL & 

8. 

6. 

8. 

A. VAN WIJNGAARDEN, Ren k/;Jca•t eew,> wiskunde 1946-1971, labus 
uan de Val<antieou1'8US 1971, 1974. ISBN 90 6196 092 4. 

A. HORDIJK, R. POTHARST & J.Th. RUNNENBURG, 

Marl<ovketens, 1974. ISBN 90 6196 093 2. 
stoppcrz 



* 

MCS 20 

MCS 21 

MCS 22 

MCS 23.1 

MCS 23.2 

MCS 24 .1 

MCS 25 

MCS 26.1 

MCS 26.2 

MCS 27 

MCS 28 

MCS 29.1 

MCS 29.2 

MCS 30 

MCS 31 

MCS 32 

MCS 33 

MCS 34 

MCS 35 

MCS 36 

T.M.T. COOLEN, P.W. HEMKER, P.J. VAN DEH HOUWEN & E. SLAGT, 

ALGOD 60 voor• en 1976. 

ISBN 90 6196 094 0. 

J.W. DE BAKKER (red.), 

ISBN 90 6196 103 3. 

1975. 

R. HELMERS, F.H. RUYMG.ZtART, M.C.A. VAN ZUYLEN & J. OOS'l'ERHOFF, 

methoden 1:n de van 
1976. ISBN 90 6196 104 1. 

J.W. DE ROEVER (red.), 

matica, deel 1, 1976. ISBN 

J.W. DE ROEVER (red.), 

mat;ica, deel 2, 1976. ISBN 

P.J. VAN DER HOUWEN, 
deel .7: 

S'tr•uctuur• van 
ISBN 90 6196 116 5. 

N.M. TEMME (ed.), Nonlinear 
ISBN 90 6196 117 3. 

N.M. TEMME (ed.), !VonUnear 
ISBN 90 6196 121 1. 

1.dt de 
90 6196 105 x. 

uit de 
90 6196 115 7. 

90 

' 
1976. 

volume 1, 1976. 

volume ~?, 1976. 

bfomathe-

biomathe-

6196 106 

M. BAKKER, P.W. HEM1<ER, P.,J. VAN DER HOUWEN, S.J. POLAK & 

M. VAN VELDHUIZEN, Colloquium 1976. 

ISBN 90 6196 124 6. 

ti ~ 

0. DIEKMANN, N.M. TEMME (EDS)' Nm1l?:near 
ISBN 90 6196 126 2. 

Probiems, 1976. 

J.C.P. BUS (red.), Colloquiwn Numeriel<e pr•ogY'an1w1tuw·, 

deel lA, deel .18, 1976. ISBN 90 6196 128 9. 

H.J.J. TE RIELE (red.), Col 
deeZ 2, 1976. ISBN 144 0. 

Nurner•1:C ke programmatuu.r•, 

P. GROENEBOOM, R. HELMERS, J. OOSTERHOFF & R. PO'l'HAR.S'r, 

n"'.nP1.nn"'r1 ·in de statistlek, 1977. ISBN 90 6196 149 1. 

J.B. VAN LINT (red.), 

ISBN 90 6196 136 X. 

L. GEUH'l'S (red.), Col 
ISBN 90 6196 137 8. 

1:11 de ' 1976. 

r 1976. 

P .J, Vl\N DEH HOUWEN, 1 S VOOY' de van 

1'Ja-ters1';anden in zeeen en Y'it1-;'.m0 en, ISBN 90 6196 138 6. 

,L HEMELRIJK, Ori?!nterende cursuB mathematisehe s taL"iD t1'.ek, 

ISBN 90 6196 139 4. 

P.J.W. TEN HAGEN (red.), 

ISBN 90 6196 142 4. 

J.M. AARTS, J. DE VRIES, 

Sys-t?!men, 1977. ISBN 90 6196 143 2. 

Computer ' 1977. 

To po 

De met een * gemfcrkte u.i.tgaven moeten nog verschijnen. 




